Measurement, NAPX-F4-CA32 SA
U2FsdGVkX1/Km2MwM3CfVvGpuyRwq0f/PeG6nZFMvdL7G11TkK3EhburZQemA+mA0gT/b1gXFK+mcUQzlvnTFFSTOqghXq34ngniA/u9r0yLzmruaaA5o2fDpxeb1PkXNTfASHwDTq90sABdwvCqE711TUobbjB/ZTuTBUpNQDOnv2Kl1s9qqNCmHRAbp8A36mJQ8kru+Ev0E0unY3YSsRhnC5TYn/MXQUmJWqixB2ulAZ3mh106/9v2/5JCZGCuORcAdI9rf16E2hL0zvC0DRD8ZS8OTwgsvqRiEj9JbheyVix2xJzdxve4TJcZbk2kiNm6VAftrehNQGlu4yoZeFUULDps+YVSt/UKmQJCGFjjfyGy2XijhehnzPczVD4Bjg+lVEh9CnjcvGm+W6P2f35Amok8VbzeMRC0dl/G3M1u9d9l03B6j9YW9p9724cNBCbCQcCotgHIw/B1WWpRxeIve2KVh9EwfdzHRi1bFGEwUjuH+DhKINbEyO3D9w+kDeQZKMrvrvlF4noZFKWcFzF1J7gXh3fKmfa28eur9UDskWmj/v3va0a20/L/fkmECzWmJyA233V95dOuvo6bpjI6m0WHRlQ+wgstrvNHvOkXADBZOkqNuLpy0F8MdmfnAjZbRRcwy8G45zImMepMox0vJ7vQyp1sZUU8MGVp5eQzJhYM+OscjriPMkuUe947wCbzY8UDQP7cQ7GKKu/L8UAyPyAaA0hLsl2QpancrFWfwpLIZePbagW+rF9DmCzFqRoUwy8CbG8j9UY4XGywE7C00foaWBMJX4VfIO5m3BIDxLdhTo88SVqCI5lGw2RaUCOX20CQA4Bj8VnulzO24Uqu1TwDDYrSgMfbQteVVOYyXGM90FAx86sJfpu0cmQnczjZxwH9CeQrXU8uI3Pd1SEuatoHVkI1vpXcMNNz3AZp6rMquVJxrUgFyBJqNsPDTuFB0/zVys0aTFQL142IzApucS/jBMeL4QotPKzGM4aSHBdDZlzXfNUlDz0D6wfCZLA5KtiIGgj181RKgbt6ybqDiJqP3PWw46+gH4uvSzfr6OB9ZMKoy5nCMDt0lNt5WMyJxvys3RWua1vtJvtFbLXmlpLKSkj7Iseby8jfB1HPg61wInaNmUtyG3j5wwTidhkdreKDFBMcW18CwPtMesqbQme82O0FxVsGvZIx3BZNk6Oy0FfuqlNdGAyUUr9XZIN+j2JenBsi/lMw94bsBWRIcRM8ZDVxDqGXBisJtNhWn8Ti6oiItG6NnijJE56AF4VZ5uPM9Pm10Jgdh5SPf6h7KkQ8ep5jMv7PxqYGyigsXn9PfTQegAbPEdmBDZ0Vf9dJ2+w9jg8MWxkaC3QCPCy3uNo4p9Wto3XPRGmPZU0KVh5qED56Ke+36tntRGTpoG2Tz9hRSihD1WxmsV2sKiPzN2aS6+T/z6MUyuN5MXOwiAoEvMawaiKYRbPadbPMJAsFdqNLkpGnEXsU4Hy5rRQFNfbdxc9PYykNEbKu8kogn8+E1KWTczh/OntGulabfyqZDrDWcCVUbX5qDEi5ve5rZ/2UyQUDEGwQI4f2Ir78fCvE8pa6003pzIkIG5UemQ6XUEMbtc3LGKR+VgYiFgz3h+XUmpinSjYvhAuAf/eFr0s9ny1LQC1E9KUtjJ55l3e2VdAcSngKJyS/Cbpa+9plqB1JV+JuOvhaYtUb9Ehazck4RRxYvcn62lRv4uBG+P8Y6Yeu1wzT1ci84D5qLLCDGhgkM5xRWA1SLt93i+UGRXfic4o10+B3B6b+xbQZNtr8WtMpeCHSIkeCqHJBgbWgYqNi7n2E6jQY4ylTOkYAW1mRPXyWbq3vdp3/V3dQ7uWht9y9KPPCWk6SkfoLBeOzW/AEpkmzxJ6q7JnI0vTveGMz2UI2/o7YnsMBr8yw77G6+NYteewmFbIJO4vei1J+m4ROkhW9OUxd7zacM+PbfYyneE38HLzq2Zsz7gTsiMFwWPA/L65Hqjc4l/0IOR2keXNvrCvsjMmG+EQqjRxbYdmaGpG6oRkWOCLVsp7Kns8IYC3BmJO6N9dSy+btdLMse62qSfPTkT+lhImaD/xgfYWbAeZTJoASYk7QzFs9flioju609YvMBqdboieK4IqDGczvveGGI1Td89RwTBJ0GzN5qlGLZwnqJ15cSUxxsO4+UWphUqO9J2vUJjBilytiqMUYQUoDK+xN/SVhBNqknwvGrjexm4//icAaoYfNJA+fsv34jQbPkh76B1LaNxQS7nfjIvIos7n6Fv/0CkB9IGZqtMx0JFA9NNV8tlsOpJhfIr6J0ZcICIxlikBINMy5fFirEujFAJYdZ0pq2dVLrNgB8kqaG/lb9y7q5q3flCk3VOzjmfvvwECQ3vL2kkAVzgN/dWcPgFqlmfVBvgZYrHjoQMa7lfWW1AA5A2ojrp4JQGrDJf9fw/Aw0pZeKihDCj2y7GyOvbvrYLOJTmfeIbIQmVDJZd9dobX1cijDbxWN8TgUFGcKHFOwT1+oBlmTz+40aIhihmj9jjKT3yC79bohcF1ezCTWKOaC3YDSxdGLJ8FI1k+ebdkTeilbe4GxNitTmHPIBdpT3obU7/gV0PU8095MXtNV+avv9xz6bkT3CofMlAbsOLSj6RTLc1UsHMLSfreaYaPume0SWplgqGgZyXqaitsimMPQZB/52MM3gOJCpgzESwM4bhYzVDkCc54WBiEgdaDSgT+1QZIcxBFilAG3jCud4DdH8dB7Bb/XDxdEpG9NHKkM/Q/INYuVZeuwpPMqCjRhpXEmJWovHgkfmcXNTqvyYPZFvL67uDsjgm8ZeemfckLhQJxGRYfg8R42rGqishYd/n7LdWbDfNAICDfs621rpG2Q8CO3rnEjzkWNhFJ4pWOVNt+NE06KkI1wT/Q+EV8NJJSX/HLiuq3uKobMBskCd4X+R05JWj3QwiJA/ZXGLRUDoATacAEIwEdhGDdrvbmGBW0L2hpBR2mCGVHGo2YwANevZtRqcVpcnzfmsviTLcUDAqxxDGM8aEracPD2BXpKsUJ6zUrzeTNh6voNXVUUNAT4G7HK2AfAx0RTI965KjLY9M16WhhycsQEBRJKS74ayogK1prmjUliA8ck6rYu/3JoWhlPA4AbwhomKcJQvyj+UGlzuDEWXGILROQ1XzFs+3knjBsIXlGLuRdrTZleFAd8o9462TKv2tA7QxVypqjoBDsSDwGlqRPKSoNVvhWGp5pgJthjWKMHvC1b696+LZgqFjc6PP+TUAqgX8Dmqn37dzpjuyg8I8OSXGer6Pd9W4BmrWiG3nrQMm3LC30SlDiO2vcGLck0OKo61d63SnX9xe9oM/l9bcZJfN2fS7uq8w1cauIf6y8+gU0BQGZRmFYdkzfEUrcagHz/55QExkg6/j5SaUHkrBkVqCmibGsBXnwNqZ21ITf/mDRhy7U3oOlnjAYIHTFZpxoLvcaW8GCu5kI7GDjibC8IdmFwtsIg6rVqnBW0WBWzey3gFTBTRC9arLKPd6FWqDtj6ehNBDd9XUdHoynB/tG6/Ec4mZXC6zradqQee9rtHDNo23pnyYYi86OIATdYVtO240uO5/XFE7zREnQfoFZX5EFqbPzQJoYL9RrctGK+K37xQ5qDf0MnhTZrmk64mI4s8RQ05+LbJIn96MVfiG8d5VUsm9/WXMLhOOZ1RmCGURDb50RcOU1x5qFfpZ+Zzk9D/McfNrTyKU+sr11h56AeXb1ro+XpnetrXrKp1yHWgS60hGtYEMr6/Zg9TzTbdz3SPgMzgEh/ojKHgEeLvjW0CXbzP03WWqjVfLHHl25SwbdTddV7ucY0RVgS99MFSypeDadyUFQ3cCOFWzqwWVHSPZ5WuavJgz3+N9cMsXR1O4Lh4m3nhqAJQIhPdSBX44B+T6s9QCRcyB9FbHISetU8eNsQv/Awq6ZwxF5rGS1qcKXONTd0JheuliJ2VRME6JqNEeLRL62o9R2hmiHhuVBC8qz2buqbq87C1y8QZVOlhuwY+w091sF8UvOD7kN2vpaBysol79H+oHgBMutgrWhELc5/+Gke4xP4Z8aOP+Go3OJ2k0/bDMaAH/KsO2/Az7QlDApPgPPkuqH8+mogQBT6ZYu9E/Er7CxEI5dZaYaLJTbUmHxNAdzcJUEjnhSL1rkF9CwVt38aiCRcS+gKmn4B35l0kdn2hiyeZi1PnmPvIexdI99vYlL6hH5/Dly2tvmgnUagsVxqZOpItjlZ2334H97R+6XAe6jGjGKHfvWLwQOvQ1z36q4m7y2LrIMKcBcXP2P/84iRrCVa4RVTEdrOHn/7IDETQMtUJkyiBIVZQMywzxDYryFANmZ6/U6bkJZrMsbeL+4sWDyO8k0cV3Uq3j1EDELz5QiNZjD+3CtmaiXSOUR2gP8aTKVGARtqbPifBYkz36kNi35Dgfr4jFqwdw934cBL3Zn9hm6c51kAEir+lLgcx0e+yCU2lRd08P7Jajv4uSCURu1zb7RPQhmKIcfg4NEfGcts5pVdHk4TiCCV6smYbzaNcgJ+ra2Oa1OpxqPSTqGsVUUjyk5xmemZNaXZa6U3NuEGZusYR+rbsnuu23yczWXUtXSXur/aF0Pb3vufvwuFu8cYWq797F9PZiTiwepJNHThZ4S2Rhf6J5UR3G7gz2EptPSMGXUojVoFu9nfpLzgqViSXGqWvcDrUzne/dPpbE1r7IebFja0JpaUXT32GB1sn/HYqLP4QmUNL5mbWTaOsFW2D1JeAa0ZBuT0obuYVUpn1vuURwR4rXJZeGbUpkTHExlNFB5yQiEnOPf20wtVkNKzUyti05y229eJDMKj+NNoGBSUQjf3/FeEdVaEO7BYXYFs7tWip3L690vgBmr6bBxWINurApR/Xq+9yPqzQAf4CIPKNIU2kgEeukFvxDJlGV9yQNqGp33hjfolQ8F9AAfpX2tKbsCuUK83Qd1ZdcKIFpcduhKcXefad6i64VYeKQ97JF7xAoccqpDWv9Q1ry8r6uH286q5CFm0htnHab0qNxEmaoZky13lVsBTKvQhxy9NEywlRbmzjBVUh5NeJUNqGYn5iiWiZYwoaeYYib+0VcN37c1g96q5VABU/BsNyMvhLAcOX85WyHPCIrlDMIAGoQy8ZDxLKXhoH57Iv4E4CCVj47cNCW5pQ+dV22taUFM8KZOgjFmvbROwT0Wn4ZQ7DzDWoMQ16Wv5kIaINUm7QmRGyFSVQGA7OWICYo0G39l6UgLUGMGiLR4dsFKQ6kmnOXxb6CaMqOXqyqoPkc8wMTnVazBV+W1YxQ1vAlHS3sJLZ447sLNt7rDeooVwzpncSbQG3uPsOMI/kPIDM5lpbsWrfTiNf0VZPVL7YhLn7Wz2kTd1EY440TQnCiY17l4Zq1j+f2y8QC50XMHw4t3duzWDtu5vw3BmDmkgJs7tchc8tf5mc5sb05LjxYynM/IbL9K0Ub9C0lMNnnQvkJh3sx2C9m1JOZj3x+EhRjXzzHy1EYlJgEMHdyru/5zHYlVdcdwdTnKTnkcTPH7kwrqtFwgfD3dnXSZBvN+oTocuCBh9S+k37R01q4ti+H/5FO22NAsg/s/JTnrel7Hp3QWEVurJ0R/sOhrDClcPgS9BXpzv5tGpAjI3VLrq/5MvK+FXfr1Yrm6zLroqSP+iXaKjrmEi6ThRRNC+ymady3hD+P3RITATOwSWdH5WGgfS/WXCjYxs83yZUSKKO5G1jbDjNCMdhFzGLjYzRYfnmiWJGy6K4Z/BVEjAsqyhDbM4jQejjtGbCTrGGYfwm5NJwCB2M6fPaMdExZoUTpM6bpVS7AomLiFoXTcJzTouFhWt0mE26Gpl8BcLeztYPafMCpdeg7oTaYBC1w15/RQQkgkCbsF4sZ3jeLrT9MUXMfEgybS17B+F1t9sbHepq7cxPKDjli9GotGahiO6JDhn5NaPUa4ZXetvEChhWOUCpDC8DeoJYiR4lALFg/7MTxsENGTLK8ozwL5gqvELUb6eaLFXr+MhUwKEYyu9rZB1OSHVrOLmo9HfNom3RkiURTkIyktUd/rwgEBfp2uYuGCgwNCPL1H//OhCgMjgZV7rUJPggv0bMZmwJz+kizxOhtzWWvh5FlrhGSWBoSLngdfOVi1piHdkvpH8Cd2p70ITso3guSyJbZkNKeIPLBYDZ/NctcXHn+t6zm1oQg41W7/Yqh4k8ffJepZzcwlg5GwSs0YAF7/N+1O91qcQfmC73x3mWP4W7uzaPIguvUFwgs27YnXdHCNk4LNFnVD6+aLbtZNhqEO3t9feT0m/7SjAaOku96bLUAI7XcqbnktFwIMyu79D3wR22zm4rw7pQ2jzLCdNda5ijmh6thVqf+8aBkR2oTZiTJcrDzLO5jmXnhNcNthpo+GmDrBvrdmwFhPnV77BPlmVRGc5I8wQtVJCd2alg5RsqvU5ldjKbvKajSoQk7Ifjvm98/JP9W2yYVi6j6KrgM1j8EzPBPEAYRCX4O1DFuSVSwId1IpZhALDycxQXFrFESIqojGkAafkP5nNRRAKZ54y6PgCc+1fYOy/6N5heWvLP96033JpIiXk0637jmGB6omaPs5gUkvlwyJZtq71nlSr32rBM9ZH0bP0O6gRLET9+kjGNIAPwEUsJwdY5b1wncn9F9/SyEEbZEGxTJFpw8bFXOYUE/1aMAYvF8Kmk4oS+PnrbJb7eXKPcG86NvHjZudkM1N0vGo6dxUvDcYpXoEH1NSWyqfuNBThxcmZURRJIH5mWIZSQ4bnMG2chAz8ry4RDjSm+sIkA5XJqI3ddqrilPR6LZHWWgmpKvTzmXBGbRii8P4MQIxDKuaD0791dCM6fVdar7lcz8qU9ZhMc42vChmvC/X3B5bU2ATyH6rd6QP59UCnClOHO+N3ecrO4cPeXyONPAo5AUEUmCUR9fSnkROQUeK59UWcT4G/VePLllgo+VFGqnDox4DDaCYotMwPnKjvrYEmZVHhsxHLUlWQDLa7RjvX2drRNRPmOOJAMfmRyZEA1DmNicKFkfeoef/LJO/cfojvgqHC2fSviHjzDFPXoggOIqUyZd3iLp8MYUVnQGB9T4MZ0y1X8BrErtjB2s3LsUKi23giXtKpS/SOXwXvOeH/gEE9q9q6F4kMOEkbPliUr1g7wHVYWIMkjnu3CtDWoiy6ieofAw1LpFKF5JVKuAXj9m8yDCFbb+4Q9yTj89vVpOaHXiHmUUbdec+s66x7J7m6vZ8d13kJ7wlaTwDOVKvYehTeFyM4jVqI5j1t2h5GIfdPlTHC1Yo1m/pW9ESKQDzFUw1I+nnO4RifqqRpdGx5Dlt0mN8NYoSqSKfNdQzcCFLx9e+rc0+LxFEr/PE46oEZEeC+nkOtWKqJudEwi17GO4aV5Ng32tbu6oCVCEGnhEEdpDG3SO96jD6e4Jq5Lh1bA/fB8zMVsYhDUBoINVAVc6/Ya0XwVFY6d6Aqj+xvvQOr5jRgKzmu9xkT7hQuZNrHu0PYDzSA7aFg7XaAmlh/Okiv519jAusbvrxQtT/Nj9abSAhhFxLjtPICZuv06SVfi+7HcUBf6rCGavyvaIpLEQlfJbPBHbGfgoRJP7LIsI3wIxJncGlKakMRlIYD8S0Wl6wQMM/xPvaFZl13tga84QypvFH5rkOHvfNjkIb0rMfE+MeZL/qflOUcIpHIL06FOeA7MijmK/cj5YLBFnbMVB6DkWhpSCMklAzxMLRNZK9NzKPnZb3Im8FYOtkhINyw5nUpovMs6yiuNXa8EcT1LkpSxB4Ph/q4j1BI7YEWdmfCSuJRJD/IjmvQmGQtCad6xpxgDQvkxJ1AyU+3ytB7vqKSiU33owDmvkIIbVC0CilB9TJSulKcqoC+/wQBvvIGUFDKugeOMCOffEhzkWJX9cJFfh4aeZHLm59Q6StrelRHOLGKCSQLMuLolQGyDntR1KZcq8Sgqn2FtLmpj3tMdsFjBtz2q5ZXBSXj0vvIg3SPrR0JK9eaYnYo/0dDCQKU2rTmU84to69GXE7fdhuro5PSmEbMilN9tas6JttdmuMzNQCCqCgEuZRtq6z1RHkjayjvqaDGifWKvg3NSVNN/il8Jb1DQd71e9KXtaBLMvGaJJgwCQVHGNqKOVqd2I8vX7UFmoFDE3vxxKt4om2GlIPrhmwWRRTsI54NNoK0PeTDdDHPDkM5nT/nbiMxZBtxWr4Rzl4ts+5fDd+UgnETDBGvpZLc5rkCbGAGnYNyg9hE8QR+RPeEWPlZj/qHXi+f3HD0dsPNp9PzLkTjB3T/kOU6s0aXKxkn0Vzyo1+2xOKHZJYFn6tD2oekeGPhcxPnvn7PbGYK8GkATSd0RrFBFPs4/E0TQlO4tExSu6xpvreFWdlEVzO9rwutBh4fzpqcnxjbuGJzXyCUD/0XrFv7xeOvZzhapIakQAnv0BzsQiEyxIkWqga3dy3Q3rBynPABisByXcyIPFS9OMJ2CtRSEdoSnIDf5iHnV+f4SwiMwo2C2wO0MuK0RW8H3sDsBtnjbCa58Y7/bgojkJdBHVNXgud1IhzqUdWCNlDDedLte9qsGQMFT/vFFAhQ51teBAOZDA3SmQ2B1ZA1FpsC70lKzjTYOi7eH0Q3+LoVf9godGAraJ/xP4ce8/wSq453BhyaWsWGN7dq+Z92TcNEESmU0dypTSU+a847gZ/ve1PXznKkA4GIqFE/K6LBK6uMKveUaa/unh631PDHU1Oxg6JsFfnOa2wefeg4VXtXefbYXjnTkuvj/q/7mqg44nRf3sI2AJoFCuF0kGoLUNpPmKCSGDIsu6uVsa29CWnryyQ59dyLZoEcaHsOQrDlZRKaChwZ61mXCVxwWDq2W1NRFS94uj27iKfhZQ88cuLpvRoUpE1rQ7rwPRG7oQPVkPD+s0f/yThEU/mOPUIoZ4EpAaIdHz8QO4kxQ2img2z5yVcfoNVQuBA4wYJjbWvudYqWX8ftC5GgNwwjyiWp3/HsAFZbY6ZyPu5QvWclJT+Zlz/iwKNvECcWzMRV0r3Bn2AUlMiDw6T6c6aM96bN6eA97SNHn96iDClyik/CKiBIdTwY7RXkU9/fH/Zrnwc6v1OyyhECwXdzHAN1G4ctdE65V1vWC2CRe6J3UXNxqVBnfNkwZTHNJyWKSBpuBYABy/tgaNOp+TMMkyCTRdmiVDhfS6kQXgTga68iqPu81jVBxM3Vb7Af57YufCf0E8Z0Oh0T2U6x5+ywVtMnghE7DQwukESNV/LF/rIuZMGE4ozQFbZib1U5fXKp6uYMTeN1fwy7MHBJzLscv0dJgZmJBzA5JuIdrB1SKriIATCV3Tric9+uLd/nOpMjIrAcRNid6zQVzjJQHUa0UpzovkhjnmX5pLkoViA3XZr8FpZbEQ6Bhv4+yaMoPI9PAQQqjbyI1Re7NmusOZpldo9MGMCfijEnW98LZyGhyxdW8bP2laltDCldgJjOB564p3NJn+ONtjnpKbMobeI4DMzLcf9DpzMDf1FRnDVSr/YJ0zHbIM0wycH3I9N43spCfisQLxrH3F+8fcZgeVBfkat55HXP5bGJFRoABQ2Fh+z1NIfPk8l48shvSXwSfgmscxYJOaQJF8qlckdJTZ/VPsVQ1j+uMHgMFqHX9AdqgBdcXhvGGGjaFGwOZUNqtUxGcv/5DMKiikHsm5vH17IM9XameT+weugOgFX18ms8xGaspKKkSQclfuYAz+xg3bmFQdBECfEi+pY+n1LH/ioIh3clXtE77QFPCelC9Ro3JSPTGckuwJhC1O5lUpmhwTplM6bRFpzt7UNn58sZttPXzIPcyXz+BFJCG4wSVTOx6jjN2q28uc1syAEKYs9Mbc05d+3zUbPM6pzj/F4Xzi3NS0CwtIMHrTusImaHNQkfQZL+j8iNT3nYiebybka0lrptrimCDeTAMfUsiCI1d2YWmi3B3yTPxfdcMY292RMw+XTwuCbzZ5VraAsz4wZJfGVKTeS+mFGsBbEuKeONvBvz1e/1RGI6Km+hI+ZAWbuPNbIAoS8Cnio/E2+MeDCHohgX+66Q1UAH+JWOUri7Tl0l3vLCDzWJKPUFFJeE/N0QFyWKo7YauCVUi63OI42iLbKrQ9Mm+BEDQPqOK6QbHetNXGRn2uPZ0Ep+HoWtTNDzW+8x5h7RuZKwWz/MqlZOrHfiR5SzTUNSK1P/1i5VR9rx411DvXpLNT6+4Qs55bBYsciBoHzGJQY+WNuWEUll463Rkj8sxUuKxtr1KCaJ0WnNSuQK2B2lEsYHaihXWksYayMdvg6W4C48mtmhGNJ5gkjauiwXX19i4OZhkdhRbUybeM7zAYKjsZJMlmR1tX8kBh4N6uUUonAnMbap+4iNlN2YU5OPEosGHHR0IB3ePEAMu8TXSi5ZTC2Ou6AETBn1gSRA75Ga95/f8paqcEIPGK77sDGDWRMZKpENVtaTWUnaBmtDA37AKrXZguhmYew16YVOkPR09nlg4sMvL3I2DHA0Yx26g/6ruf+HWot1sqSKBdyLKvYXj//Yxa62bAlzo1qoxke5TFTLBHEeFXnfeK3v1Vif8to1dZ0nAOOzg8tB5qlJOnTydGkmTUxTO3YpGAGuc5RakbAou55PQry8GwsC91XMJ/5W70954p+YcCMNQyF8RKW8+0lnhnFTp9pJDTU5brHctTSEy+TKNndEgpur2TEzyASJqQFUOhHEl3J2RI+d17+K9Qhk+hvzS5SmztdXBahcSm6ASOohGGCYMLasNxoJjFUCHnXsFJb5ViJhN60Fn/mzDkCIOLYLGjkbHY8B7vDIlXjDlRF5uWY9/pfBC+loKJT9jKvDH+6HK93CgWiVUWR8GQgDpM9T5ORW3AR/G850EBOq9v5BrBOCdfOvcKtdzelUgn+xPFO9HrNh+h2EKgzMbymSiftQGf8ERwKv0Hx9LYOGHZkcKPfaJzXGZLz2t4InDVDxU9onxKpRPU/EWxbTCaHcXUudmuBqXI5vRuCBQhk0uk1Nhtl0wFaZRij+kPYkyP4ISW5j/AZiw42byaM7Hru9JVQL6iIlA5h2/8zo2Pb/eacQtqGh//X7F93jXKFxdkTKm0cDalm+lnylSS93oSqboinr6xfX2kaRncCp9Q776/pUDjzPO32RAtJp4pTZvvo3KKJztnlFxoPPOWjD6Q==
Variant 0
DifficultyLevel
790
Question
An ancient civilisation created the following pattern in a large square field.
