Algebra, NAPX-I4-CA32 SA
U2FsdGVkX1/AV9q6JEBvROeW95uFOjxmwOLAkBY3kiX/RTJerRX57zGOOGxj9T8n32POnZuYdmTC52ZrLCGU9lUMJY/JLNgVVJTYX7I97LTeHNQOJ3dcCrdcTd5p1l7T1XDVE2nbQRXthf5y9bYM4SniMBSlIzr5m0B7xvkzoM82IRGF0NIZycz0VyUocZfbmi5tFgZ3XtLDGpD4PizIJ8lwvCTkatY9kISkN22X/bp4kYUZ0uEWb1MhZ8w1tRqJb3Hq1rGOpN3Y33JBe2PVdmb/KgeD9wqiBo9I0+44drVmq98JYvOq5ZS10aGFlGJhHHXylXn9/tujNIUf6NOUL2kzt5rsIwoUK+IuyvTEYQd5be0+4WRZ6tq02EW3+2TTSaoMILOMhp64Aa4AsJJMHQiWraxJFryM3JfqaU4aILzTMKD9jqd79JUnQHDjCuAfXguL8QnJ6rqkk30fGonZpH7x1s0Gr5DmBDcgJOpSaFHvPIglNnfwoSVJxu5CpspLgLVlf222NWOS7fSOO7ETOCwGRGjwJ4Vco3H1UJgLtji9bJ5h+RLA8fJxOwMS03WDCmTIqfC05oDyp57fFZrIJQ9TxjA0APWUqyjxyi/hBh7R+oWp4GlCHJ+HL5ffmNH1R9wqA2YETKMjY1WlINNqW5RQ1af59v+XUjv4cI4ASr4dCeIxh5LpFXUAlHY4+i1erbdVPhEvmYhMn2rok2VPGi4K54HVTnCU50H/8bUh8qe5eszLwb50jg4HTKNZa8TQeERUC9qF8+r+e5086ZT3X6EmbMags5eyXk+A0/1K7lIawozoBOETV2u9Gdu71a0p45LYKRk9vefHAr0O4V4hUjz3eZvHT4cTqTPf3s/ogfMCHNFqe57d5O2fEm/FEPSw3YMl3SpIQONqsqo3WjjaIXzk4pTFRaznqJQVdjWDECrsXN/hE4OzcwSvcBijBqp1LE20bdT8NTzXir/8J1QQYKcKGZXwBslyTuFGiwcTblC7U+gcIbkKBqAVoDbx/wZ0GQQOfUDEzsS/SwOPNwqI3c4nfa/C9gucNPeqMXbcX12TiwZePZCiQQxtXG10HcNoImIxOYF2xRZ3JWpiDhxJ7hzleL+L8RsfaR3W7F+ByGCvADtyd73vPatr8kHoBWgRX/BMsg2wklVXhsMOh2JFgy3y5l52E7NYS/5B7c2eAUZ2sxPKH/tL5uc8UNfr6CcACaop+fj61B6wE6Pe47q+qZVZcRWgVUMqW//Jmzq6+9bvzWUjErjKStKcDJu51tTg1UpavGcvB+qMoaT+mxT5yY5xmrOBDDSii6qU6CN+TUS+NIJfX7EGmnpY8B7JCBGu1dbMYCc824zn/2OTUh9T1zpE3s9OTAY1K0bIwVGiB6WgHbEHoVvJmBdsWNZoAucpQiRyuJRDNPElrERo0yKn2He7qTEhGZAu4GAcIcV5XLtCRWOFz/1kH1LfjWH9x2wYpxEHUUXlF5ZtSqc13MpNtLiLKjDAHLz2nA72e6Dj2pDsHduu2U5PTwhn0SRVobdnNOkYuhWaA7RXNJwx0UGxTyvYL6TsL65v+NdGv1i1NeY/REch/Haiii9UGg4oPEryc+LJzQ6y+laQeMUAdLDl55WpadQQVGowvNwZ6E5eOCrxBIvj050UIDAImlVOmG6JQauP6DJV4TXj1GFljhsSNgaFoUhQG4p0JeZM/0KbeNezi/XVXxTW7HKgO+mSl0YC6s2qD3JqT2Xm44alWswItNFA3KuOx+1G4pIFW987oWMwLr2n8wrNPpjXGS7x1EmHFd+NUpX7M24fquyz5InaA/8V6mVoAsyQo+d5LZDKSDwKS84HcoHUeiOu/YSbNl3v/K2aYryYqqrz2bppviZBE4FYvCRrOS7wSvKpQf3Wm1nGcnzrnSmwC5GFCbSWHBj8Gg+0gg6MTCEAyLst+xhvcPIRBJEymGCTDaZ5WST2ABLqYfBId6wwILGh8efV1mXESv7ZzPNY8BiD8eQjlDJaX6quvMNQKOrCJdLV7gR3SIfFfjM9Q3OC6kDa1PWQrHlWgPgG7dOtYWREgmGNTzl0rPfGei0grzV2Tr/fGPG+oRujTQkkXk83uXIDxqS+nVaIUXUL8wrtCzcXDDBflSkeDA1Ja719CkKlmQuZZZGSNarJ+T1GIH73TJNot6mC7ZjQeJq5GZMR3+twUzYhtoqd3ZPTGSxcCEW8p19YM5wpbwlDlWmo3yB5NRmiimU2WwJR4XOtbERiHO9+4ETirPyfDzVf9HgUMMP5IOssIBcULbnIXlA1MH8V5HRMkxQAD1Mqc82/aFqRzobPEj7EyL5+LeqWlkZyq4CLd2EMcFQaFY+1zFN+SSH77B3saRTTFxo0H6ENVCq7d72JbwDZbv8uBuvT6ss/rvs3U5Xa1EcfDqS025mdi2pZBwjPS3lj5NsckjntOTBIs974JV7qx8VQSH5lEcPlc41YTSssaSNvqFc4QBfBOry8yM0Jj5wbKyj7j2yDg3hY5W/MyyswdszbrPhwh7GBbbb1bsGTeS24HazCcOn4cYlKTppKebP3m4CO3qFyjT4L/Ku9f/z3Ll8C5IqKKLyo1NaDTFfKrxunnmV28wY4ALSItaqPtqF8B0MHp4GeyCdFASJRf5wQn5LslAAodK5+uDNdXstH5TX8o/eIGsec4AVVg9XSIIMZmC4DPWjqNHmuUm54xuB0mMRxSwJBsmzR2lvcxt9N1PR3dsoYL6EyxiKqjD7cCmqqQZPunbozXV+STT9jlajwO2SDqhn1EypHASs+2IycPr2cmuh28HKTaCdjyal99wDbyD1ni4g4JkKFxk+xmUXM067EdBEPFlWpV7Ztow421NIPPkgqakd7OaWuYAaLTWRVLgX2IK2tNoZc17Nb6T0d2wVUCgE5dw5lpSat5zeaWZgKoTJZrjrQlHrlG21CtRzXO+yzBoYthrSOvABjDjX6Jlrk6sGU785/C2P5alay0pjauStAgU44LQ9xFE8OGFMQJoHUVvwHa2yQuujsuilNxVsX5iCdfwO7nXnZMEpMJjiIlbYtc6L6cQ2fLqw+Ump9g1gdx46Sum7QeVdANoXdBzAoVt21i+Sf1IVuBrL66Agpsg8xVIyX2ZNFJGhIIH1mhIIoncpIck/fYVDrmQYJ7dQJX9AzrF92r19wNyEbwEv+k1JP+ExbAVy7hmQhdGogTXirfx+EOvI0CHOMI3eGOtlY9vDpsRJiGo5csT4SJ41Ra+4WGql9oiwsTfpgtyEg6JH1ESm00YJ/YHwoEboiF65s7uJ7Yr6HRaNFPwrr7081RyanKYmuiL0zovx+qRMQFo4Rmg0wB2dIUvnhSKp+SfA934EFBUbTUc3fZxM4Tuem61NnHsdhUTu2m1z3x9O/Mi+mZy9I+2+9C0Suh61lQueiHjv324Ac96ggzhuCiretwKtqG2D+RhWdh9uTSU9TOQBEpgMjp1O9jYl42i78eHAYXFYzPBOm4Z6HpEIf1zbvSNtDoxC55IPK4rpBRQA9j0zX/7eh68KqJx0IPnfmfzUlR+mCHXmi9v2JJjDVJZMSPVsNa1X0ouvq0ATdAlxU3vu+0twbLUMV/n7QeC5fhxXf2o83DoFU67ET4qUbVUH/J8Xhotn4UsRizy47INX2q0qZqb4wq2xcGYt6+chdF4l79J6h0NLlQ7l9E/oqLlyz8UrZEl67RcCJhnEeoRpMv8uGi5X3yZBLqR/j/bE03Qnm5vWPHm9f3nFudsUvorWlbYbwC9Ekdxu5FkeuxyolPNbSjTKjOcIz0bWlPkeRz2CdoVtlPsGn7MkVDs80geMhM/efy69lY6QxBWZ8JawuX6pWiKlzC/2fnff+3fEFgl9MYqZOoJdZJwyL6ajbthQnMuE6h4XXObyMMudwY2yED5D6eWA3uFfak+68i7IQqo0mxHXV4WGTgY0pjVauXiD28sAogLFoVgm9BaGCkfJ6wlWZ4y8i0hs4XDoKeknibnD4f2SJXKP64P0K2nD+eNhOX+T9GzPZT4uJJ6lAFm4xhho/Q9GSwu9mvndOL9Wpc/Upw8aLV7iniyTv82SgRi4AVj+qEq5xeIUGeSmxh4VD+QmHU0/p33DJMu3VBjdEi9/P3ueH/5TjVQFEyAOtiTCAi9PbcBd9BzPonHVdXRrLl+2OaX0F9flNcaLMDjjNz/q8n4IsaHjhaI3W3PagbpFL8OUVHOSGa9m81wBlFbY0Fvqi/61lmvImFOiBLupg1I43Z7vJfNeuBvmjpG8esaxwD57rl3SPEjvKBURGo+3kaoaBTwLujKDlXHgNVXhZVabEfoQb2Jdx04X9NbVDRvNd+CtYkOUb3lpNHgZ99sduL0qkePGmfkdn1LIBDpCwAsK2Bo5ohxrAEmV1w2wTG/WuhQXuH9fqqqxY9KazWCnroKKchUvTq++WHYJ7ywyzqq2QP8/qY9tlMohDjZHYs7bY4qk9IreZoNY/kYjdtiUcaVZbqFkqMwywqGutsLWqHhp3wVS/9CxhS1My64Vwo0Pd1ZqLI2zxUiU6YPuKyFo+OWnMhsX3gEGlsAfGHrB66uEHsHKCy7yisqKTLPiIS0jMZLYWykTTfrsbSRQKcsixlKoSEzNaSd4hTdTHjXZTIaGu6mjQoALCsfkpaOYUAs7oeWTjrIFlZU+q8NfDo94kaeLWiGc40N/kCE5P617AcZoSMSkZt4LTBPyoCdVqBVVAtyxQXypPWJj6luVJmmswFFU5K0kyJ+8N2qZpHBmd498n4ex1tXBz975yjP8GoGXtRSb7UzDozZmcgQ/0+5DSmBiqBzrMU3bwSYTbV71q3NjyTc8DDuBYKD7bGHOVwjqG8TOHxShKdXvGl5gRUY8TR1Ii+i2y+vJpE0t+4w6U4KlqctRUoTSzXG7duOBKF/bLOhfDkBblu9pvrPZHhD7ow9rEAj6K1wTc/AaLeERLk3hi1ETc9CH2qP4Gq+5VZmoRUp8i9M8uQ6YVQh+6WyWZ80BpD01t9mDFg7q7ULPeNo1ADkqYeON3LLlMEQkbo15LEntOD2mSdQh5iQyDoeekgg25/+WcrrjFJ34ozxf/szj8p5zO7KaYRlIY9qs3+TZB+WUa1RN5fPTecXU016aNgiDApSnb/1f1Wd7kC6FLtd9+tWCSvCsCqrTcZhK1GT2VD+UuBhQHnGzLY29jzoMginDyBiPGllM2lJCLPTjTFd2br7K1HUeEjYe7DejLc4tYWltkX5yKtNW89rLgzbaB16Tqz7DwdlMPNr7J0uJ46BPC8bo1FEfg08dIGxy7+/z7I6e8xk80ffLFsNuE+0cJuOHbAXEy470AbBM/xF/qLd/LOFAtlYyI/LcjRlJGw0Wfq+IjJp8jw7GbWywqXaD/ex8n/+9ub2FwLOgLaxy9J7MGsZG90AaUCvl2AfB//GGzbmam8xZWMDg+ngmKkJzyhc5h2oDXny8J4tsMJKOwqOimUF5XCKAlqnHRmj6o7AoCTkLX9qX4nwIzy4TnYqgse6lMV15FTeCwBzYqqpG069YyU2ZUKKig13TOgQcpXfWJT2ia9eH0+nrA9MsePtmssHWegT4kLKuAZRP4zx7u8YXINVCjzuG7AaEOhnTiAq74fN7nB5Y46C0F/pyOnXC0WhdSbjjCM47vo3D/sfoRb+1dvI7sF5/mfPsErRs8SPbFU/9k08JKO9tH7cSCdGN5O8z1uQyK2Usjp24BAEElS0lQt5TiGDy1Lvt0q8upB7KSs4RMQfc3EAh0afzqZe22mf3LH3qdBnJ9FtcYS955hPNjba7NVpQg7biTm1ReBYKN9XTJv6OO+E6SlRtn5VvY5I4qAmGH5Eh6Fm5Re5FZmTF0ALELJvZdrsYxuEOOz1O/RwNAOkISNgL1waGFm0DVTsLqfHw4vdVmzosHQEC6IN0IdSfJPqIDOeklHln1vTMYoZoHWLlY5UfyNovIIhXB/yHnEXJnHzf2jXtHqP4ZEmBxVR6NU8Nh0ljjvk3/rHbxqyGSmiaLnpI/N0Z3j4glLb8R0KpRM5S1am4kW8LbA4cS2HHjB/Jenj0gs+7HDdxZKG0TKTuXslFHjnNdOcsBBYBg74/Ul9ygImejCD5hgPuD4P/d627oc6VxLtc3JQDe3SLOOopAWfPBB+NwHb/ywjkIIT88fdJzbuN1jcgfCfWzQguqdzpxnjQTO5xD+MuUNNEwdNtbYA4rYL2mwDnFczzf5XWNhnHhY6bVVUoNND826y7kis6g6qMmk7sAGOF927qIKi6Dn8g/z05m7wScS2AXnGxe7U9TLFoTnbt++xAd5w4gC2MEOKYR4zB3QzdPkSnzZjTtImpb0c74OxrW16RiUDmhAFz9OV0aLfq1RLBtb7U876X+nSdzTOZJoHU/DocHrKeQD2QyoXWXQt4TEHHHcGlaYcAXKkPox+5YPmaNMnJt1GXLZ4kOZnBBg9MAK3FOXMRAE8aGmEMjhzcMVDMy8gCzaqqCSEPYC+ohFPemcKT8tejd8LzTBkI8dojw4OmaQcWmYbiSJWnx0JOYxvtnaAbyFo/nUYs6z+ClCEfkQkGTf/g7Ra7bD9arvcGiA2Xdx2DZdCIi7R6WqtZApbyFgJnVGMugFeAEgLvuUQYZPisViiZpwxkzbOmB6fllPWmSDH7CL7RBhDhNp7xYl3ASEYwch9GPW6r+cteHkIDAEwyw701p6jSptqMi8K7FuVe+CDMyfC5l4MNvQwguqkm2XIAU1x8q5//bZuLUOH8Xqir42n9kajSVvfM5UUVKj++XElbyU0QJV9O0Xll760EkEKNHx46UbborBl5Ub9LF2W6q6XPiu9SN2snqu3lHWrYniCmFOLNvU07JEpBL0I8Z7wNv0OMMptVpb1CCMwwJXb9vHLM6Ff1omjhqoq+2fU/hAVYOqI9DOIJG8xapT8+hwedxV2etNzT5P/4TO9plLfbTjgGyjUJXS1eMgJXqacUy2aQBPlvS7kl7uVHQ54h5DCnZpPjyNZ62UmWHFLWWfWx19B9RYa6hlyTGgUXheSNmUA9pPZw+bmGZD+qjNmTHFquUGOkg0qDXTJkXs7uXtb+CVcydr/xJVudXe7bZ5E8cpasT9NxFiwiCDRY2pSNLR+rz1NYq/SJGXPf8OQsoLUvJzfnI2+/aDuZmzOrz1RSY6h6UUszFuulsVjJukadKS6VI5asdIC2I++oGCytmL7SzNnuKujd9eanY8ixfClHkBGKzOBAOb8AL+iu31Ln1+89S/N0cgPwNQF5aaa7PwvE4ej5Dn2XkHyv3IZjF5n+joxdVWaVkkIN+gSrJONiVNy16C+76/0lUPVMt2STRH1U6Gi3AVRRP8ZPtTb1sNmfNDuQYS6erbzdve1FKMCL7ETVOFWrr6Bka5e8dAHsCwERzstHNB80n/D0FOB9HcYJQMGyhdMTNYc9FOj1swOgiHGy6s8fa6dxQqYpyZcCh+H+zJr1w7VgLT/Cxoq99uNyiSX34O2EytJ5aVJPcfBqaNjMYfBYyflB9aeWRgnLaKQ7zDQT11DpLQsojZ7fIvEU64SooyW/pblTvj6RN9nzHj4UL3iV6tA0Pb8lXryVkl/N0LVRU+2yBPwl7pVhQIVbm11rQk0+gZXaeZ9w9gP69MN31Eq2G6vxYqG2tkDKQIiVoRVqkF4kO0W0+EugnxyBn3dno1ULpYilX8cm0HgoBsY2/wmUcboQmAbycTAl6y0fM12bSyXcP44aTtNMCwVe+UtsBRUPMD8Cj0A7cU5/miJ7LJI3KzKlSmLJPNgs3Q2rAPGD20D1HMJ38XhhvgqTEPkap+upLvdSUunuSj0M+xjFTRnlcGS8ENntqQUKjdvQJ1/vJU9F5sJ7B/+hKJR+Cth6Vwv04beIg+ILGgqqhftVAPS9VrAWI4uHvr0Due4P36fE2qedASOPJX5cKwFi8Tk9agCUqQDRQy+Hbo6xu9OcXVC0hfWaJlFIabGrvcfOI7HGx3mlICH3CArZTo4E7PhM3m3uBP460wbzUfRpuMoDmTuxxXLTsnlSUFu5/Oj3ybDuvVXPapGju/Jnks55FjVqFrA7l/ImuQSPso9KXqTqHvT4Z2z7yoEliiyQgUUbMvSajmvjeU6QqogxNkRvPdkmaGnEz7ihJH1wm2EDt2l4G+n31VGYh8t5J8kuoPQ2CBcvmT+gq+agt2h38F9RJgPLmRGD8nlDpyW1v31X3j0bXysSD6LqhlTO4wbH/thITliSO/wlSuoKpWY7/325AQcSQq78y7otrB/NwpuJsZOljzNIe9mMZ4JcgBYP9nB5xECnPN9wDvBvBHonc8I/A0HQD3B0GdS+/Y8QVbENa0RpfSzo02bqfjduVpR8U+D73H86gNAlHhstsKZpZtMgztooyokeoUfMUSU7NarSkJ43gKAlrm8Vha4zLnBGMQB53qohLrgN+XtwT/YxR9T8Cv7qheuo/Ehbu+ZAFi5Z01cnciYiqGq0r4ickF3c0oxHTTy7t595dQLb3agKRBzahtNA4Rqkx95xkYjnCX0fPSiFXrglBs7mYZOSHZviS48WEzNA9JrrR8UAZhZCgoz7yxG7rzNLbvy4nAo+jw0qHuCC1gthL9X9P/AN6A5nbQ4HjJTutEiG69ZNo7GEse/NFYfiv4hENZYo/SIDLSJNIcAOiXR1vsb/rG+NlviL9Ih0KlEiI+dZhyZdOYv2pUW5EUI4MqHlJttuq2nGhzm1pEGBkRTzsD/TzKthdzZtS82prfwhBwdu72oQIJA2GPCgFrYDpryhenmBkWmJS8CgHK+dW0354Ca9LS0ptsBmD6XZZHT3qea2x2iDInPVa2QgCuLfcIiTHH4Dmqgc6SVO93YlkO3P33Ygywzb+wRDiuZQ1npcT4V+N9ggSPDmWdgz5KdlrUf9SAxS8xYu7Nhww+BfU6xo2Rv4WlhTTtAdZbMDpaz9374CQjrQ6+9rg9JnARkpz2UXuR2HltlCnuvjQNShBDX8vHwgwZHXPBG0EQZ42nFBNBzeEWDnksaqcmqrdILl47qxnju4TK38upP8N6tiaQtRGeRXUl6eOvcGTEr1q38Q2Cxt+Pyaw/8tGuxolboNDREfha5XdK/xDruUJvn7TQKR2q1XcFfpXuYs1we6SJhMPKWlb0+gPVsif134db3q/7ncnD72hVphdzfpsYMp1b3rYqKLYP5s116CqpnzGGYvXBjKhZg8ZseKUX73IAbu2IqfssnLEmXKuMPIykAUCpCv84A0RbM5pab9PJ58vbOvkKHXwVEHbwZRyfcJhpyRIQSTK/sCo5lLXVbNTwogZaV0gfVhrZRQBbS9v8CiVLt/5wAZypSOdv65B8hIhePHzCx7j97q9Q0FNuux7OkJJOwJdqKeju/dNSA53Zvng4yUok0CKAisxuMrfk+jJUCXrHcyzw3lpu8kx10YeT8HXo1Bbi393ibtjyYG9KE+CkEBDmbFpQNL85F4KIEl7yjRYZZXN2ViNsFW3PGOs07n65Dwhl5XgW2OvzGAgv6K8XjtcggdQtd84Nnbxy8hJnxoAIQIb7o18WZbA6gY7jZHtM2moQgTkaFRv8FN2ANQCyb9YwDYt/rAUYIhVnei/so/+Ur7dNXwEmPxGr8+stqbtE1V3k2LlEqK0rzN4T5vQX/oTAbq9lsjLhX2Fimdt/hs8rqGZTMpsJXIVRhKKopNEe9F5Hw9Rm6QClIvLmZQ0ED3xHoDULRQzHnZMCTGcCTHkkrGo7jjuoy+ErfgOWd+/iR2t65vpDU+agFX5pkn5VSFAI8dH9+ONbMreO9O4d3q7SSZfChJfmHANQ7f+FdUivlvj0FQ+A0I5YcVXkPIVjNNVUf5nsnxNAq3XlLdQTHldjFBUiqi1pCRKDCUv+TVJvWu25iuAHzdfTGT/BOOhpwTMS+VtxVfSQayRZECM7DWs5iSOffAT6j1cdONRWMzICYzPHZmOAlX6buGo2U9Ni/tcaLAcy3daRF2vt2/JLOmH4VONzsrpnRLYznkKTeOCpJtmXrjd6LMxlRogq6kzM6dHKVHhSNmcH+kTCBq5JJke2wH4iqfvR9ZakYuWd2vrXke/9qW0+7cNCzAsaS3ZlIzERgCK7EWcC3nB6b3u8u7mpLFoNftouDT2N4w54kVERHGxQahJck2Qyni5NNjmJuhMTXwAJ9Ht/TQ3oneSPzHZ4oiiyq8uuz7ULjCaKSiYaHJIzNGqT4AGTP7ckILAxHoGC96lrVxNmx+dgkMGiyaP3mrNAAyKjSw4syGhFVzmpy+8nY5D3/7qy41kpFtBmv9wprVmnGC4bQeJSzWe/AXre/MDUUgdhgvzECztopFZyEMEs1phMt58+sjW6NSV3YjkTpKIy4m5wUam1WXIgOymyu1ZlJhKr6zDzyEyBXn4PjSSnOe6h+t9WMaOK+Z/7KKWNCAVknJXxkGr3h7Aci+a5OthZ7QqjpikSqd4m+ZehhYgwbYOMKormY3DgKO1gb3+mdPrL20RzG7NRUSuBMrnM13WCm28XE5TFZ0xoBldaZU9UIDR2+mgBD5A8gDj6hl9xmzcRSbGx6j4tcySkODMJH3qwZUXNY4FquEemWawfDdtYxsIjva8972YyNqxrYavFsZUtdiWtbiYvTDsbEYbRfpgdgG4m42EvTA5pP7+OhlMuV9MO68rhNWu1imEThGpP2fDZ0GPJf9bnygOe/iBklElXlPSEorrDe48p52h+feISUe5MzoPhwoJt9MFfyd5VR/FpCqSxNsaECLe9ReZopMCyfWRtfa/4bOAJ7tY3sBChsuI+LM0RKQ/Md3SkLMUYuIRYsaiW6cokohhqrW9yALrn+jflKGhV9IMFS9LRQu/kCD6u4cSfnM7Aq+FQzpMSkCIiDzXOWvhbzAkoPCFH9QstsfgbI8rA9zQn+lTbyx9Vl6oxNXTlglj8P7C34Xl0kQgSXP7HYYJkVRKp+YqfYmElHfWBJmIjQMps90FnCLqXlkIsnbqMuWfb42Jc3XjyDr/006h+iibWRZxxQJE8RTlPnb6VhvEI7GRQh0FD7Ik7Dk5f4n69/HIdoN2sO/GCG80agXxw7UN95Toc7I2Y7Ecto7Cy/G6BR1toD2UTFgG6YJ5pDKTVtXXyIQonaC5GVNMQ1kG4i+Oum1Al2XhfbHy+Nn9VhP2ptxWVFGiIComNEoSaJiAEslbwHdKV5fpD2gI6Mtcb013EMKLy7rSS7TSkTxeWpqY5zhCAaJoaY1Qt8pW+qLM1xdQjHmGhQLOBpwa/V9NoQoUOJ0wM/FGrUs/F/HNbM3j1EsFnNgzk+f3vti2EP1qHKPlF+2kjLWH6i/n8SNav0bhiMzbNpdrxcdUIofK/VCpVqXLBU40D5CpYQRXJLSkdNPU+tYFaBB1GbufoJhvVt5oi/HKNvwS9MeeF/Sy7x7ZnvFCfnx5gnsJrCUI1SR0Z28+3re2gN7stE5O45mEeb+ueQaGE2tlTvltz1vuXhRnPak6uuyyOOiler78891u4P19kJGfQwxl9e9p27GpdeKoAcOrKzVMoeOFyzcEwzwbQU9QohtSwYDYh1pVfJly00bIZCEa7AV0tHW7IlnB2b9e0kWKeZaDjKwvyN5gLbeedubz5Ct98TYZj45XwF50U70NwFb8foU6ukIfP5dOzpYiz1fenSF96bZRRYO0GhsYXkg0SZKbGFB/TtiVFKI3Pv9E22x8bSRfGZKRnieF8ztId6tvkG8AikBSGhp7q89B1ebCMbfR9KY9bxMmeDh7CaWx+XOC/SfAieimm692x6fk8AhJlDtNs/1Was1SDsahI/TyZnO+jRlHV7/ztYZj2ST4Jdi8b9AMjZhoP7yI4tPmOjhwrNwI0Xlgykm5MneYWYMPn29Uurus4vpkwz9XseVYFYKHyrF/vf4NFuhYuFasUdcWhVpHj6Qvyg5sQf5ZHy/AtQqkDxnR8RsTZA/tJYg3u4+lXDWHyDH9nK1fqwz5HV4KqnCCw0MY8xFNtPwkWFg5hDXSIsC0RGsc8tpaO2Pl2fLOII/rUXWgtXdJCI7iCFPRr9LGaby/y4dWvBnZ2Q4yhj8ZLWBAC9Ajk9S4AHQcPOhnTjEAdzm4sjVGgn/zTRte2eRmGCNccA2njNs5/oIWK7N4hu5n0ZRdG28UQ8V7j8XcH2GD8egAtgK8Cq775o/L9QXhz0DBEwRxmtp1qazXI+0Bc7dq0VYsxtuTzkh4G9wlPOHHQd5Pe5Btr1wwWM+Jmw8hKMXeAMMUEE7WRx1lYIW+Tsh+AJFUcIRNvLFh7ZkqbnnuIdonJSttcAuZVcWMEJf9rStuE6W6QPdE0Rpn2ob7UDZJ2cflparWgUt/ddsBHE9iO9WUVCynpszUHgzjw8gzcWFQMlQc8SU81gR/A4Q8HAy1VzU6XLII+kCeaVA6Z21ywHjEG9MXKkwT/Aq6BRHFPTt8vMnXbuDzG4ttftbf8mI3UkrnF1UqjM0XqVmV8fyGHF1+dFTBK81oCnAQBdF/0W590Htsk43tSYXCoJ0zWoIo2zR86RNms95D4CBZS0JvdsNauDgdDPbifZdkjHYaXAACLjxdGJnRj8KHC9FZy+T4Mj+iV9sVDS69Do+/fiievp8eLY+9v3e3wvOzMWl01RSXXYjMuuu/HXZX1P/lNnPr/UT0RwvXcamx7002nr8jezBwp7vOrJXH+ASbIKblQLzRYvhOx8+Yca64Cv5Rr8G1Ni+254iSkcxqvw==
Variant 0
DifficultyLevel
784
Question
A miniature engine contains two types of ball bearings.
There are two times as many small ball bearings as large ball bearings.
The mass of a small ball bearing is 190 milligrams and the mass of a large ball bearing is 300 milligrams.
The total mass of all the ball bearings in the engine is 238 grams.
How many ball bearings in total are used in the engine?
Worked Solution
|
|
Let 2x |
= number of small bearings |
x |
= number of large bearings |
|
|
2x(0.190) + x(0.300) |
= 238 |
0.38x + 0.3x |
= 238 |
0.68x |
= 238 |
∴ x |
= 0.68238 |
|
= 350 |
|
|
∴ Total ball bearings |
= (2 × 350) + 350 |
|
= 1050 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A miniature engine contains two types of ball bearings.
There are two times as many small ball bearings as large ball bearings.
The mass of a small ball bearing is 190 milligrams and the mass of a large ball bearing is 300 milligrams.
The total mass of all the ball bearings in the engine is 238 grams.
How many ball bearings in total are used in the engine? |
workedSolution |
| | |
| ------------: | ---------- |
| Let $\ 2\large x$ | \= number of small bearings |
| $\large x$ | \= number of large bearings |
| | |
| ------------: | ---------- |
| $2\large x$(0.190) + $\large x$(0.300) | \= 238 |
| $0.38\large x$ + 0.3$\large x$ | \= 238 |
| $0.68\large x$ | \= 238 |
| $\therefore \ \large x$ | \= $\dfrac{238}{0.68}$ |
| | \= 350 |
| | |
| ------------: | ---------- |
| $\therefore$ Total ball bearings | \= (2 $\times$ 350) + 350 |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 1050 | |
U2FsdGVkX18lOYw6JnFO+UugmsUH1TihKVg2iwPYSIwx42nusXu6Rfw6HkEmP1JHF5JOViMOIwDpXVE7HvJ72WG7U701vTy8kdrj6q9CQKoY3TqUldQ5OFLO6d4Gxnf79Yy7ci88nAwWSVzXWoSh0E+k/8EPAiwr1zUWSdjIW0lPuz2GoDQv5KeBbiEPSmIiZ3vlwqqjQmTj5YGBJuwpEcH3SOjquu0SJDuY9bOxHLLylLRkqgSt4TeAFEOaqFeYG1ARhIWGGYy5Rr+xtjxfVuLFR4UCoZI/gv0Ull5qxDYOeM2Uy2VRSrrGCfnjihAYZdJvgfsfjXcb5t0mnU19ME5Gb1G0FEB5OA+TU05lXEpuz1sl9+X8ytNY0hpyHysuN6JTiECIbNaNumT0kdoTPIP8xBn1KNiOWXSQwamRId28Gmp2G4mmVZzbqW7MT+umRjSV16ntF0sYYfLJGHQFmvOUs2QQnW/RCKpoZMBMl0uEigd4Cd8+zqOPAtCnJfw2nWuTiuI6RhPWWte+q10A7Qp1IBW/BM2KyiuqvH/wdBhEmdOLXuRIPVfT9EXDudd/gJRQtJpuZK/SncYjOIjX70jl8QZXwleL+ndpcy+ndDQwNx6DJQfHrSsjMVT3Ce34nqE2CHKs8LKQoxRO+UgvX8D4LyK78xY09sD9kku0ZeVqiwxnhalluGVNZw5BBjt3j8tINj7Fth1Bs0eskb/fiAKIfzgp9zQNln3ni67BhjSMZo5lbJqhZo5dVuFc6sEecVwFY3t5nXjInOFyZYGpVbkYTbiEE58Md9m3sEFM5L1GXxvVLDAwa26uNQlLArQjk2+pyQb9/PAWiq6dfh6/MwnD80Mj5X8NRvTXP7DiuCqRK7gJnPg9JHR8few4g7hTRqX/W8m85vi21h7oFQH5KU5ULm1iI+/yysSX/pYrj6Co9Clo1SJP9qO9t8xuL10tXkM12e/w+T2pEdARUXpZwW729/+/V3oGU5zIhKKjqo662llSCuc5hBuX/hCGVhOoP3JA0XfhVA3kOcn3jEvTuVs+xh59PYcJkGedEVUQ65j+rGmF6nb8URegse32FKM99Dqffv/5EcAGpllx5N2vqzrCN9Y5zSxD3wQnviFpMLaKnnaHvLwh91hqDkZjxxx+JUHuExG3Qfvjg8Irb/QSmoaCROumcCveA3YqZ0bgTvURDtl4AJQ507h34045BzCpdcTyi68EMfAqIxJBlS5L8ZjWYIp+SghNkFVPJgUGJTImogzr1fZswgmF4U5rdJi2EKWbvtCsLDyGdocHkhBndyGcSG3ftWRRqJJz4KvSlEKDVgouWed3ymg37sBYOp1PIauXRah/LVkEt+YRS7PfctZB5XCE+oibsEig5PdYZxzOm5Mbi6MRIR/3WLc8OzZOJ8ZMfd3TqikKU3v3zHZfgGiR3izc4vaZtNZU43FX/O72sYi7DhRqCId78u7G31bwMpiXo9XlAVFDfYxLMcdfcid/tJP1zxuHyzlNSSgOWqdYwA8BLbmk1kiVG8hZ9t6fEysj422PB78zu/eZDCTJ2CwfwK5kwvIYb9UtaKIjiVicCAHGUYbJc0LY8ESaIWNmA00FwM+SanMmGz4lAG4SveYJYxIWWXU2oFPJw7/ALD+fgxsfSAwrLK1qnO4ucLjMJehmWHbkl5spl34CNitSouZO8UBOk52sLojo/ZtqbenCJc4Wn8eOS2s9KX3cljXBzBa7psT3tATR4NXBGxMISvST8d7Uu5Vt/ze3eOBvW+lk6hS7c5xhw5SOc1YMaCBDGTKizkAkXADjZtj9/df8vSvu0jnyoeDxsmJuIr/bJarX0nYsXnCYuqVLpxGVR1TSQMQzC7jS1EXRxdcK9xdXHWHplI33PXh+nDf8KGznU/LfG9ylsUNsV7Xl7Si1H1nUV9S2SQw5QeDC5uJHI7ofJ8lACnZPpEGSfjDoNLrW51TvVG5W+ar6ZPfDmiPtggfyRXPKQX4WT4ad6d7Ge3h6Nzeax6d1c3ggzB9lNyqv0vgcXLz1/sUD300KELK+HbGzdphu8WzGRGjtGKvYv7YTLv/442DCpyjC5O0pgZ3wNq688O0wavWrh67fhh+06DFEfAzTYi6HeR1loJTBXNyh705wW//X93ZDQF3L/iu6vLAJ0WPEngaikz/J/UX31vb5OHm0ZNnBPx35lQ5+yH4shVbuXyNhyPP4y3ONSxj1JZsHUWG6IdTY6hdaxTRSZVCosBT1PWcrcZJ56w0KvQ8KrNSSkh/eubpirb2Rbzk8H1SYm9UZkkjUn1+XaxrcTLNp0BqGn29FpiNZhS1EfJVJvobIdDYd9OZh1iAfAsII3y7mEDIuTtJ7NRS9NyMhzLhWo4wpZ7lrnp/ZAUZR3vB1Rf8dbVpq71YMu7QWe08a1tVGMAtmWfE0K08e2Zt7HyzflylLzipZefdc3Y+86qixrw3xZ5AYiZC3+erlrz0x+eCVUN3hfEHlF7AVRJujpq8XpTei/Urc1tPTN9aItuEWH8T+J0aNUJVMf2fb/PYCI0cNqSG3gUu4m7PpAgqRWznW6DMAn1yQn8KgPEIfKfgbI3OKPvNkytGzgjvyUpHl6ph8oA09PrPvlt3bEgodARjURjyYb933S8oNjYaionnxRpFfWtc8v6EkpZQypip1gmBx+Xp46hZvn1wUsv5/dbDAqcTE/5MGz1J5vbPGwzYu8Ixbz33FIPue/XLLj1acLZ420gFwEiruQBJmuaf5d+iupDNuDkqxtgachhK9y2H0uWikp9s6N76cdmxcdKwmmE9r/r9GLCEFXlvpFXt5fg0epLhrUQYLHgILCBHjk1NZ0GSqLwuXpzHWtZHRbRhNP/aUxMHqmlSrOWjuTKrIzIZdPqQNYmXoJbewj+/Gs9Q7CNrWJFEvZOCr0XqDDP4GFJTzEHzFPYWrcvbG+6n8YniZUSogv+yXnd9YNb9BrLg038SfDCGM9fsHrmf4AdJsRj93G3jtrAESYqHy0EvYnt2x8vyqrNzkLIkEBpYpOJRGY1TYvqynVQuHZvzWq9lj1X8iN17P+vvysL9Ipr23aZGqzo9/+h47nhz65TS9SesGZLdugNHuLemdhS48IVspGzVRBaRh1QiyJm8Adi6nQmjTjjDRQFs1KN0F+z7+VJuuuMHwx++k05FBHO3xiBWsNNemILQIoCy9VFsDQyiFvNEMFdt72zS4qFme616xu0K/QfcsPEL1/y6ZmmkMnnenWS9VlgfKADMBMcifMob1OTIBwrMXw5UddBVE74hgVsOMfcDtJy6+xswJjYNPytiL0/c3fCDxv836zVk0JO/6olljEs5CDCt4E+3lsZPOLrluBzUs2o3ja9ESIHI1QIBwB2inOr5stbd5AmVnD1/j6CCvdGYXRqKagkqQlG0Eh9b4MnmFXzOD7mSHeCyfJ0OQdgF1nVd4nur8v/hyM+TF3r8rsPLQ/eqFK1gsNku9PvxOOWw8YdAxfep7HY64oD9ru3CrppmuM9/Q+PA4AQWfE6/2HQOb8Da6f860lm/VuHNuOuOfkaNI7MxFKdqqzXpF6zP36e6zOTXGWUjI1l/Tez/iUpniv9P3PLaFndbR5zwxy2gR2V+z9jMap/ar83MVdreLehCgbWGjs9lt2SG3eR3BiWEeK+n0oQhyY86KknVJnR+sWI8KvVm548IT4iUYXUWs8NIKtYaIXU04MoKiGybG5dgxzPszO0hdrMbl68QmWmPsYcowB++JMX3GgQiVTivwXrHiY8puRPNwLZE4Gh9cC3MMaBlEmRvtQpwVZueUA77qAXduC8ESICHcYFg7WDOl8yk2IX2FeNQIZaY/Oix4wZTHctTppDKg17oOIJnAx8L1XVNiC6S1Zi1JycA3srsgVhd/Antds+CfX5o8rW0jwTa4viDkc68MvvreYQX+YMaangbqyAzdCix0qCNCMJtMRHA98arkZWf30MQBO27Sa1BHxd5Cqb4mdt7FPEkYHhmHnul2xL1Arr7EQ9I0ZkpggpyDkaBOyY5DstWPEaSIX+Q7EOvmtqYecT5b7vMgT6v/ZMV+WWXwIUOM0yqRx3VFsyd2aV4j6mNCQBo22zPR61Vv8Cfo3zCwOLob2A32bYtJ7tTKzj5mFyDpekAzPWGe+oCBAh/NrQ9A9gYTCtNCHp/hE0xDriBl+bWEDTqddrU8z6/qpP8TF5d4FHcW1UMt7gBgbfqwcgGgJurqei4Q+M9oZfRkFfHOUv3PoXR4nUmtQoqY//JvMp/5Y8MaqtCSKLTmVu32y/yfVa8M2wsojhsbrwHyZEfzhrr1PBYsDphuRFFqQnV1VZn4C6tmtEhL5G5fvVJT+ocaCoBJOccOLddnLXWEwKRCZFPrgbdR/nAr+faa1MTjNxgQ7RwOaHc/0Z1F/0lVvT7/39+JAXGGUFruI4FlBbFSg3RA3podXqEo+YvoRZIT+V4myj4FAjRTRHkryViZoE9G6TDSWfZDDN2jn5dTPV4JkjGERbi6vmX0rdiISSbPw1YssZXTjq/rf5VXrL5P8k3YXFog4VPXHKYnMT1bzHfsfIXRsp4dPpJYZ/TNM0h2SOYNhIzL3NtjoLmhV97O7HdIer8nyASph6ZNZTpdhK99bFMDS20RAxDJoMhVHvp12AqNn2MfApai8p/dWPrKx8zQ/593zQXGmTzmGTFw4jvgTPsNJaX8mdHrn5pKvwwJwhijaHDmLK8QHnJjDVFipsG0QZ8QwUtMbbGuNQ5TckxSLQFy+0jdfUop27688JNbzl1T9H93NXDsaYWuv/htXxO0b9RGV/Ls9mLa4dF8OeXhQc23yrrIReuF1YmmFdPlQPlmjjpvwLmOQha9wd282NhoSlcIgjSsmpLdDgqMhX0JVH15rUU+qieNnZDJ7g5LuAOZPvnhVyn1c5LXVv9iNQdJR87Y9VamTEw/QoDF6TbUhadthIac1xQQeOJYsfrYLm+zx3CDzrXjImv+3hoHimjOos2vNxdip+RMa4eIj+94Lo6jJ7CTAtosZDqn2n7hYyTEulSnmt2VFtae1YfEUZnrAbabDedybqB3nv6BJr5CXaSsBs3qiBJbAVsUaePWioCUBtJNzQ/R3I96mAkBIkia3BhnvtIIoZHj3CPbt3ALsGRvQYb8gGEdwKzqUdJoQbg3Ny7vCo57KYK0eSgtvZzvz+jWhYh5nvtuKmQd8704GbNL/CHfGdafyPalvDUdqIz/mLb2AYrwOcOUpAeOC83xB1qfsbsT15a10NmwDidlM3uJlyhuPgnpIXDYA4+cK0nVporJj1xhAyE1ZoxKbYMJ1COy4OzGaQuYwS3mSSXdg2ze2IYAurA+TWQiwFCoJJ4xdWw+QTY0SfXoWseLyxDaSboflyOeQ7UWdsO0D/COxXBZHZhlW1pibf2amIkopZNc/+8ii6IxW3Skc2KgHqnPoP30duJ7sBkxE0GTqgwnZfs++EAoqNdEnZqtZRpmvOMj12k41NpbUmn9omikVHyOJyyNNZ+q9iJ4sH/2YXJN6nBv0fBUKOYcx+UNrqw7DVuu26Co/6a82BOkQ5N+ggztc6sBrW4n2DHtz4v3zVcAiHr4UaVOc9A19IeHtvPavyNljdugyLjwIG3vo90ItqAwR+thTWFqo8Rx+gPSPp1o1TUKzMKuVceiNFtsn4mqJbHSJpiWmlYDvXw/TjfUsLz+korMJaLYIaq9O80CqW/uT6KfPWDZxzufgDKcrmVP+H54DmWUqQRtk4NZOgmJI2HqHl/Tn9DbKUevRBS2zhjvO343scvEF4/3nSo3dPdY8P+W4EIvQ0zdqmqLBPXvr2R0bwjI43asoE8soKIHLis9B+C+Ibgxc7J5t7Mi1Hc0V38TwyMzyhYThkWRCRYRf2kTn3yL9f2tE3c3S1aaBhwa+Mt9fN09DTIyB9iOVaN/bDb3oUmi11faZGhVA2D1zCLkV92vsPZqvunJ6i7wcdGVp6zFXS0EhCvjcMSEiAHearO+64W6F42UQ5qEPSqeVRboluQimQlyUiOMEuIUYtsSD4qWpp6in+E+YQRszPNKnPsBgCepu1/pVQxRwfIoLWtPbsODUEn104H9KO7qQaBRnZRG1vYEF9PgcO3auWk1ZimoyEOXMZG90wWU5zQrTrR4a2+QWlNrfbGZMO/RWxaItBBtpivtnnDsqgJi32hjdyUwV0bAikStkFgHZMICm3Q0zjh4iMYGkG/hYnc1c8CEnE6C3mlQ/I9vLEq0kZK1nTWpY66lzNNqBs+QsJU006u44RXZnwPdiqV6u+q42zhXhh2LJ63GkqvXIeXW07k4tywksi99xkU1nRQcrfOjiNRCv6fAYkB7fmiGAtaoEusDZqs//Jke5kQeslpF3kMDXWufkBFRV5eELHjLn12XC9Uc6buanOkOhLgUoOLEDpl+sYosFF8wNLNoWDZgL9qiz7rbUtf7FR1WX5PVOfIlsIgJYcv78QBVvHm7xsmGKrSu0XGzqeNZlS/Q/f17KGNg/IW4I+s8YKVQfhrVCEgof4h25xLi/AxKHjAae3CU9SvkKPtaclgTuygXM72DC4VKgtHI4v9NI1SdqKiutXE+SG26NqUjfVX5TGhdrM1wRGswHValEE09nGa5QUB4ceNebxVHWxrTU6H0Ixe+EHFVwuZuicbWnKEmwiCoTpz2ZDx66aypSda+X0aqQeYKgw1wngR4AqengYYj9kjKhrb6YQ5vFl4OeY+XwFhSa1nDZ2Xl7QBIvJYoOxkmIgcdf7I2sQ6YmU58M+ALwBgnh+lssiyrwJREAvyNvX/ps2HNfGUZLgrBbrMZQrkKFhjp841UaHtlV3PX+g4i9jfhnyzhNzlhZXD5/ZQh0HtP6VnyYvW2QuSc933dn+f0WSraQhuAHq/9WwVCNUNRPsTTQxq1UTKgASfGfoF9KI+dCDuW8gNX1ErNSquD0STAznVhfUlpseWXygV0xYtro49I2+FrQvum2yEvkIA2Je5PRv4I/V+amGfuFn3R5U5A95ORToIdiwP8eTNibBVPRXnRHo4/icZo9TNElu46xWAKho+fMPqV2pVJqXBDgv1SvvTOfAh7GqEtCppvzvUk7IzArLAyg1sVZMUGa+U+70mQoPHE74MM0OJmnqN119tTr6VCQO+VWHPssuJzFzzMsEgVKN4SH53bpYARus7Js0IvjZi+OeKOQ+1om+UWZ2UmWMR15n8rxRQBy8Z1z14qnGWRiRnHvl1BGVbqJAcvhoP13RnG1uHxKhPkcz8QEHaF/QmL6W3VQYfLs2jFq4f54+BC+/HQYMRp9Dkvih5N0jgG2v5o0lKeDadDFfH/P3ZfHN/ceS/mij5enEbea7JWA5jzAfha+L3kGpLM/muyu2iDMFFRQgmCduwcAWIqn2T9nZB1SCFHsSpn6avhHJVcP5Csr3ovBkuK4NAKgAVzkHFyre6NafV59I7+xvG4JZV/GTxE9zrjefeQ5FA2En+YqNx9grKh3eLfIMdd4ke910SFwwQjhlJumfkn0T7YXrP8U7dyy09e4zJOKLF8XJEC0GBg/qemrGA7TQplF3HeHa9eVuTKVcDwI84w3KWkJHpxAsd2+5ifkpWk2VzZ6xEyeAv0QYn3a0J+dl9u6J3WC8gyXwA0Ppo4bMxI6jowDonIvU/5hfM9LIlN+ztl+gctG7Y3ynIvEVfCsgqkmNFteonuI9ummIgsfWZuWhvsAoN8a/M70tOLBHAnhMpPzO0asHElCVRfCAin18/rG5hTEHmrOl4V7nX92vpxKR9AE+m7WTwYRJgDtTMXVI8vemuFXgTKXp0uONzZ6qRUoS1uoPXPo0G5EoayOXgLuztV244hB1K6XBo4ULEMwgDcsPIkZyPCeR42RRa+xMBuMsLNBKM9JEUp0yYzg4laEp46idkdA3S0uaQOmst3aD84ep9s0leRvkubTiQolFQDPfB3qp8i1+ILUS/sBBi2mOVWTyt3AoyheZBLOqECYB5tcyCm9LLQMXkstZYo2+9wfmQ95Vk0P/Zjd3bCiOM72/xs1kENNoBBbfp14364twuDorDPCLVRmslLzHVuT6rJnLhc9tGIQd2c6ILiIxm7WR5DI4GrtkGINZopxx/pvIJH6XOlmVeQ52mixhZdX7B0/HlrItK5QhPYzH7h4EOl7jeceSWJUHM+Rmb3be91TU1aGhyMdMxeTQcGTe+QL7SYAmqHu5gFt/G5FbXohggXsEFihVNKTI1Fz9dIMvSYbLShjX4G/6Nhof1Z4wdXHIUsQUFXx5PF3WKWBFc+pkm0iXWTmTWI44pF++qltbhQrXhVko6VjscZgNS4WlJsh+w4sMc2OSLxxWR6t+62H6vw9xEBIHgssEmPTtYQ2+qo+IfMU8/gMpN3eEoZD+TnBJWfUCjkZzfiagriKSOaorYgWknxi14dVCNVsJl0DkSdOQSi+HHyQuS7W39duitGgBwWA7bJmpg4WjR4pa+Ul1ri2SnWEbSqAp6KFAzanrp74JgrxBJoWakxVuTomGQXvnILQqVb8ZtUDjBCHqVbX1ZsBvDArKNHsCVEdb/tNIbao8hSq5ZmkE5DebIIPlaqAKPy1kfeAtThm1N5Gl7MYY27q8rGw0tDvSQdm0tMbH1kHNif/8h9LD7yD5MNY3/AS+MgGARqXWu8UcRGqa4SDeW6umANQ5ik8cVctVXkJ/QfZjEokiwUwqSoDUGMjQZDzjVXBDd3jV0+eJWpabO8JU66zbnYKhyZ2pmEFtlAxMkV6ENVFwYlD+Y20Gkbe0UsRZcqAdf1Y1LMwcz5DoKCCqsC1IS/Uz+pTHJYiBo+0Jyi5LgBg0rrTQW62u+mIr/nQ8TBM4DQqEdGDbPEy4gjr0uE316TvU+GWx0puzg5upyB4ibkH5fqTmzAAwmtm/qdoYvvwgIGIoNlKbcpp0LP3x/NQ5RVFYSdpQ/iyOZWcdc0nJm6sXVp/W83lLyKkfCCBBg4tChEYLTiUm9CMEygt5cqDDzGq6gC55r5OCoYdLESKw+xLkVV3CISDaYQ3NTvm5kKFpfnOeYsPgVlq5iZ8rla4QM9reGV3uIXBR8P8BIg3OLS7yMraGoQ7awPg47kxQmXyBltKG0at1BnIt8YWVntkmPI4WIzAIKWiaaFTd05ByBSZGYOztzCP8elJMe1Th6DrxjgtmGpR7xNYrU9Cd4zRJFPqXDa4S38DS7qc9CofnNyDHQXzDnJhWTgntkPU2ff8aebgRRXZBOl5utZL2vz4H2HEIBh7J4ebWykv3C8D5FFNAVn0JVl0M+a7Pki/bqQ1YkbtYMsSigJEek+GfLvLhtCmJSzwXZBUiUAyxhw9ZUuI+6j+XSVtCE5mrLJ9SjdM5lK4/pIMHeigx1lmBXgUG2+QGAeoJiUzoJ0CMBEQtdVZSEx3WVmeQldymwwsmaqvS8ndnYonrmaskF8pjLgdPaan/7fSIG4sgKS+CdK/UPP4oumtbyt2Xw6u6cQVNu3+MTiU8JpRhUn0NH7B+OzxXvYYh86PyBk052ZFudvuhKssazr0Xw5JGRTCqO4Rz6SlLBLAsLzQejmOA4vRAi4TBzk35KtHdSXPTls6v9ZUOnhQ6ZLGxavo/M9elY+6r6Coq/KSKKQlanm2WayXohlL4SJ2KzgKjp+mnGPtImHWBsISgNt0rzhVe+b9eI16slvoPtqVWaRluuT47Uude5bUQ0gRFdxuje64yK+d3/M9jNfIULrPCBWXVT6erGvYK/8YxX88w7p0fZbpxHzfAOTFCf6n6di7NsivPavYh1OGwZACbLyGa9NHSbsVrsx56T7ANd+qfGuHS3iXQ39wYjCfr+91ogz0JrtcEbcunj/t8R3V2hTUBJktMMx1+bO4Hx+DxdOyLAa8hypMbFXUwPPWJzlmjYzpdLiriBFCMa01wup0ud2yHkpC52GyNrWNo+Sq/BYT87fz5ySRMBBXu0NYTuIRBSFZ4VE0+uR26NXu2rkwg6AQVTVJb/8BUjPaXeY0jK6T9QeT25UzGA0ka4+LVT5zYOBnAfuG7L6LUKxnikIGHY5S1UPdBGe0ZEuhIXqjbW76oLuqPDukI+BS4Up5o25f2ds5CfCqLnd7dAN0O+ghIsbGhs0oqNs+xW8xlT0rfMsdGYKNKzJbEzTpgsVYZkgqA8sMUDjeuQp5qW9/jGQFOGoiwTYG59TLMWobC0sBL/TvmE8gcsASzDJJBZAefQQVwPV1SVxmTcg+YatdZkVISCtJ4dSOTaQjr8w3MT+RIn9b+53G1wm2WADbCRpGwuN3XWPIXPInU/x2oRZFl5ghup0ZPYs8f/PHWzEvM6S7yzbfS/t49rx/Ew8qNAIGdac8TQE68bRcQeX8AZjY1xCULyMPiGsqrUgOw3RwhQ7xy8MXfjqbnoxfmKo5AaBNozA+rLbejK/tX+mshDo6F1GjkUiHTw0cLF8J/JpTpBRXDPlyWQGJDMw6LVj/MA9YfeUhq+1qHUr4pjjAc0itxeOpwK/HHpVwkmR+ikO3acy7S/dSJcrxyN8WD6B2AUvLVtgOfX8UidaHXuCN8mTn1Us2bN8hQt3rzgpEsZD7hzxowJiEHVoKRkTHBopqicEPpYFKjMi55BFdzbM8XcFprtkTqhyXUrqBE+dQTS88wuWiXmyqj8IS6ADA1+Mf/Y+mAbkDGR+/vNikVRnr2DghJE2mDhMFkJLGVLM+gkgsd8lWhfnsxrXRy1BNR0tFIPuscPmY55ZCUxzMtHDT881dnRGz1CVpVssvsLHpri2yyRGX3cjR+n+JJ7yLePusD4fcza9RHZUlFx+tYLIl2oFAdP9HkCg311DsPbB6pQRd6nJi/fUfti9m6ldgJK3zwDugEC8l2fpgScX4YgWog1wtdEKtLs7+AqfOXZJdYJNCpoEINhB17V3WAhwY68p0EDcG9eEaoTZvVmLkGj+KWu3zlvXshBxPrsdq231sWSHt+uFU90jZO37eEYTaAwwPfXE2xKVBTxywvpcsis7zKZgp1sSGV5KGflpOhrDByyttzNj7m4L4Q9zT3iIYHcU8T3HsWAwPRq81KeDy29G3G1fLnLYQCbD9JeLKTypaDiWuNMt5XOzcF6gge3cRy10REqsnDXe7lvVtQLngoPu6Vn4tc1SrgL2w5xa33lwiny1dyZWXbhiZXPRwzO/4cfNM2hKHW1fK1FWVPmn7H3ObuX4KlM+ybPK/0VK092ip1+Wh1sjBAmg/2f6YzanPS9oNaWal/3ilSyBh4xI31u27zrJ8++dqWu/Q4bVJ/PHhcI3iObL4FMYTK3KBxapsOaFAgY8iAouoNxlsry20bv4Me5QwIDUWYtZNg0dNraF6cWAj5uQ+xaZ5UAQhJzNkqgpZbFbaFRTOx1sK4HVnst1f0lJbAx1qWe6YbhQ4dA5zwheOMxjzJukYTTkNqn8azAbedEHkTf62VNagl4oAMfNeKePDFB+2aHZjK1hhdY7RkFYVlvlcz3C+LN0x6BwOTKwJdL/Aq79xulo/8UEG2jekHhXOSM7ERtJkqBueM8BTTUhmGt79ghaPDTUNVwT0mB53b6UtUy1XetI/tSsEWggcYZdskJmEr7LVWULtZsgGqDpLmmewjiV8XP+wUOBn/VCjKBP32W0An7f8MIyjQndmBq7VnK7bUAGTz2kF7R6SVC7ow33qaDstgT++U/7KJ9sNEpcFYvUA4NmBaUKVSXYJ52LDhPhyFzGlN/qLzfyzd7PRZUwyiuvjRAI6OcBkUlJY/Vj6qZWwa/T8szKRqLlOooopIa4Q9DOLMobXB2s7agSbDL6KnthmNCy3VqoZrIWBGPEzOfO3U+2HHYIeu0x6H0jMQbkr8kI4enWcVPAqZMTx9nO9Xioh/uUJC8YNGRgGyd6tg4bnu5ha7HklrGLTPBvUXmdebqliLfDOBhy8Ih8Z2S+P1625O9EuEUKSWZiCXpat73jTCEg4uBFlEbXtp7MfnG4jiA/ymDGn0ZFh9p4KsPPenXHFICwxtsgWEfqf1KdkkUECDuYrk4S5nRTS0zBH9mwfh8FGt5rpQatwQmEUhxqeknrZyuDHEKDHEQ4xnCQv/WYi8rNY0DYBuse9gznYMKRLda28BQOa7TLcYovGjRbz1mflWW6AhB4S8TWx3SABCJaDL38pxeR2xDaH+nbKZ8/dVOcviCgLe/xxnHaaZc2fwIabY+g1vdW3i0HfhjXq5YCcG5UpVO7lwXIqY8x/QuNMqso16sydkHTWd9nR9mRwQZb4ozjJ1Ylfg/0Ylj+fOpRg7P8Pos+KCPoaneaN/dY8zMcq8+XAaRNjxJs5UMRmKcKZahlHhSfjPBUSOxD+PlHsbEvPFdRw4BxnrkAvgsWnpjHc/3bprm3H1wyFw8tNh2iE5rVme31IBuHOqicwXp3/GK+/bmeyYq9uaYCuYOgiWTGfWAuzAI3tGIJk75DnTFnk/gIkUmsJ6fZrAUouApwLbIOYVyXfk+w05HmBq/DaS5tX24wlr76th4fppFeOzzH0olo5RclqOlcqihvO7T6yusp1M08nDPbaB91JYTjdRaEZpk2J+CokMUWl4KWh9nadfGoAcgXm9HWEIGdKAEeaY8yAv+6BPFlwj47sAkVxf4zsjqIJ7pAX4asVcizOjgBi5XLim44zIcdOCqFcMt+yhqui0JNXhIq+gDGE43ut/7CYbE37qDiCgLzCo5mIZI2X71pSDOkamSo/7+CyQELohLpC9FsU3WLs6WwFkKR7h4ZDcYwpIvyiueTOW9ghsckBfbuloM+KvPBiZsDgoGRybF5BgzbdNbSnnVAqgcYiFDv7OILWaV8idhYpMZ2gt9G1lWTNvI2Yneu1WDfFCEwFmdTHviFT1jBpknnGUcjOZEuYruO8hJTJeDPKag3IKXq
Variant 1
DifficultyLevel
790
Question
A recipe contains two types of dry ingredients.
There is two times as much almond meal as plain flour.
The mass of a cup of almond meal is 84 grams and the mass of a cup of plain flour is 120 grams.
The total mass of all the dry ingredients in the recipe is 2.304 kilograms.
How many cups of dry ingredients in total are used in the recipe?
Worked Solution
|
|
Let 2x |
= amount of almond meal |
x |
= amount of plain flour |
|
|
2x(0.084) + x(0.120) |
= 2.304 |
0.168x + 0.120x |
= 2.304 |
0.288x |
= 2.304 |
∴ x |
= 0.2882.304 |
|
= 8 |
|
|
∴ Total cups of dry ingredients |
= (2 × 8) + 8 |
|
= 24 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A recipe contains two types of dry ingredients.
There is two times as much almond meal as plain flour.
The mass of a cup of almond meal is 84 grams and the mass of a cup of plain flour is 120 grams.
The total mass of all the dry ingredients in the recipe is 2.304 kilograms.
How many cups of dry ingredients in total are used in the recipe? |
workedSolution |
| | |
| ------------: | ---------- |
| Let $\ 2\large x$ | \= amount of almond meal |
| $\large x$ | \= amount of plain flour |
| | |
| ------------: | ---------- |
| $2\large x$(0.084) + $\large x$(0.120) | \= 2.304 |
| $0.168\large x$ + 0.120$\large x$ | \= 2.304 |
| $0.288\large x$ | \= 2.304 |
| $\therefore \ \large x$ | \= $\dfrac{2.304}{0.288}$ |
| | \= 8 |
| | |
| ------------: | ---------- |
| $\therefore$ Total cups of dry ingredients | \= (2 $\times$ 8) + 8 |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 24 | |
U2FsdGVkX19JY6F7vQB3DRwcmJCv6GjUuBOHfzjA8LTD2QKMH+V+9gFAgJHIOewcLQ/uh+sSSOkbMQeB+FJDttSFkDsUhZtbNytoBk0v0/pQLsB/cGiKe5DDEYOr9104C/8zIPdbS2TH3PmJp/HcE6Ii3Nf3CDw4t+Oiy/+anSptpiqPLSVWetc7sNkRoRyaMiiExEn9KWpKVpl1tBlsyQKj7LWP/ef8Bm2QdKBQx6BwWZij/f5Phm7dxZpF3KvCcsdxyRyXx1flUjPreAXuwGncLOaiJ4VoC2akhHmljHEAGYoUnXTT+AJFpV+7RfE9HpeBoEgN68WqUqmxErslHBFFJ9Q8vcBdbgMODJboFEwsdDNj1histA8L/U6dh0Lh+Mlrkh/kSd0p5xP3ZUP2+pULcJbsytFilDfeTcQpL000KyJmdEOa0P3EM2AdGBfnU+t3TmtJjkB2ZwOxer+7q+lymwBhf/5NVHC7I+p2EynBVet3Y6Ai88MXGTAXyYUF9uhrB5lTv3f7g2D3NBbI+s1/1Nz3jntbwCr7EnWcc7vTXmXg2PFQlaHVLWXWuPCGuV+zjAZInl2dAVy/SwjjCQ6RS6BnaldcJ2tigHosbnOKNBVDINVlQxS71HYn+N4ndp1DUZGznLkjo5ze7D6TnF2icJ0fC/ZG/jLghUgVZ6IwD7lxbQyGdV6D4JSIHOES77YJk1q7EKWt9ErQV3v8WgfDOjg3KCBSUfU5iZqRU+MDahiAUOIE2wc9dw7Ve/TsNznjq55+fFVehL8dBtF7fKUvqdt06mWfbVLRgbCVUtEmb1tQXCr/eW7RmADl0jwCgbwNGujaKYaFUprwfQAUCwzY/X+HRcw3bxMRxZM8KwZiT5N2gqnm0TFJw0iki0Jl+8mcNV0cwCVLDB6jb8KEcKok0pSehxqxUWWEFUUngTNchslwWzvvfjzCUPRUazqpPS/X4isUmMw8imNNK5Dm1ezw0Zn1q75Mo05XybF4LjDnRwiIc0tS8ncMsjbF2xNTE7+VUplkhj0Iw94dtf8Rul2XtAUq+RrETD+cnYh4KzYoYJ82yhm8JIqzOKNCd0dCrF7FQl5+cNOKcIdsRgh+u3XJ2h1PmVjgFuviKXWciawAeIYy0M9JHe24ObTwDFVSYfksxZd239JKznDpRJkgwcckDlo1BJNQm5PzteMuld1nfTCQQqTqhjrKaTZzXDJzcBWUL66beCZwUzekhhfTiBYD3Lf8lCdCXf3ZVXhqKo/hmnILB0duskmMXgHDd24pGnNOJljs9sbpMcH4LuOwDusE+Wj04InB/URGcyDIyi71AcmxLIlM1kNHK9oKaaA+FZduJ6hObOc8kip4yxM1uEOZZi1x71wjlk1HY3wb9IaeCd7gh+oexSVcUVEbW/0/oJO6F+KB1vRyrOlSr1hpV/B29pMOCEeDmoOB2wSXtVUZ0mZk69+aEII0ppMbaVIJuETCdRjDKp6KOoIOxNA6KYXeuuoLwd1WrZKumSdSzfPs1FwZl2ZMhthEl5g18TWvaDfQZStbnQAm4FPSXoCN/IMl9CJ7HpEC4GWYvBaiPe+HjRiLMytA+vqEFzhVpbWc+Zv7sIPc8owo9ccJIAn90Qu6qf3sMJ/Luk8wzO4lfyX+IlrfvhHBaUFghqkRLp1aVyza/oqedI8GicH0/yRrrmyyoK1YH5ZTiouJv46MCFw33OnkcW7jdCH/vrXNPpTYfrEj5OirG5uYlq9j7JBNSgiAE9z3PLOu9cy/6VF20X/19Guu7A9BrVRUEAWBfoh6e7SY8i7SdWRK0hVPMhtxZqScn8pN+veK27eHGKzrPJ5Uza4/E+4nEUFO2OQvsI3q9ctaLxK4uqhsAE6N88iEGwDUDpmWEsoaJIsdeDKqvZNDfm3eMvkwtxy2xCf7TMcvgvv3xtkAWSiFhK3FWNpC66UOKwwC7bZ6hfsttM3GR0J97GOKm2A6q/oJfAmZ1YXdl3JbGd78+76/7AbLF3/M29a95iS15nsPb44wQ9m5eZQD/Y32BXzjv2sRb6v7J5HYdO1Oy/yS+DNoInFYzUmw/RewPnvhHKGxnrcfZWf+hnuKkZaQdZgVdcGEprKBvkeJ5FLx2i5jdhx3NucOttOI47RC3QNac13GgLTuQyw/BcMGj9GSxEceIeE6TLbSFmCiq9OSZ6O77k6sUWtOb3fMP73m6wbMpxzT3zMhRknKvrPUAoX4dlgT4Bpq7LNQJinqAmZ2+E5TEMixs9KGJGmG07zSjdHCdq0bBygVqzCwyUrSRVZ1I2H5ILl/SpUdWwaorvJqYfQiDa0ZQnJQh6nCpIfhEwOgbjt8Onxh+c2DALqjnBiBCYhgdUH6SDAaBm60LHYYiHaGByces1kpmHJC5UfDQXZ2wLAR0OhZaS8PXzHxWuJY975q8gN9j9P8aobAxUClQ8p12ZACYm6F/6B4YnsYzW1JIfswbw8YfMQXi51Sgd8h/rD+PLYFrI8OEbq2kSbQMt7dvpKRhGsxJMtWe5axPmvEIcyfkDU1xEQ4qWJVZbvYlolNJzcUKpLmuRU23937cbPVOwzOJaIYPruTJY2W+bmjS2jmTW3X1znTjNV7R+YBlAtGpK04UfBAJfrkhb6MiGShe/2G/FoUx4ofavSviGRJKmpDLIlINTkLzOd0Whebe/fUiSLOp1jJrlKiOZSTNwSdUMfr3IMAWIB4hP563I5auySDDD4OFdDQQ0mP7Ww45TCVgwhV3nmsyNlSafNxWCraiyjLnJRjpm/jN9v4AaLUzsuIY6hw/r05KCi3EXTISFv6/pqgiXWtJKvOBfdHMoqL48jvCeOAkYt/s2jzd+BNvtXcQWhylpwSuZzAr0v/mzmfUYaVHwk+XL3CCr7vWdTUjWLKwn1eGYeKUzG0M4M2lwvF+pd06kRcp9vtfOAYkD7e5YohbZBsUGcGysdai2zRgmc1MSoRit6v4/7ZhFQ6frLVna2bb4hDdjZwixnNisZSrkZkxORNrJFxY9n/u0SCxiUkq79aoko9TmyX4KGEWlbdpHqJJiPaXKFon9BFqtDC9YsQOzmig+KS2J6l56j9ozcXMNHm05D72YLeG4eXvcEWH/AfiX0inUp3M+2itOpT9xaqzcYBVpG3KPAEMGS2As3qY7LzKQUcm5JqaBdU3g/Qq1I4mtRaejxc+iXi/hJne33G/W4752qUN7Pmw+P8bSxE97hZ4LunDerDeFqCdZeEjMu4NvMNalZo3fd7km6DJ6Jsnj85O3mo/paBMMpXio2btrYlLDpB2Anb3bdYtYkzF3myVN9bDO9QrBjTJcN4kx07h/VEkOgQtZqvi+k2Oo9tbjXX74oFyc9eI5X5fmQYeGu/h9S212H3YCHwBdNwbVQokCGippLiKs0jRB1I5Jbg0Zhx9/Su6JLMuhhY7LHzkBKSSBcwM0/APHiuKzxf6PQLYjILIL8R+00oumlGXth1ve9EYUK4XzVlww3FW12+T+SO4M2lTECBHmO2xO4s5fezxkJo9/TpBMdkKSYfQqeQHjwqhOIK5qWOKawdnvZzJg07b2iSIJ76CzQYZrSbwJTg/1snhyd9JHRFmYd/fPxtxpXoUunaJQuRejlqOc9lf4WdzKLjRXDL4gCrH5KoDJz/SmOsPacUmzaEE/GfB5P7bmRP0yvF5XMKF0w2pF7KMUEvli1aMRfIBFWhT+TdWDlTHw40ZjT9Z6p7645hRWNbm9d9yxZYJBiwdhSCiz4FOukVXZLaGJ0R7XgHA7WkJWCZC2nqqlEwvh/rjhBdjkTrihPbB4KwLZ78ywGVgM7lk6wxyCZwH1QhY3xtELG0Uqovvjof+tciR8FrqmEXShrLinibjPIkONipvK1b6dDZRH7awYQ7UCx3I73DgaSPty6s1aWl04kRTu7rKGV4UtbrzDZc/dOtGAVdC2HLEGzabFmR/ofVTqnKwDKghdK5tl9eRYjJZuqUCz5gE645+VzG8B4np+MtVUZp1KY8bQecaJEoZJUXojQxcjGC4WITrgfMQssObBVBz1hbrvaR8o8hDDRX3/6H4sUTTih/FMAoC8q753R0qYKLshu245WT3wNSWC5CZXb2cvyEuJxQsDfLMGc9sl0ffoyQy0MUdMrAbeqMFHicecPfFwBnCkVwRQ77LKyd2Jx+DrIx4Ol4xCFb00u0h4XFDO6QNagO3aEbRlU8/QMzQtQYaXPxqrfLPrdLNdN1FQVlOLaw9bYNIG0faqOb00JcudZaWW8wtWKaKBbl2VYekyIojfDRiiuEXhCDVZqWk+Wz4CMvo2TclwkGjhxnozCo+5XDg0fPeH1iGpLcKHZiWkVnQ1AMAsPdVH7KVig/YgpXoYP3s7YtYSeiuo7F3Brm0WHRWBBzi6xkSNxTB1RsEkMT+twBxs7b0AG+BNwZpsOgovZR9tyb9Ff+CBZPlW7nd4XuPDMDjRE2+Z3uXycYFB/zwdG8wg+xc3A+HZBEhAmOIhwCNzO6ks5Dkl02Izc3FbLQn/pnC3lOUSb0EQAYCdz0adWC/L9w7w0oBd8UA9ENWQv4HMmo6z88qbZviiBrLC0Qwb3/O46FuXqOX3d16qF3jih5NgK3YIC6aAFigOVlMZ6GIyRvl1+Dncjemm3eWDcBDNik/sbEChHya2uImO0lThtu719PS18C0xZQkSDr7GDNeVp8feBVAwmS6R8PWrVVpWoXEDGq/DECnnOVmgGrJEeYBAw67ALlXu5P96HPUyokz2F74yeWD7oS87GL4A5S+mahUe4g1ZbTAKKqUmAVM0q1jHjsX1glVIAfBx845FAv6qZkTtCIkKuofo57oG3YEBysW5R8b6fEe8fsgnootxk8CrSfQtBDEWeA/OYM7FtiILSuraHlFg7CzFRwRKnxWX5lUgM/xCP2BIM+5vzE/Ew9FbD6dlrlTJ4pcmteB7+bXkzl6ZWOpdrSIqzh/4VZ7qhUphn9PIiVf++RzeNWWW46Dwu2Ywe8j6LJ6sXKleOoee2xbomfXMksn1CHXF4OwgnSOQepR/JfPxWmfUSRgRBoZ0eZKj3UCYcbo52J07kgzAQu5dRT8huA68aNb2d4IET86aOtKK1EoA2rmyBICQVz14zrLgvlFaue4XS+a2dd2HQv46EEjQ+VLQNePtGsawPFAxSJmSO+/0ieOIJZJM0vvW6R+bN/PcKgYgto0ZEupOIVVc7h5CNlAn6lMJy3T6PjkxRktSSNvwIQN3OC3hIFmbaAmc1NsJOr9X8vOfvADUenmc03czQosf+T76jHttUYDb7JP8V8LjnpWe1QstrtDrkdUeRm6O2EDjkRn7gBBYYvRXasmpJe0Xs+RV9S946+sXtQ2C2OQt9Xs4iby1h+BRB0ynXh31od1DZcSbKOITz/vhsgf8kV78r+hcpql+B7rD4wUTTKRWhxRTY/N9wOW06w4wscxxS+HKJcpCfuneAM0VO67tpadSSxU0DfhP2maLaGwmioXpWoZcAK43B7Hp1BiOj7AAJYLc6aH7SsNo9x97rCfBWndgIZkyCSkuEoBV2Rot/X5y8RU9XP1nZUMU8NJNilQiUtua3/G1CBrQUiZOjs7eqr2j1frMfu7x0N9GBWE2Qlh85ItUUE7JmgxqxTkRpT4f1i8jWhb6vDk3XImUX5R8WryeYERjIOUqvj121+GYvkDkQC+tqU89EYmhYjnj203mdqlta/k0DO4iotpe3WRPSCXoQ0vrxCzvixgL3uW4ofBu02uudx/94in9SF/nJHA5hSEj2McxdDnUqzSYBL07U9wNF9jxSJKi628hL7eszYsXCMtF/iB1bxkKMt8P+eGo+JYuJE2vaylv/TY8YwkpuodaaTNn+zepSHmU5HttTQqYvm+9hT0mCOpYpniLjp418PO7KD0bEERpplvy98nPGbIJVHO1QMkwv5WVzBsv2xmTHFb+bQFsYV3Oh2oIqmi6ft9WQt2NWgBx2cURru3isKGEt8IYqjVFAH/2S4OY2i6amr0zgYrQZkkY+ksfvQjt+ITvUIt7JDQqHGMxlUlV4974aYiqBFNFJKkbQ4fedIJ728uoWuKWab5NMD1MnBAChhH7+BtpzM7wkQdJNQs1QXW7u12eM9sI8bfR1r2ok/Kd+LUM3Sk57XLtrcAy3eM9rnOP1Vl8o7OzJt8/8Co2VoKrzja0QGZlx16BGbZzMcJc25FKzGWX3pXD2FVY2l0MnoE6qaqzf7yF2zurWYK28Amal7wWDDEr7kdLYPbE9LidWBUH0GiwEQEMJXOpjiyXz4oKtO+oHZazrsnE6qrJrf+C8eMvDp+CDaaIRfF4w76gXbHILbH+IdcTAD8oMBVVsTHzewYHOVBw3SxPTdHtSvuuWYAmn5mpHW9FjD4o7RvMQomXDeH6lNB+37qGjf2rV6rrNfkSyc0Zijey7mvtWWmN7sa2GiZnUaF5qDItoyykCxSuFYPFUTZqrVy+GSau+5g20xIkNn4sU+1rO9VMrGrbc/r5pUHUDelz9NQkn9lxd40ciP2Qu/8uQmMw98qr1JhIAJ7Bfs/3kMnzHm3CxAf3I0ZBVwuXftz31Ps9q7H7Bl13645qNH/3oztZSA1evMkaCVNFKK3oUOqI4jENOM2dnxyOXpJXO0dVSpUHPghsxGh9qIG0NP11Lg0RY7KgyHqGc8IQAa430sQHTJVuAwF0K3eiv5P652jePByKyvbmz9k55EZqRQQIyQQ7KTRmZnBlaVKzLRBLH9vNGPNws7KZpqDcxIFMBfIjuQIKSi/GPO1PUcPPccjOCV/5u6v2dZxeF7olLnQudA/V6+jpcVy0uP6+pGFKNd7tFjwv+I6vVa61nkWwWLB/A16X34ryR9VMATsW2QE+DkeTSeVXZPrEj0ubvMFLsIxNKGYhwGFlR0W6cRqq5iuTUh0mg3a2Ta285cPsTyrDIyOfI5Rtbjke3MI1iQ7tvCYgIvVrlCgngLwnkqTRV4xm1sB2HzPyDsKqnq2oM5Dq/BuLRMaeSHSBOvhDTf0x3JUPq5QGhR3JVCV+3v8Ke+RjoJ/HjArNGtoxyPpQJY5wUpqh+hi3iCmymhL9YS9FNziNGCO6VOLtsp+nTuk/+wnHI7LF5HYdU8ChhQ8GQPsanvKRdsVZDYYtsGGBUviXyHTGJ/AKARNp+LuVAYv3rb/KXqY7XPP8nwiSXEPNvYzdN5p99t6DaBPvem1vq+iLWAJR9GZWB2Tu4+GFEpgMENIbrrbdISTKf+WdCiArHoU6zkdqYD/2VZtB0xZ+jWQ6vz9O0043iP+okY/yQjGrjpg1ZZiuehk9DqJytfyHBH4UnWYYmM9BeqW8GJTJHH5CJ6wmpPe1Cn7NtIzxC5jHRlX0Fk9Wh65El1u0j2XfBbX/XmHJgqMBckNMhuQSnpislTbMk2sWr9n21qxAP/QKtal8Q/rDsTIuPsqvz4ntvME3milofwBM7bJMfCuCo4me5+pP56noLGnLUvIqfmPk0p8ZQg8iGZmIbCsLRoHITCDJbEUIzF5cjWj/AOGlKkgwLn3KM/kmKURa/vC9p2MnQzX+GabbAIwNwOwRvE4RtLvWRJ92SxMN/j3UZQf3/6ew3qUAEqDVltOuc56Sgg98nUqlek6UtKL7HtMG1//dKaLvikAnC4mny9llNnlw1a33cGZBfop2XheORTuCO0Hq4pMH3DJ3jc474NDhZvLWzTkcdx0qkRjb0Ne+yCKy7P0ytO8jbLUnI+QanHglAF29/UiffiNvT+gEyb5V2t/dhG13EYu2aqHCJc8AfoVPPV2yIol7Cem7G4RqvHzzgl0qN5bW0lM3sb5j5SncKiNSoHt/fIKCdU/WQ0wJjBi3daaZ+2EeeKi5vqc/o8LMeBBjTwIc00lgx5dq4O24gmv+SxsP/b6m6YaPGF43Qx37eMwv5mbe0R8g+fkyJx+m9hA8CAqbvWYEENXmoqKKVFgoXzP96gC45v8PFgn6j33ftt0GuxOMgGamNqQVmNMjQdh4KXaT26DRgURIkjyRGpUQ2w7+Zgw2BvLjeL5G3Y+cBC9NeLG7TabH1hHj5InzH/lU8TXE9yTtTzNt739L8j4FudQ53iNjQF/GGY4tgw1sKir+CcOG61PrliBgc10sXMNYjSQ0u7QAqKCjzdlQsFk1cd6u8n05AYn5WPQUX2oax8RZFSRW6nhJwfthMKHl27E0yzPggEiHIy+/M8GwtuTUZmvS5gKu+WeD41U/CdvbBBCba9eENmI7TVkT05Zh+Z8VeqBZR4atp6kMPIXZoT3JhxEyjsho5eKgxgyAOXcXqQ83KGJNFBo1R6ky/V3FDLYVocetjmmiCvw/g9HUubbc9pLnJFNeVsThnS5azWPbJzCHffGuPsPvBQboPsp8FN1/rzXcVDXbPsTYQRlEp8eHEu5DMoZFPXFzqKQh2NtJRn4PO0KIBtg5pjQtk1qo7gWvU6wdFBMrqd1sQKKUSfI5FR8j+oWwEubB8xq+6nqPdSl0LQ2xTMnbL+q9J9HmGcsIK9R3Aqu816Btmh7ObZl11kqlhqnzv1qPTwXFUZzeaD4x95RmhDp21STX0u7oVU7bspz+dI4PizivSuOE7e4lRx9v3y8J7zlJwfe0i6hNDcp5ipml56BLTMDx7N+QsJ+NuCmAnPrgU0G9uzDV8AzauLh+LkcG1wao6r7wJ6O6lNGD7ZIz0WJe6m+6lAw7LGEawvIGWDnE0NLJWklu632x9kl6VDKKzdXWWEzvmQMQDaTDAPgRQn5I0R9LL54fe51FGlKqfGWK3QW5+TC/IkuWoNVq9GjXwSJOnRpiB2HWpvzc1Hr/Fz6xTQPnMNetmq38txlS9HfBPIIKTsczmP3eZDhnNxUxpcjkn+0tuNxC/tk5ZrA/M9DGyJ0dInoNTvp5HXwLzfUeYNTgXHQ3S6ZWusNYxzsc6TLc5VeVl9kuB+IgMAd31NOWe95D7Vxe9Wbbjk182yKX5yuT2wIdytS0O5cfvjcfUbqWSp9LHMmdh1xrhZBXpCwk8Usnj2r+6vVm+dQH1WetGxy39rGrURDPXy0Ssu0EGG+Tq1ZSsOP+cms2yUuG2pjsi4cKc3OAjofNurZmPezHtuiEsxygRZZnANfayIfWCJZ/4LZZoakoi4bsAJaty5ZEYv6cj5qTo/ihwX7io6NejJmfMGIoMSV4dxnDgBtNfreZIn/zCYx+usDN3NZJ2IqdN+ioo3sNZz5OmDP2YRXfGvcRAD4qsP9dLa2O7kNLXjV4RtqEEKF/y0c3T0dLiLLT7dXVOCJSGsSA936LLyVZTH33X5FadVft1FqYK+YpD7rqrhADwT/g6ljk5ut+lVt7s83RaA5eXDuD7XMlUWLE2L2+hWU41hpJfLcxC0zJOND00h3snd2Mwih7MkZSTQ1ij2qmDMIDuLwB5c1UeKFZsnyekL9s8KLcXGYclA9FzH6qrY4ELnKemdIhZNgRVgQLaDHV58HY+z/8R+aBOq7EuCogiqwI2g17bzltU5oZXweRedikp8oaSVwWtKrkyzzHmsF4bzzDjVyqY9nk1sp/HWOkF49KyEKv+9aFS7q/NSgy5jD8vxxBs/MjIOIQEuXeqHBuLLxHh8GO1krr+MNjcW5Phu0crkYtTzBew9iByg0Mio7tHJxRgaZJlM4zvofrB9X4s+Di4MiGBG4QKp78Mi4qJinXB3OdYjbw8COJZs8Mc45lesluQaTkHpaHEjwa77Q7CJomYQqP3AUl0ST0Eh7A5z2Xdw7nR/CJPKl1euDgFXRW1eYWsflBFbepo0EIQFrvHtz5wcpnzQsWzNvJL+VLFFpVx6LzlD96g5an7GXANPT0BuCIH00UIRDpaHjug8NCHLymXP2YOCyAkmIuOnxOJ6Qrxn3nrUq8uMzb7SOOXQHpn5jwyxJNRzS3+T3enYcWu2aFW/8yYW+Q9g52QEBVlqUou0xwAV2IU49TvOPG1EC2bWRv9zfO//AFTvwFabP9CRqmRFDstU2tc4FEKHH1d+UjxBwZODxTfZE6Jo2bPaGFjZf3P5To2an6xzV+JM6hnfliQ2hyz4ZDCcPc+Rwy4RdTaqQlAXCmNPfEHzZByV4LE3fxpJxUgfjXu+D0jMqXBqWMxhwl6B/SHgVFwgUsoGcQPDkI0hd7M90LjmvA1RcP/OnlQjQxI5fwN4Aeteb7OSXYVwVz2tMVLZ5BTQ+syGElaB5MIQSNRkIFd+pjy+tGXAaMftlLZGGFv9lojB11ZosUU3dmrsm6J5iKJ1fstQiXhQCk0vCsrTjzJk2NklUIXON9Lpm11e7HHbxVBh02KcCpRXd28BGi8DGXxtx02ZpzZa6DzjMS31mAz4Gn9dkNtf4coBAXg7exVQwXjAN/bq4Fzynit9Qii7OfNPEhN42Qv491QTDtETVc1TfiMZsVLxUbNPkQyyZRriRL3INMi/P2pbvDrB4cz86xNXw9HX/CjkGhMIg3wmw5CAOSbR9IjBzJ3TjwpoIuLZW1EmswjyF0QWY+kQTPQOyBLSMnRvPDGd7BwQcQ2UlrK6I5WDfEDA4U0cWtRdoQUIkgTxhbnbEa02Z0RBv4LHM6RM/NP1EUulpMJBhZ+3svoU7bWbEzIv3UdV+EajF8Nhc20JiVU1WKbLmJFpMEVWQRCav1AtMcPqWLL/CifOw+criNDDuyS7ALpmAQkxwMbbi/8YXQ3bK5BJ+99A/Ejv7dBqWaQ/yBO2EyOnP4zW5OJ8Y5+t0BEe32tYQQK1bLPAzqN31Iu70ZI0XHOAseqimWknoaudwbpNP/69xerglXlriaaq/IN3RCNSNuviCFF6HL7Xm9xCzq1q8LFuAQcUiQ5RfKPUuFoXnY5AKJ6jcnv/w60DCTBd/sly7t21G5WE1Qu7zly995qkgxaz79EeiRim8pMeyuaVHVwZNTFGnUmVrE659Up2uugGR2YvKJrhUBlh39gElVacP7YvPV0Awxf4J7Il4fqjcdes/Q+BWFYlgcHvxzf4uQyVDfPukl62JDExJOgL3ZP4J5Pv1lQDegRlNu8rr7fwWUDNO5Sjm7UgqrwpIDjld6KjjXY5OqpdOcoMOJHU2AS7UB/2uGX9S5d4fQuK/64rDY4WS4IF1/swBBzdeKbMGgUOtO5tOOHeHn3d0HmcEPEa5YE/JehsAwlBUnMgGQqkNWjDIJj9nZ3VFRxCMMeDMk4Mx4vUqWKCAtJfbJXn+n6H1wBXhRw21PAE+rz4Po6DIsaodYSQG8FLmqJptUUc3gUnJOtday5WWAfNDjswaWXXHUKzHdAbKvUzbnZs3NgZdn4aH27AOXOyyUT4LXGG0VYceVsyk+I4UtGc0F6p5MBkqoQxTfxmfXmvBwa9JksWzvr8DnerK1UoOPYi/LZpN7Po81MUhb/nHdOtmzEtKKCzrHtCKULNEIZ5IUHzKlOJrG8n6vCbWEMnHBuduXzGsq3Er5YaKk8yqG5xrGly762shCNL9vBZ1Qi/TsPzH6YOuLsAwGqfbCnYXeBYwcyIiCAjm9X1b1J+Nc0cGee04FoPf3D8MoN2iw9oUfv5JvQ5RiFKiAIP+WgHrtC4kPE/qSX/ob/Ne43Pg4LV2CkuUyskyyv19X7RloH0pemaxsSAE7AMkKet9qNHN86/DM7Wmq39hGfoOOnjLvusf5rn98xdtdiczCanPza/2lYe+ouislqsWL1rVqMok96Gl65HWrfCcK+bwUZ7/JGMAs7UNcE1cO1BCkDiaGjiN5WukOjW3bBluEn57fw8EpkynqXga1pNvAQAuml7pHlLqCEYAw/CPOrOWFaYUCt+zKuhAn1EAw9ROmlse8Hfo7mgxUr9W2OohrBQm0qEZXOcTwUzMPLKI8ouRqoYi5Etl27jmVGULYRmyqePmZ0Pc4qP4+++EWhjjz8eUKrWFZ3M3Ye+5z8cJILSVWAD37kAALb9pJpfNGZWbHqL/W4ZBjHhvVxOoGUIOYM/vMWUpNhAR/6awbrxBWfHkXIRQj5uL/Rr80KUntozDQqjOZnSf6NzdvgxycFbIEr9n24x0nXizwInwcs0EPcjaNOqoPKNCZp+9BPSkSbiNxPwaKUovtKuAcHLpMdjLT4AHle9D58Clh3tcAwdVm4Qqz/ZDA+SJcc7Q2aTA8lQgqVmjjFrKhm5/RMxGX6EitAzXV0JRG6BfQgwb/oYXw2tGNqFwrE8wsmSARhjA1QLaqpQgBgA68nRMHlhlQsVrmWAT9ru7jE7fwg0B5O3lmOqkHbkdm0Na3VHQWOzHqcRqtns6NEPFBhSMHk3bf4G5BLL9OPowdww9PubCjrJIg3dmhdY9tLybFHVnL8EAz+IRnc6AhEUym7v5yunB7zvNI9sFBqYdoKBhwHaWs6g8jEKHIWvdxd5XKvpUUogDFylaB2OsMOcprLaUlU8VUr6F9fdXeX+O3mo7r/Bjj6CNiF6v07bkn9rOfpOUB79
Variant 2
DifficultyLevel
786
Question
A BMX race track is made up of straight sections and hill climb sections.
There are three times as many straight sections as hill climb sections.
The length of each straight section is 2380 metres and the length of each hill climb section is 860 metres.
The total length of all sections is 24 kilometres.
How many racing sections in total make up the BMX track?
Worked Solution
|
|
Let 3x |
= number of straight sections |
x |
= number of hill climb sections |
|
|
3x(2.38) + x(0.86) |
= 24 |
7.14x + 0.86x |
= 24 |
8x |
= 24 |
∴ x |
= 824 |
|
= 3 |
|
|
∴ Total racing sections |
= (3 × 3) + 3 |
|
= 12 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A BMX race track is made up of straight sections and hill climb sections.
There are three times as many straight sections as hill climb sections.
The length of each straight section is 2380 metres and the length of each hill climb section is 860 metres.
The total length of all sections is 24 kilometres.
