Algebra, NAPX-H4-CA29
U2FsdGVkX18QfVMKYayg6uXuaikEZu7c8ksaqaISdj9bnTCBErV+F2GpNwu06v5EtE/aw5cvsC8oLC90rN+3zWQoGgyV9KRX/8Fo9ConkyYC0/lIONYkPPqRaBwAcy0DssuBIyY5ghVbkVnU84G7tlMORrqevpUp4Tb57QQY6zoQ9AVmWWVmrjCaigYxvrn7xqHkOcC36Lt0907Gf57d4Wtaii9WL8Tnvw94tJQ/QVbquwol1EwMgjLnAuCXjHGnoaEdKaHBf391RJuroXYMKvcMl5B8PKyg1v+rhnalDNNYSbGm9TFROgH67IN/leDUZt9jvzWk97iYW7h/FcnXqy2OMXryQyL5eKEn4vcdatdHBKKa9Dsbt3pXyDW5z11rl8l8FgHYErGyggPkX+KP7I1i03MSv+7c9GgsyCCTgMS5OflNqGSUs3l7B1CTYykCy8aaYVF2ZiuzGpDccSSC9+JSsUvhTVCMlct2pjSxGkUmKiEtzML6DfmkKqAAl/Jq+FgCsWa6/63Nv8s0XTTs/YVD9Ml+8aexUWN1DfFbEFqSJ7gJFhEPyvz8FghYwnEuI+v8Iu4nnvjikRfU/AhGbXPplPCBrQKDXfZM7uJjIMJI/seST8xlGFs5yJLjNsF4g8ktEpBxR5GbC6lMH4CSFuNYFeJtjxWL1gP64PFo9d9dFUC9NfRGlMlfCON4hdM8pGziYOW6uf7pdl2ahNtFm+8ITFy7Ow6Hg14BurAQn3NTr+ORYmh3lptDXLB7v/HNV1NAUgzVt2W6ZEEoU6x1Ph/DFzA3mjIq6VBQaCiZHdyPSc1PhuqBh7q/XBK5kUp+R8ne9AkLhYcRFp2sKW/GxhAU01xqj9PbuvdIHxG9C0wvXnhcNBocCuvHvymu5eKzusveCQMldIWHHZtuYiNobbP51Cr9xHEZYib8da52jhnimaph7oLxM7s50DRqRpGG7hIwonk16toFcv544ApBrcGBWgj2XmPDszvfm8eG2t9UMP+46ivo6hIPsQ9YnzFUv1BW5UdSYdxtiUuQPkpgQKaB6pQ7sU0dKujzeU00jcQ70G6mWSCGq9/qqYIo8C0kLfAaKYjWmU7s7OaLwQjEScA7vDMBw4pTTh9qweXVGvtIkpDP3XETYRy+QS5AeOv1+IUoiSa5bWYAFY298y4+vNvzjtTY7chJPVRi831ggV32zIDR+hSXDmqhEWCphV2yP3ReG+45JNlGRlYcW7NvM/6SQDW5DCqMZcz3KcDkODWgRbwCNU274zhbDORepsArK+NMHZqWofPKfgLrPMQFIjiY4gnkbiT8iTIZ/kNTBg4MYSIa0UpHv3thd4B2g4MrGrmhnugKpoHCB52ZuiArytQxAOVb0O1yKVTewdv7flu2F9tsEmX/hXlPJcuw/JVRhlj+B78c0uJ2/gFneKR4JISer4biKwGREDlcGeNP6fSee3LoAKxicPKw/AqFA2SJajG85R0HDBSk3iX2DYoAy6s9cvTdTLGCKxO+CjLhXayDVeunO0UeJoPQGyN+62+NlJ79BQzu+Csx7JYHkzUfR2VGcIQDyWzKG3rGVOm1JirgAXbMhjCxEUdEBx/eA5MzIN+c9pveauUo2tBNXu9Ojf/TlUW6bet8mQfWMMMuTxtFlxsZkuMhXqfZFhqZm8tAz94VWg3r7POqbSFceNQElwQpaTtExTzD6kCV+GHqPNT1oFi4mvCGBq07ac8hh36OoVPCEFdz1BY5xhmoldqPGS4u22CoWxbhaq5HxL1TF8JF0HY9i2ln7VjsS+rjamW5UgQp4SskmvqnMiufVtPnXlx2Vt5cj0pRdRyZa6LJja67zxsUoe6doYjA5WntpVNQgyshEWcvyWiEVRUtVU/rb8sDLZ89KzpTwIIzBo9+z1mWNfX2ygFeG8cvlR0L9C/TE82R/p2AwWIJv4IUlGmMWmafQt6I8oQWiX22H3+lT11SHRwWiShJi0RMnWjleNgM/ZAzdW2BHGJF6sYjxJisYJbqbEcpOrpYSppHe6O4BDF8C77BjtQwUFbKvH8FgSlyVhrT+4plUH4wCfbO8DM9ruoZltOibOnsKhxhyCiiBJ3b9o2w3VEF+mBr3d7YicSbpVcmFJ4RieIsioyz3GDyIXIQBOQX/jjG9T9dgw7YcFjUFQc7wxllPMPGGjjiGqCRBFOGvRlYiHuDosZYkkFv5gwsbbWqvyXDVEMJ5ZYumInkW8aYQ+HMN7gBvsOoGyaU3bJNSWdjjr+HvNmEf4rPeVbXTX8Crb/HLIzWVwsVLTAQL3r9uplVIqqG7st24ROj7ANK+TiCqIlduLrMTdcfDXEDLFg2iUnJoVl5TTiqu28nRJoY7dhTTPXf2s+Qb9CHyCvLOtL7giqCJancSljbvJ5SMYmh06EzPGs37Mop7zcIKk0nzBM2wlab3MK+GJ0uIcqrwVBY7xEBFprRY26EGOAVA+UKArENhTc6BTsJVUr2AcRClHq1zfgQcHGVyFFHKN7nYH7VN0X1yhpMxpdox53O8qrLKtrMMQrqZbsdnPd7KMfdVRaUVtVZQXPT8dccIWx20ZI6Zovex9S5qcYA6K1wvHxuGyrnTWg5t/ka05AoWHAr+faH8iXdbsB520WtKvRJjSOXVCrPZGBgHBtWC9zQWIOMtFZSgiB7dSK9QZmAIhoy3V2u80Hj/RN6VBQ9xxzQVbDzfz2Ev/JL1dyis14c5gAEydHuwiqt5srGxYNez5fZR3JOccsE6MUf/EvgaMLSLtAgBKUQ2ceYJu5oMmdBbJd0lnu5GXC7mwT1BN2nP7zSS1kIlL8dHmgDeDFNjb7vwZMlhvGZrkhLCOr5S1K3tn7wmm24k1eVTG4W/qsP1ylCVg7ji2QD6fvXEumWn3QE9p1nrXHATw6KpmI0vZDRjpTgbaaXDIAi6ps2pYkcHvLuVaL6l8whyQHUuoCMeKfUGasNQLZcYi9gxs1Ou73WcuyfFdEu+PRvcn4o1bCcjA4fx6vU9NQAckqtZ89oPvq6EjxzxYUh8HCkyHq4dpAusTtOtK1N6aVuZghXrGP5tO8J3I+exIDf9gcJeUdOT0jegyLPZgrlGAPhvLCmQHEXj8qDjFJ56iyE0XT3V+5JZkDzRvQlemRuA5tB00tIk6HZ2+yImRs0FWJDo7EVVKjCY2XPqSDWFcGqhJL99UZ9EjsEqWReT5qQSwKJF7pz5y6tUdjZVdx0VFReiZv+Zv/3rmnOeNdffrXq2K87JzaBi8aVghLLSysybOIIN76Pm6d10Dtbtml19liGgxkB47FtHMJRQ9/E7fM118lYtpgXjCCMVA03vojrb6qsDJZu7jaVd9Ei8i194qhscD/l8fn1/AsRbACdmDRHiSNkmw4VfkP9+GjOWtpeV+XmZNqnt5TbK0BbeYIvnxod9PtdCB8kAUO0ILOPrI7HJVSBN+zMuN/cXJwzPlMQbsIzb/jc9qGnNK8wa+vTYrq/Fqw/ywVDRPQXzfBoGWAqVt75KyNFp4Bv0ZATLLzsvCNic6hFxStH9iYPFIOtRG878Cy+5A0kAvuUaeLxi6Qiy/5UuXghWw6tuJxhOTmXvFSr6vFWsyQiDiqMsL2SiIf3sr90xisKOia0n2Wu4RtGHKTo+XxulRmfPrdlK9+HDPFSAC06FI4/JMMz8L6etKskU9fAj1QAf+ajRPmzJ5/iJkPFjSCu9DA6vbkbfrzfHrl7+IjzdUuFXpPziNL+I321g2WN0ZN6Kv4rVmpuijEIOEYKbVBlLn71WY9rZ+7813yqDpG2RSGBXSI8U1FnOowZxkBXeh2o7PO212Ec9LpxGWwoI1Jb/pR3XniNOpoKaIwf8OfaP8DXrYnvHoDg+JPJUpBERi46qF4Q77eMDLooLmDpusZTLzrp9AI6bBYcyWgeSOyeR6OA0qxED8RjmKvjgcEmGFWhwMwVTycXGRjTgRFXBfK0o2TpFLY73u4+n00K5f6JRMxmV5aPGfTBVknTGC3LmezUvDhRW9R+mx/f6Sycj42l2PDfPji3r5wBXy1Lwglu1u8Ka6spxFJ21/ipnFeBEL5wLt/HGlakGl987jVtS+xzr00rS8+nIlYgpMUQF577U+ehHCFzq3kPUMYBvx31cMoRauw38glWuXm+VKbCKvXVvt4zHUgbjQDMr7lNvR/zjnoVRrYhi04p20ayN+0MCPBEiM5IXr7cow1YgC2FU6754rs67jxAYSaIZxJrVLS6dDiUbNGucjV9qJ8XMTAXeW0TjZL8pBrK2qZJLkVpufj+f5Rub85GQLVA8aomPxxNmndzmbjcPzmvvfm4cVpwmm6KBL+jndkfXTyGsarsLzFTwODrfmwMmdTDP1NgvPcE7YeUOV5FngDKaYos3PF4zG7hwCuv8v/IhtI/kbMV8l3oPy4WWRwqHbpdkpohjmmYSuXDtP5CrzUZy7gHtZ+T8BMDoRJ4xA2obuxcc8XY/bOfReC012Im3Ef5z9Rz+HtqR5UlpjWf1c7j9D0FFeDiAQ+wnm7CdGWpVRj5fypy5lO87IAHMF8uUGe1uLo8QalYst+Dn0W5yp3JHoEInj3zoqVGb4kPgUGg7S+Zlq62STDP5KCj5x2LFH42oUW7s29hQEFbJfA8srQ/C8gMbnv/51tIYaRvDetMK8WrOn57r78eayBsgT4seTQ51+eEOxMmrkDvM9whsvizEZrIolMQl3LFLK8cFXVxX5oD/pXxAjIOJnAkSA9yk4lHXb7nBhxKCmX58KLkI2HSAPxdLLMCg/d1dcI7IEAgaoOVgXFb9q6HNT6b6y4K+qx5MC0ICG3uw95KCuZJP7mQqr8kDiz5y4OzS47J6rxli64qq7Eh8n8981YxKXWv2J3qTiEzuAR/0P3vShGXHwOaD5j348nC34WJwUz3YlXdXls21XDmFCfh3f/ghgAYidMk+af3454zQm6jR2uCQGyFxQvuwwHgJMQMlJ6EX3nUFMEi/278xYXXzGmBDKoLlTH4LtTZhafzZIyFHdiKbxxwoZAnkQ4WIfCUDr+38g0uPGeUg6jkelIuTyTNS1n3Qu4brNgbfgqCt++79U6L3sydUyEQOegJ1mRuJJq8nflugXGJA4NKgQ9xKT3f5DU0hnpP4ZkH4Q7msSRnaVz1uuC7J73jmLr784m4LSdBknjp3NOi1fym8J8nwwaft7MKQU5PmkLNiKsPhVndiSqWdqzuhtG2oDaKJMWXxD593gTIwJ1FCASKziQWqGyBr0/3PR0nWB/PzqdFL7RZVduCOBdUILhxmK21Smu+MKcIB8UqQct9KomzcwOC4NRik/lFMv4amJSfcpJvN/Xy2SlshX+0JfP5wBkL8i/h6xmqCpJv6OLO2fX+4OIzpg9DAKyfcA1+Pzr6rujvJtsoc+7GDHFbGJBnMkHZiN4o6OxdyYaeA5vpcVLHm8xGbJ+d9LVjj7mrCE4w+xvP+vFY1EiQDO90Ew8EZaLmgl0TKOBzPXX1N0Qf+4ze/rxouRllEzAYsqNwaS+wpHl5IH6LYnPPO4d3DVBjXqafOQiEbFd3NHP64sptBhe11tIBlZkcfimhwnhdRsJQkGtXT8LkdWwKPdUpIXKj454fpDBMZl9/ef7RCa0VD2v/CU6/zMVQA2DGDlyR18JOBQV9gtOaoAHnQeAewOSaQAfUthvpYFkoFK98fGlbKps2eInpiMEQxwDnI8Eq4VYJtb5sKShk+QJ+DofSh1cgScSBjqmRX4Kk27DLUC5sFBRNAnk8PI3DzwweZTmt0UcxiOREqHvD6YugmG6DNdhwh0fkZwPSuGR7+GyXNJSKOplntX9ZGSI1O+RO+hmEvU+luBb1imlA16NIvOCFS3tCtLf+owT19VKKyCO7B7CF74O9jZ5PPXyl/yoxaMs7tNjAzQ5toWjvgAFtxIvnXmai+OG49LbWBjmlx05qxMX7ShW0CoqoRSw4OKAkkvBfX16pCKHbShF8O2LVi9YpVST/txpCQWofu8zom+/uD83FJo/Dm43ZD1hW683+U0quHqdnS+bIHr9HRkeux/qzPmzrwzaYmXAC2vph1WCY0O9m0HKUWuzLBw6ZutkCCL/3pF2spQ0nxK8v4P+YbvySY7ORgmPqU9Px98bJUK/7krVWCBZ5meny3/wr7FcYvnyGR/0Djokwbecl2tJhvrGbDKAWnMiK0L7Sr5otmVSentp69rK5OqyFoaS+xtFVDjnbHQj8Vc21WPOgQPnuTPzyznKPeqmMf0693cBwGYZX5FB+AGBJ48v1e52Aob5M0y+z2iYR5GcgHVLJZKEDSV8XLXJxgptM7YCoXtIv14V+MaIu2Yre1UqdDgYMAJZaMZh9tjrBMYBQZOy7ob8vdODruNklxja1HlHOYQX4OyKFvm31YC6k9miTivS9d+AbAl1rv9wrKxH39vN4MhZwmkqFVlKCz/nK0xGHMrEWUaxajTL0LFUxOgfWe9IQNvaJw1hv315Oon1ApoZmLJB81CBXaFtAH4AQy8JFegafIZASPUmdHh8OfQJlYcWR56jURf7g1U0dzDbEUdCXKyTAUJfpyzGymwKgw6XPap2tOZJadldJcOKiaTQTvSrZeeVDwpccOhvn6wCzH7qi8meRR2WYyCtfR0TeCG763f/tNvDE26LuYz7hCVfjqN1Oz5q8Pvc1tyn39zfFLxjosfGfQoYWHkcdKCD3dVvtkYcdf6lyIkDW5QgoqGnxtmVbL9c82BNACVFnv0HIk2hwSPtUayC+AXP69poILIgSh2QsjIqMUOHXWLgsdzZEIZK5hDlHCsXzwlUYriawD2RMbYTJWdl/ca3nELthz7FeaUQDDeP21G4HXD32Afb8wo3dfliHFLIQp8318SCaKvbFMAJyxwmzZStSK9tqDiarionsNRnGRbjS2SBpmJKgQjnKTGimm49I+g4gbkKbck0NReLtuShg7PikBnl7vUlORTX4QAPMNLH7ft3V9ltZFcFkzpugDl16u72fJGoZ3ilWvEexgFxTmIurXG451hUA8kGTY2cW6vuKaU9flMBpQIJJqJbHrrDkiz3zzGi7tIflevX7Nzq/+KvSv1PoPot7jdTCLHW92e+jGTvuMbVePrj5wi0zdEXggDkVNL4bnMqs4CITGmVdAihCI8BF+QU9gfn6dPjyBgD5EawN+vhCDvUPbHfE5wAaznuoTT9a166i7FJUweOZddhMcRhr1YaDTHgzvxLkD8/nDR+fuX/ogAbr9IW4SW6VFbEGhQj32jyWkLxRKfrWc5zTSqJp8qdeuO1G7fbUw70EOOjXMIgtSc1cUI2skSvFKN1z0TuQMpMHTGH+l+31zdj8BOjy3CWyh88pm+UZbhWKuNppgQM8WgIf3RcIf80EXrpvZst7Y5CQLdM2TJARcX9HcnKjw4aZIVMiGMUnpzkZdqNX9947nNPRiWcAMm/19rBcAFdZDj2rhadDFTl6HPM1SLUXa9A5lgjstKCq6wp9RaEI5jhLGbS42Nu1PbILWg13hQVKnezAERdaKv9JnpgV2/igTzVeg0/F4PplEnmlJRFr08Iw+99ugojQ5qP1+fVBOmP74ZMcQbIx0iTPKMmsf5Zv8+YwY1eNZ4M3tGI4ARkm+rYiGTvT2ge3izqNeyhQKbkSLlJzq1EsNupfkWU8Q9Q1MVMfq5gF8cdol2wxTdn47kKCOMkN33inieJZwcEKsoQ7S/ioq4vgrFcAfOIDABaAxTjxuQslj/BqxxWrIa0uEAKyG0GDQ+7C9oRxysjUamKlxeY3jZ4EfCqS8QU8164FpN4U8lMHeuz3nizNdDCXkRqPhZb+EH54sc4w5yjdQUDXG4bBXWAzvKqIQowctBrwuqpjGyRwM5usRtYOInAuwQ5ERK5O196k6ljCn5boYK29RJTKooAqRoQESE+ZqAopJkC979FfrWT6hXpFmzgFtfRR5ktK7kSumOdoEt/cm8sAGpJWsboovF8o6+35fIplce8ssWU9yqx7LrtIVIXEGpMaSt0ry82pq6OVIB9Cfk+ym5yM8TrLF3BFhcTH6gJPphFPNeI+t1Iu+5Lz5BmdNRL//OVDFUWfcphyQLFuCTaiNtuax1gKg5pWAxjXW9opxv1VnZEEfNWL4cu3Gxi462WMOyYmUJ1uJQsF2B18aOL/+xdHPt6ag8xtHYrysjCyPIxJhbAQe+lmbTtxhQx6ntsPAjLl3X4Trwxlt6OGOZMM6AQa6FOMwpNHSipu63avW4YN5YPZpNqQEzqKetUaenwvDUSDbxiz3yGXGA7caY1ASWJm3D2yMlw7NGgKyby8R0wXu3q9F5oBS16nlkZ0aDwsaS8kGr/VQc0n0H75kKL6sp58LQlO3kxhjQV5HoBxrDIBAXNuenNVeBXQHTLinn0Tgx7m9Tz4IeOZp7pbJ2hygvYQiTfELrD+2TVn/5aHHTAXBWS4eP7hjy3xeRri4BdFyF5OXD8g07/igfCP2piHhLMD30TxPSXi57hG7NEDCtuX2xrvZTDK8+KUhsku38Z9L66OAE2asYfcw4QXOJZoHyRRChlcbEcOSkFA9lNT5FvU+Sk3PYJcqTy0COnfWx2keqf0LpJX1QlX7Zk9UMkjfnwTIOetJh2x30LN6U0Ar4f+GB5+n/t+hVpFjfINCZf8+jOOaeKtF1dDmqgSkseH9xnWFXul6PG4jc871Q1PrMBj0pljk2NA8WnvK0uoaYWSPiNwCmLerTVk7U1Fi21+lb79Swd3xUBwJFiokeM99i7VsyzyhqLDxD1nzUWtcZJbFT7OA896l3eK5w3/XJcwokq4sR7YjdyVnfbv3iBtt+GeiD378GHKwq2i0rn36BqiWU19FD89HHPFI/Kdv/S+MtFsht3+LEgtckHxzyBvHETsbdFgQcGljt3iKbCrNNbcyTpgVdTjN0M/m2pFCAoNuZv+7EHZoci8vpO68iJszGx85fxw0hKMO4MMgLiHuWILQGT0tNW8QSNb7i3Cqqp5ebIADNDjpeT83ibgOkLCsJ1UbdqEqxepDDi5kexjTSAOhbxMBL8UGPjEl2cnObYt62+MUU8NjAEqR/hELbi9T5t6/FtbEnce0x5YfGc6czWR+ENkLE4CBjyKVUWc/M9vY0StmvcGa3Cx62qd21B01Uu3HZGN64W5ZSWxNY/OINyYwvcTD/jBjo4ReZipQ9ldg2LvBv1LVwuyYKWhokl9c8lEdPTvKUdpU8iaMZgXY7d49HOQUvxxJgSj3QHGbWFbLVhkTMl8dIHBeuUOAhFtwsaeOHplEFIBeG++vYWmkokxvDc5xYUmZJAiQYZAb+8Yr7p1xNFwdpU9MnwoSOgWai7/BKvpsIw84VMyH/96bNC2JAxOQqrCHnaMSkI19wGS1/OoCFhDBk5QLptAq0cBNPGHijGz5epe4Os0DXcwYhfE9in0QlQSoxOEcYvt6/ockcZzTgK90M9drb09k17NsmUR86GsPyxJgWJAo5oMBzz0iiVG1jjZatClg/SOFPFMVuvNt2eXKWB8TJxZWqpYQGTQ3S8FrWCbKI8yk/UB43mtixOKnfxKXRU6Gt8JQTQAHBxf6lBdVO7xMllrwIN2Pz4HBwibA3+GWC2Y9KCMAL+EFxB+hOx8uwRz5VMGw7jazUUuyrOSgqv4Kjas12yQ00mpdHXEoJIu++WfMk7y7PPhY+syK59nLrjEdfYYZc1/CGB0ZTFJ5DkJ1V4sHD/B23xk9CpIZMeLb53uyxP0I0b0lm/2kCOiBpmPEkJF1tZIYCZ+QnrK0sQGbRzD7pvDr4POGyRNy2GrwttKkPVKFFvZiuCnMt2bcxr9KJfPUTwCtttOP4AK7obj1/6YIRRle1lCeh8dYy+Y+tLWsIYl5fEbUsySsbJxg3TXUN9CcXFB+vBTjtus78J4MeDEyf9bZmhBPtTwH6+YUOYiAcCUG0oGdkBBxjbTbeHcBfJJQjkm3ybyPV291WaNcmWwm6OO74atfglLrX3Do+4XFBTeUrEGC5j5m8M974HtHlkwxob3wapp62gqWyOtQdyqmW/tzP734K7hdAdUrmVMl5EcDyzKyOs9oOrJe5j4HwHBAz4PDhmqjJs9tKkR1k7q3GVzb/6XgzEpCyWkBYY50Q6BHhf9ZfAm3cQnnd5A3Zj1jQnSXTdIWBGGcTmAo5kJlSb6yD/KYKh07VeBI5dDkoq3zlMI3dzfrArQMx/LU7zsw9AVw2nFvWi6XhRxwE+Vnnqaow9ZEdDLc4w5QvBouwHD+p287syE6eRKVW/7z6ucEMsvLqqwjqbEZADO2TKNOO6Banb+KwDwhfNTIcJjWBcx3LFYNQam01tfuRHVZVjdNFiEbnJWoObh4dEVnZ+7tzUw2jLoYjzkpFSlnf+crywgHgjgp1lhRQ7N6UB7seXkTTwFAGuzjY3u7aaoTDRuki5Jsk7KCZZM6ThO054RnDFYgM9/oXdVjWoHN21wEsyjIq7GYQz9znhBOwXPzHGEk4Bj4OPRSiQAb/X7BD3bG7NwYRU/K+H8r9iD7q1QDj1zRE+HNqFZi6h3K/0MdB3FKLz/c7J4ERdi2Y090qzsWMsebhQfVcTnunF1qE9NLa5jj16/gUz0V0dpebd1d0PQZbV4bSO9yqurMOJcEYLbJ30y/4n73dg7ZFsmVruQ1h+k9Yy7+jbsYc0eSAfH76beAyQpc94HewZgdWfrQAwOKb1y2vs2AjRJtPt0GWzS04ZI2QLNMoqnUHC4a3ybhIoT6l+95z8MTsS9gvrETgiLhyw3XZs3TYtluMGHAX7BsjIKPc53m0ss7rPqz3qgMH9qCXZaCS6E1mOCzH0lCLyrhFJtGNdHpPny3ilg+SWeROxYqU15HYW5e+MiaTnTenmpE9cVT+GS7bYhxiBhUbgdLvJ/jRU8HWBUToTQoboOQv8mqUnRQRv9M2X3cCZ6mk4r8fh3GDUhp5eTZzlF28O9MC5PUx6gvwHG4mG698ufd1qxgfdZkcUGSWtmgw4p/jyCVjJThhQeq5qREpEtwXqz28elMwb4Hw9BD7NUKpz48psqOWNWH132N3eHwbUw9PNyYxuPn/RPQcaVZb7cZ31RBba+hwhf9SwBkYLuTPUVUM/YraWo18y5AUZ1Z2py1v6bcRqLfb+1wPDsqfvqXOr8m32NrR8hlLLUcK84AswN5ZcyxrzjPmSsf4Y0nDxZfdNII0NDsc575e7eHMFK4uDnGHM6cU13AWmEw7IxunXKE8VioSa8UmTqFB816ntHm7Z8t98T3rehRLrWs4t6zC5gz1i0ZOcDQU3eEEvb1rld3di9rFgf69v3wUt8I+BbQsHL/+30saZQ+cDDRMN3ktcg1FBFBgkcoByJBxlhcNI0XNKvTqr2DObQBa1xjodfVNxL2yT3ZtXoZHTx83thxYrX1mgD/iCLFlj8Hg8AT/xtfH30xoRU60fGEv9+iDxb2C4KAlGznB+1wQUknwQJq7iC6I8avmJRzQ0ysCL4BGeJ+6TA53jCxHA6vxLlP9k9k7dzDFiXoIjn7nQKpDH98kxbLcoxxtiPcLfMXtvLCB/PPGMkN0CDpdNGvjJYbEBMNxiOgSoA5jwvKqe2B8Q0Hv20iRJFr2EzODWBQNqBKeY1fH+D1rY3gWqhS+LMZ1KAUGSIN0GB9IplUM/VruZcULRPXxgfTl/4u3UBDwm+ugR8GCeEjzHBchY141furRcaaN5c9C7ZePvllHlQihyEehqOGoGlFkUtnH7D+nFcIE/cs2QKoYj3EcMbtuWLM+6Ew5msZbZUuXUPMCeqmxV9EQlIs7cw06yJLFcpokOpIk0JdMnuek/Nhmo3hAlzu1Vp+rkUpuEqwPLwpAU7RzVWP6U893wdedI0RJ/nAPJQ4cBFuRD8YfFdfixBshHVxbISiZdwrAdQ9WofoDlyFQ3B9xJ0iiZUyOz83dH8fhZ8MeJODWjGzdDhL/T7vCCGUjcuPm6FdHkUKGLZz1lm/uU7iNKEHJB2dILOG2E0WzImum0saEbh1FwLKevPRm6aTTyOXzDEQMS7l/T8EjKDrgPk2v5OHu5+SP6RqgKTIApr/w5kUwnGPHYCwwr4hC00xb2eO68mHZdd+7zsZITrdE2KA+7TyXzgMIaEFr7nIqVZ+BCyj4wDxUSjm6YCJtXFevPHM4tFOLB/GSIYjK51k7+opkyM1SKMYo7cueLTb97k1hjZCWgZoXzz7Ge7e0ftgdnD101gsENE+Lz/zeeciGsYa+aCN1RodsBaMkXFs8fMHRrS53I6GBCNWTJ52WkbmrnlI7+oot0x7SzSotZn40PNOko5zhNL7qhaJ6QqFZaW53O00NZa/+TwyzYBOu50qb2CxjmaXLMMw6R5884s9xNK2ZBkQ/8AMgductI82AZf18mMPIINHG0+HqaNjxkb/dSGSOBYMKQ6Nwc1120dA+bSRN1waD4eD961cDLFMtpaJ6Dv+8A1YhrSogd7YwnbZqZDJCX/NzKTQjZZCmf4fao+93H6Nq7+vUYIoxdubwYrm6++xuAEQgV9FWMgyr9aPA+zqb+6+yoUGBwnWT7aEkNy0uGlFaHSZJ6kq+/MTfp6OR1HFbG5Q2r0eKNJ9/QwwfrB0ENqWw9adefLEJfxd9j3lv3bnbO1KgZhXayR47zwKYWP1WHACxwOQR3fVI48Bs+1r/eFaNLnqcPmc7p0yiRate5+7KKnRNCB1bqaf/d3QIe+UEQiRCtWZUCvnGW5KRK9PWB7xP++r7XoQEUEvO7rkJ/V+HfYA2XBWX+r8+Tt0YQGvuX10pQ464wTTUCjBZ0dsdJaQCDYJDgSVuZH4bxObeZcdmYzQkIL6qpxjiCwy1ObN16T73XuhsOyynSOGkZ0OlACwLiaKD2eryDuLG+fxi+arc9cQJN3Fdj6qYLfmO6V0cVZPFniKujpjLNTjHeScST40soE5soinhzOOux7rbthgjCVvHOrJbYhHxssLFILUwzFPJV25KRa/2m8q8kPvL7N/OOc566vqR7VDpvotB/RwS4k1ilMswjVD/P7bn5gjWI31HVnBA52S/CqJ1Ok8eo9kFqHyMjbEAlZHNlWzDya46fAv/U5UONfpoH0CnPyz2XRW1fycoeZdFfy11UlG0JS0JpFp5r9SbEbv4esXOqchdRrEG19indJpc82h2HCKILkwjrlmnucJnDXP3/u+ESJQd3enWJbgAp3HJGeFLUPEghwitSFf8/JgUJ9eEKfsaUJWHXyB520pV4PFk4Iz7KAhF2ZpggfE22BhG+UTtPSa8GRZlVn0yNTFm823JBWwAprF/Jflha86JgCbWHt1P7SubnGCHhUVjChI4RTO0Df9nDElg9TVBzZcAgsBv2Y6j5agVqMtw3HPy79H3dNuZ+KWyYE2HWnXA+ndCC379LtxYqjXoqlHm8+BTgnYA5Wa6Z1bVhjM7/0u2DMY4/M24j27i3yOM/R/u/MtLaM0U0mb67dAu0FwVRPdLVPqCiTjRjAbM7GQ11lIJl9yfhzn5+vpTKeSy0WHiF2fIggL8dM+xYEOiHyLwiimlD2BBbbspiibO253H79SySI/KZp7HCC1BgLlROeAMZKOxLpvpfX9IP6j0BnJCor4MnN2w2g56VEsCPRemTCC4EBRbC2CIzaAxKErX1irs7ZSXMjgiiIMP9oOgnhglE7ZmRuN0Prx/yX3SJhRbD43TeQn75N4BFsg4paNGHiIMBPS6ShxHrSBvCQ4sqyb8PvNNUca+c1/Ype3VJIzhUCrTartMYq3WIOcayJgdME962wZaRF1WAmbaduSiTM4QvY8RI4ZNUnRbPO1KQFaOrIEy+w6/TBA+0pCg0Yg5nuc+pBmdurZHdFyXdyHv6gS49hzWvNMr+NSmamDf6WhhynJizAwS9L0CikHqm4D3m1n2wkC2DioyS4ioIvN/vQVFXTw+7XQzKscCw4QB+TxPsUzMmzikIYo9OWK3LPCHuhCCJ/Aws9tjym2u3d2AFMDgn2sB+dt7bwrySZModEFzbZIHRCKA+HoJghmInkp+AGSxZb3FyVcMn6ziG4SXtcvTR2J7OXW98AomVdfAFMlz7r+uJuBJQ06eI7mOXRupPaP3nnGwr/SOKyscmRcwm2ZJgpAKYpUpBZXfVF6grJh0lNY4mO9q9AJ9HBzHOb3J0AVEyPEk1XGiQS2j2Uz4vXErDQCMVEFVyPali2DUfGvFViWnJSggCeyVkeO2HBdacertM07iRWjaLIMWGyi1BgVynLStC+2qXF79nHuyW8OEXuHU5JgtpXWV+rH/7vpOj14zWnO2nPQ19at5j7lKud4/eXLJJTN26x0cBWeMAWZFJevxzWM9+LAoGy8g6IHF0WXq7Q/db/hpieDpYXP9SI1fMQGpDe/FlGsMCxtXtkrYAWy36jwHLXEhdrwfrnZiTZu0A3y/XV+Qut1kHqN7J4amqFqGoxr6UYUdZmNgahkBIrvrYSn0+yKK2cCeEHsfkrFlqg2lvsk65w9DouQ46CUanb1kbxypLmJurvSusyuQwmX22fjMqXNGzpjw5zVLj/KXexFB2On6PJ9eVCCnkNmk5gFd+DgPIqRR7DYsoeBxlpOrpXh1PndtZuAlyoLZ7q+mpdUlLG1TBYkMITRuDDvsrHaFWtVh+AU2713IBz7Qwmp6q7bI6JSrS5ZIWTMeBR+MnxNl66ZrTv8VJLBbrQUz/yJCwNL7PSrQ5SqIrO4M+hqb+vK8YoOS03pxFqMOi6rcci5Gfr5Qtbxv3ExoN0pwEK+6SyM8O/dc0p34ccM/fIOJegqxpvG2CVyYZ4WlxWzYdKNl4rW2FADbyr1zbmADgKK7HC4xE++bw+cEpvAqmI77FbL2ESDkZNtzEjJ27Zl8QcP7GdrhI8icKHOkgWLEKrPlqs0clkBcWNeE6WhkylCiz1tNGwCtGZBy97dp0mH7UTQn0fEkq9oWaVymU/P8I7qM6EuSjwZrEri52yB76ZTcypTkCN+En2LMPG4MD1dV2Qw3ltql9ZhflFI1hchwKIbArAnBfQM8tSsFYFtgHURM6OgOmtS8mghRgv5fR1hZyv8ek16X6okCMW9QAK7po6JDqC/cZeiHU0JrvuS/h2ORY+m3TIj6N1o51oofLIDgJz0AdNSf0hz4mAI0dUa6dts/LjFUejKjRCtNiKZDyaohrb5Qr4dQLNAFuD1eQna4QuSZ3hCPvUioEzZgEdG1w+LrflBtiNI2UBSXWDwOKUDEsyxijSHMTLwl9KAqKgUHhAKkZIP44BB2fQarDzhX1vIis75tgpN/TvcuWRseC+ZEzFzwMRvVfbTeNLbwNvozqTdLz8MNfc0lial0+rruFwGmbxDb+lyYFS1cNiPcHKz4cULXJXiTJldqqTxwhWGpCTv5r5hs9nc2Ti51OUMA+VYxmor4Ao+fg+1UjUkKfVolVLllRIXl4RInPLjNEv5QAg5YGlTkCB32AMc6mlLnTMpy4SrkN0Y7zNczR8dxiB+k+vcVEngktltDmk+Pfs625YlMMB0cMyQt+Uf1Wc+sfpsBjxG405tyURcBYKXUgmgPfMYf4nJR5BMR/sYgQ7SJvaqNo0plI/MxrXlwapBkwxM+Zy/QA/I+/EAHvI4zmEmekduQSokzGxNw1vtrQ5P5Fd/frS1nzZ0lAJMSaxwLdEwO809/DZWCmzfwrEX27hv1oIn2DshNvr4H2g1ksItVeO+tEmA+U2SSZG/czfMbODL3fnFDUmZ3nh3O1mEFfC0CH+aoMakmW0fOkvkxKaej/68Z1itaVeFFWa9Pfmf+PZRLt3cW8i9OBs4kDILUFoG9Pp9tgCYZEK1tY2XQuxNFZqXjk3T6/bEAbJ2rqdpH1YmsW028TycqiLzPtDoUaSti0LbL9LhBmmLbJGR7DG4BCPnHPTr7e1dU7Q7AusOfjk3m3YoNdJ3c/0EKwHoIndNxpHAoCmXoUh1hkyDRNNyiUYbrUEJaN5mJ7MpZ8Ee694UAZLQse27EC9ffw5pbhWVkzfblZi6BF9nL9BaoA62JEyeS4olbIh1SHN2krEKh8unIHZh5tnyQcwGyC9vy6wIBys3IoSac2fld2X7DEY19A84Kfw8w4PBRl17V/tA1NPfQYsdsXTcw0elMLCZOcq5BmxmBTtvSqx0/Y4TKP8bPyJcKcEWFqddUxnszFF5uaTS2ZH3pVYn/Yh2yRZiOFxPLLfReMZK2tPeS58lG/26Z5mxF5OrEFuECfJvp/+wzatu0R6GXwWaR4hyPEU4X1/F9Y8xjQmoPZP0ohbMmI4mTkxt/R0qVMeZ0CtRIgluSo+u8tRG89i/WWQBqsqmVMwdo0ui7WVeXGGv2FTY0aXWU5i+CtynnduagVbOQoqLk+8uuqmMbt1o0K736yZg2PvxMjUu/VU9UlXDoPoHqJqUt4DYDInOC427Si0eaLmaFiwfDQC8Zus/o6+oC5I1P4cbHjGqpS63jZ8rg6JeWgpOfxUZ7DBFFMDq8b0wF1sk7/Q8TdBwTLfJeS7oN/685IW6NIoQAWk/ofu14QKTBOb03DpkpEZR984lxQpXpNYqwbVksnxq+xOSWMWbYCWDbOPoyk5vVWZc0XIK8WhQ0YS4/P6YPAa6l5Ar4brFBLJimE74E62fMH2H49InBAMKyOBGlKO5uQa3g2+AkP8BseAVU7GWK1cVJ1D/hvljz/nqRJR5MSmr1pcCjzezSc8HTHB1rwtNMCt5B0cEc2jHpCL0KLxG3dIpQrSU6nRcftNXzVaY7tqwHLCu4Mu/pt0gKxHKwxy4xihMU7jbUqEONUbTRB5TdnOd/Cpxq6imNIt/m6Nqtum3uogMxMDynvLV0hKgJqqZlk9Ydito4FDiWu0ITPk76ohisuwDHOipMCnptzeeLj2eYngB/FeE//xzJdS3SA4FOtvLLBOG0Zu65tKKfrcJG2vB+VyoL1yVaHCRVUcgEczZeuWQ+m8vWQmLepJadqBlBHkQ8VMr7nm67sKZmG2Ysefmw7qzTxEIWNKV+YM6R+wC8n1OZRj/TDihME7b1gNXM66RHTv2JnxrOvgW0zMi9dJShq3hRTW2yD5jhjZvJ5SFQT+gg3RcQm2
Variant 0
DifficultyLevel
731
Question
Which of these equations represents the line in the graph?
Worked Solution
|
|
y intercept |
= 5 |
Gradient |
= runrise |
|
= 1.25−5 |
|
= −4 |
∴ Equation is y = 5 − 4x
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-H4-CA292.svg 300 indent3 vpad
Which of these equations represents the line in the graph? |
workedSolution |
| | |
| ------------: | ---------- |
| $\large y$ intercept | \= 5 |
| Gradient | \= $\dfrac{\text{rise}}{\text{run}}$ |
| | \= $\dfrac{-5}{1.25}$ |
| | \= $-4$ |
$\therefore$ Equation is {{{correctAnswer}}}
|
correctAnswer | $\large y$ = 5 $−$ 4$\large x$ |
Answers
Is Correct? | Answer |
x | y = 5 + 4x |
x | y = 5 − 1.25x |
✓ | y = 5 − 4x |
x | y = 5 + 1.25x |