What is the size of the shaded area in the pattern?
Worked Solution
Total area of the largest square
|
= 80 × 80 |
= 6400 m2 |
Area of next smallest square
= 3200 m2
Area of next smallest square = 1600 m2
|
|
∴ Shaded area |
= 43× 1600 |
|
= 1200 m2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | An ancient civilisation created the following pattern in a large square field.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-F4-CA32-SA.svg 300 indent3 vpad
What is the size of the shaded area in the pattern? |
workedSolution | sm_nogap Total area of the largest square
>>||
|-|
|= 80 $\times$ 80|
|= 6400 m$^2$|
Area of next smallest square
= 3200 m$^2$
Area of next smallest square = 1600 m$^2$
|||
|-|-|
|$\therefore$ Shaded area|= $\dfrac{3}{4}\times$ 1600|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 1200 | |
U2FsdGVkX1+SYDa866aJ4xd1/OwEr61E82XMz0L4RR/RjpCV92eZuKkzn6lbKliVWM7Tsak033EwTdsf/BWzgBRCw8AUZrUuNn4m1I9af440HHj0Lzndjd3x9hxJsU8wVNYlyvhIt8Do8bESErrKB8AZEhfhwRIDCxFJfzxqY19J5RjhRjD7T+cDMw0+yww88qZZMR1fHVIFzoejoNxKeUNED+4MhkrstUhSAQb9TsXpLQh2/fZETM1B/k+k69vYf/qInNxh0/PnQ9uIhe1NztbbnMFgZUq0jg+agZEeOBpcsUBdm3DHWV8kBAX52JQYhk2hAGhP7NKzFktHbJm8OED5Bu7P1DclnSU7dpzJTEUZhv3p0lt89BmxbQ7MmPvG1Qyq1HBCsgJjVizprOmcS4xaUbltjRKWJivBcdhQiqMspoiF3oYOLObx0w+aMDTm1SKQc4LNxXCkRK42k3COBe2DehO7ayLGxW98UaQTNifgWy2lEG9fQcsyebnQT27t2jQXJGfyi48pvfv8O2lRLTtbfPevVX61fagHW+tPDu53R1n3YTjOqW4EruxWxfzBRiB8qadFjfedZUOnhMJxZwMIwtk132s4K1rB0AIPn32IZmJ9+NQc2ElONsxTXmoEtUoTQk+4Dk694MC5g1XmoDzPXCVS/sgRcPAuYFFjDd+zEF6H8yf7n8Ec7lX4jMq7Foawnw8zUZUqDAX1GPZ/aOKrttcA1cWuFA7e2TUifcVb7Xi599mvVU2JBgrFQHbS3xXc6mrR8d5tiHw6fp6Vls+/T+NgR3ZJOv6kXny51ZLyK1TOlfmAMAYrjqw8wr2356D+m8nj54d8S8DpLcCaGaBU7mHgr72f871f7VeS/BAdlKpDInzbyz2DzS4+L10Wbxco4pNJ8X6oDUVbezXLpcZL2FrEu12NVfpWKEv2B5OyZR3b+emWXEakCJPtFpqvbM+Se7igWGL4ynpoe/BdJgE57AMa1YEUDmcvA7SdKPqk9aRlXNFaWhSPUNb7qXqheSb3arYTWXbrq27ekl1bXez7bPuk/GkXDnZMYpCTTBqKriwOf6dtidne/PsOrb3X3IvMhyv1iwHfbhKW0M8n7D9m3Pj7dyCxTK7xDiR3HhJpxH05eLJTcnwpIm+EXm3o+az+q+jB6+15SQUfbSKAmxVHmArPISFu5usWJwEM0dVrQuFsLEidWDiu0m8pWnVpewAwfZU6PzxDLKMCsaQN3bfCkITl/l0bKnkcy7SBhuP+rbzl+Ok57NT/Gdb/LfljqLwxBrQXIy7hfidacmdGKMkcHTFsp5ccgMWMl3zmrbQwswMtT+RKKoz2sNBj1zdg5CbkM+so14/zc/E4ZkpiHYB5/iLWhI/zAAx5L+3MSCCe7gA8XbYNfPFAadJ/oa/4Y2ZmIuNpGXPXLh5itcyUuzIiHv1l5JDUM4V1oqeu5Hxd24HXLx0+45lgFDLYSODcK+CPm9vQnxPztYyaIj/9nX3VJOEFFvBxFsn2iRgCc/kF3NUFf9tr5kZm+HvjS270NMRX3eYJZcZ11KivCk3O1FYyLiFmyl4jajkIr1RMw6w4UbNrYxKakrmeqQSx9KFySP3AE/nJzzWRk3mv1LTkl2hNjeGI80XComg8XRLsiNI4Sko/BKFkV4ogNOBqgSwPPkLA1qSeirZjpC1RPnIu8o5jnAFj4xq7JwgERP5Bxi9sqheokpCHRFaA3/7uj+jLJSAaJGM6/qaLwizjhS01LBf8KH2QFWMnOLxyT6DFwWbDsCUq82ZN3qprW24ZvVwEJBIe0j4lAHSoKySmmZecy2nGK48FC8Jqswd14Xx6R/zm9MBnx2wxLXq8BXdRjryksHiw9PsUkBKy/gwfYqBLiBHBWWKWjO2zQxXeK8DKsLJMfbblW3S6CvCGNLeIWUCNC+4Jl1zP+bjT5RvHrkqw5qmv+iRb3UDspoWXtwyllhYg9+8EAdrm4GMmxK9AH2cNYqUKHN99xZzV74fqfCDufGclu8bRa/rgJWvcCqJ+TXZHSaP+jdEzZEBSNrSNaK97TJui8G5MvZvd1owUoV26bKcCkaBZ4yhWMQ2b+tHhV3nxnTfBxlkryI569RmOt6zW/RPXm8fDV3U0lyj7TWvQqzBPV2PH2gL8vIjsGNNgZX91sLsT+aqGXfLEpjLipfIqRIT5hjgkysDXq92Vs00wkcMmuePDEMmJMyPdTGDgQogaWRha6qxmXvlabzSKETVNOxt/mwO0u4M9yJcioD5J0t5kdvHXuBdeewqQKeWCrGQgmyA2HubG91mreaBqBsMZ+sA48vvQGWZdCkvzBJ4o9rj9rjmmD7bKYiZpa4gHQNjTQdCZfI6VzAsGOsz7FxNvk1Y+tjQ65uXFIEt7l3Xv6SooSeqK2Tws2HUxhPZHuJj8zpFCfsmxFsnT/gyfAGcXAtSxhGF6e1mxw+Ts9SMLLACscPJnfSsIjg3HD6BVz0sr9e/h9i2tE3abONq9TdXgfLloOPFh1wl4+c61+NRv2K0srX3D2qBqSl2Jb5ogCv0YYQaafjsjE1HET+YzyUcc0fXSj7OYfCXu1oPH41jWUbHf8s1CSl4P/l7SlcLslqng01Gg+H7rZhqv2jMkM2de08dCSQUC4IFXuBwTD/RjVv7trmjQmFDl2uZGnhEYkYXFUYl88uxl6dd+1J1TNP9u83gHb7yP8tmFtmKALcwmEYYQnwr33KtXMHdxGil/lLYe0tUoDP43aELV6IVryavVRR68JmD7JrATTUPNLWunGs4t9zWrRZkXmk8VbofIdFxJ2rRqOBCfJuEbehaHHiKOdaBTF01uGu77Jv39xrLzrsKjzg/7+h2T340FuT1E6vsLxiTOIC7oYesGILjEFvkEY5MUxzMg27l0qAYMPujAm/V1PBnEPzEp+3YTwETWo8H1aQXsTFbBLVtRJ/TF4fgUTMUPqg5nwsfq4dc2398A2pdt/DzGdpjRlRaXBK7t3ks+ugR5v6qea820kd0yVGATUzsPm2lhXNJBXaftPe1NSKpoHNDNCrTg1/3ZQ9rtHPP59hJ/mkfyoKvoEguJeZo3PtBdGDXSGZblntIH5r8y5OyXcLXRkpU3CPPbhlaOqIeCn8WqTgwRODyeaAAnWpavxHla6w4we8YRwVf3+uFO9Yc2YFUhF0u8yJZ0z436wDArNqvLwYGP1stL+fmC/zRn2qfJ0bGP+vYA41tnM+fyP4H89ZmwMAblM9cZ0pdwy2RY/cNr7c2ub8B4HYyvadMBe9VsvQWrGQxTi6K7onqqkse4kwb7C59hjOM3HWLYkx+3gbJYAVuT7JBqaIcOKXLo14Tlf3GYsTIvKHxI9MnL8cOzOQ3wwtbFdQ2L4vLNxSsh9jZTEnYojZBO2vsUXL0tkoY4tSkHcKHI6c+KLY75dXhnC4ixfhwzzWx40lxGUVOHPmj1GJOJJLZHoLD8yJRk2CQfZeGSGN1QZ1Bdal74InVW2PriJoHE6MW3oEq5U9b1UFgnSnuUrOmzf0G3zEhbaTg3C3yw3iXoML4dl1SV1IACsA0evJGAqmjAxgK3lqrSSlaUZu35Kjx0UUJndy2cuC4pjPvV3PLdfl5WhP3C8g5Lzn2HPjxa3jT4XNsFYVlOl/AEsm/EvPrFm3SioZx8EsNzTfgmMF6rC6mgkF4BdTI8AVuteKxQe6zRUPiVr6W/9ryY+hLAmPJklZvZSDFS4UE5WTbAs1sImklVpNYE8q6Ilj/FvG1Wf3p2FAiTlH7x56hSfRYscw5Ym5R/KIPDHkktZwssvGovKkDi4dEMFRPtZl2MEjRL0wnTWrPke0HiAsiYT8quGf11nc7HpY+3qEWyzfPcxY5I0HorXgCPcn7C+e3gmK+IEMb3Peg7+pKhFvJx63tDzQhpIguOuodZJ/WWzLgbLCRForH7qGqDiTrHyNndM7fX0xSrfmizkpxYCxCaiE4Itba/qId0THdSCa03plkr62MCWn6G3FzfEiLbYObxocKlTDOhgBOLeOh0ND37K+ii+uEAM394et5Q+bMKq8iDP5LNX89KBpdmZ2qqfCbJWeyPxp3ggQEKWPpQQXPgspYfskSWD+eptMABU1GZt5jEEdv6kkGBjFHxNF4uWYyp0oyQ3y6pECdr3ttn1VGkJhQltQIEzCufvGl53mTYV0F2Ey7aUMhUKB8XYJSbZM279iUiUxApAsB3D7jIfZ7D9arfsdDDaCunjCd/fT7lNoQ551JNeolYuGQ8O1Op2F25veA4ndBEVl9gFMTzAHW03TeXuj687AKyQk4eilzkkq3sYmRqHuks5cKOzQn1j5SObSdoUD95C8YNNpW+B7JVAflx2xUrOOVIky+j6RL00sEFlRDcR7J80lRWgy0E4qtypBXXSDlF1rTx2Ksnp/AUEAMVX/Getx0J0n7YI7dozBUsTZmItD+KVAnhWLfp8gkgxweb+OnTyUTymk55ArcuzQgvzgcFADwtyLUCjRMPoIQEjmaBmyuKdmvW5iB7NGtCoHzBfRT6GQ3Csx2TUlC+zBO1rxppliXiAA43Se3yCXpl0338sZVqmQKD79+iolOG9+R41F33nTaYaLuImB1PgohwTyOwIaaCe9JjaZ+eRXmLmp/wiHNgFdaxiR9nqMSw0x/HV6i6ZyxGiyBdYmySVgr+h/bwjjeAmXzZUulX7QAFV+tIyNEX9xoB4hzzf4Ws2LXmabYNZuX8gt08IfLwl2+jpg11jMclGOOVOAaYl3ZCJOYzeicGaASwKQDer3MMppzXIJBoNlh6DbJlDsajYWooWEYpSekx0zZzcgkEgPMSJHNK8aZG08+UcOeiUS8ImoaSHPE9aLMLTxeN7YQsyvSzD3Uzauregi4kudlRv6Vk8vy6+FGYoq+/vorp5wTQXLsvVsgTFM2h5sRhQZNECl86equuYOceD980+NZdEW8uFpcHgtPKpgKbT0fpG2APR3HPKAubmimwPgxKwNNzE7JWN3jAz5SQ/lAVZ+oBk8oK/e07aHfbKZu5/OBjewO640hPSLXxkCRg0VgvtQgK3johlCvTvzEiA5Gw02RKo1WwaOToEDuW2fWIUEOqr1gJjn/glkAOHER/h9omwMzobyc5RN9sOGJxImgdQVlvK7sHT3kIuEgNDMLHGFQUCZi5Vl0A5rDgiOcGBq69TaAlhJE6W4G2iNjkubUeLNn9GRbEKBEG32nOBtzK2+VkqiPdixn+YPhv9N8PBDfRfoOqzNzY7lYXM/Z+7BFIrkeuFZWY6Aobkzx2kSYVDvfnRujxHSutJfYOerPOKJds/3YevYl6tlclTf/R7ERbRQSWdkiuQNd7M2iIvH6qm9M6Hb8WLUS9zzKBxqos4X4gKCFDrHtQllXrREXEYETT9adLwoJ4RvGOsyp/wM+lKIJDQ8G4DoErUOEbArXQpx9U7wdrFLtIy/0CDN96k62CJ75IDxKehhf/IvQa6Brk4lJCF+BLmt7IXH0EveYE4sMiiZNDtWmDh1OhZziowXJKQDkReVH7vyaxl/CdWUjIVB/pqIZrtMq4ogaYZ0hdVmdp62DF27GJmncXaG6CKvyrUE/lGP71yPxe82WBwCpJf+2tmXHub/RrnwaB9chqKSR7pVapLJyn4GdqYOI6VBF0KazNYR1nSBlbBeVXHlWpwVYY3V0PPEhr38pzs5xfkMfqOejZoQtw3cvPY2TZZRnh5Eu0JWe9DdviLPWJdOecNyjwit+pHu/V6anFhxX8Gzl0mXSIVLWGc3o4yI7RUhFdj9KKDRJkiufIGg0frtQTr7Qm3PrBHLjV5sQVmrKorLqEe9F1tgZZZfmmYEP2WXf9xMoC28lP/Ma1JFNdn8rBM/DA11ITqdWWPA1P1T8cwJ+dpnCR1EhNjpttnn9ijI+0jX0zj6tn1pWTvGPJYB03Kda1GrS2EETTw1EaKgFm/9Ks3iC3ZKhnFy+BiCLlQ3SoWOGnXU8sMyh/6G4JrHYnlVGCoWqy4WXkWbJLEwd5e+KuMx9p8aMWW+j3qo2alj820VKVVNP6VMfZA4chHKHLPvGgFzyuNcqkF9L5KwOurMllhlvSHMEgQxY7ZYcN9MgHLJAXJ/wHVe5vRfTMNEmCh3I8XKHWqc+JBmax1AG+IlItx1X8i3i8C/Aeomrs9sGVsl6dTn5RXBrJ+Zh9NZi5MO1u2TSLd2+/CFpLFIXZOqEqmagI360KVAme488ZyMTCGBcAuV4WfarvRG2ILZsp+btFFCdO7AAsfj7OyfFSfYFAT17GYyXwpV9mm07zcshLT67mhobHrXWM02KAlPNErffL4zc6OiuaPZ3COOgG10BNPmuk5297urNGfUnsYcCYme6Fz0TzmvzBCdRDhJs/p3YWZLrbw0I0F1NEmuzSlWtKNDYgXKpP20b/4e0qLr2lxdJMolgqQtXc8qV+K4Kir25sBD2fr5fg2veFl3N0ABQfRAXpGMLuh00C2DIEoeuPYlQ0LPFwgusj0oAvyYxyHH50OFD2OUShuk1NtjFdIiYTdd0Zrl0p007Y1P5ipa/15qJ10lPcQReboXYGqyXgPSO8o1mwn+dibmBb1ZERq6GisBDW2KNrNpK1bFq6SYxAbV3zNSIK9xCxYVVDZEy/RGdJOar+/jvPGTUdeoEk2LDrfkJTX4wDnVB4weqw1YZO1arzYs48JLnROAkH4c3doYIGG51MEKxATX3OPa91tw1NMNuNqKbauTZwAp6VlIE0nwTT5R4CBHuFwP9e6p651A8CqxKZ6IpGQ+kEsRsFycjuIirVpEhBLIG7omE4R0Xb52pgI1CuH35x1TMZQJHUpdjFCXYTM7yQftp0yZoPDI/pR9aj0rQfhoc8sPsAG8VqK94OvHDk5lftbtOC7X6mgpY+0L9ftxk8HKFrKE07mBWtjtqbIRUK0cACftCu6M8pLErVhCBIO3Q27jysOCgRTwYqcfCNM0sWFcief5LeoOhpSZ1ptBzsm39K/ZozX6gMQfuuhtCDK214SFAPphS+DQHPPE0ixCKKL5r1vWffNNLa9AoU1MKEk9mbH4ihdbmgcz0CrMGB1dVi3wVCwe3RbC2g9Hl3/9XxbMroLjJG4LZjhN+Lp1xSGDasrrPrKd6EuOu3ZjKJ9L5jGe8UtlRCs/90bWWLaXZ72JFb+2R8N/rFChybLMlPxgnMSnqAtM4IYmNV6MaRVEY2VOVIYwH2g+3v7jTMV+5lTSWlZx9VgqeqI8neTXLVH5+qHGCNTgK4s5k5Wupsir8u+0pI6/G31FPuadQa0+NfRtWGyHLma75H4cH4LbjwoYIpe1F0IiUklfP98pkuGeIKAkhgiSve8q4KVu07Wn7NByLkLVnWBJoTIgOF+5P8v14F6vaEQvFv+vpXe6eG9sUTLoJt+vtz2UaJk5Dsku5G5B42NFP/X1fTJ4LTd/9bopVf9Tlbyus1ErNlbyo/in/R8RuWP6VEozLXfJbKU3NGGsLWsuNp4okZDvAYjcUZi0EIjOMIwnNhhFMvzrDtAJjsso5GTYwJU/fwgeFrhsZZwEGoJ48mhUmD85+MQbGVjNezQoEI5euOAvA/gkI+ktDmG3/oGoAoOqIs/8qGXn2Hla1nRS/+MDKL3WBHbcG+7SCKvXB43f9luBzPNI2NIBsQ7lg3AlYLzg3rEilAE7dnb1AnEtQd/BLZk0tJw410OHveuadB5VnxMVlntTgoqVr+3QHQCHEHUptd/kzU0DgbXg+fLdULrc6zknq7u1Muq/DwjM05TyOrUy8SY1r9alLbe9SA40X8fZ/S2tf4d/tEiCxU6aOWvk6dZ9Q3Cw+hiDFjbxX+5RqaDurgx+KQ0c7j6s+T2M/dPIvTdE66iVK0u4mTMzfwSwAdjgjciYhP7eY5vUJTOQqtKPa0RbTtryCYy+o1AuKCF84uBR4QK6Y/PIkxprFyWCEbbOtc7OSQNCrnTTXuuwQZ7g0ZJ9LWwEEanCglDnoavfPhd8foq+RfktdwewUuLYm1fqzhOqpWMsfPznPw0Ea6GaURYLJ2uPv39167qslxs0ZFuXKFKdGqX1XECf5289vN1RBLTJWQ7SD7blCGdGru0xUz4tZvgihQHY/EmApj8AoPTEQGBentuwmlZJrNN9zQRuFMtYJRhwwsJbuh3A/WGA554mZdkUt9F7FZ/kKYcI3Mdad8carczTB3r/chAmMpJ/1DcHutWlfjwOR7xpHlZjZimKPCdTZuILRuiqLqoPR1HYUBm7T+jth/CzoJu3U3qMWyn22GckQkMfVbB/ofjE87JeYBMPNLLfFoUqH6i3H4HDMiUoaHF16PO6nI8Qf/yofaoZId3vRzcTe7gbgx/le8ZxOSCDyZPkBifBUTmwar0CaUCf/Ptrac5CoF4n1JOLW1AA/e1q/36o0+fttMxDiYwylWG1fxHU4EP8qCp6gUHJgz7IQIxYhY7ZH0NNW5kmxgWxfLe9ykyzOR/CVWRZBt9X1/VIYoqFHFoEE8r8PgMZ5tq6v15g2lodOH++88OpyxK54s2e+afveC0xopQvFov7BpjRhqYHmYditaaXFk7BQapC+3VTQ0QT+/1wcbJA59kTma9n0LcxmxiRdBviJANQaOQ2ADJKnSHhPDk/+3h+2ZmdYy/M6RE6zcDP8flTNj6np27QMjjC6irfAtxe/bjJWdrrKLwgxIcW6LxXSJyu7egts7+ttK6hImrU4T4zTd8+k6hGfM6vMRzc4ezkDiHr/2Hn5XPQE4oNewpZNx1nlGf6tNeNjq1nPCK2BT7443SGnlkAnYNzBA5tvlz4bmH2LRbCyZO3EVcPC3iv5fnthXk9x+ZseiIP9w5O7olPc+x1H9U7k4Udg+tIyXqtIgbDLXXUzTnimMyVjajBctBk7JH7Ue2rOhorZxv2rCd+CKy1CeUDlc2phK//au0PRuQiJq6UE+oSESHEsW+QYTn7cHhNGdXiKNUQthugSEq7Ncw5nDOuO7bax/kioJLWJTmOW+K+bscH+QYb0fW2BcYCRtgRT5Fn5v1nu/U3s/jTQFRIRBQedv3Jtn8RIuMJj/rzxSQLVAIRG0g4Rs0dmZtqoWHk9J0dvsXE/ufvPeWL+OuL1BoT7jmw0D2No7xHXzsI7iySAcxX+1A1DWTnnBUKQPFfzUbUbT6cvGaOFuM46HLOkgJadcAKXPTBo0YMQK4qNU5JdpZkCJ3jLEgc3XchCf8XESOYTGjj2+ZOUJdBYBly+JHrMIAPb80ggmoMohX6/ROjkzEOi2POCWQmCqeDPEXVatwdNXJfnPT3QfrIwKxZXN4cY2KxOr8J7Wede8TBLq8j9AjSIT97MtXM/XcSnE07IYjM1iw/SUequ+D0zuF8vgdMXZYdw3rbUhQHAihwNCUaqtilCgveVNN1Tr/uGw++trdAILyihql5W7SqX5JeLjb+ChMRGI5mdPk2z/x63cpUiMUBzqDR4b7LyY4zMmws9U2POv4REetkSczJUf1WPMVyK2K2Cig0AI8K8OV8///EliKO1nyMJImT9KlrtpYVtMmqiCbMC4pgTKPmzKQUKlqpcFHQQ2Gi3s7AKNSSP/Le6grfiLntbnSZKyRWNfeAriiTy0LgAhVJ0Gf25SCUzOyDlbyza1n0joszmy+op1pPVJSSh1WIwqJdCWqxpQmbq8JBKCcg4qK57ySTNvxaixQ0ucf9YnhLeLnY1BYDi7trDyjDeS/yPf7+2nn5e/cRMGwhAFGs71uQeKusGRUpCaNv4EBwCEX4zdW+FWZ6ZyBLmS8cULXVVnK5fh5kGSDVWsq0rVAgU1+elEpaIVKEmUyBJygzfIRSpwvrYjKs0oYUwUWaFepYS8qpJ62sb4PVC9XyORvp0osS1rw4GD6CR8Ip/RWnhMUOYRB3973KBgVPeToJ+yBigtcXHtDyNvUVatiPr4yodCqeMGk/onRb3r92pgo3lUOg+8WzCQaB+jp529n1awh/9P6WvbnEfXQNE+T6JiJ9uj7q6cyWbuqbRf35Y8ciCpOVDlTtnw9eKftw/5iLuvZbyO3xX4iY0YVeFYvJtq+3X3rE+hErHmVI7DKyjb8sdIHL2YcEol066mgKf0/+iYR+gpSd46zzRZvgKEgwS5PUXgoJjybQs4dIt39hzBCQY7YZiiFA8Oj//Wm7/nqVliKHnADmsDYygakNm/vmei2JvASeOxdjE9kM7NsxFEqBcZQSgJHkHXnm93tMXq7N5sHYDmPya5RvPPNJihSn46Rio5CbVKoMHpgb4bEYBv2Eh3lbL6+CWjDIzZ2iUeJoaDR8nCR5w2DzCFsKi7+j5WG2KH3PyHR7atTLOJwXl26D2pScXBXGI3b5iWhGWqAC+6cbbGbHEpGiyAWrXkY9NPRAwLt8lNnOS0Y7t4qReOhR6tWGUP2EsCd4vmLlmNJnEFArZ9zof/7vnipIL6LIfZMkX1gTleidaTfIAWR2+I0IQx2XUahvzLQpavSXxsmWD8Pgvso/JVSWvTb5KIIbBMLKGIycEbKxVllZiQLju/alKz7BqwfC0LZh0ZSFRBbQ+S0ZmcXCidb8iLvAPAFFaj4p0iIQZvJnFL6VpU1Vlr/U423uQlCnblZa9NW6x64nG12Fe5DAjkrACINjHfoGbN/Fw2yku+A2MFohvO/hikZBwhLwmEzyum82WzKI3Vt3cZgiEXbxrhfGktkqjAfTsa+x8ppNqDZMN0U+fmf6hIVsjUyXfhjBvqJiQdTLwiTNQCH927Fh+ZuVAmbtacpZWTQ+1o7WIJuUxR5IBmVpXqPnbXSeZ6CXiD7jIQ1MwK1wa6wmFlZ1n3/PO0M0ZEIvQoeDLSPYK7eAsrkKjXR3WtYMFPkXtUIbQljiiRUY8Eku90nay6Bcq/njc8+qv/FDux4uKrLBvPLM8NGGXcIQb9TiKMdcYDPzg+L+4+nzSbkGFpWXBUWbAkOeP9pWpM/Kcll4/PUJm8YAs04cRb214L8vmtx+5GotqZz99ErB/MfXSjwxwuRaaLLscFS10EaE49uX+6EcN+KI7pVrhIE7XQK4mf2qM6B+740Dap1nYTKei6voYwwfcaA5FpaXhQzqBMAekrHXeGwcg3P2kUdvmleGmyOlDG7gk6h4e9B17xKydwFkBgl0x/UvmH+LnGQGaHem5s5lS1G9kp1eENYdA+vVOQPsVRomLppK5BZac+OnvdU83SARjuiRBkAuH+YE+MXlPvqoaDT6oHMweHwbDfNKSytWb2qjuF9oyVnN7XkTj4wmdz/4arxEZSwf0C2FtZqRG9U8A8azyP/W6vQQx8ferwsEFiUEC+4fMVIelV1QcPuwW4WzrUC2IUvR6BxvDXEBgGxXgYoySiwE2gjNPUK5qINUJ/JKoD8XJL76RCRj8M05aG7ofJZ0nPywW6Z839TcD7nlnUX2CAICjGZs6iWk8zJptXRx3ywvpZvgvqzFgp0pjy9L7GDNNyOpRIbKuS1fGOYSJMvhaGJBy3/EK4TATjF2lXrOEGsvQAwM91y+Ki6YG35y0H01ErzlZE7Rc3NPyIKbEjVmU6mfQTN+W3O7SyDQpnkNZN+1QheH6T0Hei03fTfi3PofWXwDalFwBeoFpiTw4EfwnjoNhC2QLxEGjB7bEvoTP+CXuq9K8oZj+03qs5R1zqbd92RSdFQqoAOBMZccPONZK6Hft3R5fG14+8JcLOZQzScO33yn2B7hHEcwo8Za5qEzvavntN/GPUqpWymhXmuCxwp/Nd4RYOuhlTFQmx+CrAv/pj0/2js+qWTkPmgjOERaYD5eFesqJShECwX4sdC0SaYD9+B8hwSLRCN/BrvlcsGRa6CkDifG0xkmXD764qdqgbEX9cwLk+H9o+qMXS+WXq72mIaCTVQ7dEiRGKaG09Cks3n5P7VUUdlw9Wg18oKzomQysJnPaQq7nq+wMkbcIYEEjPDhP+D4DvPRJ89SSIYcuT08AcARC18YHJ4DV+EKyAHt+jYKbEvJwnMUs1fVml3tPteI8w8FezCyIflXk1cPv2rAwbeK1rzzmoj9SXwpE2Yawk5ZjBSCX/4Xw4rFAsd9520hhrTVKf6pGpffkMV4lYO7DwekgrMQxUY/ZETBTjCO9MeIiOKQAYuDVJ0PMYJAXBu3l8WXBlGz6jNEEuHVeuU1S50CYZcIMiw5vIq2pNqKLfFQ5suUNoKQsHuRRz54YOaP2wRk7SLbG5rXtZ6ly54kywzBpN7ivjxPzMaI/pVzb4qjsN06zPPJJoEoqga4bE7UgTpVQ9sNxlmgdfsIuGBkB5/AJsZRDX9UOPTwX0oXhXT338rri4dA+/n2QdFFC7TckDRwbPKVr2QVgzUPvI3vTwgGvWl3O5AXhA2GCCvQFq316FC3s6W/8KqrjFZh5Jzh0lTfaTPM8T4NzZr5YXLIftJxuu2FSbaIO239/fyV6yqRb+1lzB6NYB0JabciqVPU5pdHPD42z6K4YEl4vxMMMAwOdGujQwXXAqalkbypTuxlloN5ZTR3SNNpZDLFGLhIsc1JuhBy0mS3/9Kw5zK+a8ilYhNOp/bCVNwSajZ/q3XPYYDli5qzyFTcQSo1o/9I9mu2wEID/SMQgQadpI5KMVXCza5LHIR5aHQV2Nb6UQuwCuMIa0Zsw8nQZv4HlC9KFb92Q60Lcu54fAJO9Y+VQ5aSHhtvnkFZEBx6iDilPphaUejRlrXPEFiYmW/UUQESErfkWQjnXZzywtCWT7YZNBKrzedrhXBQ22XUSUkaflLBVqD+QhTfmvDLIwU4u/os5iFF+Zp9gMu9T4U3KQXmD/JUYkXB8fOI8mPSE5MVqVRdZ7PIN2AsTILgTKwGUyrao3YRzNuHQZXeuGcxMffB2iGHrCGgrXYOLgxQ4tn1oADzvLgA71s/ydDmPerR7YAH5tCLpWGM/Wlc4Zauk62am+buePfNc2bhtyS3dPS5mckR4dglRkMxsRTSsWt8VzAGCenLQ3CZp8PYDNyICK8nApFel7GVoEOm1j6aJwOXrODANbIttGuXPFOKjKkflAIMnbtYb4aiTPjZy6nHDKsxK2UOWvsDq18AMx9f1idd/SbzQbvVQPgxON5HNav5Pfjmeen+meiL5qr49L9aGrwvuVjv9x7Bx0fvbVotTOXUYUBOGvS7yliLgOthyy0Bzoj378DQiSZ74TFgL+GbjCAQw2t3Lx1ftPYxwc/9PI+rirn2whFeTigo4IadKshACJAynwwoww4Etx
Variant 1
DifficultyLevel
793
Question
An ancient civilisation created the following pattern in a large square field.
What is the size of the shaded area in the pattern?
Worked Solution
Total area of the largest square
|
= 120 × 120 |
= 14 400 m2 |
Area of next smallest square
= 7200 m2
Area of next smallest square = 3600 m2
|
|
∴ Shaded area |
= 41× 7200 + 21× 3600 |
|
= 1800 + 1800 |
|
= 3600 m2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | An ancient civilisation created the following pattern in a large square field.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/aebca96b-b270-4f44-80d6-e3a689067e0cv0_V3.svg 360 indent3 vpad
What is the size of the shaded area in the pattern? |
workedSolution | sm_nogap Total area of the largest square
>>||
|-|
|= 120 $\times$ 120|
|= 14 400 m$^2$|
Area of next smallest square
= 7200 m$^2$
Area of next smallest square = 3600 m$^2$
|||
|-|-|
|$\therefore$ Shaded area|= $\dfrac{1}{4}\times$ 7200 + $\dfrac{1}{2}\times$ 3600|
||= 1800 + 1800|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 3600 | |
U2FsdGVkX19wS/l/77AifRjgR0bZsRvFtBGL4KyaSmIUHVdXxl6Zj2oVguG91he844SGz/t3UfpKQzwZctErXWgkq/E32CDt1/9Rv90pb8owDemNI4O1uSCEZHLoaAQP8GR3dqd8xXWD/PaNqaX8LHA7u2fmb0lO6iIMBC0rrNzSmUNHB5FQ9CTnfNX54ZtmPtlum26q3YQ4KKj9sJDmalwJ4hoXzid5QeVh3GGVAdqWousMCLxNT3/NLSwgSU26nKnq4FHyQZXqQ28fbnvv68r/okg0aYdyyF80gprmbs6DLoYQxSUSg55Jz8gl1RWrJk21YEoOOnrNdjib/OR377c/rvKhR5PEWJxzw8SmuoIbHnYJVNCurYRDc58d+yPXlesB5FaUagYh7nEt5QGUzoyLZXkaBFtZDXJazhlIh2eDA6SozTOKUX8vY3jarhCXa2nKUg7CA5IG+l073lqCBFvO9iPzo/IFGrz3hG6j6KyPUB5Tcjs0hd082jDRIQXeTRWen7M/57gADF4eI0OlYcwFOA1k+1bx9usZh+4LvH/1WGBOJ+uxKD4gO3eVdcvuKKybSoKR9NkZJ9jADAye5V9mHs/PCc1anvS7EVmhk329390qi07vvd5HoRdUbwIfuOLQcsxAxUPkByzWb679AyU9/UXLV0oFUtTixJEar3y0DfNHXoguoHwYoIHjXM2GPQB3x3151XM/78b9Nc5u8gis5Rjf9CvKTHsAGzyfAX5GtMBdjbhQAPp3W6SNiWlSNVxP/6zGETK/X98iQspvP+M9heKuNHNA930LVywmMMfA2kJwkPPDYNpGgzK8Ua83DP8kmmVO1ruxn+YBYJ9Mm3wvvdeMrREkj9Btm9mYYICi1VgDgX26gn8JPgeL8CQryC5Ce6zmb5PvclfstplbfY4vGgv7fb2BYuzKU1C/aZZOwXSuZi1noKZ0xLk5PM6U3/qET0zIOnf+WDnwYdeAAENz21QTDiVObYWvvWvRhwxXt9n39bu9jZimBxo5+BDeCTHdLw9c4Po/E2LPh9RqG7QxY9/urMwTcX6sPAi1A07fDCsRgwItzj2fC5G0jnFOMgbwmeEFn7xoXqiqedFHcAamkZudLIdqyOeKz3wGUXG124zkY/yHycMCfRwX6iXauIj9VHcvoDhFvXj/rkIBIhbNS5zidzIMXm9sykZw5PhFxZh3bcz3eZullm0cW/iGsO37+rUBLkHYA0DGiRUYPg8jizhZOSGCVtwBrpAsvmQBL+ZrJoiw+jcgZHj7AlKXPkTNava0WYAKVhgUZ/Ue80ccegJiXrWjMGEx2QMweL5hlstykCfOTqMNqVOQTjIUietVPdvFN3w94sNVuOSp60SMJrYmy4JDk5DbhfULbE0nIdBo4BVYEOGCf/pEtqVV+9EAw/xFl316s59WXpVIpVv5CYKyiyQvsiyAoXrHwYbjUc30ruFTyiazMRk4oaPjtxAXoZepHo3hRUM0BpVHx/wUYHRH3Ma6QNBnki8eQQATAHS0cXu83wP47DP4NAajElKfoPN7dXTMULXBCZFW7+5KhPTY3L2/MhSxHbQe0NxTiqKU6n8ZlPgcDzBK7h07s/PpDUGprRxPbaYgg9hi4MDSuUsYxOd/Hqc23wSWLxI46xfBsmO/ER2HLHAJNwY82v6v2aZjKavgas2kXh/KHoi0QVl3iMHYnASK11DYCI5/+Ep7qfwCYJa8ukks3y75SM7AC7GG25vLMbotqYBb46bt1Qc2EIgNjziwz8ggklOuyvP3clPLBRkOP3PB5DBa5bXihHlTaTUuJvueXXvOvoV1TlFxlejhoCHsuRpPzZoSNmzOWZxPWg10zZV97xFUnsgXPR5BTnxIBLpF5EPzA063nFfVwW5POPmyfuvXrqud0cKL65qGBl5SJQToSR2q0lTp5n5hnZthYeo1kFLSTPRePl1hGWLCpQ68nZwUSmd4a0MR7E/2ZkyXuCjC4Xznqa1DZlwLa6QpT3t0vMec9geYIJoJ9ug5DZLJA2vOFiqop9x2WV+Z6Z8Kavf1NSDbT3AKp6KJ5tstC/otPuF21AXlhWjtLXWojhf3pCOQEP/cgHBiswg0TvQL3lTBRLXEYk9w1KhIKfzicYQKpoBheYzxG1Ndth9aV/1MVoyz29cW9TXQU7m5Lzc0UpzVc8Rr+hltJuv422yjd8XKWOOM8ZOdOzWRmjmKs0t2Wz5tk0B9OO5zflcK5i78eBWb0tidkQ6d+zc9Hmxrp+yxNxL97IEBJgOq84WWAtXoRjdK+JsUBKRdnEHanjpuNoGX5s9zFC0/AmF3fWhyJuqjI80rikGM5xqvm9Xo2y2T9XgOfp4QqdTLgc38AIdqqQ7KC+mGdILaYSkyvL+xww5WdE9HDicdguWAQegdfyoGcJZNyfU4WQmmEDdUEQw9Vp5XU+32Vg80DFPZrzCHUAfioKwSjpbYua4LbL7w5MASzDpqWo8uw5PRH6dSzW8ovkDKwCcwofdKRD2J+LIMn/iJkmomu738aJx1n6slkId6FThhJGQr19qTUp09uxO3GuE0Ru+TEbwuK0Ia0w/63CroUCq2jphBCcM/kscglpbGnO+iTuSo2H80N5JEh8hZen4OAgO211Ir84FT+d8FZeKqAb1hX/i/ExtGycMV7qhIty03lOSnpNtHfvopTdi1duMAg/pR70BW2tWlXfK/ooaVMYCzNcSf20jnAxu6sjYWk1D2bn1UwWYAlksZK09Yrs2pCv4593upjMLYRcbrRcUxwHoRcJ7/mt2oJ6dXUcp3rfp6DVRh6b6EyJBPdCbvDyDv34g14qgugD/KpePZ3+IiD+tNFPurng75aahE2uBOA+4nm5RrTsEkFlQ/22DOJhTcivV37Q4KY4zrHuNSU92lB8ZK7BHPI88HKoW6pr/3HD91xR8NExmUDACqXc/Lu5XAtfbsVFNE3Fu6dh8Zq/P9dPXBpLvTXFwu71IeGi6sjtHFxOLhs20Ijie1D8TpdvSMiyWTiLMIKADV7Vi4Z0VTFicsxd3FMXZUoWRRe1284ex7PC5alm/artx6FtnNJzjzjQX8CBrC0JgZ2iuQd6ccWWTYdi4eENtiWqWzMWwLss56g/pCnQf/ZbvGNUBDS0T7B4Re3qd5YGgSz+nUgsrJBKKe0pJb9eXFDtbqvWmHLoIl9IJCDFwOg+FSeByeQH/wDHvREPajdAqX21JOIrvzshu1+Miho6RSDzykLuSU90W8EzM9IPbpDH7bysltga1Lfr5bSZrCZPCRR78Iq4ZgL3cqG3/+oKisgoflJKh2oRwxkb9Y/+U+AiIO27ZW8vk9p0jfBmT3AKzW7lS21GQUGUP9PT4clbEjuz/gNF2vWo+SEepgiuiu3D7U3rAzO5gWjGSp3zOuCYC2HcFzFwVe4zttK0Pz3W2vYjt0DcnD9ebXuza6VIGCOQo4eBl2mE5ziSjfIKxdju2BslklFmWQHR8VpEc+DrbNQA1yv36HPD5aNXCPZDwx4zUUxt/5rXl8+vWHle/EZwC5ITw1/n3C2o7DE5F+BITeePnrLi4uD9xTn/5yF3/sjZqeJP2cPi+NFxbbvBhKM4NKE/wo0+vkrxg2TCERGX7o0y04s7ul4CUiukVT1ciF5X5QQNb/CI30k+/3AFQV6tU53BFgNf3ZZ51O+b5vfqfowcL7yLSYj1kpET3ane67KMRRIYjcyXjQCqhfDVFtFKab0CLTXnwQt7sD0EenO6PwW4pTysTGu5uhZ2/7HE4KJbN0rKtB09lIVE42XbmcIVHqqdtUntezYQhAvn9q3+etrgrkRmr2r1O6eMeTEAyPbjuBAi4Y4Z6V9rTJiRFBY2jl+jDszLzagiIVg+Hfos66lwaQtIpZOWLuzsv9gomsE3b4tGYbGaIpc4Nr9j37mj1ZQgaDeakjTWroPnrzsb/9J21DLUEMaYjtr5kZZfSlHQd8GoWtFcFMlCeWc6qRw8g6ifrU9b4VCrvXs8ntC/RnI79WskawO4T28smaG7OWolv3CptUBRRtWk6b+pPeW/dqs2ObZ4gVqJ21BDPGiZ/nbtLsAF7X3ozzd4pdUfCdaKW7mmiC10bGJKX5TrI5wUUrh+3/uBjQOUDB1J69ro52ajwaQgUUXrSYcQmk/z8a+IIhTT7z7mTGRi0Arrvv4i2/Dt2ikbhlcEyR/4FYR8gR4Vngw2aCVlXsrRjd4VTOhrhG1pLKtUNkIka3SZuXAACI4fu9nW1s3ZnW7UcPvJcKXO+C59tEhYEFzrwCZHrD1zx4jAPPkKCf5YIoQYZX2b6yRdesY3oTvlMGiRt6wo2K/uj3+EpqC1+NCxR6E/8oY89iKKT6PTTX7893zGCiyORfWQz/ol/rhaCyXXjTe+saz/CgLpsIrhL5AmvJax0N/4l8VaTD5B/BZbIA48L1k+dSIALm7Kv9luqO1qzgzUft3lj/kaL7BsE3qBerjNhKb9CbJh9O7GgbqIZU1MiafxwdB6pZd1IblRwQDvloqYAs6WrsjqWHGnvJZLPYwVPN1xtRtv3aySU5x1fH/DNq1JExnLLiF55eOocL3/lN4DFTCHRSNVAKzuHUF1o8sxXSfhScTXtCmdSBTtZieen0UWRRuq/klEDK1FYtxUVv/EQzh2ZNZVDVomyMp5oXLefeTrWRY5tA9HRa7/ISxK90jwVjlDLEMBXOgfXkKYSzOdQTCy4dMVpsf9C333Yn4+V+Iy4OrjNZa/cuQ4KmWnIoI7SIJ1kDz0tEgmxOQwamvGeym9y/Mitg3ByUv3MzIXT6POERLh/qxz1X+HYGcQWLuH9tzN4WykfWECiZXVGeaEtbWcKBdTJuOTXg2pa3SCwXisSooh7fHpMG1Fw8Fppvh/QB1xvV0JCeOhyBUN2/CGk5GGuKIJKHpLfb9BlkDSsXVUiVYf5b14pkk4M1QddMIDMSy6mYW6GezTJganIDZBc2OqLt+4iqz7guaqQOCI1uOgxIQXWlYAaYofruDs22bM0D+NHos01bklAGyKiX5iLet7lvi9l+PTKtYXLB88un+ACb9lpcqnxPy4lf0FHytI1vnH/dxCAAG8VL/UropQPAa8E87PpB6zvg0eO+C6eCmYV5u4z251tPM+6DnQPyBZhaaCWDy93XHaQzE3CHbuF+JKkLFmQowcO142w9Tnvyw5N269NMfWNgaGs8WEmfh0UHJ0rz0oazP0FFDuFnnNFIowx8pPCVX04bHK+XHdxVNEG+IoxB+33OZhicxHBfdjefIEecA9sJjlnheBUXi8CwBLWQNNOVCCUlzB4Yq5exRGiKn3cgXDG/8Ok/iIPXl+Lim8UeI2eXgJBoU8xbsw6l6BmkVxTej5GHT0zZUVyDkvMMc9f2C/lw3EkXRNYis0zuQ3YmW4g9bdecMb8Gm1OwWtj3enYTHMzURQ3QJUwNzoJyfIWQ9lLvdnukCi9tp0AVRgMSDzX1DgQuAPU/HZ8LP6dWqVnnETTtpvazviIuw91pI1k0Wd6eABlkMcBqsZC0cQUMk1dG3IxvQfHZV6Dzn74MvgO3r+bJz0Y/jlz3XCqiyumHIE9kBCwJBSuYk0NuCl7bSIUZhXkIzEKPgwM/JpWAycN3To3ZYjXCXsXSFmx4ol1qWbx125CHxrwIlJLWSA0ZiDcQgtfVeNe83hVPbbqL2iwP53zpbWL0vGp0UbGzlAABvqVxeQcP2Z28RG4AApYodJFHbE4gs0ZyRqpzpliB+zYj5tzH55LOR7vW/YqKCNHTKOj0bf2gkVGW9DgjKrnfNf7TcGtJsfwQ10TAclqxAZoYFXFFbQ2IXyyh/fmi44AVdMyterjPT/7y+PfemcHuy3JuYcSCOeKPjDmJQVGAqDPARb/b1JJlQj1v3m0qnKgVrVWW6UpEyGDblIqWtpvKprcWM8Iy/ox/OoY0AgiT50uCtMDXM0N6cmZyGMELlrx43QYe13vZpXdEKA9MBFpQ/kAUptQ/FqEhh47jXzuQ9EpBRn6E6B6K8PnOeZK9WRhtBx6De7wrBQT/RioDtUJi8pGJ1g6bqE5yfrCI2b728WcZwCd6uTDsuKLKreqtF2DZUKR+PLW+585ECihIOjnRLjnu6aLWJSmCnU0KB1IcPh+ZnIlNjm4Lo5bTxGBknS37NFtnlCrUbXSNYltTvDyzeynNzH4YB8CsYuSfFxAThmDzzAfxqJbFGJFpvuTHjQZ7RNkSJyidwVE06FYh6kRouIzKV69EKCZ+uyOJJIGds0/WPEWQ5pfhTgHkdxjFWeTmzL+nsoNlX6HKd/x+lsf7rK6ehxvutNiiw8zfeg3aG+3Hy9pqhRuRVzz49K9HEOgiOcKtiO+fZSu1KhhjgwhJOJ+QMP7KAs4iMKw9QmeSMJ7Fyonp9v0inyyIi7FJUukifZ+jDrkPt4lif8+9A9VCI8u70iZV5DHXZ+juwZrWEV4mArYYVIToQ8bTkO2YNw0OH2yNvssWmikp8p5QMzNoY6uvv7Hqi/12gw7GBC1vsqiSOa8oYGtIXz7CwR5wu1EHzNmoo6AARrHvHyqgbGgPwY3rclS8bbLaAyjSbRTd4j4w4mQtPafJzBvcWigs5RA57RJg4bMi3xR4YZIcNrW5go8yrhUyBNj5CUkvqgLEfJVrTME2bWS6cAcyoRh9p83dXETM18dEVKxhUuArjNfESUX1cvSKIvrro/ZAsCFe1E7TME+i90Gpc8RaoziRJs2+4yzXW8yPj4D7naGsX/SUAIzjInbp2lGtq65GbmWfbHMXKk4gsmN3oFpadUy8n7cnNkal3r5TE1z98jUAZT+4cTEE8ABCfHhlWRXd0cRgBV0ZOSXcH1JwlomQ8scs+/YMNPYJBJuscbvqQIU1AHLAoKNn4pU1kVIKrd3P+PeI8mDiqXMuou4lQwGlwVJ9ayWTZ3h7xXkcOyvvjOBUMhYi6AAhccr6dg1/II6DgpUJZcBQi74MnWd8gOKN2IyT9pP+xyS4UzDcFfCgXfeQ+9lcWGPJXGOCezmG47P25pkby+XTmLgGO5wEhSLR+OZ+8NX1IasAwqO5iXcfOQ5XkumvIr0PcZpyeu9r0tGOg3/VI1wgYw+KFs6D3Rhn/ISXy/lQA9bsDtohdlox1tSWpcII1YEUEcTPexarjsS4WpWf0RYMrNFgpOF/0a6rCOZNAmaqxQPHiBQ2Hp9vR4jt2cxFrP8iDjOJiaEcoPPY+IsX7KWjsJ2dqos33jnn5RvqZ+gTw35Du1oc0nETptlqJHDRaAHtC/bkUsjkL/zRHwYQi+Dv9REfvwfSTE/U569dVSc5tmWqb7QGRdFalVjd8Rd9Yk+SeQubGR6nH3zKDei/RMBoRKQzjkKwbZbyF127HechL7+X45WCsr4cru6Z5bSZOH/xUztxFpWZlpxabYOWixqGhxSjem9G9pqk4rk0urvp6sIOqH3WDGmjkxLJ+7dNRpknzL9kubrx9EnaaihjGmAvJWMvKwlKmQcI9hSR8gpGm1ctSwU8PsjOlG6oXj4oNgpJ/b0KSbZgxEHddJwKwPGUOwCkcnZvO0LUZR8h0f0drvRrrIgvuCrFY82Ao4/nexxQIXui45I+L2U+FTg6isAE9wYvqctHwgXJuxpTfdM8l3v7MsfQZ+eloI920qy7gowSxXyOgr3L4JyTfEzcoGNUZaZCfCuEP9LAI5u2lVJXc/aMmjav4wf1+gCb7t3n0Ch+GKKIuaqxBp5nONa47YsLJ6aHI33IgFVmGB+7bMuHyt+1BIBLZBQRNJCai0PnlkjkIwQcNJSQ1KbUBB98pXC5pJLwRS9SwW8VGj7fzQLokPNpiuoWGEhMQjNtI7hksNa4qUydoW0lfdcTWKYHkKs+VqSaYKLV8sY6I4otZ5BZvj4Da1jgl9y8rPoZ8vGcEnIMIaJyEeTrPvVBdYAlIJafLcfM+FUIX3AYxpT4DdC2sPbpG+x6LlLHnUGEs07KmVy4ifzGk65LF0thtcAuGQHzozcIN9sVciItFOpvzddL+gZiBRmgD38gtGSOJgWgYjfWudWGoEoLU4IV/c8r8FklE16nrh0Yvx4MCmVRUA0NnjhxHyBR3SRpBH4KdeRIcWFbwOzc82pYT1I41tjX6sy8McAvDA+pIANsMj/bUoj/sooV4/K6OV8axI4DlPdt+whbm6LH963yBfxtAF9+dCHJz8MV4+3DSv9f6Xcq+12QDhNMmNPWx3Hzavs1QlDHiJIyhyI3XNiUyN3oWL7FEKUKetRkJSjQzeJEBHYHZQbbl63d9JNFUwqIVMqb3Nu8qeBv5CZwu78iYgV7tQ5lWxDSoFVK8GxqVSXMo1u+/nREDUPhQk06NIEkVKM/pxzixNu+WtbQgT1cPZQMQZ0pejNjGqdaaLNi4RI0arLf8VEV24X92KWnwDeDWBZkYoIGpcEBB+GBOvA8hQm5Cc2YG7jjBYsiV1ZuoxNN3VQxTd6XMxLBSYiC8O2N/FWnwSf31FjW7ZEWXFkuJvPsh1RgJbcF6FUgmGHsGkPATpidaFZML8zTTktLyefvGmoo2HlF9YXFH9JctU6I2HlvyUmH4Y3fxkZZGwcLWe2HeU6DD6yY+vIOmXAg6joeoK54oeELHaaWvO1isIJSJvftycxUDCW/Bwich3K0nmlDQ+FTRh2ElvXy9OLPYn4JIsIdciGkVgF4FxQkt3VnbfcopEnu4++GUItdwIE9cqG2+O0RNmyWYz3i7TkI1MZG1oolLTRqPTrqmHh+SqaafVf5v6yzs4adGKKDTQM5PAnMK6Oz7tzmh1e4bSVjuPFot2T0Y/yYu5W+n4n0w6IXet2/utWNoLBMyIgMIkip8jIM76U/r5UQaUvXP+IM4uh5T4AmkhotpYX+ffTuNcVLOOJCqLKM5eYi8FEyoPwfCf+l9C26TiPDzCh3FnE0DzAhkYYt3hAvtqU8zQ2InnMJ6+gygY/JeOEZgOZrWX+fXG+M8PvXvLoKtUl9gR1AtUrG0SWE6w5BamdRYF8sL9yHJzBYRFn3/St+RcTmRb9FGTXGube+WXb7UQX+gIMe5YA8FJQ6kJcHqpP66tOz7ERPP6sKUhMgEkn6p1ZVMBSI8pTK/GzMf/xOJHmem3KvA1xCGVEXUVBYGgfqE/Bx2wutYmRnobjwTK+V38hhoB2t12kIQjXo18gO3dJNStDZVYN+r/00jDxAMlf88R0NIxSa3vk03lN/dWbCgveQMWFC/55ph+0PLmhxRNei6dFhXneF5ffSmAbJncPQp+eKNgE26t26xXG3nLVGbML2Da12KL90BsPwfm4Ls+wzGNwG4iVIb6x6AeYtaK0DInaa4ABJHp9zXFn5+xySOdvnIFMnIB0SXZ3THky8zU+kHVMnlp4uFSbCyQ6P2ZKCNWkQOAvkyVMtU453GsWJdz06dGs2/zN7xuHSAHwIx3RYiF0JM/bi9BXlomvgHj2nFghXVlxWz2caduOznzJsS3wYmXEa7LpGQDii//tYmjP5U4TNTv8qDWEgrQKSVqzwcvaELrUpEY2QLj17sKTiFWojJ7RoC3R0WI1jdUZcx/qL7pjCAZAWThs/cSPv2FPbun6573EwZftpJ08fNnc5O253kX3BHTvN74r9AJQWegJ0tiL+uZGdsA00aImn1VQUkudUrhVzjQdx7h8e5LcK2+c2U2gtbib5ryJPS+KO2z4Z3BLcpk+8C6H81UvwNCopO850R5u9YVeKXync7V/or53wkSNon7kMO2RnCMQj7GYzRpDuIkLIifxWyA0+akHFPHGNp+Vt6FheVKHU5b/NggxdhX5aA65GFxnBKd5reRuohT4SUbTl5rNY92+BwARuR9lFM80QetmYCzCdhul1d8R+je2M44h5eIgJoGnbW+ktOztgImB2Lkr47x6p2UB7mXsiCQzDIDoRVwM9OGrtv95x0wuAeXBmA0/V+FbK2Ks8dpXYaafpWU1ynCGLu5CNeJiB8U4t8Iqj8H76GSGKL3YjDfI1vrRJlAvKTs1vNkftjs4FL0SFo8Jk4zXXsMozn00IKuV8rfbrinj/Jj4rE/BJuf4PRHAbCEF+7gTeZ0h3wKr+lLZvSPtinsUpEhAYsNhHvEwOsJi6UKSHc/yl5a7PH8S0AritxN8NDOX4YcuhJ1Vx8i/wjMGHRY2nadWSkjj8bMHPyo5k9FMqRs+0mWYa2ZMi+VgJJu9R5hWYFb02Y4n/0csIlB8p5EbBUmiZpFuub68h3rZ1Tm7hk7FIU97UOLLq1dpo8zW+GLgIR2lW9XPyvusSMSDn4VVtuPKYvUX++kQJIcD7QzbT2FyjZASFN2Qh293iSGHJwS/Y0Z5LdnqgKTsttstI34tH2Or/skmzgzM5xqHlu7XKJ5l+JdmfCJgYTQUboFouyH8YhgBseiyG9RqCu3ScdXE5/ja5iUoquCZ1iE79Eh3A4s8mUk6gBEH/Rvss9j8tHm5gFEjWgV6sUFVu6npVQovUduuxvR/+4yO5Ul8UG6SbjgjANzmmhrN03IQTku9N+v5NLWZT/hA/gkAoHes5dgNIRSS3CTmrlluDsWaD9aDspJ4u2LHlLsrPowgejdIRg7NSqlfqIp90VVbNuJBv4C+ZW5aED1E0sV8M44oFKCj5+X3/LhPJcHdxEULN1nOmiFs7aCMaNG5WsVfBasJf4uz3orez6DeCIQd0Kttpaah95EpoivSPujJ4YytkpJbCCIp0du2NmRfHiU3zBe8dido1CartLIyrCMRqfhh+4Ukvg/0EbOyzwWScKA/m0XCI4hXwQ7jBaSJU98jCnwaDJZ3XlHL1Iv3yPTYZOM0633nvSgzysPy+TOu1KvUpS5EqS7hF7kn0RcyXKT6kFNZ6LWuM4LzoLKpcR72utmttKzzfGaDEy58I789CVI8cVHQVLlVzKqJK/e1NwobATRvXeS4zxNXEHOOfXLedlH1IqxwoLBNbGcwvCdz6HhltYFaJbjbNZk0CL81IyJSKmI+5V+qy4SlRR8Kmkl7Z7MvRkgnt1OreowUrizG2mTEMAoodNRGckUpKlmgwb4hwzgtbPPWVT2mdL1qwAUtSatugDgfIkTQN3Ooqlh3BiCsqz2FJeQCRGnGj2FdVcjk9Sf5F3RP9m9qjJnJhROT6JUSiDiURqUuykfpn9hC816Pz9i7GNvsrWVQ0EYuUpbRVGStyfQchnhBcQ0HUH6Ph8Up4EZC/z7eS0biuaM2FUl+zyuq79wTE2geg0pBf0dmX9eKpK1Ay5GET4KuMSmKF2RRH+ZY0v4p3SdL66lE7BkhRURlseSbQX/+xFBy0nZGfJF2e4rm/fQpOm8VPZqeUYu9+4mY4xSTRbH3fuICC68IRCtuQDfCNUHGteTo45C9m5vKTTAFhkg3kh8XoxZTNEPpb1VJjxV2JP23Kjsz3OGDJOS6XQTl3JiMq9+CoI7jUl7L6IvaAcrRpmwG66/6uJAI+7EK/lcYePaUMUyayOBw2zGhkxZV3yrmW7y9vnQcVA0PHJK7BliDdqmIFb4W+8VpAjiBohN9Ci4LUKWoCsQK556oYSQv/Ul86iOr29NYBc6zOhcDDP3j0SpfFzEbE+lfNkor8b6LZVM1Er49JMqtAmih5e+uq/BFUqsXx+S5difZiDJgiJ2o5weCYJ1Sms1ndhPkEza7SOqUlE/3nsrDGMk7YqgwbZ89dU6uChJwCHBGN60xtZEotLWUv+B7Nu1CFvoDE77UrhK//RnCoDl5XOj8ap9cNEKh1poqXrco+BnWeybPYZBUlxEwR1KY9CLbmsgDN7lMuSb0ix6oBFGjzahczxFYxxvZrcim5XbXV9iXPhUY7JOtDGyvqaX4q+F/pjwcQDdNG7CGJr34Tos3NaQF18cjZEtG/UkEJVHuR1wfq6r0c3J10LhdN0WKPcLPKjzqNfXlsdsMspGmypeiiMEy/ZngJl6c/NxBIjJXsfFTW28LoX6J9h5O9V8WmkTMhPBfqRA/Q6ZJMe7WU2VWZnOn3TjI2NYsS13kElQn20QId34D6TmgFgOjOtdj4mfUcoKwvUiNKK2ST07iqMs/NAxPRBvsDKKl+Z3gPSILR+HpUzfO19pxGIuGLrcUT/oprZn/QRPaeNV/smEbvOS4YzaT+DSxuyXXLogr36MZ7hEvqghNCgdLYJS+PdmL3o2RH/0O8OYEd2h/3bnU0SgP/Itejo4zhUEHRgr8uBk2TC90qpxC6YeksK49nvjU+ijOIcxsuAZnYa1fy1BPSl57DKJlTp7X62VSGBAPY6V/Qc0pBIKoIJD+8nJ/FcMBkhod1mQrdsSJ5Mi0GELmQIyL7FIJjzYCHft2/0cIhipZX5CkmS4Aqt9sqB2oZ9CvI1Y5opInPQR/Tw7F03LgMNPHvdEzQRCK6Vz83qR8GB5LKPX3ZRJNY6qIqi0yVRiUW3P0vg+/XQU/94EFEacKDLWVLgX8atbAAJ51SjGTnrEOX0YVP+ToY/juiPqgsA3SiiF5qaxbmadeHAwsk09Fabbec4Er82vWN6X6qDRTnMYR/DLd/TNwZU2bxU/cNMzKlHm/Jf5g2TYLzCSyHntvpbhKo4V2AiUa9+MUS77QNv8sVqRzKuBZBKAzqGgu2xlkcMXI/MAQLx8p8+mdETaMAX86JTNzFX4Rx33f19eFNA/vd9JEIQhJDLNKyB7cOeWSauNneFMvXZLieiguaJk6xUO7afa6jqKfhbSechO8inhgPmBK3zQOulndqCMOZOXpy0uy6ZRLfio4qcshMyJUNbUBK7DMNgTNzukC5QSHrZxEKEVROMhWhKJejRy9M+7Vs0qKpD3iDyuHaOZIT0G7jqyNTyzIpgHfBXTFIh9lUGG1FiEz5ESRXVwdO/PHWsFF6tI35F4qmIwO00z9kpidu7XW8YA+mkzF+dgdvtcWOK8SxNvxQPGyt7OkdxHHXXVrgEnZUTjnGypsZQzZr+ioaRmLh6GD4d8glr0CSYALaquLmmBMs5oPJ9CmLNuufiY9904yiTKaAryKtJInWuT87URHU2Sju2bf56GZFiUBJXPhYC7sWUr24ixYBps3ucP+D51ag2DsdcJace2SgFW2ZOOEfN3xhMa/IqEiIBaynj21FfeHM8yElqX96Dx00RBXrO2Ea7PJRHIYHlXiQKb6AP8r4HXXcLFZVxXsV+bdGW6TcO3rYHYPwje+bVf3mOakJlMoPjMGsSTOclgbngUReUunMXlGqUBfvLAelC1ru
Variant 2
DifficultyLevel
792
Question
An ancient civilisation created the following pattern in a large square field.
What is the size of the shaded area in the pattern?
Worked Solution
Total area of the largest square
|
= 80 × 80 |
= 6400 m2 |
Area of next smallest square
= 3200 m2
Area of next smallest square = 1600 m2
|
|
∴ Shaded area |
= 21× 3200 + 41× 1600 |
|
= 1600 + 400 |
|
= 2000 m2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | An ancient civilisation created the following pattern in a large square field.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/aebca96b-b270-4f44-80d6-e3a689067e0cv0_V1.svg 400 indent3 vpad
What is the size of the shaded area in the pattern? |
workedSolution | sm_nogap Total area of the largest square
>>||
|-|
|= 80 $\times$ 80|
|= 6400 m$^2$|
Area of next smallest square
= 3200 m$^2$
Area of next smallest square = 1600 m$^2$
|||
|-|-|
|$\therefore$ Shaded area|= $\dfrac{1}{2}\times$ 3200 + $\dfrac{1}{4}\times$ 1600|
||= 1600 + 400|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2000 | |
U2FsdGVkX19qRJLbNTEQa9yssOLX+Ic/H2LNVa6eN/aVG1PmheNm3vepKa4UQTcEBG+G4UZmyqGzuRb4fDv7PM5HKgeK3EOFTDrA4Xp8eC9u4zWXyk42HVXT+ppW/N1mIoxOzT35YyGwAy2iO1RctFx2fzpMmdVkTW97XDc3sYOuM8Kq5IGs2W+wUgd71FhVwyIZTVxb3cpvTBKF53XpIkvtdP3NMSHIYnuW7GxbI6Nz232SNshJIvnVs1x5WmAqcIB0o4HInJXjGXGHWtONE/2QtncEIDXFhfYYV85DnrKkQD8STy1Xi+3on2s7xZI+SpSW5vzidvIKwWLRFXmejJVtKAcihUBDdHq6rRQYynjVhjKaA6DPfOQYPDvq78c7PBzGiHD/NYbmSwEdmbQLcNpU7bWDGk5Rsi8lo9pBJJcs0QP5lodkMOYjpZp2kzhSSwJhcoNvC+4wSroDiiTPBqrG1KuHXqEiLTpGNdKGcARrgm7tO9EDF0ROKG0bfv/zABzM/0k2QDPvjQ227DYGNtPRts6KBzdhIXHVlh3IcYDUKxoOzYeHFj9rOUvHA4+ry8mVZI8wKgCbFkS9Togeeu9CK13+s2AvqH97C0dHNeljanh06/iyjgWNcSuuiFEgZsLsETLHtL7HmGcllGF+Dy5iibW7gt+zUsGaDAyuNz39y+0fuYtSKcPv78WCEB40miWOZeXBxGR/TvyQKy+YlGsGj1BxPpjFSCK8TdqhHufUZe4My4dYmbsqe6hoqrK9T70CiKImiQ2S0pbzX5HONj0fK9hKzKsQWwuejoa5uKGetbzarDlEXfFCzsZligHzIhvmhZQcgwzuzBbg8lrgCZu9UaL4FQEFPupe4Y4MNIswnbPq3FrRP2gJBqZDQf5ipliGDVAwu10zdMTBWN81IXmXKYNHbBVzaz9FG1kGskMnhJqIBqdk96WlWffbWAHEKXY32CkZdf2lTkKtu8VU/cn/RsWLcZbkftcmmY402I8TIpqCUO8H1SHh3DsbECEkUhcYoXngsqdpaU7mKqcoR+zW+uarseIp1BIZZeH5XOng7eW0vjTenPBP9fXE+ih8RVU+rbtMRY81cL8TP2lrJiangnhhP7q7LXXnC2HXplyaObKq4gM8m+yFz5SN/JTxeuNApr4cPGcx6cmgI3VsvoyA5/qO1VlvxbYpqCNhK/unGFLVQStHV6a3lmf29mShxJ/Ao6EUyH/jLfJfFvZkZXT6lk6uHsld5Sv+7Q0FpgFyqrX88FDc20XTyPcHhCR5IpsG3J4++IL/I35hYrcQuqIKiZV4b96JU+9DfPxBXm5lL+tE3lDHD8ZZHWXtMi73HVaQYR5k80QGqHNUJe8ZZobDdRg/jFFjZ6cNVm5px0DZwpYn6E7n2o1JvlZSgEwjGuCB6TmvPikUP8gIFp9iRKF98MH4xC1YD58mK6haUp67kR6JOUxB3tyEEPfsMRRHycrqU8F0RzX0P7/H2RMRligpuuo79+k8pEGMoCx4TEJK3mCTS6Ld5i2duBVp2lRvrEFdpREIw5b7H05L+D+iiH5j4RAJc8SsHjliGzosukP500FRsbZ50bMDC6oE8v+TdhTV5urJsuVboyf61K6kVMfl7MXy7rWC3is04kOPySilzWt2M8oD4bKneUnlpzE44EVv4bXhqAZs7ArVcJ8m5Jut7/ojggYyYQXELgCYEvJG63e7qdDT9QJ6Kghp/GNwgHfbBl/cZQgB8gVHfAu5XF553C8uGI5TMdE+1RqCaxCW1BZyCietJrapg3TBnX0WvbsaGdY5wUhNEpxYY9p62ds0vEkuQLvXTtNDaIpxIXHh77q+wqt0cicS7vPwkPujm1n/nNVxkCxm8rQMmZ3TXN/Y+A9My3PjRsCmHywpuEDWwuUcJR1d+nqpPhfmkduIJ62HkDp9pC9HfvIr2TsiNXySRxga8J62HoadvuwmiPU1rgo40SkkaCwydVUUl5A4f3f3cJDD/lXhZ9exwoTslCG8gK25SweEnzuWHEchuqOSG/VrNn97bBOBq0MOzXjz0Z7oRwhuBoe8mxwA2EgJOXPSXPPokqzMkgU3yCpyBGcppfMMq/TOZrWEzv36fV4oOGb39GV0yUj/NQT7/D9zakWHWLarOqerEJ+pk1BT4UHPNu2voVGiUKpR+Fjf1QeDLyQeTZ/gaVdWx8Ty3iTmLWVXLmvhSXSavXtmYRUMWjtWt7RsY6EBUu95vZUH7tF3XxD05ECCWoXi12T/QlFL0q+aWMhPk0ky4UglDFEAYCS/PO3lpZeO1nFq1F/oOVuCPom4fAysy7zaHGOfDu9/4CR32Zo0wTmGl6C6apUcMw+9McW1CgzF5Y3QodAw8yr7ayeyEhvkhSxfk+GXRTxJWebo6ESFcy6dUv132i1zCP9G3UL46CkW/I7ghoGYDSjdZUYOMP5/0zB/KnalpOv1lV8M+CpCIIxR39MMAGR4CHX8QaarLzpWMKj8LCxclcS7GqHizyu9BpgepW343rTRXGomimOf3/M1tp/D5sNt6d4sw1w6Y4N6Px3j+6VpuEWmuvkFcYjvPrtc6aBtyKZKAsM3Wt64nyTRr/F8H1QvRLVn+l5sMnUlxV1TRAAqfVLErHvwJqxA/UTnOlYk23cXtTWXOG1njgeQS2X76PR+GZ+qXwLygdU3JbKll2O6X047pOxfk12byqXJP5aiqyoO1EI29DSE0xDqff+Olc4XoBhlrU1z0b3HbDJgRgR2x5VUIvtObSpIaofvlXxuCoSBWxw2bsjRDlGceZsDqS2SYpCkiANYKfLhZSirQ8x3JMQeZmzNkrEojNTzcYIxao+sPMRtijLlxsVmDBnf+9fqAV9aRVg9pbVvtokz8eNtn3EfHhmWgtnovPkymcHrMe5Q5XUrZutoNGMziFzc7zSLuGgOKcLzziICCewcy8SEV5gwTN6W/UtXoJ/M1VwrrM4X/iXn5HUqTvkTmPD6/bz7PFheaYgC5PekdKV9kpROlpcZPUSmrL0cQl52DmIhrtr/atj14pZrIlF0Nbsmzn8ae7f+ZNwGDqjKFBAyQr/r7MlTpL1pfsW6sP9mdPamBUMV0dXt0+UoH246huIsFiYo1D9cEdClBHdROkz0Q6qFS7zHEWTzHvtUjJizhtUK6MK1lPPlyQmjG2NqsTr4RGBx3dUAkmAMifiGQGf+RrtQ57iG5QHOan3jw07gRpJaUcQLF5bHCQBQ1ZOZDI3dC/8OVtf8DTkwIh5VrL82DoYHFzV4CIiAfVB4cm+JzOoO6yGVzzTqxohFcu/YvnJ4XrrjXP/Y5D25lSPL9F9BRsrkbDaVpubH/pUWVgSwvIV1fvk6csYmDSopbTOtX4sGPNkls3K0nVyo5O5jYzAO4YfvT5B0rFR7E3u+bsk0DXBhEVyF2yw36ZN1kdav1MhqV7WSKqhz75cLwhBYdIMjGebuO6MMVeVlYWR0gyPCt53nWfswaDjZMrNXSZUBV+1TAxrG7ZyfvgxXi5V0Bo937PwgKKW4kTCW2zhfg3hITEDSWKVGe4E2akx7cX+zB8OIMlq6W7YXRNdk9qFkfIDw6cMdq1RjI/t3swprDswqiDzu4glOPOZHJBqIRP7DRhdDq+RihYCsDhnIR4M1P1emquUF+/+77/rRhDiB68ngcPb0IschY5rk/OCb4phuC1o8yR0GW7sEW2zS9M9UO+b1VPS+K7iDkf/eecqeQPybb719Kzv01uhcJLESVhFj3e5phr3VuF2PkV0G3lJzXhNUJqmEitJWorWZZq4ZaPRz3ymkH+mdTgtWQM5PDaCqupYI2c4CMFU57tPrI1THJJzXIfxlE+rM7ZuKBeTKY6fm+Q9kPSVMD5IwX51Ydd4HEpKCvDXTJVHMoWiUpuiHHuvNJWOP5PCgEn4SblrkQ4vjaJmgOOQO5W4M+jzXpT20O17QIEtZgBf5Kgv2g8yGEI+ueMoXh6VZZ/uMkF9bfMoDOaqmwilp9VVJBZLsmKKcc5EileYkOTWFdI0DnGv4zoAYRtuJFQtiQMmZeJwUieOl6PprUGPqrGo9Gxmi4TBf20b8KzF+IwKkGdR/DEmodr/um5l3rEdzQ1TzOT39cc7D+RR8OUt0dVJiSUna3uNhUC9ZvYc9oU8SA9CZKdLNbpWgfYYYL7Jew+kckIhvioWoEbLYEoRYKSzbXm3h/g3GuFRm8gYv1I2ZPkb7EB1/avQ0Xj18+bBhSu/SlKKZAKn9lUW4/zVw/8iNmZFIbQGW4ZqjXKV+iegpHnRL7clfBTCowkM8ddfxBuFM3LBtnfkkPACTmmWk+weBqzitZ9/tBRqLeEY6L7CtZDP6mtm+vPD3zLe6BT8wPVcdo4cO0U/0JkL1lgdG7O5mu0OIQLNUKb6k7N96AuWZ0Ij91RWqLT8f6AmsT+l8Pnf7ogE/NjqyMYQ9vSfvWVtPJ1hb+EXtZXNWf4UhrGeitV1amw18iB04J6Dn2iSGtTBJs2YUDbLUAo4oESYTSCd9bM/3kLNXN4TZFY8dAmsDwbLZDZCPqjHRM1ceXMWbUeRfoiVTGVxchE9H8p0DXeqMHA/riB96nFM/pdeLniB3H/v0pQLxbS50IENiCmsm4qK6/YzlPf2uN4YrwDDb+EHVGjgoggwoLnPPu/W/3zKEu6orYUYDVS2NyvjZSbHULuTEUO9lqZswOYn6u8WW92l6qvD+7m41rqH2lqaM/aoBfeufJxjSkjvoVEPtqjRuZoqqVdDEueyOu3LkC2VvCHbdR2TyEvwWbcvflMKerOl8rD0fZakdCHEA16yngXnnnYfyAbV8Mt8KA/t5C5tLp+hvuNSoNDSp5xbroxEr9Fo8zHB4G9im2PM56ES8BjSrRbE4sIvrT3juU1TLYti++j0RSPYZtzrT+d9iDKs31ZupNoYM+s/sxTQ23PyawHu414MspLOHhU7mz6FPtocaWN5Ccxu6fNfVEvZKrnLnM6acW7J1qfLJkn//N8/WnzwYERjzm4T/6Ix9ALBpVVeJ9MZhmmNoEhe7H/bPp67vaak9ciUKKJPq8O8A8kpW5fQAYfoMgLvwQS7fyWq0oGbMy500uMlBLuKilG0Pyzhb5u5bQA5TSQb+ZpxqWQNtCE0BHT00FkNiBEWD3QcgK81je5bbc+c48OQZCx/qXWoxn7PVqFKQQe/XKSNq2QybfvmxAfRtIMfUvSb5N/uFp219TvfRwKJG/Wov1/pZFhMH0N/A0jehxUsK4uPyPhM8EIgH6iKhhZnO4fNxXSmuVKR5/0doFPC+Tsd1HI8vnCdJtENetWffPHtMp7DavXggVVOqBpEacyI0C0fF5ROvJlFIeW6NcVAq8vIBmV6jeKOmKa0JB0O9Y22dVPf0zzy6VnOrSWv71WQ3eJqxzXrM7tQUkSwHTbjwOb9NN7jJGyoTKl2bczXjGmYvhZiwSbO+RuPjYjPm2Csey41nRId9ILbvLeq76CHkajHCFeyzmAvWgfGbF5CHAbeVjIxpMiAYWCXf2oUFWZ790/54mCWwZ5LpZyztEdSz/jQJ1z98lrNm9lsCaDnaRcZrsh/j/CQZW0BD49y+Oba2iPKbtEYnBeRgpJdsOQU77aq5g59pELRrxqGli/glzQWYKwTaOoDAgd9QAsyfufFJ1QuIpdGH62gewW1jStHLxYZTWsWhw5FdwoLR+rjOcM5OOFKrTSjwMnhXAmCFKrlBxFlIXKZZUnqI5EuTWqJEeVr0sCpmpgeXepp0FNGHC5boxU3CcQw0G714aSgaSWiz8cuvkq8QDx5TCDP2YoBspatXNDFiWVZHI6vCIZ2+kthfGgHIPgJ2VjQ1pQOC7ZNY8ucqiooeKtyYBcvlwr1rhyBqqiz0tuqVHzb4L22bW6J+cwFFcpt7hOyYAesvLSLorUjOUML69JDX0Ppc+uHRDNZcRYGbvHbzx0NRR6F6JGFs9Qujh00GouyBywt8Roq7K7xkBrnjgihYCnVVnenqJbD9NW5PI+8jKfNm+x9Zxf2OT5/gIJeXoeTsyKrYua21wWBMGbIHREeVgEzD530dpSxed8R4A6vstVvQnthKJHyO50eTQImh22gwZtjllU97BLbRB7plH+77qinE8ArnpJeu2EbC5Gc1+iNSIzul9dAfB68YBh52+rez7YsEpjnpHLVA391AN0kXgnHiRxqHGqlf9fkI5Kq+FHmkkjefRhviLx/fAi5kR+rTpIvyqfK1b+35tJQbEXl1RNl1i6N0L9D5LOJtjFshQyC/w5grsqxjDlQ4rPYTS7VSSQ8ARvthj+HT9xdAmsg/hMnZLk427t1IbiLClYutw8QHEYGUtJ4VTANj0DTKj/pKi0v0X4eFVVZMqdl65iHMgG429Or6yJ7xAy5AwntBQuZuTEg50xB79oGkEOgAcuOqIU2Q4TH+4TPt5mlhnMjcAnrPCBIDCaAKJW+0mWIQN3fZc0p3qdMGr+iv8L+SZVs1c53a1a17b0+lJpipkxzmuLi4DXrPlkMK+OuLutGlwr88Y6Ci2NVrYzi7PRvNRDXY4eJtIwuajGSECXln9yW/OjimNnjl66Ug9kUmjGBGtCM0wX/OJww0ol4VFkyyt+Yf2HgdLU2kAOjSsuRUmF398lbhz/p/vkio2FXYmQ8kvV1MszsG56xasakPLzoKuZK3B9+y5VhY3WAORIqbpxCWv1fHBUecOyarlLqm6rtluoTHa3FX4u8Vtn1HS7q85fzogQYTl/GyjJk+jYf/k/7GemK6XF0WDtbeskOwBb+i383jmxaTeZMNEYUMorXf6mVespHPonUyjd33sSb7nH2vmDUtHyrdRejcd3M51xPC1c6FhzxYtKhlZQEcSV3KJ7qe1dsk5wNN998GNRmE58amxxyiSGdalvANSHCxk5bn25hXvF4lQvfeVbL7gGUmQid2GybxSIb5fZO0qcrj1Izo9MOaz0FOfukz8Lrlen3bqTSPXQsnvINC9z62V/c5iOR9mLIR7vlHWis7PuRYBDXtpGCWPxFcG2jQ3//8vwP3m0yB7bJVIHcnOqAnNx7ZuBcPytbkpzdnjc7zJU4tWoDMmSLVe5JgyoJt7gAGc+6EZ2ZQrUtHcZ3aRAvQQSZOrMsuSC8L2ySX3KHllRwHaSZ1hHlYbrT0KipbU3iJ4DuY/K7NcLWtcAblVFlTau6iR9oI8Bsnj4tIe4kjOIkzSGbGn37v58hs3Lix8G1aVx7VbPJLcht/BzDbcr+bXKNCkv0ozmYyV52z1bCR5C5Qfbz6jk89eK/mPxgtSUvFPTp5rp/Vloo4gaLHlvx/SAvii8OGLG/zPPgSyeFzJOFL3UNkUPL7+Ns1hWHbKJr2Jdd6gXlgrleoQ8sJ6AwzKtop45gAzldU0xkZHf0wKOrrIvg6Pr9J/445wF6uKHYDYXbdS5ZzY+FnzuutwuuL/pnO9rDQnDRuAO+rGx46JvkCvRH8vWExMLHv1iMzXI9g6NlDbxP3sblrXqT682I53PLI3KivMe6/WjieBF2OYXl3IKnGTG9E6KCQxopO4WvSMIo83awJBh+nuyBlRJP/rRe4QlkPWBcKu41WAfmrr44VVpnHWefwcImhhVpbcsNujjRa8ovcV0H/hx+qB9Mv7p3UcgK2wZZZTMjZtfDl1ieBHY89Cipp0vhfS+W1Si8JEik1wdkfJSzmLfih+Mlasp4eN353gqFUMurUHwgpLjAmSgQhQBv4pp1MFikskIdhyHVPA/uWvHxy7o535Lgij06+q3gCKdCHvJdchPnH1Jrj4lVdU0Q1xUbnpAGG5wkk1qkHHEtNmI78TaAM5ydp/FYqxoTqDCZduZwCoFYjbaLPy3o6ZK4RthHBM0RPUf1Z5jgX2XxUlsRBYMPI/zcHsufrX0zUNqcw19n95Lsa3qDhecyL6Hdi+nDNPLqdvBDOLoR9bJbNrFdu3Bo8mdp1SNVrCI1FuUodejzFZjhRJz4gUhqR/Hd9+g4Nb58MXO4weNEwlesZbEJ2rH7CuCHmPbtqRpjRup6Dg7VWKJ4oxdNTQwvz0IPdnhyxIVG+S63ZKKnZQDMzcxhdi4WNP1AW4QaYu5bhGIlVw0eZAdg+MQ2AzK2iNlF3ulcSIrWEv/c+ILYDsS/X1W3b4YjeazWiDtSrsX6+mAdlHppPx3o4QiIguQdYGRxxtdd9AAD6iJDvywZ7b1qAA4CrBwVyXcwAqpxonR4UdkkRqXxGjgiBKlz3abcgz93nfcVRgy3P2E56UwVCP9mPfiVcYKtRYvHEOmYqpnHBgYDDdIGr1MEcbYZxtrYhVcZbU0+za8whPTls1iXiVKeVQTAqxtIDLWCsED03VS2dH9Bac2O9uRCeXi5p4YRFzt8ygnfcnNRE4c9jbGiUbRhe5QQs6C+u5PEsl6rikPP649idKMVSIJlV7sY6olX7GF0+7M3vjq00jKOIfgPp5gROE3oL9KQVU5v/ZFRCqoocxIczDnbA4MnIGleNGPXlfbkfmJj2ON1YFNT5Zu7zu3nbEvHrIbuMbjD5DzLwdejQNEnvjK4NbkkPsLEfUSvH6SiJFBLWG7ZkocS4xkCpHChr5sp8gG9LtppzO4XJgDeSlzT2rb/ShS0WKg/u1qRnAxw90AdZN8uGzr9l1nq3eyqSYglQeN1zn63YFRjBjRTc9N077xSPKqFiXe74NunmY7ZKjHBv8saC/X0oeP5z0wjFSm1GHSSL9sElQmzVQ5lNNrYrWuYBzUSXt+EEjiOS/yXYGpLpYY/5i9M1M8Emc1nHj43VQYge5dlJgPxo/ww7gQSV54mm2xwT5lrmv8wOTxRwK3z+GezYcu63wG70Xoo6tvkQFEPUYbbnikTzN0BYIJktKvTM+KK7nPpyr+Djg/di3YzYhav0YHOtPviEnTp5VM0KnXVN8i5HG0Jn0A/EN882fHckO2o4tOJIz7oaLZP+GEooZPft7zg8ymvgGacUGtlvZ9h2STNzgHirTxq61EHyFSQwm601wFcNH8HhxTaVl6is6fEnCdmvPRBerf04zY/OkVVzJqLlMghB0rvBqTNg514wxZD4GxZy26Xi9B7FOJ7dXQyOR2ykjKc/JELp8q4bjhQnXCsiVeOP4R4u3a3K2M91CpNxRjSYN67BI2YhSLl26qbCWT8cmzsdcJqXNk5A9jLUIbycOgqwdLa1IWy8pfXefqS7hB7x35++g8DmCz10IuyiiFbG2ZNPzFZlUe/fekNdk+ynujkEYjsujIMz633HM3/k1zdNWq/41XOXvuZgBmOOE+9N5Ql5rWo13KCsNDtwpVaknJDfrwuvPcbdZolumEwM7BZ7PpvKgtZt00b0/oePKtHGUmPAHXwr5C96kFO43ZTxEBHkhn2MKjy1xMBUX+PCkT5MfJUeZjLWO/ObfZosx513ZsskqUAnKa+DIHQjm6nn23DTLvSjPX/cL5aXrazq4NcVYj1lAP0e0aLIkHGSIHP8oiWbJejJ3Jzs5bP7y8PGZ15/+OMN31ltT0p/JF6sybwmt2G67Jh3deoIK1P92dFOh4vG1A135FeCEAlPVS+RzVdAmN6+nFCxWIRSW6QBBFALx58kgsahxiRkkfEkRtICq8/tkPbwq6gfNf6iZL2sGYsgJtMD5Nxu2j81Q4Rmbk/mflzzc01dlJR6WMJ5I6s27QjQC4aaA7XZ8scAmmHtfvnnE0LtyCEGs2Swpv7Bd03DEMmVimtqEGc0T80HQ9nONn8YF4oPcLe7VhUSmUqVKGiVNUUG7d58fOKmLhAOsWLc0gtgw/Ic81KYNRApWxUKJE6DL0a6U6JoOEeSec3rViDcSgEQ1CKwJNfQe2pZ4rCCRzQIiLFmejZ60Fj6QspbL2Ny+Jv7tTaLzS2PHDgiKMqNJkO8sCjQW/wd6iyFAVxD8thf419m3WOF7PzllBpfUWDJiDxJS3CBl3hk16V8RpLPjpLsku3k1zlW3dOcBrlghbwtpQSLmTlRAM9njAYhAJrLLeZ8Tdk+CF+2AJhzUXCD1s3zlC73IeYf7oKhRXqsQRwNPmBInjlLVOosqZHBILmCGFlO3TOIQg778bGbxAxbnm8w6Ls1E5CwlDccImiWHwJICYI8mcFEXWuq48DhoylgRhQbVYVV8+6caw8NdQBQpfti0A8DEeXTDAaVREGnvO5JGs8Q4OIixICOnYG0G4szZAw3vbu1AtKOjOwKlGa+qN0YNr+44/LrFFbmFHrDcB/ZtqqoG+1WLJGNh6uIJQXFYKQ5Cr8Gy+OykOLrxynkZbglzaVe3mEaIYyyqia4FO5Ko8E6dbD/iZT+P5qOReTszIF0wM/3ZmLv47IjAem8xxhmRTSPe6NV1wIBQGVXYClTTi54jTkyeo+goxfl8mg4cKRoyOX1KMN7ajMFm0pyGsKl5HIbdVSptiRr1H0sBHSLFAj+bpczbiPTXgrm0BXgPew/Y0ke8TrANPVFGo5I1PzW28zz5M1MKm833DFh9JLh0CzF0o1YV84jeF5uS6dpbTv3C46avhaIH050jICzxRwyPIjzD8jbiZOwpKiOyLuejXwdkl5nD7p2diAty7RGgpsYp3f3bh4hvFUmoTxsv2fkyYxglBcz0W560GRxZUy/PFqRyChScCMcG8K8Q2WTlUC1CKSz3synsL08BiJwFqC9LaG+cZruLOOEt4Ys/lDwIwU6GJWonVfh7P1WKgYGfIY2nXjKk5+uKErPH8M98MiW+DEvfPgiGJrm9niAce1/OK1OtVq3NIMNGP1Cw7sQQc6xOKKq3YBD4S3kmjWldl+ukagTeuKfncyNoAvYZ/zlrocKfH8O3i4hbQiakZnUAl+K1XYYmeuevfz1XtaJ9oswSd4Yxe6qJKIEgw+506OwqyPkKwIYtUpyv9mLgdJ18wMNoZ7ylObWdJR6VGwxQ8gYxiR5h/sdd8KXRTqU7pztFFnDfC1iBc61heVsv27gTM1/ExVGzkplWjy0Rrg2b7AGYQeUFwYapYI7YPULNlptIWrOdnBQMy5Xo2Fsb0ZDhbVzzqEyraIKV2eNlSHPz3epSMRc6a8tw0w77GhoLVOkTpE880+EsVld/+KFRk5E66RNH2eUyJQXe3yobqsYxW46tObGKtZtzMov+if6I32faQpCcD414+O+eo1q+sNE+SZlDffNyt6N8POQxN7aX63sXmNO1cg0n2AlHNF+lR0r6EOCZ2Cg72CNleSHO0PX5Kew6J6jx8LO61n2OvxFw8ybfI6CL2Ug7tLbxHgTBqMbs1ev+b8tIC4g5iv0jDP2OlJ3+inHwXHlRTQrdMix6EMeesuDDsDIiGmufy2/6k8viD/OxPR9dEbT+MiFOB3lQusm9Onh8yH7dpGVXHJvvZlrpjlE6gP4XhOx/Zt8z0vuvsBDz9VTOU1OEjJHNP+OYgP3ZPj5mSmdlJogcZeeBvjUnUeKW6FhvhhuImYGx2riKfC/VgJZjvmARxBHq/77DIdXR8+c9VGHkcqA6ILJe9wpQijzoh0cuwIptaV+//zhAbx4bE8OcnfB/7FaNhtulSDKOWVRtxofC5VxO3FdIMc/XDvvPiX3V+ZDDw9uFvjSeGZTRpTAw/S4nOCqecjUEJInNE49gS5E3xxl+5QW6AxRHV9RAfPvjp+qV1mkCMsMv+ix+vJ8OaLdwY+kwBt55mklRbxxAfyDZpnNyixswqwy5/tEcUz1lelWsAW3jO5xUAcFymmip3rblZEnjLhBaVyzyo5LrR3FKgl+4b0qrffpukHjiAMTzQWqic9/hbqsnJTDXw0/G26MFt9dK75BGWuPtn6b0omhvwUGVbSpDi+OW2iMSNCd7rRvn4y/utcp9rPv99+QpuxFfsPnlxLtCmvcJRsyqMeZ04KcQfg503om06qxIQ3hs5suSGe+LD+I9z+gjPatrfkkZXiWu4PXbpbDaMnXw9iYGMHtQMTaPOnfz/Fsz5bI2ai0WfhaAtDHmiAx88KeoUentDh9n01Nn0uN4IAEh55E3T+VcQ76CSyXbad9FlspTHoQbULe7t40tQyYgy6jS1ZUDJA8YQUE7PjbJgmI3vBf9QC9PgHq/Lbxx84KWUb5GI1YYDuopL/v1BJa68LF5fEOxhhe/5edC+/DblV06QGB3eMCkIZoGopwpgVhNmnOvZ2lubNHoIa4q85ZZ1yDs5uUHiEBmqiM2qkqrbZMMbPgAiB3Jnr2IFserN4JTq7YAuIcCRDeMzSOLKsDRf21yVUr7KuSdKj5Ga3jHw4zO82NEyC7Jc86wsLrNFyubQdcN5zjviq9d1+9XlHnV0x/Uf9+R5rA1/NTV8Ms2wYWf9/Oa998ifNc+mEtiK3nilrlhc+W2FmvRsN7pm81FJ4gLKYbaYjgLHFkZwLidMxP8fCDPZC3kUtTU4AjowWCPyqQTAf1lHDQcBhw8S0bjnWIllMs7I6yurYjQX8JAm69wuzgX9cv4P0b3M8kNq0MfTBK0ApTdkElUC69tG0qy7QJXWM9AlLGWIN0KFmDNraLzb6IUlzkc1J5HZApx5okLMLWSIabrEvh9RWj1q9d9G8GaDnnzPYVGyLCoqJH1RhyZH0Q9nWIOwiFFsQSiiiC+yqPSUSQxKJXxl4e+7hWDs0tUYxTY3g+1GUSusbkvjppD+KoPw6Nv9fPMr06Y8LKFOg9O9B5DDrotS7ZmTM/FSpTKbe8MOOtZaaCeQ1f79frDWOBqVO/cUlQzkB3pYOA0jV4Cw8S7nkEyXEy8xfqutYKc8syssL38hNJR99YjuHOShSUdekkJzYkEo0Al9RPK5sXcSD3KeO5V7sTo+DyAsSiIH4mDIkwkgrz110YdtS/dj7Nfs7ANzPn48A+U6KkjLz1+QHmENWUYOqEWCUoj3n4mePZAwSNABssG7GGKzpftzqlmE26dtqg2WxyBuVeJgsYiJnms9AJ1TvfkUepINFPl88qciaU1q41bGcl0lbWXY+6mm9aoFwlvgd4gIuqkKGuuzoJvy2xdoMJtYZ7TXzSKCXBlFHC+3MT4zR1RA3UgldoVJOsy3W5pOQT6BX/OFWvJAUhgtd7cG4g0jc6deVryPCWb7Ks8MmNwUODPy8Kxahfw1ejJ28+VwIQq+vREW3FHMuLBgLPPL/LcqP7pnnglc7bpdIwhXbSrjd0t2lnclLhl5xmMPIsLv0DgtOv36HZcCvUiZbR/sD4vEHXExPM+Cd62o26srD58lg=
Variant 3
DifficultyLevel
794
Question
An ancient civilisation created the pattern below on a large mural.
What is the size of the shaded area in the pattern?
Worked Solution
Total area of the largest square
|
= 120 × 120 |
= 14 400 m2 |
Area of next smallest square
= 7200 m2
Area of next smallest square = 3600 m2
|
|
∴ Shaded area |
= 21× 14 400 + 43× 3600 |
|
= 7200 + 2700 |
|
= 9900 m2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | An ancient civilisation created the pattern below on a large mural.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/aebca96b-b270-4f44-80d6-e3a689067e0cv0_V1-1.svg 400 indent3 vpad
What is the size of the shaded area in the pattern? |
workedSolution | sm_nogap Total area of the largest square
>>||
|-|
|= 120 $\times$ 120|
|= 14 400 m$^2$|
Area of next smallest square
= 7200 m$^2$
Area of next smallest square = 3600 m$^2$
|||
|-|-|
|$\therefore$ Shaded area|= $\dfrac{1}{2}\times$ 14 400 + $\dfrac{3}{4}\times$ 3600|
||= 7200 + 2700|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 9900 | |
U2FsdGVkX1/3x6ZKWRhEf3kS7qracWJn1bZi7CsKrVy9bYOpjYSjQRsfOkLaB7kzmyW0aDqDvU1QTvQ9u8zcLm1M14VcJx6ZkmXvys52COoCHzlDHaKRvGLGx6NDJiGbjY15mIJYZ6RXKpwa7a+fr/pxfLTlzGXqlXecl5n1f3gkS/xvfCQ6Dr9QtQnkQVrWSI85EwaRxx+K6UU5SUMfhvX8dIU8HFTJJnda4CxW9ZS7pSqASSrENdfwD9IoJCqrdPkMgn0rc3er2sw5Ttd2I86acZl/3iWs9YNNc3M17uU+9DEd9nx11JQ3ltNp1v/h8Ln+0gX+/bPYAkyiSDULOKNW2qSCPLwrdox5UG4uYSvE7PsIpTlrVQ76IJZJaqpXfCVmnYhW1onCYLEETez6BwhD2vQzYJnrgFebvvbn3Vn2ZWXl2oHS3YMBxggexjidGAgtVHAVHegP7Q/ScFwcGrWQqfKW8x3Y+VU2a0uL+axllAEJHOzJZqQLudAFnQMs6ZfGsqdE75t+tHScR6a6v71liHGACKifJ9OGXpSTKx2w08PwJT62ys9kofpLT2EM6d3oIVXvJ3GkStF8zh2CajbZy7GojxjCLnWgdKD5gdLcjD5IQABeXnq7sRb9winoN6yDFJFUwx8wgHyGjbRiUn5hy//+FoMu9uzC19Auzcz8gSBNnr5l0XQ8sCSCufJV0LRGCvKIedyLxac8uq6gFktqj6YIwXSBy1+gdXGuDp9/3mAzBW9Ps8NlnVrWrnT1f165nmHez61LdhFmN7nmeOiXuX8F6U92CqwukPli/yte57Fak7x/E6LLrUr8Da7ZRnogcpzn+DVBZ2aKImPiRNck9boE4Ovogcm/En/jZtUH6UHYmGhXHitV1uKecBFVOJCt2hI7hG2cIlJyAjlZImiSGIO+Dd6K64mwDuAS6h5pjkntkIxEzhmZ9IX8ef110hfj/fRF8Mf4lXzQP6QTriqQEjpo037mbLfUFdX0/ULJ3Pgqb21pimJ9V+3XLbcI043VhyZw7rpK/iFm/y5XJmpVjrHRlAXuRCismpBz5NY6DTCCMr4MpXcgrXOXyBsevnra4TiRmBbIRry+mt4q3XLPTh935BjoGUEtzQSnpC9/BJEsZfN1aXurJ5dgmcHykaeY1cVDIb9VsV8fDa91RsIGrhFJMSiJfVkLxOONTSn1WoPvL0TUDkqUInO6vICwlALdvcH9E/eLT5IYWJDJEbDQzcoO3SPfc/m6rDwb59sHmVbYWXVA8gts9pTAaKQND2nGzN6Un4cPHvlzt+33/JS7BYyW8RudH77P7/i5N+FvflWuntkSbZwHS0y0gaLFuQc3lPLHNORrliB5skYErPeMz3T4roNMFv+aBZ3zJFUiEeAtkrsSGwH8oIJ9LcUXHlrkH/L0uEYz18KosDel4FQzi7byasJz+DlAeTUNuh1i3cfYU1kUkLfNZmeNTwpBacbidEDICwwS8exNwe6s8pjR7n50tTARufh5UcfrAsdepC3H7DStwr2Squ55wdIIequzBAT9yv1rPhBiSfpgZWnrzz1eGNTKPEUseFFtxA1tJvW4+J26mPrSrWZRWMRt0K2PVccT3y9abJAod9b3ZF4GsGU17iRzZGdwT2TZDRuFIL5AimfQuTd/j5PQ1KTOACVX3qAxohBqVwDf+G4al5N4lQJfZIC2mZOXoSCY5yeoZnbWG0YFfcKT8fj36ABtSGGHBlbshP9c7Zd0sIsAEAB1T6RKqn89njaOWyhhI2b5HDMUGVZV5tXNgscLLvk98Sk3NLu6/T4p71GBg5HGL/fiCiOcXFsZg9NpDERyCAQDbfPhc9HADkYFaL7ZvGca/8JadiW/Oc4O+jFFMxnHnJ9xLeZTYzzrejpdvUGSTG8gvL9qmYstOcfGac/oio62B4HKSrSnUOUCVkb2WfeRdRpioM8AlOGvUFtPo2/hgg7Qg9boNAi7VjwR3yEkpd2rR6QXY+Kig5jyCD68r63JgKoQhWTg0NzScpRycRIiQV4KGEao8rqDSkvH6pqZ5qqDD9BtF0jcZD275nmWh3wnK6M+yn7ITlCVVPuwil1NMruNFCXzwDtCIX1sUsuVHCB6aQaVwPiwugdPZvSIO+nd20j1Kj1lp7hbRUx59eeVlxJHpw05lcJRyJCtSEPEhLajaMKFxL6W7vEW3I9okI3woaymnMv8FekBbMbeNqwI1zHj9ZrqjSD1iIRj2t3UMuoi/0IHbfS7vcoTm//HUbpJmCZ2HhDK4mv0LX638OL5rbTyAal0P7QHDW0pqNSRGMGZOq07boEKwElzaYq+2xVpuPIVnw4MefIpFFz92/3QYh7cpkV+k4MoSGuNxmp4hkyhOPxXbQnqXAXDsMXjLadeI4pBMJ08f7AQlqh0C38Yfz9dlJ07fTefAOfWnauicMpI/dcpc/X3jLth4R+NIyBEuW4Qppxj4uxF7VDIMHKxkLGpp59Xk4uJBl++NbAy2bEPQdrZ9B/w701DQoGnl7ebRzaayenA+IfPLdBUxTaMPB75/XLr03f+5Y+NdyLx7YN0z+yXzFiswbcRnKU564Hnfdo+rfyGiryCi+Hm6SjhSYsrkGCs3HPkWb6QSavhSUduAdpotBf6H6WDH9c/hlQIosc6oy343ICn6qJGVMh5DDr5Z63CGpTC6x4x69HMPTqlKOnfkepx7z6j+mSljug0v7xEXuHqONa/p39Qdl5r+iVcgnxcGUid+x8s2sBn8A3+PFh+uXwqpbxwu8e5lmmTBp5eHQfwEPC1LLqN8YLCqjs01sZYvMmgO92meY9oMtDjQ6hbVmNQlfA/MjqIIaQBbaESOMJRB3kdtN25rqKuZvHPb66FhhVMFD6daHuuW25k/gpcdQ03a87l9qV4fvswED8RaeWjITZEgo8AUihWeCLYSh3BZRl3WI6lrL2IPbkHX55cakRYH3kVjkBybb8TOJr/WJ0GlXwsyrkw49EvImR/r+nPBWHusQkpL7QWEATYOEtzjIA6YyG82kbRk9E4hmVMMUZ7xNMrJ8FXeA15oIpwBaJelqGPV8EFK/s4QYUTWUM09WRRUYR13zYtJSpAtph2MAqXtMkFKpINV6ppm4ptZLUK6lTFZ0M24UkAy4e7vIKrXto9u0ZhRBim8vrWzOoy/v9nQzWBUUuJ2wy6Qk0db6s6cps2503yKic3Fqd5pAoVWxTLhLyDCCamRLku8eBkrAvGO7Z27V+Y39KgLCgN1aDBHcqdWbXalIqGb6TU1QsPa+ctMhyTNBZM0j6EEbl52VfBF+J9+qWF4SblRZKxX1HL943iALCGXcSx0/m1LE+PIkz6++1yFVUDX292N3VpL+DGcV7/5DlBKvuG7pSctvW6CnFXFoCMRxl27wFrMQfcPw86x+RHhpdLFe+S/7Uyt8jIfaO6VgHjy4JjKgXEfSuKZv8TJgkfHmJqgG9EJvnXlTwIK5nLX9zZ+PQsH3uhzGnh/TkWmDe6tR4c/nzrWVdfoL2dJ/U5idKj44Y9FyqKpsJORpyeGW3v72uQ9Q1V0dbKPZVrDPblgiEMoRSck0yXqqXUkjdPG1r4ziVFs+VfAIAQ7Nby8PIofaJFw+0Lu3GezHHS6lzrUwopWFJQK3hY6Yr4wz1AAnr+9l97auzykbzW9lK0DDB0BlqtCNNUhiamxq8VgDCcNeqOFdxkjHUJ4JH/pXeA0Fr2f3/KR9KyG9zUTh4KsdvPkqZPwOQCEGnDHZR7sbQnrOA18qVgivetSR7DGyHOBu9qH9O4dMEHg/FvAo/p1orkSHAunOxDXRrZQ+VlmqkU86C9N9r2m+LG5DyPWV6OA0IS976Fj9/pC0mcKPDzfkZSfq5stbazuQ1srBMaXgW80Uyr7uGZEtRLHL7VfXiUf8CtrTw/LqJJbrBXxZqfxJFBm0B1/SwtAzHN5NGDBMq2DLPXJ88+7/5HXFqUboqPXEYczYK5KcdfWe5yq5M26hmBDH+1lFnq6fkuL6RdOtr/yYukfgvmb3hN2KgmK0WOdlOJng1GCrkWGojUo3x+oLHOtHLqZKEh0Sp73LhksCQ8ovkEIf2+PAJE9/C+3mlFqnUc8RfzzajPD+C9+tf7xbQD6wKwNgFy8ZlYzywLGol7x7/QYCaiGuzoNxZ/3LpRJbYQ8r4OTZA32emcoDXGJrii7TdVemaSWrv4Ef7071nBd71mgeeYa2XEVl7bJo0gW3MSvmKPq4/I1MjlTnLyVU6N72TniHWoGV6LaLIalGcZKDgKDDKEotBXJziXVqBTz6FZruA9Pbd9fCWAMSnzJ8Gfa70DMzwynneJEtu1HQIktAugPrXt/jJlwjhQFa4MQBxkV5sXCX+7YpDWn2Oa9+jQzCwyg+wOtm8dSoe/nTBiHSIKJABQtCHjHHOlb0XgWCaef/jCq94NIbgZE15CSNZTWEuo6SoR6xrVF2a+VZj7ydvHVQAkZmYfq7xwkOpvK0aLcdHcmCVjKNVhNXj/+fM5mPYGxKKUucswh062/PsaniKThxsl2aye+bEt+87CMvuEa2qCQmWUIniPgANhl8VB1ECHVfqFfGhV45SQnopPPtYcw/VoIa5R/x7m9qFi1+pZAt1UhTKLIYxg2BwLDFBugRV142UVfnqW1ttRW9mvXsYrq0HZiK0HR0Mxr8oePWMQdxXP1jQoVfe6ETGNIsKMU0uVezjPoO826NPArKPi7bjgOenjZ8Gx8lA/FvwmcNe3SidN2NQisylYBwcr0T3OqLsu+b/tbILo72qYEI5lLpjKLS1aZmqcwk5oSFfd+2OU3u522LTsxud6BRTRkw0pt+UDBbCngelmiKhD5WHVD69bPh0Q7lpQrL+abA/sZwnQvcB6x8Q9rmV5gV6dfTTOWrU96DCtz1OYIlzWRJVqyYmXvRjuANAjXGF+8G+EbyaDHZEnUwRycRuOCHZcyFkjfb04IKmclJ7VhwVy1i8MeEPd4pedV9DVxCwE3FQLdIcX9M8XqCJMjVullD1iO2jEXPpvy0uoX4zPG1xrjIilgFm21NMKOzpFTUGl6yingnw3upJd4SknY99cWg/4/R5KlO/yVlQyLVDqflsSDaErbzbwQyHIh1aAHmoyNclZPtLZcj4WgXnRPmrh8MBEbA2iyjryVffW7tcEC+5L14Ruz+/21IvY9dCijSggD25GH8PfnR2lqCCCvvhtbhPj9+9zQJ0tWDI006YLVHllrsorW44gpgY3qXm9GCM7TLB55FCcOFhWYC2xTRaxot9AI7kbR83Xn/Ihax6vz3J4rvj6IyI0kSDyVrvUZhXAjHI0eXyk7O4lyPttgwvOWMbryOhYzVeChTjiX3mLWrzQs3QHHb9bvXAZdAoBzdDY5OZObeUaPhM+WLpXyJsjlwlYmGkz3kkE9VpBLxjeQ3wfy0cFSbnI6NQh5p4bJFZF5gFF4OPYObvMcFDFVZAvSEq225pN1Hq3y+4rvoZmpRCKCv7srojZk/uFKssc4IR0TPpgGD9AFce7luPxhhNPOWGX8ba3CnXgHIvvto1vVZt+iqNrANbYABAfuTN+zzemu1ZpBN+CgUD+EDUDJxS1ZsTMhJIY/63dkSayftiyYJDwTjeq4SuMohMWvq9H4wKDXQj8hDs5NwXhqZcE88qk//bxIQEGqA8BObgVLFGFY5wBgR2hwVRy17M5NmdNHJ3r9Vh0i06YWdFsMIg3dhk4aQkqL5hlvaaZFZXGWhb4cNwtxx486F+Vbv6APz7oFI81w0cy1WD3qmDrIAq+P4HyoxLzXvDVYFwWBwebdvOIMDWV9THB3Qy5HrbDINPMgfYB5+ZYGmhhIrfJdNj0BYcw2aRijPi0NpI9+AkgCuFLNuotpbwCatUBo0EpALisnt58ObQFCejC9mB/l2knkJ0LnkBlRjBjyMTbu9TpF4ccR2XjuISjpcli91VGzGdbyj1NzHgdRVRaPdZLWPIV20MGoFNJhvYoP5hQF9SO2qWtmGQ1mpXSieIE18dGIUFHihg5GsAprrWM42J3vhQ2TFhdmDmpTT6xCOh2CJrTuALtnyCd6e0Z+xtmLoZHHukLXG5I2whXfwr1SRSfUlKIdn5liG013ozwgTucAe7KtJgw2X49W8qHaMqOSrQW0iy9p9OM3xUmQzN+IejUt9lecMwiZOytLRQKQFCgLLVT8Z85nJKGEpzFE9tySUoCPRIiXMxp5lOMsMtIGu7mpzH3E3cgBc9rZKgvQutJnfwsgzMnJ1+Vz4oNKK28R5Uj4MjJwXduAJlqPjEcrc8H4eYCMaNGIoWsX/Ao5eULirUTZzXaCyPJvzB6cSKTV9EpDvT8HKAFFQRGA1Hozb5fL/4qsPOdrYrNUTaHLS21fVfa2xGdn6ZBoU+gaVRvCpURpE9dYPZxMC/Gq7xmdjVUKd8w5dPLP50B+T6MeAQ9dXpUcY/Vld3hr7T/9SnS23kXmgIhDtjoifqBKhuUzR4TABME7jCmNALNx/lsB4iiEoLGyf6/0pE8BW8vSHuw87mLqBpqR57DdrS5xnDi6X+YG+X9mIeXDoCdoK3MvWpDEMNutQrlK+xqVtTDBAiZJId8WF5NhEfbeC3UkWIlVrIcravzvWzOpM7Goa8D81z1NV9OZ4Yks1fYS7e5iqK6nvZ+aiVF8oCl8acYNbvZ8ngkpMIctxyFdGWHDeB02gKS8IPtR2Lg76F3WoQeTioaTsYzMKZS3j+4ax/ZyyAlt2I/E+6tS2FJTcloK/X0UTrPQzmdffL0OI0RKQFIp31T6ZuwbKIwOemM5CJC/qZtMgyvYSmxPwTsI3ciuVrk/HnuKsdDyVty5vXDhKy4wCeCjMPoLEQTsoBwpjWkAGmMa/gFVT/Yn0Cc7JlV8OJ0z1+VpaEqGt593FWWPc7gDmt56N1+qZv+hzw/JY1h+XtjE6YRjqnTZzOaElV+eF6rQPhw1dqW4IjT2nlKtCh+Dhydk/4m3FpupYnlncoPs8l6RO5JMouzUytYG0/rUgb0D/VE7J7tw4wMRX/cY7tYpiaIH/XMiOzwD9UjJFP81fpV1v6FYQbJ4Ib+c3S3v+YxnPgSwWp2gFJP2OffOzx3H5Nk1IDt0Mhc3RA5olhoIFJtsn3nE9p6oTiKn8JZwKgRGloV3sGMH0oF2WxYAJXQO5ecrC0iUu2dVS0jKiJUNsS57PfyHWCZqB0NH0GcTFgIKmkIIqcsjXhKQ91lbGq1PZ2EIEKR5qWqJPVSg2cMrIYJlY0cAnKhGldeRYk5uLQ6WRxjszRytFHc0jYfpEdz4IMoZc9QuGhTxL71LK3+/nxUiDL/OwCMdy7Ia4R1JMB5de52/ZbkMBGDNJZuH1eQubNETRAJZ3jl86FUidnmTNlOcsKxdDjcTtYb9YTYYYrBBqvukLLKwD0wNj1s/btNjHVboMlyZytwoU+l3+Y4mvMGwRXW5fUTo1h4eAqreVpRMva3ZUfaLZ2Y+IBtCPPNwIK/ZhAeTtjMHdAidiy6DFwIUK9jJVwfTR04i9nPolDw9UUiFZWpucaiMN1xfMQqXRLyLp5wPHWgudyTeuMD9GZHB9LPFJmLXhBFAtDeFnxY0fj2MROq5E3UNv38/g0/F13c+AUsCdIfmm1zjNPzfkOPBSGFaypP7vHdhh1TJTFH/8TT5M8SD1qVDm+mZaKNW7oPFntkLNqrbvmZBjSCrEmksDn/avlRS03FKmtDQTyZ+RmO0eZyHgdSi6w8Yq5mKvaCuuh2HBxEfteNt9OAZ9JnkMp4byldJWUwzeBuKfVvXEmwlNH92vmb80q09YYavGDJeLZlbrjvgR8gkKshABK79zK63rBoixbvNVoanKlnNMjFBbeHM6T3BuRYdJVNPiINDd//4D+YajRyCZdQWkPm3naXwSlAsu6rtGZqsVxPuIE9QjLXkaSURHGuoc4rg24Si0OLA6IeGHCWVwKEZRJASpdyLgVgGrOy2RGtmwArvtcwHMlcuJtkxce35bC5cidBzX5JRfRQHANJZd4COybT+PoDRvvJvq0zzjWP8SAKSUgjGcIhUxomTqc+riAR3I+HElKKpvJbicn5HiBtS1lHtoYvXFHMFY85nGYbTgWwpHlxhhgL1yiT6d5hAJXIpTYWgV2pQflCU+Pywf3TzeAEJ1qsN7GroVAAQYr6sAIAXYFyR6l1yYaj1SuGK7uFPt/ovKthPVVQmz+B5Y5ahEKve+sC1js92+jYXW4Gh0M07oBlkOinkguurGOE6QnSw6grRJpYuHMbWhGi13csw/OxmOMbWVJ5Fn/Hy0BWWen5afD8WLL4wQnnqlMgDWRdi6YKjaiOGFb55tZckWsExU6dvSDz1Zuuj09qAAtHcUlEHODoUQpncSNQjUu8+KAaXalOtFFsTKGq0Ql2S9U2viwxQQbAmuDC5JR4whnoeuMB0cvJYy7Lt7v2H8bF/iJPRqFJpcdPqjgpaxz7rFtPwK407XuMCQSzuyRXDtNiA5cAxbxNLkhh62e4faga/QTRQOsKxrK71TV4+SIRiozdWhdjuDRZIWbk5SS0NAH/aHZsw96U41tGkKX7B0AEI1Z12zFvwmurSwnoKSXCuYn3oYrcRkNrGeU7VbPn1KYd92Sd4kZNo1o/HDRrmvV170JETxH2dQiwcp/AD/LcT1Ycac3FPoSiROJzIxg/pVEHEp9ohp5+u9H5JWzt08tmbbFc0grNmjY2uWILwigHLnZydiZNSJbJibHKVf4oUB3v15kYC70zBAKj6meVFcUxLk/tOJCEJiDvB8fxEN9Hy38FSLWvKzeORTdI41zlYBHZ/sIcCBrRce6fSjUCofF3Zi72/qiT8sRWWF+6DcmYgCRLilLSx/Sxgx01kd0FgMkIhJO8dWu9M1uuCLCtNCTyoTTGQvKgkGfn+Bg1Xmyq7WFIulTZvJI3Jd4djOR6RG10Ez/oO12IQZ7yJ15sZCQFC3UZ/A6Id0RDpZEG3LaorRhvg/SqWY+2mt7oTLGrMdsAsyIu0S6WsQVxlfMT3vf931wlhEy5Uw+XV2bUDxduxY3i8t6Vi/0kKxoEzLdQQdZ8XBCIq1Aiw1Rh6uVtUMsi89IjscaSlmjVW8QiHxiMlO0oI2z06lGgeg8nZ61RnLoG9YyKVV+N1cGcEL5ZLArE6C/5imfoz7YKPtZS5+R3BGpeZI+fOFfhLKqSQCChlGBzKN/SHosE79SFBhXCVAHINzfXqdsAl9tNC6ZzYiH9K6EtFnENe3gAyM3IKTaYRGVLirZGB9HohqZNlUKb+1+kd48pH5TbooopZWTtyOIH1Lu7fwEXTT2X3HwHv0UTFxrt+fNKK/TN9EywfCeLGy4BAcdu5j7hTJn+9UmAtocxsFy7ABL9cL2aKowjlnph4fHdfC4uVzOtt57YAZGpXgaSFHoodLX0EzLQYasszDSL3v9n9ESw+tNl4l/tjPb8Nt2VaRJVZWPPHath+2iVmLyaWTSIc7XFUav06VQC6KkB2wlYxQk5Pb/xlHFx4bqDI061ZG0HEmfYQxFgJBWj19giuoxgOStbmQJIMKqcJQgy3oAwyCh+bpfMEfyG+XB4rC8AVrHZ3VOwlUnMULPt9iWLuxlvByb5Oy1edOP1ucB7H1bsyIaB7YeTHPL0KoQ2Vx9z2koR6TQCXokjCLJK9quHCTFYRXIE782zQf6JcgOymTRWuXWqr0bg6vRIiSJqGpOkq5pPAEFXiREp4lLzPXlYBLW3Hg1uZdqxQptWWIPj1yMh13aP5h50cD8sWtG4LezNiqBI0tpWpA3lVWVJzf8tiByQGSIzqTg3rcrMrKuy5jZ7r0mx32Y7F+BmoPRTPJa2nRex8cXgxN37J4TKQpnASb4BrRRp1/Ad3gSTbmJxyrPHRnS1UHllFcaq+E4XgbaoRTmGBh34O2T/757NAKno/GliNVoO6hidK6Y80m98zOBk1y9Wi5RIP+R8C0A+KsFG+zj0Ha+tfLqW60S3orZ3Uqupkc2ZP/rqnqmLjJ6JUGbrsDpQKnzpfj7w1tPlVTrtm2PhA6onNxU/SAGpLF0wC0VwP6BBXxkn4q0HRUDjQ+MPLG0FDRaBMcooQld6Ykmv+Et/2M7iLmiQL82WdkSWqzuMhHgSjKkCWEJr/jjiVrQXtvsm578nDnwPOSMXH0ZnaDSGRb76gKNLMp7/lUq2qJ5an7EdSr4FNuTBx/GMTMsEY2nkZdNDDKIavh6eD1rg4A5HsMdmzGmfGogwYMdx8Kf8dnhHFftqUGnLRBjsGMw7A7ky43EZhGF9HNQkrvAnBEsW56PK/GBa0vUniOeFDHhmhop4Yo5TE18YATh2gfWWhbxquO5myRUDbzPE9hbpC00g0VyM3yDqtHsq4nCHtLxAEET1qshpfjt/CVBuWMN99hArIgEOZnFpOYgIshjF6A5ghBblHe+NbH0LLPGg1x5rr78jFu+JVaFeKuTUflBPqEbSpo5k/VL5NAiPggDKj2iB9RRTIcTNMyzzx3anZkpvBtFuecSgtosAh6dOaQ1qIkDi9eCNymP5nTjoEmNYrHmAQrPvAKoRPq6yB/EP4b/qsIIy6vaHB8SnFoucTRWcV789/RJA0yz4KbU68ibZPhzqCeeN8PvSJqM7Ac1CSSiUuvKEHEGLtPJoF2q60nN1w8j3W11csvoAMmpgfDVxcIsY5nbd9lW99TfFbzLP3OWRQ/kGZpMehqEFoq3BcB93n/4pw07zc+1cdcO8CNsuHJr4dW1NVHMKXNehQC5p3ev6OsHfKnHERdncGSjNd0BHHCbelJUmkezPVOyMS0mRf0TQRA5UjKf8ceE6pJo62zfgzvgjcL/IamVDOMyVnHMbBEDW4mkGN2lgyuGSwLoCq9IRZ108kswInKP75bB2AQlKnPVDtn8M9HJbPm6cosB4f8JqVgK5Eggr6vALEBREiUIyasxAbeFYj4jgfXBaEhPXM31xcco4+wWyr5kUNVXKGY2Us1gEANyhbEbdM84fUdiVYRFqRLInyUnmcSY0H+MmAJGa7AY8YdMJLXVBTZN4xf5DlcLVx0HYLYdfNxTX8k6ynYhQJ3wVi9W115SlA8qc+o7RuR7soXxkYbTzUhRRpEFp6UoddtQqBGWA8yhIie3/jceril2JNYHjkgUkDndGzUuW3xXWPGaguOQcDdDxELns2xMwlSQOd3NaGEc1BttraLpCpEY+C45ZYHqht2tGOjlpa+Ck4JC2eVsfcNtH6ZJRoc2NUXMx6itWa+Z+FdtHPYBKcjWmuFdHK96DC0/nXICAvdgJFgvbf/kEi+cCQjOZN2xsgT71Prd9jjMZXhls9hvxeotuoGjcMdvdGd+qp9ADgnOEXNs3W8EdCZFsB9837TBllF5NHbd15KZyhY6+vl8jd3+FCgjgB1syFn91fWVLVdmIZ99nGHSNo5yrF643kqdkEahJp/MoZ8Ew0oeHVUP6YkGQqOq6tARww9G3MdZlVbp1a2zWg7CTNmOFNW5gkn/siNt86G5GOMFQUpS2ihYNrB8f++3kJ54at0jaVrDeqPtA9YFn8+ZZE9aKZH4W7LtnjS0m0o69OaxASza7AC1/g7QTw4MH3lF56Dk5RlKgY0Bp9BdwgaAgfHdzXhqMFjbUaGBCj+UW8llgyjcP3RgdWkyD1rMJ48a/Ct6qodP2QdZHUo7tAXmBnVDoxO0xlYfLwl351mk6WIUvG2ZHt3p1af3Bhx2Ol5Pzo5VMpwaAxOmuSeTqyi2BTMs+KEOOqpj5UfA5BVgIBSnsOXZjVaHqFEZePmejWYoXw+0NkFh73a9W0Ez7RAtrLBCYvas0Z07JlGC1flEc1221cB1xYa802S4fPeagXF6nEURIbqaNKLx7laTw4IEEMbLY3Hl5ZQ6g/6+292TWoUjaZ+hLN2gL+4pg6VQ4ZX3FQM1chGrnwDpo6im+sMGUZ3ILm7ezb4UbFVvDe3rIqU40Hx2sxyUeGkGCIMHPILjeKhQS/ygc+u7ZviRWkPUpRYIdA8mhEaqwG6Io4XZ02LpRMIJRCjP79TsEY0H2abhtNSk29eigNjjsLHE8lqSYhQM1rLKKUFJz+WHoZ0Ypy3odxA7glnds/q6WBwRffnHAikCINhefeoiqlyLctXmI+4ydckAKp60hFd3HqtJMkIo/oi8OJ8oXDhbiT3/+0Wpals37DmzlvlxdA5pwb6Wnp6SfuppgUF1c8WURIS22C6qGbzrdZxw76hCovl5rcTPnuZVEpms1nKye0as359Tl+DzU79VYa7kYhW+URliRJ5JVwS7j6IXx6bphemdtXbH39T7Thxq/lbOs386GPLo/MfifMGrkCQdke1TWK0uWfIzsZkUkYGNMgu/YU2ugtb/4/SWTMKCRudCeNee8ptUH+JZcOQiYL6sf77JcyNoEPz5id1FqxZONEmvCyYHViE3yMtgxsJwBXs0z/PmzEEM6u7jcrrU74p2B1pNs5Jocg/EdkBjdPilaY1BqXfMJgo54F5snrNOKPBXP8sW0hKjk2yU4iJUiaCa9AdvNckQrhDHprXQY/YZK/K90OpKxi75FRE/kJ0HXi6cICkeDQ+77MZ1+SCxaif1r2YDNwBGOcrZpRiVjTRK/YAuR4Uw7aKYOHb3uOw6xtxPsWK5hqYJDyAi3UBfescaD/MWVTboxpIt9K9eTPeu2a1vaXe6PDvW7XSanMl2ehigpeRvOUUfm8HTj/eLvBOwsK6SOF4cjh5nkUbbGZXPjRJUfj9ot0faiT0UYN9yrsm8DXBamBA4MTnezG8hzungB0kKTSYRmtWPG6uNMIkmG9XxmWT5bMkjnzAlzvfrD6z55DiBEHPxT6COsApgjVuX5pDTGbAOT1ie1MgzcaC2DOQRq84vb/uMc43u+4BcQnHbSRR+I6mfDErxkkPEraCr/9QeosiUihSrJ4VwqAFEvFSmDJtYRQ7QLNA7ud+eqQmFNDQe2m6qMY8F8Lo4fRvyePERNZHOpiqOkMHocMPjQhrm4ALqdYRq00wFPHX2KeSQdjuU6ENAUNFT6od8nneXrboH9l3zPfG12oxxC9FNmqndnsDjUVUDqkIA0vVxQw92uBlWE8qYdbg/vgnEGxm2oXOlAzlRM9YEVEfqeUnuVbD2yLgCrR8w8TiBUJcIhE4OE5xNUXjpBeo4vL2UMOGigprAvSMzmc65ctZ4nhQHz7fYtRk/Exn2FU5Uup9GGIw0ADgHpXjoDxqCHzCJeu+YKIC2ETBI7bGoiq9ZC8yT/m/eQtbbD93CQlLWrgDDrbhhHaP2bFyKh1Ojc5g7LsUJODzkIJh93xj7DaQJ6kiuv5wZom+N4ofRLQFYS/BZI6LN9DpRU4h9ELdGkNBaqritdlYRU2eCf7h17S4euJjKWQy4gjOpfFJBB/8+dx4gyapYGgdc7AFIfWCy6HVmNmHgDH/nKqqTDDsMwxGXN4fFOJa3sWaj6iTOB8wM0aqPDmdJBJpYej6RfsYa/RL2cOHlA50X5RIWCUgZucB6RT64oeCkkfB+81oTYV0zI+2VUZMlAE4pxqHl82nNDafQzwsXDOqzkRXz/G75nJuci5fhfjD8xOkahnjQltTj9uBN+9J1+V/vpIsQ7owaYnJ7gGjJhgNVLxe2tPyQiPPa8BtDsxBTdAzKqSD1K0M/6PxtyTaaKnKo9jCiGtUwul8YU966OL+nS9eM2fXwDNotZHP1AhYeuc8hoFDLI7LWcB9EVGKKLAIeOmpf6qUkEY/woEYd8rh8ReFOB4vK8ciNqyeh8tcl9er9mcWVY5QKCuNZ/Uhi9Pb6hDZe4LxHl8uSLQCUTTeCcX1SZsY8eB6RAIIiqXTF7B2tmCdQnD9z4Eg5T+B3Mjko0ZVmIJ7TUoqct9KmJsA1utNLpOMCvUIDKP3QpiCGMku3ipXAdkcZT5PVkn8xrrFn0yNnkcGtMkQJzEn0/vAWCtanSdOW2JxoebBh6dXOOo/gHYkehFnp8jH9+rQvSXrndzd5672NIh901/ubCv25Rilv0JIHx9m6p6RUk9+fbavJxzbpZ0nsBLCMkTPrU050GslIc9ObtJujzfQ+FQMs2SEX9K8qyhT7dFb3SNZX+1uKAxcAF7asHMZkjlc+QrTUuFq4aalv5r9lFtcvdlCsTi7s0vUMYV460v1Kz8u4a+nlcWX0ytRoco0vEvBx6IfgZBJNsoCtCNVvWdMGh4bkwEkfqPoAvUuiGh5mXV4O5lprhPvrCoaI6xDR1DUs5rMfAZGNJCE3KdhBRQLUXid1n9Lp5NZBbbKxnsC1ZLBAldnzW0ZMhO8WDCELxg2L3btQEwwRk+fhL/tMTjgaXxrNw+0SOEcfDyY4AIFk5ugLrt1/t7xohJcuAt1QIlFs0h3zM23g8l8Gi3WKYv0H0P1+4zyQL8SmVF4wiDgwgm1vpuCSxbMvhV0Ril/0/RTSLMyuvsTSxf0w0Qc7KEt1lQrLwHknxm+PxBFegsi6XlSAgwZc37/lGLifrPqbOj6WTcvp4Y7cEQ9Cu98EDzYEH5YyiTBx9TNHYdLHfoJXvu1Aza+2Oc/FnLc76O/X46Xzcb/k2Bez++BewzbhxHCss1c8RDgEgQatpqPqiCXd1EVn0k+GMkhDGCfD+KqWFHUj5U72GBckliAjQCzw0lpIR+0yi6nePo6aGHYtsC3BJTmAsx4N4BMZacljG6cebIbmTQ/jU9GuVu/LOsqI9lGF8BSgcj7mHXu9w67YRh3fuP5uj/itZqlYCXieflHubcjpMRx4AM568m66k/nOh6TBp6qL/cZplPn8T7PoIEqWanqqRx5dlxjPyIlb5/xs+6+P6Hq52qsdLtaww1lDVFf2s3cHzV7uNdH/UXR5ZY7ZwWbkrRnLpa6FTI1JdS5JOYmAMFfGmIYTe8Y01pOLtsa/I1bb7ZWkM8+g7UnY4nQ8aJSe1oet77Za64JCVA2FBKhLnCekR50RF9Aa+fSi94x5gMXaNvGUv2UAbG72TIMFmPaKdLvDgoi/OOz9GChRvPABB4RAAAefFdded8ZOEa0x/dsBj36pmYvXXp2cwVUiTYQvglQbCm8Hbbdc0LYu7HidZlm8E02XNhQCdNgLjPTBgq1IHMS3/fIDMOksdtHJ+EPPwFGNih1FD0EyGY/p8tL8=
Variant 4
DifficultyLevel
795
Question
A gardener was paving a large courtyard and created the following pattern.
What is the size of the shaded area in the pattern?
Worked Solution
Total area of the largest square
|
= 40 × 40 |
= 1600 m2 |
Area of next smallest square
= 800 m2
Area of next smallest square = 400 m2
|
|
∴ Shaded area |
= 41× 1600 + 21× 800 + + 41× 400 |
|
= 400 + 400 + 100 |
|
= 900 m2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A gardener was paving a large courtyard and created the following pattern.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/aebca96b-b270-4f44-80d6-e3a689067e0cv0_V5.svg 400 indent3 vpad
What is the size of the shaded area in the pattern? |
workedSolution | sm_nogap Total area of the largest square
>>||
|-|
|= 40 $\times$ 40|
|= 1600 m$^2$|
Area of next smallest square
= 800 m$^2$
Area of next smallest square = 400 m$^2$
|||
|-|-|
|$\therefore$ Shaded area|= $\dfrac{1}{4}\times$ 1600 + $\dfrac{1}{2}\times$ 800 + + $\dfrac{1}{4}\times$ 400|
||= 400 + 400 + 100|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 900 | |
U2FsdGVkX1+wLrsHm8/IPt6JXfVU1cwJqRev1TLiDSg7Sf/ivGUimKerVZLLS5s7ejioYCBwY3DCc+U/TVzXNR9/fViobKmxBtJdgwd7Iz26haWoGzP0wADLHyN8BUIMrrmdj3Ic3tbuZl/Jryr9NYRa4sU9rl1xI1jk5LUAhWg8NxbAUmwVbfbSWJ5N209YPMvNNuJivNiyza3rovcES/oo1mWigrX9uzmE98het/DG+sT7ab5xLugC5MeS9cOLPBuYMV0gbo0bp4MPxwSH7mao3GbOKWTP1GMd6tQYlMnL099QhrsRABKRj8LSHy3j7tNx0AuiACuVjknP2Y/ujEbQfb+U7aj8RroiKYrhevsZJmlgYin0mLb7btL7h3tjapcoYrVdGab7ZDz8h/SwgzhtsX7S46+5Va19bUYS6xettplxgdCwMiK7FL4nxlFiv/F4KHYK9kZGzWMOwfbXr9PJvAg/9WGLltH5fOdRSez6V/Z6DTydCah32QEEMh1ri4PPw2sK8BxesV1sGKcV/hnDJ3hZHzN0yluV5CpBPIrffxz3IVnIbKOa1nii6Q03RoNKE8C/bxluOPjp/r+pzzUDN5lLqR9+ogU3dFOygAL5pvK/o1qMSfeabB6HBRXKIw/mhw/dItcI745P7i3mzztf2Fxl0TTePLwrD+XRSOhl4uqB+LgXjvDlukfvC0wSnsiadPVW6JyeDwo06GvpvQ7zaB6vN8f+yUCHIP4uOpSlElBKHQh8wQhD5VcI+scVIngl6tcUwx7puhEL2EiLSi5A0gQ33nV36GHHtLTeXeswyfXPgn2IHa+AsvhAeJEFXeDAUQ7Q6oEd9fUu79UR4LW9u9/DwtO+UxMGhxN45eysbySL7MHSwPc+/Ra18AERPQE4RtSlkWoDLjztRH/Otx1fLrp//wIicUZifHM3bolVY3Chpcj9qowxDSWJ5YVCvCKBOUzZtk8ECn6Q+EHMfOFiJZuumcT8OxoAzVDAlu2TfkLpe+5nUK+QAmLzCdy5bwx7w8J+ewTmOJNsd1z9sLEqgLmps0NGqs+3hpG05CLmeNRL4uuUBwtlWa4te4IMfwfUpoo9/EjR99dW8XUpqoqCDyVUDq74tn8Alku8faksZk/IhllwhvNAKu+9nhxjj2+XYpYPmycKJrCjIKxJbBYXIgWQXImCEzLzo2ubQaUZByiOLjgF+GouVQB/XX7VADyv8LyeewGbtRBG25Wz//RtROb1529ZWYJC8zMreRXuo5ByxhjbR8Qzdu+LRcc9wmD6uyxikGJzEPAYOQ0N46/6Y1IroJjh+9SClxtZkaO2EM5g1L4FnViQoA7bn+tQj42tg2FDUNFdQnZYNVIa6461xlOMRtCiMltSMN3lclVvoEasYbFm3R0FV0MTzAWaoBr8exr46z5+ec5s2QLwLQ9S+NrjJzM/P8XxGyNMRcsfVraVesDjVY9FriyHOmKxjqtj6T8KpIsAPGjbt/yLJsIxcYQWyGasehlq3XH1QH0MP7ceRlP5xDL4Ul2JO9wNraOvAD1TBbL+Nl2v9MJUlfPb+7YV9JOFZKPf0rdS0VL6Q0LxlNmj/TVV/5fT+bN5J9z43KZ4iuR3UwBJEVfnA8t2abe4CXr8qIB35tNQeP22UHOhjjpDurJK3eXN7o5ZyrtwwyxDnZ9qLQjwe7k3qpvZ9oyt19Wv0iSvrhhySAnvLaeUgiIFQBgnUesIfUacgoDVT/+jBE6fDLiPQ9vjPC139jXvRgR/nEklX4AOh45WtCgxVI1rq3MK+bxEJaOXj31XIVjsx47P80U8RRvF+s+3JEAsZcUASfzEEdRU61qZgoV2s78j6FXSr6IVlRBDAR8FVLsLDKFeWtrsAUy7qrMsNzUjf+4PIQ6N4uhE4ybmr9VW9Wnpp4Kq07+RwGNujwnqzzWomJ/lG/1gZpKLU+P3Q5Xmk1kxINfPwUAOndEclQGCI+X++HAL9YlaY9vGntJOurVRpaeIIVmwWlClkTH4rugUaYawQxuFPt84QgsFFbRkZThQc3d4XEZOQW7pRixeNuebHAGKKEYtk5ZBt3NXsVdq2gvSbLaeW3EBDDc3hGPUmht/I59DWl03NDHRSEKRi07+Sqc2fz1KOn4AmGtRumQGUO9d3NPs2UPkFCgA52XDeTWrpSWdGw9qt2BsKhyGInCu3g0joZDuGM2nFYnzNnRvOiztITa8fDA4LLctMpgFzqKguChSSypmSIcaieLiDrxZB5iS691l+yGEVVnQ3MTpKP/RbA40RxurwGUMHEo2pZScfl7PAWHvCmbiG2txTIZB033gz1l8dW84UElw572CIiUvEPey9MY/BiZZYYmQdy2jOGHwERA15ge81fMir5Ipw+DkdP32gISpcJP4ogCUqbUjcm7UUOGAGu+YYuS8ssB0RSJPt+j/1FCjMryzmD6E8p99jEe4lizx2VIV/Om1kwyaNgl6qhor6V5b9Wwmc6yN3OjWbf+GKKmqm+0Mr1faHUU03+CBGHX5vQnwdRZzxXUrcJU6163awFuP/ZGfBg0GdZF4YAQlZhxW0RFKkEFubQ1qJZ8n6w55sZZxD2dntVb8cEYqcMKhv5owEoKjIZZfwai9J9ruH3TDyOpOQUWGnoJBYfco+/6loU1d40YkFa5LM1kiG8u2ReNQdg+wwhvv8Psm7jduLNmSOB1IDlPkGE/RTHz3aW+DI9tfvfCLSu/gU6BYX0XIEVbObYXCuKEu3TqmOhNK80gYCWeqf90UenFxnU+vyzUsczvfsnNM0E1KgOPqfkAXx7sd6j/WW1u5C2JFSW7Fun2VAegzAoVq9o0M+G/N3OWM3RNwxdnUg3EwGx58qwf2N5P1et/tCTDj+TuBrkLL2GA94+q47vqgKrcUoCXKplL5ZwCv/B9Bq3gsrCGa9YML1OTXwxfrDCKQ5LMC8b847UI2J/jAjOdKTBhHB3dzDJf40d9KyTicM4foRNDCbi7y2RMfmPAmSU+pe5Mps3RkxcK+UQPLtpcSR3G0No/usOFmMeuRo+h6JojzVO3tYWShbgXFhnW9kqTvbZzAdRdCh15yP40HrpDzOZkVUk++mksnIte/VQmgc8UBPPVC1oLlfnXzcZyOkcSr55l2dtGWnZuvuH0A240WcNb8tvwTpOjecKmrPCpxbjzLNKeLUsdEDEhbcLWRdvVXTUkTpF4gObyXBTWnbgKMb0Lm6CQ0Ph5AOuZQFV3XGN5MA22p+03EN6ydZ0Crvc2yqhiSVVKk7wnWttbm5e3O1a2vzz4Xr1H0Pc/ks6wKTB2931KSTvW7ZoLUpmqHVbEJlgCxE4F8k8PWBKm6pCg2XINC6+vhXWjrHizEZlKQKAjpPnqWAu7LuvfxTnR9sVzSiYg3VUn3pgk70d3G1sUbXfBCuoABiGVoBvM7Gj5Xc33nOHsCc50SwL2r9oYTX/R9YZUaYyfnxUyoRwXm37bxHpL1yNJPX8DsjZelfIb7Dy5tyhuvLy/lEipi7sEdqRGdfz6Yu3xJfhqLYF5L+cwkK0iDdCjTe3HahE6KWFLnMxoRjmXDaXnUCpLZpyVl3ulAqEmAi6sAto8rtkQ7Nrn/AZhYwAv1aLkaTj9SiG9rTENxWxzQhpZ9V/lvbU/5KcZ7Zu/V0NtszMt7qS71fR46hFe1LTNpRp8/dhoU2ME6Ro8RDKOGoQg3BxyHWorLJDaaOn/MRsxbN9t2f7sJUJY6MK/A1TVY9WiftFY6WYJ8K4pGRBDlFrVw1fPjg6xqdS5ZQ643cgF9TLTPczgzECmImbjHnO2QE4rXber/sT/WqP0vM/IP2u9V9bO55+frP6VhELCNbelN3uoZHrf/p0jEA9DvqJK1glQV6ORtkkUAa51Io9Z+uJcsZSw7kvFF9ZxuZcfYDzwlSWKWpIOrX0wD2bxi6i+t0tJyEw9yIJSGjhKPKHmo8sT4/i8MBUodif7oz+IHk6Qr7PPhbNpyN53PYi9FLeKplUZ7GFFCy36UOpJJbG05xXHlms+g8CcqklKIqqKDvpe3d0L+F1udSavVtR6itYAAnJ7dfb1A19diTRKBhUsnHsX5iqtDZ3/HB/Owo5fe/90DzG4QY5BHWDvgg0CZ/fmrh1MJKGY9FJCfa4hRvV3ifkP9N7gUQBErnzFpwFATSG0IfUR/WOdoXMR79KcUA3qt7NqwdNsEP1NVGOtAQ42L2ni3Wf7vRc5M0x6GTqjZBrz43YV2Zi0SmuoSGun6wtE6Hp0Ql9LFHGnBA6Aeo2BTFsEpuyb76IEe1h6BA/HEBaFgP8h1ATu3b2LA5USHLaNbKgSTsKHEElBcjOYgBaS5oYB1maf9uV2c6qLEi3T6gOdP0Vu3pRoHSQjacu1Z8iGQJHWb4BpNUs0KQllhPhIidB3M8zHKC1bz4b9bDC3rHL9wEMhEUW1wUCHgLvpC0blaaafRHZOrT+ID5oXIL3LMa42skr5pRjBF/UEsAllokNV/Wlxj+nXVIWjXO4ahoZQ3njAU4A4mXgo50HWMAtA5P3ZsZyNkYj2My925pNCqcVfjtHsFzTz7E7dedRCvigoIunVEzr7uW+Ev8VhwDnbziOaLSbZ8dXE4hN0MyQ7fX2rlDE00g0lA8E6M5ZxwcpDVLwgZUWexFZ4oryrhrOmuLquSeGryVQYFnXcgA0YopHJdF20A0vUXd45BzIFmdAnt+xYGZ9dg5Zp7188ayXu/fRKDVdldFZMslsop1TQQVHC49aONVyslxnP7aAVMe75nUadrOrdsJSsQVWxqYRdm3iyLUbj/o7kW0HErIY3dOmbNXO34qSZKYVeDI9P27nfke+G+Hurgr0QT6GL+ZXhsoLlRJFCpBVRoPkhoNkave3gyw28bDxXXwWJrarYs/GzBytqnb8IdRrgFQ45TrwX1fAhtfxZNpgIcWEU4N6KIN7FhkRjpRY5Xpe/ZNvJJ1hbKuDryuYYO7WcrT1gnB7SF8i3/EhvaTKG/1xrYi5ZFQlnYMO1EQ4V3i13ZiUl4cqpNDMN2/V2Q9JI/PwCmDZPmDZvrkERwzNNVkXQYNuwSimSGnqQgJ8djpmvPvEam5X4d0lUII2EeUdxX49nGhu5lgaBoWkAqbfhYkSQkfzfy9q/OsdBDJ0KD2cJPpx6vUdr01CgDPhP6mkpkqbkn6HtfftHessjaa3tRc5U4aD3kfGEQhWRzLdTunREBnYcr64yx3FB1acuobpswXbBpEj+IhI0j58XzzAutxb2wVWKJfuMjBUQ7TSn5vwRoZRwSng3RCYKB4quz86yZ41J8sfzOcd5wY1sle983ntLrAdz9uo+PYofUsN508EwxFsh8pGpIbDiBhnVAn9jyU2il3ASg5IfPM3lFZJV8bJ4upmfVfVgDIZi8goFxhwTnyWMXKVVZnufpEONzbG0wDRsXH/at6fxuD7ie9kQTTHnX6Z8yj5ceVcdPsTNVQ9J9VdFphVcluz9nYIh5Hb2hVYOaszl+l1Od2ngRz6N6GIy/jrzhuOvcG8AFqjezAY4fNWYCgT6APlmRs3nixXIqwmiprdyH2KrEqNMUc7AheZKi/Yuzu3dzh1R+iVHFrwH+vXCuKfqw6WXSXiJkSWWoamYavGGjhhiRs8G/j1TECPeC+MqBQkltDY+W9dUJkM5CrYAKFVoSlNGW7NTThP8AmpUR4JfSvfkmkLzDOcyMRx44Rz+UwohiHkQDiVXx1HsR2u2I6IkrMFWinzgRjH2JG5QqclhY/dFHW2mRU7GJK1CVoXoq6pqU2Uwg78jGGzmPAQOgSqWWZv/eEpmuc3OO7xIvOlYH1eeMRASCOQIANfvh7eFPntp7jm3mXKvxB3mWwdkEfDOL5RuGkkLGo4b8cycfVdsKRaFpgzaINbK7VcDACOucbi8wEzklhyBbvg3f3onYS1pjn3eN4FSdEHt5IrYnr7D+c4O4MlNXJwr445QInMzPS3KZkySKQm9ADKbxeeaVnILD9unI6/hmoHV3+IMdUXX7Gy6RPFC+XGfdZboMoRyjFX3ExUb2DnSLWtd+WAVoXuESnyBh27VdkXFriHESIfmBM6wbtJg1wOwqUpBcHDVR7Wg/iqTFnQ6DZWv8JhJtuAqhtfZ02th5jGtY6AWfxYJcbHjxyDPFj/X5WRdbKFlOQGsWceWyns5IeigNwRypzhPY+6KaHwK045Ujv8NIKDwJACbeQkBKaXpHKZv6wAwB95ZeTG1rM70xyelWmyDQUvQvBjxL0joDjOsr+MwTLV/aDnOkpGmDzdOwNujFOGxKMhTRDrp9yAxqEMAulFntAuCnfMoUJ/KWOXMG8UlXAcsgPYqmtfociW7HiBkoPZ1BnZvy9KUgobLoGc3SPOyFa+1vUOXOS5rSGt3LbdpDl4K1Od3AXmxADIpe4RMxRq1CPeHeXK5JA7Idz7UuQQNVm+Dv+xQaAFYHPiH7KFm9vjZxVGILSENrTzrWFuqfkZvnncMb3FUeD1KubnafGFIVIvsdXrHI945kBzlkK+BCQt2f6dXOfa4B77jaF/sSO3z9jjzUFadNdsvi9CKflx0xLwQUboBNp4aBpyZ1dl6reksVCdIA1fqufPPLV1aiYT9MoJb2yeV+C5C3XpWOuvfd7v5+vRis0tj5N65t7UBNuMNyz0UiXmQHDK8DlTPb5JEWaZZ+ibnkIkgWchn4OHozA8QTw4vwEMJSessfIGSJnc5NffVXJZcAMTo87BvuqLIymejdEaWVAzR+yzuKKpnlulgj9Nful8eygmEAuRt+DpmKm2kRqnoBopAI7xeneK1ht0lFoxz/eqUc3R9WR1/zgAjZaMXmnjPPWIzs3Q2a5B3hIgkrkoQ8Jh4VYxOoyvsof11vwQ2/810oI+T+ErLWIjN6ZBMqAexW7KiI9hh4dehKXOUmg4PLak61AaX+s6y984yxw34hw20Du1fpcsP+5Zwn6OigkJuQnp1R2GQoB/i46Q4Vln2W6QXqXaDl3Pe6OcjaGcc4/Pp4fEVrKOh5w/wMsNb8lscYAy/sdEj69z/rcHiU49q/39KAj3fH48Q0mFLE4DQjiFbo+BhuHRhmnyYHBchBEubSc3ocOONOu+ZL798MuQBPPM4Te1mA9FbkuR66SJ9FG6WwirDFILoStMnEpZ0WL5QpsqCeEdnb/+GBJLC6OVGBiF+cO/E/eeo6JdrIXfZhRjiAL6WRGp+Wc4dSb1WyFrIPkvMvGe2A00CHZv9cj/uAQGqLtSh9BhyyIpyYgphCIP9yE++Zdsz5TZrn/UmcNvhfp3hl1EIFhzrfr2K1IPz/f/T6az7+Wv1Tm5YXORTnAF9QBterqOJ0B+KbHZCajY8+K07Ve9EL/qyvzxgcVwEbBw0sMDrtk8hvtimD8hCF0InAPdYnAnRJxW46tg8WsU0TqcoQmsIa/+XCRsl/j4A6r7AL4IUmZ0PSjRrKckDT+sTTaKbabZ4S2EZpdsKQsYZ/e6NMgwMd2ipFloqKUbjcEIplmplgevEJ9pB+svD++URcLCg6vs8iJfr9QpJRmCvlxJGThfDi0pyrKwO8GDdsdyTsgf1wbRE4B4mf+Bdrw5xysrcNHtQk3mJt80LEhNozmpOU7xHlGO8WLQ4QbOIv0M9JKFYScsGNQ5lDboWD6JiXcF7ntsgqRoVUk7PW7iBYQkO5tSo7/+iioVkDp154jg4FJp8dseazag8XaU6a6hVbEArY2gSkYJwfV50PJWPTKaHvoP+tPpmRPEkXfj4n5/Wce5f3K+WEk4tH5CqDJdR+QjOEeBJMJnv2APPIQjMpK777ob2VG5rHFDqWViLs3Fe2544Q/cSmT4PDPCA5AS8fZzVuzCI+yjmkCqcvfNa05TXmtBqOi7TkMR7uhqk+5Q339wQaVRIkM8B9E5ktmla/HQIFBp9k1rQAMaHynTIuSkmiM/x39zI6axkPy2/tAab/lx6FgcYben23nLDc/O+4tBltCJKWOQa/tS4AvuK+X9lf0KYYJmT6rTaDvDLueX9JvNXzQPZwrEQmvjN5G2bo9RZiM1iS8zY4C0CmFfmV83kHFC/j9SMT4JbiizaQeLSOJ/IYq+UOQreC5Wc5Z+vYjQbjhN/i5iMz/U8gL2s1coTo++WV6k93627sof1xZBxvyIu485egd10D/r2v7AvAzP8/MSdhMuwUC7aFWW6CBPMKJSxDHlpyt7TDsk11GjNZUvMxvVAoobsSA5pmWJceWXsRM2OQpEEij2FAL3IVW6z4MybC/fHyQitkYKid7H99Pdo251/00nf2Ho+NR9nzNx1eDTNFRoCDQyWsf4RFFnIbrUvBqY3tYr/e3RSsJ2dJv80S6m9Jc0ae7OJ9xA7TXXs1N5ul8KQ2B9daoKOAxvh7PDEyM08TCjbNX3r19DweQgz+fEEu/cm/Lr4HCM1DECuqtgOhkI/+NgippKoapHvOzsGWP8mrfMSw1LtL88MVdLopT7C2G6/N/ucZzKeFPSHTibJkAqd8XlVBnNmEV0AsxMJr36erq+hgVlC5w/5UIdBNICIkj6S3aKQlTEcsioLYTN/WWu/7IFIjdBcpIfqTe7zsr/3OKe3rT0ScK7Mh7ZE1wbKArJqmxqosOw4GMuwQfj+TWKfRhXkKesOxXm/4Ov9r1XGvkjzeNNn5ktCxEVl1nWJzUw0qvmzD4c7fRjli5wvdRUC76PXDAWun6Sg7hqQFYBOZ69IwOciXSRTKFkqHphjQTfwQJB6+ccJJMLqs6V4MqBAkc8gFnngP6sWbVnfOSXnVLjFGJUyLSqpt+hzldWNnoLZr9YW1+qlYxKAPbZNELN+OxDjP/J+R8jOJgFtxHk78ZrYEkHNKhG3aZ2WZ5YKPZgea0xmUPMyTA5v6N92UEWlazbKaafOFUpkoJAQPEE8yK9WXbxWHoggm1IPOPaoOQc1zbth90uBci5tNoh2NzURaAnMjGPrs1MInqQpwtO7qqcETY5ud7fAGfqOUpP/zQVki1uIGHywPy15bjozC+KIe4uHmTqFFL7g0XMoQJyiWQxVkJjIdc4Tm2DGyVtFjO4ufhLoLpn7hGvMqYPaL2U7D7pGE2mspBe1Ugj3hDyrGRjzRD0wFbXF7S86gYe8YNdYWSVoLCiDQZUvjRpxqU4ITiFWTOcuP6fptZFKBc0Kv16Ik/UA1iZoWKZRwdvOqm1CgbXe121ZnO4OuUUUh8Y9tZ5t4ltvYl1Zgdl+JiVRRPSYVLF15tOYvoRjRRT2skyVJMtfIyg2euC0QnDMgJCfZC3R8TGnAm/YJ9pfSXZclVMaqs0D5YfXpadBr+vJ8KfJeAdLDTCmFNXiHnrdojpA9qbsZSkGGT5YT0yc/FxONsQWvLpo/UsLN9Qz6BEBYOhlzkJuDSo33mar2I+iLsU0KPsIZuCuMIg9DodYeHHERwPGGv3Hara+0JxiIOIcA9nMm2jC7SW1W7ACRPWRY9HCwfWi2qw7WvCkVvgUKk92fO3FYwx3d6yt41sm3F/1FP3/zDobWsfdAWX1hp7503vodZ2Egdv637Abhj70J0lq5p/XttAKt3+AiKHfq8pkWqTldf+UO913uyh/j/TD8KI4KwKaGbosBQ4/LXu5+bpM6nOCRQfujDUa+yeTJ7c4Xb7/1J9LGGBJSkxhz2fiwfSNYD1icyKvJ8S5IncCN/a7/I3TE21OM0gm/aNMoIGO8rwEMr2W5YGMY1E9WRcKmqOXwqosaWVNmmyO2eaItUjk2PJjGheIVib/m99Ep5AbE9ZDQBQ8NTVQU2D9S4RkAkZ8bx+Q5enamXvfiOacJ1nVDLdYWFadYDeVlc2dv4dFweyMsLBqisu9h1qYVtpCTL4RMv+2LL4o14+rl9xcY2osM6H28RH5dws+SB8Iuns0WXW0JRd3sTP7VFHHQXo6HMweoIxO6X+xR0MUxGnaVQprbZI4L7nkph4hZAXyspRJV7HXyy5bSY2LBBE/h2rzz1UZO4yS8njRYUEq31+fvChrzDMuzZGmZV5dTprgDoEZjg2u/QlZO4CtylgT4GOJ/dE5podPV6Gj08L9fRsXXossrfgFloI6aKciJWcrKyewX+J5OfFGOak4MFIgEWpdCb1MzwnF1E6O4brwVm/HSl6kXKP2/fXlwDDKujq5d8zjGg2bv8JdMcveqbyzcZhqKh4b7Ts67E5NW0MBziimQTdQerEx8IdPOSWUNnrUFNTBzDjj9SXdB6tGKrIy5Qz2Vz/Tfek+ZC9kyuWoF3csTgPY8QeD6WBIQT7sOvwclBuwYkEnIr2eLqD5dUwyPNn3W50IoKEm8FQs8y6Wb2HGDDyPqDhcg3acYBcZbvJKjF6S1wW7ES5fOGvBdN6kjuavvQiebhMkNJIQyYc2MURy4l3sIQUT9al4mVI6H9X/8USGBz6cmCd+fWx7VyNedisC17xPJ8wdsZZbHgMEDu5FbRA9I8TS7aXBOvOMK7ss8rBeZzpwVNFjHTFZhCNNjSPVtqwCe4e3uzvwEdyyyi63/g13R10I4CAacEIWijC/s46a27iCj3T/aOGMvQouDqJeZpwJa/6JfF8PVeSfSaGUJ3IxjEM85vyXpaORRIHb0FybXuCWswD+gVLrTzkvZVncZmHnKpCPsGlOtHJZ+1lcNFGqAivN4u6qbeb/x8oqxo8UfHBl4Y+h/KTteYx1tI8T7AA4LJG/yRpjvtoJw+9nqyyZhRKw1u0/mc317pjECirUPjO8n0OTVT1CPseesowBFovVYyUG/FlUU2DMiEbIUJROO/Y+mM9hX0e7uT5+wwfGu/2HF+EweaaRB0I2ssDx0TZW8eh3c2U/nGnfOEhdmw2LupUIq0VI3LL73jy0FA8i25S2LJYywjH1GZcQrrS6KbpEqjvO1wmJP+hjlHl0h+nrO8kWmKmhc4JSEJDFhCQ45OIDckZFQyRDwCSeE+VWXGIq9WIUJC2pNxr4yQ2qtfH/WPvR2t9IrJDA1uYCX9xEe958W/7NxyfV10A8YcYfmSEMPhT0g7UdCd0arjgmfudDtZDyCyQX9axkB406tNgPKo1MaG+xtQNbCir+iMU1+id7FeM5ooSCr4RC2Iw2/cz4/q047d4awjeLf1XyhlbqUasTBBR+uRYrv5/uCZaCSnctJPsQoq1TiOzsrdLSzWgfMuqMKlXEKRAJrKaZPZAwzf0JSIQM+0N1keyJSiLOIvwK375WC1vpeRiHhB7Eliosj3/d5GoMW8yR6obD+UqVQyU+1bL7GoppWv4mpLUkBg4g7QvpiyhjNOIESP6+B4WP0vcQmE9ifvzNcpD1iJ9O8+8LBGovehEvLRj/qAXRkxi+zSrQQyZeEkjrz14ojwcomSxs2ooFzRth06k2qfXtLHNi6p5XLekLOEyl6ycUiLwi57jPgSrHhqptf2NxLGxLBNMZDg1DYSzhYzzDc56Q4EPMkIcjj3WaQrZ2yTomOFwdjOjXQsUf8p0EkmWfx6OqdLkK9YNInu3PnnuXkdYB3eCWwe/KctVqIAiKN2sFBI3IWhq7Sq1/oUYt0uXygSxQlGq83+S66nLQTlZEt02Hg1dsy3EdATepD+iUpm+W3/B7ABLUJqrA3tlstlMht9xGSVi6RH0OcHRpnO6aOqkKF5ON75gR5+nsvH3MAOoBilgZuaVVUCGthqHMQJF9EHeKBSER/QquEMMrfSyS7I8UkFEqyhZrnjwy141JTxoiKUu6ygg7j4eAFAfM1BBxcofljms6TZQJvlmO03mhA1D29LhMdZdiuUAUc6mdEAtrl/VgbMTY4gOQs5nWLKqYNfOo8XGYlqbmXKfGuS5Nq+YGp8tHsuy6ZUy9ygTzS4pXXjR19mFxp207Lo0iGkdwMyPYJ/DQD/qVcBFeeebuZGqrvW4wRsHtf8h4a1+qIo7A0z9HIMUX11rNHJunnZJNsUPQzQjXJ1nExTna4zsuW0pgGjTH1VmPVXBc9Fi1YrEiVzk7FFVeyKLAlpgtiDSzyu/+MQn0mPXGy9MDxev2NuN/ywfvTxL94N4/nJnJt8DIxyyS1yBPB6iHfw+H+vuprccb8m7OzvEgujwwnHN2t96Kl4rrA9hc+omeDN2nw3r/eqdCNgFeRUuiyl/Fyc5XmmaD/bTq79kbXqMzlnXjW0lfjrZ8ka1CqcEMTYqzxiLaNuAoxWI+mbJBUNpcp0YJAu6TsupUZmyVWK5Y8pO1vy2bJwzNnuGNQqMeF51YiUQAZW29HnY5lzDE5eXnVFurr5WUPw4w3d4kDhqmdmlQoj8GN6vmgXObwSjs4yzkILoWWeR40XWqfLW+fgMFyI/Fs2Wo0drk3W6mllH2stYLGhoLVSd6F8426hLMr8iFdQHbzRrLYPHSPaT6dxTZr62Otn1vf/DTbRyjbghzqrmt+5Jv1vPKz4UwjVczV4ASM7H23ypyf34A5zLzBnHrYTRxKO92i7cwqXynESqrNSwGyxQKpQO/UMiLAEBkrFRWZRPhbRUdcVwLe/nEcz7eRulUQsmtYhjhnX6WCyY7NrRkxGRAwrQSBOkdHDh+nCKDoOuRrk5wRYB2u0GBghcCl96HCG3M3VXr9kBkk+i8K3rUOT/aEg2bK7Ix4kX+tu5k9soMi598bT4S4QLgXNzHbubJvoCzIYChCwGoRLeyzhwRStroITqtsh87NmtwYkDYbOUjcioK7Uh6UVsjHLp1751kvNlguWznI3KguTpcxtH2i7EsiRGEagZXIKp/BY99aVB6zEFAE2iFNrKAUOzU38VF1qtYvF05B4lJCCddJBcO6MT4jh2TKktdsnGcZLriD3BR/E+wFOtQtxYRqYULAOY/WK748E6Amekh8xrS0uLK6UMH7x6nxTLofqkMkxQ0uKBj8XbrjbZEOHvmSxP7J/rck97AxmQy0VMH0P8GPBQ/2uiUuXC3fo3HW6AiOkN4B4n7y5yh4Yb8E96ZkJJi4M6Bdp4udgzs3KnIwq9IfD0Mf7D5I1X8EF3VRdWVU3mAqstOzBOuM0boQBiBISk1G2TQNJFYqyRskRhYcKBPIv9ueFIchElEoBrYuSHXwzYjwqpguwN+AztgJKqTYrU41Ya4QeijzHGWAVIuHz2W8AN7KgZ3KucbK4Lxf6UCa8Y7tVzaxSR5sM9YC+W2ao8k/hcJC/JATk5VBOX+QJD/rjDnHn74WuEaHF71ITxc4+kW2uSsKxCjmQj1oRW36sVPKsNEY4E8x0b/bDpukoLlUwnDSy1Lw0RTlAmpk
Variant 5
DifficultyLevel
789
Question
A gardener was paving a large courtyard and created the following pattern.
What is the size of the shaded area in the pattern?
Worked Solution
Total area of the largest square
|
= 120 × 120 |
= 14 400 m2 |
Area of next smallest square
= 7200 m2
Area of next smallest square = 3600 m2
|
|
∴ Shaded area |
= 21× 14 400 + 43× 3600 |
|
= 7200 + 2700 |
|
= 9900 m2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A gardener was paving a large courtyard and created the following pattern.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/aebca96b-b270-4f44-80d6-e3a689067e0cv0_V1-1.svg 400 indent3 vpad
What is the size of the shaded area in the pattern? |
workedSolution | sm_nogap Total area of the largest square
>>||
|-|
|= 120 $\times$ 120|
|= 14 400 m$^2$|
Area of next smallest square
= 7200 m$^2$
Area of next smallest square = 3600 m$^2$
|||
|-|-|
|$\therefore$ Shaded area|= $\dfrac{1}{2}\times$ 14 400 + $\dfrac{3}{4}\times$ 3600|
||= 7200 + 2700|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 9900 | |