50070
Question
An isosceles triangle is drawn below.
What is the size of the angle ∠ABC?
Worked Solution
Since base angles are equal:
|
|
∠ABC |
= 21× (180 − 99) |
|
= 21 x 81 |
|
= {{correctAnswer}} |
U2FsdGVkX19+FrcVB6epXiKeAStyakXu1rkakBkMtjdkWTnKQLtK6BS2bFtt7YBuYgXEg3Cf2u7HNErJWUab0k2epF9T+paMaX1xKrpFUQq3D4L4RLRc3CY51FX6WCSKci1h9KQ4OrWyxl5oq+c24JBIT9ZeIav0cdv3zHvnagtE6WTUpiwLIycCwyeCcBAakCz1PuDxTwhrfNgqMWWpBJf81/iZGE+/9guyIAvwVigClGkUmVyCy/NS1pTFYYAYtaNyH0zjMAulc+kSIp0AlTmLMF1shy23nNXxZIblPyyZIIPiZCy4+sMTwM3AaDyxTnJ/gqQjxFSv3ewmGVo0FnZ3X9fC7BAfQoG1CmxhSWJMkiT1RqN8NWARw/zulvQKclwefQrH8Lie0n08j0v8pchFWfnUeCDsfGeTTMoB5zWjv5LjxcIBG3o6ELS5h/pq3SOmCCdMddd4JKU0lwOcdJPYoOcen10SLZITTZDFls0hvqKgMEeeM856il/7vnVcJ1Wg4GjMZ6KzYIgvw6qVM18GPa2LT59B1efRKNt3RqrsquOcNkp0QIrchVmBQtDczA5N7YcIFQYJh0FOJJUir5tHIRhjGJ31AO+htz+r0lcH3+Fc6haNvKQw1KYGFJnkaYHXUTcKLvev7K83oPo4gGsmjU1iPvJtVBRK0gPLw6MeQMFfTQnMCq4/8W7Yx3LPA5eAACvfx4/g21xdktDcIpN7r01DbyDk+Q+8A8X43MsZAN7pA11RGXa8nqwanFq191PlpZtZnlLO/NGow62ju0aEb/jwhFczL6ue3Xgxy8MQQkJ4NRUSniElMni9tYSRCGR6i44j71qn5+pTtLNnaxweI5/t/wiCexgIcy9ixYa4IT09AqzowQW6MAnepvH9UsuEY01xGdbUBnrQ31XH4LBE74KsfA9UTx+An/SEJl0ukha+YrHWzMnpQYrVEXadffFFFqtWPT6He7DGf18d7NuvT5VWiW13Nk9IbaEMBwFKXIrcqh2xdPLczJuLltY0TsfiBiOte2aGiArepktuUbssXNnV13AJ1iBMC7fleMdCq/hf4TvO1l9zmA9UPxXakk5eKYia43PjJRyKVz4cIQ0Sw80fwa8KslMZnTNX8vnZr1zsvD1Sce65UjopIj0Oi3V4LZZmduyi64dNvJS+I2tR4NxoRXkNB3sRhNfw9+fyv/nc0jlE3/nwEp8SLhcrMOYUDMMOsaJq2QtGYObrYEnVCnTdtEmnFS6EJsZsqxMbQfUcvK31TDrSWF70YfDuhwiV4FdhmmYSvnHhtjD+1SVCvMc5+A/H1/UJ2ysGPYX7hwC3v+lVy0QM7dsOmUBlVVW7YUi/7Pf/P6NKXhfSepywtvy+T8+pQiIWcLYMB3PhqxF99tOdwlSRuk3uKYYtg+QoRQ+yPlcB29mD8hRndWozX+intsup8snw7FpMAqNzdQXqc6U7c9uArjEcSQ5gYcKM9V13jhVjGy2MIBuHhUh9vf39auc/vOYmur5nBHOJvNqh4THz5MfjQWwgWA/HtdZZmzFJPpxEDdGN5Xoppms5j7DAR7IpdkhMj9VU+rLDGFy+YUq9kjA5nbUG8taSNx9qdr55GyrYZx+j9+9HFEm1MPvo/g6mm3oyVEYxLpzag3lhXKNlpilmv09ov4oQfbbB9SMEUTfk23eHTjLbDPPbYiTuJBtN9vdfIk8z8cjhMhOOY5QZMXENAuKECvrwXzg7bxp+S6qsWBb7y1HRitXL1EauhqG/RYy1DFUsOX3WepL479q+D0mEaQxe1AlT3JmGBH2x8Jlx6IOqcsn0UQ4oxP7lnJ4qkpzV0rYV+YuroCrLXCZJn/8Bk3IVT8Hr4Hy14sENngdp1LJOV7IzkSmiDj+Hb4nEkoNbOlJrlB03j2/eWTI4O5vGCwH5O31IvyoGZYVGi2hWBSWvGnMHkvj9Xn5AxpzAx0uISLQgkqcsEVu9iFDA9QqDp72Vv0KuQue1GU6ix8R5cB4yvx36KP1fnxN1iatVTHWI4Frnj8FyxopD+uaiS0L5HUhsS7/8VGGtT98n2Ia27PSZOc9mjYekcmMZYD4rVDfLmnAQKYlV58vo+PVmT0jduXXK8X5pyht40zUvm2u7uTqipY2PQvYOR+dqh0coohLQCynwEr0e4FrlZuMEBZU2E0LQp/iNhKHXHZTk5qPBzO/l/RmVVgIyvDaIq/AuE8od4WORLypZhCLt1yVoJXaYAzh2RnYPU+/0G4zfSM61di+ouPkqEA99scQ+tF9QbGowE//SXTT85LF5lof98HxT21sXtzjgFRm/j9rHHQS9fxcf8hxzkCHVZvVfKkieFzwEFfxVgbLMVh+M0HDCKUTDRLoIV/uS0sLWH04SZv2nJa28F6Opc1XugOgNigQAKbzFPnQgtUiDuMF01hlesLTySRKfj7/MAmTUrbuuP+y58rRVjHt7oONvs6EbL2bT3RyfNPKdOaw7TAENLHqemXEpCQBMMNnWrvvog4dFVZ0gvaNvvz8rcwrN6h89hSDaSqucjtH96jl3mgKfmscZQKDKyR2RqjeIVa3B3HkuBigQdj0YESDDdNFCOQG4oOMakzzCOBOL6QSCFQF1L1x8RSjKjA9tmZT13/QOflfIeBGltco28t6B6IgGHDUayC87lsoG093V6joKmJKqo6VszDUPhqE+mqLYrLvZwxjVBdK18Qw/pFyQT2biNQD8mXVbPytuhhSAdWOnW1EUrJeZS8QQRUOfe5YQtRcE4Nlve7PCP2/coO0NWca9wfa6BzW7eZRKVC/TieJLAtBVhwoe5OaEaklu8gv9IkOwvTBA6omofh+Or1Yma9IIHeZiDoTlW9b1lKKLFnj3yY7sIFwHhqqc4PdI+KksAwEFYVYCq18xmZAnp8HMdzebHnX1P0NWXGW5ZHgitFCqSyqWqFju3Y2X7456LgM7ctbbybIKpbPxbL8qwvYEqQgu/vtjTSeYDv8deeg8SjXrX/ts8FYyu/MyKxjF2hTnoNxOIPkJkme8CX/WamqN3mV2xAz58Q6O8rnGCR+2OUOImB/2T+rMMt8v/6bW64fx4H2gvtRgpYdisUt5EYKxo6SHY+AhX4RSOQw6Fv74upND8tJHlSB5kcOWJ4/51mUmWwE5kZi0xH45Q1xJ73+sggGbmsr1Au+LOeOLus3MNPiJ/X2+0B3UpEc7j824febRw9UMR7sWT3P/wuCKD3iyisIp//D0xBPzLvQxG2kUNNWUngptk7ag1M2Bkco1kIrE3BGFGMr5Pyxk334+qK9+wRSXbRxLlJgqc8X1I5Y9mzcKVdwaLyvPhjgv0sYpN7EAj0t7NMHuQzMpM1z3JfMv5jY+axt8NVQ2u2PBmE9DTERREzPJzj5z9yhy+YozHJvQQ91GZ0Cg5y72D40iUNlTN1JVM2yscRrjl3ilOu/ah2t1CeKXRoEC/bt4w4CPkIoA9tjwRDoPHsTWBdir8L/4YUKK6CppTwfyVjwFuv7HCsBaMTL3Af7moaz8n7k5RscWIlFTXvA8MqjGUZxeCUnDgSIXMWdwY4rgF5rtQMqDVnqAmCutJBQG4Sn5CDYaItVNBCya/yx7GIBVl7gce+WpObOGq/rKNF4eQAdFHmV1qqMAv1354uIT9UDiqM1IjSV981T66s3t7iVMyEi3oQ0/tcZXJBQVgo5eG1n4tPBexliYdofjM6UOLGX7MX5nGTI6eFvPlVgVpSBiS0p9ggxlaacunyqqH66QSnCn5m9fmQ7L6wMIeJ947OwLGpytgoVcG606Yb3aYmC9EUhdNpKJYAZFVA2cyY6h/1GVmom2nY2lIsii4THDx4zV0VVFc9J8fPDS9WKIwI6uSAWfE9qqVIJtiEgE8LQVbVG3BnLVkX39tIjsDmFzrLSBLDMFtQ/sde0nm+Dwu3QcCdFEAiRFZxtOxNw+QN0QhrujfdlDbWZtkxC9U0liBC2+Fv9GwVn3MO4MJK0Aq3v9N4RH0/5cVj5dBLFhgv3XigRiZVFZgaZLj19NbBAOSkjJMuvTCnYSPvPhMQ3kbs/LEGS5iklboRyX80bpY/kFTpRusESs8h3Tx5eKZhoHLSdtX7V7zGuGC5FGB4hXIG2hspZ7+NqxO8PyLwRaYDHfbT5hG4QNZymdxei/K3aqFDzSw+UDCLoiEhULRkSB2ux0Q3uI4/tsjFvUD1kgDMDjus43+uHDeSG522wnXIu5booiJgyj04nyZssB6gNeAOKzbhPzg92MpsrQx21UFHQ9CgIyLPg/odxRYgUIXVkpphQuM+95oxNXn8HkiQXQ/eskXjkg53Qq9NTYLmtxbpOe22Lp/xymhxbqnKZQtMWyZVMa1W8T2Ke280fMLKMT2SmMKFA7/ZLvIoeJ1SNfKC5951pVXXfGM1L3OARekR2AgR/68+/CWMoUEushlreaSXlM6/8Gk10EjEaxFDq9ew8UB5VQQzbFhT59UaCuEqBb0sifbZ2rEK5mrPh9JCgW5twXcpwyqvmTtj0AX516xL9aPRonIKx2wmetqoFGBGabH+iTVgx+74PMWJA343PG/SodXgY6tYAnzF3a/6tXw7WiVtVcrrUSI/rkgbAa26uJHo4w2xMWhVUKeL52xD7mW1EZhSJro1noA57NOqrrPCxMZj+H/3IlS1e2GMhvmvmDt9EI363Gx36DZhj8sMR0GPrmAl5XIi7xBKyAB6Zswm1EcyYZi7SlGtLXWgAnCyRpGiSIyNXTUiSt0PO6+1gEvTqXo9MG578hCxQEDE+ZuV7+H/l0+C+omnfNykJDbfOIbR0bb7OKmD0PVXOQ8KEYIfmInDJejjwUoMur5MIVuNYxeRNT7oiuBDSREzoRogOWdcFX6OsWNn/X8cdEYU1wPXbtC7G3ozioT35XWoPtjXuyXLSIyP37j2S3u03QYILrkGpw6gFo9gpXif1+dFNvqKTV5Kt6CIIIIeeaBaFGN3yKHjFxBJJT1EyQZlolJTCs2JzUkF3PQqbz2Kiy2gczISzugWs3eD1dwpyKAzfbRZK+XBRkAz0zxFEZiUDGLLIsb/AUSfd8JLr3sji+2EhM3biGwrbcLauqkOJ0533ikgsWF9zIcuuORKl6py8n3iadMWp8Ui3K+1sAMgB1V4m/tfSfeHPwglInGgrWyO6nGXUpPTwM9e42z+AzCMGM34rh+sP7eLO7maQNaAYacFDiD7qZgLmcTTWWmo0qBtZfJ3Z5tU91TPMdLKZUSltWDoxABRhFbScrEY68H2iOK5/YMvaT7+1TBRaKanVlqUQRYTWaHBD7WxuHJ43jLdmLqwMua2FqBzKVaH3hha7zg53pcjm7U/zuayrOZ9eFwBNvCrMXJmiFmJ3+RRV37p0ZAcpJQ8XnaM0YXjFZ1SXWf1E4CohRlp81b5BFT5ZXcG/yXDV8E9/E7me9TY5CNJYO+ykF2B75gZZYPCxV88fq6ClULOPswTX/yXRigAduclTbeWXDlrJF/fzIE2TTxfl5JdY+TQDAwsV34+XTgbJEV0SLHAVffmUbBnkH3BDjQnRkjSo8wAf60BSr5tdUq2KQA21O2meXU6cIJtOezZ87utznhC1we2L1RPFaEfycOyIRzWtMyy27CYliOB+Qj5K4dqvOV3pQBU4x5HMXpyW0M0Y7nN0tD+H7RH3WUIqYEj0TZBCwsJRDwjZFJF4pfPTz2mCZHssMwUHpxFfr/gem0IYztWGZrRShOwl4EF5FKeQKCYpXhPZ0SVFfv9UJUfxuFCZPc8q6wpLj0AdKQrWOnktoKpdWWSm7l9YB4I0sPMj+XUA1m5IBY2mQc25L545ciGnK2xsbdGEnDnVOo8t3dJCYVqJJ/Md8q9qzG/vVuxUFyknT3v4xJ1to34pVEGcpFA7qoxQ+wNLoXLKAIIBcXPBc5PJpHM0kO9sUgtHszNiXabkN0985O3AKkruycTesSJlytbbG9qs499jVysiPHEMoh/zUM9tz7HuK8zNwyd6gVOTxvy5qCPao+VxM301vWGgTFdgzpEps4julx/r+Dz8rdYQWfs/0mGbY33NR1D8oSY180Lw8Ctz+8kAxZy/AM10qMkQizjsUlf2Vp1nG7pstgXhWC7hbV4c/JWhESpVFPxeJcX9yACJVpxp9n81Mt9XrhVlCxY5RLIrELomjgfAqzRzFzv57x6FECtc8hlty22rKKLC1c0vB90ISjtHhrajtkKbDI+rWWRCSbMXtqMYZHKvN3sAR72KU9/exUzvLTPmFJ/BHYcXj+VxATBNCGhKWt6vGXE54lUCH2disWKBoDWabs5JTjGA7YPhEg2g4VBw7Jvl5XFaFyxUIea+xPCypyZPT5Vqa6JphYPDMaItE1shjrRsHIp5Ka55Yb5+zbv19e+SYeJACEAfT+ziNm0nihcp2laVWkOUBsuWNEqbS9UarhtW9S89pt1hDJN2ELCvN4ni0XL01tldGh+sf3i1CdSCMyTmRq87O2csQXsl7QTC5Ym9o0Msm/Yx3QNkXGINe5nDVGt3+GSmkXztWVidES8sG8B6MNApIpVGUpUk4tevNqjKwNlyHsb70ukbrq4dmy0mquxb6971Y1VJweth96ql7OuCZzdlLmo+x9yoMk890EWOcrbCrap4hHsC0e1B0GqHxefnbSo8nNU+gfY0YrXd5NsHS2uwFemWReYFNUPjcCTOm+koG7K/QGaFaqEZzGNMEG2ddwXvDZbkd/iYjPVHDlSq2KptTa8IZfoNxQ+Adcg3KQVnOssXEvQzKmhvqhjSinYEHQXt4hDPYWVggq5BKB1QPCYzP5qO9oqoiZFpAeLYFpF4UMYGY+XguIu+ZxgBDxewbFRuP3hrHTCd6UjRvlQPsen50uRyXk8j8uvI/g+3a03hXvWOkwfAIg7Qi+cWKS1UJsSQ8nRiEvOkV3QL56Safmq/N8T5zv3UmGWZAHdzGDplg0kaquahRYDspy/p13juYSfCt+CuCE1dX1OPNV5gg7zTu1yLZefj2itLGSxiUBj/fEiMDF5XCO/0bgh/85/QATrj0NwilM1wpXb5M4jnBJSteNoZX7YdgdMsNMcAxmYzKLw+2Fzfwujzg2hFBz8b7vLACkSyEdESPbCLYiFMrT51yJu81MyewwY3REJ4RsGNoAhyT2ZHAl5l4pOyYvXCiDt6t/q/U0oG4zegfz4zE0IrzXwbK6znCxbqikDiaeUvBX3FOP8DIFVJx8+sCG5LEHp8Yuqx2+ywc0GlhJvHTBEUBpBn2+6G5LCqgQ3o5NmXMHY+/XdZ/+4pk3UldNvGdXkNe2GXvNmyUaY4iVuJVUPYPofZpYyrpBHYjEfViR1c60YprS1I1RdaDAAgyApCDWhEYpN/Rrchp8W2LgZZCCuxrrzxsDqRWSo5Xuk/Mn6KTxYh+gMzaELuQZN+gnvDIQiVkBKi6/GnRoiVwm27z/lDkz5xf+n5XXjr2HKsCBN6iO2shNMqH1bEd979xNn6IblM2FwBzHsnT2fY6JVaeYnnbNCiBbW9OAH51Q760qNnB33o+Mk5Io8+Di+JhfuW6ME21/q8T1jVahnS223qzF8dA0G8F1ZIejpgJAn3eqwVQJC0jxFsZ03UTQvzPLUapv0hQW2n/WiCk9ThiSJ4oKC/Kgii11EEq9Ct5ALm5zmAtqE4ZLT5WFuNxJMGypUmw8LS7nBOgPOurTomfRJVEIACCbmbgM8V4SZ1iyfh4GYoJx5TlRf7/CqiixFrqmsBJu6jn2QMwEYC/zIlAyG6o7rIQffgjrBjjl4LOuVdtzxsgk9GwQEggY85jWvs84O9/ucv3Le6LZM03v7KNwa0LZF/6/v85caNoL8Bnbfh9dE0FHqN6yyM95o2au9h+PsDa5JP9VZYZ3mBy8eS0driZKGMz8t5myInTpcFX5fE/3DhgzO/JqmBz5GSTymrLcaRdT34SJSKpXfSaLaj0WkBX9MO7VyJLnXJf7HgWHEg4qT02VctAa74yo3h5n8vCsNKDG/Rt5upOuhVGcoQXZoFP2N3S3XtrZX4Q2limHFccSGhKRgmuBPpkNbk8J5IlyuMLHt8uy00xs/87IJ17wtEcZ/nlbGKfKiwME7xuYeVMxrZEWCwlbPlIrhP2r3PBXtGjMaA+ZO+rJwQ634Gx8k0xByWeVB4xH9uO/VlPby+yMtuq0cFdNMIqbez/K+FxtrKcC1s6LtBD7PVPpqXAJDuPHAtSw+SaKc3S/u2b3xn3/9/2hmqKOjcoDzCyKpj0q1sJ/ni5hA/2h5BkPL6hyjtVK+mQ86AxhHvh3vhrPuJVCBxPBVFUavOXxWpMtD/bw3+JanC3aWCghOBiTPCisnzmtVezt1lHYGqHTS0lsAQg5+oaJFr7LR+yWws+ENxxVqJDUfjQRNQiXYgiBsvjy+TDJ6UnNaQOtxiJPPR8I4gLDZPmJMI0YJDyLtJNAiK/6UDiEeCAwkrORlyEGaNub4ryW+k8OhItHMEUAhmsEv/5BglySijDTgjyYF8LWlJzB3cJ/XsFs4rNtQ82J4yyQV0Myn6z1uwR/2nnQ9aoJBMnEKiRh1MGEG7TWHDS88Dp4n9VtN6Ar2rM9QvF0Y1R9rSlF+VKb+D4SLRgZZz/MOg8Ul1RDddpQSK09kCRifDwSTCmFa0en7afVUgjnj7bfJRAu+bWV6+JlG3IHFn8CPG2bcsgenwy/in7pozFO6WhpuiUrKBNFDRaHpGSUyx4WzCEEoGfjJsQIH/7+86Ap3DWuny7hPnD4ynpPBNs/ClY6nExjhzeRG+jyUV97U8kKBXjjRvr9U/hvUSGKY1Gp2xE2WFr4kBD10U5tWnV8iU1boL/WyO+v2qnjLDTqDKLqfsJDRD+
Variant 0
DifficultyLevel
613
Question
An isosceles triangle is drawn below.
What is the size of the angle ∠ABC?
Worked Solution
Since base angles are equal:
|
|
∠ABC |
= 21× (180 − 99) |
|
= 21 x 81 |
|
= 40.5° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers