Question
Which of these fractions has the greatest value?
Worked Solution
Lowest common denominator = 48
Convert all fractions so that the denomiator = 48:
|
|
32×1616 |
= 4832 |
|
|
2419×22 |
= 4838 |
|
|
65×88 |
= 4840 |
|
|
1614×33 |
= 4842 |
∴ {{{correctAnswer}}} has the greatest value.
U2FsdGVkX19k0qeVVGwA9ykG4tP3gIM1uuqvifWwYr0fM5ALxOoz/FKpreFT941x9mNKtHG6XCbRWB9HgWmk38rdEDoW0JiNmeH9tZcjl9kz7pDW9jRBwinj8BQ+cdbZN2RuuQBLW1qtlrY0vGVzemzGjEuCtQVJnKPXjCVQm3GitlJ7G8IhddAlsMbMS4Ilif3ei6oAK/YRoqmLRF11Wtzj4NFleBtddWvWHfU9mU8QQBtHBr8agemAHc2MRHRZofXJjpynia+C29koDkwbh56ojZTWrZJTeR7xLHZiDRUc0h8fhPGkWBjxhV6tkUYpYLt4u709UeM3Pf3I9vV17Tyaop7BX/0Twf0sIiqY83eDWcymjLJ/mwQBklq7bbbE6Jwk5HQ8i9n/4ZWpFCJJBC1MsuFatTDUaHlnraTE7Y0KA8/kawlpnHEWK0gPG7iU4TQ/60VVUbO0HKVTbih0FEjtlcHiTrRNTgJP1lBrS4xEC7HLnylkBHTYcSvfXwWcRfpGKVpqOB+jmpsSFfv4TBHkFRZp5Rska558dH8jpGHatj0wY0m20sTSySaQFJ7/BvuA1f5lJ2ViMtIKpcIV4Lyt8VzoDzg0URd/TTFpJvfdEYbdkbazLLl0Gu2QlYuitgI4PQ3xF0gmeOYHTMYSr+q80Wz698aNj0/QhiLlROsT+8JUJI6FqW/FwtjjQo4BUupqaLPDsqjYy0VmME3MoGHJWrSFd19UtTwZGZTxR7GRvQ7YoNLrJqx71ixSGZhAaKWVpbDJdfOYKcxMMVwDeBrDM90P5NQBFjsE6CZ+IbcWois7ORX+rAnjAgEMAd1fW7XHYu+eaweCPPFS/b6KA5BDfNhwRU357K/+9tbf4lPdLeMrc538Ozi5XlzE4xswa+3Ta1GCvaJpnxhUh/GTt/M+G4IkLLart7DLLy0jHrlDjmjriTy057fro9L/+8rrfmegcNGocJZmpW/OybxNJilEjHNo3rtncWZDujGOya1YEOd2La/pAWKRuPwa/YkT2qvieF/6pRwxqRnof81som9sHjkzMLyfIStrEXlDnTdbeiTh6Bw+aW0ZsCxpFlraunW4miFSgSTQ0FdlkD1+qheB3iOKxTNLc+Q4ptrt4fhLmUkAQnTzYpzc6kPGzzphy5QxJxcSLhJpIB/7yZsDi2iuK7svbTC7lnosgsAaOfrhR0ZDtjOamvA4+cdI7lBbzq0dkP7nENh/6hua13dazXyZr6fXyVaJdiIhoIdKfgKcS1sfUiDWPhbOALqBqjs7apvPdPMH2LBrPwb6XDoyAZwr6WTycmidmrGSpYshOhPCn336rKtArck1hhmRzMxQHe8mkvEhay37QQhDLsMzMs24AFmRiHO/4k83gmcMqILMfYF0HJkAqAu2pCu9+y96OkyDbNAeHfvgPvGQjZFv6jSzQwEl/+LY9Ckq5+w3aBn6x/YoxLbZdPcCngVJ0IWzf6kY4sbsAecp6nEyk9//A1O+PfE0Ie/jozxXEchyomSPYIOyY1axTdUhW++vSRfxzIxXkZWEhxG4Etp39EyW4/EMkKSO2Yyz00Axa5RvWI/23ZzDHJWHALHo+iHIqH7m+hJ8LjXj9qSVKEfYt6XYKpE6Bp+2+eG4zFbnjNDOSvHqMIE1H8SVZ5zcGOt62IAUVgbx/l+ShGrTFbRYV7nccSQvzVpFmrk4RQn8Ja24OwTt/t+uXSQ+U2zu2Ap/pgbfvRykcwAquRyEiilSwK8/8WQotzMwfMmEyEgkl8MIero0eqxydcnaG84osVY5okjA0QvsJoZidDilsZdirJXX9a7uIIMLhSz2hPN2HeFfVMa8idqEN8nUt3q5ug+5wgPffPoH5ucu7bNn364ktlTptSEBGPqvlqQSQx2AgEvGrfPXHpYSaDcwHDIQ0jOw+BYiPTbMArRmcLKbwP3CkMLo71d5gKmmPUzRBx/GKkDJqSZd+nip8neiDMVc6H/IxetKiyp4UzWJJTXoX0sXwrkB/s6JOAj3MlqUqMwDzC3voBm6a1uL9YT8xR6l3+FyxhXtitbzTrvR75A1Eue/Y3iYzEhypKB8VrJdUqt3V46MdiZYiHICh2m/hi6Rv65sgsQVY8jwISEY6NFxniAQefe3f9p3b2ZdPQ4/c+RwquvNVe959uwTn8ctT2dTLmGaFXQ2WvbIjur/062Z+4JMhSGE9inHnyegyq2vaJCMj+kltcgrySC1cu+nsQ93ey8Vb+A5HzNgeM9QJvSlErnl19GVqg5rfVqEnM/GgBwkvmQoqArr/e68GKdqTTaBvXlIbokA2XvmXEhlSCDdxW+qhxijL8xmeCcvrLdpbpIKD0lw0FVVr2dF8cjDVoly5Uw3ipxPQ1sqH5sIXY4bRTIQ1/sMF+3cPVCUqK833YwqRGdqhEiQkGB4MRpfhP3PI41f4K7Q6LC/FMbirpWgnA0L35O/V6FkotZd+ORcmXCPbB5dPwF1gig2DiL8E3S3iG6jsFg6KE+PJDZ5SnUcmCeL3EfanQ8lW9lWXCbxHjeVVtVVrq7Pnk8Trvr3l4ocDdLauccbk4lYExxdrBVo3iVy4//A673RvyKXm8dAtwkP17yctB14/PZ8NO/uYzVv2yvYmZURPy5cWUyYb1jAsuux456nzvBX0bazZyiwpPNlpRYl2Gdvb5KFVsbLVoRRGtGfftl81owWrQQ4vUtw9+lUlTLRAHXeeDUYv+qtdOTuEJOYMRCeoC4+TY06/tmgKmrh1ABqxiPbCTwefBM5FCIWXTJp+sImP/9svMeVMcrr0BNMDHXo0AgWXN2pX3+kQNulRclpO2TEkni9+Tn9pe8Az1AasQ/nXhEDFn+zZ3ncK0iyf6PbhXayqawSLdSJQ3ZOdbxH6NSmVuykyRJ/k0NX/Of9Se0bKBqwBuPyw0rnB25QklnqX8ESrlPISSvxzz2XMHNOxE9RriLxswBuR3yDLphDudWhMtcvBXA15jKAZteCUEL701fdhfpt66g5SXdEKNaeJOQPZuJ6mk5Xce6NraRkHrWWNHh7IO4Z4l/irHcI5wMVYGUjbCFs8dxxfAU4edzNGfSLYmP0hNS/pUnkhehv/wR6Y73I03u5XDu62QNMac1AkrqkFnlHIQ/hx3FwplipWxh5BQVsYSifqpS9dv8bZISFeX2J2rAzW0kCXsT029G3jyrZJYejd55XO/lGK0eUg7kS/+7Rq7NyNvpYvm3wQ0MEVQUB2QlxJvQO13b3cH/g4fOyp3ICQ5cG9PyQCzCcNs/okRCqYHhrwLvO+GruYFLxCea8NKV+7iVEfpn9XdgadIUfw3pQth5/6WThxoJaBwAli/0+NdW4+YqY3qKmXavusdu3eUYDuiOIhK5g3BNVUB6aMP6hFxu/DgBLbzb53b9jxIeYouNPANv0Omx6iV4x3J5zOHDPU7QoSzQUDxzeBDFXye5KlAxX+45gkJGtJC0cXYJrp0oIcn5ISeHv1+B9VPaKrfV56DLy7A6fHVWWs/Q7dmSkCIcIzOKgT7FXPMWuMtiXah+WnWTcpBOn0wqZkpid6pyFegBt1pRmzmM46imAemJ8B4wxUoFR69QQYupgorLh/OwFTX0g7uB2VJLqIq08MZj9MhFL8pKMUYkHrWYaYgexJDE4V9ZpRg6oDQE/qn1aCyT/MuVFEraq2g1gOkV977Fxw+aYQcrHfUS+w1e0h01Wp1qwccZcxHB5DuFWFsCDSmFaxgd+sivX3oFjF36QAt8b7qlZh2cQNCoaVDDuvBaJ8O6nhyBICkbmNBBbndLhM6cAeD9FCLpJaL73vHQlylZfkNkldg2dVbLFfD67GqBjDWw2HbcZVOFBqupnXa89qUbR1c+XDk+3Jlp2av1OuX6fNUCAb1p3+LuIYJKtKj+V7Cxb600VsKqacEworb/jOu/rB9mlr+9+I6iHiHQ7GCkDpaWCrK8t3dfKx11kRWQU9ruJ7NdN2iwIKgltubLuLPJpqJaBlElmd4GvRstY/d4Lwvp2DGA90DB97H5xwCGW+geJh2rlXcmWASzPP8tDxVgNHnqAZPRiX89+5hL7fV97Q0liaXz7XvTDrh/F731Udj+YuePsWt5ITWmRON7lJIqpJqQJAbeHuaQOHRDvooqz+uVhiyfHxxI9xtcy0ge87pKv0a6iYdGI6UatzpPn8U4gB3QhWxcIwG35DXZFhaDmMXJxEkrZFrc1gqPwAf9mmqz+53C6y/Ie5IUs4AMuBJGp4U06YScAPSgCHewxOFp626aLVfRPZpyeQMMGU7Z3UtEfiZumYK17mPVTBA1io1q53o6Q2ometdGeiOM4CEHO6ItK6bDxYL04JGRf8O6RrYqeRurN+EnoxlNtKLJ17WK/NGxv9xzzqKPMKY6BrEjAv+PvVkZSyx3X/ibZeNw9+Sii8v1nwcLPQ46twVCVQe4xh4V/+8+dZuZsLC6zdBBTJvl0Ns8r2ycou4GrXvwRrCqWgd5ckPbxKfCRj1HEVu3MqwW1zJDoTC11VUW70R+m0VaEFDVU2EL7eJgCsZhwmEwOYw9aNLhpLzkk8549R/PYwLX07+yK+N06gzu5abk+o25pzt9RsqiLWCR2+v0utIyl8SCIlGfwfYjiL58rT/EP8P2lzpNfNzIbhBdhWSkf+cAUwx7Oa8TaKhlKfjgMzEvptK/P9HsoqLmMnKx8x85uPdKyEkysJ5Mjwkjg3IPKEnMtyF7Vl7uTegqssdZpN54Nuy6ggWfTVkShp4NlYczQznRNsepaStGkVi09dd3gxJpbjXpgqQY9B37fkKL1fg/dFwSGZJuLqRf1fOaf6JQcsCl/624pP2tWWplnwTAMTbdRHXCRvhZXVNlIjyQTy/+AC0+ZLwLMitiBr/Ce4NNH0ARqA1g4L7d/5e8nhlx6dRnbK8YtE7SUJ3oU1bV5W/C6s6V6B/uVObVqynEi2Wop52pjyGjR1A8i9LqKUIM65qhu88Q0p8YiXutva0nNo2fH3chDYAyDHqRNuhKPkas6lWxSZPSZua9LJWUc2ACTLdqicPyOWgQUyOP5TMAG3GdfCwgHSkQCOGFR4h3Y+XXg2ejT5NH7u2i+nZ5VfMnu2QyyHo9ASp+oBfEDsj/oUR/SIYcax9FyrNUo4sOniIDewU6+Nc/YHcsJwA3b4PGUmne+jIkbKudLXuWoNUuZe5YWJcFAtcNWPVyXPhx48BYe1awOE5xmoNkTwgZn7dv1swpbBJNS3WE7zTm3nFsKaLEvJCfxtop/UBTuwgm86x+E9nTkUf9+C7FvAfflwNyXOdzTX8yM7v0cQCgVxT9TSZ79ulOI704SB/pyLQaUc+tlqbmrW/kUvc5VSPuKqjJ9pnVNDNt0cOoMoc789mqSZfZnm4ZF6oJaXhzRo7u53S+kmHxemX+Ob4jpCrE2gto/+Jmam0YFQ1ghFYl8AZl4XR4GZnoZbzq82vrCI+VRKbC/vY6QCx4kzHcOcJh/Pmln/PofnJd4gIydeYq6E9a97ZkpdVXb+LmTpPXTVSheh7XO8ecoY6ezzZTnzuUnrGP1FifyGTuNKcQBzC/ZJK4eH7VZ1BkAywaVYR02wNdN5abBSPHOCGmtjFHplxTws9fNkTMYEdJNAu66eMWnaxXRYgtK9iC1wJz9lMU1oOp77aHEfPTem0saKvzjAEPdm/By89IpWCoHOLTBF3QNuNErvJukyDufBow4ROkLD+yBzCmsnlFfWcnYR823h3/Oc6E/NYiouvQSWoa01k4gmpgxcH6z75tMoZaUORAtcmudX9HVgljTMiNagTxxGExw/2QQhYRFNseZx2ih5KeeZHexHx/Eomg4jto3EPwLmmVxtIGFTO3f+sEb2Kcd1v7hAWDkwEA6mythARDWPttz0W+MkJJ8qXJ1qnhnvKeRnspJFOcZ0OYKqq2dqOySUQmUPgiP5s1fn25c0hxtgY78xFN4ZeRCQOYfAvWdHDT12jei5LEqpqnXAoPzQmyGG0ILdjG6ys80iqfhbiyRYh5rM55dPQIcaq9aLqhenXn6+S16DKMDv7n3FdtrwDV2ME57uWDMH9FqPPGIG5tKyKxoO+4UQzeXNIe57qfClq3m7e32w02L0IfpMJF8SSJ799ttISh2LrP/WT8BA0oJcnHjyH/+IlB+hX/8Kbej6oZmJjrv+BtEh1ZNbHdWyCANEjTHYHC+7+jhjQ+h/id4ZR332gc7DtsFzVcsh6VgXXhK+gLcnOFlrwoPjMVXhHxywSpeF3P5V7SM6o5kbP4sH0SyO9m0VJZXE+f2nKQtNHY4na1Jw6k0OPef5z4Mb6rDl0wPwe53x1z9WaNT8cZM8wsTgRR+My9eCS75jGo2QMs62fMCjdazVj32o8z7H7NzE6dw/DuD0qHX0gkHk4jqduDvj1EFf3sfavEKfutxX6U62mWecTs/aq+lZEavE1bxfMOlUjZy6J91pmopGqLd0HYkaJXqabmGalj0aNXKlHB8DEU/BNAXoqxUgGwH01wH/231eHDSG/kc1RIL2xSLzGd86wuG0mhYs/j1w2TAIxgwwOTnH42BvtQEbq/J8pG3v6qoXnRFH72k8pdQu3mzUgxU7Axd/j6Cg2OYEKSOcM7shO74fID2uS4KJv+vNrG0dfCZQGTMMVOD7Itudl4SK/mzfN0U/vEW9Y5zfzoLqfEbu6xijPP8gAcCeJwPAIe2XkSt6lUz/MIbhj1pizdXbzkbv6GSkhlP7My5ftvx1er2/hH05i/LcjtLaaXjnISbsDhBqFJBj9ZJcz4Nb+6IF0cocE9kTWeUrLDYm4HCQRDSV+vOrtb5T9r2+bQ4+/URvsWOSuNAHk8EeK/C0jRPGCwbKXjjND790BNezleaGdNQMoNd9L2vWV7BK5YElMZrFuWWoEkpLc93eYgHmPer+RQFjlcV6KEIBEFh35rZoGhDkc6iousGe2BHofQF7RMhd9HUq5JcXx4DHcBMGQN+G21+9YhEZaPC1UPrvRPQxH9MSwSxOqfWRuswDx2+ApwjxEJXLRdOsC8xhlXipBmXbWbnD0BJcvEJXfEVF5nNeANVWsc0oWVjr7WsQSR3E7mdPHCMUe/+cyI/oNMkm+0eUZF2q5fGQFc0qtfn5qYiY0eZ3cIGjyJOF8WqWmM36px6pcK/K+gGgvr3a6ijkEELEQFwYxN8GaEU+qKMYXV+JYj5JikvvAAVTARwZGpa6wWOi2My5gknvND9EdbaIqBPAQwVMmW4ov2AIcQPBd64abaERHfvprJfRpWXHWAaQDkEuAAZw65daK664Fqvev81vj8F4s0bKaz4Aodpq7poeXs0fT5IEfbVyoHJVSIWIElO5sCTvCnaV8HUs+Y+5ps0rI2txGptRz8HAjLzeP9ZCmm/pEomHxQ9FYVjsgodONzCYmkbxH6YpXmQqlIzNh0GSwhF7oi1tDhLXhSsxtH53qLCjDkhtAyRWCh12YGTkOnPoPTfW1uSZ/smpOtj+tJR4ybTMqyyVKmM6Gr8AfoVfAABBlrzXm4kjzD+V86XBjD6qmZrQKRSoxPTdjUjm4Id58iDzdd5VKr9cW1vAic4kLWVG0nFEsUIp9OQJOEdjSIwNROQUXo9ldAW9/8YOwbRIrJFk4bMuws8iNf+R4rKmia0mKy8qnD0Ca9tBLZsPBaXJhpnu+alx6T3mRBRfKebMyf7PPl/OZOKzvuIQsDsagjzL0X9k55yKrkgNlChfNlkMRxaG9TSL5VxkfyW8+6t9fKbKtZat/gGaOaownn/s/zyz+kVHXdjTMzTErz+1n0GGiL1MKQWNR3Si6cvzNgZQjQI6OysQdzCSCxeRu1VZh6vDgxBccQjvt/YNpeHL78/IcoKhBx5CJr6+oMcIC2DbetPACaivM46tYa5+NrsioDgzXalCKMk6wYXIntMklwXSPRCXExTVDf8iYP1lEKoqa0GJKxaqU5ObaHXbe7seg5SRhuqk10WlOhKpm+I9x+pwcXFFMSXtEwWWVQ1W1LDYdNzml/wcGqx8JGe9sOMEEt/K1Ro9BuGC7Ws8KGe1kslP3w+KqUT8MAzHqnax6//ba3Je5aSebDdaQ7gZFDRud9r+CWiHcVD5TRB192QGoM0H7tqVowWrgMXF8h61XVMDTHC1RcLxDYpWuGjGVtHhKAe/t1falhzjAHP64Jtifr55maVZ4ExzdusQ/oaxkiZUDe7ruuxmDrLo3EIfuCSWgTgYa3ZgXOsb3kqrP64fYNAZG55VZFz3PYzepg/IhyvW0jG5VXnqqv9c8bjA0vms3ir55Mb606u/g+rC/ZBQgEH9FPalB0h9GjnS8uwj3rP9mK0k5undJCj2xe7CNZjgGVYHE8fvAStA9A1shS6QSYVvF9Ks+zq/Zjj2dROUZc/pVv2oluiMTZy8VzgdhKdpMzZN5dQ3lVXyZZZ57V2mHah1PboGV+MF9fQDEAYhs/gR518UExx8Mx8AwaoFlJuJ1HssGgIom2ano4T2Yl/B7g2R42QB/dQMSLhPZr5Y2EJDtBCmPefMEiR0yxFUNI02zUnMFFWUfQpDG9wYG2wJV45dWXGVWWtnG+t/WS2OiTt5xaujtcEihHCE+3FDVPz2TL2L3Ysuvgqdn5e8YUCrZ0Rsp1a5BMl1AKU3IaLb4jBznmNtD75f1nFH4NHsSgHClB5GT5hEeVZ657SUBzV11lOtrMGS31T/GwzP3M36+yT4/X8wZuXeptcR35gaiWFwGWTMLIE35sZpPFQsEu1QE4uilQWlsq6Cl+eGEjplzkQ8YUEeLCmSW6lfRV+7SZ+LacSTsbYEVyi5TojU3fWGsRrwQRHKj7RYU0kQMyeRo139Chw0kkU6/y4bGzQgpzBA1sGoRExxB0QMJp8kAUdDPN/Ug5eEdDpPUJX7Q/uWpGpygj/o20DmuqGZAV30fMkCDhkA1Zl4ar24X4S94aFEKAUA/WIT1n4DdvjKrm3InFBMbLtZEuwRmpITpGcp8jbYO3uECZQTbWsFDcwlKuc0HJhBhC11JVMmwc21Sf9jisnwU0lwdsmAfDHDa1nVlNxS4rVMnm4cwJPnh7eAkK53EHStQZOaWm7fCRbDJfLl2do3YCRLtutFDlGYYu/l1uZYPJMPgVTyrMh4vyCIR4PCbyQZXE6LgFaQwmfua70DbWmwUPyHduZk/46YJ+wohZRpXFIBztkJ1PfAJBwIlxS8mvQ6JoI4+UV3DXt6wgcyM+DaQlRFl6O4s6inZGUIzzZI3VJyAMGWe9Z3bDs0b0P8oTcr8406qqDDjO6YrQdYltTzyzecDlVQUsm+cKopSJyLKGJIvgqEP26LWYlyNXRSGClYWnxKw4SectzBCvckcz79A7swkrcjPyoeLV7GwHGrSNM5zeqgNTcKmy0Kgn6lFVqdA4/JcoLZIVcXQPRxz7tWs9oBrVWZ0a0NxCByGlcMrHKsBZCU3GTHnHq8UgE1+LTxxWUFKmqDhTqKm2We/35Nib4sartoTgWklXk1sb2Yz3UDRQX5/SlcvGmf0vfhF0iOtuVGbMxRoGAm1iYGr65f5nJWN3NOZlGhR2AfQDTORw5sVWV4mfySH+DSvlSwy9Q0nvYVxicB7ztYiD3xIo5cpnDrwOvy1N7aI18uHBuRpN+KaG3wVWvup2IrtOVZHofjBI9LOyMbhySy9U+BMVuUq/UtsT4to5enj6IDpYm9nSNasO5bKBEXo+OdJPS+aKXeLKfYAmzrAvwssLae5oBlYV6cEd0r75IzKGi/42VEdIM6YX/CRs2sqiEIDxx8jFkOZmRiJObFhwz6pv6JKf4+fNNdqn7xdIyLUBx6Dp2RM+JJ7ovhWoUMgPOGYVGJQdExKN4kJc2itL6shQfZb8BrXrGnmSUpkWD4cDih2+58r5gWDQCfDtwuPcaorgUvyN4cN63dkgKQv350d9l5AqLEiXVf6nIP/72t4mwRCAuxhhBF+EgieOW+nWvSI/d2Ny+IN7B5xQ7YyNoyrYDG7Muan0auXpigbSJ/YbG1WmxU1eFR0dryOmhKBWIx0quX384GR301HG/1rk9mNmInH5sgS5LNuTlpvIWV4vFBsyhJ0V+tTIY/v/thZur14wCXmSO9VOIHzzCowCWAFYg+CSJiG0M30jNYCNNMQK3CUNRyNr+0LEt9kbA7iUO/1fE4FeHhQwdhYtdwyJN8hinDbk8EdPDr+lJhJUPrn1+yNScrAr6e63tbv7+qR4WNUzmZZztgRF3AAT/asO41qYKPZTC3JyIqc711RNCZ1+x2B5Tf8EOoWh8wlpARM8VAcI7I4uyg/hdnKqAZV3qTk9Cp/iYoQcMfRZ4n/9mYCZy/6FLkof/lcFw08rLy1sNN8ew5joyTq8zob+iVWOweGXb09A13U2/0KwaIyWp+/7o8ju3QldNmDf7RjswWu3BdRiFWh0EL5oG/ZMUZ5G8SogYxlQt64olJujpJJMDVwox0tRsxBdGElhzW2byiSCYV6ds9/BMoUAboQpYLA4EYeigXIEVhVspHR8C+f3RKSb2H3PVesq/7NRNaU5p8TEEQRmkU8VmC3VVO2QV482UNwj/Nn0jMcxL3UZCMADqqZ2zhh1j0jPTx6YHz3ksS1PIFzxszH43Tj7vdYrW/6C+OQ2IiWykWifrLKwpi/VQw4NRMBUS9UNKd2+5dtI0t01RShUTpoxKJShFD+RCl1xit8AEiwNy2/+6WJEkr718b16TT2UerKTps0lZ8F3PG6hMkl0BZ6ml1p38lIk9JUqhCRfnr12bp9M+F593jwOl7SVouV8UYJ3GTorqR80FqJMebzqYUn5POm5xxSNKDtzv/gyqwI8zNgSqSKxty8Z5SUvsjRYtj6LEKqZ3BL/v6JJ6Sk3OagIPajjZpbf8eDlxJpzefuOpZacVRtPEeKvjNA38JkFQzJeC+TVSsRv9mTm+tKBF02VZl0O/d/14x8EY4ajgL+tXy8oPEB18X4arOkjy1R14hS69aKBLmmu1wINbpZKBV2SmroGygVoXOxHiYCt+iX4ueRYsopEF1JCHhf3DX13uYwwIkZi0trZzy04dv+3PJ+jTQTcMrzLZYhqQ6sQgkM0OTHXXxSbd2Av4hOEe7+Bonw7pPi4nfaRz6WB6sZWCUcUmnwWv1BWD3kdiZq6aCmQzk/EDwm0+a9dJiwMV/P+RpVYLARecJGJtMgU78ZLARf4qkN1+9II6QixIxnLGOBqcYFk3lQ6cBvsDEaXO6/57d77xdCgkrB/ye7MZ9Z1mPrDOl2i25Uao+SxlybJkvfEDRv+QSsopowAmPQC9cVT6agqsaHAx/HUG9XkxsgyRmku/SQifFw8EGOckBC0z8sjneeDTQEI+GLw+eqvHXYIcpjIEgNEZJsnPHaa5iqMoaOS6DDFVs1S2AOS9eYHfd/lJZSmhPhVzI1v9SDkixDmZ3cd4UT5Ne48r3C8TzZRWKnvT0iho9ArpRptXHECgtCzPfb+eJZf9IO8eIW3p6FKiqH9/a4bQYcboW9Gc5ExPIkbzOaeQyskEIkbzyT2Wq68b2fE24hxXAZASviAPfbCi1YX0P4uQIkzQROxrANr+Efy+jBkDfYNETtY3Pc/dO0UBwML0/ngQJFAylbIHLyG1kBc7Y7I/JAFvM41QhASaD2rIwvhk0SO0UO8vFXoVcz/QvzmH08qBq1vTUbVmohqTAlUEe9dDZtMkD0AmpZ36ZwVByfq0riJwVWxoDfLSHGXzmKPIdzoQZgZO8kuFv6um5XDIxpbFmM7U8bv8PHHpF4BqnIp7OINs45X7k55dH0cN7m8/GAr9bhSpW90g3N6LCDSUdhR60izTtzAEm9wFr69cttJeUG4ykDWm6ri4UolhS5TJhkgvoYfRp1tYVoS+aq9N7qdI3EI0Ow3kHt3Cb6JFEfsBMfKJkh9ypg455LlIo9dDV7/2a4BF6hsvPzt0f1fU+MDZbUcB1axNVocROt4anFhE8yu+4GNVCNhpAvNGgQg2+FL5SkdZB3W8YIcb//EDBxjpiwOCQ+THcrDrIqSjC+Txj4UDQ07ULGcUh1fw+zSeCxPePbDPPjSV63qKra0ro0Nm/ACuqf0PZ+klWeqGCxP8HuhisEWZvydJVrAkzgBokx/pdIIp2KaGcBnyiHGpgQASeGYPAWXGrpQ5ZKVjr29sTRpMtyZVrJ5ntDGgPL3n7YOOT7s0/y3ZQO/XlaZd+TDvLXOPjvdUP/wNObj/O3LK1TUi4/s+LGIvhg609YsLarI+pWNYeN5Uj6mO9GGDuqsRMDP0OI9MsbSWs0JpcnyExUrcJuj3r0Jqn5xZ2tmvF4AcNB0z6rFml657qF313YCrMtHzTtOEoyht6wMpenZIl4/VubfwuaNFD/hzByiapZdpyGMRegGPcDs0SjUdPCasPB16C4c7wzkuaFpAVHT2boYhWcScS0BCai/rPYQvl12VtVNoieYSLYygnyGsVsS0snTNF8IDzFYZ0TUUNYNwqFrPDHiNDuZ18Q2/ik8xfmfdUSVd7D8d6cEemyi2RTzVjuFwg3jgckNgOz6bV28UFMDq6NwzuPgvEsAhAs1KXwsCC0NuOU8qTd4E62OPP7YboGlSYMtxEH5AT4qswq4jj5JBCs/CH4xBsLFOD5nP2L10WlMmvGvXwLOqhRoE695tUWLlwxvuBvVCJf8JcIT/EUNkX/4p0WLiXoj1/dnzDXfSts/YwDmwjATA8s1/ql+1SREUFiK7R6Qn3q1r/wk5GdWNjMHj5fL9luHVM+5GXkSiIuCTcYoQbFeleE21i+3TPvZKbSs6QkwxYZWfApskzTnrl9aU7fgaERk9W2wkzV+Td4B1Ij9GVZNa2lOoch1a6iOH9IJzpY0bRkfDyX6Uhq01zyaRbXcHrgmO5IAjfeIQoa/WgZOc0Ok2KG2cY30BGvGEGkKjCJgWF9bmNdf4k8IPdky1NSDsv4IQEHVVKLsB7oR/aAYUI1ifxRJ4o2Ng+YKPVIkgCuaQmIB9z3xNyecTY6EySby89LeBmBIkcxsR2S3vzDBGIeG4uFOvhThcz/pv6kgXySiVIPIsZAZengFtRuSz48z6JM2pqqnNuXPsf6vrb4Q3EGyJ2LDFZEVZGZrUnFKk+lt4RioujgRf7wsALj5Imn+F67wFiwOmMr9aDdCCUnNYG36HlU/UnUaBEDnxdlU+YaXCI5YKnH9EKPvAOV/qhw0vSpavV59WYCb2syf5OnU6qdnolmDtYSDyd0CbgFVpiKw2XCyu+qK84lnNXw4/+kR4snTg7Gzb+/+G0OEfP/qQNbUCFN++UAtvoNyH41bSUQRyaV3Fa8Cp+AbhFDZNmAaNw2G/CNK5Xkh5CxeoKY9frPGZvPYS63qk8JD1BkvPAPtuof9sN0M6F0Lczg1/Iz08u/2VijU8uOyNnFe05vMxeK8VsckVfDUtYjGAjOr0Vaw8Ws6oyzWKzLusjeeQwlXAQiAIV8NeUgclUFkhFtrM5N0AFB3LEYlqyDmrrCR/WAPwWki39vo/ioP/9FzE7pMk/MDRQaVN/lV04K6dCtdR+1W0Lovb4WVpC2DxXqE4gBUNqSMgTE/mtBPKjomHjZrr0cxM00A+5DtYbZE2nrdKya8jS0ZXa+6UYdz9WuFDrfJobfZk/xQFm0ExxuLVfIMQVrnFaX8QR31Oe/WvR2GpdO/Fhoapy1lw/XWk3FNNPjXNdF5lyBoAOtW95KY5+l1Bdfu6KJB01kxRCoFecBEUq4xsR7dMkR+T2SHUKkZiU9FbEG5WSAKYOQWSUSIAHXz9gxSKdN8cB6+afYvx/2XdmjC3yOAbgAGLR6ti6pCBHbJfvFjdAJtt/mDYAJSaWX8Ir2VD9Za4jHdUjHPjzWwiSwVXL1d+tP802cD6wxFga9V8948TrqNIarRXMxW3xBDz+BlxBw7Z2fwpOgQEjAb3rA5tzjekqwFynf+apkZeLGZtxMHSxjNKmQaIGLf1B2IiiAtRQeJjKE2oe81AAUZ575UhLCT7WrSsSZsTEcWGo7IhTXvvdVB5h0PFgcIdzyC1Es/t9e/JcryytLaac4pATONblzwm3jSCnbViiCTn+P5fvqo5Xy5qwS7e+JHw6qS5+kSjFC4HizJcH3y9evYzN5ierhEPVDlHX6K5iMQYElpzP2AmY7B5Bg3Kj2WzfJ4Rx9lQeEaU7xFdQHIItUKcow78fUk1Hpt3SWCX2GLrHBW9WtluPiDdH8knnmI+1Nhxn1q6yU2U1hJ4jN6QSKr4Y63MNBjANUj6X3pgkoacm9CFb6quO1CYkdDp/mtWMUiXu8SR2ZQ2Ybjfb9IDXMoVRC+BV5cMHpdHAGhtiiGeQKjSQbZkQ+ZxOvm6BlSqrKXa3IXncpCKyIoTFLTB1tr2YWs8W3sZzwTSKBdF0tOR7FBjvIWYWRq1nIElNUjg/vJ9FMlYOrp9cWxQBlbM8cf0u2NaCACzP0Ag6x+DQWRNcSrN6BhE6ylWHgKKptv6ms1Cihakd8kXMYWZo/itSu4n+ubr/WQ3aZNwdN6woLpBtAqQpfckYW7wCoIA7DvZXjkdd+GLAD1mphK6h+8Ia8tvsONPqk9rCGYbxxJ7V3YESM/oOGk90nIHKB4Lepn8iIIndXLT1jmh8Ty9z8JLTCthuq4p2PGDooJG1sHg4a9lbmCnwL7i82Cnaen9z4rY30pobre2Zvo7J88ISfKNH80ypv2Zl1+CXjf4RzmJ+b384p0tLVW9BB69jwdVTAOp3Okauw8VrqRN2MlnML6F1mhWJb9mHKCGN9OkWrxomPAy9KI4otsJ7obtKCUBrBp7JQilmoqW1mLelaKe45Q4NExTTcdxXNcLaSWHxOctmD0deMB9g1rI72jeRmSzVKgi3qu0YM+AZnckMgQKf5CBQmjXWjcRP5sPfSTTlChFQCBM0Xp87e6gdlgas7fVItXj50sxS/4CKD+hAoEuQgZJ+W5Bjlni/3eSpW6OdvCW4QRXDTeGi31wDMkJmkPEaTC/rjbnvo3iulshp0KHabLsd9RCIxvEwiB8TLQucHfKrqqVTMndnA6tIPfDccSn0XqbPLuU8Pv9DQhSMR/xlxQtvzyCfXb8HLn1Zclc4hRZpLvGPYLLc0JrBuz2dyPYuj5Q0xeRYb8gn06FP3h27jYfwld2KL+UCjy8+fc4HySQNm4VoWozeGpRBJWaV3ktHcAdT5HwXpc+0kvnyO5d9077w/HaT9ULoOx66Mf3eVm59GRtSKTMa1/qtwNgutc0ylbwN23yrLn8VvWPmGLaEJ+e1W5EsQh6vppOcfdp4ZsZ139az4f5XcLJsRqxRJaAOUcgJfyJNjSH9GSZ9F4W6snzRJAbby23Z1Ryjq6FVxCiGUOcDRU8pFjpvtRiBaixGDjP2ABWzV0fTYBOQ/fnBoO7Mo1G0QS7CnSoj4kemfPu9xilgnTgF1BgFZSwyFTN2fU5eV+3+ad9DNeq2t/06KGzF75tRcCBtmI0qvQ0qXfgOy9qFkPZDW61NzbOBw+YMNySjXZfG2vEJi5wL/8ErfqHNs+aKZMlSkeAVSsDz29doDx/HtDVu/YOdx0DLLtEGnd7vb4kxE2gxRr2Rt5CYoq0qq66S9jmXCGJPhvXaoLfl1J09ph/OnuIBTv6r0QQOK4kRtgBNBgfw1gQkg+kDDXYmx9Gx8rpwuZ/JBQ4l7T52oK10Uen6T4MEpERa1ldiMYZ7NA7HKcBue/PfHEA8seoGHZiI4NED5d+xR4n6vQ3fKWEOBkCEKCnEPEup5vgZEUIJQEav3PQ1UvtTqbQPXBSv+KWzJD86AIjgeRRDbWuR1+v9eedFuWiRmTvJbW+ifmbKK0IDOfKHBtqSsageuyfjPrsrMWmwaA+zqQbUojsYBxI2dVsGugjLde54il9sqvAyfItS5GsnsI+6xNWh1+tZ2bvkT1xRM3nffnWg4bw3Vve9bBOykE8S7TZMq31AUKcP+/FH870BBi1vPIvgZaSyY2/53aUlyFB1F/SjugNdL6F32mCNcjLFljahE8InCoRrGGL7fvZwEYery8gqx4W+EH1tO0Dxu8XgCa+O3QcVy81cH8JKhXtv1zuiycfXbovfN3CVX2NzFkP6xZclK1oB7TKKArRCFQ3yBt3nZGrOT/dcO6Wm3pOn4MEQNe0Cvn3zzsBzxsDm3T32NbNW+/ELUN+PJZKxWQVf0DnDRoK11Xn7l/W9F73eUtFS9ro11M1Qt/nimSc1bW6abwctoekz20w1slmSxHwBfMrpRebkKT3E8Nof4Er83uVCh5EkWtzWbgNQPTlM5DG778BGV79t8Yv6iGGQDOE86wh8Qzlnnf0dguKoE54VMPO9eYC9KXSoJHYc9J0cY/2OXnlYxd9c74ZSrpKlrxg0Ggg6XLG7gPwAqfOiYFh4gSYVOxZUpx5FVQzzJcY8gSaCT6QJmRHA1XghM6yspaE3SBrmN09XZ0btuErp/eapptG2XgWt6n7sHuaT1Rr5wKngmOdbWi3jQU5qlLhBcRbsMnSIvXhgF9toD+oupZNXQcSfBsm5lLHGwdqTsjj1qd71qOJbHqOGQdI5azWjv2UmKu7L3695Tp0GT0H8X4AWN6NsPNiTGTe1Ba+O1aWnDcGAW2puPuELi4OsK/J2g2x67O9QiH73nds/6otZlMM6CxUyPoqyLSB5/4XSguI1L2EhGhDXvS/7FiOqxe63OihJO6kbW0UdLjRAdNen4Oh2CJNHD0OW3haLQ6sdMjZ2mZdAXseqyyKO/15vSg1/+rEKZRUuqToYsJSXPLpwX0lP3UHN2GYcx36EwNWB7ukbDkNUzw0eKHrzs42bm0FgqMlk/uBOFWZxNJsVYkTRJKs2lnxXaYsG57CMTBs+AKMCxxVMwXWJhPbuJF9pIm1hkmMtCHHX0kDYJr2W7Abv77d+djPkZuaQKRSWOSU5JD+IVN+lUsr2iRiH5Y/X8KnQ86txbjPbPFZ6odstm7B8ZgEZ7vKIPMGx1DraPOTfIsxoThweHqYZmUl310TlKHPICjw7i1zDgh/5cKxqvUUV8RMDf4QmEtzWPAf+LIbvPD6EeJY02U6f7ov58O0DOhdm2KJX5vKlzzxD1YVtmYkVBSE6bTeSvE8CZ29Nbt2qJlPCtqwcSacADLyFl/ckdt8DN81az7bgWr8yBjXUMaleja67XID018hqAj/DuGL7goFwc+dLejAvgeYn0a31SboVnLQYavyrA9hzzj/F1d7EwF7A3me7V0UvqIHyP/xPpyDTmUVugNLBuNjvRYteF0xK90UcaN297jsnIrfxS2sUI7N+D9jowmfuGeD055u/HoY7ocCddcGXyYGY+xryyUZ1ai3jBVE0JnVl4P1E/PcooeoFoSlM+CpcADic/ynP41pkZLbfHbscann/yTtmQVHo4FmGor9iWofqicsveRHMYUjOQ05weAyfK7f0z2w02KC4xwPyo2A2PXNkhYQdkMOkwMUgCep/7sKNoDFSxLx/2RjzRMLsy+lsW2ArTjBtMmzX7BDc5rgXGryQmXOZw1W1W/eh4eky2DecIUkz+PsEQPfdb7XB3Q1Jd5pAnCqvYh2QcaExZFNSvx6qd/rI5IqNqSuBYfwfQa4xqmgrfcvwLkQ070+VWw5/IAcLvAWj6abrRo+d/+gaJ+jJXwhb2YHhqMCK8GsDajq2UbXF0j2OqSY46/Ka8OoRiOkfEpofEjHCYpDD8kTnzn3JMEEniJuL5jOXRjAK1NkS9ZS+OExR0+n9xpVj/TPNHpK57GcjzRp+fw19p7BI4WJAiWRXIy5vWaNlVHhg50ot2DVXnIrG+PWvzuFy7vLJ8s+YqMuyTcigP0xs5EbwNdGka2a7uk61ML7Cy0EaqERm+tp7Re31pBwrc8iBkBKs9NWmjhuDfZlVZBgmX429hmGjmsHAdcoloSv43sO1MLp2XozvLD6fOElU2pCzhurqXdEoENMQQePxdo56R+oj43X4yAQGLbVtTuDwi2c7N8dymjgfn1O3bc3j+EeqsfgMu7jD2HEec/euJ1+2TG7G/e8Uc9XEYSRaFLK/iNMn1/EXrsJLZ7BDlCnpoDJwxgq+N4gDTauFZXDae8PgCvCXzHurJoh2ftNL2WK7JSMZkpb4DCpeVwaxJdEd0PH/I/py0eNQbsH91c1IUmlqNqc/YaUfWKto4WVFb+0bZx9TdFzfxbUTNuZw4x3rTue9KkvnhxxzKpRQx0C3pF131dwbxgbVD2g93jbJqOKYx1L7uRK6yKNYX64XAKVtx0lWJ9HADbVZ/Otk43Lt7s147nFkmBNwrejIyIqhDWvKgbgdQJNsb1l06cyj6NtNGuCk0pViR1iDM2TybpUxAtHM09Ku9ITCxlmQWi5Qssd/0JpwRn3Ug2S5x/6Z8E+18Cs1LnUnLPsoQuvuOX72/UX0KcxveOhKd7oBx9GWbv+FDV/lxuoR5O2p9JcOupS2hnAmW8YmDJLWeWPdCuS2PugPMALlCis/0KD/EJXd7g/Mujz0yDfj/aZlnsgq4utWtr+cqBNd+OOK0HEqJgc4jVJL94Q/zbGWQ5jy63g36Mir3KA9eKIyr33SkYD0mmHK10Bqh3aDZC3Tepx12VjGuH/Sy9aHr3FFh+mVVBvPiZWOp1j/hn7s5N1sR1v6CBcQR89mUi3pdvqSde8c+d0K9SEwHrudqjIs6RNyga65I8xdMpNmtRTmJrZpz8EKc7yNDmdOuIEX+TFkca8REMi6x5BM+hwSrNa9BVPljFDT3LC/sDTp/fIEIYU0yf0DrdlGr3UdYKh76LAhtRADc2mlt2EgMJjUlyg7toWZsi0yCnCXa8qavamLYI1CtRDS85/HBtsXPiQEt7WlQIypnJAzJLNwYlTopKXpl2Vpz0V3d1XiyBe7tuW5Vs5xT3R3Qptq89rhjKlUOB4ByxuEO1JC1aoyuGZeBAiwFBPDwd0wuUVBAUMoaX4sqfoXlNvP3fWUqmpdMwzBdN6PX6zkO0mOBBKwZDU6wzJtDdsawceqeNnKUfuJbLFTMZPJFDU8h76oABi7NWzGX7mpswryFhtiuROixzQZuVy9ceKAUssFicDVdWKLheMLFiVJv6JB3wHXFmvS3XyI9XFXQJL9IuKkL/t6egF7XabBsfmMambBH44h3w9Eae+B2NU91oV2gKljPuIYJv3uUXtif8PxllKPAqn3/gifCUDIN/aqVbU50+7aAeBAJZczmg9jjuyrG13VioH0kntNRGGOITpguQyFJBLyZ23sRXdDMdh1nGlklR2SXwPHqWzNjy1qG7Ic1wUMBEOQLl7/o3jRNWSKKVi5u39H37Yf+Q3nTHdrXOwC6O2Qz8M9fTMjrcO8fN/vCW1GhpIiqh3C9PlBYiFqQf5Jcnf5IY1GHk2sh+zmhCmHrlQbYuWw42AUTNu4Jep/z1qRhN912SfGWeJJo0bCMG0yYJrikDt+Pym9TzH33a0BonggjNi2BTtJBgSY23X6YUHxaTvdXW1rPT+0DqxjiVjYC40o+KzOD2bHacTpxekLd56nAU7R5nLG8QyqOErpApzMhPrc3NyfSGq1the0FjgYyGXBjj7y56mE/xAsHJOlZxEaC6zECm2Fl5oOcwKQe2F/XvHA7CeNuoV43rUisNsrneNAVLmyTT2S4/5mRlFrFBxo/wJAUdVFCDrxQz1pAH8RJNuaVy4n1wifr/1I4zx6BCPAkBdtBvB9i/s5FfWlr5VXacCoe3xJTB32EjYVaC3UxkbRp0CTHLw1wGjKpTNoutsSn/65lTVZk/iE3F9GgyNv5fT779gYoHtouxJTmnAjss4YG4dRcu0dTgKkO0b956hFJ71lu5QvHptb2ImmdtKdQc9H/FWejgR2lWhvIv6PXSBHdG+p0l2e4/+qh1SeNGFaFMbLjBCGVsELKugBqk9ATcwaT4NcvUfpYAuJA2kyblAwa/bo7r0hxma0+YEZhu8/BR2RECuZYO4gvhyfFfRb2WX++VZrqOT8rW6dN6hOrIJ+OTw9Jc8Bbs0qW/B739Bw6kwge6G+72HQ1gyiMCz42X6KmIA26xDZO40EtIZvbPBASyJO9swiJ7mQ58nPm9e+UN1dYeGta/LHHKiVo57tNkfY5YKCdtZx8WDAppbnjtDIv1gAEJNLIIb+Wk0QJr8sGtZDXh5rN9vPR1mIylR6tl+eFZp/B2QzWdqzd/5QL+rrfMCZa7brfQfloNJuAoyoX3xZVd6XmswVjvSPeufA4RgiU1Z5Kw1FpUaStG1iHeJvVA3cRcsmhgPWZwQ52uu/TpGN70EJB8Syy6aBadmHE1em+7wWUiKdRLaocyq6RyWwlMHdj1ZGAAnuqHB3sfdh9xvBkWX/enL5RPxsFYoqWplG5ZHbWBIcllT5X9voo7oCzujiD64xv+AsGa85Mqx05/wpabC1K6DPu+yl19IrjVr9c1prIxsQ8hmIm1cxZc562hAe0Yssw8WcI+xGdEzmqcSmSEIA49ftYCApPRjt861KYPt/VlbAV7ZjBgSwnC3WWZplkLDDFb98+59NfSMz/47v872tXt84S3M8VTrQ1eGKhToTnjlY/xoqGakZgnG5LQ6jO+2PnyTYpK3kZUckbbNtG1nfUVa3LRYhr9b2YPuN58K7fbj5rtmLBw8bqOd6cPtXSMo2skud1d+YMkqQBrxK58MVLNXFAeRdvpHRRTW1bRXWgL2+qe9bYhyxFYTkIBE+kMfFu8bel5k8zEzV3EEGNB8feybeQx3EcYzHn28aBLpAGYxIPt7up31E73VpyJe940hARGaiMr65dzJXvuHhKyRyNAQWSRCqJPxKXfbDu6rZ1oeERJnwxuM/qcRhcXBHTno7PKxUaUT8ZKfDMrD0FFFsL67cC2VczUKzJ3BkF2pZlQC2nMsIBSRNDTivbGp/bIUkYpN9KMEuJs1GX8t3cxwSyuNzTBrDBkuVba7tjlTupW0InNepXZy3OxNRBUCTJrtqnc394TU/e9tcoyP68wDaHk8D0OX8J2elNR3TTaAQ4TjellyzjKqfByLBb8z+Bawcu4Ue9TNERon2V48EOn+c8I2//eIj4dIhN34uhY/NH8H9mgWaRmeBnEmg4Ci9VPHgSXHtSBChpGMJXTGwxZwlo3BNswkbZdvmB3Z7YpM3/2aSMMqCpJiCubvlWSAeZmnR+9fY3yc1cefPgxObBZFWWzgA8a5v1LRE8kmffWOL3EEBVEuPpBIj7AJYD1x/w71hDnZIg+2BeTCFB/5oRSqmpAww+ieArOy2uX/TxjNYKqMpdroib27EPvPgdGP3F3J99n/EWUItJte/ugw9fPWE5nh1bpTeM0OILh/VOW/ocXXQvSnUXNWAHM/4no14HEB674C+qLDjiynunMCsBXRD4xObQ2U+XbZhCn9r+Ox4Ox8iN7eFuoaUFGTTk/LtV/+AaDsG63Ax3ONhs/UXpRSd54fDTGhlfBSoD6AZQO9XNNIoXHGu8m2XZnhp7Y3WDj1/vSHcmt1PfVfyXBC7XmjOgqwJNeyGxMVa5s2Be94iwFF+z8KanXeflcz1hvfzwiIJ0l7yZGUqNIXgxKp/tm0ZbwNalXFRRMYTcrtCzWTHz3GhToV5po9n592dR79ikBIx89RmeRj3MzeORvf4YZ2RqrT8smDDsIgVJDyFM3cwpblFEAPYFj3GQN6aIhgbD5JyB2b9vI2TZ9oWSRHBR/Y+V3aOripQ8ILfB4UV1/L/tclWoDFAQZ5rprlHRBisgCIsCZZGTh6fNXh7pe79oGphltEfDml2RP0emj6bk9T/BXqjURjOSpy3FTb3KWT0gqpbQsVndGYpxnnuKTSooWZKD+vtcTZ25t2SGluoPYLH3pjhu+reoWzBmpKDmJP/CwSEowK6hDNAkn4mUQ4gD0GuX1ar7/pgUTTHdOYZXqidg2VMVk/JW3XfOe22SRZh5eZiC/DiLeilrKFglXjEElu+Zcs8cRW0aK3qr3laLEx+9t2Nj3XAPsPhM5TEQociKzA6v4DZClFOWjJsd4QoJyXdOqBTJQnxX3G4frVM0IJTIEa/Uw1AsszRmjNV6sqsbFupleO6OjOjziGS5zpyxLfa3AtmRYLmzFdtBsERKwIiVzVMf1lgG+kOnBrwicivnHi64o4xoudDna7RLGq9tkiOLd/t6kokxQRHzZ+2NVMUjUD0OVx+nVcGldAsXzS9e7bXAm0OEzDl7UXSiVKKAOxTauCb91Vm+uEUvjuKbd6DI1f+8nzfQGM7pILbgD0xu8KY09C26ayWg+kqZHJCLeJNlWFWhdFCe1m0gLGKDxY8h3Fxn3Zq61I+X+qZqfLwrkI6sQPZAA8380tbeCL6H5rm3qczKy1gnQN1OnfVy8ROckDb8mqqP7MQ3HXvThOuwCt8tZgV7+Xw4TwAVwuB14LItwHWRb/GSzRcCDak76U8iHm6AdqvCi/7TMpv7WYHxs5F34uw5Ecec3b+PXgyACKl2e1k1LmlTOM4WVEw3mV5Mahh6mfBS4lctxw7ypYv0iR2JiV41Ptx1YhaE2I2K3LHVlVNoV8DgSkVvVCwosi6pRJVAgY/VOkson14Meh/YCGCODknMDdgJ3vkJCVGc/4P5/WP7CD5I7l9vO7QNDwrhIKIBdAguNVL1G2oSgVCIpV0vKmi0Q2OEygyZ9NFO6ASingPvtZ23J+RuJk4t0sMUHc5NBdRSBhVocyIVJNNLcpz1G/RS1msm6y/gXWV9QR1YBZpxpL+0Q3+c3iY42v1lLeCq8aFQrdXmMamnKMvGSNLV9AWwfw9GnllU8HqCDuwTAqlgjRdCD02x1KmkSTRGoTHyoEXC+5CNhd24wOlBYCliMHjuEe09svo1v0zJNGQ3Ekaz/Solds99nPdQ/+/2kKxMJVacBsD+9mS7/AehNK+ofLRbpPwcl1G0IYsN+UMdLygGISY8KtL9HFGxPy7VEA4TljpCJmU6gYNzScPxp9vUL1wKZyYGIj/HDhi61xKveivlKOa3rOw8GGEpeqIyTFzXIrpRCgt40mv14nwCTVwiz81iM0Zb3A8BhYxQxLb2WTCOjAwJMrTP63Q3FaXRBLs2nzu4koJQjdyNDtxaWl0masyFk8PqfCjF2AUsyg7Iao0NByJxxDVHjYrj4x9JMDyvNEgbTkxF7dQ/XVpndoti0FyKXPUai58u8RiKpIjY+NrPyW8KWohsVlyWFUtVwHZJVL7OIOqk+qnmMWhxnoY7HgODqpgcsRjHjh9RteOEKZULPVhEklW/psWKrZqm+rOu3m940AuLJD1zCXAhdAh03PkAX/H6fmdLAWabIICGXbDaVQQD3T4QpIaPDrZAEIrvORpu457PBTYuyEPaEjIIPAnWeYOfs16AV+Mez/wcMfTM05JXM3Cd7i1MWqePhRHyXP/lGq8MBM0ZD4DmXxRZ1oRJRBGoyEBqUNxaa9DupJRaiK5i7Hh94L1bpSTMFyjZ9jW/KTQmCFzUWvSeNQP3UuVEOcp5iiZcE5bOhBCvzSeaJeAGmLQ8RGTzPyYPtpDfuQ2KRu1ImAubyZn5hlMB8ewaXqCiUkdwU0j2upGWyseSwjILN2EzvIhFhLF+dyurE4riLIstVwiP852t8mil4V/DlOLfi82NP/khizaGH844fy52xKTmFLsQW7f67gJjKrsyzm/DUcYHG9qNANpsaFYWSCxrskSw1Yu4NdmljWG9CA2rBtNYglybgJ8PWgd6vLn671lAAoll3aQprXWh6vjXSvZwbSLwGi6XdRDHdXyMHFM0t143qYLLJbUBcWopARVmHB7wFWqZy8WOIPk8BCbkquDgSm1wStUAa0l94726D8rXFiXhS2O2BzKSdZZfFr0V7YZFMXvuvGKSls00QubQjWxIfn+lX8WG8mhaP0Q18cP8JeKysMgOYCpnTV0Gy3+MDrnt1KBET1Rw75sSakZ0SPA2zuSCBJFAlNBQxXBU7Nit0yXe017x72/3/7sm18kJSarNvd3dM4qBMwIvMpNvRhXIer1x3wUCB1n0qlKm9dpxXgxOlDHhL1pc7qg5+gF2Ax0hIwcWW9m4W7uIcieRWRnCZdhP2WPR5m4lF0geWJOWBxRjQ/SLrR/1CAzyhJBbJ0baP+LV4tVwGQvCfwiGtqySfxR+i8EGOmZ3nkvPX2B0gwAym7pp8rueVpC1YQLM1/CTxswOFNES68Hr5VMNYNrIT1V8DwS5TUWwicMdv+epFv2340vbsKzvM2KSL4UTWSY46T2SYSa2U7yKoYb63jrpfqk/J/KYuhmqDfQdUhYdQWrFs5fR1Mix3nID1oGqkBmYPeY2C/P8x94/2lqI5lpOVcaJGnICZG/+hLUPAlXsxJffJ+wSHX52IG2UcvxLcRSucSV+CqmpxxpswfnxN1AVre2ZeECe5EL3b7iALchkJ8tYndiy3ye9sZcXcS2kmAGAkQgnY+w5VYVDmKpqUF0bpR2bKYZXgVayR0yLjftEVIpLtu8fcMJ74TH5OvJV8fgDwj+rpymBMeB1h3465gfrZDHuhFN6MZYuL97QL+Yw/fdeomLAvUhk+v1sa37W8Ta01jzOljckpSF+8Mfs7jq8EWWn/OyI85As7Rc+SLP8dK1MqbWQPPMhfy70/Mif1jCMU4NPkOQT2OznjsFjDTHgjl5VvrZVRhIxBO1+G8i+kq9yY9pk/C0a+ulrTmQBIB7DSp5zg/qeAqeJIb1KHF8cKRSq8pYY8koCuAZ3KTdiC8+wngjibJkhWGtqh/fCt2xtsMpzzC6+BUVRAqWkXJyfFtVyN3oqVLoXpSZzVYuHXjZZeQGfq91Gxu2TuaCB+en8faS0IaFiQIKJ91HER8Xm5KyRC7foNUXYV8apTInSQyirF2p+D2rMLTDZwQRQyKrYOiuZgJykPf4st/m7r15CW+ZrViPt2QgRKzl3amvMYYkcfUG5yZ6XQRigDGWJG4GXmGxB7ArmGGo0iqIP0No8Jh58g1831rBvshcLOEikkAQ6ZTwpPl6T/+QGQ4AzZdPs3eqDITjXwcVwBEBh0t7Cgxrrj5+WB9xsAGpH4TRrrjTj8Z8jagTibVJW7tW5OPuvqUi4VHqc6akMc4dnyMvBz2YTNRd2J3dhORjwHXTyrnOcYvcr/Q80E1a/b2Ksajm3kNFtklRF8H4icLHsiYcGF6KM+lWKdUmh4+/WDLSJa5GrntRkc03vP+wg8RJ7X4wZnH4XMhv99oH4VCk2Cl08soBtyf82wabU9Wz0lMKGP8IRrUvK0bkWNpWS4awESvt50NReuSYo3j2qDyG4vmOLOqZWQk98ZxrhRnqCnci0ic13qb0qJ2fQqbcOpPxPmZD4lYLqLVfFWPLdPNbqUCNLwaGiJZ/zLr5et92P6CS1ZdcIo/FUxOxAGsbLiCDxLXPRG9CsZ/vwPgk815qPStW67zrwN4gVr/WfAV9ewV1u6QVpLu/OSCAmCV/hJF0wPtUlbySfJCKEPW8SbeHbBKec6wKWtJ52DgANHuplcJ+Td1IWDJ+RzCsY3TOYNnS8kLKCLOOJVKVL2noVaPD99bfYq7evfDu5JJjk3JN3L7oaTZJ0AQraEnY1OaTp1AS6zMphpmH/aJ/NymNoCQcl+TyD3VuO7gxzpVoirbqOFTor8eqjxZ82hgPTtcJCDEb6T4396StEnRtvG1hjHZ5lIbesRogHqNHmHuFnBtZQWZmj4BcKpuCdBygo2o2rKLFp5KsAWxNPNb+Pf3GBTOnQjSX/ZJuz/Gy7+f+Vj1awfW6UEEaHSvX/aI4Rpc0svQOQvOmrDIemJthiHzr6MWEAsI+fef1LeubyFdPQNEk/LMR87qjYx5zJs1a9LJN9484ah2L0Pnpo3qVjbPEg7eYvs9GFY3KssaZGkXivHXG32J9ci5ijaiAE5tSl4IhrCXNn35IXYKIvbfSN3oms0+xNH6SQuZ+964682Ird7jlIhE+W+BNvvvIrVwdq/FNnBs0r8jPwdr7O9lUXgVcqNaqYapQJGHYZyIWWak0h0AqRLEhAl4MuRL2/ku8YmnWxpM2y/3hwuaYcXBhz9/jzwSZXBbNswdTAC7SaIuQY7AFlN3imuBiBL2bJbIHDSEettUilgrBQkJBeegrgIKJw+f1r0FinsKn0oGVJN6QkJPmyeqOD1J7094fdcBKOYSsuSICzJPjeXARtAw/UZzNNbjmy3T+zIL0TNvGuCELD3ksb6/cYLGdpZlk15ybru9OKp35wgW+QvDOuEYqYrEwcUxswT0Uyv4bJ/LWMeLQCKtgbh1XrFKQtXzzJLhLIC698fXdVmmyZlxLJAhqMKj6tIh3uoXgDvz9UoxJksjnCgztUMoPUYEshFZqcpdGUs7EAVSEgMFKFgQt+hscyq4C9TbPMsZxST0mBzkkW+fbec89B1saUIjWGVpP59UlP+GquGto0gjRuksb9yr0Qv6PYPozqsN5p61G2Tiw3UJepURUKqnNCvqJK/Tnkoq9GjZwhDbVrU0HDa5/XdjcReB0dEjngDCGpq5QHxGoFZPF0l79kBtov/yfel++podUE0RROtuOG2+FkpG6z/71rKrcNpBypg3WuCa0U5+DacI7jE1+A+KbBS2v5cvwNNMvUQ6UsIYo98LmOpgbldWwKQ1qPMQDbI0nXCxslmAaeSutXk78fth/e41iS52BbEwbojy7tBeHvTy8sCDAIC432CX4Q166qMNeZD0wKSPf3Vkn530cqKqP4Xl7RN4L4iVEiPi0Njt1kRsXZydLQj+K9Hydqc6a7Zuqwa/1N18gYL0geZPFDeIgmy7FfiFPcCP4L0qR/rnbs8yY1kqP3G/MuBMeEB28m8ck9qSLN5rPvSCvxNmHwu5Z2robwiYkW4eN4lSXXzwx1rkMX4o3xKoTlR3ONCj5g2FgEFbw/ZHgpvljygepAYM3vpmraMYxdN5UEPCwO1Lpm+iobz3IjaIBoz1ZFf/ZKUFWQwogElp6kJUENrP6Q23/YXVa9mm79wY9B/vKrUey/n+/7UlM/k241RDhWgUKdBanDCOhGJfAtirsJcFWgllm6U7pHWSXQQl18YE6nHKp4wys5i6k84aVMqC7phO4i4vSSbFxmfhhwbtwVL9zZp+ujfpgrO9WJLfFJnY4HMaR9JxHc+6bX7pEBeMcj2Zz3Qzmd0+2h6yAIGmLiJ33hzW2q8t9vunruj2SQt0WLVBQsGJBYmv1ORk4KOjLNghKoG0LJyeubmU0jma0ng3B+T1smsZEH8++NutcL/abupsKh5Eo3dMhkgKCI+1urwbyB8TBozaH57RxeVRhNzCqqozTUCc769LBqoV8GvZaa2DXku/vt+B+rLcxsdXVDLem8oZavbHJ1vOG8/94x+JZ09QJiiCRMFwNJuARTYgF4SBCMrj8MPARiW5PUBaGOodtVkracPmzD5LlnAHKXv790UCjqvHrfuL/nQuFilX46YtHv7q+zRz4rpBqfbqxbvCPC5v9NfOsyWkEnYnq+PjDbFHgcIRZQOdUHb+zPLtba76hXySULgMmgU9ivHGoaZS61wEEQwdEpR6dw9VzMOnz18Mbpird1Otjnq8Syhoop3iB9UOwhOoudRdhgBEhp16Er86c2S1TThgyaAAZF+SNMbOcgZDfrTpAu90diKpoJjUoYZTy2pRBYRZJDRq6GxfLmx+zYCp+KnzocbxFNi7fJkpGB9OOgyxZoXmglgWh2era+vz4j4benU676HoRtEV/4Y7YuTswSlH89Le9K+5N7M2h6m5O5nB9m9vnpilvztstArx62C60oGBi5XxpWhTFeoTIE6zjsaV3DBJcSA3VQQx+ngG0kZ9B6HB428R25FDuzKw6bEvfhTVl3zucX+SJxnyQBQbQDbK20iJZuC8QZXUIVEKQj5vnbqxZbWaPIITShIQqVucY6nJoXW/GkKt4kgdH7RGwGabe8ra9dnSG3NDR3gw1HWbtSyhjehUrLzAz7hcv2g/mOR7tYfrKCKPgvZczaQRJ6Y71HrRWi48QIMKQQsTN4o94dhmM/mOLwFDF0NJbWNEEqxVvQS//ZAGRdG6OaAV5nGgcdeqOrGpJfgNT4JbLb3u44U/bUntC1NWXfFiIdR0FGhSt/wLsiPC1uUfSBH8wsPOdyfAgjE1Hx5CvCr7RI9zYL8ZxlSYjgAP3Oyxd18a3F6Pwn3fceKMz2fX/NZicpT9or7tZiS1i9iUWigdKoJeAufhpjSyrTD2ZLvQ0UJYmtxrd1whoRmQPcyVz0Vw/BVQ9oRF0cQq/92eTPQr2I3YysxgTYtT7ZM8odyeL9JmaGpdgLJlIq1V/5beXR9wYmAQTrp0QK3jGUxuhta8dJZu02xu9oLV6T2qRvzBX6cX9JBqaNcg5GmAMi4/1fMmJTZ3VM/GsPb1gbG60UyP91oZH5aAWQ0xLHtk4txQzaod7i7V6iVnVJKlZioDm5G/LnwltIcbi97dTV+jBY/4rCexbyUv6g0fxxqFzwXkejnazfCxljLR1/w3dCWReBPhoUWo1ykstOKsbuLZQc7rX01Pfm+Qq6rRiWaIouoLq9cWruA14DQrvN8mmMl+olOh0EFr69T9lUVFn3tzRyolVHu0Icr02oEsDym8cLzMVDTzeM5hBLOb1pdrxhvOjQxeF/OL4mgqVqZpH+kZALzJX7joMoRJu8wZloYe01Td/iB4zGJHudYBJyZ2Y+XyX4EtwirZvbeHXqRGBATjBV/NhSS+PvcN/nBG11VaHwhLpqYup93419oSdpdxghrIooBJgrPJ4PTxMZTCRDJwYLO2GUdrqOi3X0X2Oysajl5WgwB4y8uT28iy+MQwCVKYOBxaD0VQsRJ+sVwHG+6NSIqSVHmZ5yG4eDwwp8MRZToR62JFd6Q7eucEP4zyKUrh3NRGj73i1tMuf1Y0M7YgcvZmDatVqGLUWNv6VtBPUXqOVRV7sX7I45jHtuylkwAdf+DKj1rnWGUTox5/eyPh91NJwsFyTnQnSChtckXTqN3OOdzOeD3IzxFsSqCc3Ihb0cSWbgQ1sm83r1H1e/sm4ccvWS6SdK8d9d7P9sAWHfBTgY/ImlmG2mC7xy4DcOd0rsEFT1irHzvODWSIxQeiPMA2w8xT6B8fxvKoJJE6twYX4sU1UyGP1N0xn5UUeLFY+Xifg1KxqRNF7P05QLuTvWjKAsgzucmjzO9eQnXsrogWkzaOmcT9mos16bVGPQizxuBiPko3TjC7uYAyILO21GpzK/fTgm7p6MwgSBzRQ/LY8s1sCj5S9fH2AXfzhXGW8b012wzLszB+t4TyuASt6ACIHNvKvho0pq71MIRQ8o3IRjpJGKmHgpW5MNBmnEG9SEttUIiGdgwrS3Dco4bNh8qf86Dtx7uOEW4eiEnDM4/Dh4AkOGnVy+Hj4zJLlUyDVt9wybNaJPMoD5gD+FZ+3cmngerZ/O3mWzDHn8X8CFoK+my4NiPHd9rbUUyQRjqS7Vy/mxi5bjt4j4Aas3oOOKFzmxDKGT3/5CwFZO2CGzQfC11aCvpS0VwsMW+kvwNNVqdzuf9IwoLi61fTbeqGntbv/Noshk6WiVaqkpZOmrV1LVOolJyvPW1YyHh1BLGCOXr1zhpKVgUJ6ltGOGGFbDXzC0QYrxwmrFPSkc6nGec6oLYAAY8kZIEELSSPjaw/NWIcSkspelyMN+IGO9TtOdw9qFgo/Dozoy3pmU7eKwYPiDCrTqXXv0I76uAurfsmIxb+s7oh5PJGB9w/sbv5+pZSxp219moBw+KmDBfqYbroWEv7HP7ShOWgk6mmtDGnUx7rOHwRiwDzxRChOO7wpRmsKQFhZlNlgxUq39tuKbIOC3vz3ouiapnBKcMJmLEI8LnccwRgaQxV5ikdgmmQUQspsELwL+ErCWNdK87+Mzr/K5k356/eDwQbADo00WZ/KTNddE6w5iofOkj3ljY8MLVbw2n0OuBno+gsGKrnrovM3cjkwH8TBrgM63eGs0IxHOUTOzbO/Pu5mKMPyMtrA/RpSAH7w2BQI1O+jfaT1upZkZgXiyD+GgJo9krAVCM0+SzLj3WSYM69SxaxtsmYvhBXDUtO+DuS2hkErrQjNyltnEgNHslvxnn6kK9g+Wnvjxzmjoy3x3UOWw4B48CJzKEPgG8jZZtMVKFVWPABYmPds3N3J1AgWmPTHHkpwTF57KurJm1Dg4YPL8KRtJ+olOTfLC3gn96PX98MAW11848KEjOUot+s1N9KyBa0uvWvsqCDz0CRWVvw8oKpKTljZzz5GWwZwg4UpIlEOFd1f9EtIQN2T33EYtH5Zvsal8njVqqN+w6v/8n8k5hsh6OXUYlX9QtcMCUvAHmfBTuCWeneRgLuW3pTvJwMP2Ax9aOwsoy/k1fgpSkAIeiqGucte55pIBbhg3+ooqBGETaseMeoigdnOS3VPirAq04zw0mJFIhPkW0PKTOUPuIBnupK6/P78Z2DOJINO6LnM8KhyZ9sFD+FiQWTRUSIK/uJ8ofbMRkJ66oXudB7ysLBmiHO4mDsPUZ6Ivd/Q9brAUpmikaqNkJs7sYouGSgeq4I7tYJ8vuxK6ZZzBR0lDEMkVMIuZhoYq7Lluybq5BtIm8JC1pAlhDSxHCqcd08YYAx/u/hF0uluamd9QsZo347nrGDm+sLkMz2of20fdb4XKZjsQlsO/XddZdUm4ayCCt18QXxNSh17LoH5f/5P3tEE5nn2q0rCWPsXnSx8B2hv0CYOipMBPuYwvz1AxFqjW57J2U5Yu8MF/CQ9i8hcKarApEj0o0XiUnDDL0pXSccfSzw5pnUOMZzmHCeWeX06K6znZxA3ol4tU5aGrWkPhc1j4O4oyqLYWnHcEaf4kjmsu30y6CXr+dMFmtURwpeYzgLsqG+x3UpTrLBvrruTyE7gIq82Nlba4LkwUpkpeSSB5Td+uG39Vvm4R2gMnf8f16ljtJ2PhbIS7OGLiYQTjdjL7oFy9AtO6KNr578sc8axQtcPL/EhbH2SkT0HY661Sgoqt0W6V8yyCDYlUjCFm7fhtbuMWKRTuWx3wWdvycs3DxnczHgvsZ0QncC8WSiAnXCopZaJRijBo07bcoqraa2J19pAPPr/Mn7atodTkYfwt7v17FvPfC3sApDsWxxLgFtjO3jGkiKLSqew/A2IkUxDvcg3+dSkd3056mS585vQ1PLaLBa9YkEtcESsi2LtiHRunATKFTALDY4JySpco6eLqBXMInzfaprmL6CEsWwHCZ7xxKTVv+0y5+cj8A/gqSI1SKthOYmURb8GTTdDWhdYRoJ9zHw9r+31wEdJSF26zZhHUUX1rVAY3tI8UgctPfnfTMBwwdyTrhbTSoioURD0I8d6v8gS6GrWflfQUjgYi4+NqMBM3XEdEK6/znQe8UcbawBPjsMQIoindPTGnzzsdZRKmqDMByevYnpSuJwMGARYOSDDzBB0hcJQZ0/aGQohWh3SagEAi96nVvX/3TX05k50pu1eCur7/o75UGPth/gAWEj6OVW/RnKj4YBVmLsjdBU8h/TyxK7vNv3jfG8a0MvoMY2cHgp5yHZq7BuBGfBFi5R7plw/pKzfC+WNG85HEsSLel5+v6x1djloQkCgkxMvwPdQeHS2rbsUXTVa1Frh3hOx9F1d9cqLJ7cY39+AdqgKqJmiRDiWQpxlfMtjxiEAhqEf0WGDvSaHZquZDYBTAGkYVxHmkJZe1A5W5b2j6atYYtxu0A0AxRCHOKsV9rG27ztAL1tRO1C138IyF6f88sDoFWB2XzfooZ8YVy4QiFIktTRk7TWg9Juxyf2wHlN/+tn7z4YF0pb8yGzX3polH9A7Qs7zI8uu60JjoUlA7dERSEwNdfiVfLpwU8rjzca1uTCTuXsYLudqlAG+4wDEObwUGH1VIFJ7id4UoxJxj2M0c9sIEqM1geikUQKzDZ4SbbNOO5rHewl0USFJJl2cTP6Azoy3N5FFgTgh6P4WKoQPWplnuOyEsx4DjijmmpkYKEvlDeqHZjhF2l4VKuUTxIDJ+Kb1uDsammppYxa1OUn+Z5sZOoD8Bw+h3wFLgwK5gfCSaG3aqXEI6SLYZHIt2JvxJiGyLmGs6FKRQUYJxvfviTTKWV7NzB1P3lH1tQ43pITML1sPKG0K+b/m/GRW0vDFjVHbiYEcMlxDHjAuXmovUB4xBqfTXBXalXS9cFCkPpbVQ0dLJ5Wllk7iko5PrxdeRETsZ31lmBC5WWcyekTJ0d7vMYH4yjSXRgNBw6EmTG9G+Bg37OkTekBy1FAF+9k3vOiI6ZQUKvyu5v2YepFeUJbeC0qToCvqjrbfcswc06o4LUpAnzObNUrm6MjbbnVH1qtrABg/eaq08A/4Qngs4gEbLiufeUKhlwoDSnP1En8+vNNP6/CizNDYwfvSClMsp06wAevfYMqK9waWe4yzOoHU3Zrhl3OcLPXJFINWByaCsVmxzsbGD5wGDTXNrFa2ZaPg4E12Qz4j3JuOJPL9A78L33DlGh1+XtKRQxypPQ6ORbcF2EMgMagU9jbUL65dtkiAyBXBkSvEQafUkuz8xCbedYB+cg20hKIzYq9eVI1hbdOTee3BbMdovyl1D4qmYfGHYzrDUZ3Q6zfj1O58WtvbVWjpJ2ncRoej20dfECgmf83FLP8j81rs58knFVvN6DoQ6qSoT6gRHNIEtOnh1NMrEShAK+oN1RHp9On62C+eBTYSn9D3I9+aniEJHwp05iYUpARoIrD3ROqqpQwkKfrW/Ejeh1fDelTWDTtM8iIAWPf+XmETANHDT3s07q3taBCKXRmVMSU/+QTK2BUDFgeBJJlqrtkJpGhtmHahYnfZ3BcpuS8Bx4rveRIDHXEJ2RlF7Sat/PMbXCIWNZUX0DLHMbnF1EDRJn3ERweVmUXFJokxYTFPNYe7Ylq09pxcqE+6K/KaKiEMcsCRbwiTQ6KRXGA4Abl7Nt10y22lrs/GIbQjk7U/SfRZ4W/SXJiHc6OklgobqLRrH94m1bgWTnbDehX9LSJVieZe1xDFIvscD85X7ywlwmUzhsP4tjg9VbPaa75xVofG++WODJV77aBCMFDqn610SHVSIrkSHw3jxUvxh9He1kWqoNr5fgZHgi8g7qjQzpV02eOi0WQoQzOaUj/NVMpT7vRgwP6R41l79HxG93CPgOtEayXNJgyp4z+lj8xAKRFZx0EtLGjhR64Z5MUH91PG1qXl2qHfVUREqhyGx1D5zZ8M0KlX0p8k8jTntnoPvtQk+vVrYotYtxNsB7Lq/a7DWf8lfM1Wa6j8F3WnVyAjzxbTjwE2VM+nslCGs/+Ip1DPQV2oiGV6rcK1Ic24CZqpuHxH/D+0Rw4LiO8sl7do2DI55o5ggSIh17mfnz914ba0bxznKChIf3EEEgrj23Ho8/aY8eFLP3AtIEp0viqbZ2t1uzDR+KGzSzxDR4yYw7q0jXU0X+Bw7+iTthnv2F9wQsjWiVvtRplvTT9Jcg4L1p0MHzEy4XIPtHO437urYeMDPm7czgNnsFvIN0SEMdakxJIOpDakevz+hsnUJEz8jdUipMOsxuuBrnF9EqM1ZQ9gZ7s9iP/zP//1bz/AlZiNp8X9is6owk/THpaUu5Am1Tryoj593aETfNZveRmw6HC8dGyBwh0WSu/xwrgvn1P2aGO3OrA7+8axVVnZctZDyT0SuZ/ubo4bRVS/bN+knnVhl2uoy5PMVPPniKlAZZqJkwIxlh3ifRJXw+XS96MKbR1HlQdn2oC1IxS3ma3iHrG8/2naWdCnVQOPfMFPrlw/DVsLL5J
Variant 0
DifficultyLevel
675
Question
Which of these fractions has the greatest value?
Worked Solution
Lowest common denominator = 48
Convert all fractions so that the denomiator = 48:
|
|
32×1616 |
= 4832 |
|
|
2419×22 |
= 4838 |
|
|
65×88 |
= 4840 |
|
|
1614×33 |
= 4842 |
∴ 1614 has the greatest value.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers