30068
Question
{{name}} earns ${{wage1}} per week as a {{job1}}, and ${{wage2}} per week {{job2}}.
If she saves {{frac1}} of her income each week, how many weeks will it take her to save ${{savings1}}?
Worked Solution
|
|
Income per week |
= {{wage1}} + {{wage2}} |
|
= ${{income}} |
|
|
Savings per week |
= {{frac2}} × {{income}} |
|
= ${{savings2}} |
|
|
∴ Weeks to save |
= savings2savings1 |
|
= {{{correctAnswer}}} |
U2FsdGVkX1//9xZUTpyUZc5R0SRVOokTiYDKaAjKPs2DqOmkkoRdWwMEkEqmlEhMyWOaDaNmyONhdh4afNNM0er+D8zzUMHcxJWW3ABZBCRcvwv1VLaCAJLVgz1uHRo4rR8e7TjUtAEVT6AlFmOdCJlSGhiB8y7jf9RtA4ex3meAEReV5yFBkzCRJL83zu2FSbwNaayn7Eqhq9tMWP/fZf2tAdRzYFVqAidBBjdgTEATvgb2TdkgjyJkMfp38A87i0CH0bV2yR4l01HcAoy0hIZANfjpIvy2t6/zPN4M2VhpeynBA+08UUqPIIcVNnVfY2NB127skO+F6THDRbkKiq4T62PY1qsvSIusiLQm4GMCXXruahghiEXsMy8vwhoTJ24MtARY1plHyB7WY1aUGMuwaEReB6brwiexFkUJQIt8I9zLjh5IhM8vpfZ45zprZXga7Y6Z2t3BY7z7/ePlYIIxi/lDMGcEYZJA5aHT25JcM9MQYa3IUzJgSV4qd4K6rr/Rhd4KzLleTq96SAl0Z8ElxVJhThQaxoFBbjRGW8IB2zFNKKLaz+8aVzM2hvqBJO0O60HzEEJ7cyxCObnmZUN4nOYIylmmvjeDLIKVa3On24q6oMlcUVSRY4xYEn1PYoVOvHnC58WBh63CxPf8SOr7kZCCkH9GLdbXH33yrHAsADuwwjrbDUI5laVKNo+Ll+ZovzxNSXHeX1ibjTCjGNQmSooFuOo/utFWE1d53mCjzXr8thmkqFtFEbGYvCxLW3Nzwfz+9mHN0SFv1wy+W6Fa9mqG6FXhZp0lORlvmZ1szPPlrL5CeqtuDO7NX4lv8vipIBfh/RaaHImsxPqHQMn3+Us8YZZtkBeRAM4XZBXEoqFvWmQX9JkJ8fOA7hFFjVXUR3LnlPoQHh1HfH8xJ8bazA6YXWWNNHwpxdwx8hu8vvqLErvErU3BgRbPPtUybNnNU/Tff1drjVcYYNTqQUZc/x3JgZ1m8H7/xUVUQHx6We6IRIonZV2zF+Sho+K7Y4mSzazGmW4A7tFI2jJkfXpzNKUc1E30XTaXb7K1rS/62aulOcxbXfEL4AJka/c27qltUcNCU4Juse1s0qSZDLwAu+o6ayrXmJpB6n4rGRCRd61/a5uX3z0z+cqubKtjaRmChM2dE4oJbpXbNKDYoViqxTjYPCc2LR5ShIJMZvZJ+W3rnRSzNBmIHrYEONDTqstuLQLwwL2DKA8gnm7Sueyg+kFGfK23w0puOKlcrsHTw6oXHUcVHV7a8iNbfszwiO6xF/YK6esrBzuyQWjhaBO4B9Is6+U65Si6fnC8A2cwB2wHkbFxpX3lbpwl4Y65dPkpb7TsoExdcnXLV8d90fqJ/L2G4J5I6D5Xup7RVKvUbSORoIqWC6m4HM6461nTH8OGRpQQP3VQESXaDqsM6NCHsqOHeD3mm7ORLyjS/sPBu1X95z8heZjVNitz+bNa+ehDPxgPBLvKIsoOBSYXqg05zgFXKipCwPDkLdQdBTS5NyfVXEL95v0WGRPXWl5/+7g8zWrFm7zsr0UGwfraBL51ER9rAheeA1mWELmY0bdnCuSzSt8nhzoIdDQmX46w9a1A8VxZooY36HxRIHQm9/8kyt6W5CXaqkQJK/hzapJBPvFWFojgxnsdMmgSkLvnFUuziXOcftQ+HDLxPwqSn7eYilBJ6fBPAc6eUJOz1AZVksrM++kTyhXHW8GrBnZ6R7zTZoaR5PyyksYQ9gck5drtrk7qAHtW2Fqq7vy8XtENvcUVm8PWitU1fPltntno6w4VzBZtr3h3xcsi3cQJdlAqB3hnhLS5GpNBb1bmwvyusMbmXFm8MDFZPkJU0ZN/nKcFVbemxL/spg57WoTgILL+/F2XKL9DK3Ant3sx44Tv3NSpk4zS7ibm/x3e4Qa7yI8g6lRNJ8VM0S3rpLNLiEZx1C2mffMuGfcx3jJPSN9zOIRDVr1Alt7ONKNSeAAOr+7lf/GxqNJZt9yVM476Rs7HKpNYK8649VbYk+/uB0y5oRr4Wlo6nm2eEy6ubraiv+bsefa9mKiEdaqgNBATg6duMh/msBnfh1NXMZRAYusMy+7iFUxO7WQTo2txIKXTmVEdQScBUozl5lVnNr3FYbpadYFIeai+Kmbc0dPVFeHT9cY8V8HS4bgQ7416nkpzT4Vm5oKdhz1r4YqMl7/tETyIA+zQ88lIqtaZtb+dQDWMyBzoanLN/q5W7X2vQ3gImFl4W5oZHJAHBRxT1RImyBJxT1eoLO0r0kmABL7kwoqtKt5DVJhSGAsW6pcmZ5DQv/prpY9xivaBKO+lYd0iQpQG+0O29311pU+LJNm1jLPO/4CTNatjxfFQvHkK6wLefNqxAgbu3/pq6HetHF/hZqBFjGw0zoxj8/wLU0OJj178qStZsJfBeQOkzHJ/hfW3tDu0V4ng4gGtpP4FaQX4MLZPpTBvb1gDkKwEbBo8wY5/gyT0XQEB0hv8CihqD0O88YW/zDvO7X2ooeDGSSI5AY56kuyloBqqSnFhJsaXW2Fc6HRr55kaXsIk9llnD3RCF4R8UY+nv1udbh9ewe5z7vIa/R4c+YPYG8b+XIZP8qPOPHTbrsD+0FO7fMtrBXh+Dh9k9q0uuswYvJ64ZPTR6WpsWJ7tQTSnsW2XbqovSCe/ZtXHlkf8wqmN7Flr2bAJBNZO6VVf8Gglyx1z+GgNO4vMBONimEn0FqUGLvczV/5O8qNaGMle3+MGFshzDPTaOwR9X2dm8WrOjVm6m36VutX7U1p02FAS+REcUs9r2zTznItedtwuRU2rYjwhM0+qzyfLr3ciycQOU15AmarsZpdRsBc0ArkCgVeKecNJqe5uktKGkibWi5AUSqorofCpz1eBVDx3qldf9lyShnHPIROWBLLOHWfjmIyQ87sax6IE+2BLEz+78SNmor9YUhr+hyecCZHZD22jxOPl4/Xf1Peet4weVl75OV1UCoQLz+ihExmLaE7Au96/3cWpzfJ/NHrtAE2lKpGB/0sLGak/AQkKcifQB8R4MLYs/wrQ7gPw2hCluN8UTRmbHm1ks9ZJiI/JP+ZSXmDfg5k5OBLyAKKEOSeswaHLDCKonGw+2Ajq/HfM9tj1kjidVFDb4Cj7WBJPfkrZA0ECx0f9veeElomaqMudwuICxX1n6w/38tKY0rhaxAhR4jKFZThi6IGpGZlNzSSuV/nd2BwN0HVyK0KkogdExfNscS2gdqlZLhJP3y1yaJblvc3pOQNbutWUaWTezePgV8LicTRvzHNYQ0akUcdOtOol/flGi0cjiTFc7/X9O1/L5ZR4UDkAsjS5YePFoq7LK4KHivsVnIEjqPx4+TMqhbYGXvFVI1a0lRBJlnVa9aR67rbdHLE+1yPvThm/+gqEUtHXKuZLBDdq1dx7gKMfV6WlpVxHUVEdiwlOw7uisn53ZfVPxlxX1CiHq9cimS+uovH5czLqXKPImwiONwGSaaUMeL16ttDDD3JX/6RH3gJn4X70h+B2bIO62zK7jRf1/1FKnmB+IUdJ6w99SfGrPIwxG+jMaq3F0PM3eV8HinubCbmlULVRLDbRztwKXfHMfwBu1XtWbs4nghRqUfQqCfjwELW7JsH7s9nBZ4MFrqJISlhzw/g927JuLKPw+qvuKWXPyRJPeE/JLR129HkeN1nqxgNBQPF4uHaPFYwYBOgk27ZNX83+wCI/EpgQtnC89Tig8lGEDVDlFJGTv4sGiC0QAcLCcmfthipDO4zY8gLFVJypIM8GtL2uOA1N72Px45cnbThNfoxJJWj3J07Y+5RT2TMglI/CyKVa6jKV/ZZNkJVB4oRVrOI5sdw57FPZhpvuHvCw/Xj5rdKY/he5cq4LefNe/aJv6kMC5XnNtpMp2TZn4AGFuNt72XQseUw3y8R0aC74Jxczerj9kngWYGltuGuYu2scHcEmi0nT0IBmdZ2AqohU8ZJACrC2jTALiJ1Fim/+I1sZztc3HIORcmg65QCdw0NFZDKPZzhsqcXMy337DSuVY5XbiGG2z06nrBeMo/eoBTSNeE0ADVvXQLD65QrPruvKQ3NUoLsCt3UtXJ8Py8Qnwrd1oKY2crrGRjFnQUkGnJVRkRvn+5gAf8+EoSC53H6+JKPQm0NZjF7epmNVty7wHR5o2gF2xuzsY4JpvwyXtL6aHMU0QnrcSPtQdHugXLKnGX2GpaUEkJ+mpFqrAh3t82//aLNXdYENTAKafS8gNuUuXZK008TOqn1o9XAbO/+Ydp7KOdCyTIh1SH9lMGECPvKDgIV6dzAgaPxIsUjZLW8L1DClqy8OUI64mveBsX4mANkuZEo5uscM39N8CluLydgu64RXnI/3wWpNsG4L5zbBfw60UeFSiThUjcKleeJx14GhlyzzJent0o3wHuExlf928tgut9/249b+9C/MjdrVThomwnJikVJcSCto3kSGTlB8etpjwkjf3qS8XbAf887qiprry+meXPo7/jjMS1vfY6u1UgqyvF6b3hkTzBUf6mAFMX6jEHjibGjLX4pt39SFjowtSvvP9KnDzv6zW81QVCP77IOCSnDnK7IKaFMvMkiRoP4TgVqbP6hdUSjj6gyfAVgBfsz6kAOvWaIswlKzszbca4hnUVDC5T0Fy8WgA23Apr71obYDgDubP9ylItjguYBe6cIEht5tCFGTfFDFFcU+e8mCZoxCgsiWL679g7gP84Hvi0wrro4zrkxBjH79rYEf56y68I02DJtwhCNtvHJiPm+0tz21wndwdrlbD0wx2d/Or2+plB4sz5J48rJrMikqbawrMdJro9iMZPpa8bayCsr/iABxtXVEinV4kiiCwxVkExuW5QkkVYCagawLz56Kfx5NgiMiDYvFkhgZ5e9VBg3Gs6aN6wUXNvvFCiH5Y/o+1v7D/UvMnVga3EPbYam5QcNjyE/e/JYaW5L7eurc/GRWVra020PnvX23E3yax0BH7LqZdJdnBet/flpH4DbK0I1gCfHVI7Enih9j5jplEZPQtj7OlfKZ7T/qDl20Nd96Ni5pEjdumk2UqUjwxWLvvJBCWgFRyXw+8UCGkS8YfSlZDA96g42OgXj65dczU3nIsdnxDCXOvhWiZljfyNW1KzGMd5PfqZ2fpCLSiFtUhn2stcl2gHG086inBFv8PfE5G6IqQQe/+FJI1AqtbHEbGaTYWAz2q52F8nTTZ/b1aREBcr1VtVVMb0UeDVA5vxHbyMHoCKjGQIflM8UHhublP3Zu9OiFJ3vUc63CrJniGwaONeLumkv+iL5MFLiSILY4kPMfO1tREh7f6RwdNN6wRBQYXwFUTIp9Dn4SFfY7wyEKbNW/IIitEYH+mxzA5fO5PmHwiebrGJmwCEpYLy7Yurz3HsqW/kqnCzzl30Bw5Q4BiQH7M4DKhWMgk2GN8aqNo9PGrbl/0n456G5YNxf+7Q7tTOq/i45LWtvHplVvCEbpZ5ay8HP5e//FtQ5iJRR2ih1vgJWtMdWSOmF2sWL7D4XKHsNIdutOFbpfDNRaM7ptqWFZ9P20iAEGnBcu1cWHLcagYRYXiSYLCNWvN6nqqLjLYU/h2jv60gWD+mA1y4R5QV5Sug92TlDGIhMxh/XPMXmq16gDUhGpM47j8SVXr3FnVaW/v2ihTlQ2xxcH1XlKukYlw/haOnXgQZtiZJdTInt69MhrCAVlS7L1fByXPD9X4MproembGumQS/fu2SdeRhBuw2a4yl1h5LG6894EMMX3DvLggSl5wCVzkRZ4QP2CPG5dhho1HLXP0/8SyMWwqa29UU+IuLMrsAlozaLx5Z4576nWhmW9kmPb1zq+q+IK+YYokuy37Uhqw6UAzE2teA1W2/PQaMNJHIZcdvJX/NSKKLuo2ZSVnOFInb/+IHMuEqQ5IKMaZo7g+q3kURfVblvs1PwQTIBWYEK5mwGf1gp+Yor28r5r6mZbPpjxudVpxkOKqBkWUJ/Kr2wsv594U1S6Lg+s73tm1atASnFLaD+h7My48AvzsOfO4WuHAUzuhB6YwSnW84O3UpP9dXujFGF9xNRqKcZWmRRoAfg6Bpsn1imCSxo7GCtoW1H7rwfGHkbv856rZ3mAC14/KFb4OE33JLEyZkKAwS+EwUaCC8CNjqoweQdKBj7oG1/NkY1N0WO50GwOhNXtgnhFAMehER6nxMCyhgBzbSCM0+yQG/C0zg3mxcvPU5HAEJyQe4HSn+o6JY0UDB1hUeXHg1t62RIYvCZ/tGuhwTNEzLu2r/raT7WX1Mvbdu3oxTQyO9bTQZYHElZ56FRqG6TS6rWXNHMjxMfXZObJecyLFs6ggY+TZ0BPZcg7Z5bNNopKOzaqPwIshfGGk5VSgalGswCWuVM3F6S6k9RDmpOX2d1rBk7PmD+w6GXaTjsbc5xKtO31yibgYbKAYO+PYvBccXijS71hOEmjtT09MtvgxaBIzPdBy1Hw7ht81BR68XK2BsjzR+l4xkqXGlUWoud6cB8YrjytorFNwjO/56i43on6uiO+FkgbFr9FrXtKrn1x+1yDAEGVgIJHJsf4Bx0Rs+JXEbg9kms5wsStDn6GV92abbGwjSBr5uZZK0FznGUxBZwlGsMVpiLTX0IfjBvE3CUp6ryJuxrW0d22jnof42rtglVa88Axv6b+4Dp4AsS8jvu/XVe8fxBpTaN/F0FHZXX2fElAOZyCNa1wH9cZkxaWWOTnqRMnXs5y7hyMWRz0Z6/HNdsnHH4VUSJfOcaGtGwLn3JXLPcKqCnx4Tpus/5FRKx+9xdIpZDR6SRDRgXSSXXwskwf4PIpy9pF0WCWshsQ7SJBJbLMZeMwlWYJtscQMQsrKKns+T7fmSTEW9l4SpWEqSu/icRkUjh0qVUr6LeiV7dQXI22HXHA7Bg67LZe78fWN7y17vkYEWXm/2oCHOEXQXtPw6Jd2S1OVWxdfEr6O39233Pzr/QLvREYxF0HVQPTnQduCkZO6UnizoI+v4WUxjzhCtz1OFE/fIaj1RfCp5RPg1sodfavvVAaXBwVZE+juiaJ7N4/u0WdAfsIvj99sF0xjRW8JzyZHZAXQyDl3TByeoFK827TU37tcFzoYvNhA9+3JHCSHuixAQ1FHdan8GuRVh9cwHV1gVOyTtyNxWPtYROli70HTEMx289CwrUlnv2YwHgVjSzk7YKDNT8XoAZTO+tZ28vS0qawlYnEHFZ+3Qyc2dCdS8rkc1aihPeZF1g5dxUhUuxGFHV443BOxo69Zgz+n5wcgyasAEtEiaB9QMdeiiwpI0Tu/9xBBcudb3BosdT3SWjGtvNJGTzW6CGV+Dy59YPOj/ru0lBg2LhNFnqEcxiuc1A7iitUdvwzEpBXCY15UrrsWmtNbNgVeVhnrnqpDlrZ8DI96TlVbDl09AJhOc18qwvmmqqh+CMmnMA4An0EnDV8lchVZiyzimRLMfrNqFboz3zT2Y+Gk9FakkSotRjuDXp0xqy5aranZOuAS5SPCtO/EwCGR48fEnm8c4aTtwZ81FKFHXsAcenn0pN3nOrFRW103TCqLLL3M14K6+d5YXd96HIUKk1u97694DZcZoBkXfGwMtX4Dyz7d6EaBnvXJDPWy0D7IC+OrsPGnPyRXuK+rQJLjqL4kxF8gyOE+jddnjGN5RoTRFhh27CQrgh+chvjOyeQzCiV0F+2Sd+qODTC2jZ0i68vkCPnvDr2OrOjA2jE+vrR2yEoiMDpSU79Fc4laM6pGtVkZjLh7y9SV0wKx33EMdmwFxsH85jwVunDEnY2r6SZDMwJkeeYpUwk9kKFQQ4DbDL84rG+3nwapIEkByShzP8/z8KxOhSt8meuY3gLUd2AwHKxhJ4oMFmk6dHdUgqSWSRj+ciyZWM6YMF/bJa1xs7V115RmZ4itnuI3S/z6iTuPScOd5es9RmUmhXWP0ojXcmQYQdNQhLQyqv0GpW3FM2tCDW1d6GyFvqGsyJP41n8MZi77GUhR0hLvHaCw9TJ9+gcSy772kf0SdmayCNmn/f1aoiBQ6hMlOEZIR4l004RJVVR9HwpC7FbbsOgvHZDdPKrCCTtmVMTT5M2bdiS3nogtg7Et1V13DkhreBMZH9dt8wc3dDJOI/htxv+8EZKQkyprCGDnB2wOWN+yZ+vb0ggE+2OB64TCAwVEjJXMmFlD2TqWYG2njW7k+8Difj/39eH070BqHlG+Mx3me/ZqfC3MsZw26UbwC1xPKhbvuxez9Jp7BPg0XII65NvRtpvURCDquBBfxL3mD+8xe65fIdos/r/50ESw4lU4k6OKy3PlBHW0ksgCIiqWv99XZyCtq3B9m3fKx18wgTMptG7ChTVe/8ov2ZjmXbIBvAS5jpyFCKO9e952enFgRVYJjuyYoJefUJZT9tEK4i7UMuNCIxFy+vwjYFy00Pr4nhChmeIxWPpgNtaqGjU5TEB7c97uxDbrQf3MGXg/19W0g1zbfSCy/RRbQXaHjqG2P3U1VVxf0FGnbzKGgvN+MEfku/eIqnfszvAr1HGTjp9BKFy8hqNX2s3g2l4QYs9N+gmuZNe5xYdKjpk0MArwa5P2PQXVEfr4f2DzC4h4Y1UT49+wJODp1Jy3DsWxivdGmoe/gxiwq8vrDmTkLCSu9gnx9biVFYfyODtR5E6Z6mxvzalXjzEHdd1SjjbbeiL+XsBg8EzPgYws/SBT/BUK3EiDk4nNAOJDNHgi6RDWm/kieJ1quEVh1LdDguwhyI6qkNnAQekkHELctb63fX2ggZxRvQ/DnQ8TlHbnPm7Yi2uoHA4tdSTmZh+MGMsVhCp4gkHvBXx5+NeCJ96pHZxQogu8sVFfv6Lhwy3IJlOiRM7XYpUX4n0lGxhMFE40yBijAcD8+tYlJ6yw4u8EBTPIabdX3PbdoqoFo0bcqyBgQlasGxwHiUFbnrxAtQDiQ07cga5ZOubY8x3LIqHXo3mgyo0kg0qvtyDoq7rkiyKCpP1Z9UsK5vk2YR30bDY3N1HFOURX06QRmaqCuorl2UBEl+TyQz5k8+bYboPVx+SZmolx+rrFemhi7rNa4a9tF34TfjLWmife86IDbwUI4ylW4y2pC7ZveI5RdTjLyz4/KnBoYB2demnutsZxGl/xbVqcK5ZPnDzKJGb1B83HKH0cvU=
Variant 0
DifficultyLevel
561
Question
Kate earns $115 per week as a learn to swim coach, and $35 per week delivering pamphlets.
If she saves 31 of her income each week, how many weeks will it take her to save $2400?
Worked Solution
|
|
Income per week |
= 115 + 35 |
|
= $150 |
|
|
Savings per week |
= 31 × 150 |
|
= $50 |
|
|
∴ Weeks to save |
= 502400 |
|
= 48 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
wage1 | |
job1 | |
wage2 | |
job2 | |
frac2 | |
savings1 | |
income | |
savings | |
savings2 | |
frac1 | |
correctAnswer | |
Answers
U2FsdGVkX194H8ZD423arZpE73B0r2vyghjaWk0eTTkyQltyWNPLkzmZP73ogRUHPQLJnoNxUhyB6d6QwlTohyNTqshMRsWPscQt0eXIpPsjY/tjNRcgZGGZN1mQtLacgBZzBODv1kc0W7ZtSQUJFltygK/8w3YS8AhBvWIYoDKKilF/J8NHf4PCrMxnyubM6JpleNdxWIBYnEvPHj7YN+YXkQlaPqRQWhfiIA+fCUxHKLfSk3RyMv5xkxhLAH6eP2dPKB0Bf1g7OHa+SdKAP9FFjVMkxkE2r2ak23F5U3yjES7uVtwPWtGGqCbWVeN0KnQFTw3BADpeZpThhmfGkhk2jdC2qWgtGUR47sS7Wub/9YtVt1jQhiQQB2oMrgd8WuVFEXpbh3igPyV3hfO7CBfB0H7NgTMyzsE7TMHY9rNQhe6oZOi9ynXeVqcx+p7H5rKAsg2Yf5LHDouhEvzPeuZfAiC+Ql7jDMaASznlBcB4CVwDnaBFg/NYAjfCHYi5ZULCVxSCgZPO+m14dS8o7K0IDlPjBTQiIXnkzukG8zCHquHuRwTYAOQLkgsg235sxEDtYBoPc3+Xi8FeaD/TjMr5Qzun7YqmFZprxu1lLPEhYo+wD6I8k1XQi8hAi+vAUKMbXhDEkjyNQXzTMq7Xsel67uGLDpaATdxlFrokDeQEAbeyt4rCuOWUV/8yVH9qApTXhrsEFCbTYbetK1wWHNNDyAFc0HMn7ef5KauLtWfqRqwL1ABDmLoKpQodYMoH0evPlGXYaTfCgsdG1l/9zfUQWFtZOc41DnnQkejuoM+wSjlAwbpY9f65Zi+JNLkG64wvSU7Nv0/nJDRMjh88vz+SXHohyDfWz3uwPuUBBgastI431+iO0ogmKCvOxFU3PFE+TKnXC5i9KuoBkaonQVJkTCKIQhHEE0rb/vG7PBRNM7+ae79HRtxzV+j6MXS6BbdWkKhWjr68cEe+FwV6bCe88/pmM4cpVbmAjwaUP4pPbwuFX7KGZsmb42soPk3A67gagZUynU/6KhtIrqoRX53XAIEXcpfcTh6HmoAtyz404GZbT+mpK7HX/4egbxgNNiN7NoVkR/4pomT58IPo8ZLYd+fKZBHPcWzVL5RwoEgSAgUjrEdmhopSwKBKdvXlFmqOLWG+xX6a1ZTGL5Flumk4LJAI4V67UaX5+6YBe+IKus12+g8L7wtO7HSSxTSsISW2xdgEUKL30nLCVDp8GE9Ex51Maf3Zmpjwzi4x4LWcyeTSaDJtxvgZ5oL+BV1RVFqANdF395VuuKe0Vh5oUYYsOi5fAlstm8LRE7H1TR6FwfkmzdnySwMAv+KUxCfBncu1RPr1/j6l3tSf3fHHG1L8axfGwK+EMOEaUZGapj3SavDhcw8CMlucokV7PArKzjfegn1e+S5DB5K5OyFLtgst9b80jibZAq3+dE47alN4b7Aw4xhY15mDi8FYkoTfDTEN0TuiwJqQ47iC/n1uAX2D8SCiQPesFB3MHI23ECetL31LnDtUKZoVJ83WVx1B4R+pteb+0ni/TONrgVEAVdQVn8mXTDepsMoiZg5khOECIFCR71YRL9fynGiOH8z/z9Z8Qb6kgQKh3fgC2wb8jxwo+0+wAzksSjOb8Ac7qBJjtNX2dTHWfKZERwT1cLnQuVVDkSZ59ik6JxzxubPAmPkSkOy+UbZ//yiWcNa2cLOIcT5V+iODKlxDwal6oJ5wCeWYkd88/IOT+vZMo2AXIuFGaO5YlURQyn7/gSaRPFuSQZNz4ICdnIPCw0kPDP9HHjb3YRBUcAA2M8JujrdMipEtEl8RZkUjZlZiChgZYXe1RFzPkARn0FhKeyeN29ybJn/JB7+qAwErNqDsKXI2UgbFBq/7nLe2Yf6S3Lxqr2d51KHSj9UWsA2+it8JWdXJ/hA7ISeAAfvaaqwGqdZT5rEHvxxjmOVyVx7xVmHTCXheGNO6+YR0KAdqLBkM6b1zRILDefcivoipyyStb0tr/d+OXBmu/xC2NBcDv2h41eBBKfUk2bfDvwwbHnTl5mJrJc4ii6SnBJwBcKwUCY/HRLanhxasyz0zFHaIyZO2tAttA9wQiY53FQvWZpUFp52DAtm/YRsWg46sTrAaNJ72U7urmP7q/z4E2gNiwFUXcolsGZ3585AgKuMnmKueBNZl3tXxCj+042x3WwP1a/CPqVSvChVaud4Nno4XTFqoni4KjHcEMdFPKLpgyaVnw2c5JSRrKuzjoQE0Ir9iz6H7x/ehjMu4SztYd9KX4NEZ2EtANwpGDUXAfUtFsNN9b9qKJGjj2HdQgO1uD2iS1Kkd8nyiz3aZZhZhwmPLmnMKPu7COpdTUKNHfeETAFZtRphFRiIfJvIiwa/yhuNIBwApwSzLFAmCyhXwaLSpT6EXsZjUkxvHzcisJ4qime0V6wBMd822OPeuDX3TFysd9OSbcIVKrfVcQwY//3oxn3e1RU/tf8rUOoCgRcVibc8hXImdX1jks0PVFZsMm4bybNrxcnI3O267ZMdbIKmYcH5jE7ZT0SWXiU6iTc+/FIVygDNzWqc//YLxtXZufU7RLCOlDtU0sSEWhBj7HmMK4WoavQPB6zo622BjQgosdjPNBnG5McjgK5LZA6KEerv3sXGvcUHJFSMy3S2Hsz2rnxN2L8KP3VnvBR6seYKnicMn0xxPGK6wdL1QGNmFwdhrUdITrRCrpeWd9upTQNVETuiuPOhdgJNFdnDuOXPr2KnxJVokbwis+FkqROYT8Jv10mBxX0zPrPH4BkijBJxLUcZURdsXT0vDVM2h/FwgT+IYWGzjPdgqa6wXD80DFbhAsiH3WV08FZn1qbVsrpwADuuSqUtkk2JJc+GnW18gFnXB5V8POUxTbcUD53u+1ZS+MfVtFSgkP2JE4ab6SqfKVMhO3cMVq7pjsz01s31eUAPjAeiZm5erAU6/SLM0DohcLH7CShKvXbr43/Nt97qghllRpUvKr27Nm4UwiePlNUwa8vbrJOsudXOK4TvmNnkuVcjhQmsAExTKo4jB2GtfOXjDBOL1n/MxqdfRhoE3sYdlDmswbPDhUftbwzU65nUR0D/nBUiJM79yV3GQtSiQ332rpWZiOuBCQT6GNyAgAzSyz9KsrWeO33bVki+9iy8M4E9okRv2uUBNuG33TbUHxzGfHe+oA4Uk1viFXV7xdrlXU4GcN/HWpCr53jB6p35ZSK2xM+chccdC9BdgkWXAuXhPyCT9DhuDgfecrh7x84JjQeq9eZ0PTJ1IriTWUN5JyuqfJIml4OFwHLLmLuIqW0I1lrMSqvtobZPPs1nqjmeTvJXHfF7hxy0HiTjKrVf2/O7A27V/jux8xAqQKeNjeHImBcwuPAJg4Nu572OtaRVkc7txI/iRTc71D+tQhLbkKf0KAeRpTrFRQcFCGRmdbmjqpozGfcifwzOCoSVR/Bt5XADyYkbcdDJDkKMVlb0pSu3gLLINe9gv2Lh7LcFfexdqohHpjwcUTrQ5K83D+Vn8QJOr+8384Lf/XpoXg9cMRHrhVtRRy62SgI6z0Nj8qxhNU470OlwHi33tyiZq60DvcH3opn0FYOKML49GIZPzF9Qxn8lcFE+mjqowSVu7LRmqyyq+pEC+zqKa9RhfPV684Dd1FVBL6ALPx4T8jawqIuyf/ocH3U1TCQwcy+FDMsOdT49Sz4xFKonVfm9hrc0GAl3giucFoW/egedn+lRyDfgZIJyOODe6LidgeFDpBPN0AkhPtnzQoJOoJwnfcuZWOK/eqn/6qXwnjM8H72RuYNNORI1f321UCM2YS+pUJqi1j2OfiqR4VCG2hQ8QNC/r1AmlnJ+MVVB8F5ycdQj1JnUkRXQo0K1EWqX3+dAw7l8MjPLcQgKxNAvroE597qyneHUxNPy5hJKZqflhR4bgVakDPaulOKjoVOhakpym+rnOYGNflazZlaXv91WUOZ00tNgGUjFDwjbReTuBF512PmavXHpHdv1UvL66GWO/LJstc5b0F1jpSESLwGscOAkGVOa42f/AilZJwjHkjyKAaVtssilaDPSfYd29n2F3bwWnv+TL2gUAoDEe6jSgyT1Vj46kSbSse9Q+Oa+ZaXceioRkSAJIxft3kXDuRYZTFUAALJ2uDVe3s8vjCeM+2WVhFmadi3YEyqwaujebuzDdHMfrTTJoknejmbLl0LCfX1+RfDGcM02121gdMzswSy9SkdBFYVsr9Ozsv3vB8qY2Dc3VYlwxByA+3YBWj+4AbFjYPmWXSPCJ3d5RW1uZhnlFXRhJswOMkKyw3LYN3briE+0sOYlr8WCcIZr/bYAWtEufXyZO2CYwLrHa/UAyxGaEwqSGAoqSq1XGvpdUDhm9pxhCrrM8IdlO7rcamkdZXNY4/fGQlaRNJbua3A9ZCbIvAT4pQ29aNspGGTRkA5bB3pND5mYOZc+Ix6l5fTuf3WA6jIFoP9v/ydThh+xLpqwE1Cq0AYNFOrmwKIzjz4SxnLHXyWc1iBLD2CQFzTLOsw0yitbSD1AHeRkSm/PF4yKkq9EmXPFU9LRLoVcxPrpYePnmSWDqIhqXESdF353V2KcGe40VKF7BRfNhDSqsEzKsWi5L1tkAzm3PCmZNmkw5cAK4DyMbP1ZDR45O2oLvCcDAWYdztMZnTkTO+h7keZIP1eKldK0RpVnFnL97PNOAW+zrYccyJgpRKJ4i09uac1KVb8v1G0h/1oUQsKrxBI17ntEd5EdpJ+97vdTtnuEKiEn/au4h0gRwhVnMB8S9BsLvbmxTHmbghu6HbneVzSK882n+7GerVM47N4C3aX+xqfLu/6IFoK05tJBmGHKArhEg2J/BRmwnpBWjZ2PJt4b7MtKnnGDNYD1q7kfEC48BxlBTg5b+TUJXwlE58jmh2s/i6KpYQex1okp9XuYu7xM+zWPF5h41UC6kZbjWKDx3/OCLgw4H6xcGOaMy81cDke3kBKEkrPmPu5/cYMdNzQMwRUxg/VBSF1iIa9E45IO2JgGOYPCgoJXZTePUpyW8V+75pLIJSouxztpI1jKH1Lf0OW8kXD829mymCwQtJf8QFxOvjc02c9rljpgGuQE8YZQlq05GSrvYWvigrJtKluE/IUimUrTaCNEILHY/V4bKojPnzIfWDOzAnuXrWHZyOK8CY3u94P+nCaKdCH5vFEgkSLhCZ7L32Xq/YEeYt+waNnJTX0GtApaBpCnVWXDmfsm+k5ARlrnIoScg4xIIuYh/bfBmiaYejM5COn2HcZ4tsZCkudDDbxJTr/3Y68uJ2jSHosx9R8Fc3IkQ5NHsJ2ZecolRRUnHt8fJn+spt38LcVKDqTZBMXZBNX2jYCMeLGID9Cl2qca/sjS3aT4i8qivEzRyeuJQ8EIWLJouIwyub1mAFflXfOKPwRQl3PzQbWcfvphEoHkuCEUPIsjzhzzVxLWrjWePtisy7+Iy7gzNY4DFXKSXWNO10ab6TaVhirM7rNr95vbCcw85EK78vFxQ2C9k47byi9pL/kP+9FTLvKThdg/jA5S1YCwV+rzq67qzWlCY5vuxU8x3jXOf874VTQSgNNKFggvbYKgL9PZV3q9khxHEKJCNGHYltw4sRVQCKxBjLXoaMaOiirFEjLov09MhFHWVIlVM9SFOZ7nZ6BII+gg+HA6U8F0LkfK8jlzGBOib0wmTNaV4/5GMhTOcXpS82Tsj8Ybzs+AvAsegHLvblHRxU2XnLP5gt8nyNyDOAoOzZlNQFYUViwMHIpA7Iiws26GeED9tGiiel4ziScakyHClDz4Y1qNFfZWWRzknUYS68aUnNvdFqN2b9m/4q87GQqU5gIZ1G7ugx+cK6rUXYpurf2XSJfD7AwZbM5d4uVwjzTa/9yLU5fjgEub//5KkWxZXFqO2c4+b+xoJw2+LmZ845BqzCnsynNStqqNbqAXizw7ixHhkXx+Cplh9FphW0Pstpw6w++SSbrg0BpHgDFEo5x8qHmvpjeSerVunab+UNX7U+IZtStiGQSeonrcdSH1NFUDvbTRcPZKRRGD98U/V522v02P71zzgp+S8k5NCAE1bpNyndPnIP4MRs0Z4WXcbvNbvfBqxFVsIew2EMko62HJEkiPdtv3DdDG4sdTEm5OxdccfZuXVNXmbVCzCc9/YE++1wuLi3eJ/yY6usVu6DAWs1w+Rs7/ePAJxBxPa/pvkNJYq3dXFMd7ocboOXDmlyYSMM4AAw1CdXyOjuiUYbt5NdxgarJCK2g+NCOBRIbKo8T7uDON7mYuXkoWNtm0blSOotXXM+05q/fHLjtQpYpYxgPDmukriqHxHPSgyjAtEdYBCIFIdEbdInVEoJeWZznk2YYs1F3DXVvHYeETLMPkHPXs6tT9Mjc1bEsqbygbRA1cifNDsWljix2wCj9SyyKjcBKn+k4hKwKza9D3G8ZnPalHdKRxj4c58xFkYMSIiyFlBLdYn/nOoNrxrz+F5eNvuo8eoBD1FiEx4G4PoWALCVqaFh3Mwc9NZzANWE55nFnuQ55LjXNXppEnSo9BSnzd+MuVUIEdhJM4F8T2QzkExnlhF9QA7gdEByKFTSSffiZNMomQaM09ty5yDQDVzEFcVM/bYJHf7fIqyn+n/76FgEF4AGJow/YDbFae5A8oVj756J8C9sQNOt0QATQstFfDMyFwHyUa54ZiY5/BLvjxw4lxkEtGetjsTQfuolbrFmlOijrIx8nAQdrNGdAcjpCJG9ze9AZFIWPG425ehtVKs+rzFfJym6UHwokAERRMB5TR5nq6grwi5ob5bv+nXjxsh4uMO6dBHQ7OkQcBtmReQyhwRURGqkELI0tX7vXKGebuhg9vX1F9GxEMgjlOdkkcpR3X2sDRy9aSZ0nKe8bRKVXRO7XkT8r9kxvUj2zSzFwp0xPAJ1cc0fzQe6fZBkPqIu9n3HpWvJjiy6Hp1B7iBy7t6tzuezYYawrjMY+w54glIrY8KjDmtgBV8LuTLIfVF2ot2L92qzh4BCiZ1ZuXMx+pGWy1rYp+EgC+2JMo9NdMZaJ7DUjpRvTPIezL1jqMVp2s3RKFIzI/1hDvWwT5tODVahCuyUK2qybMx1qPbOwMSL3UScVr8sjCVN59w7l4li6S6SIg6gVsIo/QHVO6NdCclvMrOWAb1LvLgupE3BQSfcHsHPyCxFXc6NWQbqg8l/nhM+y7Hv+WQb0SCwkejtZB6tk2Iv4fHcUYBPKIyrUYDFJSydqrdf01uKi+IkMU+OKunYJwCsu6Mi7qyukfqpOl5PY4KT+IoKYVlBxgOVWGyGp/rlFjZG3IlYPRdjJidrS4nP2mzBxNqDeH9tYbe9+BLfc/+WJRb9pj0RrvHPoTduOK1XnWZKO2LvpvwKDtUxAUwlrILqRZY6MAJyEZo0Y0Zpzk772dbjUq9X5GGjxSxIe+E+z1C5LqpsrtGEjKggiV1/rdejbEJo97HS2faRgiKefqEjNBUsYbrc8onCJNaOxOR3zNMa/f/Mh3AasD9wadaq6ntEJsVfEHlBtRmisOhZ6l6TrGaVBIMoG5AJrNIHkSwGaER4WUDFmieO7FYX3+5vEN44d984dC97XzSfZanMYDRt1TVpBhOiI5IrQSTMgyzwuzk+G0r5rbcwyYXuQs7qUbNJ+PCgixD0CCQL2SFHFnYvH6Od3/Ds2x3EkAiInjpJXe88ebXwc1JBWoiwMkh6qWxQP+nN8Rb96G0Dnivmw9GbFIK3T0VGRSt4x+xsfiBjoihVntUe7dIBlVaEXk5OpvuXFqT4sMF/kr1ZJSs1OV1lbuEtqPn3/wNHtk1dDV+CU/r/smANN62gJ+qYU73A2gTRZufn4VN0f8cObPB3zBif2QvrDKVI4sIflB09DfGeOYiqVcQnXLl6Do3zF6Pftjz9kRB2eXFzKi1hu5rZ29FtYIhTfez3XLsqa1HhhRzWbXAB3gxedZgPbusug6pZOGWFcZDiyogwZx6LOQ4vFwn29Qa9kERRDr/Vw5taLq+IB/Pbo1+r6GftXFPk5TZZHMfeIHTB0NFcby2whAAQEs9AgFKUyDb42Qx5akDk7w/Qu1+BekSwQDNo6aEcs7p2NgMjJrHUBBPDt1l0C6lMLKCqhrHHm2g+Sv73lH7KdGZ3yAuTKBvV1fD+bgrNiv2MRhQDRavI1uFZ/hxr/DRRr/3DjCdamjlK6njpEfXzOLOiXhPeN4noX/ZIqoHvrjo0EIzBfedR2AHxiA2kyhDOYWaDI0UQT7dYEJ94VT5EqIJsunBofe/VTTt8cHBOsqcEnUx2dhYI7Kwbj6Gu3OQxcuJx6Fd7i5kJc2bZ+yWXe3DeKTPFnAwNjWDVbhSYARyhbYru3oBLvnEeYNVICD1UGsCK8wNvJK5CjdaKDEIqOLRwIulUahwpGd+QUQjNn1d1AWhjiWjyohH7qNPfJNZcVygkgpnd/Gszr+JT5F/WCblLOopeebAvXYdSyQbNxPcaXCQlwtQAUcmmw9wjug0RBIih0KRa++xl8bxr6bPzAuxFSJD8jUEwlDedbxgCy/2Lj86NDZXuaw0Xpp928XQ6ZgO6naCHbzOWPffv5Izw1k3X9psJ3J9++8Jei4IRXQbIq6b9yh3nnCe8lNIWI/3PbvA6QLPzZg3RGuWxfkdwMWnElQzfjzDM2TH0w2VZRGZWs0GIjYE3DsHm7NgO1RryBu6SD6YCYSiqE/c/lfdw2uQjDESJCtEJUq/9u+3JGcO0RQSZ7i41uDpFtNWW47OjlIS1/22xUl3O7YsRi3FZ7seFHd9H8+ePHDQe4ryQoTLkUI/zlPDHTUwcJRddGv6Q1qlxbe2wTDvIVhdYNYRfBSAggNV+47rowFdzoNQwUp/D7X/qabxvUBaPr8JqaBs/eHtfLmBUZ9NZ4CkUiDKuvZFoJNyM0Ycgjmc0qmKvjk/B52VipGIzz0cL8OGrBlzrYXSiUGrKHVJN+Br14ZV1TJQSD9s+cxPi4N7D15MhmmGso7Pq9FcmmTMDCmV2bRfBh0Q5/WG+QS5/wOVAl99zMMLOE8zemCgcMv/vFw1qJ2wRjtzZNMZzBhVzZA2So0BqsdbIqiOo85+7cmaV4UbdBvrio8qC4Tgy7/VmPw/kdHr/gRMkc9MkItuCqUIxC4m9AWumQR4fWOKZo4ccKDoub1vwAUxatiw
Variant 1
DifficultyLevel
563
Question
Fi earns $105 per week as a babysitter, and $55 per week delivering pizza.
If she saves 43 of her income each week, how many weeks will it take her to save $4200?
Worked Solution
|
|
Income per week |
= 105 + 55 |
|
= $160 |
|
|
Savings per week |
= 43 × 160 |
|
= $120 |
|
|
∴ Weeks to save |
= 1204200 |
|
= 35 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
wage1 | |
job1 | |
wage2 | |
job2 | |
frac2 | |
savings1 | |
income | |
savings2 | |
frac1 | |
correctAnswer | |
Answers
U2FsdGVkX186b+590c1gcZvzSlUkYSubS7oL2q53naeUn50Paz31JoZz66536OFHT1UfOYzTniCN+jyUD6nVufAYQ1h8gIQm6IbhBFUK+W70G3bPTfunN/9QJTk67pB7MXRZi7kBPm2tD0+d+iDKoisIUYDio+Z8bu62rXT2hMNthhippvQIoPrNdbZSNQm+Ueka/f562mxLYHhi8eCeuLEnvB9SI4qI8tbOtM52kpmp0lVGe+jbJ6VYjarIH228n3hIA4p16eV3fIQsSFAD2lgMGxWjcjHNv656Hs3Og7f6AbEOCgvLGTjSQEaJwSMPG348hewN+K8FhFgrBA0061P8467YH/Nx9v1M2sU2c+sb3Zd/2C8L/EfaTTVKU8JHwW3rjqeS245chtRvSDIaZ6YVdOTlxdJUsGqUaIekWasI/dJ+8veMW2lRYbDN4ExIcdmExdi1u2g+LuKsluLqZfcMQaaLiuZjPDXXvntusmJDDnHBV/sxM7L5jYrd/DBAFCR56g9HkJTmy7ZiHby3cF0d6XJXWcPqSuweKSm6eyMhnr0ZTtAVkeW7NU9i7XGRiReMDdU5PmZHsaOZO75WUKp9h1e3Scxqoz30OSIuTsCZhIkMBt2x+kGNneRw5ffvd0Su9nx7i7533lBlT3NjebAYEn0a4OOxuXtnfdVf1dFsk0bo42hD3KxHnEgqbwSUV6mLLun5IJsfIZybrEUyWqmSNv7/HHaFoyh0SCADGqj2zck20gMigpqLNQB0rA7lsyFSK9hNSGubFPUoXh7NPxbVkD8JISV99v1QGy7hcc+Xc12Aa8cb2GxHwVb3bZXukVF+Al2077eiUE1VB7DhNUQIjjYb0QBArCYrfzz7CD6RW1bU65ORAx1i+pZMQmoGaU47sx6HuJazsPtMZ4R8475k0H1TGcZaqlEoNvsS+eYVczL2GacRMnTGo0YQBGXiLmt1Qp3hsmQ3r2HT8hBKN0P7Z1Fmf6F8ZjgTvjaik/ayIk/zfDgmGXNEMt5UkJJMmrSzmwz7JJ28XfVwX0hRdGiv9jC77AyMC+eDwpq2y865gCIOUNSkLw97SIz/5M7plyWCom9PpODA/gZha0kPUiqTtU6NbiX0PkrvP/pj7fpkhM1ThJ5JQ3ZFoJIS79mM1+T8Orbo/gIEabWSlxitIsPzmoh4G2RvzdY/Pb7aN4Sxp3RFtkv5dK6iFY3wx0EXxKZJu8yJ6JxkKQBIs5vfeKNURWipnv7DThtGlJGhQslD1znEgFJZNwejRIl3gx7zKuSo4xUslwBywg+u0biB3Wemm2whsN1Wp0pmCL7etb8c/o7o48i8eJRAI1QCvLNLoVygw69vJIOIHjzpFp8liG9/qsmwdC5Ov/NVXPcEqiMHjtbtVUW73jm2fl0Tn0EdEsqkWSHUwwtmjRM4cNEFaeLllhm5dG4vEfSO8FKeJpmzB63UeCxp+WwGLcsVWE5+Tki/LkXrfKzNyX3iUPCYZ8MNQcAaqcZOi8awZ0z5GEPlmP9aQ/i/ZhD8eN2EavK2YCImQzIhh8Th5wE++ZG/YfSIDGlnw3DbX8bTXsWkmJ9G+3CcTEqe8STyVEXMcYIPTg0pi03o5lKLYuxNZ/n99RkPa9jVXWG0Lvfm8nJY75d3NS69lFASiF+yoOLHUXiUnBzuEfxsIgFs+3YcM9Ipz04ymuhGNg/WlxW2KX9ePcKwcJ7b2OvlYl1G9ZP9J1Mx73hNHTifwAtdMgL8sFelX/47MDfrNzYu6SPbhesU0wW+bpRJrQiEc1Q5iywM+XkVFrwlpWQ39LmBbBljLu+B3rGgQFoDLrAVanVd4PPKgWuJ0qijn9W/SNozwXgew/qdMf9Lo3Nj5pJo76s7RcKb8XPC9G6HWzBmkmHAdTL1kOrl2PLC7Ac8qX26eu8iIkZu4ryo4P3fpo9glwBBfVjkIjdUxnawe63SKO6/iO+mXKOSqVJJQ1E7S4IFnyku+nO17fbALUK57xOEtL6pnuysfzQqxTBTpK6wakI1NgBxK6xK7NcUFquOGDLr2eVoQUQV3tD78It3RbJFEYaGahQJAG+DPGEU7WtpBehULkCBdehesNEdGdnyBgUqBUV3sb93NPkFAVcMt2PMx24k2OChP9LhB4vdjG0UwLtiNtZJMUsXgat2icL8plmoZZwUb1iJKNIvnrju/4HgWVH3cm7vQwtS0ABjK/lVMYyfjlQ9NejIGwLP3JZkyo8eWb/cr2N2WpMK+peoOGObm0H+QxW0/lmn5Ts/ryin56l6Z5v4c6fvoLppKNxL8J890FJ6eS5sSjWdah9zOx6BUsA80cfMf+0GOcQXVMGGhk/+c3+1a6fnZXCYaaDm4wqqOwnc/IMxpnXcX9cmtduj3bE5M7+qezJgLrhfIB84Y9q16lxL6owBc9pYVqe64xSaqhrtgLc/pF5lBF93wuDWPgMN3kz2iJqbXZEuzBzXy+HXOxahSJkG91vG/fIUIpUpX5Ux5kKm1q2M559cMIlm+ZvpDNVcitypR6rjCl4duW8xn0/36vYnvLgx7QwyQD05Vv/tbb1Ns8KHLSxNlYgqXznbVY/tStczQk55bLw5rdNBa+2dJJTxF1a0PGMIpjpfsDf5+NQxabj4agTyGYNJ1kLMggoCEIZtFX44Pm7A+VcFW9G+f87h7g+nE/o1JSI0naMxXgdYk7uQmk0eUmOI09q9XsAGlmIWG/s6ZNVYGbd+HUAegA0/j6j0u5y/FxcHeqVGKkZh20IzFudW6cpym+vE4sRERpkdcQnuUNLiG+N+hftmPKvFvrYu+bXYbmyOseUwbP8aBiFuUZWCaPcMhjbLLk2JK1T4h8IPH4xjj/rA40BumCRTUYsfVRI2dZSZ+ox9Eg6PW4/qBfGpcHWb/RXANqKDh/crNqcb7bLUcRBDrO20Kx3ojUFP3QWuxmIc8wb/3cKIQatBqc9bCPN65geaeLdM3fqUY9QxlDD1BVmUQW/Bfmdu/eEOimNkFzdHWB3yINdjs1Fqw7M8WZhmmI5fhqaEm4ZSy/Tol6FzueDPKx9keiQwFQYWAZdplGIthS2//L0VQhokEXT6woHJ1ltHPpCIwkEZgHuTfHbgyQFgVeahOMERAUvRymmSlnXmzP6JXC28byJAoIfYvHggXnzqIx6s1+QenMKjd1iZ6ABBSZyRs388Ob6eZJFS2wypP7aQqb2KishHt8VBycn/C7RVE6ak0NcRCXiHK7+xl1lA+ImXfejjI2tWw1YUVCd24e++M7S7jRSQJNFzdTu19VWvvGZW0tDLVaz848uSl6bHuKCx2XkMkzpGptk5PeyNGf7VEm91hLEDKoGQE4F/TeYV6cWqoVSKSxGVhj/HNhaIu2Q1GWCmDFA/yTNy4Az15tT3Xf3aEmU1rWCz4cMoBCMCi1blvy80/XTyE+Kj/XOPFj2qRWBFNGJTKIDC50Pdc4d4OEs7prNLOmuFNApMTt5PJxmatlOC5KmeBNGA8S+fx/ci5OMexLW4ttGgzZOlKwgF14TuH9RMh05AhD1SuhvqS7uADCz5Vkh3ejiWbsBqSbE39DfW5O9UG83ot1uXD34cdrfRvXpX7OGi6QmGdLeceGjE0vgtxw/E+rJsq6fTPsv7Ha9QdRbwi0AjmV4HwBKt9hgx1q+AeFQQyQBTFAbfE+zKLijJRzybE4Eei7gwrPgKagQqnMYWVONucXBM0+PRjGD2dATwyH53bz2FfFXxt3WmGNixtws3WNu2EA28XrDUw99SsSaDFTefGnU5adr82MyeYI6f7ZdELArfsTy+dci5pwmF7PQaML3KU2Wf8adDknXxarzN3V010QVl2vVP0io3jVBCI4HLOzKAFZkMHPywT2fjZJMnx68w0P7XAoKUt2c0FqGVYonN+xs1ehdSWdq3JeslPB+DTzHcyNWtzfGlItQ3nYaPMrXenDTl6uEME1t3J3vU/FXEZ8wqo3uGwYjlyp3jQZt9uXeWmtZo9aCGH6hoHiUpUl/AJevJQ8T2vuPqJtWaTUCmTLoYaJYLfMDLaU8ufKnL5SFaMDpwkAZw45bo7lwJekza6qeHr+FCNMLv1wXEQiLX42VgXE2l7C6xy6ztf/lOhlHtx92H/9rzh2vSYZBFMajVt48REnQ+He/CkuN+QDfq7HJ6KU5LJa0cpAj6Ezqxj2JrIvRjUEcQYBqtm8k1Dx0mzc3rtx3k52ZamCFPYiQ/F0OCBzhc5shCuPsyglpx2lDuqc2Fj4LVbLisITLiBhELUKxagHcaNhFDacwDnaCZXjZkgOFqDWu4qyn54rTy6VJ5mklW6dvCWN8Ap+S9IVtaQLtoV+MItWv58IOrCDV1H26fo8Wy9wYvs0N4xvzRn84rwbPRRdZSKA5j9JO9k/XYoAcPtXGCIUSLC6XUpWASWsQPOPercJr2JW+6/rta+040guf8eWxR/nw3h8XXrZd/qlanh6p4+GFrXXKB/cYgkc0J0J8VBp1Qa6AgV5QAKbuYYC6pSKulYGTmA8T2F9YrtgTSX19uhln4ZaK+RjX87Jbz3bg5iR7zbsyBuE23g93cAaXnGg2ohBmSIZ4cEVyh70pQU83ktnBQaY/MfEoZl+68xJt/3LAog2yyUYfJ43vZMKfdsyc3xA+g6hFej/HlYbQQQxIuu4gSOb74w209etd/Wl9IctzLMl2jB/xWr3uH31oO9fsKCNN/qeIaSOj1J6IWw0OenzYFQmND6qrUmDYpMmWiWDrrCENkzF9bWEZpdhD/esek/3i+Zay14eLyZSTqfs7lpQSPD3jemb0eH3V24YZAjlvPk+F44C0QhOxdwlvW9gIi9FA4mhXUXcdXvRfXlb8cdWqUFui+pOJoKns8jC9Ia3woHbhWAeojxtnwninBOqxdWcQ2sRAAwg7GJzwAcKS8GI6iRuasSR8Bio4NwNbsgIkJp162py9FCRCBNyrbK/I5EMdrEN4OWyryxClopXglukxjgY9+1DEEaUZl7iZ1Yo1k19FXJa28WJjoOwuWlynr80oSI2sSGfRxA2Uql5Way80j2bhj1Fb2CR2R/QhE927t7vOBZK9sr+d3EJa7hDGpud0ABxgzpLP57Y51tqYbKkUs++VJG7SscTrPhzexgwYzzYmTa5eiTdBbr7ZHrj/AizoZpJwsqPe1gOewomgOZP5ScRTlV6CGh5JiEz965APO3iuvoxYpciUcZnLr/H9kYn7JoDmOs4rJRBp0CjAaXBHaGKa7t8Sp3aD2Jz9tL32EOfez28T1w6lkOb3fMBz44HfMuiLHS/4QDgK4QevzE16ksrSuf+VjB4o3YZNM7284jcAoC/k4mgYSA+f13d8ghFWCjA7FwgvZSKvibJm1bHyui3SXfuUv73crbVcLajjRlA4m/dCqqxJcuuHz0IYojDdSV28xRcEBC1iNy3bmwngp+VL5REq2FJtsQ+sTiSoML4/sjOsee2HvWQma/aMOUoVUK0mO/Tt3IHv1OxhTaoTsGRA8MstKq8KK8jGrZvbEx0kgJULfa3I93P5V8mlBGmwxOzhWyXz/sGDu69O1fpL1rc5o+3CDPgILN2oWojJxJ55EWV8pmnVhfRxQZJeqwO/X7J1G1W4YbRRvD7grfGgMMg84dm3N0O6RlNEvn270wdWsVt+Yha20bmmKLJasgZ/+opblbXhHsLBHbIFrAMOymRP7w07XW56OMdFNLH97bBwS7mcYE/6BAukb/X+LDwgqV0rgZ6kqJiChR+PrZU5W7X/Km6FlabFFvNgwfOzPo7JHSuXMJ6rFVBFoe7hSOjFHyff5mtlYnk7GudvAn5KjkkQ7ccuprjH4H9uqiXAsRT3HZkGGighu63M8/Jip7UN9xNSdl7fgrjdHgcXnkD/T/FL1/SY8qlf1oaU3q18J4OF2hXY1TZtiROAGdynOT1PfvB0Zoz4nEj21Fgq5jJmDRbtaihpxQreTw6qjWbsXcYa7NahMDYsmm1vqfc9kYO3oU2oCfk5sT3vMAWFuQ11vrncE/IZRvezSgRDYlb/A6WDULeFRiIs92MmVfBZleoMU4fGz+B8C1hYS4HtB/PPjpnfPDWfnGP0Ibf2mQHAxowJ5kHb6FVlRXgEfIondtp2fpL3sErauy5vT5IziKbNQQZbFQzpu+i4GKvBBmGlG4TegCe2TJKMF+xyUEckhHj7NSEYlfL0rXICoV8gINMu02nFRER/6jGNtbqZSQbtbeKHEjeeabvOrXg+hcJ9GjPenh0l9AcwGQcZcI++KV+sqrXVR4JSew31XYHLAFaTeqt8B0ZfDAw+hKtD2JyW/R99gnYjLOAR6MmOO1jJkztyrL+JryW9N4qwXC9Zyc9u4I57IMSiuiKg2qz+1Y/67UbcBuVADcXcAGEp//krqznpH0PjoEfIu0ZljvozUBZNxKwYXy1SJ3rZU1RW9n9NcMei343e2p6L4YYcC7rdOXszevmF6lSS2IdGtQNArcCPz1K85GttXzibpLqnQRN0ooN3PSpYfqtga3o49I8nqMYaZojuL+uKCwwDqvi6YySgW5tvN2c+9+xYOhyBtWo4Qxsh40KQ1aDFUIo5pG4FAkP5XER7MMqf/ecxyhD6KMJuq7wSpns/mF+UqDO/0oeAD8q8VFnehkb2Mll8akyb6enVPf5gJNAYeE+QA49EPQav2qkeM3+9XLOLj+kBsx3tyumy/bY3/ICiG2LkPWEbhNUyvE7URkNZuNBepqx5mWEWD1XazEnsuSlzPknM4BXYopTlv3rnWCn+9qxVmx1ga1UpcbAW8Q9XbyiOo3wL9NQzBANXM8yJk8Uu79CQU88guZQZBfkEGrOTNGrA7oRytfRCVjNgEv5nEc+sA9kRLjQqUFegEWZGxjvgyGziea/iG1vu988x9uoSY2lHjlrT435wyxpbx1Duv5MgL/A9UAihm7Knr2398e5XOwxM376JGB3llh0q+qOuGst7YqZ61k8EnN71ljCmYpHQwispxsviHRFTAMkc3Ao86sOIc63pzBD5cdoIaHOXkNnRk9tjRnsJGMeJv99WNdP1Y4XLy8jJluAybDuPD4bMySSVnob804Zktm3tdVF9uihQpB3SmPDywUSqJRXIzF6IxjlljIRleG+scg83jNFNGrssbeOiRcj5eW9e16O/mPNsW0BI7yWb+nZpV6fqEygDqsQeuiZ6SzxTPZmSDlGib6ZpdQPrev/vBqbgW/GOfCl1OaR53DwbzKE4XEoa/vzIP0BFF083fXNNOuWhcgFu3rmU3mRLifVpIlul7KRJ8NrKL45N2Ip2BVIlygDy80z/TgIp7gPEpy22bYH+orj1ORXtpzNm984AoBMgBkfAq9Th9ulzZRUL6b++QBIEgo0uX1mYB99ofZLrWTyh4Sv/fFgXchVWy+LX8KVox5sp+ZIEcGoe+p0F7tXNDRhTPIxmgllPFpnOyPxkKWxRm3bAgCso4MrjusbPxcgYivWbE26B1PxZmdnK/8nDFU16x4MNtQgI5bDVYqefy57yPb21lVl/BHbwZAnHEln7pA73VYIzlEgcqnfkm4M4edyNxy/gy1cdnv7R7bro53U58GLYu+WbQusTyEt101lhPad0p52ZUEwe4T3SwvT6a1oJDrI7BYjKbRafdttNssLX8qmaBfshbpZGoSkq5BWOw5qsFPjFLkZ+s1fS9gGXX9evz9O3llkDvSTwyANmIHR5qFZFleHbu2cl1vU7vAjuF9oz7sLGAkm55B+vBnlfABWCOMJx41sRlulDU1wzHSpUuK6/ZC3EMz3B1V+ip88ulbIXONQ9eXU0IC2eX536XEJm64FD3HlDQn7x3Wmi9ujJIENspHimixjkpnEoG2/saqj2kS0uNR2/mLH19R/aRpiUGvSG7qL+UgzT+kHxCKydg3X2HegEE514Tsp9clUn4bEDUP3Vpkta1Z/kyn6PivLXnL+gwWoysAS92r1q3/OyV3gh44eVKy8msGMj59VbDGF08yq+nNPvd6sW9iYqtZo4Jwpxl0/FfJ2qP0El6jzPStPEtfeBkRxbbkmJUnH0QJAePzX8WwkM181XPFLmdUU/O0QOsDt+ChvbWBKk2iXKo86180J5eDBAkKAkJvA9sZeVNyEnOW4OuLUeh1oZ+Fzcuin0MxIKNx8RacYvE3ZEq9uY+6PZJpdqR2PHm5XA3ul1uVBoNZuZpOe8NXISa+lVFKjmNW5iZjcGRQQZta+pOADT5c6SNNVu26trQZFjuGqDCvIoMWsdbNwtrZDMVaz8gVvIbOoAqKh5qILZaEs9ExsazB4fO9JPSgkSuX5cRaZBAkLeOQT+vB1Zeww/3v8ytGz787IxnIFJTgtj+LjGl5S/g4Clduu1yk+JiOt6Cn4sOzsZnXoxknilVnzuoPbtDKvicni/Mq95pwy61+Ps/h8xn6HiHs/d/Yek+SNyn4Jcnoi/pcMJduyrlTq8M/p12pfE57rjDXWpJqRZ8KrmsYM4O6NYofc6MA/C/x8JfsakF4mK5yLqvHBnbCUdlWSeGKb/iSdLXRWXr9sIIiR7ovLywooUXnnliXSkrvHj7t4GMqEEwXSv/kxrZoPKS9jH1QCfVs/5GOXwTIxOZjg2NhosMPBQzKKaYnsCRESP61QaWdpwTFkpSP5cngVSlv9jK9iImRSbseCsoB2GZZCVYbpEiT6lsPz34oqTf8njRsiamArUhbitcaBK0lMRdtKIIvJG3oi5NHWQEmgRZnDQSWmWfQzQ0yrnWxDLCuQbCDOmpYqjYTAN71M/26zHXvcbQaPO2Wp+Ta9ICNM0ZFE3lf9Mc73ZdjH2bxfeXb4G/0DgM2persI2e139D0Z7c63Uk/MsrTsrXDyuCmsEeA/70iJN6UkYR3CCfr31p7l2pPh44Kzu9MOsvy/u/DaMKnqOTq726R193mUQnBek61nIEXylKdugm35bT7QzOGn+yj62hmXVpvK9xclhYGtuue6b49jUMQQHJu5zas4yrE+3Mwk/X02lsPlOXdg5EPWdFpViiHHBsRBxtp+CUDhSNYdJiyr49RlX3r2EvNWcsicncjiMI7lDdpfxfv1FOhtXct/TzTcUvPisAFD+U85cTgPLTQH5nTLs1cGSZ4sUkknU4r6FzlB1bCBue/g==
Variant 2
DifficultyLevel
564
Question
Cianna earns $60 per week as a shop assistant, and $45 per week walking dogs.
If she saves 31 of her income each week, how many weeks will it take her to save $1750?
Worked Solution
|
|
Income per week |
= 60 + 45 |
|
= $105 |
|
|
Savings per week |
= 31 × 105 |
|
= $35 |
|
|
∴ Weeks to save |
= 351750 |
|
= 50 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
wage1 | |
job1 | |
wage2 | |
job2 | |
frac2 | |
savings1 | |
income | |
savings2 | |
frac1 | |
correctAnswer | |
Answers
U2FsdGVkX1/KUuRjswS2/hnx6cq5oXZPl86+KPvyltNakaQwKj67+In1PDaVdoE37r2wiHkVOgbfZur04w2j3JaEZ8eDDifGND4JU5c8IJ7oNilPswMwbcG2Obiwu0EM2ZxH76euhWvDRW+9zDWzlA1AfJwJe4f9zwdm80w2wDFhSrrDO2hLQEmNcJ/WriRonishCL5MTQ/v48GsjhsCIB/LJn7p0nSHCM4tegKqgFc2wbdqy4SzcNtP90XL5UhZaR6CU7IvI29+nztzw7GPYiheILvoTuyFsZv/hAJ895c5Bn1PC2Ne3ngoUokHB/xbso6XQIfIuJDPWuTE71QCzO62WMOZvN0u2Rm2j3BsArPd4AqctlimS5wOisE/lhsUMVgyx9q/QAJECZ6WL6Wn1cGgWlQQg9boqt2lojMcLVrXfZGYgJOi2c40HKpJi1zJMr6PIETteUI2LEN4Oe6PaT3LT1AVHPHmXvjgCVjQ4bwj1VGtX6HYMuodkiXXZqqrOalSfuxPMMbGwBNTIvj4dY8UHWhEpfejWwKOiqMkS4eo1M85ew2JFvurRlD8qgkIE5Zj5jzX2TETVGiyDSPE3SKh+WfosP/YLun4J7ScE2H6rskfTaBgBlPw9LcYd6ZSJ155pFzmHoPJ3Fq6aIfqeX+l6n0IkzjDydY6zMMVYr/nX1FrYRZVVYNtU5t8ayB1w7P7ONqQib6Gf//ACkRSsYiozidqV2a43ouQbh106/WsS45lcKUmwIAzOgUDbwvTj1sb18vo9LEhxNjSsHNDocMYns1R4ELnauYV0c7wIj6wHhwoyGBja4DlMt0zwtNnjvrYw2MBk2KkLmZ1AeIyuLlhwB1oX+XkRDEatPhKr1o+1H57rD/MYducpkEMezu+bhVqi4rWNeWreE6pFnACKz44G/ZTBErUFyV5X9xfqdRP6VabtUZPD7EyJDJf4mwdqe/DvzcTSm73tgus/tI0JK8WtV+gxtb/5vh8khRreDxmWXriQXhNB3xls1TC+py/6sMKOHYWdCNaY6ipRasuoXeNUwjf7xsP6olB3hzPI5bQV3igDKcDyEvgIuQVPAK9khR5MLuU5PIPM92H2mZAhJcLkrkEFp5cPAvg0IdumTwqnTYAIvGJJNDvixZeuJrceSoyN0LlTCd/tUzyU1wbFlyVya7MOLyq6AWq1lzyO9xUoKRTvrxhmSo686T3jKK0DbGrU7pErx/IYRH41rtX2QK/sdQIw469s8Cxdry+ezeXyyi+KmOk9nwCXpHXeZRrFmdptpyRCC20yKAr8kuRw6vd0eASvgEW8mlCb6aUzr4Rx8WZDI1MjXLt4qaBUdytq7ktOejUzIeqpMNX9EpP2CsZscT2cCv/ZMf0bv+n4+4cYakoJ72oVtIWJGRrG3f2VghJV4XCCRl+dCk0tBXXRrxcsO9rgLp1K531zLTEsIrR2/Lf5/DLbDB5Gr/w5TxjbbL10f5bnkuIMZmBzWATH7fxTEJeJ7e8Raq8v+pkiYvPrntys97PNdTz2SS2+D6nXEpAfJ1dulgEAhQv9nogrK86sPLZ4O1bOw4vsU9cONWw92ftea7aG4th442mVJZSGa7NL/mh7SmykBptB4H6f0PqsOPqflzjvJcDqNVY4yqprWh+vHhC77TiL1y+fVuvGVSM9UW0iu7U6omCoKm727TBs6U2Ltiu7EVgEYGXHwkDJWcJ6QjBbuer6XyOXgQca2aiyR1Yi9zfuQr3kP0F96TIE8+cTvMvMCTh4wns7Tpr7mNpM4cwzz+KFrLEI3j5HQqDlCOBZn7oUGBmcP3WFYmIcM8Uc9F6HlAlwKWhx63Jzg8pK9KRNgR+t9+HGhOV3wf5GhXlegPBo9kwZxjmcHWYC9qBAQbk5skguXDrtBx0v+/zFK33NTInpKwoTXfGIuiaCgLowO5ARRYeFXCjxBmfr0fKuoEYjqB9hOnzWjGrmaqeLuv8cltIxTKti92L+Y/gmLNWAt10oejXceNRoszrQLUeSBEMqG0cbar926Bx2/QmZbXEe7hHa+K+lMpMHKpgHyHsiu0p4sc6KWO/DShIQJElC6WckNbSo5CfT7TymorG64Y0Nhm4L82IrvvluSQKrHS6TRIha4kEW3ZUexSYzHumsSCZSzJLbiBXtebOBaYgQ4VVfOpJd1nTQm7d4PZN3NUKKU1I5UH3w0KlFUgKDcYlLgRFaLb85KravXCfSg1ja6gKLVgh6eA1Gh/h6Vz9gzFygMmaHu4W6a4sxAYJDsAAfKCKuliLD5/oYeuWLmfSaLnfwa0nKn65loaE9b315EBpWYSVT03Hdhp1WXnNogv4PSXbzSlOOF8xMsm4ZMxWs+zAaJW+i5YlC4gHZuSRsxW4x+QuqU6vLFQsZLxwIoJmI7wUI5uYM41o/iT2XhDPLVBS6a7bSxup7iLsC0lhCaHhXQe3l5r9qweITP97wlKoPAij5Mj+31lrinMIy2otYsKTgT823d6oNRIDTUKn7OMJ9jRQHvsnqIf5qndyCbUT6dDa6rmiPiGiKYLi9xix8LnvMZHQFvJFlempmKIzdWn+rfh/jWFxrFYPPb8F3TLFgCc3z1TSWbpxxdKHRsHvI0PO5ANHqrziB9TiSL1sZ7ufNYpnlsLChC4dzMpH/FhyEUKB24wf3AUXqLBNeI2QDC+Wik6R5ifQvQv8gC3hMISuevrvvXBfuPpN9nFyOEnp6f8FcHgFROLU4RRK4VApPDnc7sUY80Avn+gb7WNTmgriyiNi7RIbG+cewgjtX8yShpwfuiwKlIQXDEZkNdOLhgFPuiEuOr0EtMr/ySDKeC+cIoFg6bpBYuXIbzx3CRY0tAlZ69j6P0vxJz8SGRNBIVVBLXr4sGvhxicTc9fclZmQb6D94uOsRf0S1kMahxP4SdXSrGAVwQbhJZmglXYOl5jC+4C2ORVpjN3G1fqql8Bm9feS6pQGsE7ZxU0UmQbW6rMcZcdxK7AEBz2xRw7tTUfRIS6dwJuXhckAIx7q1BYryMMRjdhpOS4R77iRayc+bqHaPLwfw0GqOWvcqjIMwsi5O8BzABxbCn9iWsWYwN/G0GXAwMEWMmopYBj8J1OyzCRBrHY+KoUAV2F5mRTizZP3wv3XGiA6VOa0cReg6CT8nvOcd8XwEa/aaSZrTl0olGoWOuDDEHKjlk0eUxYqErUOBEWzj5C5PpXnJpARnOymyAOam6IyJjZ+z5WspYgSdAZNlmdkk9gCJ2aGSEiHMYIV4uhCKzSceDw2EA7GlLUO1HNZsvYlsA6VmI2CBHiyK8y9GjixjYfj/Zbn6HhAf0F+HSvs5zqM014plooONXBPKOKqcB+R9N3VynrSMVGMrw5Cy78WiPa7SbkwVtDc4jEdnTcrcvBbRI0P5lWdxM5lKhuZyQDwQw3jw6f+0d9l4jE3pUSnjgczBQ4IuOBwU4n7RUMO+toF4mjwCj+7O1DYsdBMKJ5rML5XWPl4mEvicBd3Bba9YzVyRUeC+gsOCXHOk+W8YH91iR3hHoSPcxXMKdLX96Gf3BUIA6UrCakxLevoJLGzV0GaiHwcsDacozNUREgkB8tBaVXfOIXjAILuoFhvL63J/gaRhhUx0jM85g+eyMB3g2dk1GPayWysCV0bLXwcSL2TLaRN/U08tfdxsmG1mtnr2/399ahJK9DH8eiIg6Ty6LvZIwplKKrON4dxoD5SP+Ie3wp8JR3dXpiV3VcGUVBos9cmlEmr666vsI/0hw3nORlgIJOUQbDKsC2CLCPTeape2mpCKAb/+wBMJfMGllJ40o4az22JVShJJzhd8iK+TcQKgid8C2M8/r0SQB2mQW3xwojRfEsWxo0miGAWc7aO/ysfop0qYolLCCNzNXy4Vj2aeNDAe0LA0OwYLjUY3+uQqaUGzqUQFdPUHRZKGN36faXuEKyKFUS5QAKNiK7n/CPmMEFUUI+kteETf2tDrIXbH7l7Ykh0jbu6i7pvSGCE8H38KG7fVCX5HmGQSEExiAsNmHgLpAynTiUwhscN2D1RNN1CGUN9xTps9XmZx/QnuHllSgHKVYFLUkBpc/giwhgL7v3qb5RlnO2goNcXyQirS6DADokA7ccTw9Hq63MWEgjl/hM9uQ7eHh58YsF43XycS+OcW1U/TnOkgU0JC4jYi0IaucOGypljjy5QICVHxLcRVcizxhdQnfImqViC1FwXj6Qx0hRcUk9Qp2UH2lCZ07EnqAm/4NmxkSUsmwBit3cS2ykV/w2x+OnOMLfQmAUV7+vkl9k0V7MluebXmpaY6AWqOTbepR2u568Bf/47D8byukpQFmveTya2FwfYltwQHSuSK3tYLvgAbyEAVLEeNFt149A54e3lOxHfimLUdR6u2omLvpgZiU7RIZEwPics+b15uZ02BQzisPrlZNtLmbf7PiRVLJGbN8Gv3Sb7FH+Bl5ByAsZZdnSZYwvCjpqqN8h8vcvU+PswP/5uA35vby+o7a3s6uTBUoMDNW9pgzZqk6lwj277grGz9m4J2j/KMMEt2kGLbN2MBB8eg/ztXAH+b4syX5gMD9ykyWoz0MA7XvJ9a7iDTlGT3igqjZ9hy8glXVbwjkV5l4qHjfr30zm4IakB77wEszPk2PPU8oEuaAGMW3logbe0+HrA7dFJyVO12RxP0uPTugsLli5j0e4K8IvaHmstepL13N6GiPb8bqaj2kxpVrh0qhFeFmAvLk/hQ3vTLRjbGX+dGXJ/ak2NGBbWCVZ1cshCEiSSjyT6L0JZ9OYNf6XKOvQ5A0P3SM9fBcLNil8OMRpqBGBT+NPYYR1Luybt3qvBVJoYmsHUkQZojxmIiiIMdStnMAoxdEPVxThvc1rFjep8VE5eJJp9WFqSL2tZeI+8PVzk9jGrsZF9gcPYGvPbAUU9fnREZsu/ksiO5YhA40QUYhBUCGawMPsIo+f9qPjwnH33vmjzRUYwDqLHqfgHBuUGQRIaLlOkM3yXUCUoz+wYUY57vpS/StCxVDj0q8lKnB8ZIb3JtZZgNMji/STf//Xuq6G6mer9Ztm3e76WmukPVQruEV12T6uEWf8I0J+fGZgg6D3CgL5rK0tQIibwYK0kuPn4htWPnUP8y8wbvG/kijfQzd6odhdVMs+CS/7n2ACmQXqT06c69gljx9DW+E3niCazfn7qTFlt14ciYD6Mib/iAi2QENXmgMbEj+G8RjxhK8VY1D7TxQxGMwLdHI8SneJNfAKq6upMdVRxMeAFjhx9KgAiVss2/MflJpoYsAiARBHMW48v8WBCzynM1TvHKKMvStPOo1pvXlJ2+xWj3VvZ91nnoa29WoWqbvsJAWOQEraKjB7C6VNkLGekvJv9ZYv97uRre1tyS/PQEy/0GUfgExtDgsI6StAZrotgoxY86vS91k5xIcigybwIMzKCu/Ga0mdQf71YWGby2yevvUVEdiaSTu08NesFuSSezdsfoN74ReL10p5T4zClDjr2poOBet07pGGvk7rm9AtLCVbZRU+viFAFd9X+vbk/l6rNUdtAZsBlI2PjcmDf3NyKXVG7GHZmyMUt/lfRO7D/0l5f02ZOueOSrz4pe8AhCvBcMUnrgXF/3oactqkHmnKxCYf0fIvERAAyVIpiLxY/56aQo473EuKy8btGN3p5cXc5IT2Sw6bBTvw7qZA4gpPYJdegqEQVDmEp5SwnfMe61igA/XTODP+YYaAKV3z5wwaEPpbwme1g29/9i0dCdou0buxu+BVc154a+w9YFwk+HZg4GGz7b6BLIvr5TdN2lRO9IVkjJQdx8PNx+jSZIxAxwInGvbwf6c7J63iRRGcNmtzSJFUs/mQYLSw35Y7oaAnWXyFKpNSFk2H4cxfPguJDL5oUnl8ZjgTSvSf2P0OIZapsxJBIvIO3d9iT3cVBsl29IwSLeJ1GUSkp1g9Jt5ieFFAEkOQp6JYmFdGp7Oea1Z/suxf+H5/lHRtW3qp1xQLMxzy4vjhNy+k8fqJIuR/UP1XgVNFoBQArCnPvJNB+ipsqEbvUKS/+rwpAUJM9eMl6HYBZxiZTsXO6JVPWCFl1fCFhWml7sg2ot51SbYIaYgPSoibEQ7tuHB3hlQdGaxJ/0gb8d9OHJlrHWeK//OdCYxakvGsII4YbrF5S+PRP93Gg46Qgxsj2n/DyokknmxF2ppz4kiWApdk8rKe3vVlRE6u3sEtoS952vn6dI/EGrnmvW5bwx0ZQJ20ktDNtM/UZtlb70lCUWc0MvhLssQ3bW9Mu4doCNsHuB2LcKoVVsK75AgtwISMbyYGO8RQFK1ATPSwomtSUuxEx1B1sAXSF63pG3H+E8kN0SytqErqgWi2uwgHLFHotO0mWEPE5lS6lIfoLLAS1tofm4JPwb+27yCg8YzEyWhkJjGiJmeiQXa3rrv0ISltQMl6WVckCmF827pbYL1AjHkV3tqK5HXgto60MT52pkQf55MvobCfNcy+QShJxz7uFRrQta7lgIks6Kq4oMNZl1xLxwpKu8tODaYtok/U6IEBtlc401pzisFtx+1ZVfl9ig06vxGC2tBfN5kBCAb31wic0LNqio+SzMse/aPIrEXu6FpCh8nfissSKayoteEefY+Ew99s7vMBSms/pGGJm4Q5b8bkFVOy0QS3VyVvQ2v66+qterspEMAzPO/yhQ8btc+nlDPTTkXtQ4M04ETKCtEeyFd9ljbJL1TgSqX4F5DhjbiJntWOTh0q2GKhEvhyKYMLKGOieodj3wmeM5Wvl/kOsoJ0TWQG89vMHvFVT976jmv9+h/NnEdaZHjyNH1IukmvKvLUEeN7RIf6zQ/q9iDcWRhhObholpGNsU0nHAdoOn2URCnf/szpwgktee/068N2iqmXfuPiMnxfT9RsEAkOeX2RxdCpF0QGCvK4SdeTAPEuEJKZwk1h3xbACmwgFUFnKghuEb8qOlzTvK/4UsGEOY0PK8YsqUGzct/ycm8lZL1wyZrMlp2rlyB+IJCqHLnd2a98LlwnvzFVUEShLySMhzb7tyEh9S8TOQ7VPAvr+vkoW9YwkCpOZnkVebQBBggEGKunEpa7HeacF9KIwMAN3kY+To/btIPpGnPZvGgHENLeR+diLQYxugJZedrRNRMeYNA8GVh6+tNnwySaJV+4TWos/nq73xGZs0WzMoe+7kTZko2rkLi+L49JMUWZRtzkS3AoYopSmg7/CkgQaOcFMbZv8RN2AORUxon0tqskB8zKLQb09DKBMt0zqKR+YKI10HLYRoJkPFlQyaYcCkhE7d7xClKR4w/fZ9YhwWPEt5fnSrzFszpwwdyJEPEvLc5ZSc2jdcqXUuzHboXVC3Pv37czVMUcbjhSfLw+dLxIKEWLkNaD8cfEX7CzDmTOa2ITOOMcdjcCCuxa6Jc4XZNoAUP1A1+6LWdKBZM8n89KPSch24IB4aIyZYivaLXxkXnMGwWb8LZf0UekZ1jFZqam3uT86XL9JUgCTb74ZE4bpa5657AWOuyNwAP6JJNAMNblwfB/9hn6eSTuCBZPSCWwF/IPwv1xzVe7sAZCwPIDL+AiYx0e5zEytPMioH2gwYThWhL+OSJWQZ02FT3amd9HwX/hDzaOgc6rk+NOVGBeusxFV6BCNc2WJAZJECD4qoSLCH4noSqep29+bhx9fagjrGV8buL3VeH45i/qAAZjwuVap/BSlpD+WIfFDR/tWvpqUn3g0hFIUVJgZ7uT/nB24JF3aZ4hNtgUqQ0rOB2QcD7k23wrTDp71vLDHXDMVhsnpxdIkmvPHUWAJZOKGLDJNqRrdS9xsaBs0hYhQM4CNDZ4cJKaI0+z/XYbxcMzQLC+KDLwJU6FUnEAQC+MftM3ygJo1mNbM9QHFEO5T1n7282ZDJBxhfQrE0NC+EaDf18h8c3VQPObBJewl1FuzbE5KnvbgLsFpLaQChQYwwn6xTJHNhTLcOz3naTsLL106IL2v9egUKuB71xAvDBy38e5vOEnePc3tAOQfvb/tSYtLkF3a2z8eio92QGQIDQ4qoMFYNIOs8U6Jaq83Df/KWNr+KSiWpRnqRDKuxCMMCU/Mm1ACFlqKyWPPzYsbcn0Zc8+e0x0SmJfCxLFkZQiiCh9jhJsVvt0IrOqVeXXb2I0F7IWQjP1zYfJRpIc4oZaWvJpGFsmPG/7RbzG+PJBsclZxkwew0dK+BcX8KiEfrF8jYQUajf41uqRx/oZHoPFfc0H2nAzFS5ueWOwGpcRxbyNAuOn911Bcy0Sa3ixOImBCp0EhXESy2t3eMr+c/9o98hXlxag9JViGusJ2NL9HI6vMvmZ9Z+72tUZCgJ+Qamu3ztNLc/ikDOGUeKh3s6ADhhEw2x4pPXobe96KUd/Va93t5FBFQhgcto2Dzq5pq0mVqB7a8JcDc7SbeX3Lgm/1NGesTlbcWrOyOC8077BwFAE66AcuEUM96g7Ef7LLZh4M3SceKJMQ0mhUz9Fh4agOtLaC7diU6s3tnAIFnyS6FyUMF7uEao8vG/Qf8QmLFjR8oN5HgrG00QPaEun7IZylN9mWLA5xLdN/fCEbLpm6nTa+e0orqWWItYUGV2ZfSI4waRakY/dO38NoDIecnXzm81FFXYDeXFc5aCvTdC9q0+BerwkxTn1vdM3ms2s04DECmtOpQopCWXtfnlqK/B4mS5GaamhiknzKz+FHd32txtpmrUehV8mQc6b8ATdZwWu59nAYwMp+z5WbViiqehWsmF6VkTxPIKay6BVU1V8jqGhIBrwN4fP4D7KFtDbHmt6lkc/4CzXfyoUGTVTyf3aPAByn8HRmxLChH8Qe32107O2RfUMkUZx47pKX40QCztra8uYOsmr8YZPPqNPqkAeD2Fr6ebr3eD3Umg2d8w2ZMvaeLugO/r24idKfcHn3uK6qhQOj6+vgoIhN4fa88jI4hSNYi29Hz+daKyv13B3ma8JU2VeYq6bZB8JO/7QU/aRu8wgjapc04E39OVzK1UeUeWnHLegE/Idj88R8/L9hkt05uZxZtELoWo9z21ZQfacvpplO+vsxjjmDBXdi8Dxyuj4/t0YrbgRi3PMpT3nhVylr6halJkbGdR4gXhR18Ji+zqnU2C5AWExbKZmK7i9yAd+Dj6u71E3dMuMs9A==
Variant 3
DifficultyLevel
565
Question
Rhonda earns $25 per week as a guitar teacher, and $35 per week mowing lawns.
If she saves 32 of her income each week, how many weeks will it take her to save $1800?
Worked Solution
|
|
Income per week |
= 25 + 35 |
|
= $60 |
|
|
Savings per week |
= 32 × 60 |
|
= $40 |
|
|
∴ Weeks to save |
= 401800 |
|
= 45 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
wage1 | |
job1 | |
wage2 | |
job2 | |
frac2 | |
savings1 | |
income | |
savings2 | |
frac1 | |
correctAnswer | |
Answers
U2FsdGVkX19OwRLKGjRd7tG9BieOyD/ugWLi/Xht0+QK/qatnCSE4sImveosbk7tGF7R3PBs2jXFxzu2FWQxtlGdt1a0dnIjrFIhIw7KzyY7GEQj81kky1lbiHN2B6xKgKfrs4w3F7oTVA5iFjLMPJJJfDwIq5HXnRLOki8y1BWtUFnf++11MlrebHT02NsiBrXVUMPLKWP5W+Ddirk4lntQFj/BQMvLKsamni7Bbzg8RvkO+QmWFG1SL0mTgdH9hKwbdL6apsTwRoCnx4jlAnSHoy5XisnotyeFlBphbo1b0p6iyMBB1bwpqUhFw8EnDH2mYWnF7vSM2V/dz4z3aEjDRn5/soDybAS6GZTTw1/6SFo/9kiYrz+MYs/C9gA4J8xVAqSk53wKioIhNTIPBxdQDWQfmIOjXnlC22epB4QrNpH/QkpCpMH2PPIwSW46hS/e34BZC9zJMjgr6Tpzeklqy1NJj5t/IDqPevpYPw3APmvAL9/3I++r1RAl8aAdivr2TaQHDFzkRXsSOIqrTqlJ0NgALYPwBIWeL/xhKeT5bNvZYPVs/T6EhwkcVTsNjWhqxGdqsp/mHToof1650CYlipRrc+B3QOwn7MPfJup4cdTmsbBA+1+lzm949WztTGL9jMOI9Ly0xLr3hoYPUgjm0Rc9AkX8QXdePe8nvqfa5s3PbaJznlrXtlJg8OgjTb4gPGEVrRH/necja7ZJLsOgYrao6rpCWfnxzjkT/VuqJPa0O4CnVNgUB68iYk2Qz3x3XZL6YQUnPtusu3ePNjFntYHuPgr396jyqkVMm4GqsECXLLneaQMD7xH7NILB+0Y4vo94aP9gBVDZa/bgfo+pyVWStGfNQTxDyHlSPXeziS3An54ZroukOiO/LFPZv1dVHmcdEeaM1ieioHw4DjJWbjtpf+Oi2tdPWot9tt95VjQ3gKOecd4FNFSOnvs4dJDkiY38PpERZnzIyV2T7DhRMyPzwUCz9yai5TONv3HoyP7F00mSO/FNEyrwVveAtCTeibhRdpopSAlMZak3U/89dcUgLtzbyIhuaRzgWZbVEcl1u2xAGt+Z8mo6orwklhi4YQ6jy5f6Y7ahkbqaCAS0bgy8y+pfd3GfIphzog09ymWrnerPolvOrSTuiYH2TQ3uvNIV2HWGYaEmZ7xYRHs71YGd/QWVkPs0LcP72/wNibTqSr22JGEcibfeo0Pbwf569qfSINZlVUKA4cAovZ2kOPzm9TaR9DdXmvZNugMpkFOXOgvUTn+Rthlc6yMaGe8dGH8M6x333ybP9kRv35lW9V+9y4aVe1eESIyfn76Y/8eBMJaYJr24A+2tQFG4eJmj0kV18FWU3l1oVbR6Kue8QF1S1p/P8gAjGuzQm6aEIFUmZGj1dqbRr9/U7MyB/JIPcS8PdTOcgV6pC9ec2BfNtZjjVf3vgnhI/mDUfccTWOW7IeXguIhsotM4KR57xVpdwFQEP50DeAiFDbdpa2XSvVtxVkC+HYU5OGRq3Pp1EROfUOVHR7mC1q/Szv4wc0gsOgqxnPZ7nQCLRY+gLdmPejQrMXaAXhpVVkqXGFufYInicoKUd498pI6Epv9MY7+dOGflqUf1nRlleRcwVbX/VxmrxLEg/AOaG3Xie/mcEZsu5JW5Ry1SpneRkHj/Ezwq7bIdNq867eXY+7d/bTq9iYV/aJL3AhHjNdXkU8PpSXVVNqZWeeAKO52S7eepE1NbC5TczyPFK9mg6RmPhMOqMbhKXzjbevOG0caqashsd6D0R3WqebEN1rE6cGegZhTkQgvrPLwZpwjWjWZ41TcJeuBc6nYNwuwrbRgHVP7DmmjKBDyWD9jgnzl+Eljv7kwcMl4xDZmb4fGVHLag3BXnPgUYPq0g2/rKZXrUm2doBZYf14USZgh5BxPRxHeNO2iEr3wsIHt+eFxO/GFoTIvND3M1B5zHP4FKlnxi1oxajOAESgyjRCMPsD7zsTd3zDVWVAPqsuSfg0KDPEJD2hpdSZCOozGU2RBKeZp749vY434U3v00otJWwzjOIy081HhXAbf8lPcxwyBEJsSapKCpZP3q0fvllG76+phIbjyvw98Xr/z0sMzmafjcxC5T4+R3Qa0qT7HOyvljN5F3oXI1VgCTWDfLyZYLnhNmg+QElzh1ai/SRN5goen3BMbEuU2HtMRTxO8/OF7g5s8KWDz+i5UuYle4RUpoC4a2cvBwznoJ6zoiBQfx3eNwVzShbzzfkakh6YqroQEGIwiKPk6z6Mvx/3dHfeTXPHIn46DVIRQ14NaJ9p/+hY2IpawbCqOB//ExVpdQnUqBEvwKX8gIm9L/S2hrM6nV4Fn9jEJLxa6dyuso1aMLdikE1D/QuLfvyRaHD/b4tVZZqFBNtKdwsO5f+NV7n01g5GLdqGOFNYTArtfNUAOoBDsumCdKI3Rb4DAYMWd68XyKugK96+jjKqkoMC7/0lA0UtCid65Sk8y9r+8KS/5GIHsP6YH1bJ3oA0Jp3VVZ5ycF44nD4occwoePDBVZAGWJLVoKUlB1EfvpeH0fsIG3Gj/PeMbK5c1y4IothZj6YwLGKcE+J+NvikIx+gqIEkjnOorPiVj1KOdu+vFTVUfaHzUvOiO/gwD4ZgzraG5EjZzN6yR2rWIm/JLk7vkXpcp0Ne6Jt8rFAX/hIfco4itIrnbDTxorkWtMfjDf3S1GaT0AHK8wBjTNlyzWHDbSzQY44TjPEXmyzwtDyM0DY46/oG/a2aQygy1qoJiQ4kvE3qgBUdO6o4ZnFFL305QPyEzogMpE84hdPuOJOU6KGWHxtNXZGENawJEicgp3UgyfsfA/Faa2XcbmVKcuTz1pd57y9cqZ32QDR2ko/R+zsGYhztoBivZQd0kDq170AnYiHvwSUjawT2I48u595ODy4PeqZDTO+NXEy7FBnWHSsacqDI+uiSJOSOImKiuRNqFT3+BXifdT9xcXeGo8sfBnQWF1QSuVtRcTPMia08mV0kYEb3zSpVV+7gBY46osC4kAPIIdkayS1AgEFlfllI89znXv/uzC0g92rTl6tfeoMhmLYg/igcP4bp6t6wKXFTKY5GiCnCI2jfKSCwgkgObUnhAgQ1x/HL9DMDmbhge0uQHjz6+kLaVubXJVWATUa2scY6nhAjZa4PVZAqEG79d+B5LwbTqhPZ8DWwRjROTiq6iVmH0eLTmD5ht4+ZwewkMMWSfxLyFo8kh1WNO64I3lgWHe3aE89+jR8RJ9iDe5DUVTAWgaLUKSyxsoocpDLJ1BVNjdf01H2Opwh66vONk9Z7+o/abJKyayG0vMFjpXGo6JAEzcbljPcp8OUIFkquhNNQhGQyw9ySqTu+xdEDlVA4fRZHmSy5kq2v3s+2aHu13nbHt4+3BAQ5bGI9wCqmwXTxzOVrG8D4Go+aKhrrcrx5YWkUyAHcepaX6YOZprPWI69cDv/9boHfVBbmVY/Cd4NIu7oZZWV0SMzDQdsPVYcmOO4rMgglTQg8jqSbEIi7JjHVeyXSOkKQzFlt64RMgaoIPBi9FIbRwKLGGO8h2ZjPME7LSNAIdbrZd5wo+F/BitI1dY4kWdqDPOpXldQsb+NMlYcnWZFExYMgH66BUeAsHWIOzymcCTMT8+nRsb1bDdJaPeRtrTR6SjFiG4MmxJyBU9Mn197QCs4mjl5vR2XJZ5xL118BSDb8hpftDiHsAvnWzk6Fk0xmdyOH3eUDab36qQkI5kmGeNpSEvrYZIjcA+TZoIFh2zRQv0Y3QeStqnN6sn5AmBpsp2bPbabs48sGeIyBcOZcyZZ702qBwMoR8jV5v1FLM52hY7ppqTfvHsoupdRDHzJus/yns0HRhWK5lpBorGgqpJhp9N8Ge5NQdQbpYbdKd574gtxq+zUwGgF7iCWJePklGwJIBsD1+pw7thMr8KVF+uWD60QGF7L/gMKbn4xCxUL1ls1MZfu4TEIkqt1/JRAqr8BhICW6qDIfmkncElyJ5g/h6FA2285AgvHXHTpKXGVU0TB1Vfqniw6vmYGBE7FiM/b/mlytjGKtMjVLXUIKjaCL/1ULD0rm7158/Umw/bJfkZzpxyZ40S3FN22Jci9IuCCERIChNxFo+H4G+d4om9Yi9Y0LZ/BwVstIwx42WMsnUEuQqnG7hlKPc9K+zi+5MygGL21HDLzmXV73LbhbOqff0qv7FesqgHMMhqc8HDOSRz4LEHvbQ2im+elsrPwygZtXQHbaDF7946i0cwz0P2ol0NMlX4gA7egHVkl9r2nHqbAKO+i//YqgxpsOC51KPuYTeO2KixiYFxshN1xJic/DCAML3oEbMQtVqQPpJOJqzJjlBtItT7BS+WxhF5Mxdzefoj3SrC2H6fZdo1qhFJp+kMBbtYfZwn56/zImN17vAJU02iQm1NWHdsUd9UDjKQ32+TTVaFujkaBs32hbyzUVnlN+GdqKc1FDMrdW33gM5jrQoZh+uKK1baRzvU3WirI0pjl2AqyVR7PXKT81jCwISK3dSXXT7/KuJMfyPFjBpOhBGStzK56Q5sNq/YE1JuXiZXmvd2sLC2tgI+apI20B7bPSDcOmYuT3By8n8gfWlZdomhMZ280rZoXiI7snYsfEz3SUblIprGrKdLH7Jfe53/londrC751zMct0rcJq3eAm4W0oOZyWmY/oUnWfr+pJSnK7AVoieTNyuOGP7QQxe0llz2MbFSitNDrFG8fvUP1wF5V3HPM4GBQshn2Ife0MGh9KPCQEEFfTTSqNr7ml6lL1ZvkWy0Fu02oaFyvc1zm6tn0SevrLDFeXj03YIDlLBE2o4zM7Grpt86uA9DNEFd9atC8vVWP/rZccnw20q9p0sCjRphLewL6be0KpmGxOYxbc5HxXGGXafr9YuRGWG3Qdovu4xp1w7jgqAtJhpL8Qb3OmuHj8ZB76d2zIIrMKK2La2j0r0AdfTURPLB+2pxDIpsuuGZAFYGtV+IOZdBvizWMqwwzwhbE3AIjeSPSlEP5bFlBUAdVb2P43WkuDrBE3bN+TpazmVqxKLYdaSFp0btisUsumEoVOFVGZdqhxMao3WlilbVd9Wh89Z/RSLbtOLUng9YF95m2UhUnxCkfmEfENUDso0Uf2u8RPeyypxEmQ70nFm1KYOLF4j6KvapBi+0PxHtfDS8hM4FF4Wtt/702ufxFStKuriEkrt5Ke8IJHq9QHvD8uqNEyQx0GrI5wuURvjE4u+r080jROuc7dNxaBn4lpNOvv+b2lh9VwtS2Mh/TUPDUTyF6bZswT15Y1Bdzsr+rN59TcGdmhygNw42ZGYGVxdXf4LJAIGrC9Lcnl4tW24Zc2IIcNB5YEQHBgbofP75C38xsmcRlvZuRefk2hcVua8r34gwH4s+MqRSsxKnBXnUudaVk55jR9lKHRjxWCPnTQJekfBNABrTT8/ebphkyJRJ6DchfV4wNM/QPXBxdwFhVGkRrcGgBPcs70FmFBZRQdwBWHvFrilrYSqvIJ5jCsFnESrdgg6EZ6geE8blZUfpGWFTynUmfjT/xlxMvhAPpn0A5YPRML+Cv2xs5paSYVzI8xth+wUb4NCQFQLhJrhw2U2cNeZwWtNE2GsyyzIZ8zl0VmmsYEGIL78G8z3c8VCebQcivdgfegKEk7NBGWOpVdIi0Y2g/jVKwJ96xgEbEGJUFCB63LZgTRW79eJ5xItdmVOuYwp8pCygYDZcDNl7FbtIBofWOsAZbG9rw8j6OZ9V0m7oZsg0W/eie19D2gqhR2mNGMHXzCh/Tb7MfqLXlkdoHW9k6NboBbtLK0nifNkEd7inVLNrsbjwDo6n5p+GODpjp+vWWsNUDwgEqOzyvAPBQQn5s5ID4mYPaSAJwTBuMLcyk5hQjv+1YgLztyInmEab8o6TH1OZ2hopEqkvjfGgAKtF0YrUVr9+mqv6DEDRAmPmsqeb1fdhPjYE9spYvPT5jWDC6jufPPsSbriyPVGgU0Jg17hEsz+UFq5wYX0K1mN5KIe9MAyy6XcFIQLubH5GTFCACr7yekBw8sF4/TtrS/oJ7CWddQahKPOGA0VYB8wWXvjL7BsCeSJGoXR4tUjRyarLKtNFrkS6h3vBUWJZLrvn8EygBB+FwiZ4JHgojr7s3/+ZEh7p0hewatDcsZJSqHBg8aQLp/wzLLWGDqXObRPuatgok1MUqx4ezW+i320XKHjWnEujd8IMbwmk3akh1l5Dl6tqYSk/T94dStS7TxYWGY7blH01bmxrxM5nImZAtJv0UVj4WZ3Rv6iM5q6ZfdP8GrUIBE21NTcsXReYSvMo4udrlFezfVb/HoIHr/8UUpfdFEW4OLhYsIfZSigykHV/9qXqW5yw5O0onqYkmDkiKRwcwLBYboukhtZr2fGYO3XiOdCsfmlCCWstlAPk/Pl9TyPnOyGv4Ycy14bmk+dHFz3boUUa+yGieOEFhzgpuxuIzVCUqBmxofaOeTGh5rT9XbT8flDRzdgmupaLztNaE1E4DW6ijWgaXSfuA6cyBiIuEi0EdwV6VFyPYuF9Dlbdqkg9y8wR1CUx4x7BZO5dNevtceeDUhPifI1f8FaTCIHNhSmskPJ5g17Mh5gdFFbmOJLSWsZLhywkqSYMDqeYxJXJhshCqKjbDSZfFGPEKsobDpYlBj5KCNKu3IzQAo06dL1qKyHoqk5lyfB0qC0BDWqL554Z+jN7iryUlsPOExFvbCHafXAuAyZL8495T53ZsCjASko73GDcz9fFqwZNQzmfcyvdqA1xFicmhyxLp5D+DaPT+JXbezZIGag73PcSI+ew+/VIU3uZb5dvDycMI5RGVIjFoOepGgG5lqi2K7w7wctG2YkTnuPS6zT1aRbU7n4fR88lXahLOq+/xhkQ0nll64/dxORTokD82Vudivd4TDz9kefioRkhVlFCuht0c8YUGvggmUFz3m4frtAwiJriJGrr7sFr2fFw5TNScrYP766Y8x+hZMg7UShA0L8k/VqU7WtZkJB8MaAfhb/Elb+biSxOOblbjFWdFcGez+p3427yNSF5FOssPR2ZBWyVbn08Ep5cjKfiRpCMZkWwufd2b6b1Lgd06hQ2pLfFJyCFRFEC4BEZ/N29/tyIacKJoGYAdF6kwCN6jQOhrerT7pTylIBouMmW6HMAkngDPS/D0/bxTG4hUc4DIku3D78Y2KHUR+lWT7r7ffLVOC7nqJzJohSk9BqUb94zCQ7juXkyesC5anPlIIbxmV8s+v3bntJzQy7NrWlAL9w40Sa47ED0vQqfrjgtcqCXALDySR6AYY0fYnGq1dXzcCGMRuX6ZCzXwixPNMGS74MnwuJlUpVY5GVtrnd+rRzTsiqYKiHQ5zHeUP36OzC0I9WzymzJiLOOr5FaB1RJ9m8J8OI4CX6WSXyGLOyrfg8ddSPScTCA7CPznp8D+0mi464jMXnxyKS3XKwtpzhafRn5iaLdrNeODOI2f5fpFU6QT085J6PlWcvZdJCpElwQYco8uyfGPPYkKF24fBxJUYYUqIfL6+I4rRLzCxq3kO/hjk2bHLhnvcElm5uf3EtKrXe9sy8+5P4BpNBjbTtrFo4TZnLRus+42RSkUsSl7lU+SdZn2fxC1MFFFnVlnp20upLnuhxh+wnvtg11f6CsU1b6uJ/t4UPVr2LjY4TZ71Oga3HlH4KOhQhbhBdjafSAViahq0XQKQ5Vem//IaqNwBUXnVDSe9v2bcEjxeBF5M98NkqPE0yqww6matSoeidf+lhU4ZJmqy36uehCn+hfDGY1/8lnAv9N5yd8RXHLAEAoEamAOaJVzxzfAelL9A5E3G6vlk8XjcNb2CdX6SiPW7nIWgHJo6FIlu6oAnW3Tang9YI2T7Xjn38wsn2W0hrxd6PCrwroD0f/FH1mbO0f3flXUhz9ObiVjkQY1QGJJl8wxCDbGlE9tsidUtKWBhubbgq77/ghKx/KWOqDWgmNkJgc3EGpqWyJhw8038o4f16QrDrlCvHqDh/ADja86B88B3P3BwDkBStKTt8MlEDBzrU++D99fB5cNe1tuqW50KQp751WPnYwdTxejWjEx88Ffeb54i29tzyHKI79PexZsk6fZQOj5TIUfQ6qYXXtZOisFxhXvypU3mBVmsseqa+m/eXHnpcPiHU+TtS1WHnFYrG2Qm+YwUHL8veGDIbKU3Epg+dvJCDTBytvVtMrXIbxEv+q/BlozUilwJRERlbd2MFoGCkjk6gDMAnla0AcEsAl8pST3SdbtUK3C35c6tUKeik7zauJC7H50VsdkiI23zxB9HUUjuVjRlhnHgJ8YDl/WGt2sG8+oOLeiGzdeaicP9A86LSBnhGJkZQEz/qsoyvfqDHEaYeCj9Y7r+J9GdMtI8BITvK31PFhG8/xrEiNZFYLTqS9cMNg4nKekytsF2TYZ+1NtyFMGtiQOqLq8OI+LxbTXoWYZOQNt8eKzVjFVQuv4EWRDWCd99q+1R3RJxLPWkCtvQoQQT13lvajAPaueqWfnCn0+k9vsFkucUA5DAqaZk9N9i+LhAZpWBBwdqmMravlzB4mWOvt0GdBmAeXQVXjxAD94USn7XqhUpphuEVwElRx6wf7gFoqMR1liRGjjIvZ1gqAIk0fctMPijTi2sinkrVNcIyQnqncxHKa47sUz1E4BPKzfUlUwbv6VwQTTaiOKXXRINs/UGssMQ63hji7NeV539vIWAvXrX044a1lmgRhAJC4sokiti1FfnG98eU7yN14m6NoxN136fPrh89i6e4+glR8Kiew1EHbS1uIqow4yS1NSgkBEeeMReKVsWp0qOK+2l4Ak6iHJOLGOtVc21aqXeVyuuPSoH1FNx7R6x0pJKmyK3b0mhc1YxhB+4z1VeJhf8xWzbVdUM49jBE+uu0P+xNGukhuteniNoTHK2SLSk5yi/ch/9vbAr9OruHVIaAtn7bZxy8f8vbHtFmP+muu1CICzSMt4JTBOT/is39s/wWFdkoeQHTPiwIro1OFKoiYywzITsxe5DE775AtIOgQF/WvssGFY/DiUDGBoNpHi6ho/oBwSYlmL3aCbQbE8JqqhHJfLeObcOEgeCxbAGIEv8l1hXqi02h7nGf+4iffGDqIds4BL5c3IjIR6g==
Variant 4
DifficultyLevel
561
Question
Diana earns $90 per week as a sales assistant, and $30 per week teaching singing.
If she saves 31 of her income each week, how many weeks will it take her to save $2600?
Worked Solution
|
|
Income per week |
= 90 + 30 |
|
= $120 |
|
|
Savings per week |
= 31 × 120 |
|
= $40 |
|
|
∴ Weeks to save |
= 402600 |
|
= 65 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
wage1 | |
job1 | |
wage2 | |
job2 | |
frac2 | |
savings1 | |
income | |
savings2 | |
frac1 | |
correctAnswer | |
Answers