How many racing sections in total make up the BMX track? |
workedSolution |
| | |
| ------------: | ---------- |
| Let $\ 3\large x$ | \= number of straight sections |
| $\large x$ | \= number of hill climb sections |
| | |
| ------------: | ---------- |
| $3\large x$(2.38) + $\large x$(0.86) | \= 24 |
| $7.14\large x$ + 0.86$\large x$ | \= 24 |
| $8\large x$ | \= 24 |
| $\therefore \ \large x$ | \= $\dfrac{24}{8}$ |
| | \= 3 |
| | |
| ------------: | ---------- |
| $\therefore$ Total racing sections | \= (3 $\times$ 3) + 3 |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 12 | |
U2FsdGVkX18q1dj3lqntJFgtC/sWAcWJFEtbuR9cj/e6k3aqqMZRjX+WU5tdrdYE1pyrx2ZZIojoLG828Bj3NfvDGHwEClGwV5e/NOnpGJMevJ0a3NWcwdloyjj9QcE+7fEqElRWRSgNiYK34BEbn4PGpb2VCPq+B5VXqQU2dAx6mwXRXjY6j0iOyrGpiqJqd29hzsSlwp+5FDNffbRH4dHTdQ1+mkUGj+S2I3gCeraFYr2TcxY1cGzWboJ/UJF2Ph/mMDZYGmW7flG0yoF1/NbwR89EGNQElUnP4lYuXRsTtuZd+j4a2ZhdonabSRycNfsVQ7bGWMZ1eCWKrOeThdxmnNcIbZA44lxHP7Mrs0au8F4IjEAe7pA9ZwCOoTgBmyq2sqI/JN0X8PIIQPOVssw3GCjnBCMBfw4FHHjTfRQCYazJRX5KSvjGU28gSTxTvUw9oZ9sh2fkxPOsrgobMaOZUNFbmcy/TkMT15wEHDGWceA7i4/DS7uJKUxcSY8JI0KGYkcKv4S906Lpfgy262FCPO7wq5TEpQjENyiwAwKpFVtYfqfX/w91y2Q/IHSiT7Q2yBegrK0MsnvxvD2E+TRwwvSsucKmtuB7Knn7P5NutnYKxs4kUD36vvg5ZOn4ced1L/PEffR8O7EW1s1hpA4vzKrWCYxmUWf6imiEhEK5Z2lGTHLUtkaL3DgoK/1pEhhMi/0avyWNKjTz1/he62bmVK1ixq1plh7keyLgGTJLhpqzpzAVet1T2onXvoi3Pp6SOjj1rRqleIcS6NisyfbF+PIsnqjRRpqTQbCcUEHISF8Q7PRq/XNYH8Z84lXujZCVu2qoUn2JvC9qMnWj8xwdq3HINock7gQOeBkZWpEPfaaH4TCy5ZvzvHDUrRZFgyPEbviWiPmx0Ueh4cGETfIbl55ogJuZerWQ6SFHBiKT8efa19/8fS8WaS54Fv8j1H7DJbj45Lqxin8gDd/1XuTvXTIw7pRguKMG+k9qF503ScxgQhkCjkh4nNah8er1JV+qV7Z+0n/+4PeztQl2U3iNeU3YcTVxpl7tmLNbw8RW90zJYrRXCCmNk1jJO002inzgPnQURXNazzoeJuLr7ptU++d8YYXiskmZpxycoj7Xf4KkDZyeT5/gwKTt0363lA1Xjcamqac6MeiTc6eOzaOayypyvw78+gRIHdDbcxM4cTT5vdoQErkpQ6GBXFMJtbmk04HljsIETHhC2W8COn/VSusl2kRh2WBdRjosG7NeGSf3map2HuaDVq7w/5jv8B8suvZeK4eZJW6L9WETYOry7wC7444wgjLvoOarCmRIl/QwcG/pPsLAbE/PHw2lMHJnFcc8w5Lut9OH/QOUKQgkOAwmYtWcFi7Lk7eEFBorVzQJjgTqWvPcNn39W2ef0O8l5k50FDpGSUoJHazs1YgC8CvwXD0u8Rd1WMrKTTr+rovBOECVahvGmabPaHTgAldg1Kd8C2lla1fHb/oAM/eRALWE193K+mFJB/3RPegBx2eCC9xl5WhhGB/O2jbgDrwMvYMv97+3SLV8RBv6zG327gORNzVI5MfBnOWq8WYMNjlc7Z+16qtjrSnDFH2Ucb5j5Fdqt3sovfK0oEYSlw3/+PBP6TtS6fWrpS8P/7p/NDmx+Bd2meJ8QKBLTNEVXAX1rGgIV/WZjwVEqUxd89qzlaIFFu5ILbNYxwJP3yiiXVzsQoLPDa/rKDXc8eZQIsTrobAzLO9nznk8OHls1dh4sm7tJ3vl3JKnp1bUAUa1+pcAg76UwOyZH56I8sGOf3NG75dWMIuNwYKf9GoH01Bw1/0H0upLn46Sj14SumaRPrd3hhQP3G3R3bxeW83yzA5S4kC93+6R0OE9LEeXuBPVaT93rR/t9WgiE8FyTXi3ZwiP9WWVjzdczAKr9KW15aAP6dDh4aXM0lHXjafOqfOmmK86w1eEiQl5YuAorrbihbdvsG0RffQ54pLwOjjZ7p9GGnqTKAObsJVJJsCYoewUcTfQb1dR2f/V9I7dGi14Qm673GAWfUd56YAfDcEQfT7WtlFFL5wP7AwY3R1+Bo2F5XKum7AFw6G63GeFov5+FvCo3wPY7NoFSKf7FklMve3FUo+V2u4FEMZUTFBwrekPOgYmbuoJ26Kg3OjqOrCBScataT+EH19xbj1akEcBP7zwqyNDicmbpK5pHjlC/r6N0/vpijOgbcZkZKY2uPIEiL412zLLYFxo7RdMPPgW7U3LyV2ryUyz3ZrYsrjkCqw4bXfElefIs6CdCy3u0HjWsPpX94AEt6jITLB0ElFamnR4rGe8mlV5IQIJXmTAnMuA7r9APoG5sToPf6nA/Lw++rJE4vkOaRjmnMpoJ9BsOgyf+l8CPof2yzu8727JvLpjgjvHOdWc6/1cpaECEbGwEH8eXREXl7o2nEkqMIXTOB4BF0VpMJA3dCF/tZmEtOOuPAFTDbXjxdqaA6Inw0rCRxliRRM1iLBejXd38kMrE+9HYpLOto3WxfaVkZ/BkihjyoLgzbI36o8wjo3qiBrR4rZnm810avv624KCYEF22Kpcannhjk8po1nOw0qMLPxsdInAIFNQr6UKMd1x81NHXDCqQNmfaLzJQUZUJIx2vaYyP9Nqbr59GY5R9tCmF+k8YpycSnnuJbx9QSnsn6erZcYtEWOLjy8o7C0iVmcJaokPvK109s2/kBSKK3BCxReyLJBJsyFgt4OAT7qsZ9qtqEj3i8NV9N8csGW98oW2tRZ52C0fn8G+r14nKJnmNIqkHT9QYqrzbYTY+zuUM8SHXGIqMyXMINMtQkLkT4eLaYxzl8yFm+WsQXaUA3S5QG0Nc7A2XeNUBnAMu9TN4EwWSQOm8+AQS0tz8JcLtPmjlURb3C5VHwbvzATCCJDnE8SoJvOReaasbn9UeB2KUiAdxh+MgG2mxKm7Ja6Z48sYf+7V2jrqVCZ2rXJ9Ff/2QsMnx97M9xwifa8iCE0m5GgrOjfqcVkpFWqKof/GTfg9YQJWU8D0s4bHbbglpqfiPSciUba4HipcA1U6G8hPmjvAHU9G9s9qptaUnVk4ai0OJJ0ewRTFNicJoruB3NYdsrMo9QzDjM9khb3sXLop6cx8/PqRthtA9J0nemv+PWefWCbK4MthoURpmtLKeMMs60voUxCwjOXEMEWFnsN/kdRX8a8fQsXymtOyOG74ILfP31ItBYshZxcFdDktzzsEU27/VVwoG5wXqFJs2wFYlXPkT31qcVtYZigVBvR3Rr/9K0nuEZpKUJtGZ3JtvpMRYxY2QBscjtbD7MGmVYRjGJa2djRTeLU2Vnnpknt2jTgrCB9meJyiq9ESu4p9qyNNRbyHbJbhvUKTD99FPz+O9QDvLnuEUOxjrPZdpTVsfndsHRoKG7ANdyie3muLq/ir0g+ZewdO+npWdE7M7C0cgcDMMrAAN1L2Xpql+yu0XwX9lbC9GL01/ak+rtF+1hTOeqArLASJNs89/0a7dQRCNhmHTv54hQmsDyvYeD2cAAJxSg7cSGO6eElfcAF7PD2vk2cKQnk+X79FINqWp0f3PzpXumK86C1kH3HAkXotNlsb04VbI/i/uER8WpgYCgdU81lV9oL0qkkAHN7KA7OxAORyT14h+jr0p1Lw+QC8/2zSyJaV9tAySxhfCjVu+EdCS6r04aOal404VMIPt/oCNFCl7qHJpJwntpQwhcS3ngCciJNcLeVAWHuHNImcTaWMavWRk+NIgoTDYx+lr8d2eaW3aXNplYIhOWokCJr71duBjCMeSzB5ilc0XXfQnkEIO+DC0fjHgF24aITf3+UTeOviujmQHd1JluPN9eWeiVByYrIJHC4rms1i8ybWdHhE1oRQ0GVNiDkh98faKGUFzr7pOFbLuA8yjivEtgiterEH63koIN/l57NV4HUyQDPMA3gQWG5H3Nb7noho/W9Odedg8ke+B57ZtsC4zQ6TfxnboFdBmswnUCfBsbDA4btTmD5KjRCz74MnLKgMPsQYZcRzm97H33yR7CHVHixZwsAFgj6ScBnW8PafcAtJ6LwPIv0f9+CNyiaesb2qQxz5OOoWoLQJwcyzeXU6agYDCYxyGQHs4gzzi2qPjqKYuOfBFsAlN8gsa/E9awgw4LbVg1AsqzrukU4ofpDNhyzmzmcDgjiaA907E0cQush7n22SEP1QtwVHud577bz+mTd2s9GXejivhUrSAqitUJUsuJSRH1x30mOhup66iWbXXgbOm5RzD0xD0iGvY+AqT+8EUb2O0mM7jyRd9ceNtni+y4PM4l6Zlgkf0Dj8kYfro0ivGS+RAkUqBNBXOyAfH36bVBfoocDi2RkLY/m8AIi7N7MpcevBtzAJyEZisYKYpEXdwbtEPEu0bfa/s7awV5Ei5lkdcMhhuNtC58A1dDGAy7MwmuXegSe+u36Ed8RPCox9+1YamLPaSbqhGc9KMyI2tQFkSORhodauEwjep4kUocq4vbPIIt3yZkqU8ChO8VW9fHO441XQKn2RkBiJx0kHsbM8IJrk7dL0xkbVyEAqm8JaVuZEgsyV1Gfjabo97W5N6VNrMjBK03CxlJrLzkXwD7h/o37QbUC4A8VGy+30BzI+UPJ7MO+vaL4lDVwTt/wVVibZyArkwE59AYU9k9uUn3S/ApNGT/mxwVUvhwcsGLVze7fVWUuXEzbZfp9JP2lVwakaqYvXw+zKFI6Zla/06fhoYJef8FN/eT6dHRmRSbHgWq9roJ6NgTcHb/0wVjS8OLY6MTKX5zzcPURHVQmOzfuhsqQAPo3YSUR2JP5fpk3gDJZ0V3ODAU8LloYECZoeJrJPIggPQ7F5v1xnxAm5zxv52vPCA2uUN8zrakucMkwdSt1yM2oWlIJf3ZY82gtT/gd6f6oQa/kTRA169nJwZVNImDINgRI0+NjeCcP19zpva6aCf709Om9ociAFXUqgcwSw60SIyb1lgAbgzWu7QO1JWhpILjrH6GN+3rWSVC+zgWj1/WQz9EsvsZIdV0w7F0HseOzDp5fP2kZQQAyn9TrbeZjYGu1tsiiNFRL8oAxvDlm6Kn2eCd09bfUmlett8SaolR28+D4ysN5Exm5swZ/qLu3cgwS4CGA5HG3S2/U48NG9MjEEbbsmBiL97ybw9+duxO8NSpmltAwcMXreRYESRBdXWklGCIY7AwR7TbPxPTiEbE170bhFy6e/SJrx+SOX11+GKQKG2pnkowcEjNL/IzDrqi6guPD8js0mEiTti2vebMMucGmsl74b6bsmddMQfwmJmboGFbw50RiONH5mwz5bRccPwmh3HaEBmMH3h9MjjaFEICGu7FsMOKsQ/TigMvu3O7MSiqB+gO+TQKTowEGU+6e6D9vklAd87EIjPI48P0ew2oyFcJXUi42c4jWiCsi2Fj35xGKv/QZHiNcWlw8ODrZNIPkofVbLVYusOPwtQ+xnzt59Q2xFMewN5Z0Nljg0P6KTKmYc6MaqVnG6Sx9r/hDWXuxb6gfqEsGue6K+ttjofkloR1Hh5C+7eD+tgT9y0hXvNWxUxlP2CUh/+8AGf/THVy4xDu5kPxYnTiIKLcGkGtN3ImDSWtDj9NbeJnaS42xIgEjanehI14PZFOUqtFKCXrrsPYb7AbUj2FlvtKxjTekyGBdOvrabEa4Jv00yZjR4b485Z/T9XdK0hU5bbq4HFAjhnyBwkrDd4LiFyu2DNdmxxKuE0eE7Km+Sos452slEBPc4TObdUAe7XrPnNmis9p1XlKqbsent1col0gdh8zz34rTKeV4AlKr3LLY/E8qRgxsF0LEQLusYdEZfKO9TuXmSNZWxuphiVE6ZeXYmvNJVOJFhgdPfpnda7Kbo/Jkr3Sw9EFQs60c00Smg7sq43JxnOfXRPsobJu9a+ba3OW0Mpr6MM9tGhD6PfY6OJmyxyKtWnkFHFHwTihR3Z+g7Itew+CxUxYt3d+CNZ9ABlRuhR7LTrKnlsdRSeT1khLLTo4W/q0L2MSwC/MQ1xChFauaOudA25m9MnOA+IxqzoEdTp9OXrUiWjDnl3846432jO/dH6rvDnNdbIJS4ccoxhJaVWhOKChNrBSq65y/ieeR7xJU+fE3QX3ehJEiXq9rtg9haYglBD/kbdV76/MMeQfnIdPw+QIw2aiQGeu1Q7cyvlKyl+n0GdHRxiUItNuUHAMCd0fx0vwtvlPCOWkXsN+60Fqi7FXpCJ1miKfa9VYDUF679L6qpbFx37FI4hVwWPosErJYrRzLNy4dqCZDTNAY6DaO+gVXT4FXP5UHDq8nKYzXqkZLCJDSqYFFXNSmE0AS9qMLq/JDxoO6s43N8dLniIcpncR1fNlSIt7a2PD28/sMJEDNVdcs5msYyzSHHmzA7IFGe7W0EW6Idgv6zitF02WIYKS76hzkKyq4UklhkzczaHjrkgXSm72V55JjVuG6gMrQkjkOKNLNBsywrjTkvfDrp233pG4moHujFFclK664JcHClZbHfaF84ZRpVBGr/TdTHmCgZzueeFadONSB+kriHSnrvE0DF3dcPzGzEu0pj4ZmDJLaw3629oXvpaqavBkw2HgDMIc/grJo57zlh8pzwiekQKACHqSMSX0Lb9kLuB6gY3IZei/PN+5PfkPxfRE3RUDzUzcqfFJkDF/rqdxlFDWq247Dm39E6OaboresBhhMK3qFbc7vKr5DixAq9c6Hd4/9E09+JRw/TakZ3+ai1BGr8ic95QD+ra8RvZaCACUkpMWxgQkk6vH4O8GqTlLE+vQGbfD8+BumcUlB4BKZOGruVf72sFRJXhXe50eCBMJXcoDbp0nexqoyp9ESyziy85bWI4H+lvk0qJxHS2/UasXlp4LVUXHsRZmxqQ2rtBKwCMtdqtI8DR3zpS95qBMklloSlDmcFAjalE41aakmMdLQn67fLHnwMnpfEFx8twXvaumXroeVu6amiwlfCMWCtyylRqeVwqD66hu6eC3UhCvhYJlYxSgndS3L775mwXcCX6yHxja0swj/xSypcRTkTmbgppfXQIBUXj7//ZkaRYYvCqSgiLPH+/hS6dEqjUbJYmB/s9bsPCh1xxRv2e3fyo5klDs7B0Ru+Z5KixDCL2biphUN9z9LJtISbJyMMBYgyajdqvfhhAHCl0MAIpPrGOesfMtIJgYiRAvNWpDGfE1dlb2cejsEY8c4VUpSLSkPDlvECz1RxRlOU6Zk4+D7I3YEwPsueM6mA2Hyj0GVwdY/XdD/Tlayaruj5guMNCQB6uCVeiQTMmIEdEtoqlVtBn74suHqPbNnaRB0h3+YA2NTuzE6jS0AxJjHb+3y0qqec1yJ/qxUz1Pn9O5U+NrrlQmpUsO4OpwQ4hi7bgowscyb8A4icq4DZ31T3NF/fjozfa9N9nNApislC/Zz4VBXZfc5hfC+srx8SimyL0h0Vvy1e7I7OoFg3h20zq14OJussHXcBRXDQxcqcpNPZTa2Zr4a7Z/YyPOl03XRgE1b6JCEtsR+mzgbjGbDO78s/bXKqPaMKN34CkUN0bQKQdNEyJWrS4bGZriituyP5clh3L/hLB0eTaAbnxuKqtfYrIFpKhKrCkBslcNoPsxjHOmW0pPNdLBRQn5Jhk6WrXBsyQj4wzhrrJISTmi4w/I3n9wLqX4VCGjpNb4bCrNCiiYeqQ6iUzjLfMGb61bV/QatugyATn+TIjJVU69rMo7xi8iKvtrx2kgpMNpUC9i7ZUCJtP4uCuFdoETdnFH7elsD+6WewewrVH5lbCQK15J0RGgRn/m5Drz1T6yUE8kOy6Ohc1Bao1AmbnzZg60zU8uMB/UkvVif3zrnaOZNW2glFg9gtlEMjiaPMMhjBRuU6es6W+7EhaViAz0HIquZaZYkoC8MN8jaJJul/9LB5ykBqus/R+LEWqamTup425MG9k9XMV3yYga8GXFVpKpZXFT06llczfEIUuItTuMKkISY+9BFpti03Ix4909StaBxFkGTpTKQidqSiMnVduO/drJSsMRGrvK0Nw9UiH8VJFBluXfK2uuAXRfQFz4mSQ6dgZeotJHKh4RQj7eY1/3ASIdY7jYJ3tHZsgNNYE8onDZapL4v5ZgipPyUyi1QGZtyMHeazaljrYXWo/FnzXXlCHvZCBTO+Gr7QL2+5IjhkEEfgMzkn/kvDEq5u0jZ54amOF9vfl3QqWrLVwn2w5ijjGC8MkHlhi1wohbyXE7z3EdGAEWBnSI0Gtw/+kYYhiOSxQnj9BJaPZ9s7p9J8y4gmgIhXOJtzv/5NwnA/ostt2AsqkJwkncGlPbQ6HqCOB8kgHGDi6NcoOA6sp1Tw+WiR4iQIqQc3A3Nf0xaGFRoZ/Sb4O0R7uojPJGz2sCnpurQmLyKjq1QkTgMxJ3AXq/BGY08otHZrvRPkXBzUDsjYl/QspCu8zy8j3dcQYY9taXVKphDYP0LV8ofO0OF4a4RPhu7+Yof2HBWfizR/wg6q1EqBAQqKLhuiOOEw2+GkpSbRoW3hq5ZK69+sI/+06F3ibXMN7Tl6XS6h2s2+bnkI02eIIVakBVqh5/rJNo3QY4wFlKu2F4uEyoLoX7KzIqTNSegzfDOsz69Y8TLcCzQ+VJwfIoA4B6WIIjA+sKoMi722XMoOgRAD9pU0yTURCmnQMBtGsQ7DulSkYQsgDtQvwQED6QfCwF5bXeSGPgOj+wNI195xQpx6lGh0P8lV1BqnrOYpXAu9AAJ4Vqld07H2guvCJB7+XVLKhxkl++MbMJUCINuOxCvEdxybtTxJf80z/2yaWBSZzNBv2UXgsqZRrvrXY8kY3c7x4gQD8BtM1yj7rDKDdLZVOdqeb+LPyUpHdy5MrhTlwVLabce8TpRsgj4A0FpPVHmxtWSpzVKSiM3XFoe3ule2MyfuIsbOBVIGsnafC/HUQOZaubP2Wv+A9PNrT1EyLcHIhZS0ngVsdPkmsWKVo3FeULvP1s/U4PZm4MSd8ydpw4Lb0Pr7WSAl6zKlW7f8AZe9kJ5y3Ip8EXF0NiScRXjEWXplj66LH/bHIwLXHiwK8WsE4t0DEd9PQms2Kw9AjQ5LQR2pYqZTdtzgPXoEuWO3H3pAzNdcDKzrfZ7fXGVfNUmEoZGnjvlausc4iIBbh8Qb46ahLhdc3xZOZR808pjOyDsirHrecslxAUXqbNb80OuYGRzOnOAFMT482UYYCT0VjnI86N3/V1vsRLr32foQkdg/j6WF4XM4x1zMJvaqPtCG98Rw+YEfRhdwKLK3+0BIAbQWpKLTBVxOU+2nzyNM+PIo7jkcpfunl0SBWUMnyv0Z4tPzNkUN5VfjWMQGmmvRyyUxXDFywDieBXAts7Qdf/K/z0yDgEFbM94zmK7/BddO0LKhW8x/W9RKOjgKyo2KAwzf8HftBOnx0JTCbz5KJd0tqb52FMMV37zD2k40wMCceNhGy7VXrrEKf/49yS2AchhEwddXVa77uHjEtSS3E2XnSsomNWnptg7SaMr1Q7WlO13P6VYB0BLUIMqUWivOrVHr408aRgUWedTbbd7XOZeN+VMMP2omqG27b5Z2wevITisEdZh0a6+mGtKBysJ5aOzybJB4KcQTuNQSL0i+xi46cImaVkAegArNrJgCCFu4kB5sar3SRo5SASk4rLXhU0maz/bhiM+HvO1D+KXzqiMj3wc1KSnviPTNVEQXxqGmmXtaPJ1JnXTTgLxWtLengo1odp9YRx8ouCyMFNXtmTCYelC1aXMu7PSf6DoQKA8pEXwiyp9+RbLv1KOWLI+549eoJV1mBjXEudz8qOXqzAZNF5USdrKGJzw5fxkW7AfqygGP0VnJwQDvu2jaZFgamrZG/xmHpBaP+T/eaFckzSE+EmPEJCiD7vuW1DqdN6aqc0P1vVrLKTMfuPCznmhNBgb5jtBq605Cewh/rtFxkcsUwRg8w7n9EO5uvRGrY79rqNILvP6euuxRv8+pTJsFcYWvm1E47HQYWe56BcgWXg5SVMpMqCAuRJlUsEh0Ypbi6L6Q60Xz0rHvq4BziIm47/45lcRV5/uC/LIVN3eO3rDPL6OSZog0FiVG9e8o/1DKaQAALqJ+9CaRM1hksj/+ByKojmeOXQws/x3+C2jL8HiBdRg6zg1vdAIpjTttMfmT5x5/MKjaLzvXhQmfwxZK5NaR+nH+I77kzQaCvy/08rFQssW2fMRE1rNKgkg784pPjeRy7voaeJWRcxoCPtGC+MWxPNImiHv809xn18TxMJeTfKylJgXBlAhVGolksy7+3BG6D9AA5uO6sw/wGz4rSe263HxW+LJYWmrE/dX3mZqHwfPA0uT+aYNJTWNxWVJKchklaFHptT0HccLp9Y8fRPz9JV3kodABDnKk+AZ5ID3ADlsrhQGCJPDJ0f9B8HVcm4KMv6DyG5Py5AGgOQR0NpoV9d2/XmvXmfFO3DtkgUUk5f3bXkM0jasr0mNYY0LZf2gPMBiDbnVYy3lkjnFiaxiiRaQ0H5TuaqbClHu7I7KkM1+qIjI05oQ+ipvMuJDljcp0F3QQb2xcAeM1i5Iq8tiP7T7xLdRZA/n5u4Pf/BqlBZ8KNfUYmSvvrS0nAyTMFpkK2CdEXPo8z5S1vo+d+WjiCb9NWsII+8kA9YoQniWzNFF/VR2BWx/R7+OOZPTWoEyPHarsgJte74Ooorhk3cE+wHxhZ1q6bVgTSAJy2oQDuZW77Eoyr0CWabSzE7+azL5bF7cMMcoHP7JtMJIKBEO9FCTdcnyCLSEHST4kqz1ekp7tJ9zbFN2GjOxGazZ9V4tEiGVzC2eqVJ/AwGHWZpLB0Ha3M1mcUgmHhHhfR1xrIxrFYGpcQCZaSZUw+eJ6PONXb8I2WPVRxbkOrCjUcuTnj5rZyFTcFcbaNQb+N+IUmnSSsaubCNq39fL7D+Erf699S+4AjDNaYRna9fNXYEE5+pJigwrnzfB3Rkeyt+DIKyK1+guvf7J6ZNHJQ47RxIB3Nvvp4Gn2erFoVxT5xPGmdt7n6dDHt/hjqVVsSoHzCaf1aVH1qDbQb6c4dOJm8CSRmwObAslbxWi6Kt20V0YzkDYzTMHk1XMaYWMrGuWsUhRrMbFjm8aF7/sCsSjzqW4KlWTTkBQTzufTP4645LxwgTdBBZ/CylH4rpbDgYEMPnmTSa+42fnTkqIcVdqYv/aQ16Xrj6J4KucvH2akmrTaDGkGl9sLJmprdWqdzO1vR7pm2VZZA4pO9Rl+OqiI55OAgRM/rb896BQloDYuoVvXif3bDWtz2H8Bd0NCGMwH3QDgoSc7E6F+zdAYU57okHj4D0NCpP0KegS5ZDADJiCbTghDyx+X9L9C6u1ogLBrbL/4zXJ+5/CKndC97eKhmV06wCoutJcLr2UecfRbzatKc9PGkg8qiW6Evfiswm5tDpdXWMB0tz+CgmqF16bsmJ9zequKJQb0p257yORZGcem9DTYEbQappxjEdLJ9rQnXmMckGrSSXHONcSYX6tlxyZCrwmnNyS7T3AB7BaPa2E8jxsXmHONIrFRjGnglR806yZfPK1QUlolGGg6d9CC5XOq9SUQUoNTYIi2NPnXE0t7JAOWRo/Ipz8kg9uaYBbxO/awb3w3Yl7BHYov5ZaAWob0bs8nGZZ0nk003oCMhXjLleu3QICz2Pl7Tf40bQf66kPmW0lhzGSTMqPTXS/B1MjdeIBOOBIIx4XsBd8OIgbKB9/QFBGYkBifEemXAXU98pt5abSL622k/OZYwXVY0PHMibjDi1Ukj8FO29vGf24towPK/9y94Fyv2vK35+HRWcWnMzjTv7uHDfR1tEOKCRWljyiP7mOo8ik1fwJwhxKUKgZnav3zVAtw6svnRUWgQjlrodOfmvwPDaBSR0fG8xii0YGZq127e1kn+bm91HjSFqFjRtI6VxSuT8QQGZlfjhVWdFpadmZSb0+zKqA/JBMITfg5OPyuMjdJw31qcaTFxcwMZxhenr12dk/0panr9j2NHV0QCfwqq9FVIdVchvA2NHx137JxJx7gUWCFTrOv1HUxbl0SVp5JZnynNlGyIu0W132ZDLGNjWUfE0QwFWS1G38j5rP76V9FpqIpkSJ6rP6gqccvJCM4ktangQVt4sB0I2H7LuUUowIT1uxW1bh0nnnhlcZp7KXQD4GiVVFeVfOXn2pW3HwfcB0Zf6y2xXx+RgUyiN8AKK1nO+prJNvfHHhi4DTzt088sBA7ubZNlda7ByMHEmCWLTAFxTR9vB1/lGcKK/hNgoG4JZFZfLWAtGlEq93r+AWLxoqMAgm1l4yPia3H1FpsegIA2NI2I7E4sTWv9DYvj1gjINRcFwyfSKL0ukcWSGkNR74l3sDFWcZTXOj+mjN+PSyx40PZ8dRWfHydcyw8rqirrqmcQ3UR/7ENjM+vxFGkVLtR42O+2t1QF/mCqwE6SuauVSEF9YZetn71/P84RDbVlqaTb09QsgW+6664lThU9ZSJaLY5lV78IuKVfndxkvV0OxfbShPDwg4UJell1+bMkbRNL0uxV4NQPMmVINdFK/aFh9VMZ8cY5OE7K5D2AiHMroO9jLzGmucPkrKLWgWRHXy+J0eT1x7t1FxSkJiYU8XO0QsPQkF3lDDmU4MKYroGRpn0QwsZC78f/ZpKH/OjPYIJCg1MuyL41IT9ZSR9DGQ7mIXiL1FM410EubX6J5+eJ0KKVV81Cyg8oiHfCHuYfoqlpuwFSGUK6EEglqNAYXFUGcMzaks5F5JwsYrkT4VtO6ExE25QAc9oCFDm0LKLt7rgWDqG+vNqL1s/4g08FqFjYe8sy4mkAurgtfBu+3xirRlsN0tIjneTi+2fIkyn
Variant 3
DifficultyLevel
778
Question
A herb garden contains two types of herbs.
There are four times as many parsley plants as oregano plants.
The parsley plant requires 120 millilitres of liquid fertiliser per week and an oregano plant requires 150 millilitres of liquid fertiliser per week.
The total number of litres of liquid fertiliser used in the herb garden each week is 50.4 litres.
How many herb plants in total are in the garden?
Worked Solution
|
|
Let 4x |
= number of parsley plants |
x |
= number of oregano plants |
|
|
4x(0.120) + x(0.150) |
= 50.4 |
0.48x + 0.15x |
= 50.4 |
0.63x |
= 50.4 |
∴ x |
= 0.6350.4 |
|
= 80 |
|
|
∴ Total herb plants |
= (4 × 80) + 80 |
|
= 400 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A herb garden contains two types of herbs.
There are four times as many parsley plants as oregano plants.
The parsley plant requires 120 millilitres of liquid fertiliser per week and an oregano plant requires 150 millilitres of liquid fertiliser per week.
The total number of litres of liquid fertiliser used in the herb garden each week is 50.4 litres.
How many herb plants in total are in the garden? |
workedSolution |
| | |
| ------------: | ---------- |
| Let $\ 4\large x$ | \= number of parsley plants|
| $\large x$ | \= number of oregano plants |
| | |
| ------------: | ---------- |
| $4\large x$(0.120) + $\large x$(0.150) | \= 50.4 |
| $0.48\large x$ + 0.15$\large x$ | \= 50.4 |
| $0.63\large x$ | \= 50.4 |
| $\therefore \ \large x$ | \= $\dfrac{50.4}{0.63}$ |
| | \= 80 |
| | |
| ------------: | ---------- |
| $\therefore$ Total herb plants | \= (4 $\times$ 80) + 80 |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 400 | |
U2FsdGVkX1+yQiNnJJNfLuiC+Ib1X7qnZ+7ijSJyftMgpKaT9v59vJAo9wWj0Y5zf+OGt3R8vUu1P7yQj67i8iidRqmIhKjTeIov8soHCDuvweLl8uUeBYpY5wwwvlKviNU5V8JZN+9/XyGpjcxPfirTc2U5bzl2+tCEpEHp1FKl7crCtiMc7uEiLIu7+VO8ZJ8VL0cjVvJDYKcqkKqrYlyt/xskH+1knu9eOmftIC4fIinPNPNW+M7QnxKgtA9Rd5PtcAN2P8Jum4a+d46AiMc5jqTYlJP5ZELfyzYNHXtzVp7Wk8RnRan5k1eM/isBlSO4Qxw72T99tDYrwYy3DSJFF106DnvW4qqMoVGDR+zmBhDQhBbY43pCXb+i3VsSJF1H8NPGjybki9Ig1ewWDrjSEHTJ93ZfV16sFq4x1ccYXyAtVCjFvghAYMHS8cfX6nB9GtRCkbfrCq8LVnL7TolAdXC+4/HE54AGLWtH72blU5Vs4g3Th8bXaJMpUFjMMtcvhHd1p0+O0hJMCX0sS/KnlAuE0PWb8y9HRxntHejoZwZyhHBgkOoP6mu6Jz7vlRjSVgMdnCPI9mqYG3lkwzOEZ54BlgkGMA2Mpk9Ya0vScXJjhCBTu5VGshHNbag31ZcKBYAj1lzq2oe/Xww2qAsxadda+rVcKLZbKYXwz0mniLh4Iz7Ezx43XkjvAhtCg4Xab/2Ctmq8JH3Zoi8pIluMg+4riwgikUMNcXgcKhNA9cur8NfIsysxCRgdPRMJzCXpb0vqDA8xkdjvvrX9V0ytPO1hEVbhZeYwbE6fv3JOoKlzycCz60Ta9ApTg40qzSaN9spQlpIZY2VlJ89S0IVRuuGRiYTzm3cPafqZQsNsf/Zc8mmdt7EJySUFdhxzNCVBMf1qnNsCnR8WIWD/AX1Pc+v+NMvDQ30zBqingY6sMsaKYC6putlPlUs/uygdb712PdUVAsfSW2TmVxVzM4ZoE+L3RdYbwDIPpdB6nF13mLxjbbAttxKf2a8md3ExaQsOLdetT+sgBLTFGWYhf4JIYzG4NDfNpp4slErTNHBf2BY+97m8PoGaYb6or8by0S38LJMg56Gwz8eRtrnPKzgrgmes14HYgtTgz8hRMfOSZoMd1dfbvutOOs7NItO0Z90cFsijClmXx2oPAfZbVwW/un/3AuAmk3vezgxjwZ8mSJNHfpfHzgqXKi9rEx5FHoSbwJI9aoUbFAL1HDo7x3XpgDVZ1ed1FPE9ww1GvEVZR21KvLkvoz0Vhk/ZUQHyuRawAGeCT87z4glS1xvwh8U92u0ZG+jIxIBBJom3lJJyrobVUGAtw7HJ4jvDcBdmwW6vneL1bdXdjdCERBX9BuBUPZ2nAkoBxDvIBBkyc6MKA+V7Oii/uTC8u131KUb2xYmu5LC1Pmt2ELpD2DdM+vjeuHkiKdhJWzYVeRULBAiahBGUjvf6S+W+D6TtqbfQojIEXtMPgTitsCP6eviWZe/Fn2V1q5DX6FT1EImhMSkY7jICNjS0oYzwAByVCiBpUbkMOK6KCUzGtRDUIZaKABB+tAnAvZCw3J8VmVrHdSAezu4giD3HFG+ywpBLiKUDrwOf62tTNX/9uuUd1QypTyej2v2CVFHNA/f3UCuW9W6bKe4yU2WPXddV+bBo92Ggj986Zgvd6MAGPX1ILyuVdYGbGx0wvZB0LvPKppVhOtwNyZcCjaBC+yTs295xqFDiwXYGkEbR1dg2YUQvpszWoYJcC9NrNs8kqosVwg6v6fWN55tMQkgErmaG6506fn+SKLwoxzwaKka/xWDPFoRAvvMhye/6zKQFYJmMU//EQU/uieLNLgOmUM/w6agWWn6K6FhmuX36wVyPG3q2a4iZW1Di4cnMaxP0gQaeGuaKdGfSdVnCgIyclYCstO1WJScrZ0yUHrFn1L6Ll4d1591dg2/Qoout43aDMpt7byx0dp1YRZzD7vCKZhqHnaKIY00GMJytBJgWpa7hC0cmJ/pgOWCGED8RQBoRNVk/D9D47JgHk5b+JfA8t78Xi0m4w3YPivA6OIye5aJ8qqX3uK83+vIFFrf38I8daLHzRgRi5GVSnQ/ZWn+ltFfNoa3D6MP2UhTAP9lh6aGEAMHJuSKPvt6oDET+mxoUTuPMkPnKOkLbfFuQCMvM0BIyKhP7qUt57jXU+AImc4485GFzQa6vyOrAeP7LoCxsj1C7+/qeIMynwuLXAA3S7MUyxv/WtIDV6H0lQ0PVMoQ22YBHLIg/m1XSnlb3w07vD3fOYRjeW6u1TNScfkwzrnDrxM3cqJ0UUY4DpsdIxhD8LQSpk9DBbGvxwBOYoPk9c5q7qbMbomWt9NDYtE1rTHxysZthKkUwj5zGN8daoFUbk/KFAd/RgQqr54yVk1eyZRinjaNyXjyrmO2p0E0eRfTewfgIcUa98h2Ed+Fef7IvkRc37rhCDq5mZzDh7RYzNmooEJTiQ+D7rIgD3IKAn9cvpAKwmQaUg2B0ggzQ3sWii/3MVCVfeNGK47TlVcSIx6gZhWLIwmKHDlImdiQN9YF21AjgE3COGq26yfQaM0HncV988L1NjX4gygY8AQ8QXHN4dCwmUWmexgL3v6OvyYSxI9AUZDvoCVKy4ES+6yWDnwLQl5fYaGp05KxCSG3S9QN+/y+q36bIL9H2WP3VWCoIp76K4E5IhRCMG3z2bmpxxXRbS4qjlELFbo8zWW+P7axCKmlEeh9/OavqZd1vRTqkRloVefEx4+cp45Xyi9bxWsXNWg4aeREEqLKbPQ2KNaW6TJsvsJ3DZayyYfq9ptz/LWhLnGRKfiZJlKRwFq/k88ymMoAbyp+oHQM2w6dI6u3j+7Y18nijcRE44fdp62PKM2FhVvVql8q+Gr0n0m6zgFKgzTjJCMBvU3/RuPdtlPf6oqglZoLalr5PURundGktQInaNlzO+28Sbif8wP2Aq6j9m+4vvA35vtpMXRLlMjtcCGSzl+FhK3z//ICJ4oO9CA/YCcrWbC9nETt6qes22d/ozBsFkDp/X7JnZEVncqFRLA9Jl1OX1/TIt80cnvUjxAvFaZGAslH8tx+32aCW7stC1482pjXE+NYHO2Uo9sZAnYXPUb4Zx4m6GvjFfQsuRH+pxf8qG9MkQfjnI5QG+dsbnuTYB0/d+wY+T9x77JACAgp1CcXBtbK1HuCkDK669l6E3aO/8u3qsC89WM4PjxckQiEXc7WocL0YKE0eEeZRaV5pJw5gKjtMiyHxU3SnTNrz9AYZrLY1zxS8NPv5O2Z3xVQjIfkED70jjcw3eXSRdUymGJQs8dRMUSnhFTNBSYHnDXvQLP1VBVdJvG5PGpMqeXsFU6DSI8MlUti2v4w2oOoF0hJqt3gito6P6m8PBiIfGNBX5W/5fUJADSUCozH7tNrWMLW7Hlx3mgUmp1f2pCON04a/PhxbYVRSLMHGLVDYQCzR0+XEWH+fT7zjelDUfQTaHZorGwSHC0laOL7QWKuN3p7GEfxE70a5wXOD9hzhhsKdfhC48U0K+rDyOm69sRA2EDB3bhi45DOFv7y8SI+mDMg43BKNsfDa38uMjJDgZ/BoH2rp1C/nt79m14sxPBPda8GvwKYe4L+V/uiZFxC9/i8pnYDchfLNuO/V1F0wqII1fIThxYpKHWhYF3hzOMGO0NWg/xeZ5ZdL6MxvPgscn+glERS/eLIDBTgV0TCHAWmJyDbk/lHABgNhpFmMy4PArfqSrft1BpVRFe9vhLzCryKOK80Yt5l31S5vJXtAgtRkDyPYO+ZKeWSg7WS/2rDEh7K8KOJvBBMDKL2gNzsqrkmF0ScFkU9V1s2NYBfUp2Wuuaa66mtUbL+VYrXPDzAjkjtlXW1yh9YQztdbdthqbfAHGQEceXDGfOu7MnB9rOGGMZjwO+KQrjrb+ErxQBaYzIRZcIfNMLqdtUh6uDNMF+GUxu2U5GcvlREQ4VoVfBzEcVBIhX5mo95wJWkXblcCMgAuN5efF7A59duNAV4ZmK27ztsJkkKHrFcfEcg9tqHiQrOAu09YuEtaa6A/+KMGSlgdGbmH8s+1uJfBygETulp4dejMvUWy0Po3VgleMqkGlfpSsmsi+UVZy0PB/eweiI92axiih+aym0vtObGj6xwbP27U7X+GIO1D236P+m3/uD3hxIH/8VQ2JCVVMsnURBEGGX0wMNA05c0cUQHgTo5EG7rzKSfQIXko0VoxhfZUox/UVyUpWN8szc28Vntaz/9oa3vXjaHNdKcdeEAneDdhTkwryPLqPx4WYtgnQ51P493SQz4XcKl8g7HVUeJAQj0pmD957cfvhGyiRIaGRIWXVzen5/g7LIHt8qcyLSwuiq4lirUoVug1LTzdLBeVJuwcVQuSlJy/r8V+dACxr3ujuAkopHz7xG9sz8sY2SDG9pGlunwMlktJ1b4eZG79uzFpfUoWcibFPSobgnXSIaWzBrDfoQtBWCvVL5HsRRimfCbGgoRYUJEXIhFWrBgx1STKrKhDEtp5tKPACPH9DbDMMv4uxIlWHoKNQEhCb49Rd7H/8av5/dGU7WfB/XLRhH4RmWwy25l6Hf0fVVkWX8gjr1IZ3v/bB3+tF7r1fDN18GAhjXOqBhLgEqhu2iOhdl7dTItww2F+ZjlSZlbC+BqJ06EqI/+daEf2MV5oETZmZK4t0iyO51REIFbOt+/xubgIEExkKyl9wvo1ak25bLBjC95UHWZoQIuGkrIZmob2x4XFlQ5YKb5J/z/D6eoNMZbF2edpfrFf09O3zG0OHBiciuwra/zqOTyYSU/ynSiUmEh0ypZnTrNaUjD/U6aOtSHZZY27hmcvKkUG8jSfdDkX38/bOZyb1aP6O4mG5MQr1ROy3V7UVApiZpF2GGqq5Cxl0S4qPHs/WJUZzhXeNjfbhW5YyUc4k7Ew8bcpsr2Ld6h5J2WqbVtG13UZurhxlQjMCBLn8zlpXpLL9H3g2I+AoHN0rPV7LJmFWNaggsQPt0hLy1mHh8XFyuW1KWodwokz15fT26OSJemRa/86JW9EgJ+78b0kaXQv7RBjRC/L3BYiqbaZXRJLXznQPiUIMfyuZjhuzDn7vHR8kEN/E3cBAKjzobSJe+y3PnnoHLX7+dpNw7udv+llpEbUNchgQfgepN//XJX5u1AVedcXb6v+lGHaQLf7k36KQsoZmh3U+CQcJ7LniCz3Gb/EBZvNfqlto/ZJIO8xN7CQi8BlflRdrPorcUkmv3OmKrUAY1ieLUHGhUHPJA6lSFMHJVDHbxNuYjNLMCMJX0QIP+ontzgjTXAnl86h3Va7wFq8b7z15MQCIIt/Cmgu8abaAOY16QGgbJ+LmqamQfrpHYCYj/kBat0HUkgQxdiTUz+am4ck+a+X68tpEdUFaeeuyrxf5mjz09QMtRwNT0aShvgxFUNJvo5mB0Loq3CvyDWHeum9g+6E12JV9cTnRKsMzKQ8gmbj/SVCjY6fD9kdnV8w7T2Rica31+g/JnpaRLrqyms+SYHEPRVZTSCA7ncQ9eZLkAUpuzMUjDoYFBrH3nnZPrLGnWKTvxky2HdzT8NebrGShIqgggMd5pFEBbs1MPMLwBMxD7WYZjBIb5tXI9Ns6t8cvsgTn1oWOVvYkedqIWMoxw/BKwsvRIbcEtx+fLpgjRlDc8Uq4qfUcFpZ07d7q5UjN3lc69ATjqdp8knKTc55BPiYEtKckfHMBud9gNIwd26kCISEuI7QzuaPw92Pvyg6yPd+rlI5+HHN5ugKnFFP1JzfqBVIdbEZnO/ylMLi6qg13GJ7sVswzp/WYPkwvRKuWMkVRd5fJBdtyBCqqF25Eda3yAHdDyyFchHvDx1Lu5HHORPHe3ZQx9oOGCJdAs8pw6vTnHPdmhRaxi3iowNi5jwHt4czKLsEyTwO0HVZuZCSZtICSoXVc8hr2jYEtE33FxixvYGLMDE68V2bYvQjS41XfQ0iElibH69vSinTTuLIZ/apIuLByP1gCo2YJr6FLAfKlx3nVHBb6tticq9Ls6fuTf+NKDOM89xTTI0yryphBpo+fhdhhs1Lw+1j0z1bmcluEp1Mn+dbT/D6ZxuWyi4216xqe8QLoiPtnjfWxoEpROHXEPutaxt3yHc8oXo/yakFa/Vg+5IxOLS77qddx4afcGQyVfl5/H3mo2on8UxBm6teJsE9CqoCOWVJ3Y4fg3n5c/exPCQFklJtwhXKt8SRnMYS1NipKO7bN84APQnXePUtznP8MUr0gMLb+FURHOnog7icDg4MhzbiS2EHIEHqs0RkSOvplDOx53mVOs0wKmZm9raQPhLAZDrKrImo4jJ22Pyk5NDsNSfGqsaq+e87bu2MGnErTqR6YLrWBMzeLKxa71G7z23DJWOGs+nGxa6/oiFI3fobI48S5bJlxPq7M/f9mWsW5u9kQEJJRXLup/wfukMZeM/eGu15YMtSV0eqUbg4rj60BSb73n7wrQZ5a6KlNPhNGFNG79CuvzmkE9ceI3+1XMcKv7yPULUn54koySl6LIoUTUXq1tFvurPj3STIvyL9xPMJyql5NXASm8lTUILW8EAoXdPpVhBqrXADdDIovmA8jFmRIWmlwHScCQ0gZMBbCzUbcUuJPc91jCw0Qr++nfLT8NVy8ycu1rK3WZB4cpMfXNEFu7tUpxQ1AMnOWF6+RIROvEB3nPPRAWETRBua6BqzlBud/L5geyiGi/hnrkAe4gAvm2/y2ld0H1tb9KtKRUhk7FnKELnc0XwWp68yg8N+TKA9yiaAZSOeGfonwu9/etoPBgHJhV2n83AkcZRV0tKKsuoDB3L2xMhfWtziM3bZNXLHC7hHdQonjnXqETBrsJDq9sOSHSgTR7qPDatDnd0uyFG1mBGa3c9Vq8vgEixbQk++OYMkvqjX6gX5fP+R4fYwfcD2YqaPIMlgDckai5Um5shyWrtWyO7Kk1Di65+SjRXIWLL8cPxIFgXI9ww3kuixrYpP7huhGN4eyLLqvvqjgHXx3wqeJtwRR3ay/7fQf9KCACmm6aqP9C3lDCZ14weFHHQs8pdvAuT21jGza5p1Q09/QEaPCrUGEFzd8cC1bykiuJrNaQUbelqM7akuiJ5CXUctIz1NPh7UFlHaZtbkxZUPPzWswKTVkd1eaR4KUryNafBva5S+7mak8TIbvWovDiNRXy+csKo+zclV2Tl+k5SApiV0Zw2l4L/qml3+vGvrd/8wRff0mU8P5FtXuGPrSRT01JUTt/usE41UMfVJzeZGdje8PNqR+XfrWgu1Suat7hBsgB2CTMmEJ0G7Pj9qyK2EwqN2B2kfCBF1ddPqdml5NaqjTd0vZDmbumRdnYlROjJGPrM/P4Zw1zGvXNHQiT8I2fdiZ0yZiWiBNL9k2DFfl4SSX7ToicfJJzJSqtcm1cSjsIHtVKWTFRvGCTJ6dI/ynUMYgUHTmYbOwkOpNuYTFYs/1nR/8qE+krZ2VhUlNrfKLJ+rYSbw/yURG5xl3HNIHr7bAknraBnEshzB2b4IKhS0+08AA6JfRuHK8sr5caE3kXqk6WN2KYYqopE5dsWzTRG3YER/Pg2koqX9LP0J1V9f9pfGCQvjL/UAvuhsxhyvbkwdpyEtMhNWKBiK0fRfvbMHzFjeTS5BXCAVkUD7UFEZ8T/10NfTamfKRl/hWnxLkOy9PMhx+FvFtBxHbXrYIzSMYVRha5MftUz38dQruy5VJYBkpbSy13mhLzTSuT3meYwiGMYroKwbvqKc4GUO/OEnIb33gXpRJBEB0r/S2DxngsjDnyjT0cgyutrgBUvDFajGhtPlzc7qgywiaZdxUIzsnvyt7pAwscdBHzgwGajlzU3d4hUnJptVVp5oIOkm3TwcgVWSrgpn4e1ShKShOaqvzpwae8lSZaZzyyavurXzhXr+Fp/LTdgLkmQiISgdyszkYrv31kGZfdnp4pUJrenmkLaNfwyYpqrr30wnxpLlwntQMTzVXMSq3d+ye5A2diBqx3OGs8djlZNmGuAUEhcmn9LiZt7WOqQy+8hAxId3z+OTHzZoOeYcPrVqD2JrL/A2cA365AN59CZtV/NxRpNAS3Gmy3J9F3B0CXBjY1i8q7wftt33H5G87OPLAi//+MOoO0kX7qjUHLh3lExONmMgwwfTXyqb8c5OzrOkGbcd5p39leHkrco9P3mq/ljycm5BdlB+QhAKbd43QCvZyTzTwux4XMBz+4eHAplD8X1erFp9KL0eMW7zVge8/9AEOST68YigOStm2WsHo/rFmp9WC0Eg3NtVhu4/E5x3mS0sHi65xqiFugASgabnUfRLM7PDcGpXEM4N+Df4l4JIcZFQ/rF+JMmh+rBj8+Mc+ekagF1peUkMCO/uAoK0LaVletOmRxSoldsfba6j4eEgGq5E12xWQ+QZB3Mzv7YWSq+s98/NnbHsvMl+cZ8jg46GGLx15WNBLyYqNiPKqjFOUj45kV2jgFeVIIlIn4K3nqzx3rG5qVVpcU+cZdWYOtOCf+8fDGozG2RMmXUHWp791yqeb7uOxLb/+ueg/7cYODMNl0tT1YeWpcd+/vDVsFw5ybVceP02tY0eMPzVKkB+IDbRNtbYq/U7W8oajWfJotwqPfvBTay99opXmBEtuEC684ruG+4o/AlA5qju7agssdBk+uwoblVBjjmEsFM2RxOz+SzsybbdASawB40P0lUeFT9z5rtC/Sr2T7IqZZuyvtTjsWoRgGjoBds+fMgh/RerioE2Afbu2WRIpkb3LDDOx3Mvx92nwvIzRvJirxRGgfVdFSgVPmLIzZxLGd1iUC11ehpbXvVjRRS7HxB75al1SJIhDOG2VMnOgz2FTAtwstv29913ooNXrXPNhnU6SeUb4j4oKFhH9jaFuTKHrYurukhxoa+jXw/WwGEqngU+bDKc7AFzFWwVJXVMZ++SXfKePvCYVP4tN+jJONnG8ZgO5LQx5l+AEF8wroNuywoqLkXUBBpCEPDnIfmbzDrDkGcJt4uM54k21VIt+1GAGp7OmLerzOGCJ1we2nMa62ZjfBFbwzISJL4Hh0jaMdodQMnL7FGQlwVdpT6lL0/SoypoHIwEtliannNVIhFOGKG0VwfvHL6ix4NOIIdRahCt7X5jwEnbc//l2butislVlCQUEYjvK4910ll7r55+qJxCMw0Zp+PSUydeJbLcpNUPB/0QTbvH52ox9Y1BP8KSqoI+CmiVeTdqqFdWK2m3Jf/S6g5kmOY+Sm92Uj+/Z8duWvP1vzSFlseljzWR97Z77AGPxk8JBjdoS9BJKoABvn63bToJHelHKzg30R+13NTTCVR076ZNr4y06nI9zyIrjESRJJ7ZRItWXlPabDdPEJQh9MG4zs3SAZy8wMiwMElZqR2T5sjgmN/m2pQFghzu2DQUO+7vJCevn6SC5gFJ3mQ8nUPxZt06kFnFH7zGs61AdQpljRik1i5ej3k0GiaigrQiU4cU3h6No7c6L2wMn6RoHcfkSEt5JtWYeQyMAbpT/fVPGTs1JBxihp5aOH2Di8pK8Q16lx5a/b2jqXDTOB2rxZrzPEImW0jrpWTAAnk2Z0R3xGr4YB3FrXlWrRUbPTH4lEx+/uLn4yPu+lyJ5x7N6igWXSdNWriSeW+O4D5AJ7yoL9yVNdhL0i5nKaQxDIoc2Y0Rm9aDecgdDbYBo6aShZnREUjX5CkAtawyXuAp3bs0ZBykmSqQqSYUt1pXPMsAxnlOJj91yvSamU/EdERFoeXnWUiFVKpW6oHw4pY4mJ4uP02PeawdtxkDHS4gJAOMHgAxnuUDAx7Yo3mxd7k+dNKdDX6hSV4wRqu3FUsNjfEmxRMQAm5fgy+I+TcYqr6prlK1FXO8AEIifVyCihMkdWnSyeycYEmDMaX0DEu/nJ7FS+QaC5SLehEiAxJXifbmRXKwIHcuwILvVawZWVK/tNsa2R7swJL/4bCa5fux8VlFYcWPnWUXqPrge5DDglRE40Q63ZaUr6NPNGX/ZdC5Odc2Hd+ed9U2gJBpDZCx+5xzksnPcIr2ptY3rgub5zkleeLmCSFLMa8dt8BJUcbHZ05Bb2dxCyRMLmvaZkH0Lgxo6Ao1fQXhe4nqpLah7x2/X3JHuPrqZLikN82yEmsTHwfGsWbG7ZI7znAAynmcyntQPT+bptODr8Z7L4eYWHzsNPd8NlRS1kYA62tnq5nKvBRJKWcSC5zIq3fmRuGiFCUCTfkCPSIK+PT5Ar29RCICoV9S6uK9D44AEzZs8g3dQnKxG51uApCfV3y4JDw0zcCVcnVFOBR7+azDH5PAv2N4KWSHylWianlW27lge3D7hhHEzq7gK7bz+kCl1wQXEoZX9tVj5KM6iU6uifMhj0ISQ72V+yOMRB7ZkmEcQ/OiH7s2x4luUVzyU4lwiNA+Cg2gMc009kSjCsxdGVuk+wvNeqgGwnLFQtAbHgHHR1OQIKRdMTgSkISQMzJZW2ScXvilOMqnOBcPGpYXmQTvB6xYUiCgQw2+LJiNFj3gfuW4R0QRF3Huk6W+jxeXMo4AaPagp3PUI30b7doTHSI+C3W3+VslFczAYC9LPo6ghy+TdyUhBlzwUZEVIE4ovS6+M2JuaqEchd6XTLsIddzXADBaIh9jUNS73MVeK5sRKceBW42KsyHCjceN37w5TurbX92CgaA271lcdREBmnvVS73epNfLq4ijlLWx2DnuBiCAdaMoY470XyZlm7haNPsqsxQ84uT0TvqAQRoZfWY+uiA9ivNORuBCW3y/0CfbxMnMUAQZDspY9/hxIAkL6HB9PpftZ+dsIWC4PTvxMTqCgB9pqZgFdvtcjB+efOM+Jwrm3ZkViABg7QQ7yrblOxjXcKwpG9i/Mq9CgbJU/5q7zEowuzjm6fBKuB0BX1fkHID4U8IwFUO9Oum66PRb/kl6AzjRTYsH6XwPZXuyuUD71A9aueE3J2izAPvmcTblhJvoV1Zc9jbSvjJ+lZJ+zigpv6oBxSRD/KOWEIl9h6TKoYYOkaSq8Q8DxL+XaiKOOFJW+x7v2e/fcQp6ShqrRFiNwZfLCSjpxFZNbwxixqh6S9DDVHgn7d9ZUsh0HeRCgkdVItnFwGz/bb0w0BPiSCEw6QyK7kZPUd4n8ekrnehTXs3AhsJGnmVBVxhto+N1SF494Wh1fPUfI6oLGMrhttiq2RBpEyOJi00IOOAECppwvR+SkJapd4gJhr4/u3+YuUrLWB4jlArmNwTAxXPSFbMBtEp4ZtTGwbM2/Svpo2qiSJIy4rCOJNzqp+X/3bmnTVAF1CM69z6Nz70xF0JYAZYibWkpKmalCzSh1u5N9Bm/aJZsS9RY6QTXPrO+X1WaowTGiGtHTGRhJOqV+G2f+wO0PzS52Bf5PliJnqdkX0QJocJisfHNKHAGuazdt6L/lt+As/y/gBCH/8REus+uxwoJk/xvoJFMLFOPOurQ3JygY0hICcR6KGd9aCcKfyhizCSSXJYwX4k7sRqif1AD5GY9kije7zA5WVuuOfnos3JgNyxtZ30HrA130X1SJMX1ypYrOd5UwGeoekyGnS3CjWwGwP4NMMX84y/RKPM5w9HXRPjxIkzsrkfEBBMIOyLdMDGqd2GPMOvK22V5/BXmLCVTkm9A4/Fy+0Z+7qhXrSJLxyVIeeTGCFoB5ItbOg0TvCzXbBareSIxK+M/uVkacxpLmArxLXip3h0c9kZO1QXcojJ/MDsRKa3CUGBsauHC5S/AFTyjIMlZQFEn95sBoPun8bfUBU5fV1fn7BWRz9Ti09TMe31X40JjsCJNFVv3RgLm16mkW7nhTh2UDrWxRWQ+lJBIEJA0lSALZFcR74eDHYb0x8ZXBE91hGJaVZ23vmXMMiEZI9zebDy/EeLD4PS4dSPLwUCoM0bY5qir4ZxMyRze5q4hs0Blul4Or02W06aLr7M1KKSuelzyMog1cVPLSw9Dn559mMGy1yUxwJoXsp4puvIzCWdbJG+j4B5EWnkIXXTD3k15lUarJ4aygELIIQAjLt6A/lfu3oPuCIyUWHyeh+fLhtPDH7L/Ky2vcSSrPRBwPdxSidghJMyr8kiw2sKnB0mB5euAWO2nUz4x0kpjQjzGSFxVQAst7brIu7hlZMhpTnFFzt1TjV8kcNJTn4NWLPyHiGWAbEMNI4ypUcKJ39keLF9l+heTajM1pTvnRL9FLQ6Kk3XnvB88JeDY12e6MH6/vDvQ6vpSBKUVF00mVqFEcgnM4V6wlKlj/FdWVur8RHwYRz22YF8nEIq4hcxjER7uhENUNmvv+CCnIWOfdgypLuJrPIiXEKw86y5JYBIUbOSrzrBZOtNV7xo2myii5imfABbbPI/vUuuwT2JNFgHTzJ5UQw3CuKiGcCkmlHrAue0p9euW4Ev+FNJl6wLXd34DRIbu0hp0DHkKJeedTauL5pLDKvKJXF3elTGd1MsR12SC3UmaEIapg3092gGUcf4XSEvuaXbLNcGdzWHZMs6COeEaY1XrsGjDybHQ3E8YftTDEjtKiEsBDexTwayrkMWkJy6nORcLTXwtT1Z37afLNkEG670U9luA0zqt1BCK2SOpGdk9d2yyp5mhCePHGavyfFoUCu7uxch4ptQaOVU6NVE5F/M6lO9MbRchinjijI2dv51kFMBHts9zZqIDLT3BRsaJh5xjkpUm+WCtsl7ZEuhlbcEsLV8ZaQl3oXGZQXs/rmujzFOP1Zk79zwyybHvALrgcG8oyHhC+OfV/AKuts1eJQDNbxvaBStt
Variant 4
DifficultyLevel
782
Question
A diamond necklace contains two types of diamonds.
There are three times as many square cut diamonds as round cut diamonds.
The size of each square cut diamond is 0.9 carats and the size of each round cut diamond is 0.75 carats.
The total mass, in carats, of all the diamonds in the necklace is 51.75.
How many diamonds in total are used in the necklace?
Worked Solution
|
|
Let 3x |
= number of square cut diamonds |
x |
= number of round cut diamonds |
|
|
3x(0.90) + x(0.75) |
= 51.75 |
2.7x + 0.75x |
= 51.75 |
3.45x |
= 51.75 |
∴ x |
= 3.4551.75 |
|
= 15 |
|
|
∴ Total diamonds |
= (3 × 15) + 15 |
|
= 60 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A diamond necklace contains two types of diamonds.
There are three times as many square cut diamonds as round cut diamonds.
The size of each square cut diamond is 0.9 carats and the size of each round cut diamond is 0.75 carats.
The total mass, in carats, of all the diamonds in the necklace is 51.75.
How many diamonds in total are used in the necklace? |
workedSolution |
| | |
| ------------: | ---------- |
| Let $\ 3\large x$ | \= number of square cut diamonds |
| $\large x$ | \= number of round cut diamonds |
| | |
| ------------: | ---------- |
| $3\large x$(0.90) + $\large x$(0.75) | \= 51.75 |
| $2.7\large x$ + 0.75$\large x$ | \= 51.75 |
| $3.45\large x$ | \= 51.75 |
| $\therefore \ \large x$ | \= $\dfrac{51.75}{3.45}$ |
| | \= 15 |
| | |
| ------------: | ---------- |
| $\therefore$ Total diamonds | \= (3 $\times$ 15) + 15 |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 60 | |
U2FsdGVkX19DWvCodyNT3jnUZlMMqLDZJfLQXMmIj3myL5fbm1hFTNmaVsQ+yqitHDv+s5a3D0+cNzbQCyKiYjuQY7/cRF+mtpzz9DimaJKVGGbVLoDX6MueUIgJ9Ng3mSKaszG/N6YPQLsUk6zTOF/AWBGCEdWg9vajhkadWwXavUoT0EWS+taOPq3jgV3ba4W/SKUF3e7WrZJEFYEtrarDz0H/azParH/Q3ZPc8t24yeNHnCL1pIVEZlnjSV+/IRd/95kNyli8mT9R6m2e6Dc7I8HAN++ntmjNUnjSGBd3+apIZNjUsRaakr8GszaT8quQdrqKEwQ8w0jOR6kgrm5JgrTipJSTGv67sxvQfzS4UXEWzyG3kW17L4ILA88fKUr/KL75dsu+ns+TEw/RRG8nR7y8nQDdLEpvZRzIXYxsl64q2p20RCFtyqBjiV9S/z64dxmsT40rFMbt/Lzl6rImM5xkJybYS925QgP4m/S3lmuZ4ZW7v6A3Lf6PBVmwXPxAT9S4+Y0EFj5a2nbh94uU7M7z9igGXupTIxJBIxbrprjWqYcQFUQZ1rPD5z5zTL/S0aSVM3TOe36pjFxunoS4ryWXOFlalCfSRY9+0EAs9SywupQtwABKIwm7dyI1G8Yoy0olaGwGVPJvQ8njShX/sV4MLZEsVhJSXJ3X5H43RpWOaEXmnbPSMPFJ8j9v01EFedEhWd/hPGw5Opg7QpyNXoTDrZ3rnU+HAwC8pqgSgK3GYQsaahFSYBjWX/Gcz+4BvsQiL1IOSvCK5m+GTrd/5IJuYeRwzzejlkgPv5u4Tp/hm90/IMtF9PFh5zpghDlGmRP5+sz8Db5sWuoWACFaNdshz+ySsTb5LIUSrv0OhgiRVxjdc7FmporHxErFDypMJVJw/pCfVWBSLuuiYTCMyOO9hWeb/+ykWWrQYuBlG5HMCpyd5C6aMLG4dqcj48VkMRW8Ltk8OxEsJUKDaj9W2ZoI3iT68TVB7NlF2BmW9/wnQc6JZMx7D8wFXZ+u7meGevvOsJD2ujVv1bKyDfnPhVy8TfgFHL1BW9Poeh29+SeBJ2ipSC/FXFTxoStRD4kpusbD96+tnxwZ8E9XRxijKCSVJkfxgzGQ+A9osUkp1XxJn6Wu+/cI0vAq7EtnvAJB1R44N1lUDSGSQJwLz6YRGoud27qyM2mR9K+7jGNkMaWvR7aT2ImsiKO3DL9jdBnoJ26wf3qHQRIHUiwWp4ytzMGcPqDzbqI5SY2h7wEPfGFStFLs+PQy5k4mbxGHEy/LDUdhTTp55ehsgoJv916Kee391nkHxV/+PGlxpS0c0zjblbnV4mjLI3V+I0YssBms38n4yrRcuDmeTSo7cWbOf4OqTgmVnN9PrAs4qrnbD2ln8TNf0xUMTxQfCt4QsqDGPvjl7kiLKi0MYI0YGWFsFcQ9t9w+y6hRJb5EbYFEb7tkT6/M2q9faG97GNvznZFSscMnsVjNzWr8FzmeH+kxfKuZFLBcHpYZvIf4wnJQkgorFf2U6iG8Mvv8CkinZYMM5y/qAhZQZcHqByx8ppUKl8kb6Lwey9sGDtB4lBOEk7TnETC+rEvYXzd4jpRvmiifGsaeMCFUU2vJB/hmqTrLQeQXrz+ZOp9NoLvPtBJQc/44I/AY3aOwXt59HVlGzhJSdafsbkmipcFB8mJt0CUYCX/VYHMt7KOCRi93ZaoatrcIeiuHKsWPjqUTHeskWJLyjvaMbMRzHT+s/CCxdv90w0euaCUYlriLqcnbQaOzYfqKjFPsuynwtIjF+EyIMlcQ0fOBOCURecZ97btxbD3/2VaA5PcQVFZ/iIFa3DYiF8ym2HnfV1WMEFOGO2qylsxb/C3RFDPAR8XCh+wJUXfnKUc2oE4zz8md8ux3GdaKTndaFDKi1HSphGZQrAPEynCHLYCd+uFT2Bt4L14buE2mFy+itCCkGvxSRrTJ9H/QKfdq3t0kaSuQOKZiCBVkCuoy/7nts3GYlFMKPftxtnew7wv2dzu+aL9tNZwSMHkQ3O8nbcuiHTsWC/sj5zXwMYDU/HACFYEi+0EqaSl2stoedhFkfN+GZG7M9EaCIKSENB6njgbZcgb99tcxJ5bbuWsL1+NKiR7ie8uM4yHkxJqpnCYHCPcjPe5sMUIuH7UR5lMG6tPTdmWw0ZZqqQSaFlXVBiPIXnqjpMgLXy40WCOWV7qdUAZ0sFum6IshQN6FtMfygkV4eE80gUeRDwalUHsC3C/iFMUCJIZBgkAiSmxZcGanC1pJQ/3ud5mz20GfSW0LXucNCwRSKqvu9phP7/nnNW2x24Q+S9ctO3zNYaG7285UL8/Jb37FlGIm5BkdkrC3VskHi6UIBGvOj6BJ5IzjP28gV4fZ6hQuMyYk6rmVvWhnqIPVVUsbKivnllsD5OClfrTcwUYj/IavNz7S0H4Zp+p8WVW/R8e2+7J69wfVIIrNdoutXU8Iw2JW1gijBtYvJmFKqHXXT7TK+vfig+NO1V/RNoIUlawrO5LyiMHE/cgPe3Pg4q6IUn40ukydiTZC2JzNLpNMdCi2oYnBFHNnaZhXW5ffj9Ep7jaLxkX+OUc8YVP9+y8iedst0wZoDsNhC/6HfqIoLbXbgVCkeHkhKwSqL0GtVq3CtdFD7p3teKZ1lB0aa06mF7oNULugAARWsoq1gAZvxmctydMD5uDZ8ICx+IU5oi+m6dM/kKTd3NPoTiaZ1IcbBeP7bojhjIpj1zbKSMlU3d1i594lKf4aBZMInXe4ryWEabVqEauw/ksf+/SqMVGeDKw2aq8OyIHhhCAK9tank/LyGEoDovNuLOOeFm2acYLxdyvm3auYELxzU2VIx+ZvIOXgDQAUotv1nxoV+u60QLY6A+6cdg1XeBC6r07VvJi8IFw5MIOybxwJpr1WIpRase8cw5lOvjGH9Cx9Ui0T5JxoYN+yrZXXDyiUtlYN2/BlhrWIXpTxBL7b3Y6iIvd1CIIm1/HSFEVjgKp46FEnw4zMyk9+GIAC7dW6gDuLBBwtx01Itu9nyqD0IvsIFrjKXI26umFe5dfckwKe/9/3WfY9L5Sf1yXhyaJ5cSVejnKwqIjUS1MQAAPlVmbwIOt7WwCSxxolqymfIfCycWg4XOaNJypEjoeeNx+u/9FWmSNY1WHmOvQMhk6MX7aA0i4ULFdY9uiPpgsZig48TWtzr0cFcNahu3pYOg1Ro1Nbgd9ue/lzy6QrVtG0ll0bz5r2mLQf5PiuWfKF7ekm6J9gq/bStQGOrxPLsaHl0aZg7ktwlZcyHhvc3ROVlBwXPxp8rL9vNEs/MqM9FZIhs9oc93hm6YhNL4sc/4/rbM1yxJouNdhyNq7MlfrZ19wN+ULRKdFpqX+rVi/CW7xRiWE/STCeHi+awAxffyjK71TWboJcOp4fwIB8hs5Rps3zRwUgcx5GHrFuHmd1KeloUGI/bk6WGahhTzxgtfew2Tymz0E8O7gygNR0UpeOZyxC//T8byU2oIIHXW9QWI4R9Iqx7StQhLrsM/k95UHo3DWtufnER0TWecY/5ajuRhIcH+hFpoZTULmUiM1na2NfGxn67eQmn2+sXcs5GRo4EV6mdwM5kesDtQKVptellzpUXmN6UgxNN1I+5dhzM80e1WAQeu7rfs/+oNAqg9KaeNAQ/SBydhRvbnKrnzTYI0OiewKlFyjtqwKE7yA46yBdWeoT6o2kgSADxhP2sdfYaIAe/19z8mBCcQdweAT529JomucmvJTA8y4nS1pEB0HguF//vhbjtpxkvYuyOirs1m1iESOK61EwYJYcEGD4DL5fChcdZF4IFQP85SO57wYvLOPaAKj9gjy1hDRKpz7Z5YNZERqayqP9esdEXibXVmbSijmHV3ERHWCVQUs1QSUUCe4uStD9jFlY5Fz/7A3UkbHCugX70xJxiSiLYJT7bxPQU6IaJ7/fV24u/kTa3x2fKv3YQNFpqSpiN6iZtooGPtowyg+ZBFx8HnPkRrsLz1tMPj8O1e5kMd2eekokcxVNticoi/rm3Q2qSmC6A8Xeqwc80F7MMqr9BEB2PeHxJl7ID3S1QBOan8PGeZnBNomovzcu805qYDZHA2ecsJjsW9NHB7yYF/mhXJ0gbNpWG0E4Dt26OcXmZymxibCZDY9T3WnbRSd/pdmvhuhZa+2PRFPWFh/V6+LgkAXbpXv7XJhGs+1bYGv0U9d/xDAuvT+EkNmfpOvSD7XaVj68HCQwlll1QxtwnzNzSKILbouK6aQQPb7EnPIWoo/xUa82snW9jv0ifGfkreIXM98hYt7NgRkfqwDFbkdZj65dMhPqwD4QsVAmCP8gbmIGX+h5hf2aAzY8R1T3Nwlxn+SzWdvfG3ZR9olIRwxseR0ktzebNoTmep8v8AIRzXdRwij517QocUWUoWv71kn12uaqx7xpbgSJ2vZOMDPkPXlrS2bVwKNMJbuSVt2DMkrw+VHcA0v1CD2yEkZ1X1JHBtEvHKxynXK0oH3AqyTUKTmeDBb7jIckdX3FaQmiYcsGL/8j/rhWIecC+X6dleNDHvADZB6cTlpXBR12xOziQeVUPB/XwqOEmai0L3b8dS+fLU12L+0C8P3NvG/hIyVKrR668IjPc+4gZEHhHLAwg8CNJKmOHR0E+ZCutOeuozgNmOEM6yh6lMIIcJ2pVVPcvOj3mqmvN8fMMKgiftXxdnW9Fj2npCghN3k95FjIP++hwskXIs1jEA5TD+/Vrc9shVhzDqYaSSxj9l24JGpxaFC7YaxsiFO2cQKVArrUNDIgoBljG3u690q+U9FZmwR9DVGAbooPHoBtqRjd40XjPB/tqf2CIsJyjtVmshtEu6P3gDVScDg+IWNY/DeLzQVn970Rgs9s6evdUhgdZJlks1qYcCFylOTYPZG88X88XMxJ2WG5Pb/tvrypxrAR6QudHGfMd1TLbMZFExhiKtddjjw65v8c0ADtb+T41ZWDvBsCN3oOik5Up9CjRFxAp+lc7rw3JOgQ2pFLzBaaX98Q8/XHCEOjshBsqhUuUiFvLFbJgrDJ7mtOJb9jt5udt59oYfYaGh5Gp2+3iRG8po31M0YbUx9jH45N16TfDKPI7xdJQdVK6IOst5xQtJVsqYyiLIWFSc2CTo4TrT4Ltl6YT66U3gUZAm3K1MTZpz9412bkU9j9grjX0VGLMkBfvem2mhRUNi6xMdzPONoY1ABRTcFdYXqDSrtWp2MOEmEW6rRbMIPc/V4eZnJ2FV2dsKVEPIx7KByq6UJz7pOslrit25prDpaRz8fT6iLXjRRbF46UXrcsIL5w5CAEiybjlhluDDB+HxtbqiuXx4GkIseIm8nXfI2UDmYW1evGXvk1pkGA9AcjteSF0Rb1LO6OteNMWDQiEbQa+BAkID0qPMAkPRhKO3q/KCiJKWKBi6SB6qrGAFwDUjjThwH+Gkqvccu5l2NDTdSmpPGGF91KFHV8Qruqjr0JnvGVUmy3Npp7Vidwbq6VhGCACNodTz1UfUWpkIPhACMudsR+Ckb0yDEaJKiiciXNuO8V3zfUzXVBMCuwHTVOZ10eUj2yzBJFS2ZQwnc17kJujDVzokCT19ORQKS5nTgiAJw6mowhNg2kNGS/mnPSIIYAknS2IZc6PDoYzH7LEmcX+tEWliC170f3pfougXSZVN2Ifrc5GDNXIJrqKm5zoqfjv7kEquMon2RK/OhzmzPuhB9scZROqbUfqjCpanA5fb/A/PggC+7W5TTWQ63H2iF4QC4tBnd6ftRgT8jcD8r5T+VIdT4iK3qfh7HdO4ihbEwbdw082LDoZJMoLELbVUHqGBq+MAlc3qCZuxoDmpZ3pgRYvu1sia6eYj3pd5UiObpoJa6ZApkVU47+d1LryFKQ9Gno6hDmmKwvUvcUKBLGeVjWMoImgNy0xbWmeZIH+wtgxHRPw2pX4ObJsFKX2mTaz8zbZ6LGt4o0OrZbnxqRnCFcB5qQ+u7lsza/+P9GZ3Op4ITahmK827/DQSq579KrvyvpdJbe+G27epUGMPo9LkI+weCMxiPECE8wwSeW/w3U6vNSL5Fd6n+ckNJiq9WdTMLSZZ8B+wxLNpUv6u+SyL3vJCQe3qjO/ocI3P89EFWsNhmBSbp5U7EwC/M3HkeUrmytfwXLpeEef2OhivArxBTX3tjUpxMikg539azOwpi63saIKE/4bHOiicT3lPpsDY24kOGrYIt026797DKNMoGM7z4GlrK53czTEvxonEFi/vqLrNpcE2n7PlgC9Shn8cXe+Y7zZ+UOtFRCtMGBXvtCvfiHrCkj/HZMTPnrTeRv88GRSVHbipnuVadMHsUoORLHAoOBSPLl+sy7+YI1iqP9zXl0q0z/AfbR79d0b227abY7HRfWPf/nLDK5zuqBjjfAR0pJW+guDq33bmA9D7hC5MUzQsSF6qo7I4W8153XVIYktuvCYfj7B9d9O9DyuYcgfaJpkrrC9QIpgoCnRmyUfSgted6Z1ApzOY/KQSBRByQiHS8D7nHH5op7t0qmEZOFaCmlZDDUJ9JtIQxYior/S/PY2TjBlsd3yUNI++hUB+DOVgtfMLKw5J6cVMuOmnrw/8V1fv7cHMfP/L7YQQhaAN2WTXeT7DVwT3EVozWkJFw9j6EUeWCozgGd1AS7yWrGTRfMMGgOxo2WWZp+2mnWGremFIdKneL5eeTD5ECSJTZnRznYhdmJYKDScBvZ/uLn8zlTYGxVnExNkJDV9xXRWSL6Q9x3mFoGK8Uly9dIQ3xTzVrHv9xLlsOdXAyMUUYRivAnLSHExvO1NQeU4sQvuF6g92cuVYnsiwVMIFjrXQ3vAtWkiXrWsuQkULINfXmw+TQXSJDfEcl/+LVB8sPK9BGcczCdB9GOKVmDgCKkW+Z2y3Kd3ZA/BricGeydGBGGtrSBWEvUcOWKfSW6JglC9YnQgx4PVh9ReRDQSCPCWSxO8eNo8IGe8AkQ4UCOPTLVL/AehmlwGOR0KDuZaVIPEAtFytwhTVEormCifin76HMdx+wIK/zkWH3yjLPuU6RfGaivN8XJaVC+CQm8yH/eKuesZCyfm6ROF8Ga0WOR1pRCaAyn/AWG5BU555GcLo1scFEYV6qioV7M49U9/Gom2P8phAfFj5zXvg5tyQCzXYiFWw77a5jDbVDqzcYr/3lHOdK0wTlxp57iRq0nMCc/Oyonan58TTRCP8iqoCsFzVQ38AlwgQ+ukWYhB4G9Utg72f2AVVwWhHQNQu/G9a9Pa4QEgQTS6JAngfvdcQzRV4bce7139KrYciV7Hb12hlRVLqmEXKXzKDkiL/8vKwTMKnQQCI9QQukFyCNof4os9B/MrrFF8U3Mt3tsaXFNObdw4TWcOVFUAGbdmPXfzhkZ4mL47688NfZQnYbk5pMv7rniVJ3ZkhkmEFIkziAam5Y0UwTfOwOuIRbkYop6etWNM1wEJtrsmu1XdJZq7VNf2htMFGGsV/6XUSpTuyleIImAee+g559bBEF0/EuSAl1iZrquZCo7DV6twcUO0yjpshAIHNsEcYT0nQj+QMWvpKVr7t+ntA5PWJNq7LTc0Xaeq5yZFHRlF9XF8IMGKQNGjhlox7WvTJnZvqMTWVojBfMqn3C+h8atuRcNQIXZ00UbnhUPgbpaibWs2qANloSgM/Wei4XD9JOCi/Own478A3LS7eA+IU3hCT0Z9cUYEMv7CNll7qS1gMeythAguszVugH5OSfQX/P5DR9sgUXtKSlp9m+2EL8wQGjOmW/A2mB0r1K0aILuqqDklD/bUxSGkuvAri5gX9A4gTyUcNc3cLEThmNfLu3kpe1mr/083iYYuTn87m9NppqfS0/x1XbA+KmTv8Ap6x2dC4I/PrLL1kRGEPb+q36AU9mLsip6/Z3yUNQMoT3unqGd+vijwUXaEAwyGDw7YPrfkBDFeVjxOMf0GLBkLASFQmIHlc9xrbIvI6ov9cqVWxfep1ZqdbuhbFNmfCKLB1tK1+hhPIoO2w7ZWqD3NOtipyXaZUlajU2bTJjyZhYMkgnq3nL82X9Hcm9uwVKzrxHfm6n8ppBW+DFbW/YeWhojVObDZcA+06NoYlX/0qsmvv3PpwaxblEmre0+SmzHYK2JGoKPOy7YMJL7idYOYsLOIC5Q/TCQW3Y2wRTErnYX3cCsWj4VM+zcH/Fqwd2nW7whSPrOyPYXEdGynu9sHwIYJp5xo7ABMfZLnkirsNDtrpf87DlSGpYpuXdOPl+1l34b2/UcJkLWSkl/ieb7Ae2xnbDPdAyjmtYyxPezQHW+KJ5FwW9ksiUISMnLsivuyacsArnG4CCj51iKIfmdnrp6uCo+qKzNfw8sgYvvxD8wmaX2rW0UQE07dzfmc1Vi+3BxJiBCWtvzczJ6H7SiIDs3jABEEBRyNUkpCh5h3RLqcksWgpyBda6abA8bbA4LAYLzjoKWsmeIER1hoCymvT7ErfEcOEW5mZ72w96lTUhYCrJkvUP3grHvcRa2ZQFD3AwM0T+i9EOexVhQDbx4Y9TuLuFSxYIDPjmGeiLUY/lfkdGxH9PIT29x0/kXMZD3wbnNz3hCJ6GhJ6QFHwdczgH6eObEYWN3jJPHoEdSAk/3eH5xG9jMmPE2JjsCuS6sx/lP1BOvfwq130PDyJnmHxbFDUBa+x/7k8+Y+Ogb1RL3HZmvn1zic02jDglvy3JeUJCh7eear1QnF2DtJSoBAMV/w55jQZ28PAGuNXwV8azOZzMInTpvGE7+mNbAbNfFlLAELHW3/vZvwEQD2Ipy0hbbWxhz2BCLP8X11FNC4QJetYEHFxtYwmANiPYJgRKiesciIRoo5FonAR7bUKs6tuvVrhpK4tuUzV1J5rKX9I5vKaz+lHIcP8JrK51Ujnjp2cZypqvGfc8TVGULu9R9hM/VQ42wpmO+n7W681YbajBYBlopytnzrtJv4oudbP5PDF6jhgWadpDOg38r/ccjmD994GgbUJUmH3mh9PvQNVIkwHZg/7VYbtXlO1VOzvg/LdtOzNugFMU5gEA6akRknj8IOIY3/3wNSPo4uzet5V/Jr+86WuJgRF5UVg6Xu+Mu8NlYq6PWyRSMnzsT2xCjY/r97WJG8uOQI/LTB8zaYejzNfhFDFJipaZ+vb/sM18w1rxQ1pSSZniFIhu3kaVuGfdBp8iDyUucRcySEWE1FJ9V/hR95GZRCr12AbHNsoE6JS3FuZe8dkPJzuIo9BB0Gi0Vmo0DmSjml2P1p1sjVyjbBql17VSn9syqe3B2dYxawofiyRKojcYDpPyRjUqKAID4H5am7wLjh8Uelw7fvOU1vu1raHMhrwLUmiY94J5GdXYcv1VUKTwEyNZpJYqdZibz6ONBPu1YONqubRnalFxfjQG1D2SxqgT94I3GjAvkRAmAQ1cbi8IRRH1UNJMpyChQQncZ7DFpEh/vN/lVWw/f4/7GS2YF4ruXgqPVyJx5F19Nwbk6L2HzYGu5Y2QcSjvRCFa6IrL5ZslleHrPAIdc1GDYzRBs1WnY5HphkU94DOtrUPKMiUCmsd2QAZaXqhRBsEnFb+QXk1bK7RKofJtXCwAMSQ3WN3b5IHLCr1vFsiyy/3KvcHqz8PZAWWk+/Z3Fq43Qptdh64u3vIWr+8Zj462zDS5dXXsbIBdn2flH5uhkkSR/Osa3AbnGOOY8srOkX5pgZG2cFNBHUwGTA2X3yEezhdV6YBW/iUjNB7hlwFydNJcLkWbopX2htMR7Q/B7zjEFUp13rZr6uXUsD1XoSos6KUM3mJyeBva9dVnVD1+ZRbYKK+2VA5C9ynGWfVglnaWBBAo0CmyFdt+mOWUj/t231/YFX+3eyMKKoFwkMS4Q8qEBDchv2aA/gOl/oSx54Xq++uDzC91gRQ0LQ5D1qlU7xuf3UpKkeMHILhrOEqrtarn852QtvJreCxDn1o6pjIc6pivfVSrdbEfEz22TV84jEoLNlnaAYBYfh27k6RbKmorohUHGKtw2/kS1u4LKzMZGXHE45TzEsGJrOTliukfa6uHeYXS6w9purfP/vOrNoUV6o/Nxhyvw0qnRW7Nw3Q3205B0HIEPAzrB7ro64Civ+yQ6kNqBZ6Clod20c52/BpddshOkn6hPvWgRh2S9f/X/Vo6igNK3/hhJtD0qFH/OlesVEibDe0bPAheWmF06wfRiP9lCg6u3jThc3o+KwOmTixpX/jchX2Rjr+1w4vM4aedYzFnII2mcQLETccZXofnteiPEfqtgCf2pefUMOy61d+au7Up0f3264rS5PSNAoP8NrD1HvZ4vJk1M1nMkrmhM/lNi4e/Mja5HQkYLn7nwKUkzHZkcHcvd4ke9JHLK/fuYP39sNX0Y0XxPLIaAeXvn+1RLPqZgOiUArb2HaHLMwau14n4BLuIeXfv5Pge6YCpiFNAiNM/TwZIY7AjbruRZJCs4qcvQ4wg/4t1W6m8cVncyxZi6sLIR+B/sHTBCSQM4+5oNzXcRq3qi+Pj4ekTWxl8EWnzfmAGuKN9K3WaQuxDCmGZIvaZNbknr9CplN2LWiohAvNQMauokA9Xf3PpDAdz2Fn5fDAbnvXbrMooQ0tj/jHqjdAo/ifsm5Z9kMUIcYthqqh0T0KvwAkNJ9k4SjDAtH4uvFWqNKR5vpg7Yb/cjqtAZrNVHEA1bS8TXJEi8ScQxmx9+eJ7iVVgexZX46UmOk3tX13ZBPeVZVViFWbxFQefpsCsiRhtlS7BPVJT1Pzhy6NvIGv9JVLiL5t7PwzqlI9QWbWra4xHgF6Kp5QH2TThtMqeR1utP1XbdOl7Y3rRNUi3JqoW1pmMCZ6Rw0Ysh/K7jvrvH8xbNLyWQfXYWufylQjlpPb6g63scAvjITzjT6Jbj0SVpBi/O/1DZHKnpo0toDnjw8V0rHe8eUIY8ntOUtpQdS2DDVps04+cIfcb83jhxXV0Gip5vIfPOIXFRKesSAa/lTzMsTMvbMgH7OtrRqvMMfjzZE3mx65rJVhRRhAZFmFixaPGNCNrcThq96n8fXtRurVS6zAYCN8Lc5URxf6AFuzEX3BOYQeeOBSGRm09vzuN/QehMzZQ93Nz3GhP0HfnW/VvaTzdNkzXLD7QyT2eebsx51x20cVoR3Kkl84rPSX0ep3HXIO/wB/XLOeSbdqYaiRFIO1c492hYT0dkf8CD/n+BNbaOpMR0s91NyXay1Ndk9kOggHa4B/YlulaVL7dUVpcMdwuZAfNLpJhhTriHzFPFKYRNd+PM65lLb61ODZw1LwYMh2cwl5sb85DZ1S20XA0BMDWxJ9D6AUtYPfGd2ruLH7X3ubIFzjd50fKdEX5R5DTPTINQWDsQHa3FM3UeZA9Hx+i4x77nJxerEc/HnnV4qeKBJEGc3R2yXjXzAzqsUZ6cKUVydo+5hqvy417mibgrX2K6s+ORdNo3bQ421jPuiLgPDVOTBdSQj3ko/PjwJQB07QhWz+OVNTxUZEYs0zt9rHmtnFNbdWXaeg+InFgkL6o2sVIgnIMxW717dBX6BKiy/PCasD3PHSK0l4Su+LGcz1brTaeW3amV8Z59kmuc+yQo0K3BtOXtkNY7BqI1T8yqhddTbzNuxjDfBhpErqRg7C1u0U8GVw18wSRfLk9AtEk1v0bzbB5APs2t6OCT094CzEmVRczJRCmmgZF3b9fODj76fN+kMetAZH72CRRLi9z+2bYqeILzBCDCq7y9sAk7jK02a+Zp/poNf0g0ZBoFKlmV4EIon7Yb9e6DPq1XxIKos+aKIQPZodz+bqqBeyYbKsTZ2gpHE1b7iga45nc25R2NTez1utnPu82gUX8Lh8yoGGLYt/rCNIenprK2vw1rprMcSdvyTwytCM5Rtp1lfgPXKADxwYTsTvHlh047djBeF8gPdZOfG1zOZCMWsR99LyQ+DKANYcVP/Nyc8lmr0hYh6mForQXaYVf04zws9bIheGgZY3omY3jzc41o5OS7vVwpX3A0BzmGs/pRlbLxBYJRnFBMrckaXEKH47XDbx3NNN2MGAfWgTUT0Qw+GRoA9YdYYtx4j1e5WwZiQACFRAZCW/VPaNUdd+G/H3HC5rPk9lZxP4xyL9ewdlF9gWfPlKTebEVElCa/0jsfNKuYpI4jCcsq/z6Dv/gelRFzRlJKhtx9hXFIz8aPI8socG4d61B4XiN1GPNisJLs9h6xY0wDMRrRWXBLqsiuuWDhjPCFKk7FZTYliAoHIEZCy7GW3vF+HHZrT9/Q/FWHDF9i0BQvEr/owzt+CGvCVVOevIu958nFvMYWq81oJXPMm18dyDoMl1BSITqVZOUB48Px7czYIbZAK4/rLwRUx1Og4/rUQPi7VkS9FnVttGpMVWf2cioIVbIxI7HIJP7lWgg/rgBiwAI2cajtEmJ8hYUrEb1duZQKhuhKL/wqyKWJ8CJ7ziPI5n4KgYeGUs29+gAD/9k/RU8lK1h1isNIEbGxwgJHGfpR9dLvaMGPB3vqf3pV9QMpXJnmDZiezgzrxsOqLCu4ocPBqcRa29qDb7mFHJYAgRaq2jyoOHmbV5GfdLdeYugLdyItjV8ZOXmHcrfXNQWVvCpM3DqKs2Tvs1rmB8MxDhw/gmMwrATa2IUXZ2zBCvIbmZNrAwJUEdb99FhHQRZVsuVWnwDGxcrb924jIXkXMp/bIuI2tO6RyGwaJO8uIR9iBXpDNqkv8R14/Q4dG2WnwKK2fmSJoL2DuAvejrTi+HUnwg/aq3R5xu5tD176u/2uHTaH/V7fVCC//5XDZOouge/fuONMF+LugHibjm58h4aYw/n1dQ1tvDZkpeydZp6exWyPH1xPtM4G6gyuNvrvWNcV2gBrfMs8Kiaw7sCNCq2b2BavhQD0nvXFicDMGorBc3toDRxKDbQBL6pOga/m+fusvX8quptRyv8qOwIF9QgudNW85uCRv0dSIrJ9CZSCJiwnq6hCdmTD7jKgPfOewaB8moo1DZ4DBoDcUBcaW6fpkBoRdwzq1HdJLLvdaWMlqhIbktVSYs4fgAbkp0kBeJ1ncUDr+6ERQ+68UJtbtPjGhNrVeMzk8mwExTktuPAeFMwLdmHe2lvH3FWw77DIvgfFeC4UFVkNbH76veQtiEt39jJEXUDqubWUHZ6zjmb5eufAoWLlIASQfY2ZJkNRe/CMS459DdZBBkX1Az9UW4NwdxiAMU52LtOK8HUMG8ZpIU6YE8jAhKWhQE1VlMXMhbBwn/J5LVW+guEUjWRIJg1zm1rMjFLJUfeB+VBfg3YxdxllQpi+pgHjbM5NraAcK+Nylp+A4EL5iDw1pFRubSAa02w+B39phGUY7i3DcbhSfOzTaQ+21hxaJzNDyq02aMmbKb45x3giTM1WjHKnx1omcj+1Cgd2XuPywQaOrtamSGWnpM6T4e7GMVEzqtnza02yrUQCCi6PxFsA3Nxnq2pCWV26X/IzKkdv6x06fqeeljLcyfxI1Z2eisoOA3I+j8gYXBYuc4BHrtuVvkp/rxFd5IDRZzcZLGb1x6/ZUBUS9ASddnvC6ttFOIW0CogN5U5F5xue7WiuJR2udRwJJ6bXxmlCI7Ldy87uVy4mwShPvrIJeWugZKeib6HuOfEAx5vgLsNP4kMVi9v7K89WPDtlIEKS3utubE08r+7XxaB/dwfUh5a2qJPydzM80Mz+4ZLqI6t7t5ta/FfpXPQToRdBSFzm+XijFVRYFnV/CutnLjfYg20u1f/J1bJfiKFvzHXI/e6zzD/3HhhPHacxMuwji6LbXIwUmwg59RdOWnVvuZm4lK3Gf0dKQ3gEtRNEDgJhSWpornLJ3UCqTwiRHr16c0t6voo1inaMjAH14mDB4t65igo1xyYxowfPdm/7A7L7eC/ibiDk6tCjcvVK+zyPAejwHry9oKC84nFJyXCJN4qmDxqBh3q+otT9Qnezo9bx4pS+AwweETL1Zh/DMbUTHxhm0l4mlo47jxoIvx0Lqv8UwoQzMr0ZMME8Fq6616nWCvUrSuamI68uArYKcFtdWi7STqkZUSrmm0MT9uAeiBH/0utrVfxSyCIpqIZKtFhxx+eybnzkI+Mii861+yKr12BWWPQoDS2edO7I9LbpXzGJV5bALpJkRgtZaV3EKDM2Ms9Qth7LIGKxwzH0RTnRLrCn365OBP9Ez3/F+dHOf6Tv4Fb3TWrgRx1eu8xa0ERWZDmO6LJtbEtE4qPA/PrAB1p+TyqxEtFykVqVa+7h+UMRTzYar6jnPwz2C/+/MsGBe33/pKNsw54EpsJdSHQ1xnKOwwyCJWgEMqbVbRQgGB5VuSMsWJCWXg1DCiyjnj6SHY0+kbcDGUMJXx8YSopScbpgveZWugwKvZ2jbiAN3JSymTLZjed63hSnQH6iTllFf6xKzOTs4DTG/7twnxI7KsCDjuigD/Dba+YNdzwzOAxrhtCeAZOVObka6b1wAsuaZ806UbRVm6deSo286Z+OJB/j9nb4ZILRjTOgfspb99egtNmE8x0msxR3FrmNOnq7a4lKxKNwSZWJ1IBwcoA6B5+NK45qm0zBb5TdCG9KCpEOMOVNqQAQQE4nGbvkgRRFqL4MrraSgXnrTGWZQTlgFF4CWq0WM/ODyLmT9GvIJ5GgCrUryvntTC2UNUuiUlSAkHGW/P72D2V+DPJZILWDqxKty9m/83qLXO7a4Mi+I7D4JuHX+z/R5CuRKzOskMxWf5j6Bi5Zx+eqjD8Qat4QTsHtsXbBtfiTdWc=
Variant 5
DifficultyLevel
780
Question
A coffee shop sells two types of muffins.
There are two times as many blueberry muffins as choc chip muffins.
The energy, in kilojoules, of a blueberry muffin is 2140 kilojoules and the energy of a choc chip muffin is 2470 kilojoules.
The total energy of all the muffins in the coffee shop is 101 250 kilojoules.
How many muffins in total are for sale in the coffee shop?
Worked Solution
|
|
Let 2x |
= number of blueberry muffins |
x |
= number of choc chip muffins |
|
|
2x(2140) + x(2470) |
= 101 250 |
4280x + 2470x |
= 101 250 |
6750x |
= 101 250 |
∴ x |
= 6750101 250 |
|
= 15 |
|
|
∴ Total muffins |
= (2 × 15) + 15 |
|
= 45 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A coffee shop sells two types of muffins.
There are two times as many blueberry muffins as choc chip muffins.
The energy, in kilojoules, of a blueberry muffin is 2140 kilojoules and the energy of a choc chip muffin is 2470 kilojoules.
The total energy of all the muffins in the coffee shop is $101\ 250$ kilojoules.
How many muffins in total are for sale in the coffee shop? |
workedSolution |
| | |
| ------------: | ---------- |
| Let $\ 2\large x$ | \= number of blueberry muffins |
| $\large x$ | \= number of choc chip muffins |
| | |
| ------------: | ---------- |
| $2\large x$(2140) + $\large x$(2470) | \= 101 250 |
| $4280\large x$ + 2470$\large x$ | \= 101 250 |
| $6750\large x$ | \= $101\ 250$ |
| $\therefore \ \large x$ | \= $\dfrac{101\ 250}{6750}$ |
| | \= 15 |
| | |
| ------------: | ---------- |
| $\therefore$ Total muffins | \= (2 $\times$ 15) + 15 |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 45 | |