Probability, NAPX-p167310v04
U2FsdGVkX1/4WUUghQkIZkxB6JcDoGtDLXy6aNVOcZPwo/cpen1WovxrtgBfgQ6o06qI6O0xTACxvb2Oegvlc/1hm7MQla8qDqUsrInwAOwUHkCzf/JA6ZuNAp2OVM7AEZi6ty425L2P6BE+AqnLl8HQIr4xy3Elf4AcF70deqhHq0asUJwNgtZ/+N+NkLXDqgzmMWyXevip9f8coQz/miTOlcTypTnn12h7usAtzBYpnxjgM1CPSmYjZfk3bKYnpUTwnkNchzSNfazklMSijdFZNgi0n6vFKNHQ2WfRVgxjoU22tbf3qib9Qf9x2hi2OdZ99YzjzqGYmKWD5kIBGpT9FDVgaT6vvbH26Co9uYyYxJ4f9BMW3U4vFIwF1toas/AvmDCnGMweKJw0/h+cT4yFk7oz98qGDktcIO9ceqJIVJpleW0+yY6m+v2wbg79TBtMaSGz1L8i2bGOeM3cyRxp5VNKu37iybXvxA7udy0E0XtaVsa6+OGNNGnV0fb5whrvqEXlokjTeoRr0tSWQpHAYQt1+hO9S3+JJ65iw+JAMP+xcko4c1MxGWt3354xpod2IKtUgMDTX4a57obELFajDZfQIyyzHeEfJACNHVC0xsWMlTN2sQQNCAW/W9uJtn765+zSeiWTWliIyehZr6iaf16SpETB20MOmhhOe+KahnIJMsdwuGyaWxlQ4NpVVrf6Id+R5QkBqPycwMB+MYzgTJixeRJEle1zXDyv/OKEPogHCPH846I8A7cCwiqxYwFLZ4Wtp/mQH2obBJlzTJtXHMe6SXNcDP9Pll/TRpZl1wNoixGGGQ6BkHOWAnHxO07j7sFifDqy51h5+9SzskCa4DuKTjnt9FzLTaY2LNG/SXc+r9gfwYNCXwiQBpxYH/J2AHMniBcFpnmKKHWb8Stzi/QcI4D2Ru/Du66f8YKmjgQYEeRNEBHXNfShnlr35HNwBa4Dp6lxSD92t+H/w95Ox3DUaVYJ3wxPenpZmwHAq/ttRv0QWq3ESgIeqZ5HVLYEp48eHyqWnKehW9HO47yQxuFA6rfs5PVgxoAGshnoPX7nJ/XTH4AjpOecB8oF/I/pVCPAyVxCMpsXbG8CYElFLco7TFUEZL8ZgKr/z/xW6yZXE32VyHOxvYTG2wscddLFnm49l7YtlIHH2A/gDq/n0+QznFDClXpVgaa2gARUr6Nj4WwjYQMtLOWY2DJs0aEBXv6T0nPzMGfqWV0dxGDYSyATaDK2fbXB1na3Uc9J4QfBRHXsxGNyBtGV47iqQl9lWNuEF2F62WoDvBVU7qX/2vPbk/pyzUiuncoQavoWIBZxXSg+RXvUL7co4Ok8YSjA2BiiclZRsOwIY2BsScdCR/vZnqG1xVs3kwGkupdYlvChzi0vZ6OPJkMghdfoTTqVgcauv70NKiYroBuqLhVnar8wC4v2pX2DOjcjdR3LBWSGYc2mBJPOphZNwnvQvJMHF1TeZsjz7nHAmvYmwMaBww60g1+q4UnMzhsDv1BBhn2VYnQPAUJytu9pPPsfCbCyZmqad6j9G7F5bdLmRTA/Wbx/ZIBNlxbWuNnEK33yZx4u+lXKxeq+2+qRAwwch/Y8pBI54piN5zbnQ+aWxT7aBzupgc8LZLX7+7zx4wmQYZEbTtTwqyrOtby8+1R+3Be57oRfoUxVTCSXwto+KD1XVd2HC02Gfd7y8RU3jJtkVvjvbi3rrb9UfO0+xY+Ojo+STevKPC6MjNK7BNDaSIyKFrB56yu78hjO0GJ4Owf8y7E7K9naK6KBjipYlBZSBV8X1AOcraSU9rcxyKDuxv1gqBAcBxvKUcgKerhBocjx7xveR2/mVucQL3g82Ms9XE+gRNY07o7T6R7WptKDjz0Zc8TmRXQaokGqkDu6zPxLQJIj2ZWC5UnnnDrqHjZJBKEjY+appjkb4h6MD1jExItp3BpknH5VU6HpOj3OnVc+iToCVJEwec6yysXk9IQR7ZiVev7NWSj6qI+IXuwuk46IvEbJbkCp1y0C0W2yPbEGHtuQeVpk0E/Bzg6WqZj/FKqcjc4BL4hiIkI3iHXcrlhlxXHpTdDHseIHFuW2zjXbY1ic92hVzw87IX0rnPjPjXJxa42vUKZBrYnm+Woghg1Koh0cyGZ1r9O59HV5F4R48qVAgJTaUJkPTrcf9wqKSDOzIqHEt/d6D7UpvMKvksdCwETlA9MTaCbOylC2DvHaBqJ+d25zlVGyLTrXQ6i6GHZ542nRE16JTs9DcYN0FgBBLeyqT0mm5GMpssxG2VIjqpHTjqT7Z+yVCHiVrcuWxb+qYRh/RIzSfj+q3voXJiQzurIxRfg2ZJAi+9jJGKsi0zxVt0ijdBmAEdb0MxD7QtmAC10jJ3vPL2frqb0qoPO7G6Xifu5THO8eceLESLkkt3nfYblaUhxlEaKSFBmjTQq5jjGZXYo7ovmUJZUZ9wBPxj+CP+7nbryz/lKky4PyOtuGRn34VNokDUXaIzfGbgT+NNOxCs/yCNvxz4Jdzr0XczXem3OkP5bjNUoV8kkRpGQr7lBpHQtYDc1UkSmS7BgfTfSyOVb8ULfAXs2HXDy19uvdn7BsmXYVsfeI+DrsF46InQjIvBF0m93OsoxBAdCnIX+C4PDVhFv5Wezd654itv1t2Z7xGplVzLTgGS5Awb1vrv+nQm/stMHVOPEB8hhCI1uWZEeT5bL4rw7WBjoDOj9NPRJXo1o5U0Jq1qp0opd8vZQzoaaw+GHSOKAqDDrIMN4a+geIRPVoQplCoebChzAXDWtJ8Yy+U0VA9059sFinZOaHXXnSlCZN9dQZ/Xwz2W7LESqOgLxBpWhZwMZZr+EB9FMeHXn5B1y9ughajvXFhLHZh0bOdn7g+0bHqyillNFAiqovioiPnCOKZpuxWAc+DfLcm/fvjxHQtM9dQWi8Gfrx4g2qxMvTSlJagDzmbL51mnbxEcvkFIYdHvxxEgslUkfHuJ6VIMdiLn9qGz3f91D5jdoaaPgvSVQFd1iPTwUAPnra2H4LoEKiWEaMiLfLUtJvl6VrwLuwnJemnem/8QaUYn5olVvDPYRUpgx8iC6hzr8pTaW838nXO4iOMSNmxVP8RyZmWeukrq5imZTlU8jS0SQURjakYTORkHvEIVw5Rb9z0D8oS8wy3um0Q/ayaoBRFpMPZvBeK59yVnzGiIDmVS9o4qgpV7cNHKX5hPw/Hr7KdFuzO46DXX1eZeny+R+pDsF5/ZFWmGBOkkJjzDkuWYErUsZ6OMD4+ANV3Tbn1fLjk+Sw/qk/pt81kSc6HuXgV8+ysWONnNukGkek8chtWQe9TokhEOY4EObq3lryLUEmiYjjysMkuUFQsO7XRWR9YTrnsILoDrtyva5rpU/eC4OLlphQWGDTXaFi11tbDrU1kaBcsP9M0+zdsgtD859gpufR6yMA0yoochyd1hP0KZJX3TPeS5vxQ0CS31aGyFetuOzx5XBjDWej2T9gyLU3UowkQdMgs90uHJENmrg0h1D6F+kNGlMD50TdDrhhI+WBsh3J1a2wNiV7NOq+OCSaoJ8Hg6dYKYD9mVi0aHzm5xkvvdjTzaMRxebwXfeTSU0r2r26zo8T5iNzuHXviAb7VdEG0gKrgfGqHhA3ZDKMRYiUR9GBcmmwraOwHRoM3pUsnKc7nZVQ/lWL3g5aDYpW4CZlwT6lIHj5YlUosHjj1zSk8KsJqO3rLFD4Ja6NqNfFGOFrH1IbYQXpng2h3k2agg0jKGb/vIUjQxyZEWIUikAm6Gd7UK1h4tGCzlPnKJcjMy4t1FTHi0BSmHU0w9YhAvm/GmjkUBPsaFpQTp/Keo/bbI26BkqlBAvgmSu2mJt4rb0rorA16xQqRyGrufsCPYOC6UGv2sPsYfuPH0nuShnqY3GhrswuY0z5JTUy2CGIbHZ3w3CBcN/+Ew33IRnZOm8/7M0C/cpV1jhqVr8fT8HEe1xWe2V6JsJqb6TjL5oDb8pGJS9OoScNKR8ECfDycDT7whcNZzlzgSlTEKKateI5GkVIN5UT7rYvLB+z7lhUD/v36aMoMfUr+SKMaHlKeVcfRQ7EJXAXUFFhEpcRTdpVUN+H1gyZ9cjh9IZ9KDaAi8Cf4QSnJaP9kiXlgExQRt6qQKdve2+9Mg6Gege7lo6tOhSfYvV0Uzw84j74NFKfmTZ3FUJLKNFOndnnMQ/7uJTRssWDmks3cLd02VOuYuMK+33VaXwfNa5xrYQ/FmkG7s7BCyjumVkgjzgakx3srQvuKl1RumXoPTm20vatVnO9IL+J7/XhP5GqczMGYsMqUT8q3mFuEWSb5EMJIa2ZObKnVAjLFKWw4X12LSzjM5ceGtn1BZt4vtK6MBB3Q66s8Qy0XMbRD8UH/mL+eXWMT6toTgMVlUd4r3ul7tBF8QVxaddMfH992G8Vf3OfDNdUvF5xr13TFa4UH80OiOE5i2tDa97iQzUo+JKcIpYP6HuudgMpi87KFmuUgdIv3wBUpmgotO1ZMg1j0hMtA0JvYjkPnErvnjjAAxngQeHRf1SL5ZZwXpKeUqJvAR3XwnIhYVXpxT62U1PDxyicNQuE4+2cfaLGqOqAuBxHqiFfYvbqCUH/wpDue6b9tSoiG+pDBrCUHIXIdVPKLFg35N7oUjpIRbe4CCjX8NhiqQ6RX+XhblVWvI2MsILVkWBWtjFulfBFEzuVr3A6bx1BcmafbjAVHS0AE2O/ns96mJ1omgNJ1ISSPF4y/QxWM9g/+UwkJtBfkvhALYZqgwBxl5NPWprbvcwCtznawo6+zehZX4Y8OqtOk6j7XFJZJezzzQSnXfRqexw9wlPNgjgPUOtN7+tfm42uqqJUTeXwVKidyqH3Fe93viFJITRvIs0bal+6GQj5uaocvb6KTDh8iikX4mwR1YLF3PJil13ulLQi7asvO/DgR4wvZXKp95U4WselziEuLj29PfVcvuPZ+sE10JiwdtQn7WgpF3jjpJdTtlwIQ0gnPDTXF5mWZN9DPLZLkEHp6l4eLap1wAgw4z6Wb2Wzxy2IT4fFA5U6ExJLMh87oZg3CtXJV+Xu5CeWXucuMDm14lHGdY3W9++RajyC/UFwfUZKSvMlPurdE4D5Gcz6j0CP5X5bH9fWEzOouIi+wGyJCqIQHs31LhzISPKq7/m0+PWPlZ75SizARGNgnTgRJ3/jHVJEatuhr9xKfvzQ17sBO6jB9TvcQyRsPnsZsbVdhL+i4RqT/bC75QH2hKssK5vbJDW+Grk4+e+Aczai1kvD0k/K0y8AOlvl7HDojBdD6JcxS85dlsOGbab1hvL+2f205tgTrhOW+4aDyGXeUf1KYI4dkW3IjrlXLx8X9Bc1RDAND7cUfnq8mrz0UZqYVsMYISqmCTaaXZaF6ZuXO9jWyQekynTo3TgNZIyy52DoIrOyV3We+RO/qThI6xsMTx+08j6zSw2frtOe3hzTlWh4QRgWhPMzRJ0GqnUoWzm95KGCMGy5HAwKuiPSPZEmcs/iUEQH9amgziByNxDX+K4Ry0fZVrt5NDxmXwN3ooHqjeaKzSj4MDqTg84IQu+PMz7OQQpyyCorAfRwkmTMhyH+NBafOt/6CuoYaqdMN69xIeh1HOQFxr6CwijAf10T/I7kTu9BUK50+n+FTbQ0BdR0ZTbWh2Tk1IcxAuR240he/vrcSQZ9zKgTd2SF8iJ8UKsoa8JYBEl7kPZjdq7UiomtgZ+aTBwK3KRrbSGRbIeCeNp3b5qRWYrKr7JAueWJ2aaPJoGnVxzneNzC7yi6jbydNNngI1KROUCC9RzliPosrzPgBE1cbpf6iS5iqzsbiEK8HFyb90XfL+chdUVd5qfotb20vTsCk72nh8xae7EY/BKV2biby6fFmNNREs6cRCdioEPtlNSC6ZX0qPoi3/mRVl5nWxJfIrwp5iDlzpvaJGStCmbp60LckU+Aahc9a89ltOjeAm3tb5d4W+FXszibR5u3PsmB3g4xXX5d+0QXuankAwTF63rf8Jsc6p3GB6vOvAGp4HY/OQjTpcnS4/NME+zuLL3VZ8XzZwEpyh3cMMIlbl7EzimfUGL63wP0nwyGt7WMZMofw57PyP7jb+ks+K7XJNNwor5HQ/V4FrIFn41IFWl8vWarsEZ8i5pZgSo09UO4moGtW2NOg5JWlhvnLqUnfjts+vxmIp3tGGl7fwp7R4r+cdKRaY32EcMNf2SMZA/anQA3GWdyRZyqtiZKQTV+wTPmstT0xnIEpTz9ZvcTRt0TL6fiK0PckTKRCW87Ik8mP1/u/cwhqf9TE/bwb5CQmsU1Usch/cfjDEdGgI56j7ttFu8HyWjjMw2yqIKfo18xbP+BMYb033hevZI6CFw8dcnph4OJegnaloNTnWfLmltp5EqzvpTTRh+yqepJUBAoLGcUG48shjW+lCxCookpYWMF0yV9au4cTOpnI+K+x6W5PM8w3reXoo+DGn7TmFFTwBxILGp2wxcHZpnsJxiMKN8jjC6WmayzFRB0Ut9/T90XPezWOoYFbcFnakgMqMr/7C0qd2MiFkU6XgF3bw4eY+ORuAFJXZ/OqFY8ifv8RONW+xGhmqdPxegxfnbUnb/esoGVpl0I4he3qLsikKuM78QG2YVtoQVqH9Uccj5zRhklQN9IbYFCBFAMTTe64YXeBJmpJEC75bnh4YmpOPCe872vmoPNykUOWYLljSZs0lWkJOaEiXYZFntrwcNPsIFbKciKsYlFRMrh8zgIj/xsGWQWxy3pQKjCm7kiPfbNkpvEKtcpJ0jKckCPqSKLlUeEGf5AqfuFJZDBUWIeORM8kzDN7EDOiuVwDScIheYMZmQNkDqCWKI1/ahwx+Hew8XJIcdXxk8P1i0h8YaWmGLMyBmRBZEJhCid3udbXTWEHJRlLG7B7rKRHxHyiUgO6tIx/cQu1/goxzrbZOT0+JzEynVGviDUryNlOPbcVR8/9Dalxce6mgz9KUKePRnqMxlFJAJCPAD5PcvT7AIGQcHPIB57zGtmdgTBKvb/FTIhI9zYesc5IT4xIxkTRrRS7pnp9TxieYdFJO6R1s2DKzNbV+Uc3+eJ0Ui0RWjt0jBE02e/NiSKVoqgZcEiu0rrOzBjN+b8mVFVxZyeNJ0e2McPqKDPcW1rrI+Vy1xn1N8VvMs610i59DKPhMyvivhsHsLahLzPf6ZxfMIsYW/F4bq9+mrCG44WHIWrWudfDoEPw786kDPEcSGV09sjYR6hEhkzQvXvCAodNX3OSI8MhBNCdctMBhBSplsjkgZUMebjs60bCZza8gfJ2O6gmYFVR1OxnFHEQEQgLFveO+DbDR40FFMZcQvsVSLBF1tAHfSspI0lda+kaPcd1AOUlWfZUw3uh+7Ionh5FWLj8y9pQuJ0ZPezft3LjnJbxF5ljXNfyjm1pfhltrLp/0ssb+qk/+AVUY2HqgyNxqQKPcHR14w5aBGBo+CqDfs5Df6r+lvnNaqzTK8PqIFTesthMrcUuedPwJLpGZ5zJUqSBbcO5lcbs9tBL+WOZPfBgbOLWdfnitGJSR7tkZop+H40lEDEPIX7u0bUGBbqJ+mcMQgd3gm+ZucMmJ4Kom4A13VGkJmQpE7dfVAh6pGc0OtAq9WgtRiVbx+u31Z9Hw2luTMPSra18gLQtolii50CeLwxhUSACwGiAycme4s/DWbAl9TzZwdMT7gKsfxij8pG/7kK1I3KyMP9MVBGxB2fWVN1AWgmamsP730STJ1xQL5o4Z9UxwQVryUM8eiF9/Ly1WFWVXkhEyRTpHfnvWK4R3C5x8+O4ZeHySu8Um1qXIQYVS8e4XbhsjhPMo4HkCKzvUJovPOTNfjp7B49+iWWh1e37rs4ZW/oM0R26ggyurhLaI5yAeJfrKz3BEmNb/5drq+ppDq8z+MRhSbWoFTA2TWMrNbWrY23FlZltcOyK9/39L47WsbX2QtFptKMu8JoB8fl5rBGMJolBRamRsSlufiGNHhv0F13tEPlzNrgBuQQzSqgpK5h0tnGYPMl/fv8FZYWhi39IJFq5zEWPoyNjBF615GWwHQxUzlb0AYcfLscdjulDToFtc+1dktNrZzB4NPu8JVOET6JwSOwN0NycUmWwAy3zWGkpTnKKmpPb3LTJrTLUWUMwzYivt8W5aGCKjGPMojFrLc02vrBuwuh18V6S/o97RIn7/iTwWDaz4MymLqqGiuZkzggU92jkk7j1OCUtBYoSw6UsCj9tVnpdDGptA77+oYLvwq8Q/97/o1TqJs6A2qmo+qpXiNMjmkdUXvw1Zia5GjD0NZRMKhsL08lxCGjSHuNsy6U+DsDQ0Wv9HU7qkOXHuGKbjyiM6GLVlLqZWmnEwWYAIO10w/iI1FgjTpnzrxH/uZKu5NrugO48//Y6rMcHxyzdkGJ87v5bg44hQNFJXF0rrNhF/TKyg2lxa+rm7HVRGAtF3teRBLni873j5hnEuGQ11vxXUGuLA41tCqakzBlXRbBvjBJFuCmlgYA58r0vLHSe1xm2LJt0SkSjJ4J1z6Xuq5m9jQHYQ5hKD7Dk4U8/hUMdZTiBOXrjL1IRY/4fW8XaD1i9JHiWfcY4CeLMdD+Z877M3rjxPlJrKaRvG1hdmiPGVeIJcexezsMn9hlAd+lfACkGSG7Q8WaaQguVu4RaZrbIpOiwFBiFMtERyzC9c8Zzhyb9TAo0RicAD6sGge31iCCmrBfaJwOO7VMxdv+84mf/TJKqkaTn9gsP6iT7bb8dqM0ov9NPWY73+5YjuHaqs0aL4yLSnr85RbI8khk2RO/4uYs9nPC58iMHdvRLANV9BLCdnxTTErM3pknW4H4TG11dlKNBwj2PgmH9INjKUWf2i9ps9Et57loqPxxeoxoMT5zdDjMYTWi2X1tdBORZt9AJl0pjUJV3M0LP68wvOhQttuMb0pbKdqExTo67xBYyM+RII6Qw2+pIpyE9Af9sOYAN8NDy5DKA1limHJ+99RgV41k8zLo0HaAIreNxT1nU2VN3T8zHZge+zzvAnwQUA8XgvWFiKkJMOokvzYTzaScEvcuPdWLny4zWI8aU4SYTIufVqr2/CPrrevw+5PL9fHVKzUXuba9M21txYLkBvHb8Y4naLRyexedp2CD1ilV829pChMOVBLcwz6omECNXlHtco+fVDcCi3+Xc4KovVo6BeSOXeDT9c/AUSjJXGBHg+D6VWucmFkubYUhxPXi+8o71I65eVBKbB3QD5gZ2UW/i22oyOZ1GBcbyWDd1lVTwTfzeIgd4VwIS+1l3N5LDN+RL6flFt906K9qMs4yBSHOFHq+IOaVtsC0Up5D6AT2WMEmqOOQQe7haIetpLzSUxoHf5hZez87DUtzORg+qt6RCo1xYvNf1mDZNFjDrhcvC1YYOb07iMkjGK0Ezf6kekDCzYy91OXOu1hTkU1HEkqcR4aqmkEDqhkXqQEg8Yq4SWEttSnDyxfT1+a/FIE5lqjDCGDcr4+cojNgvB2lCyIh8s0YR+DXlbiljS9yOdVo+xVxKsniCv0exXTKSoB4RBOz/XkcQKm0fdgdHZUdL5nVkhgGGogcKZKWJkrrK/OgUWvIU6OFHJyUxF55UaFVwKLCpZqO0J+4jnuI8ldWwG0SMQe/0+t9hiwcSGoeRuhekGuiIQ5PWtgITA3OVTAVKg7TZ5Y/JiZtm7q+zS0dPYr//XwEkesCttT3lVXc/gFKyxAgRAEHUvmqsDDtg8A2fQg2d9jhxJNHVijJrNgxyCC8Lp4k+JZ/WYN988Ti5WmDDFiQcKE2+YFVr4rCJgm5KHMaCPD9HhesUm6EtVMPRxCOpc9uVPupaykFlYfx1WUmDgcP+P9ViAckeY9qTVaacwW2U1iTQkbH/+HES0jBS43Bm7iihxMXB2IJG4j2vhMQaciqW57HIktINKk/ntX0VMDOf7OIpAh9hosi0oQWJbvjPyG8UY5LtZOP0VZstyeuu86EWvWn6kBgAjCUsH3PEtwcppkDGw2FDthYVgO+2LltqaAA0i2VhYZx5zPXg0tdAdgZN5AoKk2rQhM4ktLBJV+tL3n8jLpT9AdttN0mKe9xT+KeA/dmsbyUQJIRE9aPTxpRtaL0Zl3l8t4QtJmfnvV+RJ5p5tD966GR7QdDEzyOtNgwjF3qwLlaruwu7X4Eehk4dnwaqhSycO2YpDaeW3Vvu08ZF7m68IhgbG+NJ6c57/c+gubFGACVDG5MfpN+IAAnACeHS/xqsgScfMRGJqXfA4sQxyhakg3Q6CXHYFZTOf4yK8vIRuIIfPg7JSdTfpqib+ebI56gNuFbKU/6Sq2TC6/LxwSiFDbNIFZ6MOnXF+4ELsnGJLH/oZ6PsmHaAqCxj4MZSGFiLVlsR0OJpvqCA9uzq3BMx08x8oXgkfZa3x9O7DkiBiMhFkkkS3x6Tn/xGkJVKdl0Tq7EP2hYc28bkhvyYTKynRBFnDUfPqQu8FNveFGR9X1duyWHXEqbmBcNhbR+fzlM7gUoL/zA2fA66HvFOoaMKqZPNk6b4JIZC92CvSz4J6h0kLnLXV8Lo/vWOL+4q/2LzKVSuU0mrOFh34eUj14NzDinRN1gES6ygSPfCCpa64XLeqYerxF6wX3MhafUTVIfvyOxB/8RNLU66saSnfzfd2ZvTXGnzzIuKIrPQ23QwrA6pNoBM6oFgfJ5vaBQ32cXt1cJ2JDzmqSMtlt12r1fcR8zPjUH+NFW63Fr5SxRb/Bjf8xhxkTdLpVm/Dx5Sf2/CGxAWMzAl5OTUypyahzf7VKnCt2u/b5Kglf0hBEJ27YCFZcaVUguB0O9jTzfx7tTZPTLJ/a1ZxwVtDeACXzYa81B2Fk4nuq6O0Hz3sqfaxoett6hVFIdomGCbRhfrKrG37x1WTW17X8wQZ4vbe3n5kmVruHSqjYoKTtGBQcZYbadL/RPUn9kU6KmZOiU8FggEP7OHi+m6NcewDEElAB8XenOQQWmN0IaaMyHtQ96J9I2cvHqF4+GDbw55cbFwQ2DQkSpVBqXITy+Rh7p4cjpxwhtGBwRv0g9UMdrQFyoxzOEjWxw//u+ek3Vn3bFSDELJnmE43b2pv9ReG4kUr+CQSBLuYYEGrg+4FgsdFkbabfIqj1hrxUm8+GedAaUmK2uwt08wrcafHcnGW5XgOVf9OgBV16WHuogSlZxI7cNglSzHfqpwjeYZs2sCOmBy0hvcSpbh7Ws265kWpMcX1pI94LKQElCeNdXmW6Ebmw5oKedivQ6Se+sfxW2QI4eWExwBOyVkwT6Cu3dB24mF2TVoUAOyCie42r7kBbTLbL4cVBDHLImvRA6kk+v0F6UGHO5xxtyYNfrMRTuWFDXDwTsFMwDRfEXpntND7Fjy9PWNP1YuIFjYQ35pQvn25vzIbDzyShgjkHsFTvQwYPrDv+QVBZx0kaMSurNNJl2V0yHbVVHsM2/BAFtuGFlI7w6MFQRbI97vcW8gKbgfoEVJWT0W9zQRMnKTbdoa2Jgx1KQybnPWm//dL5yYQc4rPpDG8f+p+HHWk4bLgzl78OUfmSeKYJAWeIMhjQ9fGA5vZN7CO9fMEl7CqnX/W2Hlin1AHsXsFnhpIz0WglkrlT5J3vFiz3UllVZ7UaWiX6oc4shP/u3r0qT5WmWTUgFbFjFDW//tcyvROW/tM7Pk6GQatU1UCMvlbyF/VTMa/mix56tBCcgx5ulmL3wcWpFpjGH9pmsLuYLlNKT4vqr43XpBBPZGAjZ92ObfrHhQNfPu1GpuMF7HsJfAcdo+eE8OXp2Cbxc0KYwlYuKZ6goSHnr8UZ5dQImj1+MO0RBupfZQA7juAj0lCBbqKidkXUubuOeu8xqEy6hmvTJvoh3xe77UQMP4OdpwWAQtjOtQcjyThiz2u3TWIQZ+eqMIrU7L1cz21Dbfwn3kcuAHJioT9W6yq887nt9RSGCy8F3YipqY07gd048Jz+DxH3pN1FUy1kVEGGbVQzNyGyqCdzOjc9IVw0bWVhrk+zKEo2B6EG2XBef3gX4aXEZvYYLda7WZIelwxiMSCIqypIribs6iOwLkz2oCZo1nzNn4AoEcbk7gjDVQvS6zD348o0G5Q3PunmM9sZKdkM65bN4SkjjJubhX5YjNAiwD0S5SZmw/PyQm31ftxX0uIUuqVdXXjcWYPV0GiYQvrdyEsoRULOrhw2mviB9mENqnnxs8ii0VCDL3ETid+4J3QMXV52+1X/qu85UW3ZmIdBCevJrwy2TsjEz/YXzRL1gD+0BREpSdMUk7ubOut0z4Qdw44d5zVzhhYmFiqAGQL1aYDMTs8lvUBWi3d8vTQVcR5w6lE62+0IX/sGZJozvhvJ84iRWl8eVJs7w0o0dQ3ae+bFjrW9mtMMfdoATOVF7/V5iz2l7oJQEqRK/TyV/K6UpPKyK1a84urzXhsXS9mTGvCiTvKSeOTVed7JE/eoVX7zhAezmQK/TDagT4x+FJK1HTMd6zLG//hHkTliKys21o3eVfBeHMV7evXWmBentTAmtWczm2zW3huOHm82JHAdnmFmKYUAJ8xwazHXYR4PrycQMTG0XDugEmn4ImpU7c+yhrFIODoP2g8LEY5rC/yIiM7luQbz72Co1yy/2EPa7gjFa+UWHcCbaAlcotX3dfgNplp+a0CLURa3FlVXGOxjG1R0m5Wz1A1WrQKOSzjBIUpjvfExgLb+nVjH6T6duC+WkJzCb0CaUD+mh8oDaCYCemNzmNaq2X3vdM7DVhTWQtxi6TowUb+eFkX0eJjvUND13bXIpiqzUpWMwqiC9rrSQkJzTnzwq2DDlWotkKbNr42RTmtk5MVmS5urBj7qxo+Ys58boplApb4ot2XZbrkQy7f7q6iGzAWfZQn9v+iWDfTHwXc0I36PfpOCuBeA4NTlo0UH/t7+8SRsue4mgcsZToqxqGPNzhclvKBlXHRQu3RAYoM2z0DNf6t+ZAELjzr9YWoCqBuAI+Q6+F/Fz8EmLS56yiT0lHZLUooR7mwkw3LxWBtmHaEq5lvG0WDsABCD55HVJ6dNo/6NqH6gPuJqN6wB9uC4sOlD5Dq9/rBVBQZp7U7MAC34B5h7XtUqpeWkdm+qjTOpInj2RPs9EN8nrNHGk0wkvo21WRvz/9QCVmvjrIOS1o1kTyJ6CnbI0FQM6Hlo5WEs/BSsYGW0R+3XcjEaNeRCxc/+Ss7dI1nK8JhqQDsxM0UL2JEZyUzvb8xet9sFNZgPLybmOVa+PezlfyaUu7oKBluA6Tz+M0gBEGqCSn7XlLgT/yhZaEZ/o8jDQ4D7uKdeuVSZPjqcfclFSE4FXYrxSntLQN8SwWR/ZrBmuZcF2Twj5rdWQ9MbSkZaYEr8QUfVJzzPG6f1IQQpOprdcLySSgJB0W6QVHyfFoH5CEp2qGtPRpgNzAvnOUXCEAa65lNo55L28f5ppPmGepd7MqAuCgSwRL5BG7b4VhfE62duCF2RuxMoPWCkp1GTV6n3daaloHrA1ZdVrxfuSu7TJitgqqk3oYwFvUs0qNJYEE9J9bpdSWc5grrKmvSRehF1bmtqgSwpAE9scYFUc5T5hQcceykcg18ll6tGJHGaG0qO821S0kZ127FoSVwKXS9a0MynkJi97koKvr9R7ShsPfR1KAmT/8DGp3aY32swM2BIbu5GBRxJyOKAM+DYEpSszeUvez9LA7a3iMl1Op8F1wcjaEWXkChspuLZqfBJP0wBrVrNvRfT/TvJoVXLrDqVEu3bxD3TLaM+S8pqC0/op8/272GLmpbIMilgSbVB5dgvmNUF2WLulTEM5cftHAdDqh3JB0vIIR5+cP4PcAwZlnOYCrA2Zu8FcUuLMMiWgzY7jqJj0HB4dzJC3rRgsYmMYAZJIUceuS77rmGcurpbHetiZe6JnHctmOpPnIB63PmJyYcRS8Kr+sI9WOIBINXbpzDpkqKSbxawwRHu7yBBWyBUszEbWQvw2lZBNvgDKMtkCe4CYzov7eMhbddfou4QmPtJUhcBqvLWXM7PbN1Z+tfJTgUPIqtIA4PGZw77wpx+YBFoeIfH3PP6cmok66hqEKhQ82vFcxxs6oDpf4Z8DfFfvr6L5hX1mEmNwsGD3uhH1VNgBRqqZevSTs04ysdzGHO3xYb2FW1+BSJLKMAvkgYYDmuEvPUc9xEkoH/nru+NNwhHTrzhcssciDmf4Bp4JNuPRaJkWDxwU69N+8JjmVGRr39WVuGAy5yjhukOTf1sHGFpoGHyTqh9PDblW6OWPsRt2J7/VVcny6WTFa6Lu2ArINv9vm6oe5zMruwnj9nz0Er1YUzPOEXVsuZz8vpjqhWyDkWqr7Eibj1oYLpAfVWmvmBbdl6bBvgZgcDcXR8DTmoIYvuxPsjuTKr3iv4i7yfgVVmwpNzGR19MiHW7LEDRUJ6URgTN6zV5rw51SLHWQbAHIEkGbQ2v9PJxoEXw9TF6UcbHew1ws1N+Dnx3l7MAInF92hKLXU2bcWSEBuKP5EQB/TLMH1+sMjd0j34/Wz8uCDuKrdCA+Okak1oecwQxDBEVXKmEtUdj3kEXhiV8WCc2ftzRqTO5gpkUmmSCxkFiX2/pLmufdRD80YCxljKZUdV4hA2h9UkYNE+miHBf73c3UjLiFXnBvBTfAA9Or7UvhGf8DTvQVMmUBwQYYJzZlqccLqNCRTti1HBMq4zrB5bjkENauiEA4daajs9L42mUUhnj79mQE15GKo6PqQDcna33knjqpoEPxoveu7yblvKGnLLmyawKZFWtXG1ZiCjSsUu/UTCvzBaCJ4d73v1d7vc/j2Q8dZtpnYBJEeGMugxkoseP0ZeK5+MhuZCcuiPgy+0bYq3jp2v6H3lcQrUcRSIsIDCGZ6uVy8jPB3GlZ9fnVfrpUW21Q/FnHS8aXwh/7xGHd+LwSJzLteZaR5KC1z8CTfT0LVGzaN3SgWRatZuwV+T5+TkmyJKi4CzqR4Ug9+DNWJr63kqfSVrhXFX41e2H64Q4oiI1RdsR4o+1jthi0LEx7bF9Nln6PKbqHcZbPhseZfAfByFffBfybIPUUR1A7cH3Q1sv2mEe90rDCzKFad/ohvnIs9X0AgBk7Ldid26P8lG59782pnOoUQoAuv97Xe05EIHOUYK6h4HgUUnGz4tNoARWk+H4tabJgiKYOWXAwbSyHCV5ZgGB86YKWa0JVzLCtHK4bnHU/J9aZo8Jk6Scxn1HGLpBEcMxI9TiGKBbBb6tp4W5g39o5417CXALBkof0Sost7Qc74656Cuekkw7qY4FSDmKdhFx8XaowvVoXnrtwV0z2+nZvWlqsucAYrcfft7DF6ChoBLskYTAsCNgA5MvkANBbnHGLBbkwYbDieiz37Z6QDgHlaiur/nSkagwDgBcl6XshPDi7fIWMeBPHP/wBFyGW8q7TDad5LCo/E5c5W3sR7m3Pr0uvrWsjCbKcnCR9ehcpr4/f41SwIRoLeKFNO6YO9OYYcl0IxeNUvUexb6HKE3Slb7/wBAInoh1FhEY9Jcjqoq8mwaGyPApdRO8tB8wzNCm884NQBGusX1bZvsJmt61jSsq03jy6ZQDTzvKTk2lhznIH79/wtschYc4CodBtXlO0mWPoNmS/W1tns6WHontNKhap0bMYbu35/jysxmxZbyi6BpwYPFY63qKpF0mwm3G0ltxoAVSJXapo5yLV6enA1LfC4jA1nvk5mj9Mb4D9MiQ6XgoYK+dw+ALviu9ZLj63Z/riFgEZMfDKhh2ZYInsR4qXZHtreD0dJvRIbCrnM+TlVlCgv9Elglg3MLSPRUT+ebeLGCnWdvY4pwYSWKIXIKWRZ7HZpRh7TZ6XL1BKPHZlbfEG4/2Boe+gZw9H7mL6nEjuqVDqHlrPZsyXHDKOOxYq1CU5cJAdX1db5kmBJMxmlbx81fC1tTLb+ywSfpMmCt7AIDxKi6hnYPurmqwtwmvteMh7M1+UpBOLuDTc9aesL/fUxY1vBGg8+HO4UBZPnfPHl9/ozoOFM+Yy5vBUFtYKgFztum8l4mFZtDdUcaP2/wH+T/TQIyaOt1ELK7GN3dXfCKyQB+OgP77ze4aeaOJ+VAjtjZTOo9Qj3EAKIU1rHbejsAsMN6EqwWofPgVTnsaZgjIv+j9wVMr6FxzLLON8ot4FKxyOGjXvpMxjZE3W1gjUIBCFWxJwgcq5GkJDQKKW4X68tnB5abEo63llCuuCfmRzXbOB2aPjKPYRT+cLHvsLgom6rSevBUgcRQOzIGAdLUmP2Xo/iM4RmWPZsgskcKgCXz1OCZFzCkezghckfeUkHcljI/kp7ljYx057oWqu/xtz4Be5grcmYIUKHAzIIV1VLGeItCnO3pbfohIXsp4qFTQ7oBlB7EXynU8r87kZnkHATrJ6c/UOrv8YhKyIgEkZUh4418H/+8wpA1NWS1lsYs+i8i2TB+i5pAyvsEhSzWJ68OGqGFMihXKxMxueUyiZ3bo1d6uyowehSTsjWJwSKmDkU4LYHQ66kBi8x5bylcLnUXFHUVbZYhk8lrsA6aQaSEhPUrSTSByf3E6fgz5v6oe+hLuEP8PStw1bvnzDVOLcndqcPlRDbIuGI2KXqSCCK6jzsgmQfZh7ApNEhi650gcdvKTEo4RByI6me2ddjvobNcuXlg+FPOpghA9rykgKakoZNukfgxCj+sheMss2yXt6D1eopNivU6Md63oFRPnGiTlHx+Sqvs3gMjwtA7c/vTPBM8xOdnQpmfMaX5Gb6YNluf4tYwoHnY2CSfBAZNGM2g1m9fZ7lxOwqB4M3uea+K5v2zJKbhqADhyPwGbWEnImCy6QC1OplETZVLApyaauof4cNdyfimM4ljay5EH4qVkaiacXfP1+woXchyGG8eKRazkyswQYqsof1otNpbxvAy22TFX72mN/EfZrsDvv/ebjGr7MMyLtM0FG59dSdWko6HU2/JVTRwIY9PoOevS24MmB+e8xTLlgSmGNWHsTXSfg1pj3iJ2ROQ5FczoUxjJySy8O4bsU7bRMzKfOTY6EWkR7TpKSes++whaOoWGpDYgZkC/JYnv1qEGtZObcaJC/BUUBxudz0cxuEU1HAitkdEQ0lfXpeAlkosSdAmfOOFjT7WDrPpKyDwrNpf73pRD49A5yripVYWemrrTpMDdximAExi/tEaIPgOtd19PR9b6B0t50sLWZyThPg9UlEKHc/iUmshc4fm2Ew40AfRPb/fGh295y2JQ/zbpHoyGekbldeDnr6k33c6B3IUA4dzrJknnDhYTfxb/sub5qFBhEDD98rnKwnU3OElouv6ULbYeE7pGGSUE8hJxoKkumgnK27aoZXKGR5VnXT4At+NPMAgGD5ovBmsqFoj8YJ7mXbbH6TcFavnYKJz0xDgNyxA0SuZRP/+JrMvdEEMv6OSbJUUtBmqzEauQOCfMJN61tjO+XM2ONJoxtsernvwhWNqX65m+hOd1bYOh3icw22K2qmAnXFb+jPnF40U8oA3n4OoyQc/vwbZ8EfkCttnIdWQzc00atATS2Cite9FWAjM92Wy9urKVFWcbkCan15O8J0C3yxjm7Uv9LUyu+8ujivraFEWMSLpqN452GchxyvIl6/tTYrPjIwcZuudugYM03GfdH0x272wqt4zlzszSlQjB63SL1+i1zZ+6z541fPufbUlYF2TeF+LIwahvODsb+3lZuehlHP5bj0UbMymk6Ecf9PugXsj5GUpRR6a83mvCS/5IoxunEINhbtcnoTOZlRlk/bLyMSKDpiL23SxBhL+6GRK8zwoqm1zoDqVtkJnevaZf5A4E9pFiRMjONCpGypZ37Ekp6XNLRUa6ccQdUuKlyRlcdLuLN01lqSlf8YfIvzWpIQQaPEwq1NouXfcjyxnJlmIWz7y6i5ANi8lT0qt0DyK2ivUUQWS6tbBIKV79nJ6U5E+p8JCW21u8xSsOX6cRa1bQD6m/yddwXEqtyelUwfrqTg8FX5Wz66Kb+fZi0uK31CWD8usDyDJqS8bbPfdbCs0FWRij5Fl4ENMUTSq8g8/H3xKomiEJWWz5Zf1o0gDJVr2VBAO92IPlOFEX/Z+Nb5l8pYKf43RMoHZedR3BI9KP1AKj6KUqnsOz1Vc1XaKLHcIxWWzsf83+QDDeJ3T9KMYKBWhn1yacgdkVS2CjVM/c7uYCKt/Dn6ZWimo3DBQR9ICFhBYJafWlrVMnvx/xVEIBRKYUgmBExkvD7jJuG0Dtm+dXkiJOozskJ0iqEgi84Z+hkNMdCbdciOtTGe2w6IijM0cjerl+5QRbU2oaS6hwcn6C/3pPQzRTyFOb1XrFN6qgjn/btOkHd76GYjYrksDy05PQ6J+IvQ0ELoNuQ2tWQIKmVPcsieqGPbvDogppavAtm3CocN4hJCkdJknEbMWscjraUXXyQe1VLbvqVPGvvplDTAEV2Tt1JsHnaF5XdWCGsWlFxoQ+h8ADitSz2wtnTTTnijfJ8nNEwTkZBoazfTdKgliXZYh8tPYhaQ5/D4Mg+FIUiGG9o85jFhX+XJHHAO8R8IxX05/4WlwBvtvKKlkE1Xd54OvQ52o7//42p6z2/ksDEv2J0zOOiXHEvvySOzyQ84XdQlNGTk6Hwi697GqQeFvnG1y+MgdgrFDLeR7l9bNDcstkT+gxRAjHOYiTo2Rqb4SBPPbA9nfz2COJGcoX58XZ9KSRR8mNRBn5fGiEqeIdubpo1u3K8Tk9ZFg87WZkqd7USManhYMxyO5DGGClntQWRtyG/aZ+amy+sGAmDxb41ElrKcHkT6F+7QMNY8u43lZxHDPCE5uupxgKzo1yHEjSkw92VcoQ3mTwolSg9o6dM0u6WE7iI6d7RposIGLSCOWB6lMCWxIlU7nzN29CXbt52vyDokzonvoaL9o3es7JS/qr8mn7zh8G4ds/lUiY+GhyD4RrA81XJxJA0oCbQeCUKg0IAPGwdcFz8ghc50YycUomuidZXT91e89x28Uw1+7cdnDOmWfaPJi7zkaO9tCBbOt9V6KQWKQCm5IjU06vVHn9b42vqTudgJ9fRUaJyHsqA3WS7/fS6C6qkIv6iEFZtxci13jgFvYGHilEXlefv5jKPJy7O5MB1F1Sh2RaqxaxKjLm5UE7sjifRwBu5nnjJcvcS48BFSs21F4Zfqog3oQgmo8EerOwb6iD7pUDEJvzaU3m/oToHcIEvCGYxRz71nyGjh9I5tqvL+xkC8fogncJxTaaWe2VRnFmsmi+/eqGpYpIVX5k1GdQdjbBwosk7bcvzeyoqa2xZ1CN5mZpbfSMyEah7THdXT4h/pmFdENakW98Fk4mjSjLPQ85w5AroBsBJTA9W6M5f6Af/dmT78qqDUgyUOtXYKLOYyKMCp3H0gL0KgdZeUjZ0kUjhiDvUZ6USlXDqhWU7CAlgqw9uK8nrWV3XbYH+D1Xve+S5eqBOzXmJgL01zG07ozj4HVbkbgNoipihpiatRvCQ5J0I+Ogghg03WvU4da689vNdBKPUS9tac+oUXhiY+ssKzTz3XBAhpqnXjVaeHDNgTS1VIFG2mszONGIxypwPlqsuwdfuDUImbD+/2zCGODU4Mhf+FypsMcPY1bxHNhH/PjRtDkXjsiyT7Tgg0G3/Eq73SdL4tXbCGHv/BqmXMenqboJwbfkHUXEbNuFeygoTi8eOHA13aOEOLjhfoDdBD9zphbPHxQXXqfNkUBcvGgmBVE/DZuykvV2cU8MOfa/PICuYaHsA702q+zKxGDuu6Xdnvo7xbNgOqGo+5o1wTbv0e1jnXNHRsgcVyU640qT/YHR574PnFzHmSSNlTYDdRASSszBHNFOcbaPHQ6dx9Z8wPdLMfgxVyWohCAonfeZ2LQtJSlVZBL5klXtU+eDG16yjFKxamamOR8n+kpqPllGk+1fJVoYG36ZzIKO/VMbXSreXyV6SSlt4SOsEqFUQnod80EOD9vUi25bY/gqpjzV+8iKmog1NUoPmoOuemAIPBDyxLgztzih52DSq6/xmFSvJvjjNdLa+SJ+c7h0yq00LSTFsOsp7ehKyUk4erQ==
Variant 0
DifficultyLevel
582
Question
A man spins a wheel with 5 different coloured sections and records which colour it lands on each time.
He repeats the process multiple times.
The table below shows the results.
WHITE |
YELLOW |
RED |
BLUE |
GREEN |
42 |
24 |
38 |
27 |
37 |
Using the table, what is the probability that the next spin will be yellow?
Worked Solution
|
|
P(yellow) |
= Total number of throwsNumber of yellow |
|
|
|
= 42+24+38+27+3724 |
|
|
|
= 16824 |
|
|
|
= 71 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A man spins a wheel with 5 different coloured sections and records which colour it lands on each time.
He repeats the process multiple times.
The table below shows the results.
>> | WHITE | YELLOW | RED | BLUE | GREEN |
> | :-----------: | :----------: | :------------: | :----------: | :------------: |
> | 42 | 24 | 38 | 27 | 37 |
Using the table, what is the probability that the next spin will be yellow? |
workedSolution |
| | |
| ------------: | ---------- |
| $P$(yellow) | \= $\dfrac{\text{Number of yellow}}{\text{Total number of throws}}$ |
| | |
| | \= $\dfrac{24}{42+24+38+27+37}$ |
| | |
| | \= $\dfrac{24}{168}$ |
| | |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19F1d3Vnidr4jXV50LVy6sAkkTPjllEewQxXbVfNsNSjwGaUBED7YI9qtkkN8GczkBeXRJDzaXBGB2oAPICwD73qjP6/gVDgMjVXTKZu+OuedbGe8PTfECbtduJDlO+b6eXOFbcYGEoz/ICidd8dSs2xw0P3vM68jI1M91E5iDXUpX05B27ljKeWWptbBPMpDlTqux0Iv7rOyM9+3Vt/nsIdkKgDY3z8LHo0QS0IqOD21hjx9Lqjbs7ynlykq2zxSEErx6n+d3VHVWW3G4Czh4nX6xb5FJh0ingS66GRceq1iVB8EQXKiMH5N0c7gM+VCWMnw3tUuSUmniZk67pc3sQrg3UdhQljLxfVA35t1cu5a7hQ5SKpUKcwRL+JdderJnvtQQpD1Ir5JuAibe+7LKk4hK+mXJ7Fldw6eJ/5Y0atMvyuMkXadsMoFZcYYYeR/LvLgzVzUU8y/fjDqAqHyBtylE3V49hWsUY+ghUI9/QGHb7N/+upO2lbb/yE1XXDw0FWeanHX/PZOBkhWktFYremhfwwUwMMTlDUMeQYIbxBDcj130zL6k98iKbgJeh2qaUJrdbQIIXESvqMQMUiRdD1d6Hj2Oa/JsFU2P5bUOdGwbSNjwxV+PUHJCdrRlr1K2GguJ056WHEgk4tfz43Ma6T6NtzUI6M2Fb75qCP+hpCytuHR5O0O1KxbsONm1GYY0/u3Rirq4HHaR/qx+O5sxhje7XKnn9AaSOAkm3p0chQcKkgeKYCgGiNeBuVsjANmpU8anyct2dNaDJk9nvf/rH0ID356ST5rptcc6nnXto0WphPC2Q7tkiYhGiIObY8s00St4Ai+Ya7Ki9xF8jm14qZlUOeeiMRK32vS47rxZevrAtGfrRIZuM0mBsX7U2Prxr4Dnmh7g29t1YGM90ZKPECqNF7/MXrw44Fx6PqZm1xS3XJBD7siOI/k0wiSdGGrZPYQ3E8dnyJxKVlgAX5nEqGW0V9pxRu2TlXoJXrRZFqxpEX0SDmXmbsv7fUf5SfcHnO7LYQIBWETC74B+nlj6X05zOD8vCGnUPUxlKw1kBTTVtJQCYm4rW/X8o2lWdzNUZkXHZhimNDpDLW/BWnfGeY0alWC9u+lWk1laNmSyUKJKf+Ad8xjm9voEd534+ckBYjyPirsk7HH0Z1ifq79qRz16dLdZ68rmHg1wq38fCBe96CiTu1dGrNV8af+LTLCeaf/PHv9XGLaasE8jmnv19d5RolGJaSLFxxGmNXt4LRXJBAHPsB0tIk4XtYARZuS01C6T6dOCAY/HiH0QeMjT+nkGmY1qLJTNNwq6pu6hGcevjn0pYNBLqMNBIsoUKgNVOiNcBaTw3IzmIVN1tzq5T2GIvT8+ryqQekk0f6M8k71hjmye3zDHAQ2+LHgGm511lcSy7bIBPKA2JJupl8ku28aZjebtuwyjJawz4wUKKpYmpiGHp2nW3YfEIBFugSfYuzInqVJAJb3ryjJw1v7mK9jF98PnQ9lexQHR4EgaaYa8640Z2fTaEyDsFVDFoa3kA069kP8qWrbiOwPTKgfzd798Lf4DAKiOUHMfZeF4ViYOwm+QcZM7dSwFZjkU85zKn5kY5o+e2Ta74MzbF5OMebr66PQ3A2YsdrFjPWc32OZO+mtnTknzAxmsKd8t7erjA8P/fsfwa7s73U2qGdiiK71LBC7COOYtFCtbGb58136Lcs786LeqzZ2AIg2HHf28oGaHcoc3f/8MBolkNBJ2vtY3Oh310KpFHh6cRFnU6BCjP2L7uSBNeCrKcX2VUlzwdCC6SlthCVTuB4MNL48SfFYk2FRaWe6bkZ4ffFyXNvN0gQvRjMG/+s9CDPz2TFTz6M/ULrN2RCZ3Fu7YD6yhrtblP8BxN2Bv7PMRjiCcPWsQ1vHxpLSwgVMpkHGnj9pLOthTeKIeKtZvmKIv6CcAklJs1XqqZi+K4m6gPQQlLwh6JkELLBmBLHS1rbayJ/f2B8E2/mxrsaFixm+8GvTp2XOHu+CckuPW9wIw7fwEBLF7PVayvuD0qhQWOjbkBCatU1Qhcd14Upv/oA97UOnpREpYMHfjNcKNpO2K7HaYAUuwDs2NjGnltrSrhLF5OK3Iu8EsFOtBSgtnH4M5lUYf7lTVkpPRHfT0Qjzk+Q8JZelh6gVZb7S7ZXbXbNVl1CmM8irIKCO/dYz4W8iODRYLZnPW30ehKqIGU0AIpiuStV2lLflIIMeN28iiA26cFiWir2V9mKNL7Op7IrIYWkcZOfoMBaDZ/S3yILVnHko5ibcZmwCffGhjlXIJ1sPTBbtEWfTF5XM/jaiLqz8d6VURTQQm3twDdW7JZYIFOh2FTb67FdWN/SGEgjwGMVrUkbVi+G6mQbQEpduEwIp8s1oENxEdwF6LmXKaFz6Sq7S/BXp9VTHMayLRz0ry8MKonAaFOI+V0n/cjVRYh6BSDGkGvpSTSn5a5HHEAuzx1m/XKNIpFaRV2j87cNWQWMyfNTqKRnRL6JhRhZGktUcFRKm0MuVi0nq8r5AK0ptcU+DQI6jc0kEC+4GXk3F0QuTw9EdikZGNkD3hbm7ZUOMvZGRXpq1jwJqV1tQlxoe272fc6ULmXMaqm9ZbbG/FOhBQn7euka/611cGMg6uSUo1X8H2R1xWf61QVeVMB10aq/EJDOcM8FyUWu9henD9vGaOj22kcUdqfz85J9omodOxey2OBZvJTuAbdG3zoRDGfiAc1fDO0IemqssTM8rP6GGDL8e96G18SLTxieRVd/1XV++HfVnZiR2LX+Tv6cFhIgpFVLTAbvXcRyyXw//5FFT3TLx5lnaQ0WNIe/ijBfp0KDD1mNra4YGigD9q9P/fPh/WwYJocza9jpEsG+pp5g6TyjmVfIX0o1+wPNTL98BHmpRCINsrDRt/lxt4NBalxWvUqTE5hB9WU+I90ibeBQ56QHwtSkKs68UhWNwv+2NAyxU4Xjp1LCa0wkEMMQqCv/0wvVFbSZ+h/DphBizOvv/OozRb6KhVcFGgc37/uwNVh4geUG747fcD5V+Y1kBBiW6d6Zhs7r3Ew1XM4ZZwCBgfuPsLzdVPseAKwQKuY3OroHX4iJCqhG6jWLZqr2AHO5k7TyDPNv3NS+Nxcl91x158ye7v+Je97BHwcxbdi7inGAqbiNv4LWYcxzGWjB4FgxREOMzlGFo9I5ue7P+mPZoRChreBhXhXq67lalRKBh9a4hEgI1Epa0P/3b6IolNXkr8BLvGxetqSGDigj1WJZxAyy4O/pNiLmEw+bwXGTikmCTBnQKPn4denyiwTNBHlPPx7SoKtPzna8vg7QrPg8ylNI4jvz36rFlCLvVFN1JrFYJz/+8ikYT3VbMPhymurWdapAyy15iWOxULXDG4DnI7i+P0QWpumehil6wJ/Jfs8zVBwjM2CJx8TpMAbVCsOQz49afQ+ldngCabB/Cl0ExoYeeRtO5hWSQaAM4lBV96B8BUo2DR+hK7nQK+FqZI4qr/IYZ+tAIAFXNnBk08VGX2ngvc7J+vnsaQ5IXP6WVBwtgigyx0FRLGH9RxmY7QOiybf7AUN/KHQ4S8a81yUAuqAudYfX62pSbQ+iqunynOwRuAebU9077So/32/4uReDCfGUweDAuFtCQjo+TEbmKqhxpX3OPKK4V5J1amGvrd2TbGFB0ODa09a8PzUaVPuPE2xs7+LF3rUAv3Pgrs33moBsq9voHUfpRoOlENe/4U8VZfDzHLNNRHmF+Xc662F/3t2FsiZ3m0vSurdaxroPgiZqMEIwc+pBZblwktVl4vmCOeAFywsDuCc1AfjBu7nTZcM0TkGMICnNwaEIL4P4W89aLwG4O1RU8hF/Q7xEffPm0zzNrgbBUjkMwIKLybPXrF8cE4yX3WEF5tRcva5DfSsVq8hi9W/NzOM8Dxc0kcSXYjtLVnaY8XZnd0Db8DOPzd3ZCgJVnGvTftcEjKUVsIcD+XI8kY2ygHSsoUiNva2tiWMckaKZ4I7BjWsX/CyUisA2apUACWOKUmQscsYacaCezoj2NcenvyARDKnnLKdykXeB8Y9SGvM4sQToAI3B2O7qzZvM5xsOB4nTzBVKyvWppRDY/CD8Tv5FRt8HeRx5es3ZMLZOSVqU/3kuK3QtMfcv5KdIBL3lKhkt4gP0aB4F0snL+4CrVQ51hTa44UlOkCBombbHPH3xoref351RqgYJneb8Q9aRni9z6rZZi/aQSaazIgC5tOg5aKhBNLCYUfDOQdJo9iDptk1bI+/yBNk0BHtrGuTDnabPQwpSDb+tqfsWtoW7pF8Fk/ArUNj7AnuLCmGSsn/543J4cm2lXIpnz4lUmmfDVz1lAXSuCoju6ODn2GqffNhxCypub35PRDm0C6zbb9D2PX1ACRG52KmAs5yXuGT3QnUvCjrPR2RTgoWRVc3oa9RGbyU5orHUjD7cuz+wYb3sdyjbZKtsvdXLCHLes2afaBjSRJYLTMXN0tXlrNCWvzLmysX4kw404oTdBi48zsbRq2wSEWyrgdvSjdryMKotYGtG2DqptyWyPVxA2rrqGXj1X6A9tiW3NS8p8j4+7pOE5JqTDjtjCkcszs7a/7ZeyHGOg1wYMI4cVkJ5tXvsS0XbAas9x8/2HE3BVMncPvMA8FY9Tev1rREna6vev13m1i+xAp6SF9ZVqE9ni9XbmHJCa93L/mh6FX0TCXfqjrIuSQfhcOvNEtUjnn2GSrkjYLu76bCeOe3c6sIgHzvYlAlCcZ7hA0ZALT/0v4TQCKmuXFs8OlFwH9/hpAueiAC2zXOGPTLzPzwaMWj+7i6GmO77ZgZD9Sc57KrYyEE+Jv5ev4Ki1gohClzppdnptDxZCwP7LF1A/KwQA96mLia4Q4UsrZpeeN2pUqwCR1vPg0bkS4CIkhn9D5TMDaJHz6tB6gtB8qkDPSuUeWU7787oRbnDDYPqHoNSmyYTwpi6xJG2QmxK4llA38z1XN9q+yaRHpfaKCqmdux2Zmjimq2gsqAibIbtQiDSmkflZiZPkeygtXaOjzd4yAwIoLsl+w7Bb4NcUNbpmPdU99Jr0GitwxgSdHlSFqhC+7JyXyYrwSx+thzINrOaK7FsGQa0FACI3P2vOUHSHeYHHFwmWJnZ15eIr2QJtoNHdajBmGBFem+yPd519MD3Uwj219BB51Uli2XWnd3SqIhnq5WKuXD4kfxePVRHRxfdEy+w+U1wiv3QaAVwlA56nufDgf9vFjERZKvmR3izCUmDpaoLTnTKzOHmBfTlSmovQ9j7rbtDF4gmN85kYIbBhjzxlEn6nhTD+HX3Ggm42/gCg0MtMwAuqBuhmnVQhqiTqEB/z0LjgSKFZO9OldfWO7u9zGhmneAd36WVRwuk1ByFotKLWtKdgcaNREzTY5GnnTyIbZrCgNhgtqIOncYMfQJMbrbXAOREjpCeIYleVUF3FfR2aAr0egPkVCdN5AGkDU1qYLqGFaPPMHsqOjpu9qM3YKSlyZPJTHBZFdAwr3+C2zxJfpCRvlQQfD6Xs5rK4oIbEmdoOG+4aH4JFZag8GaD0Di2FvMr0nj6PsabnpyDRJpznPsiGn51EhvCWUjcSOYuDoQs5OePfe7he+0ejYtsrQhP3rs3i2b5oc4GC93cIiyh8rOcwIJYr0P/Lm4yVt8FsdDBnZPxIJKVu3jANeVF0hay4WxRHPKmfTEVypDggywIUGBDLXauXhKrlkLWIYEGabyKml+kZu9nFiJVktI1KQmLixkXBaryAKbZwBdlhF42b72lfj5KMg7mWHjDCztthxW0NfyR9WkBuQ8ZbbSPtNVHuCELnZIx6O2Tfa+dHkBBlWpriRZkhlSwwY2v6l8HcwEwaSk6iFi5mPuXjnrPNJGZGeoVbIs49SyqezjQVjxo8fYyLg7MCdF+vD/Z3O4HjWvkz+J7cwZIe+0PKAIzPXK45jFLXiG7xPyJbB/iIBEm3a4C+6CTFyT5xL2sUzfbHCe6Bzs3nASIAIvpcFj0sXwS3LMYAFfGFExE0rpv6YZYO2rRiE8uSIBNtDPsk/n1TOPk7iGOx9D0xbVHdc/fk/I4Z/+201k+b9UljxdakGsI3wX7Lfdt5Qhl0nL5Y+zy72aAY66XaPJYeRCreghCoXZWx7FfhGTQmRle7k9bGUcASz1fclsQsaTSv2k1qlmP0E6/bFVZ61C9o+LpyKQ09xMPyt5tND9LDXOhpuUoN+9efETU0m70eTFaKmnjlOFzqdFblZoWUBq32BoQaaIrfB/oA5udo++3csK6S2qYpZxydrzm3q67w0wOULL584GWzDz/2Z3bCj/p56g+AatcZoKbKkfi4kUlwGOjV6q1xQZJBUkCRbDyN7PZVhppRbVcqN0bYIuYmjjH2J2hBS/kbvE3nrSTtDmSX43JLw3QJuYUveEZH9pS9sJX+D4vh9hUhOngkzykDyldLGh/Yc2eDjUJq0pQA+feIV9QZeTEHRVNmKKghQgl5+EVcDdJ+EyvhHJvGgOwX7EtA1Phtk3GkRMy+9GD+TC8ox3krgj9cVvHu3Af7Jxoa+b2pdKBuYltxF5kzC6axGO+bllnnuiHChL6nP2cItA2hGNNcFtU0Moe0YIRjfGooy091d/Ya27EQU+8sU8SPcvo/o6svk66XoDbkq6f6TR8528VKhxtHrHOORrErmjKlWO1c5ViDD9FKoBWZdVDTW/a/s6QTg+az4yb+e3ajPfFkxRh0gSkdgnIPyfKfB7kPw6MWfdNOuNpIfeHji0ONEVdCLL3SO2FWJefVPwbW7vA+0pkoOnUXu25pNDU778pRuAHJrsEk37mu4PEw/8H2+BwPHhWJ08HT8tWJdc2diKt9f0vYZRshm6wHwReSFvTYpVqpsXdPp53GqwmoxGybveKIh5NyJcZNHowoAWuTHwaGbdXImUA8FRDwbK38yJ9rcnSkzYE4TQ3RNSAmXL2bPjDaOTp5ksbz8QyLgoEtUNUXesBYjAp+dOCeZLhB9li/qMtRzsEKvaEZ4+PvuESos9mJxkaEidIHLi5qOvrPl7mgpt58n5ubhKqSSXgzAQHdrVIWQXteshyJ1ordkB2favEjESpgWyj1syWZ6ZhsV9B0gSdnWsNJjaVnooWcppg1c5Ly61xR+R+9sGoqwvUFOhL9miLeO2SBE/HWParVz8pyHTvwvuRpoZ9bbqK+qv7f+PB3+wWnTkKxTSC8Gb7hM4WYmP3/1xo0pG59AA0UyCMX1DV6pZiLWge895L+2sqQ+rIQ52cCbXSe84kuzwevDQm3bP/MB4ohQiCX5coL6C8qHis/+wbzyQGJ1LNZasU5JsMhjxHUcHpXNM7O0ZsZndG6w4/ihnA+DaT7Y0IcplPF68kJkKKJp+UijEUVhOh5VoMOiIaewehjouYfbmxpep+9eQgmCL2dfJRBIiBTcR+rUCyyJtBR/6fV23eKYonMhRICO0uKrnHnnVPWtXOU5kn+QkkVVmEpOp6ohwY2ndhA3A1V5bFBDO7lwlwj2gT4SvUh5x9ZVUam175TNjvTegVIrvm0l4pV1uqxdRiYZvx18p8aJjCb8ZrMMIIHeX4y8viLfqzGCBrACd/KEjLgo4ukljN3fJC2ZbHdi5m+oV/ixazvC8IUnoUSAXhYqlN5D0xqQgh2k0Ti4ZZf070zFLOQatiyp71cbSDaKgZKlZVPBfoMhDihcmT1O4LGZztLYU7LZ8Ml2JweAeWbYoVk1swJ4pp76HplNdG80vsqeFAEb6YwlFnkA1NjJe0Kj9IE5Hi9nnOHfFrf84NQ8qjtdqC27HqgpvdwIsX40yO6a2DK8IvvQJWfgmYo9ti0UJb4ahgxyKLRkS6Rv4BDWvPmGF8TxvzLMSOQuYCrQRPiRbDSFwKsTdFR+QoPqhByIaCWTYZhM6jFbPlapEUM8ep2VcZyupwfZlrbKv03IBgTN0ZQhtyD7b3TIM4s8+FqrzNjm3lSV4Xvet0Hf1/St0oKtuidEZQnaS6oZt9VPi1vMhEqsX9m/gqz4C5HpLsRDy3UHqU+bi4Ei6ttm6YXP58iPM+/pLL48EGLVjy32basPnbxo5XK81HNlPjPpvxOa1f+8rgB3uQXPtmNUpUozq7oa/08fqkkj5PSLUPOssreqTiohz+uFjII83keolMMEZWjX0tzwAbH1EBDMFZ2bPtL9s//hlTOx3skvQNK8/PRusR/2aYxoFK6jluHHTQbwhCn4fpH2csbpjO0s4SCcJ1dxd+sfc23QzuPintzauJrhtQNb+hy8YynAyfA6b7zNKryiqQ6MssEkveGR0sVpSiSL3JGB6dmawfvAWDUNFv5hLiPwrpgdNXv9cUFRZxc0/Ho7fBxmC4R83tp+CRo7Ggpy24Tfm0iQRGr1NSSXCHDmu43HM68hsaSslTjcIxJ8qxm4wchUW5FYVVeBppYaGQLjhcPkYPyZwDX75cAyuWkc7I0aQQFSh2LHPwo+omBJg+bL20xG3aVvHPIYh3nhlly9ZqSdxk+1n6T53ZLgHnn5dqqys5Lwvm0YX66TqhqFEcaT6x09Bm/kUnDaonWspKlAGmVvpS0Y8lIY9kLBHGCj+kJV4LTa1bWYrXM+0KFU6JEea6UgFY4OWVwlK2Wgp4bC1lz3jy35l3TpEpavmnLWrqq1Q7AurmiPnaVeN/Lus2l4znGdOVFJcfkI/BFmhY8ykFnRiFwwmFckpMGBBhonDPQsOeJblF4F0YYMiNzRT3XbWJdAFKqGi4ND97KZcwqpzkQRkV4etze7tlFoAyzz3HGfPrcm+Lw3lbCGSLncDhrEcz4e5JBSnzXzqhJtmLJvE3UysA6tuWemHxYk5fnqSzxqgeomJ+Ufe89XMLl+QSoVPabO7EJ8+8FTvlsl8gziwqERCoviiUSnZlxvJrZlJ4tw/kdRCJJoaf0bmpCmP1F5PnaX/Qut1zOTY3xdkBZh8auSw99tYOtsKG47lV3ZLdQpplSASXEOe+yazgii6Ak+jZXFduiLpdeHc+QozNn9JMvRIty4a2eT6aUrTO6yvjE36zaEYsPZHQOk1Sehr5cJBsLXBYXZn+W7fCpGz8a4p9ntOH9JsfUdxE+YM0xoMG/ecaAxUKKN4dQeySy2i8McmPu3ZFcKFpJHUiumTePurC5y0pCY7/8ZrPknGmZ+vINqeWM+tiyaaguZp0xAP1NE+EnyWbp0M3ub/il6lbXF2Tvj+SF0FeZunmgFxT7Z8w2Y6qVU4EoCEOcWXNp86QCTeFb93JZs078FgogmWrs9TzMsgThe+KNa8UD1emDc9CwIw0o+3cgthSpiUjwXyCwDLRVFodqdKW9C5qXlI/t8hithoVVqHsUUShm9acSmWcMOqDh9nLFvzWyHe1LXAzFfCRo+SlJdirRnQWuB4jKk9eDRodoEwAu+LWNv2eUnVy0u4oo98zxZJVpClAxR8yBHOiMT0K/W/zcLbPqjJcjyFOfqmxzcZp8EofaowCWsEKVEs0mo5nJiy7YO+9nkVJKzkMNiaRBkR/8/iujiOk/21JxHbaOV4lddUFMX5JkfYcQog2h2L5DM1pr9iM7rePvdsCDuka6AGOUEXwRI6EPZtASVEzpUubCk+qBGACe9zs2uQhlf6ZKCROOwSHZ/IC3072nt57ajj5l03Zvjce8YrQn5HfHRRmdqst8kJcruNderZi8Zs6O3nT1O3XeXsEsMndaJjAlGt8I2CzlDZLg9KENNP4cYX0LqXUyJ/gpdskDQZVYKFPQ91Oedd0wtAftFdx4PmNYLCY16bzEEIKC6MmJXCEwLwRe8tfgUOqizd1KEHQ/l8RQRsDcOT7HiZO59XtPWRsEk+68pJMdlIVJUgH2qEApR4VI4VNKsWUApurwZT7aDNSh505MHKojR9Sh8VF9yyxc1NVdx1bv8Bo2sxQZqSheDblIXVhq1X6jFSVl4emZlpIw/4Rni8ZaWE5286xzB6g3kTR7j6oEYeijtIChYK//ZqN36yduxWxA21cFAtN9W17kYr68K2OP4wwLByiSeG6MfBsXwIoDeRWgChjwFqnnBXW8IznnpQaRPHzmO0lgbNn0CmrDwxkOCjj8AcnHt/VoCdE+A5Ft2zo6EalJ0vpuP9VMRpx3Fcn+LueMZ0odZMpsW8By+7pi5VBcFGxUbjbMR6iJgBxgqpll5wOHQpYDUmO1RQwz8EosIcq55EGtjyt2M0TkY+h0jAh4qIgGCcdKLRCm5K8L0RkFjXLilacVVM8EyRaTIvUoZTw9R1G4lJksiKiSEaNttgw+aqL0QT1OLiCVJowV/SEAs/yGs2V4aLpBoes14FIuFzhswwbJURfAWc413WIDmVetRm1iEuIbRicjoStaR+uAjST9S2S4XMlwQjxn8zYhJpbnMpYT0bQ7IUs9/NF/fimm55pYCib7jYGY0lVHny4m5LRhjEXLv5KYhZtsMnJH+GvdqHdd9JNrAbL4eAvKRsjYKYgwYba7X/XCw2PXmAJEh22oa/Fl3W1N7SYLZ3AAdXinTRjSrPUuwVeKoSjdwOHMRo10Ldk2J3dTMQaVrrGdgBVaYPRTsThZLwdVU9jD1bqd6JgP8McfRQvoGXUxcmF9JSgaIAiP6SaPxMvcqeoCOEDHyHI+vxlyWQJCv7Bn2lLOVLTkZEPH7kdO2NDE/YxzA0Mnd+CsHVYh9pHprStpmEw5csdswrSOjClB+Q4GyLS0GWEkjTf8XysOARjmLqdpmpo3L/R4efMm3togMSArQSY1cD74TvSZGLRbe4qlQ7Jto9VFwrhinDXhmXCeiTZs0I2VUmFcerYLN7XM8uGZYgjTqHGiTdw1Z5930FKCVY8CGGL3/EbDHv8rI6Seu9ckOo101GpzNhp6V5xECA2wjwV5rYwuDW/qixTNfMw1061pAvhag/h13XNu11HJiUMkE9FNmsej4LEwd4lP/6j+epY1Cr9RUmlrjK8d4TYqs/+najw3/HIcyyRvJXDHTI7KSFy5/1vHI3o06KO0w+evqZe+GbjpD9JuX3CLjGH8djxCEqQ2ZFPguUb3meKaji+OI4Pkfw3kMhh2ca1g9g7INtOxXWM5Uae5yalNnqJj40J38Z0M2JdR2GAqVtdQM7rroSMajlfCc/zkAZlsVhA8EowQsoilEkIvo21OsBfrC2IWXNN/X3rqX4YNQh85cv1g/Ebe7FdXNrhtzskQ8DxJtkMfGCpM61/JOn0VDPoUep7qyzYnWKNv6/UwUjE33Nm5ta47y7v3ODqt4Dc3uhfyLbBgv+GhlZIhXB6lFzBYrkQMc/dwNWjOk4yUbrjPGuJhCWR3wwT02iakptg1HKyxFFUCXiB3+erkM5KxPlzn8uqrXevtzrrzlYJTJ+dfG7BbdCptEA1pzWWvg5i4dC77KgAm5NKVLydGgA9n7o+1CYG3N7ekhOiB02FMJERK4j3THws+qHeetHcpjI6T5bt9bZmvIC7QMoIKQ4jq2Vr5vrLrzQB4RdwZhXpMz+xoEoapdSs+BuFreW8U+yDBfU9y4fSJAMjAza9sHRAYhTljZDywywvOJ06zmfZ3ga3KBoMlMHQa+HC6gQ0TWEU2SxyEERz2AT0T+z0RWwQHQv2BLFo6TaKSOQP6qlMiGoXZMRmPAOHbQHAoT+Zkp/I4Ta/wfN7LsipmSaqm1Ad4mgTl3PxNlU/X4THgxzjT0sFCv2JTVx0P6taqQGrfz5Tqunp3LUZqesh/PGnVsKoXBvZd1moJhng7weQ+HU46UgPCcnn2RHUsIws8xZ7H2c9wxg/NW1J4I0e0HDyWkjx5idd9QyFhXvovXTX+ILX9HFcdXNkmcaNGVmK5myX86Hn1BRRMOpbmbS7pfD5zXQZYmEH7b33bhkBDLCU7bm9d7oxpdT2OYkeT9xx1HjalFdd7Lvg4wqMozcEky1nh9b+hS6mT7BnIEe3X5F15JbyWBhnXT4JepVwy19580dCseBbzg5Qr6fNcxZBp7I3h06R7eVRbaQtZyAq5yySNk37psbQgJdOWBbf78xqvqOsPjOCSVJNCfjCIbrr+Wo/KuUDyyXR74pIUAvHg92trx6Wv6eFG60vjfpLjJQWz2+d5cgVP3yp9h1cevwuPK69qCydyE2yp7ZQbhp2is9atk7baNVt+cIUqR097vYaHXy60uee5lqO3KyYMkpmLLOH4H/+MEOxBqldvlk9Yxnlcyy19AEWfEHCSrMpUs3gb6zvVor9q0Wg3aeFgeJOFdzMUMt+fWrVHPr6n88/5Q+2X+QIuPjVbKqAziVz9cAhdXfIjFn+ovRyI//nsrd64QMQQBHRfgi4G3wpS3cQ3cdEsj1K/YHAIndrB/eNzHWtr0fAUEKnmrL0mfQqiat4wMlK6vjJK0vJ8eAZA+AKBK4cqBI+SeFGREpaXlgFzn2ZKuerxbHqVUahpScosugTZMGGDRCIvP+bfLk1JSztIWU38FLThMUnKxauIpgo33EeNmEaHsqIk4EfEdOSfzmxBj6WvKL9ywNULCIZz1/bba1V/b8FPXjersVl3Iq27VahADqhuz5VF9s31EoBEDvHkFM5qoMsE+abI2iYOuphT+EOWnKuERx05JkIV7LKfQoTk/0by4+u0YU2CtDcbEdWCs0vYxs1QKdjNKyXU9NxDqtMSHtLAjPnbBEwA0Bkaa33hv3Bb3ryFA8eC2aw2PmOFNllgiZMFu2uDkjhm7hiZVlsICORPAFdEdSbs3Vx7NoXOPk52qwANGpTRtlMxnn4Y9icV+n/eFUfb5bNUBpJOHUmLU9klh8+V+Qu5SptqLF8nr882sFBbJ9G73ZE7Kc43bsuWb9v7gYBRg21MPkswpDIiN+m6enjWoTQfRMwvtJPgeBlWOVWDvvEjwMebJ+o2QjRNwAXMNz5VEpNtoQUkRzdsxgOmb92Th8GLO7tsBBrsQjHKBpfI+UyPKAlB0J/2glRwR7w81nW+TYMbNA4YFas3qv32ZvxSR2eGxktSZb/dGPiVgQWsTDnTHYSLlg0Dt97fYBiVgqe2/hENBLSGMQ5b1EKlLMXh/gj5OQwny+y0/b/LzzxZ5B8MhSw4y2X3rZY9bslMJefpYiLEN1Ulb2I4NEu8BG7hea7WBv8ETdgzUljK/6vM5IMSUvV71IsYp5G5SNCOrr9xC9cqkYoFtYhsh8fniI5qfmY/BCIaxOgVhx/Df28o8h4uGz7zqwcOrYtxXaCMF8rKMsgCN/UiWbnj2xfZiYPrGIQjNguNbSZH+oHbwHiy87+v9cg8FHfg88v7ULPx960khG7oV6zc9MMMeX4puHNi7RRPGLFCZQANw70NXCnQMw9GKStoqnPoqmCKuGvzATcasSV0w7oB9QGGt5xedok0egf8V0TEuXLJ7HCqyqXgrSHudoQIHGaOw7NK1kvMDXrrfYjPJXfUPo6vyi+KUaPmMQPxYpvOQLfoA9U9g5mhNyR3bVWkqrZQsXXkw39Kf6PX0leUOD3hgLPIyJAi0+rX02aptYOemOVRealN1pPqTfOMem2xcf1pdRoGjOs7fm3rs7ns6z3SnbmcvETjlZCbm8vh1NM/sUXWI/DfU+F9lAoC0Z9FiWTR3gnY4JcOrXayZqhq3du2laUNERc2PlXhSe9Uoqq0s0+6y2TQLHBtuXpEUZKC06Ll8k1/tWfNpsxXyKx4N0l6uqAOcfwm6BCO3SZ0bC19UZnBYXzUbgvVNUzRhV9MHyhkoAwThrywTGCnGdykKDg2+BTqMklPkh/BY9qje7JzdFGmnTsBHNSs1ZH3s4rlhBvs/VP87rBraiotkeIbSuA7VrJXmx6Tl6GFRyebIR+0b7h3ZQavtWRu3RCy4yqBWFydzzUyMemH1b8E+8QsLya1635aaA/HiQR8dwUyNrxXl9N1q0+38TlOcenBPN1Ag1zqbbSF7/okc0SUj7DEV8sC7ALAwLm7O3uEEclI+W9ySvemO44ax/rm4DIM8hEjfUzqwnXzJxxV3+rcltHZ0XF985pbDckTTl5lObCAsIEeqpPoUR5gxO+pqOsRHZ5/bGwEzZNsCVYatlW1xlLRJyqFHKmKmGFGWHTivp0n//p5vfBeSlwdHSCtW3YjVTikez6HVSnnfAaeNNOPLi6ge404lwkSlAiCNS0vBy7Zo3/W7VBrnjjjioi2DxoStL2Cw9qe6PZQWcPacHCBfEXk05BFsRC5qgD+3oLylTFGGmMMMZ0aJTrYVwMV/OaI6FTKDIjHcMBZuegP1t/gNBbevR1EQfstRxQGPIldHw0oZtqEOeFNn/awj8LUQSKLYS6aaxpwgVZNUaW9RkZAh4kuqw/vOKdxktFO1ponKjOKVqR53gWQU9JEcWyquUqW1AkyqBb2KAUpu4ReeO6bISDpo9NNt5JNoyPMU/KkdZxNdJsSbxXcUUL8PnrIkOhkfgOJqSp/MNCr1vajZSuZRGkLLtTKHgsSy9UKqwEqL+qjKA5XG38ODMuUYSk1BGWpHaCWiDpIA11E4OSxexX+PoUJC7ZcqVoX4VeKhMJQfix0CBTL4uyymy3+mK4Cifyl+s3lajvU2Ai2941J2yY1LYoS5KgNqcJMpAsyZrONxYT0EBbmIgD4YJZLd/MI3XdcT1OEhNETM7+qlDmGs5eaxMpBOFcUZQ1xAcsjwTCDe/jCd9s+iYtl6kFQg5abscic3LteTP3Dcp0ZRBBrFlsNTDe5zSYO7M+pukvmXJo0XJayt3wBxFxo6XK1LpsVY/wtrtDjJwqiIUy5QGMzOHRsVXS3kS9yEjpR3T3YkCwTv4JC7Itbe5yGxqr7DeXAOAFrsxf7tVTsAhvw9GPNPZAHPE11BmAPPW40PvRjMwc1sJOHTaEB4O9ALwzEiEAH++tV5zZT1FY5A7Xd1vofXz9x5DX+79De4vMu5oLzBOgFSQ1kh34Rbqhp9GFe0sSAn4RstM1CJAV8BxZzZYbPl5rQvfrgZbr01fpUvBb2i1ZcJvqEHkh9Ljo3jgJ5FpvPTFchaluIKMSekDi8KAoQ8lriUL2og8qGyQzyZayJ6m8ALMdzZkYVPVCPU29nv0vXHOyA1h+bglaJent8HGznx5I5ZWJPAXJSUqlTNXnRgKNHqgZrGritIp7MeChhiKGKytrFEp7wHlZBU1qY3lCt12ZtNhQISbVuL+ZjU9vbTWkcp//X72fR/kgJlLyvRRNbiqBqmF3kNiQFs0GuPwhfGfrpsNZoZuuGHk1vxCJcRKrQxvWsddgJU5MM9rnsaZUGO554zO1l3JagOTtnUasBHpYIKvtQRMwG/a6yMY0g8/U4TGLMytOrckB6pp5MHaml2nco8CPWwTu5FEFqOV28ZdRgef3KV+1y93mxkwFdrAJQzFJdqagQx4+rQYXZYsszjeH87WjC1ZguqFC1T6YVMhhleSQfy5R7nKvuVOPvsis8Uz5bcWbdxhRi5X2PEvKPDky58xhDhsmcwIKpM0W+ygiF5JotFb1oQz5lEhu5gqm1gYVtFdaIBYP3SZb8i2lRqKKK1I61ymdL182PSY1GKNVz60dBXOzEUcKkKs9XQgCfFywFYlbt0G+Kunq7Ezz0WJbEMnvutFkMOd/FVmg2eC5V30z0KUDL1w4UGKmwUT6iuPTdCo6y64SO86vB3vhxeniHNWELBxdBKPxRmLPkKmykRl2EgyrZ4mB0hFJLoaNBKw4ZWFT+0V2jqv1UGmE59p9LgK4jseBI4trerIewuutMW0UIMwu/Xvk3WqHwhGnd7hjIbiDo6PIKheCS24bTElJkDubSYA3sgIjtNbUAtTQs8k2YzYznSilx4VdtzZrtrMJSeC5QMMhrunCmxFisHv+m51/roc5hATUp367YSVMrZ3I1yWsqEQxI0J+DbBg0rqftR2StC4AoGcKl0t+qzo54Qq5pk+lWJZ8LafFaFNyfB58KnDckVR7p7jMqKYFhAZl2q4obCVeZqjmtxVXQ4VFzz3G76wYD6Nm9wct99OoQL2gfTCgOkYBJyytVzec5sdBFgUcMRU885Q7vp+3UuApSgCPe77pL6EszLxJ51Q8az4Vs62HyzMWkSoPm4zUd8kCI6hJjHPQaoGFgJ5+sKxxC21D4IKg5waRDBmZbM6JPgHF/BeFh3SPYvoM1ZM0WsvYT9NH2y1CUHKBOJx7zrzSNRvONvtOccmBNVL6LDgSWF6OKyvIr8JaXl6kalRRrzNfTfAiOYYREwtks71Ha7lqyVn5FO1lAiYdv/leKSjL1Bf9taaJkYebzE6a/ivk5O05Bb/EquOdzVIooeEC0vkmZy19Drd/J3JW9VAiuygKXzUI102sck2sg8z60fDsFxzO5bmyV7SyHTFFrYi3BbU/KlWKY1vPiskeedwb2HhrA3RtQedAwu66+K/el9dkoJWBJc2PlZpW0cH8WFMzsgJltAHx0yzjFRavc6C0POG7NKSGAA0by0FwRNuoK1qMy5ZsbSDjY8WW7E/qqNHa1qK0Pr13oo754iWRsYS/+GM3XA/60UpE4v3o4mquKfdtVWaV0frXWn9nGEBXTBkctUzvuHzVfgVCXHD0kP1Cj8elHFFO87vzxKO/w1IIVWc7VwjDQ==
Variant 1
DifficultyLevel
585
Question
Marie grabs a coloured ball from a bag and records the colour. She then puts the ball back into the bag and repeats this process 96 times.
The results are shown in the table below.
Orange |
Blue |
Red |
Green |
White |
Black |
Yellow |
13 |
20 |
18 |
9 |
12 |
14 |
10 |
Using the table, what is the probability that the next ball picked out by Marie will be yellow?
Worked Solution
|
|
P(yellow) |
= Total numberNumber of yellow |
|
= 9610 |
|
= 485 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Marie grabs a coloured ball from a bag and records the colour. She then puts the ball back into the bag and repeats this process 96 times.
The results are shown in the table below.
>> | Orange | Blue | Red | Green| White | Black | Yellow |
> | :-----------: | :----------: | :------------: | :----------: | :------------: | :----------: | :------------: |
> | 13 | 20 | 18 | 9 | 12 | 14 | 10 |
Using the table, what is the probability that the next ball picked out by Marie will be yellow?
|
workedSolution |
| | |
| ------------: | ---------- |
| $P$(yellow) | \= $\dfrac{\text{Number of yellow}}{\text{Total number}}$ |
| | \= $\dfrac{10}{96}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/Vah9zbfFtmuPswY5wAbTbe4fpm8427X7XALZkse1UIQ/HcJG6rEiIg7AvHvA/h/a4l/c9eSp4OrBsSU5Tok97sIV3sMUUSKZYnA9UVdpRYNLJnp1elaa6Z2ceBru9dck0swbLdZrWMmkcav8RVKo1Yc6CHA5xQ3JXqi+NN3e02qS05h+axan7funPSyNQI6rj3fB34YrBdjbKYLlpoUl/izQCmR+wlBFwYl8a3i2bKjjbQXTdVS+03fMhRkuFt0g8fxB07DLrVV7yiRstlckrfPoJViBfHxfTY9F5D4pVRP1QUqbpK48/f9JFXmPvc8luZhapTH2EW6waG/QibZh3QZpmlph8XlsXdUfjpyQGCYGaPtq7QwzePfx324/Crj6Z+2S2C6QpVVyBahMlgwpnQKNLcACBrat1DegX4kFMOvrhrYcotGq5pAvydB/8kwyjpaKL7fjOpulR1P8uzsKynQazxIiwmi2IzP5SkXDP+24mo765n+JV8hsxcKLAnSSmQkpaogQlVTp2FK5/r/WLnC8EqWXHDQGoxI5XbaSaVHUHiI2BOprWFKJp4mXqrCNkvB/cfVsN1/NPSIlz7DivfJKwGb4aOyLGi5xE+PtymiAiCL53QkIdDtQubQpHUnxHQzWYSzr+jz2Bx1KLssa0O3//1jfk9E7MUFwhCmNy4s+Bf8BQjDnwxp286K54mAbMU8q8Z/w1G8DS4tAJFNadSyHauj02GBHHhoXjJdy9Z65oNpwMtikfKtWVrbyFbuAz7th3I9zVSZqocvTvFe3GlXnmO4RCje+1cBQeFigxp9/pYMy+YF1B5/5EKBPqF6bNVteLA0NCMnTf0bH55LXFHfQQ+IxMtU9OenCAt2QgZZR+PnXEH6dy/T8cp4R5RIDEIUU+giQW6Tk+zHiDTVluV0bYjx3xnMGv1oeXTPOeHNn6ycsT8qVgZnLwM87li4o/Ps+ab+GYW5wN6fPVwT+HuXBraORODRQAQhClgTt/kf6Pus+xc9qnIeW3qC+Kp4eXCJYgfiiOts9y6spBGB9hqsyVYsOUSRDCY70L8QyRsszYA0Fc8hqYeNjtB9wA0vH1TA9wW/0ttfzZKIzcN+5A44/tJd0n/oQ3m+kIFgIzCEucsZioAZejLius2akbgnonHrq9Wv3eH9PpIO2QuhIGbU6NyOjirL8mNKCLiYkhefFqB7jmMv1/itrRZMcQCjaIHw/imJuU+7aoF1dQbUe/EuQhJB6KPvWhE6MFDnHkddx6cZ6RseyK0dMoJo2PgXsiBMmnXwEvL5Qg3kQM+LN9x/Ngnef3KjQw0237PVgydD3MEvbpqijCeO6LYJaEoYV4K4pQv4rIz48A6fL+7sKrS/x0VBzuGrOChJmd7RWnbICuVNEvRQeP8OCt3XedFoB5iuzWr5HADQm5HWLFlXKOFhWRlZ/aGGAbRtGqgVVkQi2TlMLBKSAgrd/RBBdfeY3JWKgn4zCXS+XmiKBHqOEvREZJYI77szCTgz3AMt2AtWZOV0c8mzvmXsX38oGg6b5Wdr2xpTSbZP6DuDDsY/iMTHi9QaVfgXELNHA3cCBN35Kfe9/lWeoqQHmG6exvgAQHPHyfH5Oy+TfMYrBt6QHUAzTRzh2gYrZdjcu2b/SLp7YyBLDifG3lCopPv2rvulMXAkyucMK9vzNRJZdR5UfoaVHyfNgRIBvChrxCGNaIDQUQIel6yXIIvbX/4y9Vz246mDbl4gELgbmiHv+YiCpcqIqetWuurbOiuj8kSE6Eg9/ZQoN7iTTR0XTQkAjzNLiacfDMBrg6LU+7l9HXC+9uXzAoxU3VpVgsWhkXvzerJ6V3VBcQ5EPFbOYcudI5d+UhTMTcWYLPBC/W1o7qlXsVkKJDcwsVD7j5AG6sCa2D8TditLGJKaAUzOcVV7OeeqsmLDCjYvWKJ84U+8xVVqxA9+2GeRZqfiinAuxDRqhvGGtdKpRc8vevvDTj99L7vDwtaeQlc4xuU3hs2MfM+hpZ4PM/t/9O+SPxHy6nwuFCEuDlyMxemKQ7pHPcTuWVBT/3wkPuANVpWA7Ek8lKj0Wq+54NUG3xm8HXtBVNxHyZmcoW5vsYJlxJkE1mnDms3AxTxNbeeNYMQhMdJGlvkUfQ4yjBvGS9X616e2+dtzkHuOlyIapCcDcLi4TJXmFMJfJ8MgiOuMUxVtNl275/uj1dqgv8v5ugTIhmYqq7kT0eyQcE2IPQanWo4k+1GLrT61nTACAU6f8WfpCfgyZQToYUntmtWMQnwXD3N0zgABC/qNiT7BcBOOsJ3fXQnNB4KjGn83R9wy78FzOZSxgFe19fymtCaz45aFN1B6NcnjaFAKnk7/+i9vcWJuZpCR0BevL3HAyXyvmP4rJFKt3fzb4xYif03Y6N9zcTFFlYcxrdtjknyyTdBdmt8TOx1uvVM76HuJ/fFoY4Wg/SNP7E4o2kLDzJkHSL5kIyBmSd4ChuSCfzzSCXce9IwN3WJrO/OsicJyzzjmZ9vz2UebUplY3VcVgjTzNT/XGxVFLrfE11HS+Y8SOCzPlyTww6sIDh8u3lMXwbQDeIYjpTFjRq1RNL1lpp+5Uws3BKhxv1eA00LIQZcpGMC4XgsXTfcUXUMOSSDv0csnnHgUjn64SqIQ2lgK1z1HWg/M+LgoC7MuMprPxh1Hv5j6HGy+ZKP0f3swrxMT8qXOY4Jh+Ule+NgPaaNBhF4aj4AvLFkOE57kMpPOctBcDpABRsdoeMZoLCB1h2lo57kAvlwXzLGyegdFsUdbFsfdWx5s3SggClvejV0wq1coVxhjQnKCtlfTGzuZ/S41j8VQVgYHEdgfAR2geLzukUvK1oYbi6XmnTF0+P2sGFo2uxex4vEzrT99QiEkTO0jlk9/+9rm/DxrKtdlwmnoZkW1BHcIGlmkvlOadNeAtdbqjqIy10EwmeKyk7+Z3AuuyxAkCR3RYfIo5VUZgL4OmE3IWyjtIjSOhlvXDyAJ2KNZJWsMjcO2vMVFVMrp0OXEOSTIxSds8Q1jCo8jzhcMXsKwWo5Lvg9wTV3x29ifhZj/vorTOpAxJ6Bi7Y1qDX+7Bq1ovncXqo2sKDtqKG7xUO28ExO8BXcEPE8Vpr48O5eGH8SqOJeKJGRiDMXyffYzhMVeR17j6OKJHybFOkgbJugq7hL4dnP/QW+tPQBehgYp8jEVV/yNxreV36tXCnLKRIU0sh/TK5Glo/nIBgLCTSZuLaC6FPsgMn3WZslGgyTV5rgnNUoaToWW1W1MD3HJiaUUiU+9u9eNWeO1lhp98wT200XOllvUBe0ELlylTQK9g3wQUEINy7Lr0yd4Myrrl5xdV0pmKQhckq5+qyX4UhzB5WhPjyEu2kFvxSiGVn0QbKAGojcQ1yXeQgXbbFPyf8za+lKMnsz2Noje9yC9cORbCEq8w3NW8JzSNfG8AtHnUcNSLfKAjGFzVRUR6tOPO2fM8Hz66R2ok1Z7CG3MFkajMF1bgFLsU9DSUgvt1v+MzBa42BbiYFPl6VqbIWuEMHnq2OuW0RxNT6/OcQSsG1l+8njBEKxdh2ufO2ZYL/IH4biFdgzqUxyJIKfs4AfNxVLJuzPHGjKupXscWMaiV/CPBVyuWeOz2hlmq9m/7yDGbC5hdLGbZUaKxMSWMZuY38sk2GWQE2246Dy4YoGEu2I1lXUnjjACHpeSbxBeFl1KOzu9krsvzoIXLb0oVidt/zcPvpJ7D1BSxY69jcvkJG88sUXRQi9+kqvuwlFjpIZ+HNrL1ulGZdGPMnNwFcKUXPsQYtZ0bN5E4NHxIy8anx8aPJIjCDK/29sJyxxHA4M3orSNWmW1bCeM3b1Kt/F57DXJ5bwRb0X9ys59bFZusABBZqSRREDqZU/uU9TyjECg5XpoKNbNBDQ/Bbl3nwjoFxvjSTl/vkKuxArYWODHuyE5I2gCl8rZ5Uf9wMM2evXLOQ+YjLpHdLPV9E7RQV6egMWgHv69/6/+CIk4SW4XBhqJ9FNbPLngyx/dKjuU8l4olfyEWWEnLgjxkpqv568usjoEyi236tDB4GaW+L0gggXdycNyQjDE75Q8BoaNJhIHjpwbTJLVTSK0lJiCuqeSISEOF0+3nx5p9n/n935GzR9v00HnNsX3XH8V0gvoaU/cEozLNuEo8c7BbEx1Bsxm0IxZ4GRyTPhkjdsb+Qgc9Dr2ch3SxoCHc97hHLhnGS/kZjspEiYrE2ovgZjKHqra6g+mJv8S4535i1CGRrIUFNSJ7QJvJ33gqSV41is+tZtK6f2zkB9ah58PU8yNERT53hlYpUGqez/hRfPIes8BahRgAlYiAGYj70YEH3rVZsaYn+G30FSPzPrAfI5JZrj3M2dmQbFrWASJRJUpaSbWVgW7y4meYMwViRpv254nHPR/034KF2c4BLzYp8ZZQmKeA5ELxqFCHedXYOCIRbmYj6DiUN6NMP1BNtt25yKZxcmkF2hRF2vi0zesJcusw1QIjOu9v02rFdWm2jlRhyRFhaFcmOkJly41GohfPOYyxE49FyupgJ3LvG2ctCBy/IUbbtl9/MOfkWeRwazJhRrSkhZg/l5t4yeUs1pH0tf8/1eKVdKqtZchFZAOotMFOqfD7aPx2g65F/abpQloooO08wORXv7iIL2eQooLX5SATYpEbr+4FUFkXxDMbwJoi1IUaDp5cRu3SyuDFq2MM+YsSAImP3AUUwjARSxwFzNVNHDNAnVBv9zKXbEsCt7nvkkd4k31/6xhWuZh/UCNWAdZPqzRRHd8VOqpGw877NwYIYP6f8fszg2H3IeljsNxvv3VkmPNub3PWLOuQy++MznBHncm9O1lfvORFfoBQP3RZMWYMzV/hiBAMvjsH/3CadG+4CEQdk3AbReyins26+iJnd4JvQFT5as5r0sUgPzhbGvnHXvPE0zEgmcozU7lMJK2e7tkhsJrnyzKRIEaDUqK2h1IF0Lg/L1JqT42bGSBCj4Yf9nmzIGH1Zox8UEpR7nITpPYUA8elj4sdBBWhl57F+CDLcmcNT8FInr7yiAlUzl2LgaUoah5VaDcgr722TrSid+oIs0EWSYAzDb28Zglj5UyrUmgeDlFEIlsa990LtxX5nrmDi2WepjGdmVZdt5T/tlqymjJsqPwBiv8nAHF63N6U3ccgXXlO3cvUzHLiBHlq7+KaCjI7mz8ycoi3nGrGRUbeIgwSjGkksjFUl6aueKD5S6l7r/MPuzbH8ApixJxqWk0gJHX/Xq3AxyzTNzEUUDOxhpYoMiJ+svX16FBa4Y70CSpCkeYLHMKIDZs87XvszW3WueDEIPhQLdxnANC8aHtN8C04ewvML+8fGIIdQiY/7SdpBu9VMfLXHIkQVhSG9Tjasd1ddpy9vKU8/wf/rXCcDPXPs6E3h+d9gbkpaYTj6oo4eVca5Zq2aVivVq0W2bgUsUFdgw124NydfqRA5SSPbFGFhdq+joPGMzF4QNPO+H/i1/tNcGn3EPhSaQxFvZ1KOAoL60apTFPlk7cRQE/AuAzow0Heay6YoEvrbumim8/eft0KoaUuMhsLPSLnOXvcdA34/NjZYJ6YR0zZdGoAXR46Qv/MFexv1eVv+DSLmyViXV+uOnUn8hs53DJZoX5dRFjLhr0zCNS5zyx70HtN8QZWXSY9zUx0VFohwoJj3oblRdrhlXcXoxxAaZzQTE+4bsCcq8PLESMaDE8Isb0ZGteOzHznqmOiroJDjx0LqjMrCuMmX4GHaIhN7HdaFww0VXLET6cYW2EF2L/7UsdMIZevCkDbqMuhMXC+dIazWBjKGwR/hASrEBXHYUUaG4aCVnRnJ5MoFfOeHIEI4Oh8D4yvlFe5T9AlR52LfbrXygfZVfxAHy9NuGAxEVEmPlXWeNfZQUfRgDevRVl6ieZqc/FGzbbfpGo9eydQIdiOQoNZ/TZGCj+IVqqAWNT948S+KjcN80VviwjxcBjHAEJKrR0mr0tESb+bdD8pcTwQdqrF3sJ2RS3e/mnqeidq3T4TxK3COFWU94ku4KgLmwfoO2WiMMFmK+5CmulA5AtqX7SoRoiF/KeYk7dv9dHmW19dESc0+c0bVOnMIptH3fgULAkeZSTMYxgAyA4kMHrdGeYYYXZ34Gez18Uh93mmmJplrRg02IGrAQXpeP6lZ3YAEkZMX3aYHbsO85i7rtnk99N4TGPAVQOUgb6w4iVLXl9kuBeatIJI3eInj8apiG8mAP/Xztuo1D2BVNhYFb7hDgNmUKCUHA7Pj9CuBQ81YUxNixuPRwXC4Hrr5N8PahcoHDHxgZAti8FzK9G9J7AEqtN8FSdCX2g2f+RvgDqGX6P4vs/BwVkXHMrkm+jImll/+1XnFRF4ctu7y3AXS9CaVa0vIsEt4C6DBFyXePTyZTfxaqYvEDMrWwvtIJxvc+4w7xPusOlXppMYOCnvCou7BBHVU5AxevFZQgNibAPdVP5CPTIHSBs07tpT/j1jJA7AJCRyLYP0lXFT/6cpl5NjSFx9h3ybnoIKNpoGggxLflgCaP662y0r5aI7HfzzIVg7s8h3V8mmMiDDkCiZwDQn8tnignRk0RmonMBdQUwkh4UXHelpUoyOGsS4HU+iqzVDNgMugegeyp4rZ+4GM3rtRP00AW9hgOZ+HIp3kvZoxVIXk4mqcAxu6BaAyPxOP+RgyiS6n6SSuKxqRe30jnHa4vqGQrCIUw+ZE17ROs2q+Hj5Cc8wViFrLLkcWPiAKFRzl7DRDBTcDjwK/1sz9CefMnVAW6Zc0bnJdryd1KNnoxMyQNjRJgqqi1yIP49f7XWaVIHM2M0gsG02UNnFUcCuIH0dVeaHIHcoi7u89WlgPtxB3atUrN7rPRZ7oGI9feRqTGbcys/nkbrPMv40XV/vwa7FmheUt438iQQ+FqQyHIG29fLNbZFAx7lw9HvhBx5OeO6f8z5jGBhR7ljoeVedp+sG52845Jgb6F07yh1iG0A5O+BrehPNwWjXSHqXQl0MF7B/Mn7D/gL6zU84yZ9vC2OUTsCvErRCL17mFJXS42UOu02tm55KlWUqZGsfg20TuBHaacvSw4T7jVzF+MJvh7uOresYjUAOSVvoScFzzKE+fvhi4boFJJ9D9hVoXQjty9I4Cw9UV9G79L0xjTH1OgEvsL1Fc6R16R9tl2gjDwo4C9uvksbDvpfR9M16aoi1Viewl/JB0JcdKtUSct9EhJSkmVOB00fOubYwAE6/y2/K+KeriV1msO+cuSVFeuICI92hEeIGJ52Spc66KBBPmco62zaJrngoVQ5vEGpeRcRqNCgL28JA6vgzSSB+74nKrbiz5IatrJcmz4HNtSAz4u6HElHvLkmRY3VLwThBP9noOK5RSJ3E9TSxY3O4JROjaI2PferHQr3DLrQ13nr+kxdB391+CbiTvQAvN9Ldd564sUkYZ8y6U9sZYxfNcpRyl3do9ahyL8W8henxfFCet/P0MDy9n/jWfKDU7TO+8hXlZb2pB4TO3YkHZN6Eeg8EC3G5oKqff5ZKvtFByB+cJcb3WvS3w2rTi/oJKYPLp4H4BU+rHkwwh90vOr3wgyBt+VMFv/mvr5JLXczItMdPtGIGp8K75c7wc/W95T8UoSMKT/CGXh+hZtE5ZR2hGm3bkJs/09Os98I3YneTqGwhAN9EzYBZZtiQ5Yk9ihV9MLxU487qsSh2Hd5AO+B5eLyyR9+pd4ARaEoVi5Qd2JNm5p1mcNo3OGxYnYGRg+sNssjXoymUG2oEcnwVZ42bntHmnzHUm/vhZ++LeJ77uLhrW4ZvQzIvuaLldJ3bB3uDbVR0qFErZMiyHptduaIStMhH8EVpHA34f25P6zLLFztmL6S8nzBil3RcDftnsp1TUZvNhmdnrQyAVeWNklNULS9HiY/7XN7TZUN9VKIw/XdJ1PB0B+Oi61B7EYlj0PgG7ioWwI/X7KLVV+iuiA9f0OGSW74YTFsxl9kKzCFPlCctDNMw5p2lbNZooq8xeglaxBmQXuJDKpBzBKiFHKuG6c/8iX6V594mqnw7cGyrNNAjqizNKByOAQAsKAZg5rk2OR4hK5jhNwzAQZ0+yu27DK8pOTIg7SWz5LP5rYygng30HGLpbzC6OkhlPmMuWChuqkweFE7G8ODuskzBhs9Xyi3P1QL2fQrGTfRVT3kdPTQtQ0oGuJ6aKOkblSpn8ROzCltGNp6La1lyINuzbkzsD/Rv6u7f9ywdZwv9ok89QobgRGaqeCftYaypBBnpjSJDh2wK6OERCvcHsJYA3mITtl7F39SWKYFoq+Bb5bZ4/cHJI2Aoqtp7gKO9we3l8EtH7Ggpbt6ME5q9TQz66Yq2Q6AgxXodobkLxljmIOyL96SJqn3ty6Peblwvf7zI5fbQntpYn3R9UYx51qIb9of/ul2UUmmebS1xFcMqlU4V7Mh5UfveiEAf+3O5C8yqLAV2FjsWDeJZN9rWwaeIOr7zDyiZ8KHv4MYA6RphbXNLA50oIJg3A1YozC/I0Dsh52O1eTesWGxyXF6CLeKAtIBqXCA8y+cRMV+lE9lCZFgtAYcpfm5iP1HXAXTKpzVEI3RTAxF/lpHlox/+taV/2G2JJkQMrCC5npwMUat/Kug218poc2sGedHMPCZeVTZiwi6ZiwxjRUVv3cUaY0egpeYcnGsNtQYe3P41XVzdEQbrpo8xnIsGrMTpRHDNfECzRkzHZINYVCQIrKnzM8JklLh7AKN9qw+Hr5Gb3GWf3q0ngaQd21XzHnkD3E+wl5OmHzCN+zaLVEP6z11kXKboBPPU5aIhuqG6T5hJg1XlyEhg/SVbYJ8MvvkmV7/UswuwkJTBzFyLEcip5f2JI39fxGj1kvq5nn0xse0LN9GLbFFy6JiRIC/ayCBpjEmq2cPNjihKHVytSOQ0jSnKjqDlGiVBzs6TlFXgB6m1UiWp7Fi477550y7Ltrt+VSYbb3Uzz2ijhfR38SxScyTTPYfzPnzfulak2aDq8pYSEjPyNphkbrgMtzfJ5WIV6m3ItesUq3usI8wMp3eEFkDW9BSbEW5/gj0C8WVuQU7e/uIrowUOJRV2Rrf6FnAqfFxdKVm4IbYkTML1HwdteFpV4IsNq9xbLrkG39Ipcxx9mVzthHyM+WWKApJ+adv8hsxgVaHS2iYN9vSwYPh+hDfZ7wxjaBbbajdysEDt1MSlb71tkSgMnth1pHGIe/aQPoWAzd7opmlfy/cfl4HA72Y/QWjMeem7kF+iAU2N14FtbGhgCwMqgEJcZY9W9tqlb249LNHJDA1b6n1hC9jItcWx4+HYe0MpL4We7yOVrrfJjSAW1X5d5jezfpPKuyOae3OtfIa8tdRk4Pnnh4lQZnmBHwdYts7RVEu2S4eGtOq3b1ethgnhQ0NIt9i0W20QC/NHPL64+gT8dDZmd3fZ3w4rLmEnFcqRm3QXUCtnhrhmpsJymZ2K5hG8/i9jh4tvqLgO1toXoKYZBkaNrAMqMbGK1/4yqQRrxat6Rt98/Mz50ObKT99V3cdA7EzIVkfT8sbrHf2xfCxEgbffmB8KeqdKxjk4PTbcmXMGo47aJTdU5pDvrT8gCgVkKabsAZsMscXbRQRPG4PrjkfceCvsve+ePGme/5gQwrByhOdfWREcu4WSW20EHa32uSDGTX7/eHHRLitTlO5VkeuABXfIwVArNAEOOoqcz9MuxunUDXyVLAGdj257fNvgYxXbvIYdsr5qd/9RZdVYvYs1JSSXmwZr7rDyiUdxDtd//RjpF2f1R+P1JcR+N532Qn8M3HvRvGIA1sAAGsQuS2HSqSPbM7kpD8XsnhGoaEHEnEURGC8TmqQm6aWnAxGabs0/UNp8PKkrOPuoTZI9vovCd0qMS6EKdaVuGf/gP/s9aDcBSZT+X3hl7fTIpC5vAMdSjaXq1YFpavlnGZt8vzR10gjvXe3dVtXwkEPwI2nvOy89uYVALyAQo/mN2tnRZYpPyW9uUtQICElHQRtHDOcbm/kVU+p66RjhJf0LQXjOq4y6G6pSQvkPwedSkFZLiS9N8JZxc1DO2YnuQCgCkFkJwiebDcWnE2cuNhnYuwiSrTl/9SZ1Ly4+oY959Zw8yiQp13Uq1VtTE9yMRzbQVqljLft2CCy9edi8hxistxSSfpI5a74RrVp9PsiJXGpdSRT8OnER2oQta9lQx7kjOxkURXAnHWX270lAALDWWz4SQ/SKIQDrnU3DqMku18o7KAO8yRiOF/BJfZCbHA2hVedcSC1Q52XfXKpGcCQiD3RQrNGO7iTzDpBd9OMWKyi30slLBQOh82rdfxzApVB6myftqYA90TBdCwQq4hwmv0hVepmXpxu0hYnKB2xSOnwjTvvo0RaewJ3ALVM2z52HbFrd7jvv1Ra4MKGJAwDvie2YeqNdgsAkCnvyZwsD89rVWIY2Dr79MvEKA4jaRIGkmbiVtYkCTLvZJNHQQUdLailbqlMs0bHM1srI2qZi0O4zh+GWzzt03i1d/iyWhH/vFU9kaDrR8ml+60nptia2V7XDcvaHQMyIjUH3HEKJwtO7yk43pURvQoKr1xy/posZGdHPpb36WL5QE+aEFvG8yGAj8Y7aUTnya9p+8gJMAI3y4Blu/e474lUVncZNbZkYALJPoUdRZJ66noj/r7oEdnrpb8EYzQI9fH+SLHKzi0hYZhmt0IMghlHcZGp7YXMu+r765kHkzOjBPXh+ufnWGfTzqfe/j4ewJM24IpH5oFw1klbXSloFedqyEg2tca22kJyLTlBXka1rZ5dfiamMLMRZUIP8IN2h5+OyC2bhjsy5gFgEzHMpJZ52L6Dc+3hZCm61pHLHCCarF0rYvuWerWTefGhpFqkgJMq0ylTomooaXL5dFefs9IuVjHBQZBuAOZxAUS6S6dC9J+fYcd3fmiUwzU3I9/tNo+bxwoDlRhCeExZWyLngdAEdPaUjUctSNDunNMav4y6bXBSsI/95rjhYgzmhOGYDpgj1jMwwh8jv8+LZFPaslG0/vl/73ZCI1vG2QmF08cr4MziLQeLYM3bWOz+WwhYjaFjNdM8o4DAwonQCFuTE5INR7vuT65GJ/WCnnRpr44EJ0S8NuV658j41PIMNpmRQvKr/+VVD96gluAGbys2fl8EwV518S3PjadEPDqjUOCS3NiY6C4SRaaBQe4EGR5T6ziXuRkkHyT8dm2JyAqBZNg6D0ngzsCK6JIe/qSCbIzOPcG554KvxpgLCElVsoQ/ecs2fgoQ1FZ9/Vx1Ioh5i4FwlkoF1QdAAvJ/Wb1HU8iH9tLlRKaAHrhnP2LLDn7e8cImWdSIbichqqxZY77qqxRd7tSq+wgtz/ONM/hvrDUxAK7GbkaDoowq/caqhTpnbZfw0ASDLcsHh+YosU29uXl9h1N2jFJ20hYpD5JmNnA9/abxf+aZKWhANGEbTse5LDoId2FjEOkF62s47l6AZfx3jsnLITuMAzUHKXMiAtDzShktLF9vzO4APR8K1X6CXvH3rb6/aMxrDEm3lISv2dnId/dsrDjiC20wFRNCalFiqzou8wch7HcPZukgoy6GtIi8hgh3G42EPXeyaRv0rEHU+M6yTe+1zF09fkKyTus0sRYmLARRMssC2JRDwSsw5zN466EPOBkMVpLDyqsHAQ/ViotsDb38do4Apds//S/5g/+J+pQU1M5QmzPHwN1jd7dYUAXT4L2yq0dhriAu0AJw45HxqBcbC27QexmiL7Y7WH7h0/CtIddqCqXvva2MPHhLKPFAnHAgrho7VyVuczwG6Q675g/H8HY6Re153wsbfQd4zVVKLW4Fi56L4iI1IcDhWZ57myCy0lNPUjTPg6orb6bLiCqLKjfxV8k9gWfj1TTjOGh/mHw8RzG6EoqvHe+8k8fTKsPUICQktUvJt3r2MO2wkMKopNuHXKpQgSlz90//wRoDmlwO7oth1+JlWwdon163Q87OyqlR6YJYho/vw4YJDAK0F+V7Cs/S2Z3R0BI65qdjbm1WN/wMF0kL0XUEXmyxb4XcM9hpn5XygxylObGtwgA/C28f0ydsuKVLI0gwKSg8pAq2q9mkYYo9XL9n3WEj2eeQEMTqBL8uIcjBiQeaP94XVk66c83aJXqRWCuxE/mXSMC8wmRx+BKhBlthiNqq5Lo+Mi0zglTlmWnE67AMaQo2lwT1APBXM4n9mq0HOnUM8+eBOQH6UYujf36KRyyIeOV7xNwOFAa44YvpmDJZ9AP6HByD9/apC1PeJ+o+Lqq63H35alB+b7BX5xMaUUz3p8fhR6aNqj+ayF7GHxu58PVZbde6hSB54b6n1tY547ttwG7Rn7O7dpiF4IFVOt9Rc3ejdtU4YVFeN88YSIKeY7wi7kjG7HTzK8KcY4AAFl5HWVBPfkRwCkbcw9qUXVHmmw/8TVzZr192dCttUroGvWDkMbRGh/PbljwqTDkC2+oHWtmAU87DRUKbDdhzpCYx7HZT1VAhKCGDrDNitrNP0MVqHv+2Q1xgTmQ4Q7Ie5kYbzR0dVHvZhsWk/oEwT1zceQECBEVj+On+vVbA83pDoq1szaCZhdfqeszvvyOmtGkKDbNWA0+uQFMjYKEr69BnR4+T+98JodYvOQXsW/EiTMMtsaNxUpU0xjO4p0mJNRnTJBADzzxdlFGm9kYOW/+2qz9QdbsKKYoECBLuEz43NDAVu0KHt6QwOCjqT7BGUPx1cH5GsRDa3Pt2YlrBPV3omn6dG7xFLan7qKj/2ceNKxu9VnChHBig+fCcE0YUMppnUIq98KD1LYZckVA3BunkthB1mDNJ5Dlq7cWjPNZ3Cus4fQMWfZfB8djZvlcLHzvLmPZyR9BOks67zXDcazUN9/oPqvMkWsgU83PKgrwqpNMemfepYA6v+9Jbr1WKF5s4BSEvCJdqGGi8MA9sEbVUcETG/Yt08R+S8cZSvBWTohvOuf0tS+PzZ/01iG5KsTlHR3SbKR0YsMstWUdJrxYm93kMPS0ThbrJQEd9cPoKu4OBKlCDMtxI2LtxxFFBEyohJTPQzY7Cmbp7L8Ld68P7yNotNQXAJDdK1q3FYGprS1qoWn3GU6DGT1alh7CV1Ye2mJWYnLn8d00U+Gp29p+3tjv0oyzyDZU8Vp4V9XGBje+sB+zouroK7udSPSbWcUn2c9x7p+0ymYDVA+WUy07t5PfuK0Y2Snq0+acvyGBqpVTzc7zXWfa1ljGkkxYe8aaGAnH6G8+r87wdcPY7VpyGMWm8p85HewMHa49bZAbsdze3bGHdTTcNSbc1deNVc0DhI/StoUzn4T7l6ScKP6zgxk7Rr18EEqgSkDkFNBRuJ4aMeCCxm3TJczLLq3xZ56F9fJJJKEpIMrrjuz1TkINdYvYuqMgzCG2RMP8Ji9y5YDBD/q5YQgvSWkChxeR+Git3MO1jBznlbVVTZy0RwQfwzKmElGTYjsHgZkpSlUzgQAsoNlYBZbepAE7Z9bqa6qRuSQDCooVs897P7PNed0boi/nwha3Qluohx09MLhi1YLWfj22u/xWdvFEx2J+Byrx6RPPktgMOhTzjx39ooJa06SmWdyRydtWmYS334VZV329OgEYJx9/PVq8dBgcqDt8rzD2k7MzioPUvGekT1ZYYSaHwaaeQ2SsXxzy9WN8X0pqGNXePJQGZcRKVnPLtTZEZwwQQUtbqNBh0J0Hr/2UPGsR9N7ZPIg9m6S5joEnq0hc9maTdzrmmrlZZB/FWuVK9aNx+W1AKD9SDe3Oat3hDCHVT7JOJL19ZilslKnxW4Z2ISkUa+c761MjMzQ9GUtFz9lI7sKGLmdrgcD3SPUZmH9L/k5NMFGhfJx+6bCP4vkYrVxDHLY8c4S3sIuwCEVvlbY8wPDPRiwJcEd92ePKEoZ75GzWbAaIp0oF122Z8CuNE7No0p+lUR1oNbMqp+Mc6ytjzfHO/x7gw7LAfy7CWU5/dRT56Eakox+ukxrLc9xG45jnWPgZWlgemObe+E0lp1SiqEFL6APzCRgQmoZdIYcOWVfOv0HSA062ipt3XWNSTKIZE2cMW042yNvttebqZ+g+j3ZoqSYTlBXYtsKlA8t6Po5qBxpnBzm/NdcaB69wg/cTBX7n+W6RyEQX2c3mgyWfC0pzeWm0qmarJhnE3IhtdfhTFWJMsFjtGN2/RzOMsEXvheIWw+ItKTllK3zAIkUCnnQWLKhNDR1KEFyl2MGi78qrDSon/Jndleh4Zk0VqvEC1HsMEQQ5SanfASdv2En3hlJEVWd5Xd/0WuPeKsTkSO2v4RV0sbN04SOEQXxfH+hV33uQ2uYVmD9Ds26/K++bu3hGmR/GhM7Gc4zLfVs/OLNgVR3QW2ET5w2asb1Oxhzi1OHHT8O/eRzxHBxAZFtlQrTxC+zQvCVi6Xvud4jubwc4kGXoJIn17naRroq0/sAx+/sZ7CcAnx2BFkyhgipPZmaoxuXEs4NyRIZRVyQqkne71i3Xdq7aRsVw3asQlJ7vFWk9YPyHx/LZkk2H2Khe/hUxeRz/LXI90bea1EdTmkfcuXxVRsCnznAV75yed9WMstP+JcYCs8SFAbtulRXdk+CKP1WYbbArISCvBUjJT5KFw7+1uPNA1oKfO7aUeHl7EZVy7uPECBiC2p6FHHoaSAdQ7K5is6J7/3zPxLBH1teYczLdP3tQp/bVWUSTIGv/x1iEhoSIlB/mQlfNDWTBXYnyCx3npYKUHz3BihqcMzTq4fOofjBpKp0JeNCzQivJA7ErPAYuQ4P+KXGxHO465oENZpP6wr04NoHaiXMyLmLvovG5AmQ1LT8UCSZnh0LS3JoMl2emQq4tfgEs7BqZxnkI0/Km23KAPal3hYSMH2QAnzS5D7BeIRns1yMR9RZ3st09D/uAychG2XYumQ60WCyPBtEuckPx5XaQkeONNdCQ2zKl0uRrZwlTX+esuVaywJ6jQ0dvVHvSdYHkiXQVsdNp4J0hWnzGiRSKcnFuxG86FwR2msG45o6KD6lyGCZ2HIOTAPC5N6hP885V21UYR3LVP8OoIAC2VNl4+LijhtoW+zCALkcOZf4g3IElKyKpUP4xIKCUEsgg/LoqhoJ/QkP7/zRwTH+slwVmFc8zU/GGvH5sqapObX/ZCk3qfm3l7nCppj8KnUMCUOIWvh0xXxiJqUvxIC+gPH6acClZnxVcuOmzJ+9prpAvCn+yNprSesrSzBYV25IDyLmnGdkk1uirOyg53vuj3dya+Xr6CuEcUoGdL4KtNIKjjq/dFa26nZ2nI2cJXaYYOhlNlxnBL3svKdE09T70MlhA+qXKnqlX4vqatnAK2YkVxVfZMErrgHrZSLr+RYK/Wi/1zzHYpGO3fL93+verxqXGAzYWzWxhGrDtNKq5hLcZYizphRle7cctJ3nEmpMbu9VEyz8dvE7SqBFKQF8EHXq3/EtMSzhYOGEbQY3vG9eujbURGHxUADR2V4AxPH8Esus2GlNmyHRj6ClUDPDodiH4/voTs+lvN/1HHVtrauuUrJ3WSbGc5RqXOEayKVptO4FnZWZ1TdKFPwpi0xTXRvU4rNSob8579iQZ+RKG79MqtoSBB2GSwMx+AGsDgi6NYGIw7PBaozz/t7sItLCrFctHyRx/XuubvNyUiq5jzfOvIb8L63te6stLysOsOlWXHSZrfVHgib/6A0x9+Yd4uie6BNy4y8gXEv0Ssc/Jm/gm2r2jbOGBezUmcRo+ypNcVhNndeI9IwytNjVjQ+AVERcPby5uTUwoIZXjm71Fc5hpYihxknanNp/acuJcpJYuRLhBDJAZ4y9HFsG1ixSDbCprZYAFhxeVL0sntDIc8oFtdife1yrauYkNiBZIVfgnfmmqf9NIOALLaEeqqPq+eKeBDZjn4Bi8IzKEV294D2FGkVVGNYC9GayVzHWIecSTIIdS9DHFqQPiVtDnhx/BO3GizYZqMzFCtv3BWhSZgaLXchG5IsepbgRIrEO8q35uVCoJCcwGlyt+cOVzfve/60XFC1Dspx45plziMqek0na+ID1HW4cJS3NajW1us4uRnZkuChPGtTGzc9uCE8osfQ+noaG/gym/kYUhSECuWBpOkem369i5m/uzPOxIPuWwz38NIkwbvTdfCUi270hDrl9Lr09r7PMuZKTRXXZi4yXKMZDxLe3ljjSpcFa73Dl9iMyingBNY2MjVzApVSv9mxXNFIZEh0ztBXcgoLaKqnO3rCp8dvPYJzLnIblC94AvYKbX1uH6HHWOmgEdR87FI+WBE/jXnVKrQnqce2845ufGAn1UHioDQFeIdm6B16+YltUYsG6lVIrb44zF2Nhb0c+z7JLI0yxfdKxeNEm0Zb3RSNz+vpHtZY28g66nqDuhUhOP58r4Y8hExn/ic92WDHYn/cT6M4wLVMa8ZL25MD0+CgsI3JR3vt7vkfn3BoNYWzOHDhO5prsFz3s2Dk/QqgE8B/tWiRT1w2pjWnajw9oAfOf6EY2PZTxtRyyguo5mPhJEXGj14sgPv+xXoig+T+PjZY8P0bfwbpcaSQy97Io+xGzQoydoJ4e61yj/0hWQfOcOzZFpBSALYQHhMUUkyreBOtFaZQoFzeczkSN/Js36AdBP4OoS9J1
Variant 2
DifficultyLevel
580
Question
A biased die has 6 faces numbered from 1 to 6.
Raven throws the die 50 times and recorded the results in the table below.
Number |
1 |
2 |
3 |
4 |
5 |
6 |
Times |
11 |
8 |
9 |
10 |
6 |
6 |
Using the table, what is the probability that Raven will be throwing a 5 on her next throw?
Worked Solution
|
|
P(5) |
= Total number of throwsNumber of 5’s |
|
|
|
= 506 |
|
|
|
= 253 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A biased die has 6 faces numbered from 1 to 6.
Raven throws the die 50 times and recorded the results in the table below.
>> | Number | 1 | 2 | 3| 4 | 5 | 6 |
> | :-----------: | :----------: | :------------: | :----------: | :------------: | :----------: | :------------: |
> | **Times**| 11 | 8 | 9 | 10 | 6 | 6 |
Using the table, what is the probability that Raven will be throwing a 5 on her next throw? |
workedSolution |
| | |
| ------------: | ---------- |
| $P$(5) | \= $\dfrac{\text{Number of 5's}}{\text{Total number of throws}}$ |
| | |
| | \= $\dfrac{6}{50}$ |
| | |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/ffljRRVkcxB07fq3EOWxiEfNZ84t/yk3TGyI5iGmEvBTD6zkBTQOs8YlzAEQ2aSKp5sJox1c/YZ6Ykq5QkOh8b2fJWXQrfyjzs8szEMXNca1h5S7xgKzJ1fiJ0dVaVV39R3OFUycboXq0kP0omSjSsrOh0n/s1V+X/LwYh7nDEnCGBqAJ8SfQz1A2ZSkNgWdtoh0DyewOhkk776Ks85rUeMOGy2mLcLD4TwuXNmNGboBbjMM8/YI9d+ara0gk4Bw0u5jZvbJ0y2CuhzrntJJYflIoiddy+v19EJnGHscAgkGXBGnc9KyEfPSpUW7rz3KRHn1vHfuw6Rn7sET299KMja0cMBMq2nGgTrx91H0DZBJamREkVEYaHr0rH1G6n9jxMhOreQpIgph6GBvtf26p/Inx+mgQv/u4wFdZZB6LMIbgTmehQpZOBZP1ntxyMsCYp8icYQSQREf6DmwmnRgnlC3jGek9MzY7drsjKBTSsAWXI1FdxLi1tUDklt/hxmr9WdPFf/ji+AvwuSi6bAwLJw82nZddYieLKAUUtoNWvQAO2LSZOTttApLDN2YuaF0JM3epIPv1NvGTNXZJIBJQ88+UuST5BieSRnV/deBQNUwsBXDS80FiVqSZoOeCHKIkuI/D+/B02Iz7oOj+m93z0NMQdIQeyCedIJ1DyGRGNsRqJWjTZAY4v+/g9ZX6VjC3wgzwcQgt8Ma8Y09zEMdi5K/CuviAAtDmacGJYF/GyL/hlMh7O63KUHgrULbDwM1b8n1Ox3GrjgzPThC6p3E9g90aQYzPfi0mE9n9e/8876sLqs04RVI4LMML1XhIoXzS5kMJX21ck7sntYldWvqzKvrIa+tbkNpa9FQaxlqV2hH/B+m8OahpPWrWlflQLXlComyOSkTJhNKCmqA8th+AQokOGr4omXzIi/OovTlBohcwpPT/L5R0vj+gIH7k123eA9AmvvaG9S38Z5lKsDD4tukgvaZONClIKt62xvrIG29P4atngI0hBpBlR5+CMvubHTO93ykQvyWHdw3kgW9vdSZhARu7zRSWiO6BKB4H9lgBkg6zJk74gz+ZZf4FHx7gucImaHHptSP3LVRjMhvC6kREw3UHqjrtKsdgsU+t30HqrBjNQwZ2K49zI9+qxRehEVYwwcU1KhYNTfsy8L4g06G/1tRGmfbUHifoHUSe4HqMHBogmXpsPgGaero4mL2uHkNSl3HQFPQW8aUEumJWmdC+UDz3g22LHQN77z4WTRuMJf/YBs564nVuYxXmDmZkw5/QzglzcZsNtQTWmoO2T3u8NPDk4V1OxqVruBX+TfCpoOkaP6m1or0EEFYsXEHa+Wu89s/1/CIiaNtiZXdNTicd9BqBV4XXmLmIhM0FsL48g93pIxS+7ESN0hSTEhGhd/Ox+cxdbR0l9sIynzmWHsHe1ybOi8T4cd13eqUCnLV5YBCBXqvqfRuKTMjMZmOmG1iEUG1kWxTtR8TLbzNLPGo0mOJZD7SkeXtZG3Xs+SoZ6E79s5PSrC2YLFhG6KvxlQFopEQXMw3HcE7DE2LerswAikocFSi6azzCoxYK35ufTdmUQFk5parodic9yp/ADXSFivc7QtuHf6dAZwO3dHRZCki6uR7XCZgDhxneRBcT6YbhZA0ibZl9kkbCGrkaP6rW/6Nun3D0kIWv6MnpQYTYzqftRcBH9lf0uQUUcrMOYd83y6zsNz/BBKRz5LLC6TRw6cxRNmqH7usA02cW/h/6TdB9KcD0TOfYzcvU0SuVVY/TfBhHPTHObe0qU8zonvxlFZ7A94/qMJervU3jrS4dAmHQZoXSutTq/h4arKEaoRguSTmy+4XFOCiRVECEFEgYrepUs4DYVwJ2QKQZU4/kVReNauXeYZqcvMu3bjsdE9oXLrm0dsLzuUAKKPG2877VSjaRGTPRzuKIWI08zBomPGo1xnkB6XVIF8Az+Ulrm2VXurKOWtoq4p1g5Ih3US43ydmihYFhlTJ3Y9IKLqBm+tjfroHHnAyTOdP9YLDX6ahNdR4Y8NysbJ8HxqLWA9cYlFzx2zEz2sCDKneiYEGlHhPFv9jK/P5QJiU/fyvtsoOSFrMOXdVkrI0Yogr7ksaMCDsuNinRpcNUN2O3qTLXSYyd062CLezqzxb2bGtUoHeehvm9kbTafPAHxrgxKQ1iHPcdPhlbrbYIYXgIk/3d0hMBjbaToXXaBdyMseZFuLpfKa9KQ4b9mZFpQKdUZEKG/di/b4ZgLHnbm+bR3d5qs9Nu3CZPm4R8jWxRFBhatDlsYc8xgib6CMMhzYZhKM/WB6esBivPOnN019ky/sEHW43jIl2o+eruf82QOdNrqkqabBfgQbXcAN5JOGj4Oi622XhCU4IjAx1Ya4QKY0qrUuqseFiMuimKBMbhgYcOCjlKkCNKXEiU+fzAzYq+8MKkoQSjY+vAYK4DnaWEB2VRCLxU1pwPqX5PNnA9kwjz7yy/1WMhGQcTr95YMuLabCflIbGkTd5UqyCrnkCvWXobYICmxYdKXIlK7iDAwoT0QasJCihuj3Cter70UTwRib6QPIr2vEXNAk8r0P+jIKSt4sveWe/zN+8YxVfqyxN5v5LxAgvYbgdD/tfAG2U2zPk8MzRFW5/YplhDiSf21JIbLjYQOe/K6sEoBKEZNTie9MI+kVqllEKA3+ImCzpLXWtjbgkK4exQahLdXxPlU/SiQSkLG0N/m1mqrJOm0xnn8/EtzSutqE5dvW1WTi9nreQhgts6g6LejNNZwMx55tGLBcMcwpUptoiYuNU2K95RVHq66+dpJ2W+l3Ql7jZXL9FOYdcKAkOgg2inZ+iqw0v8wCe78YVaCAwyDypY/5EogDGPLMlpPofn+Iv1JOWbTNoksuPEuE/SmsGDxv1XNMyIJquJiDdaWl3KgjvvOn8r+6yP11AAuAa4G+RrQlAmoxYVdiUT3gr3TP+fX6OE6/DGuQZ/0pS97Pn3u1iZumf3oR2ytcIXpYDl5sPWFHwJd206xKlc8smqViW/PqkhT41wa99ebuJKbV55n1W5fgl1hM/caYhjpwUf/UaT/QGR+8aT58BDyJga8KFtqY3VSaEPGJI2jY9RiU315ldE7xvCzLfLLLNTgwBAfQC9r5YI2pTHMwVPd7ztCqRf3UQgPsh67zLTd9IY5tkuuMvBVe+glfBE6u2WlsQHP4CqA3WwWCAPetVXDUeejsdSLX9FJ2ZvGrf1dYv2P6YAoSfsXJXpfp4N2NRIMQO9oVqRaLI4auVcFI6YiaVGeBvTirWAJ7nslojgeJhbWZU5njcSnsco1SuBKR5E/0TluKihCtlWTosIex+eWlkkZZrXHZxBdPAvamalZm4aAMWwUWitED/HqDzhicfhrqaqIkI1/Vi+SbnCi30NqVxrUo6jFGMO5D3stN+FP9+IWOmNduWMPc9WZ76hqXBHV+4HiMoOidFwuBAhy422quFx+6gF0HNBKNoYoggBofsS/xz57fIkDGiAGlG63QdtMNsg98dPxK6yJTUKhNBpRjsT+OjddiDgM+65RK9DteWGqo1mD1s4w8Q4HEYrexGHZZ9AbvLqYGx9GW+oUbSLTDkuKGrSrTrTjMxYkSmQJyD4RcaJZIXVjVY6ZZfLhr01EzV+qHgE7upOYn0DSoCNoaX5u4vJy22G1e55xxNWVLoxFL/KaRNjjYU4RYBu3D2iW4eETnBc6VBmpcNLfsOUiBtQNChrJ5eNrm7pJkLhJnlbkfSjzVaHASidGsRy7cWdBAltTSmjLVOYs7kj7/moxbb2A4GRP0o2S9lYRHMWsxaIfO2+bDUkKNoOdWao1PZC12IivH+ImdFmbM2ZyceiaQeUrpTh2ehcxtHrBgbYT7LELvx/lm6qhw6WoTLpHZwqNvLyCeNMdGUO+lclCl6GgluTPfl1SWWfWSYg7eoR48gqqdXIvIDWYJb+8IWiEWWgQzqbdcrjUzZ4nD+JpzCf9fIHQKc5VyuBypekrreyZEJS6dgc7T+VQeE85W1HRLuG4cfxMElvkEDJpRSxy2INx7O69EpcfASxfDSsvuwS4eYGrSzhboqiNGKjx6Did55fNtRjB2/mzHqIrE/OEvuphKtn5zfX5elOZpEIYXrcEofctS+stHW4YkdEhID2X9ZSLg3TDmWrA/yBPpIf+J9Gpk0yaxlssh/Xqy69II9eR++OMWjoCnpsfY7D5CKcb+TH4ow4c27qsuTT73hMdRz30RJWjJcXITbaCiaWnUJKXltyf6vLpTsMeMccSj7d5fUFpEF/auBGMxHZunrcCgjyAWgn02A79xOat2DWtoxgzDbT7R+NoLir310Qfj5vscoD64q3Rp4f4hvJvxWbIlGgnqVQ25eFzp80BkX0Pj0WRQNvMrYUcHHltbLfQ8940tyFtOtDU48m3hZpMR6R/tblIDhJycuqFjbU//jlCSgRK7K9t6pTTgqVGtkQkLpfC3sPSvcuoEmtIYaEpr6UE3Zu27Y2LPvHxkva9ZQkLzfGUqYQFa2keev38YHWXxof56quvB1NPVyY2sl9GA2IQkvYHwXaPc1y4LnzDrgEaNhxSS2ev4Fg/BDKdEzdXHEGSqiURfIlKLeg47wPCJodfqClURQOzeWipcCjxdM5hy3abWohi22u7zgh7yUi3pxWwDb+xB/X0i9FbRzMZL6yTAn4oa3Om9fJaQ+OZRW6GNIOZ05gbbGCAxNYtobMZHgAhNwyyvsIWrgLCWqWCy2TgtaU0oHbw78y7awPn/h/q6e+lsCdkS0+OKMERO+g0Qrgdm37KBcZNns8cSDaX7osqQXHnh6G1Su4tadoDBpJwK+FaEYjYTv+oQNhryfq+6zPwpF0sx10mBiYSKs00R7HknKvZBcM3wFp9Bo+dPkKbj70MuXJOkO0w0OZaZMWE4fhtwqjczkitI3g7W+yA2cgcEvTYnvSUyrZXQ5A+Fr1/2X7PqnLhYBrlFpESHQkutul1utDzyE7N+baPWSKN+FiQWQTZUkCFwKVW64raq5+w2Fc7Ha41yRMbzMgFAt+TD5822ni8ifbUKa+JRzyyur5W4AyKSuVX8KWnWJxvBxhEi8CgebpPNHCOuUhXj65ZWsQ4JToSJyVXuT8tpNq0CP/D/e9XnjmMcrnt1NDfrjf/ZeYVV6fsKl4qvl+LwfW3KOmcXwx9KIyAoySZAWJiVfexzjNR6oZ4rPTTqGx4P0Btbq06uAO4r77Hq9CwmD5KS+BnNnVcB52C8/NrceSGh07/ZsEBf9tT6dmsveTeP81ymgR+Zf4izArWkw+Bbn3AhxG6HtQDxEUin1P7/8X54iwsCyaAmJUqpNNI2hqbilVABOhN3lhIM0yU1llTqq44j4DcAHKrAnEONR/RjqUek5KZkzhgsZN0TKuybcsIMpj+bOr0L9f8IekKdVY2xqiieCWeshXm+35p95WiFT7FG7VJT6qK3XIEkwmS0uosmB3Lp29fgfl0lBwW2WRfIrJPSWv+/2uLrDiK9JPsSfUu5QdBkYPtFKVy90nxlwLSsXDrc3rtLvzASL/vHpv0706jXq1sTMhpPUJbCGeTl/uaKFeZ7O/g+hWMxQN4XrCIf9g6UN4vC6ANg3WQKOgvxMKi+ze0eTdFwc82MvuYqVIIElePTc5Hx/WHzQls6hwBM6TGnk83rcy0m2RqEXR9EZanO5SQEAWHsuJ1HXeb08fiouNMRObUjyD6+lEMiVGORCGaUj9hBH1ehi+S0gDLtXPVkOjW9MkxlPO7IBPuRSzZhlTI+u7qt2bz0qLw7BmP2zSSZem16t3I6Ve1pe7MwzY+brHnnsNxwbqnagtCKeuGS+wYPxqsTnqi29IgNF/Wm8XvmDUSWIab6OiJbSU4nx9QWJLgob1aqylRhcIArbxRBX+RsaLXwp7Ji9SJ5xlauU9wg+ObQimWVXP1CHccTpXa1T4aLrzfgRW0pa3ZZ//ZiMf+huuU/3jyiiirQBYnlwn0pbPUZz8BiSV8Yz1mVzwobcLNWxT93TUI6UNBiyoEptDY/h03lueB0yjZgiN6/ET3nEAKYGSe12IaCckkeJYKwrOGiUqYaJWyhhQcxrCIDVSQ4e7BLDJDIi3spzwxsHJx3QSOQ9+IacnVPffRjY8rky2eFS6ag5VWzbILpQzrtJnbuPgngnFfcKic2xYMW/7ouhL3OWkiUqEAtYPYpQB0i6iUWYXQorudVzv3f/sKnhMjFBgKxv9NJdweOB2YZmh0VJHOQJbkYMFATnDIX3EI2nhAEub8PnYhZfKMFHOmx2YAz/CCY5ippOMwYIx87tBtlrxUtCkipaURN8U9jcdZqw98v2I3tCshdiD0udOER8hhKeJHrCZ0mgoUx5o51ykAi0qCGMfk47d8NoJ4D/XVfCiQUdaaehcfgkbv4uNACWscQQ7sIeSzS4ptHCpP6ytOkiu+NXgko3XxM0yZGm7uYys8vi2E2pAbTc0RWxFOQJdz9TB6jjZZ4qmdJ9EX1N9e1UEqgkx2dbQe3glSVI5+lk3iBYEh2WWCscExXoAqSUMZye9Ge9o0CzGgDXrtXBYaT0WYuim7EUt5wJVcznEEL5TvGEPJPEp9CMxlJU9aFr9MtopWsPhRQQU68z0X9t4iZfUekyHtoQxj1dpW9hA+zu4vw7wVfppLwp7NP4DKbwBMOXeYIyxdCOeVVjAwaIfK0yP9E4LV4tkwqHjYXtmQQgpJyVs4WZhPAcM6INb8iUGLrHpMFBAYnPiTfQtBTOhpIYDeRFKiQYUe4cIxFDMc78++tAr/8MgGbtOERCCHyV+iKyC9A+atMIEQzb5HC12F/bCD6ACNtQlBNTZHjeiMQB6hzIWP695/m9u6S2FlgIacfzhXkiEVntxyFf0RksGkRfXUDiScHiPVhQsT7QovPOuUsxFDs1WzpQbrHXXLY5vDATOAnNhQIZygJY4Md+/LDNoBpZWP8Wmxqv4t8rAyrpf2+JyXcECAkWSUgljY/9NpEMubvJZFKihCxA3cINMvjNQlabBJPJimS3I/88PiVYZRu0L3Jy7nxb428BXhk+ksNh+eCu7GMuzz6v0FqB5XVLjk/C6JPGRPzmbBX2fxJ3jVdGTAkg5w1lDIXVqG0M2gifwZ26tazCZzbE64hHxul3m/vJJgG1zYCidx8CPcZHGgqnq2f9mYJiWZre6KKSiYiNaI/bmqctN70diiZMDtcXVP60V2ywT6Qg+iXf+k7paKYSfGYQxgNv+j9AFnrRgzbH24Zu10oMiK/Oj2M3AVmh/LclktLupfkgUfk5VMENRJQT0nTou63drSSy7CIJATvShmiSs3lNmcYK/7QERdDYXHOWDtKvtefp5lNLdJSnKQbHnVUt1PV8mm2KTEQeK/v1lJllzH0EgK+7CvxMU6dSqDmUecE+k9ualzuVYJ+Cd3yem1NdNpSwfF/Ldn9PHOD/0k6aCotr28UoF7qFfoolGnbmeFDkoxzVyykUGcZX1uwIXpSn0TjObWwZKpL5vu4B2mc8f4hDaMUuo3vqSG4/JC/72SZMYMdmqQDdUDrmEAS/pytK/npf4q5tsTILBZnMw3YoKOJu/b8RipUUBkf510qcsjDo6D6LrYuQjRfxH+wwgtkCZp9gHrnwvqmCGy62iyVso/2xxvB2KgtCyTRIKcm7fRKlsZHmcUIBrpjMHgPj+5NM8gYVRtdUZtfHSS4bBYsILBrkDwJcmXlLQ83KdmMPx+4c/RJPMGv8UXlWaqvTVw9ism929H0iV6tEldfAuaSfGTX4F2nUkGZUOoaoRRFa8A6SLkhYTjE11xN2e3ZsqhP+omwiLlLR4YpfzKTTBHnnRchYiQ0sF8OCgufh7nbDvmmWCQX0tuQPHKpevLHJl29SAp4p2roB/Yr/pvWvTo33Iid6qwom1Vp+NvELJrYhMD5ffIiEI+6J7gDVkzKkwoxqESMkbT+cKmwuOtle4ZGXxThiCt3uWOw831s/Uv/l+W8Dp4I48vtuTEoUpTmSEMCIFId5OLxArVHYY5uPltneZfUu6gk9XqMMeeIHSfu+Q5zAUyiGeflKGapvyHeP9Zi6ODHYsu9XnOyLgkNi0PpkMVW2plyVjrgW17Ecs2cnodkjCMT3oTLiFNYp48gzeL10lk9YW2qXDAkIlTad4l3PQKT+qPC/QSfDT0K35gMpne8ezEEOestDsc7/LgyYNFvB5CCFmmT9MlCpcnsI40JmIaKD41R34YwvVNSWAr7lpCUGgcfvTkryqVQNI8PJnYRn/iW2n6+cQv2JOo85gQ7hR3v4zO96gFCjXimKnhV0HDkmXSVY/eGfqoE6eg15IllysFSSRN2CxmWxGwDmXC6TM9iaGgZaUKPYCuLmu4xpufznYYX4SDIB9M8CcBCvNi81rrjEayd2vExGpnjRe/XiH4bJkA1E6DBXDH3HSOOlwvtdfnSbSdjXsRjYXhSU5yFJ8ZgANQl2j2p+17cbye9GTVr9KpkqdVpnxriNyCC2vK9xAH48UMXgM3vYPVbD0SO2oL4WgVwCu465lXGr7h5FmQ5bkZKIgVvA3QXsdH42RBXJ+3asQNsdg1+SoR3lEonbo1hKCHHko7TkhmxhSWpVH1nMWmHzcq3kTgjSxYBUgMDhhkKdCM1Yn2V4sEtnh/ktjMhM210frypjRfeKUm14ja5j7eUfLKiDaCFxlmrJnl3bvb+r+QhV3nvXOKqCO3IT7MrFZ5dKoL7PLeL0RJsWVVVXAP+TwZhYtPaEZ5s6IUm0QK7cOzDQ6OTmx1uCtH5ofl1DIoPL2uZHduXEC3RhCL7ZVp5XEZFU1x6E+reRrFo5bOIx4tJQUk0gxu4s48PcwMNszKwmt8l67EAtTvk5icePLUkEdCZOPlRfNPuYcAQfiXaSpvWReKXKs/6HhZeez7prN7kbN7/RTUuPt+LnLNcEiTVhPK1DEEt8HMXPHhSUMcRwoOiML3PqXxzCWNpDZ/o74L9MCwiCmxj06R+kO+GP9Okzr3IkzfMgL4per8VVVLfiKwYs8pOV/Oo41Eacoq7SeibRa9nMJIua+wv+mpjd3kEfJlP5tDD39oVes1tDZUsiRcVyhF6hne8rPG6GGD4oSfVisHAe1mu7B45e1ZmM0dGZKIhl1RjA7VYpRlX89ATk2cRZZPX/2DLcojvTuKu/5E9D0DYpBKHUfGt9fuqUBL3DWQX0AvllkCUF4L0wRUtZ9YcD/esKZK5E6rDWFgDcOrewbt+vLeYwNQnDKwc/vitoWwCwmGyYCVKtzSgzrayqTOjWcSJrL41jkPKRKatKZik//lkE1V5Lmj5KIPC9q6aTTigBlp4oJC97aGQgXgQm4TANzAxZnbubMM7Bl+fYoLiEYAYt+VzXEPDdGwTyiAo0YwF4dk9OsIQKReF58tjHWR83ZAmw+IHbDGyIgj2CEFdGBmiiWtzv5bCItAGaqanoxjY/7SYcUx0rdk+ZjMEyrjPzdgIql1ZMbhnYGrZsDJJf4pEE5nYAcwP3WBlwBgHgHGR7eaT0T+xh3fYtMZM7v1HmPR0ZRAyo0oPM29aOCGsjp8q4w1J8w9o76uCmUUbbhUMOGZMXBZBIc1Gb3R+EcCGUp8qAhvT+53J95+EZdkZt7JD9VgZb8KpgVyMC+f5vnYB5YryJSq/KyUNN76RQma7A1oruDpiKog2VMnd6iYTH462Kfb5dLljY9kyy0oSVDVHmFaRlwIB+OM4cT+eshaP5Bh9uCCilniS4q5fyPZ/+b5Cmq6jawHcpM7p0B4jxwKq9AK5qM+63Xm2gtJLYjbTTTYBwVzhOBjp69sk7/jS+QAoLCLJfLyxBh6doJ1u8H5OlCcp/z+g8DzC2ZFAn8vnHhEGriWqwmVd6+AyjL+bRlVl5pD0lrTfS2qVAnaPXSSO2Dl55THjtSWISgRIKz8bAjNrIPZlPwdza5nl75HuK6Qb74KhujhKABwRR1pxZeFzXuiuewzoG26iGeJ3L1h+lJGe42RabWFEFEHXkqk+I+ARVqu92bX4KMp5MPc7b/v6wfKfXUIjGKfrFXqsgCioOHFnEaiKLh1QKEf4AFvupo8WpvDttg98Dr623qX1luT66H+MUClYW53yt3qS1hUmbHrxmwZHMZFDqdDd1bBAl/Qa4SEEBMBpG0msT+a2nTZwE2DAlIwJ2uD6Ug7d7mUNhRel/qRhHvCzmDXElWbYBd5N6YUaLUMkDS5v+B/x2/QoAI2oT6Ks7HV5HL4j+gYrdj18/RiSHcKjfoU3o7ei2q8rfVOe0JoBqUAwSYzzvVvU1v4k3BoK1yWNsXMI1rBMqM+j7j/XgljyHP/bo01MSPL3ZoeqyWU/zdKmEb6iFVGeU0xwd8vq8mskoa/uHH3mTtGsme7n+hAM8DuTQfmzY9nbMu7Pvx/NIDlqexl31yS2u0bIgaZtgCl4F7/mqP4E0Wwh6TZFErx4MkQ0jRzEv5IOlSFZPYtUd77xmehKVeSGr3LPySYfcHtnh2fOjELJFy4cGR/ygkpUCndgyWu/MjwfmH9xJihX/Pm/5DCk/arBz8D5+QW3g8HA9g/OsE7FOIlX/2Ip6NEa6b1G9moidtbbsY/kvsPk9sAjQGXUVxU3vS4iQlcG7BVVV5HofYkLjRq93jaueOwaDvS30BObSwTegmtk3fUTGInni2PcbFClqc9ocIdLiQzGF3K8NJ8h/VjXzs4iXXdklNIefJoCgaydeFCoe7kslMblGwp9sGymqnhtxdXJqnP1qS6k4fqkM+X5udnSw4P+zp+IhOuZuVRTzvh9lgp6YTqkOHRBAuv3+mfDKQWvHxQI8VzzRzINrC+5ckW7m6Og1VP1BGngC1ZYDjmkPJGD/HHekl+mGV1e9iSVGheTzIDRrUf7RkyM+6zdR4yDDOTwEA7lwBGfTXGRtV8KSRXWrBIkCI2s3gi1LPlfmuqeelVPrO115Vtxbg91zzUyt24NN3pHSCLqCuDX4She6c1azb5YY+T2ahU6ntyzHp1dYwMHLXRw941YCYi2I5MmjnhNQzsx25ZWRf41NDL9aWDm5pJgAY2YSf0mK8rHdpOpTgEMl1aNozmyKbUHobTNYJieJVuAndDDs8sMru6wVGV9Z7AeHdMLqkhcjCpT6fp2PjRpiEhVmbqsHpDABAtFMrDLrJY5p/fLiSLF3ny4dUUVXINAYAZIXJtUEXCJVTbAGO8f2QM0ztTfG9TJeoq+j2biXsv9kS6sbOR7FbztU5Z3clGdEAP9WFq3qZHlCrv+RXVCY0F5ZZd3wcXyy1QwhXR5XPRRb7CbA5+aru57VvKWslClLvwJfGqE1jRlJ2DLy2B0eoDS3enbazV4fJniIehULQB3bu7Ivsf4dsikeHBRckgM5d6zJEatLCsvnM+tnWpv9RqJzVD/cav3G0IIlJr9I0uBgtyNiW5KQrQWM/1yczVOwHO/EeJu9f+5hNT9zLwE7uEPBQd4r9ucRK1YCUZcCCTIp9pIroH9AfPotfLgiqv57ZhovFfvY74YcFoC9SsGzYH3OkX5e3rCWWWXmsLNIf5pTjhGCbOe+mf2+kuye0X6617a6zllPXlxgBFnJPhfT+6zx/qOTaYjbwYeV7w2BbvsGxTk+n6JVtnVeEuijIn+lPnLlnBj4O3c/s9570Rn1Y+9fJ3Y6q3TkApw+lWO8FgVTmHBB8LQFW5ylzOKXKw0RRBMuRcvIsuqRJMdU4qSQRbWeRgVXew8BmBm4sMDPxcI1jZJHunTZsPHNGIWIts37Yg1+rFvMVDowLT2sKAQAhXUhBr7FJWelOuiFqn5aSr4i3Qzao8zijSW/+mb8AJ/cNEcbfcktTjARmLTXQEAYz8aRXV+yP1khreBJx9MIYTAJcURmgUj3yQv3KGNOxQJs4AwD6MV38ssq05wmsLU+ED2LMDp4KLSBcyImGVI0Ztuzhfuat1/Sdj7p9mgS94I9JmA/reQUsplRXL/egre3vxUvFCPNpXu1zIU92aD63tSEY9PK51VSu0T0ooPda9ULp5PRjOvM7YfVFBKANLxRdgOpgM2SBUwyv99djRZZo6soFGIRy2ZRadryEp+xmcFgMmZuiTuy36hctgHTE5C3PxHdyHwZxrLUp6mjJorezIo64kIOM2Ep8ZjOI2+0jI6Pe5+V1BDOC27EQAilMcwZnlTRegctE6cDF3NbhEXS8F4vb5C3iOsFpLSreKTmHpuiKL2WmbihAhur6oeARU7nGYIBvJ8eiYrybsW6MLBvXJPFv06WHKwPw2rCNLu2Hn7qQvkDt6+WA5utXjmdRMSTY5KMyd0fOfECzU+t/LmmIcsIkT+DIFLaWuRAxSwlQoXBf7r1BL6o1ITOoHYG+FqSOjjgZZW9EOHMbkXucUAAiNGYIYlx89oHZXn81xxiQWFUNqoDLOVHyiAgMmtL6sF43096aHjPcASZVL72MolG/3ynTCPjZRVuQSaJePvjTWy8Xc59uysDdVtaTWd8WRo/S0Hc3UBCYUpJ3QTlOvr6DtVbZO2ykHISWMo8IjgGg0seoBcblaPkfWWeMEr9uL9/aTJQ8iJkWAH0g+Yplb2dPiign/bu9lMNnQLGh2N7vvkshfKxOh4X5sIYN1EeMuvmW38BeTcM1P10kyzSoKzTYmOpHRtQXxyhAM+79z0aQtkpZmgBXW7d3ac0+Pz5alYRXLOG1ejJLrHcYCpfjkwrHXE05VfTP0VWTDFI2rxeTg8n4HGmB+O2C6Yj0I0uFJEpXfL01hZHY0ZZyi4BfTyqTgB0DF/rBPCx+rvvFWdy2/qQeq57e4vP7xR8xll7VC9dPSSPkOy+NDcMZVxy5i9Fr7/iRG0NguKuwPq/v08zrYH1gwU1YY2ae3H3B3XAU1xkomj14XkewsVToYvsnScsnKEhxXIfRilncY9RY44f7R3qQfYvqNZbhUZmHdqzPwZT/c/Ik8Z/sj8qW+36YoaCdjGkJLNY4LZpf2aZ4OHm/1XlmCvmsSO5HmmE7lxjmyBWgqo6jKZzm2kJvbesIgUSeCYpWNX/cDi1gbhWhJJMuENBDW7XDBicQVt8bv47qonAiZ1gbc/ne23HH+Hn7u/OgRp8/fU9krgHyNZrXBcAf5aCslHNzTkLqQcZDnbXy7j8VVbHHEr6u2z5biK1ivR7fC9g8tfhoTJn+Km6W2tX8SS3g8QB7cEN7lN1c3G328/y52hcZ0GUaWvTZfufMUQkZU3oQnbQ0Om9c78QOw5iw5Aq1rFroWrwkCrCD6lEMhw/Sj3DX6o+QsdRyT1b7v2Dq3OOJh3tDZwj7f4WxylWvzLpIydm8l1a6BDy5axno2ty8gJzh3ViNMtqHGF3t9WbqluUaOtEEwLajLqbcQl2APRkYBBwxTJdfBhDFTO+2nMXJj8e2Y3rQ8f+dy0oZZKzIPWsr23oyFOlJX5riyJ+pVF4VMt2P/b6/n6Z0wlJ3Tr1ahjzcThaFmPJkAaQUrf5dXDa4+8Zhbfgt7y5CF3LaHjtYAb3hHHv1YqAgIZ9+LtXIXEugteqe0ZBCuZe6SKSL3JAPQy98m5y80z0Hs+LCQbsHeKT+24W13Pv4EjX2Mxxduv8jYKFvpIPPntqIdMGKA7xyx/hvDAtavVnNRP6uuWmx2iMVwcm0eP3Js7TJuT/2davbbRd8kKsfEFuLpRKT9xAYyFkcLrSy4u+oaDrLX2uXdTE+VdOfDAqhFanvb9K5G06G8Pm0bwWgmjk6a9woORVBnpKByfDNox1QOka2OjKXb+/nTUqykOK/HIKtZ6AmRRXcWMAELaN4vFNpUuMGE6w96HDD/Ve0dn+WUBa+T2wemyR/0ZIWPslbvffBExfg4n2Es9wgX0zOA3s/gZIT1mO2WymSgpiozH8UEzoUQ0Yrm0j0uaHJhSvZ7pmru7eMlnQh5YdGk6mdyYmKvPjzBx9k3vsn2FvHujbA35S+4CJGgPFAs5GqEEcP2fElfnlb4oPXO6HcMmozUMmVmBqs2d26sFaTjGDspRC4meFtIvH24mOsn7DvfR2+cj8PqUC9S2m1ZaeWEbCjTgdt7H0DeONVlFLa+RiDABg/6aZDD8dxajNqGzK11xzStJBHuSyCdBQxtUVodVsbbU2SKHqjP02XbPhCLtMvnJKe4BZAJgnY4uiyDIhYqg3lA5xLW5CIMt1wHM0b8o3iYEaJRP9V8OZbPCBICmq+sBpFIUuYalZtcj8ysheNN/H6yib6gKPAS7h27Ue//lbvWLWosDbhhMrFzDCKQLo2qYiriS2LImxO2u5SiUQ0bl+bf5RaWX6JHCvNu27BrLVDymoIm0AdaNLa9VpKapxJ7MMDGWIzr+mFPiNUf6WwvCVL9/10+12F/9aMnw6eKYhvF/VZTQ1b/cYc36r48W1ygtwOqoKkJODD3Bn4pU2hf7zT8Pp1z0vDHw9qxWIpVJG11a+L+pFrSlJlFV5WrN3yimmqPlPwQ+Yx+5ny2PgCg5nUrmsNRWyWySO7MTbfnrUo44/hZzaonNbgh/qLBQjwIZdV2XWB6td6cjhl3G0UTak8rs9WAGyCHFpNKL4rU+7Qu3ULiETEfXVcIIO0jvCwNgcsJ8OMyd73tJ/IfFBZ35FBxXYpXBaaT8I58Z970rwRTvrrQefBhh2eR4p6tY04ky9F0L0Gduz8K7zPrkxHr1zhFBrpyqNogQZaB+CSoXlhW2JAf1WkAQ+D8iij/S25npyBYL0tiTgCtnfHKbcmYNv9CANJ8BkpsdgzkMV9VOvlAKOKL0JhaXtl4gfmkIzIQ4njRfN3cbvXSsRWPclSw/zDL/7pvh7cIvDSckKZOM9qP+MThVqtfl++r3T2M8iFQ+AufHoD+iZ/T0x72DEXl56au1O81DjZSGAty/XiKLz6kCDM48sfd+z9lR23sqEpap1ZXO+0SKfun6bhLYOxqts0KTj5cCjciFPF2MWEuv2d/cwqEGJtUBJvuWF5ee1Zv/JqfD3JkFyp4IKVVedT35Ck5v499HWyHRIvv25Bj7D2ZNB2oxCWBRfT5O2JvMdIPelSVEZIuyAjM/PovUn7+WSMuIoVQeURjWahapX5mgFCe+y+lmOYdPc28YMvdg/jNXj3dRS/LGdPGV0gu/5RznTDiM7dEER5cOGc224Oh65cQw+XSSxqehhUThrJm1y5FnqMVmFVfojFijhUaD6wQqdWNUB32oWi24ZL6xsC9JqWokI75XM5O3idg8qEGOvQFh9i5oVqCU7lybi7MuP62j/goO09D7FKVBY44xR/kW0At49Qg2ar6jLdEyCMhnci27W5xBPOh8SVKrl4PvJY3QT7CHJRJ/ye2NC8XHWJeziOGqJDQOfjxQZq3DFt5VB07PSPzoAWhm3HKn82ksWHz0e8m9fms18izpiWVYt5KSSku8ry17YnC0vTIGf2at05qWnNatYkYIRFXXSV10A4jqsWlrfWRxHhIJ9vyLweTE+p9O6HyFJN8aFWMYtCxhuAVsy8pu2++Tq3V3C5GveD/pgHTzKgI9ftOlzoqT4lJKfR2ibQrj/ZR7CfPH/gcK0RAPOjZM4h0E7r2G1oEmhs5nDCHAv/6ng61AxjOj1C3dLrOwBbmIrBix1tumoM6taY5BxZw907AGHh0MDrSGNulZnJ6S1jt7P+JpsvXp0ycxbTCiRz6Kgsuc2QMlg7S575YUcr9zAyRtnkWs8Mh4yyB0RIzp1HEJ6qMt8dSiOICt4cOaP93CXqrQokHJbMBtK3J2Vhl1Tign1l4vcDU449sfyDKLYhUoLF1JYf6GV0Anv9h4bzFk8FKaKwsu621Te7FPwyu+WhdvIB8ao0JYkFfBF/lmzaHXN6iv7Z7zr0k70EdTCgw4M6cYfxPOD5I421n21SQmCC4AI+rMbY3pfqKkWlZfN0xPhOCohtJ8FP2KbXqz7K6iMUWqQlBTo7q+UTYuB0n43QFlZJaocYK35WMb5jLuY4r+YmZhtVyZw3HC3Jr7RE6HOXXMoCVBqJ9zbgce/nDe9VfrW9Cw6kIJBFQ+hPTVJeaMHIwqorxgt+h2HgOqtWUJeBbRYVu8MQoPFg3HTCeJB/5cA3rb1qieW6UZre4bV08CjN2Mv2jVYzrkP0vba+1H88gW1ecYh0KcA/LGEqDQ==
Variant 3
DifficultyLevel
579
Question
Peggy picks a marble from a bag and records its colour before placing it back in the bag.
She repeats this 20 times.
Her results are in the table below.
Black |
Green |
Yellow |
Blue |
Red |
4 |
5 |
1 |
8 |
2 |
Using the table, what is the probability that the next marble Peggy picks will be black?
Worked Solution
|
|
P(Black) |
= total picksnumber of black picked |
|
= 204 |
|
= 51 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Peggy picks a marble from a bag and records its colour before placing it back in the bag.
She repeats this 20 times.
Her results are in the table below.
>> | Black | Green | Yellow | Blue | Red |
> | :-----------: | :----------: | :------------: | :----------: | :------------: |
> | 4 | 5 | 1 | 8 | 2 |
Using the table, what is the probability that the next marble Peggy picks will be black? |
workedSolution |
| | |
| ------------- | ---------- |
| $P$(Black) | \= $\dfrac{\text{number of black picked}}{\text{total picks}}$ |
| | \= $\dfrac{4}{20}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19jqrQV+YUO4K34+iezInSrrMxx2ImiqSNJMBgH3MvwXB1j8vlBbdujNwac7itQq8MmMXlswnY6ohpricZiE7wow6ktaq65hFXRWBoy1C6IiH8siOl+MZroos48dHEyGKJT45MR/wRKmK4P4cenrjBC1BkAfibBG8n4ak/Qk8NNuoDPetuVI7N0Gjo0wDziZYM8vJ8fZ3sOfI2bRmWiJuhJLyDMp8Z/ZHKdnqtH3ESjIGlMfrLkqVfj9y/PxWkR6C9E9w9bkV23NV8gnh41FCy2sfgRRcTG/ehQeZyeF6U21n7FAiC+K6O+nZTPzvptTrDP1MmZSlO97ONeO3horGMUA4tVWyvCZb2c7mgx6YEI84FR6TlW9rkQXNAoId1j7fVCJbkOieJ+RBjrk76RC9azkZV5Rrh7+SzPWXM/+qnVTPokUuhgnxKBHAeuIL5RfxWXvWogoLKls+F4XknrjU5jkk3SD7o87dap5Q2rCg1JkNp71twrpizSqf5sm/x4xsAADQ+onvne0OTQpat80EejTWWHfcNb+W/7kEeUBIlOJa/kzCq022VgXVKKpRnq1fhL/789J5iwHy4n2srBa+P+AP5scZWRRWQKhEHldk+PaUeigacAW6A8fGwec0sIn5makjjf++FeCERTsm7O5+YskqBnLYyssNq17hgFFEDxBTLsl6FlOUpS0S5CtkZZRVwKBx5U00ErucGyd+UKd8E9kPE8VNdAOKOdCWR0dUIAKsdyzX8YY+S4yYBZe6lSaSCau2nb6OGI+1HCzHRaZp1mzMZWvAd2sCuAi6fbM2OxiQY+b4BP+dvDy2VQud06IecRc4aDBB4crD4rp3UXb7hGxyYQS29Dl1ezFBVGm8aw/RPVpSvb9j59o+3+kAC8E/noEvjq56ao6+zlxX5iDI2jfR4eNNzcpEN4c2yGBYl+6nLEa/d/PTiA6jN4bYIKs3ikMRnoo2MdRl0o/AxgcPKblVeza7CtGGPO4mMzyMeJyo/cpEPtFyy1/+LFlM0obPPZmJThnLXaNdqtN60davUjHJNs7XElUN7Yh1D4Z6gcX5gjP4VrfvdaR4EFp6wciBc6R0Zvk1hCTQQR8EjqX7mW9TwyBBxLpV4WqUE0UzSLUspXh5CKX+F1JcrFLldbW+C4mzexTQNF+z/RbmQzf6p+2wE200Qevwa2AwqYvyxyyFYh+mJD7kjNjMzu4FAy12FVqOkhGX68EhV83Goy95I13x0Buxoha74647syx3W7nj+RPlHrc8QtTk0LP2eVly+ecsi1PQgBX3T2OWxQALnciQdCv/NQpZBHuDELXTvvnzdVK3ubfdsdCO1Kj6j4jgz0tevNsWl8sfbpGVguoZNyuBl6G53mC0+AC55i+KosYo9rWIVp3DqyHMp9v2hzyd7+veMPTsDJrdeb6zweqmQfRsxnSKF5NTRPbHWMCwh34P97TusrCjjz9bqFF35bPuBCxpH5kNdZUVt8Pu5j+ww+8J6f8SODXlqG4f9YiPcpHyB8yGySvaB5LqSR+wGeaoIMOZdmgjIcolPJGsrsomCSdAzXbZxHD1sTH88rDpOUV5tN0bVM+2NRHwN+ghk4DxPpX5oBQ/C5J+jVSH/nmESZFfnPas7cGOD4XeT+afmq5uDoHuLxjmzedgvVm4d7BxfzDu5Z4nWxskjR0a5zumusW80aM+Ifa6G/teE/ty/oDWgmsuQQL6hBu2yxT0t6zKwVZziTd6fon3NYzewRWeK08et6oASpXsRT+c0FN2kEpdjflP6bpPN03J1csFMzqv32Tafez7sUv7qzIhpFZgab+ijw2aJNByC3j741GM1oHlvL8EljyiLFm1Nr4DXOB1OwqWYSLWYr4qzIphpewms71CtpcquvDNVVel+iJp5NqUU6CUU5MWw2a30oP/RuI2MHZ11LVPYwn/cvE1xkA3YOXENT1Dm0FpToUTltl/Hx4DcE0eC2wWNjw7O9/Fwv6N/C1FnOLZldJZvScEjk4V8VeCSPssbJJoorRbDPxkwWdvU9kKBvKPCjAZj++VtRG0+Ef/sTL05WJU6a+JXCb5KjWZT+6v/tEv6dIvhltcOlj27Frz8Sv094bYCEKSUBQJV7ygRpq//iQsdQdp1SIK1NQI/bzKt+h9N5ipfoBYCKopFGYRHDrBLghopWIL5sHpo5VwB9s/zJhIFBf1azJvOhTNgilAcqz+dydhTwhzUnG9e+NZ2TX5ZTD6wus4f0oyn6oJUPOoShfUPr52r9sAZaAFtwKrcA+mHrTXcNFvqfHc+BWiLXzClZRjO9F1GfjTTaqx7vIcjmrzcijXZlciNWyusGFmGxw9iexf5AdrtxfPknym5GqGGsoxu3/zpqehV/a1AR1hHvdYExHazBhlRVSXfYFrhefG/68qNGxx1Vy9iMKc5/LQrYXIk28wkD5RrvQQPDWEaaNI9KXVUlrbqOutybV7ZGrVSH8tENP4DrB8mvj0ifFeclTqcXeAFYKdiysoEJpC2YYEHQ7zhoAHTFZ871RuDrZ6ifQgseP7OZPkE8G7T+R6v1NSdgz2PCsqzrylU/Y2tu4p5QiExlK0F+KKSeAX47DvGuAkLoBbZLI5FLbZR0HTq6wUYHQMQKrr7PPrQfB9zMwkXJtmqrv30b/lYv+i4M8lA2WxG0FtmZ8zPsdACQBsKaVf84G7BkuOroszbB/Gd1zf2pcNLcjlzgOl8I8wqJt2LGD5A7Dwll6N/QkFbhuBg0p10b49/nOGgmAdlFnbDhZJTZgOT6vYQzCLACzO2E0g3A5QNvkyRK9mNLIpSlysOxjmFqPYkpIVCyJcuYhWUNUWQXdWdil64AvoIfp2/9mIRfX2CTp9qaZDJGmhkSekNslEQi0b//GaoXS/ecQYNvWhYl5wXgseFtY4VELWY5zLoNbMtFfeqx1TI8n70vaS21FxnEUTmVCsewh7pH+m/4OXKNDtG2buYBb0JrIEyr2liyKbQLhuEoXmY25VdskNanYlyvDOx45z3TH8XHU+7yvEzdbWjFDF/WhtihOH4wUhD/drJI6JNgt5cC9zeWN8f+rLlv82ItKNq6mthLIlbajjixPt/2gyKcAIjFkVEYpUbDxVl+C5+/kHiEnhDwfXOferV4B8C+3zB9sk7PdOX0IdtmBVs5LM8s5rdwocOrawzyzoyweqzRaLcTKsc6JKJBrmg5wjxWwd3k7HesIUPKZ/qZ9nGt8ZVXlFfQrPDbrIXf0W6kH1YoNWrMEX+HZ/2qf3geLi6Ua+LZTAKGEjAgHKmbtRmN9PK56KX2BVDUwyFTjSd3EBtivzEIxnkS3mXH+FEfB3CksaTs5vBdh8GPKmXvihT9jp2s51MS8U45XgdLSCTEz7JLgFqYemVlokj/aW+AFd5KXx8yIY9uXgIMBzyikF7APF4OgpYKqO4RBHeVaz5svGaVMC/YocxVl9ATTatqcUq95KOSp2BXNaXxgwLfXadzKMTvAEQ+3VJbYg3ArjE0JDH3YWAuZf9p2vVi64I4qDvOW/X6MfOUtwPwU7Bdp+9qsXBsux/UTkVm1QKEy4TRjGmfkqi8LFowf25W9A5ArjXN5wjpA6XIN7AoJgOldtGT0xDDok63BD/gl5jTX7+wNJIS6J4tWqhGsMqIwaj9K28JWoL1g5m2N5t3dkvJTuVqJ5IyfXxC+zvgc1sTS9Ipcv8KVsAToH9odcCgyPXopIPMefS7+rwNg57XZNGiPOuL9eMaVqTfaTz8otCvqunJgBKFP5cQtGbT5tftOYHUi8LcBQ29cW1zlxTUoz760+4nFXzooDUnAOIi/EjRooC9xkvb1pBqa8+aDlCAChOoEmcctdTP9Ig0qYdRG4QY4CNeLIKNN3QR/b13LdIjhkLpKm4W/XwHiPtZcvS1EF9/Vom5+HRkoKNVKqrRgrsgdWT8VN5JC0RUsqGgqBhoetEl4ukFKgvKseutW4hlLwNU7l1mcAQy3iCvtrcgEj9hrPIs8JO0uSRjRFmvfTxUXS+ub4OFPsIuQMt9/1uWRd4LZJTrdKzod7LeGMBL1+s7lyME8huldYh0aRkPw5tfse+m4uV+ztIyLwSvCHate4iqc1+bzFUiAA0kKK2LxLkxx2xvyMTDIxf2oa/4EN/R+XJ16rV0OGHsQLwBhf6CU9o5xbqgakCBU+eCPPcMkTLIu2VQI4l997Gme4Ww7+Z82PunU0vlaA65/7opmmKd77fWMvOSWqvkQ75eGIZ8iqFHzyBFgRJ3WPd96mNBoI2jnCQ1AiYJr9Mu8Aoq1Sdox939I1vJx/m1eBu7FzfFGnUcYdOn5xqMxGudswLaOUmLYr0BsbRsv8ELM48sJ/x/lyHXTZu4Jeg9Am+GOa6yaAUW4NZyUmNIKCOvKY+QS+chQq9fbrkTTUqDqzoL1uGSUKGl7clQbMJN+p8i2yBna1o4gkXVc7uqZUu0CuK6ScLvjpnko9Azl88faGPYBqlvBvN8pn1xCnMGEhxa3+sUpFaZXBw4W8Iv7wMtsQsqvj6gKuNBx6eay0cjFsL317/juvHml9BJOdGpkKnMP76BCpoHxTmyiBbYeWIVpopc7NC6W4LW75t4se6YEWTmHQp0SMXb9pojw1qTk8vZhOpm3rdSJxRbuomTRxZ6gzghetKtlTz3pwAYw95cYCBGjlpvp0Lzp0aRSAOQ/vI+gVLiy/YV7K7t8Cipyo3NxL/TC7dFI/+FbdYuY7xuBWMjSdzscqprX0MgFacP5jGuihb+d8rzyYUS3uTsEcKVREfsx02pg9HR5ZNMhDHiheHCw7RBSiBK14/SAIzKHad8pf0I5FO2Fx/KicCjcr5aSz+FtbFaZgEazDL1otUHG+fKGCJkCYR/RqOcikEYPPheJ5pKgt4QsMSfcw/xgb3mf8oZ194r7rGnxeJtLfbaZZm+POndGkiK+Nf7OvfKEcz0MzwnyWavZczb23fXhZyFF99j4WUufLZ42tW1Byk38bSB6QOoOllPbb/shV/ErKYnsn9M3nM/fnCBC0Xhg8+TW9jJ05SjWL2IHBf+30U5RPGcZNjSHZh3jEIQwpCw5csCBi6cMQVNAM1K20opCwC4xa7XBWJbLUR+Y3ayYJuE4Jz/zMMOKDORt7elHSkfQ26IBtd2J74SFpMcumnjQlGJ89b46iYPj7OK087yFxucvfvlTg4o+oDNridZEgRYZvaFG5A2b+gY4SyVat6E0pHQnst8uwmH+rjhsoqHHwhrLfrPRiZB6mH/0P1AAJmFYBwyVvZXxRTyAKiYQcr2Oht/fJAK+emCsnsbn2B4YunUA2DMNmlE+OoGQ3PYuD8DMPVitNdcZmyAmmgtO+5u4u2/7ng81KhQjXMel5BS/Nh/lps93K0Q8QgKPTxZfhNKj8V6vCmsOIN/b2rxwBU/GieXFgmSe5r5zgFro6by2/tWwOHhf9wDpTu+27TClGwG8hEiIO/fEFif8w8H22A75bzuD1y52/ZthdfjKsDlqRV40RinW4yGQvUo2d2GfyEk0MfyGQwNH5fpEMgKEVidg19WdM1LrlOfni3OdLbeTA6LjYkMmuh5lpr3tkNzg00fwAVx5JfHIBDfk6iML0J5k49AuE0P3z4MC0bsGvH0FrpK+ncLgd1ImCylPoiOdvygZSJQ/hvv/gG/cu+w9S6KbcRXxvrMQNRpzZTFQDGKg3pN1t0yEUGCBxxIpmkOrhQPuq7nJics9/xKKQiYawnziCRQkNuwinTOltGFCqohCi7JQvFkbJz024ecnHIwx+u7EDigdygWnWORyMglaAJigWtqvilQIEY9+FPVyGT/e++bMnqp+C9IJt6Ij9N9i53rvt539k4XxuOOwWud8T7kHzVmeiGTr8TVKvhQxV8cA54Q7zqy2ixzRaY9zBbHbWtvXYrcN0suGRdwNMnKkOkyz6BMhPULYdvdYfC94NVmwBi19oD8KdjqlREyuLQ2+yqvFnY+TKEg+fl3coKazCSplnxkVfWSxAC0kNtQMm7bTf5nK4LaRsoZMfmIoeWU4r0p5ondKxIUv43aMb6qDVPNLfkklqKSIEeJeQMmitOkmS3WK5lJ0aI2gZaYCoKzgM1eXs99WyJJWUHLS9XyF0wf2VlrdccKmACqdBiZd5vf1ydf5xSRsZGFVrFSfWfVSNjFVtwv7UwO0IdXchTZw5CBl12Pd50ATyFvYNrmbt10z72kXkuBs+Tf+jVuvOLKiBajhsdkAkgx1bRGdTLKZwjYupsxpsKzdMBDq8I9C8ML2zKj17lkNq+snWPce+KLaCGe0S15eP7jJENRbZ3auVDMdfzuG48PA66vCkM6hUvSXsX8diHTlMdPibAoH5cRL0Ch5H469UQZlGvlSnoPqzEJlG/LCdw4AQrzDasUwISXbZ2jvFAIMaN9xusgHqgLBdT571go378qrvPR3ij829rRR1+55L1Aj9Cq4tBau/AFmG2Qsbwg/Sx39RF6B4+L/Otg5IgmyV+v+7mRbv5Wrk38yq8kMoSGWAiTuRmj//ImWyQ+9GYS5wdq9kAXopsvxwUsBrSy3xHXhF2cP+ALA4ALwQIDyi+sphqOC4otAT/fqomCQX5kQpLIjwSGmGHlhS5LyFQPsfGBekqTrJK1BvHoE1ktMEMH6TXFgQHFmEYnsG79gVj7qd9BinZ6y2uANnrlUpTV4m7xlgMO1zV3hUdtDZvJvo46lB3En9Hw8u/GLI/CWzinLmUDFRYHah+QLAbZ920rTNEKvPjR4yKuFo0Yml6jzRlmxhEcAtxn3koCmhRGestHeiFKHrjHjle5n4d7uZE8r++SdtbEy63zIcXUk3QO++amYQY+JTkmDgpBR11wJgaQZWweiFv7xBm9MKQiRAadLZ8LjsdFtqPJzbrcBOw1W/lC0uurk/5L41F9NUh9R5yiVX1RoV8Csvj9bjeEBPfHYP0zuwRGjdV9RYqe5LSbmmgitTeW83usImiRqkNWBl6DQkzLfWy6Crk8wZx2MRBbOh6eRcoS0CgwmEXeqoM3tdimv+qX9DvZjxptsAZ/Y44Ddq+WR6EEQUzykxkRiSkB4pS6FDS6ySreEcF5Bccydh93p2w48RniGDIYUZIF/cA10hzpLaOCfphfBEmEyuV6vuHiMkscF9AGN5ydH0cxeWJELm2wgzjUhUixMqhCdmI2O69S/5V+ZieMblwpRziuHoNFss/8fhlmRH6XS6EOo6v7niym/KsXVC5ydTJg8eMsW4nARt8M7UtVzqrj4inJgmoWzNWdlN4/Wrbyf5z6SeSSF2kBd1YnQBRP3LIhm0HWteAOW3t9XU4DGptUKk2x1DmRz75zM49mrGFZKGc+Ki2rEq6JvBU+AUMsaiyXDjtDx2MDvL4ywN3L5R7zNj+9H2w7YbDrLTMYv03iezdQkp6o2by8ZrispRQ6v91a4W+TF/+TNCLCt1LzZv+6yHXTLuyIPvPf+Ad+TwjgoeiTV7ka1WgStW8HGsi/t3S1n+SGPp4jxqnJVci+QJu2p6poB8YjLLwbLXPjdFV9jj7Bb+o2aqosF0R03rNlJ04+ejINvLrfmZrSjw3x2lLMVgfc6D3RffHfwh09uxIzSXsfLheYG/5R1+AiM6tPI+KQCUYq1RjHoUVDF+//uzKFQXWp4VGbv2ZOT4VhrXtzrSh2oERAjbCT+dKUHKUfKFK9fHiY2T20hPlhxDHApy/mmtsNxuhtpFzeV3YGQqjwcZd4fQg/JLAKTBBaTgiIj6giLAxeKvUiY7ZcMr/yRCdnJzwH6TaGTX3XwZ9mUed+JQ4HIoE1DecYd0aTA4qMGrwSLIV9qPHTcyajKrZJLwutI8FwXhQKXPj8/L8m2wOCV6G8+gsL4qWZwluOB1PNV/m1SE4cpSTHPP7iRcnjhNp64HsBSxM/xZlv6kSdxyXVgrs9nzQ1MhxP8VfgruU1CTz5gTQEu0ziH9jxBABM01Ar3lHp+MYT2oXeXM3rXfikJ2DS5i5MxcG20AcO2C35IQ/QfQmCbszgR6ZX0fvcn5huLN0SvqTyutxVeFu27RT6VsCYvW395lZ7s5zmll4HZAuU+xYMGvjaX5rJEw7VAV1WumSC9H273/7emamsWHwHR+MYN/eAXXo14/AFmbeiajrR0LH45y8vbFrQ29B9lvOuuhS/FjvrWgwtQ8+FBHbD7V/SR7Xn5G9vmEP70FT0NXYVayglmBqIrbs9MOFeCupgel0da0RyAObw8iblMsCV/mMV4ieAAmnflwY+/eaovG1Cgur2jRduVGqYuMDPmNh4pYzatZnVm5aFugo+QM5PoskpYFldLC0jET7U0ReIQAmkMV+qpNbGKSFXvP4WSqjxbI15lhxT5JRm6g/MBzxBKeszSddS29b5/HroPm0Ts0guyQnnI0yQ12soMAYWSvFkH2zry31Dz061RZ3JJouYWjlPn9XaC/ZZhuWbaDOoYNrZa/8eVmE/zgfFVRPuTMg+YBbu4aWNN5M3KtbfqrjuQliUYxAzqrmGyOd8oTz8Rmeb3ykcC7zttNH6L6kCITnm3aihvowKcARb6i52YSDRCkgetg8/E6GspprzfvDYUfoydgkv+UjABEafHtfq1a2S4GuK+oafxrnvaujz48jE5U5Js+DdpeCjZSxZXpZ6RO5HqKQ42CYGwbQE+7r+QW2oLRDo7mRkijCUSRt7Al74B4ae5t7YbrsRKLWp7LLEMcpzwrvCvRHxeO5U7qgbbITJJplELg8lfeHD4MH4MC9rPZLtz49Yw8FiBI8VkBlCE/Me+nQ0WQR4ClSbD1ySY8TRW8YiBQ6fma7aB9s9laKxJDJ47n8zDp+To04ypG4Aljch4LP0aeTWyjzlexaz12y+JbDsKQtMwzDht/uZDPkI4d2xmXB/yvm07934H+bqhAcrdqNbyCqUOqsuO3wTh7t8aEwvaqrvVbQiwihfqIQ5hMYluW+vjiHEVMLJ4VOuYRgsiVDf7ScGkYxP2R4V7LZI7NqLZWdfieM15l8Nhf0Qosa3QFwSkF0Hw+Gxy1MuPkYPDC7EP2pBC9nxMomVm2Sf0brot17IBL03x8UDkNSGG8fhUI40FtjkUZo69Rt/ae0Sh7NXG4YqvmNVUuQbXtZOibLyeEFM3rBqwnblnuMpKfYLutKJCOQo+O5xNNupE0BQW3u3RAK+HJVFFLkDa/oxYOGmDatNYTLMRcMFXfmGolL8PBZyc+bt78lw4tVI3uZlzCjRogQ18iWm0/3iUsBA4aBe0377714gtlaN3sJNxLqISYZ+AxTSc2OI1875TdnroEsZ12MBI4tqxIfSfffmPOj07Vcux4Wb1MZrjyve1ZWUzTrDk2sEmy/4h/eFpX7d4g9SX5T06tECV6Cp7YroP4ryicinPgfXTeY42GMed5AnPdRhliC0MPOMGhq22AUM8HawiQl+O6CnOR3D7V6AK4qvqmoWZJdTjSKuhmxOz5cYwnZea/HsS19L/AtIsP1qLnwupl+FrkswGrLk/CcOj+mQjceCPmQ7QTIT/mDqHQPS3OyVMWOvF/dwimk5OOvbP79xRvaxKTc6t/T1t8nWcskonYpE48TbMcztGgGJS9POgS6+/c/W9YqFcMwFxNAAoAKnSOf3JEdH+2R15+guwCS2/J5a3azYYBlr/yLqyVUU7mOsdxGoVZ/w+CQxiiGApvKHMXcig9519Rd23W3lXW/B4+GjcyjyQYl23w7No7QMYEM5dtSPmTDe2tzyBHeVkjA0OVdRQk7q7URWG6AjCkDZLWMjMZlAUaqsbU/+eTHdAlecSAr/ojsi9AYuiMeAE/Hw8KKOvpleQwa6W8GpIYdTXB+WZJuMjef3vTQ9kmr3LprwsXGDqq8IFp4pGWZrXpf+UTH9kqXls6pj4JZfPYhecQx1jmb7UjrwCFmh1RPbO8CT3onkige7UArR3X4lY8j5HUrZ/HtqSC8P3eJEIAFqM+XBjOHbfc/IgKvPHv80CrxOmDfZz725y81JS1ouoh5dk1ZehfJSCtd1GeFW74mZvt5Apn79CznCmX6Bp5rNO51s5v1+1aVK6OD1wtNs/EIgS780rjANciAiK/x9LYnOyr2LpBoiauslM5f8IplbV0/xb+pVPZqsb13uI1VrrsSre9V5R3/ghUzA3OCPBmPf/F0OXiD0wS8xoP2/IrTAZmaNubEn5PbYVeQ78fmK+BAZ4rSfAPWEqCV/iLS+Z0xyERX4DNT7hgsLpoGoQfXeJR2wAgjWOTCVmwKnUZ12bdYMY4wKEKKVrK/VnEx0+8g0xAbTp1+yZpsqs6srvxkZ4zCOS2F5+BoWGgDGfr21iZYYGGahe2QcwtnAOybHSZOXmgMS7PmJ+NbOmhVLAxUP1tKOCtgYLyWU2FQOblywNWoAsA4nysTtHkALNa0PbGV5c0BX1QPrCW++Babx35GuAqwvGchh5hK31Wicbu9IvBJY7yL6FAKDzr3KqaToLLMlkd0T/oEca5SBYWaLs49d1GNnTPXAXp95GkhauAIAaciyaKw9ny8SHHQi1cNwIUv+JTRRlphVjjwRdpLnzf1VMzOg6eqNZH7ueFbq2+rOh25KErr3hk6trGZmA0r5FukC2KF+rCZ+9hxE9MD/CYp4UGVpqMUD+U+fXRaX5IjgBj210pBeIRdZJdVVYU2Qg+VdLN2pft42DAtjtg5Fvt3k9b7nZivdp2XKmrJ2ijS6liMNIqMf1DYkbU8e9oOcQDzgIuOtkeJKFNgXihWQiaDUC8t1jdKYHBT7MrQt+Pj5J3+CCgL9mxX7ZYfme5H1hk2WfWbbf8PXrsLqmvrBQrrz1XSF/g7HqrMthqhW6mAHcBl6jfhp0ibuPUF3R7ocZs1QNC3KeJ97KEcKUdnsPf1D/W6Qx0TJd5Nn6pfXHBnY9trxWqWgWcbbHSf2GZfnOALSAAeFg64CoDDez70OxbQOTYPasufhb6Y//gGJTIJT3/NbsFcIj4FAoaWyq0RoUE38WGOvavrAVe1Y6NOAZihTxrmbGmb8FVdnTCkaJdGzgU33jE1E7Oph7CqrUQEMtqu0O9yTu5sGqDUKGoLK+cDg8SKP2SaNMlXdGXjlO8eBA+UlcW2tcX+gWKv0Cgho23zZTvVsGDn93i9Gjpwf3JEto2mohsNxwD8I8Ms9+qLE9EjoThrluzEleIkJME8Xu/HtQOA5JPA1wexjzH2GUmTJJmq1u8Wvefei4Wcu3qjpD5sMp/6VPAVtFEFpOd7DtqCDokhjV2i+T9MztoBFzwKFWcf3aOmfheeptPJ2JlGaZFMLkcLaJ7VrzqcD1382U/xVRJJc73LG5ve6bY0gAZDZxf/CMzqEImp/jeiVXbfR4ZVj3DKaNG1iPywjfMXTu3o00luR1Was883n4IglwpN7kZJ/HEmzxiQ5++qM3+/c83AKLasAtJr54X58h6lc6zpBvLVkq6ZmhvZT2tLZ6ojMJ460cy4TrJ5IJ69flJhoYFgyo9IIt4f23bn57zYjJHGIc8VZBvBgktHH5s7cBAbXH+gdNA/jzDhCsyAFXNGZgmS18sOUwI8gda5Avvju75jFCa61JxjQ0evwpoDB+ZOPGkVclw+vvTK5OCUgr2mTCxFUh+J+3EL7oT8EoecbIqW70qO0nwp6i4aab2ILQXOVG1ox+5HvvuP4y890RXrGAQfMbIJ0i2D6ETIFYYS9IFoSbEk2DMCuJ9l7SYFVYcrYCgqhXV5/Ctp4h65iQwqeNdqt0Y5/Py7mkTBetDlMmHwI0cYLId9nYe/jKFKzHIzdXl0wBUoiltVm8pQYTnLGkogwoPgMD3WetEue777zUBETe/48r3D//s23RAkhqtZo8guADgjzLiAMclquoi/RrcixQqWNq5ov4g3slcRdUqFFFyCrRTuHnG70dZeTG8Rxdr98JKE7ddCLIN/DIzz7f5AnMe+UiO7K2k6w8HbRURglsAX18UOMybKPayMouIlner3lBOz11Ak+WHPvwdfLjgj/MGGVyuRyVS3uznKSJgs9IXDshhDkHziRfvZA02tgPN4nHifl82VDSoAq3j2cJh/lSa6H78ZEYO1ZCkrzS1WzWW+eD2Up6cgC1Q8RpNZxQ3ML6+c4tnIYKwLVFdOIiaFZescsU/fJe1CkXxA1N83wTomMuTO+PrJ8LtNZNYVAJAoGfenwXBpSvDni/Pfg3zOhKlKehFy/clvHL+rO5rgUZvpxttxxO1THEhKzjLcFOZJDV1exwi5S1qx4Z/xGT6tcE3Ggn5L5SSthyJIDqJv3fQxU6CREMK6j8d1WZqZICQd/QAmKX27mGEJ2lZx/YTyOTcycxpmKPtqYqhi5jK8bmzKkT4aK0s7XisJlxtDyxOSpyIwnvyuyZqwc/oNdw+lENjayZbRY1iyT+58SUlBqXxR8i+Gu25WDRjNSJ51SeFAgHojYpQXRRKujg1fB/jQX7ZyKf1xXZMuLyQOW4QSZbCRogaxAFSexGbrv18BXbFNL/ywFK/5sRWBuQho57XpDPzd9p/UKCTSNelxUB9HmgdtfHegKsbm6WEpgrW9pcoFpKB07CoVid4n4wWztuPnz5b29PW6txSauInxeRlijE1KUk2BZAs+8otJiH4VrQDf/RK5gRrjHIDcarKNsGa0SvuK2DXO5cagE298z0qojXL1opTWauQ6dnwSIGTQ4q6EOwn1rxEOTUztS1g+ewgeIGgt+wsrZkZaAMhQESZWRwDiWbdk4txr2ubomgpUucqsd5riSUhPjLjVLqxjDzXiq3qCOhDaBo6zeukzATZ13wTnoeOaZdSi0VsYD4MyD7aNa83SIZYz7hi+278TZn02bG6ScDqnJU7ONnBYLYhaTgD0dG6Y73ihPsg4mCDbTH1TE6Md4ZB+KcIT3flKZHdYzKnBAZRczaTciRABeOijIlO5Oa8klLz3NEJfdgR+CsWDL1QPxl+H4Vvw44J53HxJuQLEpaXQsjCIYQHcnR/8GdDvVQEGflyTOTaggBk5xDdyn4aOLU001w6EdRlHI2jKSX+Eoc4S48jk0h0nQknXsF43rZrpNEjAb6BUzcLPVsemw4O5CvSESseVlzuI5q8ERxEnR1fveciaxd9kaF5csng52qStsUdqZfNlSYaldOTCltVfoLcQURRnXxzDQTARvHTsHNFrcCVZOTcUhkqmlL6c1l4NqvKxvMZ7ifjdi9HbQ76d6zRqv2g3LguiYRUJAjBOUZsYaU4N/z71FXBJ1bNTx6U+NaUeKa3PO7FyxZiODoJP/fr02ZkeqEslINZwtsio7bIp6xSFgswdMWgpAb/izyuRbXOY/vxU6aaQ2fAMPrKrXPQbxgMl5UaGuTT1c3lFg9j7M/mffHwxlRoEVaCosuCwaFGTvAEaXlEElkaXD9nzDRkAb9rAI1O+4kEnG9tgcKYNkq/QdJtqv+8AViMMf+UndARBIhpsaGdRPaNYsNYJFxw4VCeW81R97SG3wsTSGufeUqEdiGGV48YCIqZjNxR1+m4HUjisOkjGugvdpbFLbI7tnOJh8IzsaQ2C0pWO04tK69zTovwOzT6ShJF/1nz0mFO1YzYr11YnTF8U06E2cagKm8x27aLiBF3FsBFQIeb1nJHer/ODvVwVz393J6OmQ2Niji7XGeBFcPp5OlmCt5b1ypbX2NZksikC+5Y6/X95v6rJHysrCS7szc5/70SDudvisJ4JPv0rOaJbI3/CAREma/9H0xeXUBx3z3Vq6j1s+kmVBQQTIFWLe1IsoRcyWVssQBA2C/qcT1kd7iPX5sbJuEgkB4/vRF3hG9qT5oAD4vYhF8o2QvN4bvo/cOH/dXxyNf3RP1rwB0Q+H1Em7OSqlX+6J4qliOEi2csAQ34qtJqN1aOevfYs4do7vhP7FPcKI3JA1X3ztf3bfz724yNoNgy9KYeEjQDoZ0U4haKg649eZ6QS15kPBDlT7msv2WJGgT+s4/Xzrs6choojgo89kXgIXeQJazGr3VVilBpf5fr5tPVUfQCkubwTRVbOM7XJGptTzBiVf3J9e6Wb3ANLo81QNya/YbIPUhx6qReh8lAGRTN+p2WyITuujUPw8I6BqIDPeOMW9a1CyjgYV12fEdgEL7bnOIgsJ32ZC5QBkAUB/XwT8NGbc7FutxN7wfFbyeNMPsvwlTjtCzVokB78MR3MNt69RAUCb11nTtbAf+fTKicEjG19baZ+ufB+YMZVhidzZxqu2nrYdBWS/OUJpgi6i9T0WyRfrw56I8mXxdErd1OPtBUfObhelOV/LD8Q2D4JZm9rLxX9JJTT4vlIR7avLGyTotYNGYMXdDj95gPu7gMYcIlaYCPDSkwEIsqOA4tHKUFoJbZ6jv8qg1IRPyvmWQTWvvOyQZaxl5ZSckHmz63ChA6n3aDnHWokWkXsIm++Na4TPcy3xsJqiIYtToL8STSFlzbEejCry8zl4A4FXnWa+QHzOlqGr6IgEXOv6q4hIep4ziNAEPDgvWizbkdhAzURgoBk/9py9mg9w4kECU3CQoGT1BsppIBafRiHVHDjYpsW8k9PKzN6pObAu6EQm6Jlo5v8yN+RuRB3HQkZmyhLMVWaEC4qIQqy/XWnucKfojUzzYChm5VK81wxTczJks73GOwMfNY7un62ZYIHRNdC82N91n+mAHKRhU8ctDWvaRirGOSr2aVHOLLCQmpUfmPDqQUPh1gNDLWlx0nCaJ3+LErt5fitkHM+Gd5wnRdY93ZKuc9mZH+hEMgpFFd7jUuyp4O3AIm+59t/3NGohdTGeTGLmlXGZWq+fHhLXeq8lHsKiBylJhX+QBLls/0f6N2pZP3jKkdJ9DIMlXbc70re9S4aJXb+5F81TYUmw74cr0ixsBbkzSZd0XvsWU+hqwC5rZJDgn7nHI/zDH5Rv+6w1QCJ8+nXSghESuRPoJ8aBdNXl7o2tMUx80/D3LZjSfLN4he3Emlm+v2CfMLe9mV3vZL+FRuAogOO/7wqz5PPpPUtmrLhOqYkFSioiT9WG3ShCXptu/OoS474/GuReqQKg9i6c25SyYgO5ogeol8CSxb8kY/1xZxvAWdEuddl4cT6BXtPmIC6fr7R4vN6dQMFwG0QoBVOE+DC5Bvyi5MLj1EP+9jOI0i+Rdo0JCZ1YG3SsC8Qyhr6+IlDtwia95Hj9kyl4rmBxZK+cCs/cEwmG5QrewDBEiJEQNo2sSQJnk2cX15InJrNW/Nni6Wfx0vruqSXW+Zag9Nk/Rvrri0IBmPXXlZvZ138MXTskjSo2J5lZRmE2ZiDitCweCf0yYfrDrXO/VFVI1KdP8t5fPV66SXrZFmIsIIX6Fi815mDRag/y8l5EnPzvTtx2fNcVLtr/bdqrj0TsykrOt4ZngpfP7FWmuMouUd+sMwulFhIz60DBoI8F6ThIl4gPSpb/Mw6cxtMZhQtSUxLb0vjVo007Ti9gL4i5qEJ9I0q0gGVtcPoOR5tqt/Zh9cB/dU4VISnQ7+ydChAL82w3zkAvssXkYhmQB+fzeKzUFLK/MTBwV8zd9zI8JXNGa8Ah4QyOGJiGWLA/p9H3NxQ8P0ly5e+LtMx9fu9uO9QXzZCVqG0XB9HC3E8shm631UH1sWjj/UN+nbKYVo3KwosYMo/Z+Q89WtEM/W0NwJmPnEhHe7HCxOy35utCv0e5NmlOqYKSeVu6xFN27rcg9atioy2VBd0lSr/Z8H1h0BW2+IZ5tCbk5us4jEXUCLAkRPgqsSlILgzpD0xGpZ2Ec0OMt+xwXhgkSbMYJuy3/lAiEy6wXyx1dLp+VAo4515FcynbzvGyaPyH7Djz+OExWmn2UZTOPehm7ogbgUEZTTlAioxpDmDcKRP19bDWLJnrYjYZtwTgw3dpGHFr+FyNlOCkrLTRB7MnNWnKtbB9k9ckqW+XY5bDQrDBGANMAgJEqn/rUpXp2p5c0HfmaAb/zOAghWbSNBChUEjLdXCGsm0+9Y2Ycina5nxjZ8jyyEAOSCo3UtszGsE1pgyLT+0rDl4h6PGg+Zo6eJNs/QNrS+fhaoH/e7XFf36c7EvI9PT8a1oV/0S+JNdZoVpbuzs3a1bVPcp+9zneZduoGhpVLuUwf9icYPZeoqjZyiNW2pHAkzmO9y/Q5QBg6DVFSKs7VFqkT7d2KRySnjgDDzH68VfJjmgA8gWnO7XGpIvdXdPYnGITou4w2gmuDTt0NmNubzK5+Eu14SI/ijtm2geKmZtELMQDg8tfgRag1osseVf0CTdiNij2UURs+yv9phMs96lOnGTzeS7CTPpmFPo02YI1JHmggnnd1yOeWjFGgZHYBiu2s5/hqzUtfYIeKwGAd739GM0HMldfp9ac4Dv/UhS+B4Y3LYVxmtOkmAOpOHBW
Variant 4
DifficultyLevel
589
Question
Klaus picks a ball from a bag and records the colour.
He then puts the ball back to the bag and repeats this process 70 times.
The results are shown in the table below.
Puple |
Blue |
Red |
Green |
White |
Pink |
9 |
12 |
21 |
15 |
5 |
8 |
Using the table, what is the probability that the next ball picked up by Klaus will be white?
Worked Solution
|
|
P(white) |
= Total numberNumber of white |
|
= 705 |
|
= 141 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Klaus picks a ball from a bag and records the colour.
He then puts the ball back to the bag and repeats this process 70 times.
The results are shown in the table below.
>> | Puple | Blue | Red | Green| White | Pink |
> | :-----------: | :----------: | :------------: | :----------: | :------------: | :----------: |
> | 9 | 12 | 21 | 15 |5 | 8 |
Using the table, what is the probability that the next ball picked up by Klaus will be white? |
workedSolution |
| | |
| ------------: | ---------- |
| $P$(white) | \= $\dfrac{\text{Number of white}}{\text{Total number}}$ |
| | \= $\dfrac{5}{70}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+0qmzAUcC0L/l77zgEt33yIDTpX7PQbCjyKNP1jy3ct5iNBymrfJTEQC2Q9iB0jVUlnckTzkVxYaFAJojZBaXhqxl17wby12Eb1KKyGPbO3rdn1rB+LPPg+5KgIynJFowiPnOI7XFje44hBxh1HTBPxU+Y7bzvGZ6XtqRwPkxe2AJaupGLCnyV936GVfrFNvDYb/rASiCDwPFoYR6rYZ1AfcJG5Q1d0XISGEMyxsICmxJS5qyJx9wmM9ZTnYB2BU3IM5rqeCoC16T2WFeLznxWa6unaTW6cv6FEd6dzpa11MXkFEmUSGVc/IQyBmNWYzxpJwJZqf85VRPwDR7XbqtRZpnKJGTKJ5DIVUZVFce7q7P3kJRIG+RsTvJ7XiaI2Uxbh60T1cLW97bSoRWGqFieNc9fSaq50tadxEc95up1Pi3dRVwV+XXIYQe1DI9s2QLBKFMMy8nROu3SPWiqrRchvWxSMb/hEeK9tLjU1ARSHepqLmux8nWQJQwmoKqiuJWEYno0RStSWwtpLYyLtmT1WZqO15J9C7xL8H5CtQNmKAN0yXkd6e2ZNDX0aczYFkUT9AsPsuyeIjgMl7o/fq3HCsQIhvAtBtAYsbBpY1yKCymK4zkfkAQU3z7cwPgkrj3Mc/WTM7WMQQl3nf8rQoWyu05tkzJZVXeZxDl13baaMS994ZYxSB/xbtF3j0vvFXePAtnB7lVUCDlwKMX5lSfrNVkycHDBhl5Di3wvlQF2AdYszCobajEpdmuiHMdSPTynWqjrn35azm+ynuo76uHjo60gDSUnIKBxy4y/3ugWe8VszghuDuQFp7rfMS7jkxEUvtj/lO7GmZpvveUMtBS8+6mi1cWnQgvWinX73tWA1R00oIYBVcuBG+uHKvnuzeh6QN7IbDFZAXme3WSo64oYPTN2FkvQpmhGYp8BFcZcYY1RlTLLZN36irDVjrk0msf8xdgWP1dDQ0V5LzZqc2L0WLffKljX88CzANIbtBDVzuEJNvFmAwDsw5KZr/L0KNLt8CkHIE67HHdL3UCUJO3BVMa30ojhaETNq7tinbc2uCI+Mt8DoCbe3WGP3O0FpgSk6OhtFFUtbq1FFSm0HlDyGrwbp4kfUGKZQ3GrrUSkvShEO4hiUAgyG2r2qS/yodmCMX4qzFWRTu3i6aF1lEC90oiygmaWmu0SChU4Rh/723PC04Yi9QRWfYRUNMTT/2ardVpciUQCVdzbUrKZuVZuOrNe4jUYChWkkDFy9FePQw6BqWttfmOSiU2kPTS3XB6KlW3CsRohWKg47XJj9/i2uSqUIqHg6BkV/oBoesVeKrD4tKpYhLQyFWWk0R736T94HCQnd56kvRYNQjez7phIAPrtEakj/oKWxiAyXJXvJWUYUDewMwbv1P1or/lYNyK1t2UHcnD4/DGGWdaAG40wcufQ36QG0/PfSurbF/b9sTs0ysMdhkv4VcIa6jTJo+SvnmDHl9iAghURtQbZk/oJE6VAx6YggP1EuEDIhzjkowi3vQzcanQ5VCVW3w3PnPxHM29itBKGq9R96iNEXIM1A0xHe5z8fX7HwmTdlbH28WmBIKl2IcAQ1Mrlq2dtv27kLyTi5RfUN6pLzDx4scGpfigtL6kS57oIKxRopwAiOeytZZspRQCsnFXWHswRj9/ZwOj0Q1qmAhoQcjfsuytB7wvkUoTh7ZsiJgrwbEFkHGKDg9yvcKqa6vtK5xTTi5DY9tYUU8BQplBSYEYFl5/PKDSNQpepiKnsh+jJ4dPOKvs5eIUhgvABbOAiFlNzXoqAYINrPULVQ9xDDmriOQX1LdH3J0dvvVKI7INSrb5U9wZlFLeBGqn01NDKgecqQ4o1/RNwv2mAZn5/GKE/8CspvqYKLO84f+BnFvVco/OIBqapBZU5XDupgOn+SkansOCbsvy0mnrtzefCkBuFbEgvjQexOH5A3R9I1KnO31qQH1HbMfoW8skSaFurtUCXKoe7SWX0FEJm8unIlLaK9fgX7rs33IvYAk6K2gx0DjL7iH93ZYNh5JXBxpQ2KfwO6ySV33cZaYdyIUGSTOaZ5RHhhjQBSJOynGqUECaMRPL8oOgofNXKsR0RlvYLGFQ4ixsCXJncaOhjfASo1gd+xs7eOsHFtG7+qZD8okPHvqfHG035HC5JzC9vRLIgHCtPS+Pot0dRYcFJQx/jTWNuaJ4GBxAzrDdYzzHOeNSd/K60jqN9Q5QCnNzJCH5H8ZiAYVWdZB//90kpfuWXrpFOQXA+WPbrx95mqMHlCmSozW00FzqYjc2IN3yxkL9A8MWuLj9xw5YL6K3gcwEl1Lg/SAw5ld5O48rF9qykrzPFOpliuvck/wNGKzoT6wRUn5YfEiqKhA7JnQJE1TF1JT6xapKCrOPpaRjDcrFESn3TVtfsEuVlxm5D2gZvNqMOnXYYEVBhviWfbZf2juwRULJvOaQx3zokykJTXqHnwH0BrxKmZA8hllbCcPbZgYb2a786akCYDced31KxgExph3bYT9fqLwPkEA93ka+aAj22+yGhZvOJHg3Mbqx9boN9XbZmOJCnozsrbchnYFjur0gsEoOgSDxmnoYQUl3zqlb9EIopyd5IO92rR3s+ydDYKcqH1h9SvL+kWvb8EnAvAhPPUzDipKWoylJn4d3PGTu4lMJ2GZLuUxzTdy5dSqbii/29ykHaYsfsDbSxvWvs2GHtPAjsGu3Jda6l6onSR9jvk1ypAzDTAApScEGxJjoT3XMhqIQxl+Y3W7InOFz8HFLYVUGLCrrz6E/1VAv8UJ6mDvn8siUBcNWEpEIlkxbSZjmrpvUskdSLIC2UQTuNB8TVGVIN+N1fsyDlAbAinaFwQHRDXlaNYcbGSVYBKm0i0rAGhEEDuBSc0Xbi9AGgDh+mGmWwIGmFWOcBvRUb4aOrf+W1G9C9lOxxWwuDuDG7NNIkvHrbelFY9jdP+OT515qJnmo5qDu5F1vC3PBJGj/X4QQM2SYwGnaThZ2esONV07A7bYeDLhBdk89xrKZv9HP6/8VGIWnaOJ8IAF+O0/Io5ytZw0Atxt7EXEeDLoJjiYHUOOquK7jwPfILiekfi49ycgWn6co7ZDxdUm6XTrw4ih/0ewDQ84xqf9lG0tgnUipT9mVFcrgZFie5+KPPrgg8d8HWetI/nizdRuWv+SUc0BRATTA0e3nKLCagtLc/YIFpWmkxW+rbrGXI9A0nVjsxIXYffzES+Iw9iIEanaK1scU0U3i2P0G2w1x4LLX6h6xzlmWo55f6Rux9eEX6hIAgsS6lvAhnXOlmGYiJqP4Vwn5sCfIAjFsTHDJigXBcAcnYhPxJ3rNZgvK7ovn0RK/K9SMEgnZBjzxrpnb7P+g9ZDC8QEpUm+p/tH92LfmqqUkQ5vQJ+Yg4McL/mlzjXOcdpV4W9NM35n3DjBVHx5n5vmzhuXUyoF8vZTdABYhGqAn4w8DmHEuR6JLU/kDTkT2iiar+DFwe7fPJMVcSrz2AixU5AyeiKk7yXNorXxKEtHFFZlk/j/CF63Mvgs2sy+B38Jmc5no9EpdtOwcm/aI+Ovj+OGx5Fb3s+OfYjv5T43CW24yhOm/IFNjDSDnIn5aHqDLLzcngafu1lYjWZzlgGTcRQVGLVjHVc6dHPhzu8LeK8rVrj3Vi8LgOXb7EgYDpWscRzYR4CE/zC0FxUsaYeKLIgaMEUCobi3XhwU0Bx1uyIsQVYKKIGjTcKYbjyVBBqrNMg2+w/J3ojGFWpD85huFi4cHfI+366yamJdKszOd7SIF3diptwhXYQlC8jP77WezQWbqhOb1oA2ci3Jxyd7sxoEzoJmSnb2DfCeH9kHM4+lWmkdjeuqjgbJ8j/qX0PrOG9C7YZDMWdRErBl91hQXGqGGmjfZ7gpBcIvArjrv4cDmVVSaW7AHinU4UZ1FgqDW5YlZogJQIT10Oy7sQm9rm4lyKpm2gBybuQ5lndyHz10bMrevRungnYyGEpe0KrzERFbSMKBG6ikfu+WO5+asjKBgpIt7QUoHCMJnaPq7qCRbj/SVBRAphuAt+TckNHpGi47Gx9R6U1IC0K6UwoI0OcDxqjZ6OcZw004Qn+KzmbBB15DnXQ0b/8WsGbOsXYXBT2Zn7ZYRAfWktGrQblnL7neycRBomIpsIxmrDnggVb5Wkf72VIkYXnof3pKF9ZC3h7857gHleBb0IZtUUIvc9YWQP+/rstRQnC/lRuWT5d8uLMP3Icg/iMHgMgAVVBTtFG4IVCw5R3Bhy1/gD5uWDIj4+cOydysD1t8nuMbRBYoKcRgFqEagIZLYPU/kI3uNMxDthZgCk2Xk01J5fThrCnWqAwQoXFEUTI+iygUo60KcknKWmxYx4mCC4Cny5ftLQ6QkNwd8kflgQxEzpGCfISIPxFhhzudQZPkrqdUOP8sDtRdfRWDlPm9GVRUPzE8H7ptXt0IU3gfefgocEBzCXWLX//BqMP2+37+gDSrguJsdfqJgq4g+dSS6klp7N5OJ2t3OM2oVxidVGpAW4Hbf6ofhUR9f7aF0Arj4cvP5EJtHngO/rbk0bFCHV9dMgREi5vxQs7VGS6G1Jo3JJz0FuQXqiXmCzn1vlgflHi2fH2xjQFFXasMHKunFdJRn53fvromkp8zHYEjmmwPS2vDKAfex7g/khWxmp1ush90FinImurird/PzQQ9fxnPobkCil2dvaPRCY4++JtBGvqKH2MjOEV84Pq+oQUkxBUzstcOqBoKb4lCFK+HJpCne4yPPVCXO1MariOFMhX/bWrWEfXdwtq4pURXboBbtTCLYJrR8VSmj20XcvWxFKzoe9CP6U8U5ummq20xx1gxs64Xvj9TGutJv+WPj1pRBLUotKK8LQd2LgKi74973jrZhvEvWEoNHVFRolGsorlAc/bEEd/zOPwrdSUmQWEFPSK59HblY2vWC13zASQnbkpx5e1z2QPHQsUyUza2NxeET/LGZzvmyx5tdztviG+B03x/WSgiuSjycjpe5YWDQivQQbnPilKkFikgtXlPdC72MHotYdhgmJuL1enpIeDw1Ay7P/2TQL+TJdxeTvaVMeIv1IvV7PSc39m1AoiZ+wICPEbs4zkc7RcMsSpISyA3IGcDIMOAhzFBMk0kfKQAVJYDyKKsH1uiBkWpu+VgLZzAyPWA0XERj9iQFRIqc+nDq8Gp/QHWHYRG9ZVDDIN2j+1XpRMgCeqGEKu0jc7ySRdpkMJID94TIKm3iulI2oXcc4d3P6cPpprK97bIfYOYVRVlNv2Q2J6Fyhzko7EpiCkhSZILQbZQBSfFsDyoSbaKLi7zAPTdBUfskpq9bkFoHSPq5vA0pDKCz9l7j9vmA1svpSOQw8UOp9qRRWNbq7M61V970MDk26XTjMhhTm1PlXrBMfZw9DcZni4v9DTU8Gl+S5MSAyHy7455I0q+7IQQOPfim+U13x/7RDV739ZdTxCr9t+kZkjfYUsL22FxgVR8bHwyyRxm4nJf73vvf7OINbQ7ka1A8QxUHzH4/xNqgdMNAiziP7qETLy2o1s+wwxmTmT7VZrfd4qslTM17Rhfbb5lfDp9tq07+6Fr/ec8fGMNZlRrot5eB2lgglm0/NVtG8Tk13NnUQ5pDD6W5u821u9fh0AkHqXtQyQyFkZPoSjH5G/Q8wKMhEmOmlrAnNLBkRRALP6RBED/4OxAmhwAFbCjlL3ncS7BXZRjn5JQ+bys2yxOMUjGj1SC4mvQ1u9VPWWnQE14YFDuVaIJh4itLnLQGtu25hkBAH89F4B4JEoiw6zvMxZTmE6lPMIQ8oV1n32uGTRLBd7CRhDTtJMCxc4/dtJdAeF1XieQkvq+ZaPE9wzri37pKwNb/toIlcJ/1baNztbGa5ovtBHxxLAnI0xwdy/xytOXBaASLBsm76uDI8GZ3FxEC9KHDkYeK3xc4yx1/3Tl2VGpujo5rbK/9IOtNCBQb/9VfvcAGdzdZDwXSwGzQ61rlIio3CN1EP2Df0/wwC1A43QTF0695bRyvz3mbI2pI3LZLOXSyWMAEBPeM6rNHXiJ2dayI+6nefNfFBo/3OEvjnLFYe+eOnDMSH66AutqiU72JM61K/W9GPaTmDXKsHCQ/I3850KHWqc/hFET62HqSibUOVK23IcF63D/oZv/swaSHpyCJP3FmkTsAfp3JnIuUHDsScnwVVJHVvxggGmJWQnSFgRGJkXC1YlnRBDFU+zOcNxjatESenUR7e1o9Nhr4fgFR5a99l/KA7niTPwiic2uNcAjTMkppQyAr8N6hBaHd251d5iutZh6W92dzCuiQr+772/qnkJHEP9sk0TKZy0NUjuYUjXrVvCfR6uUz2tdJuGKJb48/waegU73A1TAAZeiMSGAYgeB3q6NDGl3HUcN1Pk800wnMRFPliHaJDu3uGoTl3sQMoI7vhp4jK2pSk3GfyaAlidf08HnmkZk9zVCLQTdwrYfqEwLkBWLgGyCFujdY7HDNfvrlQgC9SZXGBsPDBNTSqM1vz67W7UvawkFe1yIsqN9+uE31YEBEHEdomooLhrMdXdi9e71Je04oLs8FVrT9h3y27FAzSR1ZTPPrt4N89HKyn07wzT7qxgDRIaT//VKMYNiQybdCVCHp4ymwWnAbqj6//g/Z91dxcAaD4Jkt54LAUTE64fJAeRPcgmo60crTMsgsVKhOR/pf4Ix91Qkz14dX0wj4mKWNLWulQrWVmuZZPeyHIA5nAyVHP/gKznsAbMXtnk/EtZ8Z8Frh2up+1tvbbkmAeLef5a22WANmd5tmWQyMIZeRwnoZu7i+vpkMIQ2NivvVS/5KKrp/UZBivgRj7wfsXgfxyZ0MS693gu9CiSl1721GdYK+gWyxKodFUSvUPXN90vX9p25LXNBctiMBrqNWvxPrN70UY5InJa8a5MGi4DJX2TZtbHytLVs/jzZQY+wGqAJDiSGFIRt04YxDZ7PxMCICP7gIdxFDnyIH/480p271YTpVFWexYHJKX4+xMvzy1xPuMDm9BZB3U1GkfMLxZu2yreB7CMlP/zaPN+llupLl94gNDQR4yd0YaauNT+3juLNOK3qZggt8LyxlPpQEYBE3ZPvINM7O/mjbaUKW/WHZuInSRgzz7P4Le5RsYOlYiNylVslsEzi38htnklbx4L8rOa2oWSwcC18oeRxl0ptZtQK5s2QV5A82/FRY/jT+u6DTPPJUbQOgnj7JaNrFBYB021AUfgk4trIkRmg4Qy09q+lQs1dYFRrNtE5A7ocHqK7ZQomFNqx+tUs5XGJzlx75nVzd0sm1xj++o12ulPhYnlTPazov3PSiQDT+b3aVWhsyD+05GkWd/DfHFlFS3UwNulUCoRbYrqZ2/Ynq6PXYxk+YaQWgXrITSP8UW//LnjEYF9q0YkusekTdZpaMdDYywLRHNRr1Oi5xKLfrJOznrodxmS2HC2/ABbk0suWfoW5CAJRkksNInEo6T6807Ryf5b5kt067AknAS6UdGgwyKA6Ilf5vQyhYvbMS+paq+Sh1upKFxfIKBQ2OJSBB09vZHxGpAtP//3qlfW5Dr9WJ8rxfQ4N4SLlwJHp7E0CmqHh8se/DiznaxIyVOJlZIA4sFpB37rYDH6hcECbXFU/kjS9DrmhqimPwTDSy9gfwHCEFfV+d4JprpffBpB3E/d/Txgi9TCCPucTa0iOAL21iISLBLUbHMs3fZVnl+w+25/wXBu8EArG+X53yG2e1cpjKU6xeWa1RDmtQUM6kRnixf7jsX1tOCwovvw3I+Zb8U4o8C5xc50/BVywWliFLZJA5CkXCP88ihWfQ28YaUaJ3el3vxDslaGIJhehx5MF9Cf0EhFMiWBE+hLlb1KXu+Id4uUC2fCb2Lub/3lmFqRiz62kV2DZfYY4XkegQlUn5x5zI4OWn1vUIhGutceNCIzkwxUAGea0sAIAd2tyJ+TAd5q1/xMn0lGkuidaSwsNmoNrwWD33/6dJYfQVOEAhmfBppS+AVplR8S+NBimA583B1h7O7D4GeBVUGH2/l+EjaFXoM4aaxHuN5ctONqxhJ9ugHl0+0wIewJzBp/LbFyJWbpFDK0xk4v4RgaUC04gBCkak5/FecYoJ73ZPnszyeeE60DEANtyBgzQHc2y4nBasR+EJ8iHB1T4VC+KW8e8tT4fWORJqW0aKUM5MwVNR0xbmcBC9YKTqAEvyBzHg5TnG6wEDiG31kJtV4hPERYv+4JpgjwYuYMh8KENOSsxkaI6H9JmE739Zn1MPintX0ts7FJxwd9PUgSIhT73vKoCfcgDrpzgK5asTfg6QNQDzVFpt5kdSEUHoVCt47wlRasB9GuenC7dh9Vg/s7pf9nrz5IU4hHoAIbeLUZ92OOYl6zBW0hxtGvDHEL1nWbIvMTOFN5HyLRVy+6OLiz0dAEWSFGPxy7B9yE9wDyMHDAXMJAWGOzYvw0yQ7wCA9rTbymXkGdu5mmek0/zAJRecDJftlThxjnsa53hOXcJ2Pu3p29RiPewfh38yyS1N3nvTDNopjVDKgmAGxuIPSgFVMZxwSvwuQbTxdTnqBOa0iP61MVyi34yhjPhhwEo8hD3qmLaFS0q50Me6qXbmiE44LQwmyIVyNVzl9mGiA5PT30kA6ZpxGMA0TOollfdySVVs6OqaUx/XHRVbgc/invL5t6ZG5VfWZJs4Uqgv5VWub1G6o97bfcAoTifL9prU7oam6Odp66NIjmkgWTkz7Ja+zYJbUAfOCGrngX3L4EwiPL9d3DUXCQdMhg7jngrQoTvcOPuXjwp12YUhS80ZE8BzRlKV7k4fPmpQLr3qWQaFRho8rXeKzIPwW5kpiZtrPEtEB+bEnwXkEhqveXJU02IKpUzPwKHRYXF96UfubKg5tjd2d37KDc7JPUo2uTywOaLTLSBR9poOalpGFbfX/sJk4pi1jSiZuEEz2A3D719s5HE/jgLxRsrFP7ah1LadvoKNgB0ETru2cNDYIauMrrG9MVv0KfTuvyzbE9h+KcywKdVdqowbvWh9qumMUKLYNY031HTkawTSbl4f72ARhPqTynDmcRy5eUjumVUc2VDwmlzC9HBH9kcsRohnj53gHKkp5l2LvZ4XENbnk3/Q6IzSa41LYklN1Jb9Wq7UIDaKvpjqBwMYhs6pl9jWlpD6wfKlYtcrVg5JNls9U9Nupo/yzpIUI2hu3jxQJ0udJ1azUwH7lgIbQOsXsjVXp/i6nF/if7G3KxTXxKG2WPxeBfwesYDbmXRV7bSe8vHQq0xOACoyAcIMzeFRl45lCh1JF5ViaZPJmqZvqvydE7+OhSDb3FikRHURjn++rad5TfBiECPyGBAYDxXsJ7jhLtTN1XhEdn1oGec/LvTom82JEOpE53ZXXJALLuo8vNE7kUxY9/gqPTxbL0wEdVgkv63g03jd0vg3OgRBrI/zg8eobsTbu6QjMLwgznPQe0dw4I5kenmFC645c/SrzP2E3mGifAwGmrcbXP7vC9HTtGrfMoKb+KnMSNt617qBveWCv2apyPuH1Xi4NT40VDTNriX6HykWuXFT7D9jx5mpdwpWN7P3hsVad/IYVAz+UrJp55O56rQrIktkwsKKKQpPf6RwtfX3oFbXHb498MrEc8g7W51mp9levNMmsCjEJ8NJb557lCuTE93hv+jDKtnUH73NzjV7319Be1Ofw0/HIYuQwTUxSWyQ74GhE3V4J5OpWmvfMlTrWLeY9fx+OttrWIdgS3iIeB5MVeZiCzjQbeENRwWve/9++uO4/jQDEZ5vK4OTPBz3glPuVRehuW82crTUiQzl8jEfk3wWpnVve+310TWTQSJy6mLQ8VbBQRW0BPfTTdaNWOxxLt82P+/MTgtBziQ1GTIC2/1rYAee7eR+7/DOxGcMExn4ZijuYeDQg929vJYtGylOume72fDaPeqkmEGrOQPsVXpiChMGYskNCv6OOCHgg/Ld42lIpnFbWjTb4BPKEI+huFAvbax8NwG/eBuP6Osx3lhLV5WHVpNnShUj2tIhgk0M3rpWjVapiEZqIfohcy5/AID75dYKL4kbAQ3OpkimPXoz+d7cM+R7k5xkY59rWb28xK3XWnVlYmziZDh6qCMvP9nVxnmgcShECjClV2BYfpvSWR6udkxbXN9OgAUXLtSJL42ZF1KsIlpB4MSva1mhjzp3nh+sFvXNLXaRuVV65ynw6TYsZZigJ9Dp2/wWiJ71xWOeC+UhHrha/V6zTz+WWrotmjtwa+C8nO/s9spbiCtMJ1WDO3g7iHcdp0vYc/qiuxq7SifzKYkmLvPttgni9hu8JGVEkRTDkgUP7uHkkRsAXmgyii8pRf5g0AE/Wp3/UaMKiPxPwu6jvCvEdQRCmQByu+/a332DMsx0SrVBh0EQl5mZAqfa1xTbonBbS2aob+x4Ja0n2mif67uUlGMD2I9FAr6H0N+/fJH9jRIXL5dYw+YRHntnhZ0Z67WfSzbCPMW3X3w79I1duPE3dBl2fqlnWHP4DqFfkmysJSCgA4z5Lmlw+pPlruJJAFueHac2jvB7DakuUWh2UJBENDOKtGQPY1Tw21UxnTb2kS1o6pt8KBM1JuL1F3ETUUAy5ZiLU9ptGsOiO56U9fZu+f4Mj2kKUja0eKVkkBkBkk3ZZPQKSVD5qIZNYkdAiIuLnJK/3beTlk4+/q9tFW8aRK+A6gSrN7CZ3yAeiXbEAMdPJBR6RnX4X0LOxuTQ9KFpwpneRTvbVu/LnZyjw1iAmjc+8gDFZqNAWjEZZGUYH8qqbR4JPTuQ0PkzVOZfaGbqj/goOvZOID6Omil3XGjaFBcQ5lJvUulyRpWb2Mv6wJy/SNE6Ip5dc/tT07j493VBeadqIYyyAhcKcJS2sFLEDHicPY4EG2sZg1VQHf9Nl3Q1mGKKvxSz1vtyMoU8t46xsk9LmktZC1/uQ9eGMso3BRHbUEDwEqGDQmEo6w7QEB1PhqDnWB7kkhjkLLqnJg8r3dCyN2w7Ul0gz4Ssm6F3aQjPpwSj1ABJa87wlt5lFruJ+/nd+7WRZoqp/jx0ic6JW85n8U4h29jDajLKH0wWOy2fuZOpjUJJyKgzlGjL1plvOnYrHLdiPTnHlci/2frNn3Z9VF3ao28D6LXIBgJhF44Pv073PXVQso/E24OIHJ20wrQ03VXk7LNm8YtyXRIbXPizkgMKpd/bAYDYocsd0BTF30JQBtKcWv1FzTjc2boaLnyoYY488YetADAJUQUoAcmt3mpDNw3ZPwLZJ/ha0xAsEbKNpjDcP0X1kAf0yZ64AqLb9gQPcM1QGHpqwn7J7jlXzgpZpr4kTtav/+Exvz0uVe+O1aaTHS5yZwbYAYyOWUpz9xuc7Db+ySg75ZC69n62f49/v1Ap8hh54+ZozK36iihtxAdxD3ibW4K3M5BgBiQ46KKvcPOvv0hDMNe9l/bhjU6a8XIitMD2aPRV9Dls+y6/nx33Vp2bnF9X85eH8v0DYSZEkOLpi7k/pbENX7aq5L013ZS1uaYc9W3BufEkpDmAiGNUmTOHasNbw+b5WofC5dD6hdA4JGNMzlSbkQ3sfzgR9LSP9/TBQFTYQ09O2LeaGpsd0RmWz7CJlIy9f144v6tJdFJjVf0iEBiiofvkVojZaY91jkknIA3QjeJ3dP0kxWzRmYQCA8FIzoqVUXahbraksgSRn9FM+PlCY6DyC/rytNyJYIzE92MT96IM/Ykp8NvwEs6Z6cYL+yZLyGPKzcHIbP2rbHsY82r3kdLXappzunPfHOGmJNPTsPxIy6Bw37Osqxg5vJfdgCANCVz1o6PQMshfvqA+pxs9j9vw7L7Ko320OkfeQe4BCq5G3JA9N/QEDfnWaWbqeMYwzWRUkETvZS99q2hySm98TgwuUF6LlW9spDOrQAEeGZvBF65drHAKxUpRCDE4QbL1X9NliPLcTnZbSXnUx/ybnQ/I6WueTwhrhdhBGiKnwEK+KbR2aLsKXo0CNoA8gfsMO+84ziYDvgBd/dbVGEmRHpsMO6ckwx3cY3m5Vp8deLRd3jIdb8m876K5/ePsgtT+2k5y9exNq+ekM/5whu8dKWBI+vOh3cRDzXb3yqpVFI8uViqjK+iZML1GqS9pSGM2Ogv4xttI/ikYR5/i5Rx5KgS6iCxqxZd0LB7hyVzmx9FZG7bf9tNSLJyMvgiWUjqbeM8dw62pyQoTV91N6jFJ1961X9VyyRz7tqcV8rJYNJLc5FqKWG2ZYtbyEiKkb9jK90/rx5gQKipAoPhvg0GBPaJKGFmrPGYZMi2ndoWW2GnFXzXbXw55ia+E7G3K4FkH6bFlr4iZ7wTW/sfcU4DodFmZkJuCNjqsaVro7sjQWZUF7jbsf81piwlYGBjW/He8TmzLz8UykspUhs74L72yr83EFX7zsQ31mDEMRZSNBg6A2/L6lbaszvj/lXi/oVxXYBY+54LF1nrQrPnexOzmdA+H2aT7M4L2SVzQ+ftc53sD81UuE2wBtgVNK6+fHUwNI3lyqiy21NvS8DkNCodBrfTsLUWEwRSxrf5jaGuN14VDbNVUG9P53PYl2ndusZqmdDoDpohswBi475rEV/7DA4nwPmv7zfiNxczaurjL/YzEKPxf+eVL3KQ/sCnMW6HhJyApT9DxDGLxnIdYbgQ4ZAU0kBWGZbvmtLcA4jg/Y2kg/Au+8JYWBU/WfwZa79Db8z9/4u2CGg2zSNUnXmhBoMUWbmDn8Es+Xue1jZx8xyRD+PDJ5x2S2Ta+2PcFvSHsTm2JOkGgPbKLjwOQYPf10hLyyBz0UF3RFcEgfQLWDNEl8ozk/CRkx6dg5oIlQKvJxGWtjeQjbzzTpyN5G1m81Uj2zOqdUPq7AXMgpoyh26NbDJyyPSnu2XHAhFEz/1VjsztcMbT+zD91+EjQGiRyovb4Z809seIzyGeIvm+VR6Gl1D7VDkWUAsYNFbg4ovujHAzF9/bFOlg8KGfi0gmwIbULx6CYUKy+rV5ZJLGvgCX/WWQmjFyvF79BjiNfa7YwA9nOS0SRRATfZ3N39r1y0DNC5fXjHQpEENtAanbBV51vKVUzjKHrrl5bD+zJyPZIi44UWlY6AB20OTo6tDQHieq6I8D3hkwAdc20UDLuc7rcrx/ESMHd9g62wSJxSr1po2Q4P0N+up1oJyeUOcb2xmwTsDw8+MT+8du2Y+u06+mY025M5CTFB5TLJcyFrEtEC6PyJNgBW6xExHc5SaADIJUPrRlzbxncqd4/tfzou1SjV1rsgiI4qycg6VlTX/2aVxjc71iEZwqqmScHXsCC0fySVOjfUSZMTQtgTCtCu1y+gnF8WYoL7g+4uqnXAfWxvPGOog31ijtuO8Q3pbVTOOaSwJyQopCaTrnbdgATCXDhybzz1xwL5fkmKfyf/Q92GoaHr1YzedstnQWRHm61zmTCwjA4wIKIHykMCL4TKvuZZ7ghnmTqX85KmnYo/ExF4dPP3wjtCgvlmjTP6D6tbgPLZc5i2ynFwMhPVgm7N0ah5hWVRkvnCcdj5uQiI80eVumQ0vJDTngBlICJlxN0c6ZhATSuPPq+b6J5QQwGwbonzYan/E3BrW5hw7Fmyf9adNxtNR7VBxnP6lMq7YbxZ7KxomgdiVSOZyWBe0f5MgEOipEwxa5oELHyFMcJ5Sc7ztcKjRltNQO6CPKH9fAkYk8vMuv8K6lbIG2/Ki3rAiogFuZUSzeDxl29/AaBMjkQeK292ysXzBZIK1FAcweXBt6bhvZ7yT8W6L6DhP5JBteUxjInVWaT1Ui2jpUoQrlbhJ3mzY35YGLh34F1KSABjdPbm9xd98IYaBXJNvpDT37pdCXCFzbr5of5/ScL/IMmgFJTP2LuHn9W3lLmRaXvERd3Sa63/5Xab3ooqXn31gWk9kvVVOfTDkRcokkpsbJaIZBVOYw0ZS3Dkss7mhJh61sIXWRSdsvdTa9U+jd1MkHWAPZ2ldvhhalUz9mSn85lcUft3YQOCmt3JwHJnOJxFOrEV1xR2ygFC8OLjCrfQ7US+lyasqpXCimZ4IVotJ/Y93+Emy7vYZu4MuX7ypJ+Vkp0TgmK9aCBaP82e3C/zwIM+AtiUr5k3OH+pyOAHaSJF9dGPZW/2FimeeS9Ty5YQF6Ihr5eeOGb7o7VooDLDGwGbFkZGUhqMHw4GfLyrOssy4XBGc4+cxAYqEznddUGxGQ3lmZgoCbByKiOcjS+9WoUt3yFX3k8l42MEqX0V8aaFTCQfUI0kFo4HovxVBmC2PRVZ81EQ3lxmyRAuQ0vC8BxU2TWqBcP9RZ5pT351x/X17mFPQ/XoaEZBENJpGMsJfRHge4oKmLeuWEVN7s3CAU1Az1945ncGAEy6nADtbhZcUoCxJDNbyJ2GaMwvIDp4Y/MGqOvI3Hhi1MxxvOc8+J4aaDRkPomIVUTJWe7E31LgvcK/+vm6/+DcBwCwGa0wZHNX5I9ybytVuOBDnJgmNTf48plWz32P2d3sWB1FbrHv63mkNFPpa2CEiYMLOiSAU5pbVRDKEC15SKtM8j0NEZ6+HLJQDe6MFN0IbecAbKjEzVMHrofoh8Khf4vdQx6DmFJ8hFWmknWU2B6ZiQD8ZSiix0gZw0nXeObl8BuxBc0ZJKe9m3tjrF2Nnk6274eUirXx4qAsgbMuVj7nY5pNkRcs7pGh+4JA0imSK4M+1zDII/J3yr+ahHPueHSobEG9puCRPLk/t3hOwrT2o6jw3lgvSuyvEGa1SpNwZbOQSM+NmbB2qhofAEhHNglC4IRN03P+3NLwllwZzPPg/Ea4M+Yz2PZF2En+48uIj77xk50udEY8Uzxb/fxTThXdcGegh9DbXQ0oyGaagNjdihnrkTNTWRrpDm72f7upE3JdLvB8cx3KhsqpCWeZVWdl+gUy9MJa3I52IBbsA7nEvSesgVpYERUfN7qF+uphm9aFkK+I4ncwnj266UOUSQTKopmzZbSAinXoCjpOB4X1gI9jz/kKnvZOPLq9ka2n0+lAV7C4W8YvxQVdGnfZ1/Vh1BICrF9a0P1IgoBz6PY+GYhL+RFiYRViQwPLJsSR33wvuPIcbWd3TOm4iXSBj7qYrYIOFc2v+HvRVQXew77eR++gSpNJlkX7S4nRq44ZvkN3mk1TohCwJe1XH9umStRe2aniewFbUq5jTO17WfFedL80koe2J40U8F6vsecwv6VUWj9WKLmBC5UXmtnXwYQ3eABjQ6Inirbn5XQlSNSQQmkPZvlrItVBxjxaS89R4rSYHKLZVwwfdpHsfNJgmOI0v2A2tQiZH0b/mS3z3JpBjpyqYyYPPZ78ztCLqsfrNbRw68KmaAwDUNIYNHo89dXxn89goU5xt8sdjlSsELjhz7uZf3TSOqyJcFwAcPo1SMRVjSCHjQGqLJEXU1P37KXJfqAxPmrqMFIEv7oBekG6X78dLEOq8AKIe20fPCLmb0GYM5ridUdMr6acbhuaautdQoCuAblFeRkvYuU/3elw8Q1tD2Griav8MPDafh+YnPFZqyZ6oGLTJkidaaT5p7xfVL5IooDDYEZ1/wM1M4RkeHQ13Pbnl9f76k5F7GoalKgKiCL94CczfTRxzG2k4FofwIL8w0Qjtd7zCQf1SHCHs7Vu8UACksYwpSplfrYdfqikFHWYIfJBH3fbTcb1gOQtGx5fp3rR9lFg8TXB3SWuROrTwPM//uxPbfykcZMuZ5oHoTBT8W2XGbP79BhOjyRGZW4kF8Zd9tSQJzZXAGxt1RSSz0QWPa+/Q9OCxWQ8HxPv0rdc864tCspgnGmJ7m2Pa5U2Ymx62DG2YAEkiINjJ7+ni+x2RiQ1CbbHCu9WVWE4yFgPFTmG/ZtFCS77SkieIAx9O+8oCJKHGjAeRxBfjqC/lvBI/h049KUEdBKtwcfz5ZTyjoteaqaIA3ckRB9aGrHHfT4SnZPjq/fOUNysg3vR3AIoB0y9QSSwMmtVQ7kVB5Dm0hYc3RK5PH6Oke/S0bYkJjNIbGodIJrs8SRt4YhDALcdWzsdDFMQ8J4qwHMTAfEX4PJwgD/zD7eLJ/Rtw0CoQ5wCZq1uvVwoW3Jd/3DovZ48YnQa1I0gcVBPqBgG7MmYo2JHoq//AOE2hvDNycjwABGy1H6T9pAc9k4N88mfr8BwYBlSqModP4TvULqzq8UKo++St0yfDwuo2oZEpnsh7qUs+rYptyOIG/Lp75fXTxomWhT5has+FwY+pMQrKGPXK//1VKwbmwu6iJnoRRORrHqjZsI8XTxDm/0TMVKldHmgSfQRp9ixCT7Bz936XkuzBXVahNtiWBAI6Z9r2WfoDbJpuL3kw+AAaqSYG3V7ETt05cSnTlKA625YL3V51n4hg7Yit/7PhKxisUwVEhs4ISOXRqNIsMMcVPbpvFNhrBi8vpabAyLgEhJasxZkdHj4JzOWVluP3hVgoo7ADZ1oaW41S3CHX34IXHv6lE1wSmh9R1iyVgJYQSS1BSGf8HYynrp66hb0K5AHVPlEf70tqkC/StmcJ62JM9wlf9kkRMfnx5xoovJNGfP2IVvPK3EtxX4xrb52iqziikvuZhoOW8RvJAjp+yE=
Variant 5
DifficultyLevel
590
Question
A biased die has 6 faces numbered from 1 to 6.
Jackson throws the die 60 times and recorded the results in the table below.
Number |
1 |
2 |
3 |
4 |
5 |
6 |
Times |
8 |
14 |
9 |
13 |
7 |
9 |
Using the table, what is the probability that Jackson will be throwing a 2 on his next throw?
Worked Solution
|
|
P(2) |
= Total number of throwsNumber of 2’s |
|
|
|
= 6014 |
|
|
|
= 307 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A biased die has 6 faces numbered from 1 to 6.
Jackson throws the die 60 times and recorded the results in the table below.
>> | Number | 1 | 2 | 3| 4 | 5 | 6 |
> | :-----------: | :----------: | :------------: | :----------: | :------------: | :----------: | :------------: |
> | **Times**| 8 | 14 | 9 | 13 | 7 | 9 |
Using the table, what is the probability that Jackson will be throwing a 2 on his next throw? |
workedSolution |
| | |
| ------------: | ---------- |
| $P$(2) | \= $\dfrac{\text{Number of 2's}}{\text{Total number of throws}}$ |
| | |
| | \= $\dfrac{14}{60}$ |
| | |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers