50037
U2FsdGVkX1/ai55vrxf01lrFsGcIuvV+FNX30WjFCEu7qCt13WcklDF+7/K9QduRSae2vH2VSKGg4QnpjlJIoHD51dUBByjUr97TgRKYa2eK9ywBR12ey9NsCGY+20vZUf6Bj9w9St8FF62bLDiR7yxMd4o8VS3sTf9p4/1MHWzwBUH3sRn6CNsFRQ+2TH6bgG7c5PlrxgY05fqTv6ZsQziZZmiUPokJZWdq7/UP/1zzz8CyQPAsQNGXXzOL66X5CBEnipWejrTxfzqnXBqP7uxhQPt3ysi423agJewx9leroiuSM34Sdou35RsxlEBu7A4DiFfIf5kVFVgndWIrZfC10yPAj312v6l/N1suhRU6Bv2kthruw26g9VTE4t7O8MgGEoNSlypYsJuhwFSfpjrCtOhCm5+646EoU5ZiR+qFxwxu0JdraH/5/oUAFYley8xDiP+B+/Y3pzMpAiuRYYGNKDf6xV6HDenfIDBH16A3aI4IGhvcHCwAwWaScJNfwTy3v57qEoPboBi1nny3IdYfejTkNYO1wbEGiDDlvu2TkXwZlvXPbnj/MDQ7FIlQwa+l98+a3q46094dT+rawKI2jUMSkNHR2rctZAwBI3jcw3RTcj1j0b+HHN1w8QtNXB4QW15gqApCujkOzImyIBRLVviwgj74+mFFwIN0C22oDV+JPdMjvZnRpYuauUb85sOrXxVgfA74coV14avlhdFvp32T73s527jn3KK1tUtWclLDEpwH7lVnXDwzw8L7otnKlmTHRt0OThuQiRAzNy7hanL1+d7gvMT2DjLkv5hxwQrTncLS8cC/DqwjubbibvCpvhK/pjZNWKzkEjVRNVs3tSl1f/O6OlEY9yGf1quLxSkLfKvSYiNLLIpfGeUJAUib9Yre364tPsKijWtp/OYgixcrKBG844tsjIwabK9vLa6LhZObLQiXjooUYJC55W1kSivj+nTTN3TH9ohG8DmKNOqKbKOSbgHkz7cpMYUa95BNFTwvs0Ho78V4xkivfQ3FITzdCPTxWubUlBKZR88QbYYiVnHfXNb8mbwRsEKoHu7AccN7M4CXiwqXfVB3K0vFueWmvaUGZotcQnz6k9MHNCO5ymlC/bPzBCk8WKlR52CjWOvW8snq91rxa3hmDQTXMd488jzy00OSGqKpIOSzPTZJMgL101kaMpr3750Y7fEh+aePNGq7QedwcQdBJ8ilLP5mB6CmK5IVEUs+m3QxRUDJGenMraw3/yvOsH3lJg1Ixm34ysf0VyAF+G2fCKizEOg/h0bWj4Ikboo4jcODUHbhuk4awUE6CXq0SC5e9ZalzzGZYGq/LeG4BQnvdN6QYMhZWIG/pOeBeIxYnzChDB30xD7LsFZtH8EqnmnCUkGpkV6/wNF9RO1ZlpNMvflitx+V5w0YaFKnIKGUuNEU9/3klWvmMy1xXHKqm5NyAVUT/p9JWbE9PEZ6GX1t1GvGQ09Jit3qe7punKXkbub4NydkRZa053ECgmODFpweLarcCCqj0+pbyaE1/Kp+PrUyzXBeTSWh9mVKI/sXoUnX3CkB1c23/eEQItJdsGtQEu9IOqAmDlMpdXDK8Ug9t0OoCGRETqqdIe4Tx57MC5qIqAHP4RBtC1acXdaNXy70ztP1RrcNUYAYwVMLXqQ+InhtxBR3VcBMNkCdVnBu+Hxi2XJsOspiWrTEINrSNa8lx0syE8Rn8q8V/dkL7J5fCG+fHaVuDbpSRQWf/zMxsTQHYUztX+vqyQes95PYn7Ghnpgr2wQzbOHMoOcpxzoPmgJFVMMWAevEgFckVIAWsGr6LLIrPTW8+TRSWyerlZeaZLfjBlmcpARMCWi7tO3ZeM45QgKwLejPf5zthrpNr7NId6gnafVUvJHLFbo1NGFmVB9yZRbZfX1bjJGucBM6ANBj4wIfHyT14w5mFp3tugGeLaYnskLOfi+xTAQS9y4wNITnKwfmVTpmhIuhiBK7i16116ubhfeJ8bV2iK2efW6liXwXjxle+M1owHJaBHoZdoYM0jRJlz0rUY4n9JvMiERBhXb2xEdh39vmdE52e+gq5E3uq/sET/+6PCO9ONDmtAGs/ITO2tCc5TqilIAIHZgnKf96Yz2H0LGpeeJNZPUvgu1YPvz2mZ6grLamPiMqTRx48i2C8ZothpWMpBe05uiXEDb8DPqe+Cfp4DXPdtD9wrS9Fx3kiHR0eTNrQlsjjuyiRZjGlBpfd0hvefSKzNHXfjcqdha+NUhiZM53PA7T9wpe+t5lmYUDopfdaNIkLgNli5E1CKHdiurY8Qh67CYR3T8cpw9Fkzv41/8VVWweWH+eyL5Ua/72L/5ah4MSy53IQiKP4pmBiGkABH2ZcogSvqvZiTKbJ5aHaxKAyqppSpvjIsirCTTQd/LxjsdfjbEgCyr1eqjvNjxrs1++iZuMqbI8FuqLKKyL/MWxTwrS69jsx4hbPt6V57uyCcHxdOTDXFof+Or4oaf6aQb8yvjd8TIExyNrCqJ1egIEI0VXjiycIdGA72hGTZ2DfpwO4hdilPmc1/Hin0G0xmCGAmdJrCNQw5PJFSTHpfSvawBAt+lI/6S9Q5X5gYcCUAuv6r3qxYrrFVIWRQhwT8JGVVis24oZbjJeRSq8NzIzoeQT4cUY9oprXFkcTZWQN6tjfnlZRvPYIozK9JGxRXaatFec/60O1UF/Kztqyva1mUzbdVyX1vVPFFbkIIniOe1plnFweijE2+s5UYZ12WwLFY8hzOv4mgryAknd9jvl2F0c2YtvxnJj78ZAReF25gznM0QscM64PFue7uxDFV9OXFIml/izv2l2TiPiTZSS/p30KmTAsIsErZQrwbIeO7hAdYm9DbZYMgU0H1sHoWSRdrPPFT3a9Dl4bPSSJj21kPsxzE379Ce8UtsXFGKB3rMN9otEyygntGHlUu6sWH7CfndCcaW+JDTU7pNom4kK4k42UErpUX9L5zjoAPY0mBOvYIpYTMYG9dcUA/vGYV2XS/fF6kLDWBNHCk61r3vweAoaChuHTBUuzkfNJDPGw4CynCpLIxJZ/9SQCbsVMA0wLu1gNQx7CAh6kaiktMTqfLBHHsx3YCJUCmL36pad/PU3ZFvb3DLRBe+A2XsY3qlQ8HyTfWAQKjywL8gisfUhFLKxFGgumuBETimCoHQKEbYOK7+tIOAuUtLIG3Gwnaj3WIU1LR4gmtvKgbMnu4qdUXMRaOMuCPy4VA/k6Q7nTx462yU/D46BmAu1VjZxaPyjwmHcaN5Goevg4aTIIP74qqtgfIMYezl0BzJDFtELxSoWo709dH3v/X7h171vmnr7rQC4vqoYsYqQHpq2WJ3YbhIz59UUevx744K6TYmT1/bYuV0rt8X3/NhBrYdxC8id9NiB5IpRkxtEjSws5SJWMj7e1rhHci9KreotMlQHaZDBaDSKj282+0suGSMpIwL67HWHPqWbkfbEKgLXmU2B8c9knYaW2Dk1VG2haftxS28r6320EtJY2sYqc8b6etKedTiNh15/lwOwqypaQJgrly8RlCBbqCr3S5gPrnZy0EEuzPJZHklnV7toZ6+pWpuDOOYMb57M/7NIPUhLePHIKn9qbTr9aPPhNHw2AIj9cb25spltEIKHF8Q+P0zJoniQTaxWYRA7zqKUNB6edmS1EN5i6I0zWuzUpa83ZlnrN3CefrllpHBxcQQzP6exrHbyDWO+Grvgsckml2dUcIlSjwSo6ikFSLLWXokKj/K/9cXfculxqU9I0eKvulJuSDgwqfhsUA+HuO9wMOTwlB1PYzM38REHIhUkn5LzVjHA5XpM0DsQqGkKLzBMWLnZo+K8Lfm98gfAC5Y+cy4pIEQ0yKgHTDWHP8nv3AcuxLo+YRJXB76uA9iszL+xfAW1uBYOeMMB6h449sxPoVRpOFSgfUXtp6rVtoEpRzvFGxLjmCEgXo/awwC3BqwhpyXaP9kUwFJOUC/SvB/cRXeEt0kkdWig4tyyWfpZwxdZzSEWsxajEOpJcOhN8SOjh9WQqNf3wstOUt8i2/QkgPi/ZAvQYbnNdVErgszRyH7UD75hLKa1M8iKAYzJ1TCwBLC1iyQsFdVg7/Rd9wtv3T2jhGPRlRtZ5Rrw29jLI/swGNEP8PDm1D+cFTIxyj1nYi2J9HYHqEpLnqtvpPK1MblBQplOBMlFsqOAuRcSJsbKbu4AyOOsRZ+vr8JvluS6nQOzIBrGcS6Jpm9U1BBJFhHWLpXSrOPb4spZlfc15l8A6zqowwNtmR8eHK5vUWdxH/dHyxaLb5hP3Ia7IH/renaGDfwdyRKBfnv6HUK29AKLXC98yasdxKIaeY7nys53L+kT21t77iPx227fC6ANApLylfk0NNAHcQ4I7FGyKS1OThocP742+qeOCABpfgBy1FnsN40c/Dqao/K/EL5b1WCuosdVQj+F7CqoX1JBk+IleeSGR6es/Gjgyk1UPmSBTqy2RcMqtSDakQh3J+tTdPHGd1+9RTlznojUWVImT/vcTAWvvByXENxOkUh4EHuPVZRIqPRFYoPimqimIwj1MmOmDw3osjCS3GbibyNgwXyn4zfEXzetuHWnZzGDTPxBN3uHWuYMtwR/qTnnO63UJ3pnpu4dha8VPkbEehhW4Cj7DpZcLtdF0+utJ/B26X27hvNiEBCWzs7nSafpRAkIOEbVdBWaoYe9BrkQ0L9rzRibt3NO3623/SZOwTTaPGZuUJohFnz9z9lbc7AGr/OK4psOjh9eAFiDfBRRpWddALkDaidH5gccliD4Ccq+C0Rbl4qoFzwQqHzmxOnwn6eI71Yu4/RwngeFa55s5zRYt+11rhbhVQL21XkyYuLlbeOYT9j9bK/zWD7sCmlC48MMMHshcwSbaEhn+HtsCxkrTDKv379ERwmB8+AGEhgXR7EP7x5fVS38b8wDSk68HMgrw6r9DxieriBTeUXmwupCdg4Vr2OnIPVB3uwRGXhcpPst1coIgSa8xv8fIU/xm3WSdyVqaiMZp2tT+ZACzirfTPolBhjJEjkZLpqOoYmwc73SGUZS3MAfArY/3T4g1YyuVOdjmC0LZwSl3Nlz9CFsn9SJm17XL5bhqe0odEaLBqHLP5+SwB3EPWWgHBAHOTAwGiEgVuvE7USU5KXC6OWW/O+h/mt2f0RYqfcDDy4/u82ZtXuqmqsnFfaqjPv1DpjtZjfCVY7b3Wdi9rpqGlRufNSx/2O1P8MiGpkgFhVjvsN+LplLAJ8NMRs7BWIEtLakrv5u0m+lcTI/cK1C37HUKhx3U1Mk0nriidG+XpHDHkWNdkU1bgfrMVuwJFPoeceV2vBSg5xVzXX6tQHM2/vDpZ8bsSC2702walohzw34W7SO/VyWpgosN9TAg79sK2LuPA5coQP6ZBCXrxO+vSs9OxTM9hfuAfZxyLls5jBlE6Hnat0eF+/3DTdP2HqNgjvABx2DToHZD5NSAx+UbLPlG2X2OdR61CaoMgJ/zW7sCOqNJgOFBEUbk6LMrLF8NrAMJkiihufdIpeiEpcwPV3wRsK/vlO63/5oSf7r+cpj2N8Npx7qaRUhYWzWCmU+0CMUSig28q+gvwSART/6iGv1UhM5lPkO1Yp9QHJMHeTpeDKqd/eR+gg7ccVEE/U52mOSF7HAqId1cU0JElHiwYIPFx/Ud/ZeiPcv1ncElE82CoTWzst8LpDWQslZDzPZdYgWR07Wxk36h5tjHoEzU+YmAyWfu7B/KFWEJHDGR2kE5wPEUYWgYdHFxX6H8RvWqOCApXtYOFfQ94yJhuNbb6Dq3nbeIhgJdL3+9U2wZxgBM9DxJJ1hG7pkMyWLT7yCgR+8BAu2LcLeIUuRBgNXCY3/hkrWUq3WbJ1kLC/sh//kvlQk/Bij5PQnVzLUXQA7D2mHT6hSbvnnB6Rnx7YBYibmrXTOqfLkzAhX/cuJac5XY2O8MUfeZEnnk7TNztPgG5BxPOeXf//HAIwQkkTmHI3KwOJ+FhlxGDX/xCESQvZff8yC7eUlltUr708jyNis3XSjWXniUz61r4jZDI8y8mfVgR6axLV/Yaxi29X4U3RmxVyKHkT7O8COaLa4skQfpZeCXEeMCRY5dLhdoD9JocWs4rq/jjgyC7ZfGKVaTpLuFBE3fUfv/qqDvzh9NlHJjbgJGyd2/aNTJ+30eE2RffmugXZepUoXGePrF6d+qW/NhLLEAfHMBDRxx9Hba6KPStvpQnOyrtM42irGTFklFg3i8/FF6zsK8bvykC0yo+RFP2HJa2C7eVEYVkgk2aOfEvJaHHr7Zz0aMAW39wvN0bM77fEnXfmNWqObqmuk1E8rkNE3eZBOzwjvY6GiWqbfApbnrpjxAGKUv3flTHx7bDFug9YHXkVwIjc9FTuqa6iF7CAjuB/HzKepPe24donMNR5mpbuuFkM786UuP6AmqW0arhMzJwvjG6hb97THyEElnHUJG7RelWss2F/ElANcxjhaO7lFDT2x2QYZxTqrPxFDbg/DvesUo76TtyvvVQAB5YBuMhhc2gEOij4COuoBUD4BX9gLdkO+0EHBN4fYGrfHG0R8Y2SbKQDth6+BUAs9jEOh1QIRsFL7H+9G/j77eREflB9WpwAMo4ZoJGHdp2MpDoL6yEy/EUhKM3hsAVraHhnbUM1kX/aIZdG+iI4gd1m3tbCyccO1uRm/ZJ4FluFzBOimPRhH84eEClYvM0fy0R7Y16qVWGRoS9U6DiaVDvdLyP/3THsYswkxkE17Jsp03/FV6lPsxY+xqki03TPk3w9s0wx6NhcJYYtTOFpY81FURVrA8TbHEdEeX7VmxZ4mNiysMxzBG3dIVUap0sVo+VRUQmarMSzk7KYaSg5QYa6XkZZ+bprOCeCLuDa0AKeO8/Zus+xGtGuXeGr8ND9IZOEwOju/OUAVoIbAaHL4eCjcCxze0AiMLRdEILZouZyV8p10Wwtyr0na32V2UOH+GsLg/DjB92UVBNX4oPbC4P4eRos1odbSN2ynZqD4lAmyJRgdB5jWQsmlD+XLwGunRA16I/yVaCKxtWf5A7nCBznjlLktjHYqaPXxatml8I6aXrLJSwtp02escz2Ut6ndnkKKAVjr6iFmN50+LX8n2u9mAlMuF01D0hzSOPGvDfzXEHMpgxlhivkAbqskrYh1OluyUCfbQbRzTeyHUdU1G5JKm7lbtmpkod8cj2/2oBJqkPtxNU9CzKEuHdz8xcIDg/J6TeD0qPrvbCwBrUxgSs8eJhsqQS+7VYQAAta2WpxeVF3ZC+h2hD3DxVIkXoFM8VPgzBS9nQlmMgRa3cphwicDIoJetCm9NnoFPakA++3+hftbhUflXLCZ5AO8xLvtygcoSEMDH6PCMy9XXR1Xar8oyEbhmV9uMEuIUlGen2OkVsHtO8Vnem+VgE1enfEd4WjOfJHJBosfxU0Fmg63qZDyiTYXrnDF+I7Ed6Cy4iSPfkNSlHwxSAfmXp5gtMRGlBJrzLKnc3xCJNKf+iCl7aCtTHc9XFXjAQUAalRtYMBPIbA/SOkXjMXjiBn7+lYGKLFEsK9kFbdXmLcUA7PgjxhveXBg2m+mEBj6GD2IUHG56OnleZAb9v46/TTHRs01rA2G7kQAm7arnMfqvAAIeIc/sF30r4Coo4JLHpzrIfc0m1on8iaNHZSGljMACVzD1NqOV3LuKOK4WM23w9Sbt6CK+ZwV+TCcaXCcLQV0AvTCkgSmnsfSHOx1EKabuhSAfwvVKHihg5K+ERYQga2jYDE+3gdU9shtionr/6NzA93LKG9ODTP1oYIOBzSf7i2F3KdjCwJZE+IFnYN1IyVhwlfm35TAwV7hQwBSAdSnNRhU/gOP05SuiteYPFb0+OJuV7eR0muOFmgBS2f3+oedrSrXF9Ze+UQ7/eH8SGpquu2/b9y4NRpWBNqeRPgtfoBVfv9SysdQClu25IHZUgKHxHNvU1hveki4z5zCmZmhiKN/b+8wyKd5NHJuAnXMvpNLBog9+3JfRS8ohLYS0xUC9dsB+9xCUvj3ra6BdV159B2DlDM5lH9XglCxzsB/Lis7qWftV0D/PYfz2tD+CYRJEmy8BW6On6CmkWhceRJLWMrkeYSqcnL5fucTaM6yx0I4/5X0WAxkt4XmP2ptmeICOnMnCRgZyuhndOxffkb2Y2VQXOHIN9tgCZJ2jwBiXcuLHUDubwVMRHuX46dpTIXPCjKcDivGhS5Uu/zMiD/TFJQKTp85x5Mgv+J0j8Ev2f/DHnywWP0wBUSKO62DXWoK3g5w3UsUz4dVIGxSt7/Ay20FiUaFnXNeFmb46uSAD4bn7y+SvzEN4m7t857ZK4N5dvr1EAFpvVVABmSGz1MKcMr3Y/v5yOEcCYccsY3QWiS7Lh1HRRl3RZFK2v1UaCekoh65y/Z6hOQ4f9GHHwdkbsJIKKTL0J6nuaZofb2uduBRlw4vAYnrJnWEFat2sqk6xTLIF1f9iI7ujITL22Nbq4PYe9LiNNqE99mFimhE/LQWJ/sfj+fDBcS9mIXJ3DABrJG9VsOZQB+C6W/0pgbzp0DACmh1fS8uQdB2H3oCZZqxzhrjp1xt6rq6uHWPhQWTiHZ9nnl5hmJOq8jlNpbhbDTI+fFoBFUUWWc76BjM9TW7lQVQzlIfwhInoLvhCYHyiOQJDt/1FH+Tqo1e0l1JQJH9U7FO+4Z+cGkItwfvFxHS13+zAcB3Fh+0GLlrKHUM6ojKGOVHH2GhPfVgmVayzy+u8VwuGlULECzl5b2OQPLeFXNTrVAfhAukUFE2Q289u/1R5+CxbtwgrOVTtnKfF+RtGk2nXcMZmQx6sj3x2bFOOcWavIlYt0s2PxlZjwQ20H7tv6IGsatsF4+4fx40Yh1nvB3BvYqEQdjIUpQvB1F2OB+xVmMWuo3OV0kMMZ9Ji5UNMf9GDiZ6vgU+RjXv4GXEXFcpwVpFMcyAUr3qXtka/cy0Io68q2azzfWG+rEQEdeyMMtlLU9GimbScck6gl5V0CpDRVnvHTDkWdgIWLdgk8uJXdYyLh4f1o1LjcYc465/YQC37qN8CH+UwalWXcHS+eOKfUJNvfaBdV76oJwLFJf4cxabiMQTDVBZLNeNQQSCZ7tDGyNiyzp+rVdlHu3ZYW4ylv/gbz0s9Qy7nMz5aOx9acHs4n+36RjkSbvLzJTyRmIdEfxYz2QaCUNOh71WTEMg0kMEAyvctRepVZl+/gIckfEiDducyeSVCjuj/OxZzaY/qZxpavTzPCT/1+EX+fWP87sBVKDp7VmT3iqJ0XJOejOW4xrXYhkeSC4OCPMs4v3iMfgOKsrrRy3FWnO2kq/BPNfEc+ky42hxPoRpuD1M3Sf8m7Bc1DYXoH0luR5tduyTRnjNZ/wfvSeTFSMLJqecKsbc4pvy8OakLGIQgngEUnTYZ5rLibdDOWWTV/YFqyAvrxYlzI41wFUeXHZPJ9fTTC98VKHNqwonAjkRYJTMzSTqZUJCum6IMzt8JNraF63IZewMdmlx5Dm6Mqg2vkpaSbHkCltVOOpcFoZzvvioSwVPqCVe01kAgqnzyfgOSR8JVFJkuvBknJJd1EDI+staS53mxH0YfQWpZexHxTg3CulRFZCNlbHeQHqo+IHDOJrm68/URI0ZWc2ZXsimN17ZDl72FFttS8eFCmUzW1cagJ/pDQgjFJmS29y+eCjkuGiQ8Rv/fRlGpmxGuFbOUQKdcL27dqMJZHg4Lf8c6MuOSoyViaJXmxg0wn6okOa+1IaHtyDKmjCFO3UVJKVpAJ+1lyoQBz0yVO7HY3th3GdHY39Du7HdWSyYNe0XA0CwPY0b4kSRddGJ3PoVv6tfqhio6PVVJydWhR/HQym0hBrun+db4cx3bZ7f5SGrYzoUxygsMgzLF/ccJKpTpmZcmFatVRMD8Xf93zi7a3Qkdrp2bI5gNj6Qi1VqS4Fam769/HfXtjCnsztqsldB/SjvcHtsXLN2iIsMhVWgAFLZQT3vKyLai1Zaz7GW4Ol9vWg+JrvWaaTPfdy8BHIdm6eBkRyDjq3JtP7tjTb+LAAyK9etCHNQxvn0hCJ4tr794aTvBjCRDv5cQeHt7c7mp7PKr+4hOlQ0yGX1L7O4ZVSWHEfu1BIaqoucXajHKerFSme8U00iI7jdTcNs/L/3kaiwhFqs9OCMxOsakI1LZ159B3oCvwn6MeCuMsMP2VMAZ+EMi/5p2GX/01A6zp2DyvIfF5eeoX0Kt0o1Rdcafj9Ca9Q3Ap/eeq2ihVdwF6YDdkRM2Zq2nZbluOslQ3S5rPi9t8Y9fWS/8BfYUmXCkRStxr0ZeudiS5Xgf8bUpiH3mWXGZ1FEeYr1ohyukVGouxCcs5HdPB/8udtBa0lNs/YeMRTKdm3/NxeYWP9fcORl7DPNusbwFccBp+rmXls3utzMjJvEiAVNcAsC6lf/57hZjUikisDIvQR86TD+NcBhf4JfHt0Scv+yQ+kjUmU07SqWUVTPuytigSq6sIABMslq58UUXZDsE9Rm
Variant 0
DifficultyLevel
597
Question
In the diagram, ACD is a straight line.
What is the size of angle BCE?
Worked Solution
|
|
∠BCA |
= 180 − (81 + 51) (180° in triangle) |
|
= 48° |
|
|
∴ ∠BCE |
= 180 − (48 + 45) (∠ACD is a straight angle) |
|
= 87° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | In the diagram, $ACD$ is a straight line.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2017/12/NAP-A4-CA13.svg 260 indent3 vpad
What is the size of angle $BCE$?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2017/12/NAP-A4-CA13-Answer.svg 260 indent vpad
| | |
| ----------------: | -------------- |
| $\angle$$BCA$ | \= 180 $-$ (81 + 51) ` ` (180° in triangle) |
| | \= 48° |
| | |
| ---------------------------: | -------------- |
| $\therefore$ $\angle$$BCE$ | \= 180 $-$ (48 + 45) ` ` ($\angle$$ACD$ is a straight angle) |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18u7FJag9O5xHMNuWmdNBeCe6O7fq2Et4YLkhm1u9BxR0jnDVrxmdoOOko0VsCVF1jrMlYp2qQoW/ktf9bVE/raX/IrIqgTt0j/L99yFN7SK84HmRcSjedeCKGMWgaZFkqllm8cZUk84lTtJAUxKTVCuhWyv7Lh2iEvuOOQhAjt4uNS62h8ovR86r9mJUGcV7p2LXhPg/53abilc8WvRKsllgAuwJjaaFeJI7/LHvYybLQJcKKTqeltjE5GGmKZN3NAFhagDKKtRcr58aJqo/6K4STWTfeJ8h4R4wrIJhVfAdv5rZXfoo/4zTsmLZa57m6emeO+rO/wMIh8LJ8NUfILpZaIWv+y2DERzmFaxgIL1B5cZkbiwJJSx5TIXOFHNush53Q7hFHrks5ahS/e8MrYMQzA+3AEU96rUBH8PI5KncUg14L5VSmWXjw6D6fqE4c6NeInu0ZnVPUvgwnaNzLTvm1ewU/e45w9JXEKTI422j0U2pqsxYEdGm0HKrX3jN1kFl0L/0quth8D9WXB+GMdwuJiNO1zIqdgKu8wANjuRLNp8wr9rhY0EWuL1tLWFLyb8J8p3bB6n/39B6yFqFzjVTJUSI0POictdblxTQNFv+wH0XuI2y8CDOr47wlguWTzW5CwnQNYN488H+ADIsW0gIK8MEeAFECwhsMlc8hALuqdDC0AMv5Bh8G+uK95tewq8EdMtdDvJ+M9O1/zOpysoA8AxfhKvbekW6yhGK1sxv6yHBOL/e1b7pFZm5s2Y3KQIlD2fsO8mniEwdamyB/AclHiux+SDdE2xNJ1tLuLUdQC/UoJWpOGJVN6AkhctDilSFQqksfKNTM9kC8hJgNDvRO8nDqvSAgIb0a9fos/lADcBpMfEHSvrc+RN91bNc67mXKw/kXXjAah0dzJYfFIPDVDNklB168UFHsbIBnbGSEZHKDPNyfUAYTR2U2E0r8M/I6fotO0ZwOHtuJFmk5byszfnSecK2xwLfKavaJu8NSoq+V7VHRZtbHFasBhoPFulomSdVN61A4XTMfb+a5B3daIaHYnUR8xl/DxfXZb1k8qE42X9pCh7QPA8rQqLVbVU9DBXCeW8mDrcBskN5IwMfVTu9OqRSiJLasOPJoxbD5cJnCFROtmqsdKV2SHhIXndRXQK05Rr/zkIMYoquuOvWM6FjxQqyKv3trOhHp+1EZ2+9Xv7syi8lhgCc3bD3FGM3N5849kxinPRJMzc2fKXU7Pb0qA1jFqVm+fka7wpgi/ziZGbtWSvoNz3i6HsvnqiDU+GCDiSPIonuo2i1LURedf/IVpz9enqtSDAMe4owJ/HLMzlqcHw6Cy//mRjzwPiPYp4VInP5SNjPK7zI8Z713686c1wcgm4F3oEoGhhfHT/qamneZVJvDYiYKzmseJLznVY0MJ7h8k7g1L7kgAiMQB/gBijbmiMmD117u/jNV7nUWLFJXxWCsRkX5MwpQQRODh9uYyGcJbdOQy1VV+QrnjpBGAEEpYD0+ADPlo1ACiGFfhlLoEczdWZ0MLfJ+cdL1+PryqSiVpRrCH4wryQKH/edNOGQ2PkECX4i7ZnGgZfEMo6iXc1dtjlFmyaQmhYGehfhv3hWsFbTXMf5zO0GRvvGJNzUmL2axJPFGc4Le78WPhOsL7VIPIqX85G8j33kt2yrWgthS4MYVCXDS7jDc6aO6tbjb7g+DZ/PUAiWixqouPlcpqUlmb46NOSJ++sndZmqqNiar4laBovoYbB7AJHcmXQHvl9EUPgSvApMGGduQYCSJ2joUOKhK91nLcBLnTWzFfAREaEY08FNmkfTVNDmETB4QFBB64RBemCCipRRcXaFiDyYB21OlmM7eGyEMLVGyDzKaJ28h/qYwLFR2CrhFlrnUTrdGed25dxoSwu7lKmj0K2pjFGiT3iiqeYk0dG8DNGUhl0rsLA3/tFKO2Tuc5cFVySvNW3E1seDHnZM8OVaO+Yl00YkQhTS9RAFgZr64o9mOcvZVVxowfI4x1AYdv3+T3HL+QDl0J2DffOIZnPGMWr+fKwDJDTex3gkPFoh8mf2DcfcilWoJwRdGjcsDyCDUjWSa3gCp3U9NdH3TtEK4ZGQVrlbvGQNT+SDN8x6KjsVoNpNJDtmdQG/UJOIzuSDw8mvgzBbpxjWK+BFNtM7IctSvyYBvi595JlQGH+IQubtNyMb8J4gHUNSAa8YZWbiQVn0GefgiiQGQWEQLkkHcjA2ABbsNZhYIKOOrcFFovODVwDtNWzsFnUiLkp8Nss85vbrlMbo12UfcKOUdD/VEwF4wnvgV/DDR8CxTdJrz0OGzCS1CLaeTjCvGKaM7oF3/OAva0HfdohB0TUtjgNVL6fq1KXMxnU7NL4c61HQjY6AEj47yxkjyViCfjAczeR8E+EAlJ4/nO88iUih5dnWqY081EokkgyQa6fDcxuvMcyBIy2PlDe68tOGcjDHwDq6VktuMuPb5cgOqqPPjwC7/ET+E1XZLzjTejPAwS7aZ2J2B/Nxea8I+AWxAkNyRLRFDArT1MbJUgAqjJ+uANshD2/Ii4MN1na4S25yIaE1uae0emAio66hbu28p3j3UZQTkyaXqsg8V+0jhSZYNGCtyHzp+mvgayCOAaNhXRoegEAod/BWeoTZAVsJaiUeJwJ2LEutyz5YmcsYJ7xt9DVASncVtJhoC3BhdO96oy50GoGiKmfI946SoAZUPgVOK+bhwxJ0cEaCxrsz9u56xZNkkC5WnjyipyrmoKLu09giFEf+rYX3FowaezpWlVa785mY1PC2lNkK81Kj/BEADgKg81Ud7IgKO53XvIVr8hkDqkiYWZRCjh+ppCunI92OHXh89idYMcSAFCnnVPhvtdkuSxCn6ZLZ4l66BkP7d/OEUMpKZTA8OxIHhT4y0nDRNp9a/+ehMSj7entY2L7CnypgC5ri38A5wEIxbZgGs52Mmt9pR1R9F5LTegZCHXnH5HtSSxE+cGwnugj1cdl4/O2pTb8KP/rkoM/NWcGcDL23Qksj+QslojnnjIRkRvKNOyVIYslgzeGbWOWEoJWri+p079mrfbnFPYKBjrQIImsW8H8yVdwsCf1uBvchjNmZpJPVturzOGQe/MEVgTqZ6qkbsoc8+Jqvqpilex0gs/NNaejf13d8ueYRQuzw1tNUbP2sptHjo+2HuTT3nHhc3xaZJuyznRVFWsdHqQeJSZRdRxQz7Tx2F2zZBE/qkAsp5O8qfq3kqt4ifD5X4Bo6OajXaMb3eGlExTYFjrxXqama3OrETV+35SzMQ6bb0qrdZxA7WyR4ZvrGerYJ0V6ZiMZVjNpd+/oewN7JwXJn9Sz32086YJTaF1PFKTBjiSnSYbLPtvQjWOfHcgkbWsJD2GYWqKLm89Ffe/nmIkvQd8O7pZGWuspHci0Ti9oFkJ2I7sBZWoIIFIw3ZeSVXT2Z698rF1J7QGAydnr53ggH4HH46fJgY60PF9R6jY8fVBc4PCPCGvHWFw5BYiYtJcDbsBu2U8FgvrGEX14iEvJCLTFNJ4BsiVmf2/FBrk/9s6H50/PK9rA2k7MeDPWmx5zXcPm9+xCXkqrKeaB3PPi5m+MtyqcFy24DfgkFCiTe82Vl8cnHg91Hzq57fQ3hHMduVLfXjafXgZkQaeRwqEZiFykZrPu0BL+f/xcbaxHRuork5Ucpi4FcOoP9nm1KbK6KYpmFeB/nzkMh886sQ2kbLUMIfQURy8BaNA/13C8XLYGp3/IMrHJYt/svVGi6eVDB1qeoar3gqh0lT60ORiRxp2jcduzq+HEgGwUeervShwUjzjz9dxCkSrlumqX01JV6ct3d8POciHd0TG+BaweG1UXxHGeEPbHQj5ACLAqF8GD4HtA8cqj+Yr80DQIo92jTfbNR6IWeC1x/LHenowBIYVOrAdN7NAjtXSRQkvJ+Z9nX+S0VVazcBWEg8zK4oAGMehbU3N+P+L7V4Eh5RQGbP88DzNcUlJCrpspRXAr/kvJkWXi1UEsoUCRcddBaI642rznksF1PsBGn4PaN+WYYjTJi+JS69y+ZVP+cB1/fHFRNUEUO7Jzzajb6OkbFY+h0qBgF2bWvjesJMHpGQSXqaCbcnzzXkUgFVIT/P+XT7VuudiFj9Janl5RL89b3F6qCEPvMkXegvGu6nvHg1tKR/CpqDat6pguusaE6SSqfBzi5I/AD0DYx8XzQygg7aPE0m1XVYdQ03mGlV1y2tZ2c86zFZNtf7iAQfrWMRmnqlTDjz6pM2m5KM8CyVHBpg3873E1d9nl2YPQXmmIU9gFuRQGlyDR9R0uUWaLy1aXZZefDwdpxJ2YcCBNHx/6gx3zQ8zBW8obeC1yWZkEtN2/D9/B86u9varuqQF9NTGasbs2IEf4gI3aEPWmntYkqm11TuID1J78qvX/1HPo73X0OoghfMNyAIUaysALr6vdCsLZm7rYUtQULMh9rzafaKZVNqk0S9ZMLD1pVSABd6eTFiWVfTnnOUpoOrUvUmQT8SQL+35/hhGJGUO6igKos9hfdYLgg4Hy5kjmebAx+oqVrpl0fpwJ42b7L2+n8udKUDqHdYl35pe3t1dkc6wavqgUyzLQROdyvuadmxBjhzjG3O6uBKyZUcxQEvdXGiGXMLYofHvQVz2jrEARYOCyiI3V92cFDgbXTX85RopcsdHHgEcR0xBrvSNMJox5qtffY+9JXm/+lEOaUpWVcf1nxPCrqwo6fjkuUDdGNf8BHQWTgwvGsHQ+PioNUhny1wLj5/3KIbQyNqWfaM07XjLHIQlmhaaknbFs0nZtkPTFKNYELbRxmCd4hQpCacWZtVW/b7QyEp7gz6D9IqZWlLl2tXtwTZAGbD+j0XVSVC5RbGmlZptJHx+2JE4Y+p7NL3vEjUzdLAHErD9B26B48Pqv+4K3Gp4ZGE/rwfjxiCn9mAoWGwvteBjzudToELyVCVlJm0d/bdMZrFPbQrIRDqnHm7pSEg9VM35JXKll74HjkG9GgArYbHykbtzX04UzaecyvfILPRhLfHd/mtLzNI27Xy7TzRWrGTfK04hzCSyxzw+sORnGM5kUnoiFPECfUqFvphzzOqNNHfHTroPbN3atW260eTOewxzqC+UTLEk8PunkZfIyZPwTMuKLpGf08FIBBSy6vGg6awQzHox3h43vUkehsYqCTJ7CriiUS0olFXweHUiSr3XbvDCQmRnuRZ8raa72Ol4zHVlKD5k6X9YizhrBD2T94vByfW2MIlZPe/JY/7e1J+KwwXd0ZBMbCouqjn35mM7QqtIjrmgnXjTgp9XCT5vtr43+t6oInkbWFZ2G0SUqGg6PaKv8spNsCTBBPC0SoS4pt22i3J0Y05REe86Ms+NOv1q+nnwBqMnZoJYmNXs9HAAr4yOTACX6TNRAzEczWI96nOX4321qn9doTnTw7PIzyhC+ztyM2vWT7L5lMG2FQlqY/L4LBHhJwq42rmVjcG6pYTkDJEqZUiF2BhWB3IN0YK1l+cZ/NlNX+6+vzGHYmUamODXiya3lTZpIyKdZNTDyFvRW0WJGbprjGwQ8NDIMRHWgPIAxzUgWmem2uT6qNf+vKof5tlrVm9vD0PFcthalePcG8G4InTnHj4hHMz2Fu7X9eJ1oimn0LVUqpSvsgcqP4B6pPhU2mzTXQ35z5WDOX/wxfPeBwCHs0nP6/d2T0dDcMwwD5qeb7+eV/A9WDtZcUgsS0kcecRunZ8S0LeZm4b4yx8AhEyNsCKTgl3l6mywYU7xZwTIMJBssHZ4CxkWttGTn15kChNZjB7jMX5tnkHNMPAvsTrxQojpifJOM3YUCJMYPi+qblgFNTXfQv50RQR/83bHgP1rBwv0rTG8MsbwKU0BZH0kN5xeZJw1QdKZDpD31RYTxTG8PkRH3bUAKCrZZs8VHqTueGA+gL0Dz8kyl3dTm4frG3aMTRC3zoZENCYZqJRNUaI9kPT2Pzhp/fnDNsOiunrehoSZabkGvV7eNaaTtixRnmZHiMPl55/WcIdgZzIX1mpe9cWIstrrjPkmpuBWW0TNIdsCkt8cUfcvSK9RpzRNc28wN3cZjQkBu12RQd+C/P9eDMyxbzsKMzsLpZAvshQbvvG7cMxiG0J1CoMkrjt8lKYl3zL6AIG1NympmdeJWaLL1ReQOxtchvtFVRHWKzcAyJj/MS27spZnbBHlhv4LbE7fQLjjFm+xLVxSekRN9ESXR7ZzWZqkxUbMtqKx43keCe/sM3mZG7j1KTcfe53fG+o2ONWcLmd1UEkjrob5YshxRHjGVVgzdLhHS6SQbDrge0XpOzmypJAZA73Pt03FX3vEJCYZKR3f/9NDPvNlcUcaZMDQRqeihmpNA5/4V2qC2lDKZo72LD9gOzS1aDa4RKT902qWw7qBcjPOkPjiGZJWHl5+BcpHO4kLdfjbYNbGpPsBqnJrR4rfrs8EWzNXbvZNXYvj0f4hrdiYmzjNQz7AEGZk01MIaT0jHKq3ybONMTvO/oYjauS5KSFKu4F4DmKG0sNJxEVRAtD0+4BMnNEFHAuhuhSFuVaWIzmF1fw+rUhyV1fbHcE6nugIqy0fen3o1vp3hjQpCOaLdfB8wl7qPJRRCLG3W+uCUp1KlI30JNiWSB6T6nCOl/h+q/pcBcpWnc2o4xRyG+lQY7Tt9IxIif85Bk7u3tTYkF82Hydv8IksvW3Ngf9r/vC11lMk+gQKpbOdhFY7I23b93fv8WjRmdWu2IGqnguFvmqBPfFXpe36WqW+bE7A0rwou97PmMgSDtLv3SpMjL3vYR/2RS5x1QGvVJmTyr86FbHHP5/w1U92E7xULVzgWz29wWgIHw8efNo1OVOaEnLrRHLC0894OJnN+XfaQNJ4duYoFeAUPuTrZout559j8cngtTSGhVei/+V/kiawK6nzevmFlebrNNmuKJDJlbcrCPc6PLNXN2cNPlZ8H8x+Tp3rr6DH6bw1CV+msDn0dwai/RrIa9pNR817rJUUoqVtr2BYUylhsHm1RNqrTzWJRd8gS8I429COY1yDGlOrRsB6NzpZILA5EyLWYOjtS8whEUnnyfga4VJSfToaf0RNEBkgVzYMqa7KxwlkTThslReIsnL5AGLUNWBq686XYDcWetRuFpxQCAwcKNyfzyJC8skdyRlwoJ5vJznhuNVawV4yhRleVlFsu7qM/lcyKp3vD2vxA2y9nWjyYqpJmGiAhzmOk0MjRL1NI4A7aqlVARujJqM3tTCn86HZBOY0Cvr2Ezb0EupakcReoUeu97FotcZmmGnpYMpzjmc2dR/G8IxKztUXsQBWnjqPYAvE2s50OkhGFwoOQkDnd3kD6MM+6vg95rhKyOKof4yC6b6IOQjWJHq1XFTZNHPXTvtHfXUBGRY4mawfU9nb707zpuvkOiO4T844WnrVbr+z1rFSFut53T4k09HbNq3Etvz2fAvGznYkx+xgFKFl7V6+zKZ6LlTCLgXP6pqtJ36ZVIFQDE64tz0+ipmPM+duIDWr36tOgpzj1XD4X59n5CI3my2Wng9kjfZ1t3OtLcVgOa2BREXaDUdaiiJB51FnPLiUFcV2arw+OiK6Qw3nbO0VwMp8IKIelecJnQtmF3Q8X21PrsJqHHBCzTMKHQOjKJeFvzCBTIPpj05WdsZEvkAv+iCzwaFeI0kg4cc79zjdP/0oPx5Bw5ec8QK1Py7Baw1/r5u13BzEyGi7DmXYQLPKIEHrynH/osEwat16mcp80EBHmr6S3IeC+okr3wGkBxqG7yf4d1jTiCeAcxuN5SyS6B48rqv7FrUjMOvmqB545TgArsZ6rKw4L9t6qLLTVKYBrMI7zZ1lDGXJGZ4+wYLaHmhdTuS1UbgvsYnuiXozyMiUZENRFDhZDe4c6dk/83DsTn9ao1LHtoLIcQWAEWpMuyBwBdvnATpSnv+iI/64zE9jsiO0iyTgJjtO167tGIiRV4kBamnJn7YYCf/uuTyXGMsvVck97HLEMeqfAFbxaeKh7epqK2j/3zmPLiYGtNytoUzAZvttujH8TfTgbHVuJaayScjWQ7XzohseqVTV9lf3pfq81yLZmilO3EqUQzd5ByXoqOxFJQiTVftCgmk3mAZZM7nkaMkvxIUK5Obs7XUNmLgiosgpa80/3FXwTnmVxQ3Ye4dJphLdnXoTZ1gRU44XpRK1cjoTpnQ51kjThlmaVOj/JYKttgHQ6zMy67sM+33W7wV7VrFB4oAjGz9alRvUR7dFl7kK/mKIZETbfmyyYYTEKlQx7RlScLnO82RWjhSBxD9l4LU4RLXJ7vLL6c8H6fyay5fZ1N9jYcQq4IcQr45PKmv8zYYQPzWgzvUFH+mAaW5OX4f1ZqC0ZmvwucIxBKGfEdMAheVv48tFt4BsgDtIimezZaA8WRHR5gS/WqIzNwiop4dbXhrLoWEQX72AQpaATvkzBPY7kXIy+wjhDX7J15udMG1xd5dHAmni2hIPjLtQw8TNG4vNGOk/+xffp5zWAGZjAYjRuF0bUc9vLnem5JyFiirkzY0tBjZuJaZLUwCZfr9pVtrtVO9gjqe7VvSZIDrJseR0PcYp+1f24IO8NNyQD6TqOeXjVkNJi0zqBaP0iVO7vF85nSbmv+hFhycjo4+lXJ6AISaFpx1Tgbd0Bv2QkJNYUTsNlGmZFSSJFokr1Zy6IfOCtDYvhj6RWqGGCqzdd71mBokz7Lv8fSKwi3VAIWEkrJOHOYPOwGLilKUsaK4zds1bA2Ia4bb5ANNIVhe+sTe87R0mHNAOYn2KrYZH0OHsd8HTI6tMX2pfopAkxptEopmP92OXb+CECSlH9lnjvNKffrXSUl1JG58+6ubF+n+18U5yT7tSJh7eWWyNKOPQNCVMiWruUgO/w2GEak/0yaFPNHTfiq8abrqzpgEVecn0oK3+80qkEJ4ylqGLxfCWg12PDCUR0DBbNQNbPCO4+uzLbB7RG52umyp4JGobmuEpkkR+4wqNN3LeefRBJPfEVVkPpjYjrGC/P/+6sugOfUn8P4tnMByssaoqBf8j8g+iRYnlnUomYsWWfjb0y05oSIJ79Hk1G9Kib5m6b1scEU2w3ajR1/DMrN5ccGkGgBnUjT8JegWCiXUV4KsUGjzbXal7gG7JEbw7pzZgrqNTyHakLzcT+ysRKn6Od4ssZTNjz1oba4/OTi0OtzXAmwIVIS24pYFgBQ0evhEdnPWJoc07NA/SnxkKlP23vNxBj9zrucmPir5SjdHypSGPOoyFZYjLwEg5wqkjhpyNPKq1/meHZTGCq2nhuTQFUt7TDDDkxldnI+rJ/v9PWvq0cXryxGs7llsfXXUpBIvEu81zz2uP+P9fPqLYEghfW5ms58++H+lONiw3leH1Po5/t8p5vR+W4SEEUFqjnhxYa5CAFvztmTAmXm1Dd5FOsjsjCG4u2SclIEhW5H4/Y25W55Vg+b/7LB56HrSrJfnDT0UAbcCqFJEQreNi2FkVDzma6uM5clFRtcXnETuSXt8xKWt/OjjKIV68+vW7x0MNXOAJ0zTq337Q+AkJbd3tWEBX0d/Lp9JbdYj8V6tbtNUTbeKhDksTpY9mkME2KZSkTtW2S/vI3OSPgnRS+JCAdegp63p037d5V+705sCLqOOPAbxlrq/mEEAnGwaMNiDNoEbgkUuNMGVG1C/yjg55UjwCsYrYb6+ODB6Hn7WEFOq0wHvzh2OAmm0m2F0PwUOwk/XRAia/kMGcV32CM+MKuqCCY1TqU30QwQLui1xJmlnih8DurFSjbooNkDaNlmVBxFv6gU3Ea0GZA3AP9VnHvXd/28bIVWCI73VcyAlDTIWUzFo16CBcVd2ikl8lRWlIS2FSGg84TCz1haP8bw2xzET+5Omf8IH0J41zuwbQfzrM4eFk9fdg2FWEExYJu12loBega0MJnurzPXYU42VW//9Xh+NNBRcsSh9jVS/dkCmfYPDtDxKpc0X1xVleGAxpK7gYQWvX/6eZl7vLLV+pVvEwUJKwzQqsMRxL8uZGS35gJ9HUqOepoijztBi0tbYraZzaWoWsNPM2qI3AHbO7gSNXc9WUkrAXCoz20ET38P4sv1o89vQXLsDlIPWg0BEYK8N25NV0NOQEpVbx+9DKm4FIAL8IrS4zDrbOhutFFiTfltQKkIWDRl6fthwgEapj25yqRqiZBib9U4C4VNJqn6d0xZecekZGB8AxJJ83lIoixKNuNcGmoDXSQaINOsRGePyywYcwGRMWy3GxivSvZzHUFSwA2ffAPMweh8dS5C16UM8X/p5Lfcs6AEmyXIOJw91jT/uo9OVVbS9KMNpl1uK3fhaT2faa1xMCgeqcYmYJ1MGhOEFaocHH0jnYfUa2OrYtsyfTlDeISjGvIGDvGM0ylk3ZOY1q+trkpmF/RhVFkL38t1r0HjbDGSI2FB3wiPDyq7WmAtK2UBWnWWPzMEu5LV7MIJCjW+VJluihnnmCQsgWhFls74tjd9Z5vZEHiGHhA3PcPkt0V6E8
Variant 1
DifficultyLevel
596
Question
In the diagram, ACD is a straight line.
What is the size of angle BCE?
Worked Solution
|
|
∠BCA |
= 180 − (49 + 50) (180° in triangle) |
|
= 81° |
|
|
∴ ∠BCE |
= 180 − (81 + 23) (∠ACD is a straight angle) |
|
= 76° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | In the diagram, $ACD$ is a straight line.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50073_v1q.svg 300 indent2 vpad
What is the size of angle $BCE$?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50073_v1ws.svg 300 indent vpad
| | |
| ----------------: | -------------- |
| $\angle$$BCA$ | \= 180 $-$ (49 + 50) ` ` (180° in triangle) |
| | \= 81° |
| | |
| ---------------------------: | -------------- |
| $\therefore$ $\angle$$BCE$ | \= 180 $-$ (81 + 23) ` ` ($\angle$$ACD$ is a straight angle) |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/M+IIuTS1WVOwYb/MXQXFa1tQgZauvx583z1LbdVXGoPJi52necbRmnVx9tmsGbNWev7YmxSI5QLoT4cj6InZzvUy0cVmv0N19CJR/YdWiEtB4YTaLR/n2F5aD+wdbnOzNR639Er4sVdbbjDjVR351sBkLzEd91shf/r/2XdCo9n8dpKNfDTNZWzhdkPo0qldKYJUO5uCGEng5SdIKzXQo7JJUzaRlrYS7JEZDfe+AP5cTOyfWHrSHXmj2iwoxyiloH+nWR4GLTW0xTnrs497ZGeQ8KBFmFF0uFKcPgOSEPgjuGauXzosnVfLStKh9L2VGkJ7oGfhMDOUop6P2ODQ9XWs65hv6E8w2B9QdzzhyNm+Waj1zJIgUQNC/U7Nz7ceQ77GPkWMX/y6kjF2s5ChLtWupJwHupjP9nhvnbyQ1IeuZsu7p/5M/jVIFialw3i96pi52/ubWOcdbf3ge/M2WVd7EK+3nr1nLany+a/SJjayH1ruYxf+XywaEf4DfBJc/tPRzX8xDFuvhEuVHjweF4a8MpSFlFAaV+whcU8UXCT4U4mE7V0wvYxUPW6mMs+crxsA/ES/DG2i94DeBN3xgMI8JobQLSW41qpDic9zLCmPxWIgQ3JHJ2e/9sH97AtclKWskSzAziv9yoZdT2lOsEzVCjE6TsfhjkaMETzLPbQ2a0t8zQl/Aawo/Oz4dmuC1VenjE60PjmupjcznpTKjswRnImZcMdVDUJJHpWa+xDka3JXxaatlYmB+1lhJuVjnwQUEJS4i1nhncSXCyX7iU0dx7HsHh0T+z0ITwU0xAmOFOaNKfnP4dQvbhygsO1qoGRUBML+ATX6KdXueqYegU8MmPe+V5jcez8kdPx4Q+7rxH/ukfbV1RArJpj6z4P/R8CjupL63Ms10BZ+aQYx6fZd+PMdEN2nPVtLwDQ6F99uZ2K++BqWmRupnNeXqCOrAkqfazgdn939n4qJmVmCg6uz3Liu71D/qsfDOZtU2XykmJtau1UHQIfk4j1DIKf5Ddbs7tcrxwDzsWVVbMO5TCdVAE9Vo3+RY+/ue1GaHSouiZeJQ4UQeE0Me7gF1iqL6zDuN4mBP3DRn8v0b0rduvv57SBK8zIhTjLbU66OndMmzM2W1g9ZMG9zZDLN/DjXM6kaStp8YT0jLgnv4a9yFfrJW8XvsMptRprZ1Ak/bZcrGpNLUZkr6nO/i3fre8tOUT3wobgPMzgNP1jPxvpo0Gwcm9Yf/jlrFrHe36okw832iW+sominQ1TdsAeQn0AqgQ2koupymKebVw9GTWWEOZwBwjpVZ3rzNBL+uhvhHuHhPU93o/YfA3THQYr8McaZF6evuHC7W2g0zmXwLZeXSA5Zi6UTzvAnD50QTJljcx73asNEBygDmiWzZlIj7vk6Sn/cclQH0xHZ/lVdCqCj2kaGQIRQajhpj6BEWgIMnmqMvA9dach2WO+ZiBbpglrruzJN5EvTykMBw2PklM3zs9Nf1EeR2QTAjqGnijqxMDsZe1bI89e8PbWPBO+/mI48GGjaJ7iquGvf+M5f56p2MWZ5ru5CFQVxUf7BxmAwtYJsPjSa9dJaCCCoGFbd12ZvyolvviivAJy4hhb1zHWxje7M27PKjXzZA7Kil3h0SpmQ64hE9Y3fDMR2+V//yhOFwsofkmq84dbYGP/KyeUgKirgrsMWiznWNxmzbt3RlsUsqQHzIAr69bfCoAPzbjNWQtR7sLCaLXqEkv5So8Xt3vaJJyCqAxhdN6iG0EpGxh9GH6Vz5Id2WCwhT+yhT9nIpy66sa9f/3Ea+AEb01eeaYXqoNfxX32Li8o/5UC9PpRZBmfWAhjR0w9q6BztBXm7XcpBDYmpFuxf2jKF2HoWy/aMPp89Qpkfn8m1cbqpVVhMcYti6sVMTVKojdtJnAsxWmgIPucQM1T0/dWoxFSsXeOJmFlO8pswVw/YWc79URthMKRLmWAKDeOQaN2s4kYqFfhvvLX79+/Nv/LX8mh2t0KSDUGw8bYpUyynzMfMOtPXd6ekBANPyynz61tJT9+guxUp325DVR1Xbdkd1lJ276wD1wogmDIulw27px7b5fdSYLyHJtAZj5t3tIvE6e+2LkdwLEV/S2etAgnxewlCNBjYk5D0GZJvR15yufLirifhAojuTNg2tX7URKpbVYbr80fZAip96ta9rlRmcROslq2CPug3yGN45IFVZLpuJzwPUXGsb47GvghG73QDUWWIwLxgd+s9s6RiR/Agryv7WY5kU5clJ53Aa8TxiITgkXrrKrq8K3JWjZQYbPt3xpR/pOjN9tmkLa5VuvZe7EHlUmeHOUkqsewScAQYFhUJdzrafPgKU+2r4BcjXXa2vnzWwW6Ig21N/dYD9gXTslc5gC4QzAto93wCMkOU4i/27AaLMnHFOVZhMXkLiWFJovY9te7OzjzEH7WYRqJAM9Q0uNb0h71lsWgWPLo7jHM78gtyOqVoZYebQPnsbpztnCt2shRlSIzuP6N+5kc8NQMvxqNNEZqhfBJrtQIxQ/h3rO2zCFKqWWtKFutynQqJww9A5h0kZ5wlyjV6J1rpUQLWQZeVGGe9f3umK0Q4R5ESt7mmUqq6kwrx76ICeTZsKgnpFZDE8OHJ6BG01rrwPsQemc8az4zm7li2FbMJQpfcKBqdZw0O2Ai3KL3dGPBqFHdlPxLATYvtP3mIiKZQc/pBzjSTcMD92jtRvZnBxKKzEHr3tRxpoqP+DSYNBmHM0/FcXeklU/CIr6RNsMj2aStsEv4OQnx4zr5vGrpfwielHmc39eSbvKaMObyZpSUkVj6Dng7KTKH22Bj8o91CcA/VsCUIEBNgTDYkSeRpUjXjvEYOjCk5QhO5b848fdkrar4lJyqZ+mzCrTcJ7NiwWQBEMGZm4iifdrfKtdv9b4jVoFs2FDwGauALXWcDHdsTWhu5iroYDslxiYc3DBs+y3w38Znyna0+97/psHUrtfEz7zGvkA2dSfOF6L+88Y6id9SVp0qMy+bJ70qY2N9T9j2yOxTJADr4ekvrgPvYe6EGKvy6I0SToeeXE0INHd5DjOihxET6bM4o0cuMiUZSMF20ecbVRN+cRSlO+MzffqlCwgd9h4AJB2JCL1ANrNzkyLWJtZA2y25udUxGldDB3C4/1uehQYShVffBMncDWCoyRnkPRMMdKSlj1ScSb7q4DYPKftS98O7cn7Z+1wq5aTEZ3UdirHEBp7X9vjRjFtxN+w/afSH8FiW6zlP/hAmbggfaCN14YiHXkw8nhr9mn1xp+n812A9o7AG47cVsK3/1lEqlagNLenw6kTPDFu5vNIR/nZ9Lajg5KD3u2ujit6Ank+amOLBG+8uGVHzMNvW45vqso31z86z/mfLjwSj0cZmUctLT24SKZTYC0VYfu1s/i6Hq3xpEs2SrIu7Qvs94yDRpZ8IS5yNcMR0PoUMaPiBKPwNJO18WSchEe2rIwlyiDUxXJ/9Rf1ravSeqeA2+MkfoE+Ca5iNaoPS7hg9VFGNWWWEZDMFXS6mGvAbBAB0pEKeddSmp0fOYCes6UavFlk1I7jYNWqa50lWY/6X7uPprYTmXJ4Zsq/VzxnSUpaL92rsxhTHNfdFrmB2kYPIDOSkaXyrC9KLVWsNkq1cdjITBzQ9cboZBBrQXzGxzXzGdFK0vPap0wilecmA/BkDarLg2FGyofDCcILujR72jAUMMBAByD1PHtenXjs4/PhgPh/IQEKBE03nSPSPfaywmTWcu8KibFQbpHZTW3tImqPNcepDBs+nZTaVnpA77FSWDcwbx8BPxtzdG2Z4Hu7NLrVy0azrR/U0SgFXq8A9rcIT3ZFlp7ysrMoXIOnUI7mqbFIHIf3n8Ts9NkzWZdYrs5AWCPXkwA6RmYDgEsEz/jd8cYmJXK7W9jH5aZeIbEY5Nb1mSMyH8Hys5W7CELxPmuXOI00nLBdoNET/iQjfd1KTQ+fAhpQXzqBJaIsHGofMv5j8acY4MbywT+f0T2/odvRyL3s4yPP8HENVXMxDTAzXK6cj1Aj6O5ZH0M1URhO+vZ+LCTxW8Ke38vBfMHLvVEkOgcLCsLy/+nZ3r9Mfsys+nciNTKugLGEGCoQ+cWwJO38CMYeLywhJOTgVWj/ywhokPM0b2S1xNO7+nHb/dtvMHdvDxmDAf/1448Cq0z14Jj6U6Z1pi8dZi79aeK9HHcQAEWl2BSoXh0He3qF1pCitcexd7l7BYJT4rhCY9dK8nEQE2k4+ZFvA0lPtEMr8y+2poeVh4EO1E/c8cYT2e3zu3HJNfkvcfiqIq0mXNn19/F9d2JzqT0H/Yg95k4zJtVJ61euah2OXnCGYfvOP6qrCZLyGljUbNYrvctMPmHxb39G2ygU2niEFniptdCJ677gffIoCBjLbeLSzWBmRxZQHc3fh2lWn6A4xnASemx07hG2GrIqTdfy0S70xGMp1fUv1qrjqCcBFNvtqSlwPhNs4ZsYVecdoH7bJeBbXT5OpXhuiZiE3j3JADeMEQgwkHmbU5gYmRLje7UwiUvkpBenGTM7etblSBABNcTGxpAozZjMrCAfuqErXmfPzTNJMFkEw6Cv9t1Ggj2hjCCNwrlWc54wh1toRsWT+2Th39Py4Y4Y4W68Tt6fdm5zHLGI0gTCYLC+ZsmTj5x4vmT1Aa6WYV2K5nyeJmqzyEq6UjWsizmkZvuhUeJDnsXeKact/bucpx4tTwM3AM2brEhyV5qwWVWvny9PM1ZQOpGBllFGB7oboP0mSKp9cuR4mQ0P0HY1TeSnfU8rKiwKeJOt+EMAKRBiAZoYHSU3Scqj3KAXpycoIEnZ41EmkTKLFNF3SkMxVHhrYbFEhgGpM2rb8Mnzw8jI/usjKQARKXXaySCsXWVvMYKjVrERd3KN8ddDmFQi7NMAMmTiZgcOGoqz5CO+h2F8nN1RaaGr94XxjiKdWFvLFqWEOZjUF2P4PxN+RVsfjATl5EtvH+T0UWe3GdsnOqO6ENJLtDvTwes6/G/UiDCbE6ial1JBwzqj2z+9Sn2v1zlm0dLrxFKf1+qqH8/wrAOWosUTW+EfyyZF58pfPoVeW9pbfmVXctM143W0cgiMGaky9lSc2V1dS0Jtfww5V3bRHPDHEd5gaOnCGw6ZMLU4O9E/ykWGQX9/zoie+WcNEfUDbEoWME4BN0N19TuQrZ1WnkzbARQrKGI0/zYDILqLNJZrWdguWV9bqR6CphCIx3UmD5R4M4YOEqi5cVJVT0KPUPrBpA2bq2cr2nPVScvEK3YgZ8OzTVJ8hEcfgJMiSZoz11B7ZUBh7JRllWWJja62klQZpWJqVDr77e5uV1PykDDsGT7fZ5SXwBkgYkyty8p6QD6Trxo7Ko1HoC8WT7nF2fN0M7O8xXBdiNR1UrmL8LwhT5SqepW3a5IAAiuek43MPSRYJUxY04RUo8kVLNkC5ThnL0T4jlBCaPqkR53jsBNOMUdLcIp/kWpVY5IHlcX/Ug3bMJUVnSfutITkNKJVjG/j5q/Cj4qRsTaFBXEYy1Dp/tuaKZx5HcxFD4cGuVPKNbGD73pf9VWtbnUGk8uihU6t8zVZ/61LQb/xkc/+gJVp/U+Ua79r5hG6bRhl1L9puP2OnmuB5xL/xZZNAAuqn2vwe4p53esThYP/enJSfESWKqIIiw+R954IFvrObDcQgnKEJt2dOIbc9XC0XmaQy96nntbcx5ySvbYqJKEDAa6CArzOpfWaYP2JFJQBEuvWIZfRE/ALeFk5u77FqhMj6qbu6w5620nne7D6DmDmnWJ5HJOAxlT8+Ahb7cucADjRwfBw7Kmgp1IYV2oZHNcAjdb63H1BNPX7C4FFT75HcpDMDUm1X069LqyOZsWEiuU7jnpivVNWIR6pHJKQz3aUKFWHmuS+Mv7cyNCP8W9Ci0tJDgBEjfwzIEtmLKarmOJyYwkidi8Gx4k/zuv7Flz9peQcZuBJwaoOxXpdwsSKdsIDj5Kygdy+ePBuOkn4cciQUcIkb72xk4C8Jvk3oa98lQIbrh45ApyaN7pnPpczsg9aE889/oX30rW9ddnOX+sPBTMvOODc16i7bIJkb82dx3DoyX16Q3n/tiNRuB+Cy3YiUa7S/W8d2V7TwjgfgC1KVZS3o5phdQQ3YvzOB+jmkgKa1AvXYjwB9yMpYkFszbHT10DD3zlqmqCfP2T6nTUlHVhAJXXJODQ12e39azMSY727PHwUSscEthhGUUO2RoarCKk+7jES6lRo+08+fYOkU2hhmCoYJtVo8ZjJvv3fi6UXu1bNQWgI9KY2h8oBRisJv/iTo7dJgfe/AQvwV1715FKL0Xldlh7Hw8PQW6b2xla9iyaBfGObgPntrdf5WhJVJ1NaJGuNjHnWHZHHkH5OWcXcvS117a7edwDwLbLVeWDLWD3fZHqjns6CIt+bZibhfpaFAKv8gxT9brnlrjfbv6kslhdZcyv0xq31IO0vKdO8aTzedagJArpx7ON04oVYXNzegnCaGJBsS0KYJI3BsKPWqfvYrl5bijuHmC1FdzKTZZGtyCMRhRGhIcEcmRqZThYOV6qLF75GDDcJN9diLrjtMrF49CeEQnpiXGySiGSzRevp+nCMalH3VJrLy+9rR4M20kPdkn63d7b3OhmorQkdvy1dxD7ulLRSxy/VUyJA3XcyGrHGpUIIhV8IavvCvpZcFCrzrXYY7jkFraDIJ61KazO/P/kbXdQS26VqgnNUqXtuYFolrxj8mOOlVm7u01pH3q8BCn/8jQYoVrUEVi6b8mDAb2rXFIiZ8c0WsjZEaBRc87ph2BBXnmtFcqNWBPKhlXwmnXMDJYe6O+Orc8jTMyff1TbCM/oudy+bjhrOpVcQ9GN8l7tO8Ji/KsanPJAlH1B+ZrYYZ7k0A/mYeCuCLFwpsJ9KhCIIYBJGu5PaS61y1drOaJVUqZ2T8fXj/5QiIYrP+XzZtfsphJroxN/zgKXl/o7/0DkKmELRr3QegX4Qo+UYgM3vs1YoHrxC/w9JhOF95RLvpJiLB5tpBDCaNetOw/iiud5zh50wtup/JCS0vmhiUgaReUoi4zJvhWD4lVktqgFRkrcu8E8xOiICe8TDUyAlMfqOQZ8nzY0spMQq2j6CgsRmAGHqs5eXrxcVT8AYZsaNH9l/ooY5TMUavH0yclROfXqT0BWerciZQfIhLBqaEMjIsD6/OOQcU1q5ZeI+qy+42syehiFhcF/OhahgvIX96DHStb1JFfzmapNBAB2lCkBF5syYcRhP0L5o7fNrKnINItq9PDpFIwO2ADFdD7GdZKdqnB7Ws2PRzaO+X9tNLhwK59fi8o/huxggT5ss4jwnTlH9r/uK6JVdppdQz4G1gUYqcgKPL+F0Ygosg4iZAZglzygR/Y3hdD03XXmvurFc6E9Cyxd2xytYj7jAxKl2KHTEhTDrEeDFxndzng6xexy7fxJkMhbk95RjHChzN8zpY4hx0ZvjSXIHll/wBsGDSJ0d8N2LTevQu1AXMh/VwCyITXYVSgYRVeAbCX4zPFCKBBi3abIllMFXRb9KAw9lnZLPXKmiZk3Kx8RXcf86RcpR9tgbdWE3f4SikSLjSBY+u8bCiwMB5FfEwZVg3lZD6pJWdv96fvW1JHXIvWyXWSsMBealdqB/SBSckglWF7kGk2eoGBAVn5m4NSsFIiz+xi21NuZzZl84u9je6TIXyTH0pRuzE+AziKGNKEt8ejO12bsMxB6hJK8yKQH1VV2RdBl5RdIuNoP6G4to1myOojXuSbccArqFas/aCEkoKjrEOysQRWw6QbVJ0vkC3UfPjLcTmhvO9Gm7pgHTcT/p9ACH9Row2EjHbRGt2dg8/OdKmnVj+A/yoqtXfc+P1UJW3bDbFgtFXhXd7NVO9P4MrqltO9AKPaHBsedagxxbhXlZO9uBa+4qpWfy8isk6QTRRZslbVPpWW/Xz0YsBKWIRQA5CSZTjls1QuKylzjrzNWndtuChl9nYsoBoKXY+4uARxrOlqiGurAIwyURkpiv0IYet+G7nlEeKgcOgJY3TZk3I2gPYwZX2TxDPyMpLsh+0aUAuNlN//fpkRpg+I1uNxDHgC678+MAzSVUCYfTXqNqc8Lq9+iACfIpw9oqanTnJ2C28gzfHomRY8PB+9T3TzdDFDX9i6w1ioJpZFlEfSZthbSo7aflBb+SAY6wDTq3Zc1xnklM0pbqrsAVBnALLZy6F4tG5QVzEN40gSWtMKUazq+jaAFZp6lT5aWYFJpqI58YUEJUcVVkxobaWhvOwcLpIhEYfjwMlKqwaf64zReu5iPq4Rx8W1UKVb1zAculHBhGP6K/onam5mHXOON1h12+eaM28+wGzUpjr4UEEd6KR2+y85Up1s7HMVDZvVgGNRyHYQWrqud/0zXle3GESQeP8UztQJIUR+Ip53HxNsd2Bjzi/g0P+za/oDUK0bXsQCskKRSIlPF5AD2diMp/aI8+ifrVan8f3aJh2IJNDJw9d6SNw0lT9ODtAiaJfMPAxQWMbgAQPiaTKllIAThsBuLKcfwaVy0R1BOxxo+cT3f4owtfosV40gn41G4J78Xoed6pvl+uGCTScWu5iap1qdpyi5kB7WqH2TdvVX5mXAuVTO3EgHAxlvcNaR72HVnqN1yy9XBEtv1Vg/m2qlIfEdilnUSQUDebYoEDhZ9Co6arfgWNK8yMzzu4t/YjX1D/TYS2Hx/u3G2knFxKhUFXvz61q9t7IkWi4U+iTMpiTi7SzAH/njRAn5V+xcNk+bJ144t4G+GVxNW3JM2lTMD/YK2uSTcmGh3dcVcFlOL2jQXxqX3FyW555SsauqQN8WDDvyaiM5fPtCpyGep10yj5mXLmTcU/QuJ5UcG+60TlFYgzDjg/qPD0R8jjr0uqcOcIjaT4I1WXUVv0Eu8a65mSW0Lx42ywdkyyczX4nQhZdhNloD2OiB6qLPLRiik61x9M7oICA5F2WnkdsCcNvpKJsx6tAABLvvfZLcyE+4vKruf+pWCtQbi5wVZov0yk24WcTlducSElnHb30v56sUKwKq45khZnY5y6EonaR+p2atySsuP4XdueesIkVlYkFvNdMVSS3VK2ZjyYuk4sJWLm8G46qY96i4rGY4OA2YK3d3FcW5RcnezwPEDYIcPH9ejkc83aadtWw3g7jh1CZZgOxwKVuB+2npa3o92FEEzj/U1Oil3UyCqztwaFTbAWB9svqneGPkMe1ZqUIh53+KnrExnPtJTJqF8aad5XOVAlFzXW00TAza6p99xQ/R9RgHlv/WiD6tMfAzpjVDEFQP7A0XrnAY4dDsIMYiv3W5vvtI71uWUoJGAfvpfjzs2rsx54SXoq98zFh6IvNqziBeUwMyGNOCTOfCOsbW7IKmNUzBomWhPb55MoPP1eXjfwg+s5PzUoBQxC1GfvvlNJiKqOk0eHgV+zNPNJDK8idLmLO4M33f5sjWHpPjG0yKJSLrKtEWDF4i9l8XLPkTO9xIT5IgHQqtPKws9T7AVKzlU/8S+zEl3WpURIJ3jXTOCDLH+oaJf27Nh728JHsd70iraqJXUWSlxQhboeearXmk3z4Ny05Ee7a6SELYPDucjzhpcPdcJ/eP0CHlsb7n/HdjJAL62EVXv6tVqTlPvqqAsworEwpwj9Kt1pSVSI5RCBvu2xz/Hupyob4ofq30QjF8Bhmnr4pZsFX/ibBCrwSKdEHZpDAjddEeGRl7aY/94QxA+9koXYjP5xVQ96j5iMplFvV7Zv8KhFDCxXYOFVbemIkg1ElrOugTaK3TprqcSh0ZrDXMINpfPSQwCFN7+oj83fZhoAeN0P79mQVLfdMdlAQA4PaWry8OFK/ZdFbUECnzR/J6M5gALN63LAESQbfrJNe2MPPEog7mTFQO8xAKwA019ATrYravS46zc9HvkK926UAq6q+vlTFTFnvLsxivZEaC+l/8kiU1ooUUsy42NSnkYbb59Bz6CRp6NKrLqTnfJIS6KIaywiyCiFXrT6Yu38tW9GXMbxBx/Kc4t+wJbyPZq3pVreRyyzgQGECYdXvzeQZqbTddxxiZB0BmgeWz6NEPTOBCebbgoB6hE3b8snF8nAUcDtS3ADCxgQoizCvwaAYEcMVDzFXI/GWnnyMs/NAEf+z9po7ZWGYoPa4N0qoZKEXY7BB7kvjVa1xCF4TW3qFzwYwlA45OphQXGkVPUIemG7hwA/VYbgo+Tq8+gr/yesvpyivuImSky5cnruUDb8m0OlGnnFGr6QrxTby0+bvyYvkn3uLkEBzF6/FEKhTbfAdY26dEKjsdpZ9IKGCEYRHMmh1M7wEm8O30hX3NI8gRGZgbIEqDtneqHrxk12tdP3bDY/M9P1uLqmQ43WEZIErXabkynk3YFfNbDwav5Zg03csSOT0p0WNnLlJznW0NHVO1BXpe0V70lsQkYIK5OOCMDW4caMmFk2BvQHhBnYa8sa9vheytuTJe10SdL80cWQ8vDRhmkPuMPM8EV
Variant 2
DifficultyLevel
595
Question
In the diagram, ACD is a straight line.
What is the size of angle BCE?
Worked Solution
|
|
∠BCA |
= 180 − (30 + 123) (180° in triangle) |
|
= 27° |
|
|
∴ ∠BCE |
= 180 − (63 + 27) (∠ACD is a straight angle) |
|
= 90° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | In the diagram, $ACD$ is a straight line.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50073_v2q.svg 380 indent vpad
What is the size of angle $BCE$?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50073_v2ws.svg 380 indent vpad
| | |
| ----------------: | -------------- |
| $\angle$$BCA$ | \= 180 $-$ (30 + 123) ` ` (180° in triangle) |
| | \= 27° |
| | |
| ---------------------------: | -------------- |
| $\therefore$ $\angle$$BCE$ | \= 180 $-$ (63 + 27) ` ` ($\angle$$ACD$ is a straight angle) |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18kO0+Usk5jmo+msYi6AGoxPs5gNrm4BoRYp3bCjAGmUrxjJ0dhcwjpnYcWYef1E/pqXpqbhtt9ERhqqSaGAJcc9scPaw1c8kYm64M4LvLXKxaolQ377fTHPzxRK64lrZQWcuLMjvSUt+w56l4JFd+oY15sA0+ok6jK07//0r2bu1Ck5qU67O1Shv9XOM9J8e1yx2tXfSrnwqLXWidGxmijbaoePqIegwMQZ47MUP86EErcbHcrRLS/w0FQpkM90Qku6dPKs4vm24LRO6iALr85hJZY2qd9lCrvsWf8qu7BHGky7NWqR6MOXVhKz12HnYSqExZ7MVbmt2tnWESPIFBl0oS8yHtgFOkcaDgE2YC/LX847LKpRWFIq3ukw+ukLRAgOHPuD9QCflolX5TSCrPbKMBdTjaHaSu0eyHjBlS6vbfr6O9Hgso4Jtg35GtrO6Qn21DCK3ieI9KfxacMR8S1uWur03W/SwnzFezyY2xnacB7J6VPjyROBzqk+ebvWElSe0k+C35/UCgIszlnybXwB3L5tXCEWqh/EA4nO1fMIGXItdGNhAfD053wEawghoWeWGT0e5n5DI6BRgvRQGcJ52BMKZ3vwrh9FU4kObucNp/A7bw9YGyK6l0xenBqotqcWRq8EZ9AC2zr65C9mfIV+BGOQ7lkrDa0w/0gleMbiqnlvdEB7vnTw/bo+QkBCYTW5Qr3zQ71mtfNFoGTGFqaK8vdoshQXwng382HbFcnvB2CMiczaqNPhQdgLmVaQXMAKW1Z3/U7OBGvzUc10WKGXMVfNfwYzWA+ERQD2oge4hA5rVBE3vVZV+RNUQ7MyaA5HcXFZJj2kbJsHHKZiA3+QwUBZWSxiziByyC3P+vR80qnv5hcIJkYSifR0BhCeIYS5oWh1ancc/4doIkkapvnPYu6lf2Xb3gjRlcov9in7Qv2+aCFY7j7ucEFOcEQShZDDPRettyHBR5LiK7xgw0K4tDEPs6sDQDoKAsGBUzxBYiST8Nv9HVzgNRMmfX3tq/br8QfGbv6x0ph84AGlFFoOBjOtFY1wAe1+EvtRM/njJ22UnvuMd+JopFDbTOVtFpcflMnFkcOcc8tdgUP9Y0b82NXq5O82ocP9Lv4dEpJKLlYBsOoF/f8AkHCeWZrfHtvmpUuv25f0NtClkVHdoUXxq1XpwIn5zPWJhHQ8gaDvNOMpoEhuZ1pIb555f44sB/4p5SqV0HSEGt7lU6FjojkqCZixV7Goa8OIkRlbeML4FKILUxWeOzdTq0EMqwRMqdmIhnTa/y4LH/MyDDjx2QTEPcPFeOCsnQ32nv+WADXzSkzi58zzQp2jd2EECM0xyF5JbUa3gVWKlmZS1H4079n29fbLcSpO+QMvghaaHPqh8TXquvFe0sRPkl2QyZB1Si9lednz3Bjtfd9a1P4InvCCtmVNHdFtRJmIgnJ/bFrG5ElRAljD6gQUt0kACWVA7faEoRQLW+yTPQaEQB/gA139q4JzuiZ5k+CVcnFATL04Qi4lfhykUxOxKgVNacJNtw5BewcVS57Ts0JB7ysetsA5SdYDbR0qJqHPWjYyDFp/nhOPm98lMnSMU8wpstXtfJoP6CNhCUV27mv6zNIelTc7XOTxS27G9R7bxFTlgmAs42pn+eksqpx6BRJq2rZn7YHcKdOCHi3EfdWq0Nu5jzz7uRNNPHk4RSH081kkHQYE1YLvH6i/e/3+wMgN9G4+17I2hTxcsqTdZNPC3UnBeCujHsffHAbmytBmfr0nejU73PNP91n1/MbIpbYog/rDeP0reexlsZT8ZO/E+AuOGr/aEllMXQ/bmCBwvHlofQR3C9BPssfDMqAxygjNEuyumTPnjpwAJRu13xs90kIYFRjrLlhCw971MIJmNLcjlWr5hlOa9Se4YyjM0QMbw3rHqArOBvay4I7p8WNM9O7q+Ht+XjrPqJ6TX/4eT4A/Y/2d8JQSNhXPIQcKl6ASVYq4Ubhd2Ox3Wa+uA5l3BJ8q0pLXMX7/YsiTK9YSspS3UUyHXz1pYuVosAPVwrYT/8BWkshIB2jrbl5VQ3BzcPerEsYyDdZZiDb1H6rk429A9+7WcSeFw3oxdOjHXbK3tyb47GZ4GabMQvSzwGUmL8/dL0fv7Mm47We+9802Zv+uwRUyaiSZcdf4jfdtqlkDaCwEjyZehOQTX7tlQx+e1pzPovzSunFS1/idYyjkJmhhvttLw/OuDmppkX/REdSNCDbV5lwy8i21IjHDcfg5H2BZJPB9ZB0dhuth6vut74odJWbiAUF3kUBgCrE3Neo2ZKxOozjP9DybZy9XSnlj1fp9oZCQ9BGl4o6LO5Ax2WcmL3Iv22qcjjoSACxNiUfJo421gxATYhSODuGgMM1y0kXhisfDSafyBYtAw3Y4z/IPvIHoophYlLg1Yf1f1yc/Sjr3I0G/8qFtcKQyNLfzXAdeXnh+Z1mAeqmyAgixJ89U/KCjBu/pSFrlEcnfWs/RNY6GjQvO+x2ECcSpWYVM84qTNcSvzOmFxoZpFTm6Jok1YfyRQPwBDjo3BoRgbiLqObvchA7Yz2T3GfRya1GyqI8XLFB0081YjSgZU5JxAGmN7Te3hnJBE/KDS/6+NHwE50oB0BRAI4kNuqE4vNybvEwv5vOebrJOfqn51+zRoMCZOHrTVGNjjZQb0DELo37HuzevXjZa1h4hg1I8mboXhLuEGP07bNHlLvNJ3TjC//twQeh3WzHy6OnPCjXSEZGg0duiJ0T/bHFpVgtX+kPW6D9XmhZYaw+IocEBJq7uaCNIbqj4G4Pe0KiOFm7nS9DxuJZznfKAbSabksfUu8jXhxMRQxAxSCy8j8P7bAtBkF/2FBSXyBHqViBKAi10U/z1WsLw/8WuLqucCUQ3ALPYZgUMWeP3IhgRARS6f9Wa2TIT693KYrr9WDpqwF1+v8DBSNch1EcPM3GwSXBKTOjvpHiLIaIhiDFbg2+hSxFRPplzB51orVR3Fr2hRNlA/SOelb6d7avgE8t7qWViGHZvWUb3pE2CSUWkgf2fAP7/jbEWIdRSOPbkdhtKuROQSe5yI9UJq0p1PrMr8jlChZBY5P8w4UUKrO7BBpyvLHP69BGZWBVrhhqPyygiJDSzqx2p3gcnXEhzb0QQZjlR2I8mLfRB64p1Yf+gS1PT9udcyLNimdNXU4AZyiSdoQD0lvutQqxH6CImf2ZgUKKevBLXieCzUvN6xfUmvf/IzSV3nPrPf8gFWcysVjZi4fib0a/FIyzt7oL3fzNikOqNzCqmf31YC24+N1h+OfQ3FodRIdF/HYFS4Bi1JLhr3Dx8NlezRTplH4JyJXA0fBd7Pl8Q4zDV9+FhG9fbFTNmWqwgmz67z1QUzaOFdbwiwGSkL3b/Nbu0RAH7iRzpP/wtmvhSorNNttwxmj6xSiuCisHESmDChwVbDYFv45yVPcgw3bIBamKKsfXFnnOMJsrSaeX6/RPku9QgwDsRHsUhqmqF8z55VJr94dKN3m/J4PnVqBqnAGfJWc6L8kYarB94bcEJRv211osfX/kqmSZP0qUOfxdtV3v5FmqICX4lairSmxu2oStZaWoPq4BER776BQ7Xa5/ZZFXdvbApLHknR6yTVUcraMfB4Cej/f6WXLPa3oji1IgM304C04JlPy16GDfUUXrx/Z/Sq0JRxlp/sfC0CtZu9sFzb+rmgSB7D0n9d1R5GgfZb9d09s1hXHHhEsAfejl2L2fByo8s2CdHA90r7BYDZnopHjAjASmxWU/S3zwSGmoOP/4tNyW8sqswPC++Uvs6hg+2XAU5bhGEcDan2NqB5+nma9qWyjJrS8CZWIbUIeP5Zlm2yuSz1aBgsckrl8lZjikWMePYyJrY+tDDcrA+CXUTXmtOLQyIm0b4Uz64XCvQoO8XlEfrdYINXlBa2xFKKSBOndngVkwjHt2CDbf5E6VN3uTxosgf5RWT9p2He3sefofajyUvgGMycGqID9icjfG2aeOpuKwFJqvauCjD529uJ2ECbdr/P3Poz9KY0piTcMoubkNyrBMTjhIHQRhuGhUVkykKM5pze2WbKaB1guekTvRk3tZ1jdPr0umAKS1sp8mysDvIuU5P8AfXAO7VYZ9t/ScP6MLu3e0dh4Wid/O+zFmWQxOfT0Hg39PKcdZpSwjrgSIMXFNxl2DSKzZIXe+7A8xJ71MY0PeKJ9bEpQ6XKy+X8pDYbCXblT5XpaxanSQYzFB12qMMZfaqgXrdCz7z28tRDjb2a1oQ1Od9l1ZZl8d0oQvNJgicfDaRg5JbbM7zYsi3kHFNib0QKP7Q38/srAQKSIjZrCMpEJzU+uhZtVoJAfF0md6ltrLQix5OIwQW3nQdc65g2RGmdKKmroZOyNbHRliE5GfgYmBW52qs8O1QeVCx08/q8YR3Hb1PVwemP/GbC3CgNfTijm3qls2/z/Rd06pWKW/uWR2nhzcHhlEqLqfATZPWPmDsARM2dGwChc4xwx+j5fp40A4zkCeFRHY5z72cIpO3VHe27DZzMDjT0oIf4ggBkTW9uclgzenRt9Q9kXtrm/mezGG36dInjN5cQJVe4YIjjQ6Q02Mr70CQEcjdws7l5x5j4kQqrGq7oHNosJmFiyDY2QgnulXGFPTNF6hnV90Zc56zTGToEybf8MfzzmHC2kgatvIdv40jRaWeMBrJ8hRFxVydB9vhrmR0DQ/Mk8a4wfyN9bTAuyMs31AGnbvmcJfwNYwE/i149WHVNiyzQGb3yp/TBIoO12A9DLbcCusCnZRZGiSZmyUbfYj7cggNHizSp6Ss9AcUInLq8+zfvQnpF+OSrQu0dTFPek5Z6mVmuOV5lHyu9mZLHgLab7qipIgBAlosbYqu3jKvXc9CwGABPgtp5WTQzgQacjRzawvSDfD0HQjuhIwp8wW0O4Y1AeLNT0XfH3Hq3KYJyip6yVjWh9eqj+ddytJU0bADwQtXi4d9SWVH8siMX1iiBIV4BtWYfa1Pv60tYg85es5fmeJqsFf/ooCX2PYZMLEairCb6r1RDuNw8WbRJDRsck8hCygCfIivoRHJ4ee6lbIZ6jUWjNZNjlWoHfZxxCUMCwwTLYL5IcomtH0hjhd7cwHXyEi1RJmLhnp5q1g5zPO6BSp82mFkGFVObmC+d61cm3AkqNvleAsoBj/oyXDhnAPTzJPPPF7rqzetnQeM1MytCPeGOhaadP1cbGJN/BxZ9LwdyNKaprlz83CyhdxWS7fpsoYHyrb0DvfhG//h4EM5gujC0KT2pVptcxTigeZph2JJrQ+q0HJhFNUIMWvcUmeIiAG+rk85d83JOEuduvAjlmknDTSw4C0b8jvPmnXNrLuvYXrWOd1wfBI9MDtkVWqRqZdR/Zw4o4K2dJkxb4d9z3R4U3SPziUJU8G/kdtlQ9gDGQwqU5qCqL1w83VjL5Pzpi1wTr1XzlpJP2RM+4rcFul9e9PeIvhHCB23edwY7NssgkPswRAMLO0tfPTiSg4TnDZRvM/yN3RFElkuy6tItaUhad4ww8KCipR4VC+yUGNjxHiCgauXtWAQAHbbrXzebi5n92pCi7YrRMe9qgycWeUMhT+WT+5UZ1+FF3oi6zB0a9vF3AqVUnrh4Ov6oBGIGrLmqks9RwAni/3JWnV8oW/Q69K8Sv6vpmsHLQ4rTyegFyQBiRWLSrtmcuED0UrXWmna4cJ8fSCr6YsodUuhUfHWnUrOgmJphu5Bo+izLKXZvXbbC2TqiKULfER0FAC+cuwBJT76M3q7NzK4mtfU2Dt/3SDvkYegJxQMgPmbVddXg4gDWIqHSYVkbSBCZyIbCTWkm5l+8IYjN5rAFRWQTOV/YJkLr9P2aLxBjEYKyLksk/5OVhYnLg6GWnJKb8fWT/hlnzsuxg9VUIwSlZLc5jmQi9T8LBtrQoD/ovsVen/oBK/t2HHrrMo0/13XnLjl7Tpv8A+iQl5EIHgv1wkTiSxZxd7QTR6W/Atnz1FIv/f3KMWDjenGY/LdAtYHnIv+EpxzdBkVKV4+lQf5F7Zq0EgvwWJvqiCyzWD6I3eJo+9ae6D+ptv6QJKpMtOlxl3A074EpXgw0UZjtYiPeTBmEQ72MsX3efML8rZ96C3XI9Kzy1cpPU97S8ubwRUGMorsKCLBohZ1nSBOI5s80558DgCsDxnKDXPAgIV4alBHuS4IyGa2GANGfCmxizeVup7ocT1QX2MYS7QC7R5BlbLI0NKcKAsPQZbtgeqntr9EGMHvZzZg41UQP+QTAqDLd/wytriy2bJqLxGeOQ7YXPKcCQSpuZ2Ky+PFLhX/MyQbKZWtS8sa2mmXjJKyFWhWwPGK+UwIV/cg3nlRBDVXFUQWtkPwnDrMuDrnTsgafQk85gqpaiE2hq994XBWktLb24jbhOoRGdpiDo+XKSpRqEe3W2zoBjU54FlUh71+Df1z93G1jeJ2dTalnTonmGW9Kifb8c9VOybp3m36//JnrhiSVfQO3JRwGWNAsr5i7YjaExvIOFeZmT5IM/AJTdVvRpBubpTONQ3gkeN4hWHrScobHzRppJwCl+pmCfBZxgvqtCEh9i4a3Pqrt2byCOs0+fqnICq7ECKK78/LYnO97byJpifjhnCtnyoNyKiDOcooT1jz+ASMcetbNgX0TxWcLCMT9zQfLNl+qYi1cVfuYIPYi+OzzEy2mamVPZmZTdoOu9YtNRAZEAfN8QOA2ziEdATmBtDwCUcxNcVsnV/+lyq43Av1I92VNIgtoU1DrUP7zAGOy/SMVwJNJ9qBv88OAVFkW92gzjy8t7LyIbyPYYlXCfIXP8rnpNkf+J8vL6bvyxwNBtveOzapHmgBluJ8IpeAccTq3a5HTK4D7ojSDGrMESmSdkFD36i5Mepc6uMyTU2PQnM/yj0kMyPns+VqHBDbpQ7EyRvncwx65wSf19lFtxby5P53Ya/aHp67vbnmrUiclTXs+RJ3csd5WwGvmo9LS78vdAHeYULEqAijzOdxJi5gnnRgqbor0mS7fUnpqWfS+3tpkwt/UR1yCkoXAaYDPC6kVRGNUZ86Q7owqaFWMIT/pglvNxfbqsRVpN5qEWp0oTinM6BglM9Dv8JAsKdWTNWc9KtDfPCWzXcEVMFA6c5pKVzvyFoBzURa8AcDmd4iTDGZmhsPDrAf0FgK9h/FupSvZFAQOOX31STIgQ29q9NuIVgzDjJ2GNu+TlwtYmK+3uGUYLPLLLOR/FFqG4bEDKSSj2tVVpoX73MW6Fc/ncb90USpoHeOoXeyBVoFKH3+2gk8JSnrougmT81gDI1HPGsz15COEjMJFM4Q3mPitbWv37n9pT28pBsLSWPRIRmmwiGmBMmd+tpr47eVHvoYNzKN6G1Xkd583a+qgEH1xXUgLQkZ0kHf6U8ISvjXYDLgpoZ6Vs9QYh1sCl6LawujeVXaySpR+f68aSR0egrOpVQ7JQjAhyUqcwMclJqrqdZzlb9bZfEjQCyHYNmsNnuc2T2PPl/TFTsAzjg/2CAwAvM0E4L2+tksn0AryWv4PX4QcSWflCcn5MYaHuqJ9tadqH4Uhpl0M7Vaog0Euh+cNshbAc1QpoK0/uyD1dto0cQm7byWPPUlA8Kz5GL1o+PH75rBRC86IexCAkYGkrMGDpM7Td19HOEMD1Ietm3gaekvNf1+FJ1E0S/TRlWnoKXzDme1Yqw8zvnGJAC7mdEI3mjTOt15cXaicnp1oBiKiQ2ypl4jz07+43gahSqnWSbt2K7TGpgK1zJbE+lwrS1ZKw3Z088jXIPDbEMur1gU6xCJ1mupipANUou67KX1SUmYUWHIzOyRdovpR/o2cnHVCBm7Bh8f/CYHch2ZdhOKNyKfXz9OtQriGKmY8nxhUJqNqrZjxVzJD/J6xLs7fu8PXl/eRKZhts0W4FTtG2r+Crf/py4zVzk+21Egl/1ydYmXp4R+JHHv7xQu6OVcn5RqOEfxJgRS4lr2vQg1IuVOzszLz4WqvJpDHeLDPtWcc+X/N0wA+iGomRl7P8o7hovVI9X64G2hWjyx85Boj/opfW9P4aYQoWAJZEcttMzYMB3Ol/Si3bl6HwdeTV9vP597prEjOS6YOSbT2LVzSscmWTYGNTlGsDg3YEmb+eSUxpW9b2dGvMgR2dPBnAMQAtTVaHqSjyQuD9CACWQTpisuls+IJ0rAGIOEvqc5gXpGX/PegVGRGuu/zwN8NAdIu1cWSyucMOsuHoI7YRtxHnZVyWm+Ca3i9vo/hRB7pCricU/TiBHkHHEVTkrtn8lgS0ruVLEIZSp168Ue03tZBrtGprusVt+hEaP9jGZ26wNGFhidd8RT58Q6AJWAFfMVoz3B9zvWF3z8OaWZ+q+cPEkxDT+sXKRbnlUN9872tlxpyASVZK3cixdfecswbYIgg+V4hrh1mMRCPUJB6ixc131b4GDSdGoPYkFiQ1uKznoAWKXOObGY0s/KEsv4XzjYpjlRPHtz1jonCU1eNcJgrt4VzxWCicWVVg7h8GrL68/s2CDBWXpnkSCrsSfXP42Id1CQ3MuQbxBxRTXrYm/lvQPRFQFWFNVm8X0ZAdmEQ9lTgf5fQOYC/CafRjQSJNfnkreDAzMM0+st4YJjqHy+rroIN7MborURUjsSS0GwBOSGFIJgRJj5vbJIeWHg7IN8f6vG2+fkSK8uh4O4BuF1AiufUJegtgnFcP0g5YrgKOmGoml2xOFYGGRTMsGwzrXRmDuUDAWqa4ytu7xiIgs9n49SVjYXQB3g7WXETd+tMYb4bzWG2aR3viFxQjT/9pACM9kk2BM+0OlYjxUFwdJbTdZV8t4/GKwAqW5bXQ2EkZYNWbOk4aT8jVRQqElkVB5qRE5Xf0GoQoge4Pv9UueDvvEcffKTGglCV1pLmHtUnGDfEWVv5UnjtpPujaD6YzOvvOgtDRnGGog1cqcEe08xVcl2eryQ3TUJsgLL7JLl+OHp1H1GmJC6yv+d1ye1S6Wn/A5XW1COxU6cOosBX16F3Wmi5depVblqjemYnb+2EZDSd5L5MDRQC3E8qkvz7Oo2EWKYMWntNAMzXPpfrz1ZPwVF07rvVfXAa0Y4XQj2tnDWTlJLow9BsNYgTzAHOHmuv0i7d0IN2GGoUxYz+LHmnzwL7Z+R68DsNzN/0coNsPSXPwAqLQfw800ZOu0O1QUyYS96bXyeqX16DrMS+YJxIACFhuHBYpZaiKTzkQC13q4eKygCluG6qZI25VcboQfKqTrTX45oaNLMbh14fv/y70efyQjY07jeEjcCgpSyENBL5q/yf0SifQPidXER+bC296QlUPh9NJ6ieEcMldQHeR3HpM0gRbUU+SqQjpCzRlkU2UYCJsMSvAishR8ho0h/JhAG7Nz95AiT30FsnUxykgL6JPUAErasDhfKhDHu1raRLp48pZwWoxczQ2HI0ONrxXOCoXpUu7zPmhgKA+955DBqLN098mlGzufL2sDfeKiawjKsMks6Vk5aF0GHaqUKFDfk/gqYW9l4k0y/qGMDffZHfbqHsvCQrYU1QiIEfxP01FrMAK4C2/Q9ibQAnmGk4JF0Vt9AO91SSP0PoRa0NUzMqdvcebUYmSpG2TMuYU8YUjPnJ8qCvmd29L7B+R4QS4JWOHHvrRE342hXoS/Sov6A4A4tCoBoXI8zDydKN6pnqJydGR1ei8F6febZZyyb4P55PHXvMoHtWZVcDT0tsCkWUQvTwOUFBzRqGlZpOGx+0KnWiTfDvlixUa7VM3+F56DrEJzZSUrSi0VtuM62iG3ZXCD9xMLoHbABp0EwzVisAhHRZWhGnN3uEnSNmXLSZuzmYbCnDJU3KB9C/3KPvtxlnYmBaYdANs+ydTrdJSGYAXxK65aE6+6E6fH1AhAQqF8h43bFJme5f2Qsi592n0vhFJH7NECRjRitv7w/AkpnPtQgLDYXelE1Avuyfi0uLJ2vHdyZms6/Dk3HqFn9ywalRJnthdqwZlbZYuwPhn0fu8PgCKsLUmrdD6shKdOpjSEAyZjH6WfxcmHKN4JbkD/Sosm10HpYjtMAr3JZneUcTKUX6rWkKvklHTK7VOqHnhdOA72kPGdnL6espkfeulSYkdzyxjtvkGpXNEWJj8oUnts9Ea09v6Y//ab0hJuvAEjevekNbaI83uaTyCBa3/wiEtYu7XbClYaQ/dGspcXpUDGQf5zM4bEKEMelxn6y11r+zxViyNMhnS3tPeRTGAhl8lpyGEItinR5oG51y1cbkPSwC/F/LRxf1Z9WuTx847PykctgoGRce+NHzmlzQi9LaBr0Qaoe5y66QF/BfWLMcmVWfAkXMI2sM/uFamNJnq511lNVk2qPEsRj/EYqlB3lMr81TJPJ/DTf6gmoCV+wI/jKKO7xlQnrXM/AaW8XUTHu+oQDJNaFOoGT0LIp1d6JLW0J9e/dVi/1cVIGV6Qmt9hs+y0NuPKuS33HysTL1a/OW3shLHhIeWBb1VkP1m/vZ6L1JWOf0I+knHxaBdFV7JV
Variant 3
DifficultyLevel
594
Question
In the diagram, ACD is a straight line.
What is the size of angle BCE?
Worked Solution
|
|
∠BCA |
= 180 − (29 + 39) (180° in triangle) |
|
= 112° |
|
|
∴ ∠BCE |
= 180 − (112 + 20) (∠ACD is a straight angle) |
|
= 48° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | In the diagram, $ACD$ is a straight line.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50073_v3q.svg 350 indent vpad
What is the size of angle $BCE$?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50073_v3ws.svg 350 indent vpad
| | |
| ----------------: | -------------- |
| $\angle$$BCA$ | \= 180 $-$ (29 + 39) ` ` (180° in triangle) |
| | \= 112° |
| | |
| ---------------------------: | -------------- |
| $\therefore$ $\angle$$BCE$ | \= 180 $-$ (112 + 20) ` ` ($\angle$$ACD$ is a straight angle) |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+Knm6M8bJwsn9AzK5iArpwo3Wj6R7l0uyNiob2OGL3KsG2eM6dLZb/kh4XT6TdvYQ2a6zq7ny4scg9pC5vawROlZpqP5om3JBod19VQ3ZXsehq52CFCy2KrzaaIkHCIStNTTjgaBPLS1i+NVjxcyDvqBXhuiIoWPh3nF+wVEg7a1tGDOTwqB/2Mc2SPEQjWWmDvdaMHUYwe2TnSnM4KeOmgNQmeJvD8qbnwZ1Ile0c6yJTGp1FpV40r3NBNbcB8o9QS3yycKonZzar4EtpR+40ZgHJO53sD/zQRPFDcCrHxKOYiLi7pPeF86mvgNABt6gjYY63SLY1eArwoosF+Ix+29avxxjPu7humZaGR9/p5wyM+qKGjJsAXS1Wr5AzQVwR3GRy6pjycBjILIeCAwfPLY1tasHM7xAUZpLSPGJo5OSYoGb84TIy5vCUlfDr6GSnclN5IhzLwrvK+HCFdOY3NGyyi1GYVAE3pfKJWaOKWwQJTpL6TeEg7LsbrwD1K7lYL2/2sZ4JnquJ4xjw9mn9RkIdjnOHiicHL6M/wpgb/yV/uRNrip229GjikrVhUPXW7/huFLh7fZ8Rc4Ca91up0s6NvpH2lSMkLBpJw0AKdqiwjBDxmaqiJtes0mjs0C8jtREMFGa/PRVRC1YSDWmw+R0IdcoRfu+fwLqM1vGAnqlxGU5cLJ/DF44O9NyCy8AWVhmsTN5GI5M4a2Sa3Y22+CIzdkJmwmkkkp0erzgDFPBgidBINutgvtj7REEXeNbmW9RcUsPexlYIlRaK93RxkOlKPGeJSLaJ5V0WU/wHOhvCMIonzeBbRF+MdYJJNhESn/cXzGpWKQO4IdmZUisUY+yY+WpmRy6fjVHMsgEihBjLRqJ++R8W3MiUqmT6hk/v1WuJiKD2Go3NBppNzwnuVDDNPG+cVqmuLuKjoadAN4cQa5xsz10siFGtV0hqO9blqTLpk+1shGyjDnIo46ucbt5+L9g8wUIP1T8lqPFRJNuDeWNsV48qKr30SfPvIR73a+uqGlBAWNi0KeL9YhForDAA52mVKDDdPukRkyHozBnQWDuqXpuhntOglgIDQdSrcSo3/7Mj+nZ7+N2Ux0jGUHpw1WChJwnb3iO7mCFtZ2t+wRel8mscBIx9fXv+2PUy542n8RlIvJVLZSmRIUdQZvonv75uYV+rhOYA88z8X/YXTasDsesjRyBOTt69g6JmBymL5W5y/mJsKirUkyTqTfdzUvYan2cPkdHVRbMEOi4StIZZsEgsCqc0g20maq4QR+mwHwkMPdsDqVXlwlE00+Ld5aRh+Z/HlyeKFqNvxfQ5dtpZcH2m2NmtWsXw7aXZIH8t0fqDz3zflZt7j1WZntID7LmroynxUjwFQvpvxBRqLgvoXcaN9NArY+cAgOuQe4BP4wVcqLCOTo1caoqP6QlpZijOadqA6iQT01PNcJp7rKb4+9IRlYTk5SG4AOXQY/dobWcf+PJutISKluEc9VnEQX8B8oZ0bBiTTQFH/nGX2VkbcHCJdHovQg8E4fFiTQtpLJvSUePHktS/s3K1U2u5WJhncWwukVPD5EHti6v0F+Fbcf2NRR6LXAObSgqdMXZil2uremaG+n7VCkubhD60EfSjsrAPhFMqVbZw3zJION3L8SRnsw8453fvNNsKlVaVFy6DO2xZ2I+vqNO0thumSaFzS4YMHtO/OMD22Z4LpjO83zkv0ZcmgdV2Jwcbu6u5h+F9g5tt+hh+XORJ1h70KQ2WfrslhnGL+4kPBKYtgjCTQgDyhVrpYQyOV9WTYo/fZ+IjBm0a6VP5+r6R9zQTO3mQ2q9vyvJC5CVnfbbL/bFCSZRddx0DhHvsufgocBrLHNUMje9RRsQupjXA7eEloWiM6WtLJ1WruX0bCn7AL4AokjLwP9702yx1OB/fhOKQNNzgtzAGxOIuChiIGRbEUzJXSgRus+QzG6y3u8CZPiAHhJjepXWcrWdl9Szn+Q/1LZu0j04PBg485QkoXQ4GCwPK98Bgs7GRjRobDV2L6In7Pou6XxvZZuYy2jB8qz0rXs0cLzz0O/D0w5mhYNNB+H10nv4tq/+CGNBTi/eyakUyUre7u/kaW3FDmhg9unWMgcgXv6tf49d9/Rep18ioyRT/ilHUszkS/neDLHaTyzFyiUWrYFPQJ2fxBjIwreynAOaF/OlfZ2uxFC7WbG8WXDkSx+panQZfeGuWo15aiWr+gjqCJzhW07z7lP4/lK/l1FuZJVO6tqpW+X6mIwhkaGzbP8v/zmrUHUleMEdjsPYukYP7TGPKBzeEufVJxgOKk/RDjUWkL+WV9hgPxNrHJ0XqhmBHSHaPe2vJ5zp3BqJkn4EAbeOc91APraI69WS1ej7g3Vnm/692M5dUcp/tOqBrltIYBTJem1KqRYSnS8t7dEpjnqvwX4+ZKyKl9I7WY0t2p+k/LD3esGa+8ZTM8Ja4MkUPI9eb4kX1Y/K3YTwuyUtRrmxQ+Nw/RpSu6qLBRYpIdEsyYGDruWrybWocQ00kPsrct1r4yM/1BYWWS+E5sB6VopwBYrWMwVlFddymuCF8EC4NlnRn90OZCTmy+vZltjHkizX2x+fXMkb74rK/N/ReJXF5qH/+J5FjktMSvAmLIo8dPeD2aTB+Bq07BYnj7ELYiaaUci5sXPYkRA8yQS0JJkKcU8wYEaIoEjtA9PYxIJTH3t/r2Z++4f7/l02oo1jSGwNEBgRGI0UTxMBqfY1sSrFNkyLiR2eHaV/L6C1SfvyVL9utXEnkIEHQ3a9EK7eybxW5hD2MdmXGe/qthLnf4bqWsXMIbKsD7y96D7peftZgrtAIDInSWfWc4rIZEwVN5ErVuLDVbfQPfbgMg5rmw54ilPJaQea9b30HHGHNQevnpv3w03krF4ZGTONr68twiGvSut6cTldgKkrBsnTGz0hS9QyzrxQ1zOjATkaD7nOhefBSzvM4jkaJzGR3+IJnf5WLMJ18kPT5vBXRgTf530LgC1xGApP/AlBRcTEgh8Wv7EkdcUb4oYEGTbGxVqHPOKcdI+YLmxPe8g7tBnBV3lqIsfI7mCIDme+UVinWyD604MPAr5QOvOemVZEecNzustXWa9vERHgB5PhDew0MOEpmmDyu8hzxRY8Qq7g31Ww20ZQscvbnly8YZbAqL/KNVHtHtoQRYMLQNC770BA5e8bTdmC/2UGQdOgog0wFnmvvMI4FSPcq/L3UGoA23K18RId3MxAKmRg3G2FDVPWGnPYqm7fubaX2BMdk88GaduMvIeAFT4g8jqphYqKk3WUessGswzQBsr2A5SjrrIwjJPLlyKjmTLX9DTeFsFqDztNjVHYW0SytGGynMAq2f2X4jzLHSzDPVlRNdJdmL84YSWSwu+j+tPAM4HAMEMbyy4uWFMEWEhK8frBfdpSCGqp1XE2ccBHuzL/InvIVF+M6pR7X2HariynNVK2e08ysZZo5AwSI/2krONdUB1kYh5SXnWVbITkxo80sXUgRSn9VvuxhJMbbKLJ19vajq8g7JAJxaqKuypViBvIw7RPgC4srqguhqaCAPULwggaguJyOZbSlo8St7PIIGQc0owpVnswes5RLr3h8noAyTnCHxEyn0gRq+8dxeQwdlsZoDt59Pj3q/nIShlC2O4A8E9obXmlH7gYY4MuPVqUMPht2wUmP7pPjE7tXrFQVQtyaN76P/D78HsFz20FHQcRoXs7vn/D9WdogprfgulVGT6G6aOx+ZFyrIjFRwz57CEeGxKFi56NQa+sJ7g4AkkZ90Sb88CKqW20OrM5eTGMQVRHCRygNBYc81aDR6hu4AUzhks+0dD12BggyWYJTSqhTFNRg9DjlXiJUlHmLVYRaWrExTe+3AIiqQk+UsbpUB+uyqKLl0dvBfJ5sCPAVi8IQgJ1Wx1hl6xDH7FLzPYoPN/wlqK6oAMKnsSTr3QaFPV+sF6csRCI9T81UpREOryccKFK6f+7GMmetw4i/X+O3WwgdE/POFFiNZ6PVDP6JFMjL1NAsbapqIR5YccL784Ez7/gX8H/qGSzg5gjsygzqKMRcU+S3URV6Cra2BnO+95ewWwIvgU/n7tovsp1E/PIirOQ38VYWDufIE77Nhcpd2hrhtfW4BiFHTAcYimIHLdTX+rjFlHYEJ8watXSB7N0LMSHozhn5+Slg7Gp+LjOMQ5J7dP0RGhhWlU9g6UIoWUB2KtP7S+YWinUrpLgLA5DrqkV0504DCHrTRbcfINoeh2cR33cFm4IFRu/J8PrqkKmNQWTSOKsHwGSUr/oz6gQCbfdbkohQlndepxlmMowpRWxmTx5mrwp64bCZlMQkME65WR3jikLs8SLELaNmdBcjftAjjImfAH3/aYPQp0O/yphn8g1cQ1UsbMjKXm7B4pGi/IMYrj1aNZZ3DKg+iIabmP+RGfT5bocT/+fFQ8dlk5cM9bQzqVF6dHcY7u5noZ2I0WWCl2fsIgNJWyUY+/rpRXbNcKuXwG0arUbKPcygRxX3UBmnFO79To1QKOhzM3QUk8lN8nr2nWTjcqOwK03JBtUwUMdujIJLCoWqnPN5PIz8X0hIU7552cwuFCc/axAGoKkc4cDpa2aiMuubX9plOjIwBpN6E5hQ0LhNX83eduVVmZE0yasvNFADuDoh3ngGLQlEIqNSZPTtgU9k9NY8wFYLkpgX9AAirBbL1kRWVQNJanJhB5Ac7jl2B0kH57LBnSuubYR4XIW/MBGNtMHsCVHY16LcAAZ+4x5tvN0FMFCfj58CE08d1EVq0jiy8ToX7XSMjqFDA6Ml/AWXOjA6biNXlCFNX3m6IctWENt+zk5U9Hr4rOklBmN26yY4qCtODL097M6NK9wkw6dSFsHxMe794v8+1yq4+QGbaAnYsyVR3QPEyH9sV8HUW4UPoNl5F4T84KQoAsVQACSpRCBmOjnjitzN7Gn89OVQYjT8/3/qqwZpSSs2suBzj6l7uxwMTMY0wFV5twKrXlUlCZhGoo0z1a3x8AUu2T9Hl1odYW63xng8tFD0njVCJOdASFAnbJ8LLpoAEK7c12z1/vnmEJOJ7ykoZ75qY4iT08VGV3zQ+acMtbwyqVmIRc5dRi2FVSP+9oWFggDiMAktNVqjBIxuD6Ic1EbviwEHXgyAlbFfNLSNta1aVVY6cZy5nVeDjGdXm1InXSShNjJvz8Rc+W46c2KXvH+OVJ+RXFCoZ5DM540KTbbsG82ct/BFSFFemXoHHLmamM7Zxot1ufUW69pKoCqt5E52CAVp9xnxMnLkfWvnbqEi71gteKSqcQBY19xb55IIzx1nMOoYyDQuZRLtluBQAv1mm/UHKGIx18SgEkmhhnAnlQfSP9fRqc0COIJWmROSAwZaftQAxKO5I+Fh9z61/rHImWB69n2zCPPOaknbEa/e3teCR9rNU5PjlZZUAEaruz0nkNSd5UAL4VMUOLMADA6ZgV1ON+khEf9OU/wtc71Ki8uqoPWEIP1a6zZphEOgzJ5HXlfo0U08QnbpTJttz+3MgkKChFf+GrEXDV40GlpatE6TI5OhMIzYht+8STvnbeJlvgODIEUqsCF9jILIQf6V7rXNJB82AEsURT3SQQA2SJOIxbErVpix/boG9MQ3/F5cyPMddh1R4PfvvSX3Km/aE95m+z7mJzG9rMBO+95X1vPMGt409XlETUP8dbuI8P7SZaj/xTgphuos4ZCW6omOjaAZOpNarI0q1zDVbsdkRw1DGUt+UxjmuKdXVZAwipbCrktjRU/dxOJw+IH8INxcR3xMd+E9y5CT4FQob4djgd/1QxvbUhKMH5XLAAKJ+JQsUzUQmUD5AxERuASZN05Fe3acue9t0Z+oOcgbgaOpVFBgxBO3zcFHPEa5v2qQfUJXZ1/md4CHuDcQV8SQuJAdPDw7pZTn877uowgaJFayp8fsp245zkwUUDuX9yMircJlfSymdQuzKglc+40TqHREOxonmDMF6oTUiQx88BTGI+DC62dTVZ6jQTj5DJ/Xt1UOnpbZIVh7E9ET9SAshBgw97fO3LwEbbImCSEVqexLHRKyF4roBmITVvHnXS3H5Z6BIUZeR0oAtfUIPJ6ayUSESi6Vlqs7UBEzFXjy/JaqYwPt3d7o3ZPsP3cQ5FfGvzZhr9KmFv/1HXquDvgpRUAGaAHySmXbGA7gJFqb1XAdQYtNdOFvaG6GJGtPZrk+DgSSM3v/LIN93usN398auzZax9Jrt7e/Q1+GCQnz0gAQCcS0mRlrrECR1y5WsOdH9QKp9W08eWUKoLXeVaMIIpeGPOo0VCIsZiav1TwQjFulngwHgT4wrNXfXec3syhRg7CA09s4R5B4hY4tEZP3Enwwe5/Rk2LPoV+A5R+L4wWDPrKixIBHLVV8klIO0/zgAcVL8NheQiKo2Vy+R9KRFUFqOUbq57kY5V4RIHQtRJvq0aF+RmBzwwXDSw+usb376c7ziaCEY2Li9XE/oVt4BWA2XJFeGMuJ59ez0Nd1BZFvMQbmPSDW7YgRMWTaZY4CTwbiOcQmKBZFAKdYpyWGKmCNusxVjbBrap7il/OjEMfgaATYhSYYOWlmirLR28KwN8WGFSDuwcmsMGpO/jVHDEASiHcoCVoLkR7DRwwGzbVLdDxtZv4X61/Xg8bX3v2pmlj0OPTMRPCjrRzNxQNXZ6n9KvAmhtp9Jhj5v/1D1NuBjCqd3MtrcvCm8wtuRXutne1N0VEf8iH6sqSvEhg/x/v415LyF9AnvpUeKkB2+fUiJZIlswQ7ic9HfBJq3dCoKP5pQTHVjnV1k2Nm9amIybq8Pq/93C4OmSRgVGFda1kOFGVv0eHjFtSuBk5pCsEusOPQf0Oa4YFgmpi42TzNX2bcqGQcxDTlGQKt9+f92/VdyiXq5CbhVC5lqE7b/+jc8JuU9Ay1fxx4isnmOnZukwgH9mhjDeedx4QgTjaYpX55O+W362E2UpT0z9R9rNHEVro9iqBM6qP+et40iHlwkEiMJQtWGbYbv1fmeZwhl1VX34t6NQ4sS5/ySCibNGpmevX1B+QObM4CPRPUg0l6Iy4aMlre+j8mvDSlnX7Rfaxn3TvjD3JLrPK9EF+R6bu0xmP34FXB6dT5/Z/FEDM6DiSyaY1frnZ/d6QpS954kwmrT44s8fRf0e8zQUWecFUU8lRR9atji/zEwAkDgJA/0HhT/bpWySOh860F95CrpEbUfDXpEwuXS3QqbP+GWoSc/ePAIKo9RLR1yYBizewiUsgpP3EOu4YEazUMhIa8WIqfk02rggWgZI3K/i4RUbxokAS8dxnYxM3im1xmbV+xr+MTjxNHPd5mxTuRgNsMxLnewwZLwJdsS8ENJxMj3/V33s+XhgzEjsROomvZC849ZmpH6jjH0VBfYg5L9VN4s3KRNiIN32zUCX6qpJSHaHKyskFVPD8YorEXoFesia3N2GRb0ECoUmLz+B019Fythw4G37p3vU6ygrBJlYc9Cv8zx5dnteDPVi4Vk7NnDG5tUlLIAHIAW1gZf8g8aZgZCnx3yMfx41wFKgfw3fKZBff/mYfBT96iO/hC0+ReHAJOmeYHruhaIsYrk4HApy45dJ79g0sCoGQNgaGgaRq5/xywkAR//cjryR8bB6FUTszBMvRhTaq7ROiCzyo76a/Vfp2GaH9v/bZch0BxxIAbbTdwMlSvxUHYr9NPB4LZl7VioMzjQUXgpFaSfdqa/zJo0V9BFblH3iMLoQ9Mhmzscs1hny3lLFzdI21OHpa0RSPir31DuBOASOTtjRp+Ke0mVbe8uggfFROaINHIWyyGy80EkYhyCWitJ6WpCbo5SiCUdurCCl/xvx9llWhBPLo2NjvRek7kcKXew9hI5y6L1UasvoLomRYjV/bVlMWO8qbno+ZYestTdzDJGyw6x5F7P5E4qGCLwcAZrm4qcuPMrwx03vPZLxYg39On5FV9wTqp1/xXm+MCI9jwocQAUrm096bmACmK3j79TacFMextu3VTwizs6IY7eTV+70F0uFMMcCRFUOw8dCegiK9t0bonOZKbgFMPmrvNtPKvBXgx7JnkI/9uYTAxzegvq7ZiuRzFRrEu01Dupcb+ODn6nCzF4Hh3uEmlh1lHCXMhx9JLE4U6/LWHlbMJlr9wDmS5akkm24z16MCIGdPPE8tceZBgHZy+WSdh4XQtJaB5ml9dIa1wBNC/fuHZUa+buMv58pqiwJ4qlTQ/UUKoi4WA16yiaPZB0cDrgv7YuMgXsKMfAjWWAif4Bvt13L0uqsXysAJpYO6+Q5Hc+emUi/IhEvjtr3hgLxus6wFw2TRC52Zf+5FfK5eGMaGQqYTqeZh99+F9nn7ir5ZuqckPhb7LK5eySNmDuwQHhEbUEgkioafVKNudmRQjc4DXoI1d7hl2apCXplYP0YgvXYo9HjqWoEII3xw0Qdfr53NRaMtHqHYzCKoRPJOPm3nxYSqv8QQxzkRYPUfixPUfullpxo56pbwjVoau3gMWFcUxwxej10ySZXRgIab0QUv3msIxw3Cw7Rvlt5y/iz9TA5+Veijdz8btbd3SEFC2LzM9qO5MWLuXvIO80g7j8KWvTMrXwUZtoDH045dUr9QNG4XnCi3Do+VfqQTAm6lzRuwI61RtQoJGilunp9bhE3LgqVPOUpyvHyzH8BAp6B59xl/V2bbkOPSPHUUYibvMszkRAzfMJmPHGCzBtGls/CNaLY3LiIal/zK+hZyOFGP9xoX+5SUkp7n+OYdJDIXyk/j2+ZJxst8HPf732XhyEGfNbYA72aTP3JXvIOfzSNVSDOfVIkT8c3IoY4ZNRgU7t0IeVkqAgcntG02LQO5P397gs9pbtEGKQQyjF5bpx2S99xv0Iasbr82lvI/0Nvvv6AZ7uE0zFKfwjpZ2qGOTyI5pwE3L2ciNy1VqvMa4Wcp+AKy7QyRhRrrv556CpqYnRVyJhmKtNMRhToALhtC0VqQIE116rd22tEVZUeHoa6b5pm1dG3QfwIxB1U0mr1PSPFKAymA/WNDCX8peOm99KCKhif+T61TuE/3r7sEYtFFfZWCYbZYXDmJPuzEweL17JUAIff1dW/A5+QbXE+BsUAvBduJ2wj3VY6BayyyegqS+htAR24cSpy2LMMaMOyV8RuCvcTTCxdtK0ZncRw+M/FCXyd4Td3KHxtiIGxfx0w/qR4Ksd35TYrH4j6cihUUlPvPWEfwbFxQJNSKOZBQkLU/ia2xcGx6c67Wj2UEyYe45CGzvetDD/eBB+vu/sEC7tqEC/ZzFJB9I+k5SuxjpISD+/hIDlBPlUZm+EY2Bf5fdKCRHrHogmoShVdtt784LcuEpIwpFg73k6Klw1BmkihWUfcb9EY/s76uqkjMHjCkgWfTqbJCyYEIWvoX4mmgA5J2mDzbHx5THqFTvAbtb7yXFBQ+N9UdWVQZqndwqNNENhPUlq71Zdp+oVd3AvPXjtYMdyuRE8rLWZkuhuF+ddfuIGPNNHk1xrK9Mukrq8Ci6OBGLkVvQx//K5MMAPBC0qggfQ5fIXwXkF+3AkmdBADXHxByx5nJMp1WrFe3vfltOjwQjtwKrqIV98rNU/tTzXtwv+T6N9CjOC2GLZLJKDWRSs3KlD9mMvB4O+sEV3pO4BEbM2BQiaHoi12WqgKzoUHBvRfz8UDdL22J6y8dJ6jP/Xsa2MVCFvK82IWhic9UtmSZHfmDS9yMOSzyrRXzRAn7ELbwTBT86yMsksUFM2HfeIVUWAPlaJz+Ppi0gvPiZL3/NxzxCjRSd+lLJYqu9GMt9Tqkq0zqNTqNhSFLJOf/In3yPuagou+h7piSZMv+p86nshqi5g5S1+iLGPAwjghSu6xAa4BH4XpBDZmsHJCkvhq3ZhBVS4rl/CkiO323DQ3fcAnBklm0fe5sOndaqZgiiTvsbtVpVnwNoyU5/BbyGo911yrh09KT4mtRxvDAFEB/JWvsotK2eYH/3hlAMkxU3i/xGixHY38I/98umGdR9mYJyOQq+H5UlPKBPUKj+mH/dsWjA/GSlLoROT3HRaZMdPKs+goFm+ACAcmfYmVrDygirgC4kzHXM3FzCuWMJ/EWl4Zb9ACOXIi7ypDxRtg91yy0A9P7VZjgLAtLCGtZeKpY4ACJ8+lSKSi2DDGqrjSMfUr8thrQVLtz3otApLc1jLBaom/vvNh8l8VpR51gXxA4ohv2Wneuco9/Mb+krcdNKhKp2hnoBwiPdMruh3SsYkQo2Ht2PTQUmRI0ECXtT52/dIdQd6tnLv7h1tICzQLTOgW2AU/kw+lZT2fnLZ0BPrn8kiXoZSMghcc5ISlmCIfmaf/rkwYCEuhVtMqcwp8ckC6MuDCDjQfUfs5PlrAQM5Yc6+P1yG1fWWHzZPNOog1Uc3rzKmm9HAuTRkpl4e2mMi+DXhRN/f6xCcQF6izBkcb6TZb/tOAvGIYUz6zlUsN9tL7PNs138smkamiMcaigUiaJ+nlqP0Lr65YM5eU2K4RjnVKau
Variant 4
DifficultyLevel
593
Question
In the diagram, ACD is a straight line.
What is the size of angle BCE?
Worked Solution
|
|
∠BCA |
= 180 − (63 + 63) (180° in triangle) |
|
= 54° |
|
|
∴ ∠BCE |
= 180 − (54 + 44) (∠ACD is a straight angle) |
|
= 82° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | In the diagram, $ACD$ is a straight line.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50073_v4q.svg 380 indent vpad
What is the size of angle $BCE$?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50073_v4ws.svg 380 indent vpad
| | |
| ----------------: | -------------- |
| $\angle$$BCA$ | \= 180 $-$ (63 + 63) ` ` (180° in triangle) |
| | \= 54° |
| | |
| ---------------------------: | -------------- |
| $\therefore$ $\angle$$BCE$ | \= 180 $-$ (54 + 44) ` ` ($\angle$$ACD$ is a straight angle) |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+t/zWWPf2cq5fEv3gWMwcVGUs9HEdsWQuyo1D3bAf3mgBObp/J/q6N+yePT2JSNWQU9NeUXaD+qlTKgboHo8+g/7H09CdIn1+tPJLU5cq4gLUKhOWCPyBx8somiFmUqHNHWMkIDoSDAgkuobtxF1BN9f5q2kJHEDj7HJXwOMnzbrcD5haw6pGuseLsFKCEb4tJSsL8nawDUzdLsJJkxpfvvmBTKJ10yRoxKi7HEGxwo6nJ/4WF472wZ6RKWsDTQezl138sX8hadpwR1wwhSPxOqlh1E/ZTZLIfu0XHlzQaZeMCPSgcyOuJFxpZ7sLGFtZ1IU2Hqe5f3r4+P6uSnEDOqnG0GvKfYnKxFa+hdNAnGiP7BAHRqJuvofNUZmeGkwgQDvUytMMgCWATAI1FP20zP0BqyrGgTUSG8GDEYyAjBWS0TDR/Me0ps40jDhWYVHPV5LPDd3bw6mKpo60huxjJWc9TOF2kPNR5P9sXZkOK/BBrwnoNRDQ0sGh6/P0celWibiBdd0bDlYftzhvLREk2IXSDWocXXUFELOVxVFSYRUR9oaMzqP4u5PhxZKqg+reCPsM9sxVMIudImOHLU0qUtXRWECBCRRs/MJVE//BM6cg6aq+9ONMBkNeDL3Q4rI1xmgBylyErvKK/R/o98RFm5b9SWjPs5G8ltCOMPx50fQmeGZsBUTSdEd8iyVcKf4E6RUcOYCn1BZZkvf1oUp5gENSX+6KfZ2o7SU0x0OZYbBA4aKSOwzNcB3E+OBW5aBM6ZSoSVfolfwdXB0KB0ypsEDzIIN8mcmSmrnW+CKdHciPqzxvUoe36QgYeHUVgzWXGgoP5xdzq08rsvyC4uI+vsDLJihbPVTaP3HSVa3/3851IwU1qETXISL/prmEzQEwWS+hoW2YpTDNffCL3Ln11mPuhgDGoUQPAj+7Dt5Kk8eKciUdsmPtriblGX/1W8oHNt1FgsYWrY3bUrsCGRzaCpgLYRZXADHNKB5OPRA2HyKxchWsIYXcrQdJjwk1INag9XFEU7hl8FPC9BYA5BBfJpzpcpJ/PsqUudXBmC8HqmeGaEV1HiaSXplR/Wlou6JrkP8nb1MqkM9aKi2rihDGOPlQrteaXVSuELvL9kTY6UlT+bX3++2kwJfr47iJnpOYf/878VOJvbvApc+qreqbyYplHSWv9hyE8kKxJHXTglwii/XKlOOmMDrxvcshSWs6inEHUgCSXZ/Yirp3gi4bX1tUB65LkllxpvsvuLJhpp/rxbS90V+ZmT0kjLWe37aU1iXU2KJ8YE34f/ec/RRo1kxnCHe0BmSedogp1XnAkYYNxYGLF82dUc1TU+tj9Jw8pZiLqH3a5+WyfzONPomEHmZqqortRRA0n2ZayvmqFGc22pje1xaiRB/2wmcYM+Om8T9Pb9BZ+d/1ceK/Qk2Rj283ad7JyUtvz5F7FS4/hmx5rebMf8C3p0p4WMnzrRJo/zWJR77mISVcyJQ63Sijv1+PJJetQODkq1HSiCQuZtfwWKivy6e+9crw1wG5w77rZX/5KdJbJX/eWy8RPOBR28626Q66bhgRJ4o6nN/byTEUXPgcHHJ3tD/aKRsL2GcfdorrTaI3k50oAdrl3HgpENv4PF1o5FHhxV7ysUkE00ht2nTh2ZVe2xhCKYDn7s/Apbu0YhHCN7DPUy7MJg4Ihju7+rHedIOWlJ3YN/K8nAGNi+ntTxHM3AIfQZpVXWpFl6d45GbYFd11JAdFBNqdlL4qG2B26WAVt8RrdJjsTR1lAV2TDhyFu3OaQLDEqZJtG33ZTK+phu6+OtK5pzd1cWGLcf4bVQaEIr2jBm7AOH0nKDIYZvnvr3zy6DFk5R3mr4KXJYW8/CH+i5GDtzvV5pV3D72gamloRLR3lCozXluM1EsJkqNdQCzRMajN+W54k2gzbdj3RsJ02q5KyKhTeV2d9JaKU6ONOodolgs9G0BGvh4L/uRnEJwljvsh8DFfaaeEpmUvsh8VEnSBKLxTzFhE+/HZqxapH67Rnet33CbisKDocc9uGDaqZCieMOFYUTPP45EWZLKO6HW0PUYv+LsLeFnQlTMKR2cne+Jq+1cdkG7KjimWNKubC7H4BZi20wzQQN90Ail2cly75YL09TBK8KrHFwl7EC1X9tYbLECnRSAGwfx1FwP1Fu6xuJp8dfO8g/8ukPPq6Offr+gjzzjB4zfCsui2qSMfWDrnSEZ8Rg/AHPz7czudz+BovaiubVNER1tM8x8NnYkIkof8BT1iMJ27iq7FVor8hqIQqLlEnaqexELH5eM8Bk/AuqNU/D7GPKEp7jqnAUthlwGvNrXGYL8tdZ9g/6Hc+H6DD3V3n7qJEmBSZfeQYlFjqVqWLh9VU90PtQusGOEPtte8+uh1rIXCYD+ObFGZ+UV6w6biRmfKfQcAxMUoAZPVZkFPonT7MKTCT0F85H6hUXTtreLi3wdTxAx3N3EDXzXzBQ8P/0ybQBC3t9t8ihWism9r6XY82UlsSJ5FyJOcmu0Uxqxe/MJhnGgErRbUFD2+gltegqvdzUH+M+ni16fKrb1UG1OfnwwEwSZykShLEz8wQBp5VHkM7bFngMkYzyAbBvy0ireN10mN5PMl4yXlzEDTbuXM8ek9M4QEZcWnREpNQGle8hakaK3aRI28peawOXNNgEe2ADsQggSOPrJuyiRBPPbTqULrEoxHW2zI2D3K55Rv6kO7RPMJbKMGxovKG3DLvOsVcAEO4t/K3egkUFeonRZbmGLa0005/4MHv+x1lKDks9H/6zKBG2TznbJQWQEduSOlgtfgS5T+enQ2LubWRUJSqpl8+xAiJsWDtT8lGbe1CmyO72OsOiKvFP/jiBwc4S95FRtETKgTbjVSrxOJ3bhA6Glecrc6OO6uq4o9qLFW4tLEzAiqtwEQWEmIHsa9gnrnSwcLwyE5NKHWkgr5dqh2GY4uGrp2tBxY8cNMAY8SvMK8/Vjc4+gMj0jcq6rGONSJKtrOIwOBJvWST9qBw24y/gW9HQ8Ng3t6aZXZigz7AqZsskz2juk8xlFl6VlkMA794GLfCveR6hfuszANVgwDIeIGfAK77Zjs3pYd8heCEjVHfi6/yjBehg0xhe5BHlVvkFGVzSCaGLojBNdLvfE6i1wdboGRmB1gBtzAj98LPAPOlPlrgvcMMxLi3oPwmAfQJ3h42OZYcRxllmmxM+oU9yI7UQWx9UtN8DdO/t8Oem5oTcgf3mnc2+dFZEE3/RpT7S427lJRWX9CgTsMaMvuyOC6x81htZHG5vecnsOHH0WTuhvLPaiY17LEmIUbL/tIJ4Z8Z5Cd8ywxTV6HX8tabaxKplpKjDvHfz5NE7kEBqY5gwdQLCpVJpaVRTU6xLMKp2qTxGRwMPjFTpmP6iAaPEji7GQf1xrOUMt9VTP3p8q220zQGzk2vPqgR8WEwLYYL2q2W/HUjXDFcu2JcTHQhnSJAlf1L6UTnktoseA4mM/gQK99Jfg4vd8iklBp0/KqGHsqzJBguboutmw+4BVbvVyZBcMO2I40GSu+4IYlEWXW4zvK7cqxzw/OyWAaS11bSqXf6dBxbs3xZORMtN2qvl0k0jVi19oiYdJYUaxVNCrLu878aIlNgS6siulL1i9Os+hTiJF1gl80H9/z91SvIG3qUr+GUcB2jSsj0ZeoygaKEMoBxIPWBbUb6c4+sST3Oh4/JI43MYqTaZSF//ariwcgEy8r9jKK5CMV/fr+1nNC71xdX7kiun/s15ZXIW2EoONac0JSfFzRa6Tzc21gdz0RCC2yR//j6J/qngUIE31w/XYJRvARI/Msn/umbIbtD56F0BXkqrJP2qp1HMNHYLgOO94ij+B1W6qn7oOnzax/B8oCeY1Q1ipGT5kOTjrdquxmTv+lgdUuGhaaZ2kB4364Sqg7zYhOkQLeoX1bYWs3Djaq9V/r92VaA6/yvJKC68vG8O/QQKiPxEkmVNFu8SIJQ41ATuO9IS72GbIU1ZuunpGpe/DhPTVoYlMupzmlG73gYY4sGYra/OKBdsCQTUTE6siL5A3Bv9C8EFvHuWyM6k0Ak3ZHbTEA6EIUyDBRWyDVIWJt+YDrt6qTLeQ2uiNygItT06aLdsnsGksuwuvXxenM7WMHCCDZXYsvUtdYK+pSTrBENejxoViPvZuI2lrOPfohJHyEo3DtH0INEqQAI5kFf2yf6Vkx8rHO/FLR0bmfb/oS5sOKkwIMBd14HGB08py7JrQIbg1/IUi3qe66TmQo6VeT63qcn7qLa+sQVUJO7iwyEIme8krxPze26cGVd+bseZaJaB1/Oys3RrVueenErIwegUAdSnBzl+zDCk1dCZsqLPKjuP/PcAhwB5slC2QXpVE5SHMGnoj5KVWa06p1LX0nULlSeGIeJiNetz6+YE+6Bz4XzZBbQEURPW9RN5ERA+/ApE/GYHtgCHOxuRym/TMP23igI5Bpq299xzLYWYIsabdlBdorNjFj/uFoZIyvNDHKxtsOwl0oaN6iCMQwCMHedU9x0mFMrdfEB9EEhH+SwP/a2D1JIgamsbWA61+cp3TcA4etGwRXsKZLSDMt4ttVngZHKGmh1O+pOluEVNIFXpNnCEJLmp+Km+fP0yBOvoKEJB5VehhkAknwxNz9CII3U8qY7wSoUP2ZjdIjKXG03Lyl4ZAb7Qka1oAAo2MA86Uob8bpVA2NKP6urFQZC7w8ca9sIpYB3Fn0mpEKDGYeSaA5mSxuwJGsXIazkF7oi0Yzoipl0FEOEN6g3qUpc2J/cgLESKeN/ZoLoiCTcnlCE1XWLX2M/+0dt+68fR9elyRG28Gtg9XmHqvfreHpDV4NDKekwNyQDdtFBxswCligweb/gVj8AzAP0cyhjAGla8HdmjLbNJ88IZ9CityW2o/eZhxgSFJCbSsTLueCgl69OzgMHUDFVm8CqgtmyfiiSr/DasnowVfsnuj0OHlON7/bBBiVvBe9lOAOqbjKuD5zs+w2xNLwIUJNMAkvrhKrVKoUgJupzLERn0S/DxTnuAm/XpuBU0/i2WVEMkEsA/Bjd6qf1lFqJRcQ4KkCPte6Twmcx0gJBbD0hyw9XIICz8aFGF86Ju7GBdUkh9BYIqaHN5Jbjgm+oBAun8klTL0gdfarIFiOuwDokLjSnNrVnkpWnQq2F97Lzf0CSp+l6QnAxSGVD4UXKMP1vNdsspwsvs35AbTJheVCIbzR5JiLUzXVWWzJlK+py7wYTgNPxwkrJnmJkwBrGV6FsQw6p8g78j1aA4i7wdLs+rU488Iyl7nJWc3LoUub0kyIk18Z86g3LQmwJ3xJNafEDDKWioUmWN7vb78yDKHNa2gbcp/A7vyPUygqsODmRPE9hMhtmgfnuGijMLK242J2QzWzZx07K6mvrvBOKWgYAnIj8M+BimtcrmGWfTAA4SqOV0DmXJiU3l3/n+/Okh5Jle/rRYzUVN0TZuq1Aab6r43m7c5exkq9mTy7hewbCaJ9aus5LymPgWIBCEko0f49bCb12y0djGPZuPaxpo92Zhrly5EP3gD8ZNg+msq4iFe2j7Mo0txgjFVdzYq+wIkBmpQrjRtODeUQnU26rq+tDS/Lp2pHlKFqcF9YhB2AuciYKen+UygBBX9F6znRu7ZKFUyiuh3uDGGJ4YqBk62TWAWklxRKRZIylisKeB9rTER1SQhvKLL2mgOxpeD7HYOQ2TfmhGJv586aiQ/cGWWUZUw+o1gNtlYohYMcjWgxSyq5EBHSZPkh9YJ7So64LZdQYGyYa8bYKCGXdhac4lITZqV+Vmop33RwW0DblpeSoVYNslvBMmkuDzFBinB93QtEHRmR3lB41rrucVFEetqoUoCdiwNFvRs5HXtW5HSRHAhh4HAlmqSwzilQprP3CfYe0Qr7Puk9MYoTiKRPFcDgK8iSk4yX4VgeSIkpwPGzboxVh2YFxV8aRuAfFWBhouf9GMLEm7Uai7BF0n9AyuWKpo0wtW8Avn6iuDViugTA+zS+oLXMJEDPntqwimtW4ueJe4kXMV4ehY3wm2A9vBByGAvsq8gpZSVsIWmfDdUcJPyjIJdx8lv67JD6dOlHS6RflZpmeeD/L0tNKh3/kkM3MWQXHi+WqGbsVVFDG/U2aOOfP+9GuBS7QWB+Zu2jZ+5cIXMMUjhOiTSukMvAl/IinRa+swTBnSGfn9e0stlvP/GQov1ywXgDN2ovOLiMCBwNAY+Ayl9jtuQeTGwQXyRH3OD8RtIKj2A4ErY5ZLM9EY5f8j8+0ewiT/pqTdHFU81CoTQY5MjaIXuGtXIrwJkvSmppwgCR5prJyRsER1ohwRniHtxeTeetMe+wd8alaLCW6pvP+ocHa8+aDKrWHgMWyHIu1gUPdM4StbFnAUhJJ7Q6vuRaKlHKO8nlVKcYnhHgkDN6J9JO9hDWySvXHvYiFvhyxT4zb9jeEQrWY+Fu3qRWaDabbhTm4FH2KUgp3YA9UDYvwnOPpuRT+/iRbatDq+hHAGmGuEF12fPoaPje4F8Z+7+62TIhP6Vx1tSdkL6vvkj2vbANIv1gQcoWJ9YXYccl9O+3UcSPrKroooSBRNZEp9vyzX8mmB1PXU0mkvTaOXwDaJErNfU5F/yw6/rR8oWjNBuyt8TwASEyHI8C3WZdS51XCQ4Nbtj0HcoSmS3Lcqo9ak76B/MLYeKA9diY/c2LySePDokLI+gMP57pZAOqXxzEJlmkZoPzuU0wtcd+Nc4NjUf8+4gYyf3HOMh8ioHoEVM2XAjrfXrpRA7kO0imTUUJywZtJK2VnN1mlGcyynLjowa/PBd6PNkS41tEykcOytukQ++Eo4btvwn/ykHsnK7YCyTBESLTSVew1HSV8i0I297uAkr57hvbhmOIESlUrahoNU1+a2xhWjTvDjOvGWDx4oNVg8dA+BBbRbYcMyvKwduk1wCRVezfwHJ4CVQHiiBw030l3G512LEYJqzDo8IVVKwcO13W29mRHmmtzHfqurvx6hqAA5/Rd940cWbVGPwyn+nwrhiWxZ1NGAWtjrWhklEoHqrw/VqmEJTujYllBU9cBCqqI0nd3VZhOIUtr3dlDofkJ6UfgU7/+VstuASEiuHY5O1BXGJa0e+WOyiS9kALJZ3WOIcttrs892uv0l7LH6z4EV9Zx1W98lWyTW6BCvlgcCOksIwKbMrvKbAdoqDnE9HMUxVXHXAJkBnboRwWlNgXBxBR2wMp3vY/WPAgZbjndyfTMZmjuNEcrIIavl9jbnlm6MDHyYMTkfeZ0lhN2Ea0q0WMOeqVwLqGTJjeZItv6J6u6BzvVwDE/3Fk+jwza5KgrsMMImG57eGpJy+LyFRRW77YNwOak3RP9viMimwrw3dfXejY7Hne+4C0GFPYBGXS7AAPr/r6u6yCVCpfAqvopBrnCssHL0oT3+76NQU5IGNbCiDXzXdlXVif2Wt3b9elCarK/r0IQhmm0PMsoMU6B9NTTRLsKnCi8kQAEfI3DIL6d3GOIVfOWDrQ7tcD7Jvsh3HLc0+dbtYszlXfZkKdYffRnZLLC6sKgefb9hP9/Enj1U3mIY2FlHVmUMgCC+IZlraLqU397Q9HxuOP45LLiPp0WAuMP/Gu4ZSsAjVK33ldvD5lSdIxjc9zfGUKgdPQdxpFvvjEy/JMY2AFEVf6RZD4WH9UJ5DWgr344nhXCOUmWxNIp5HNSNUds7Ysily/YxhEBr8pg1yKsGaBnvv/zlutmrd07lb5834TQRrO+nmH6HAbEdB2ZykalqBwZG/CsoqVYhJEHNtXJAT3+SUTToQpxEMWLE8MkiU3kfgV3klMIa0Ml5h8Dfj115LUdKAizYzwZnliZ6DYterQeVEhjLNQJzwhHNY1KPr04HbIPiJUJckCxYF6Ra0oJOWe1N3ltlDuorcWyFk/Y+FjeM+qYjKomsARO9hdWr+8fSXTw1CCdI4IVxCTQF/Zlta9OER5ESBckKioage+4JM5s28yiJBAGdiXy/gMCw8hX8/yaAZfqxarnYdFVHJ8pB3jnO6ax8fFuBOicEBQ7QFj5zpExxb/Vk3ivvnWueLeMMvnZQk3/wDt8MYBTuws2dxyzWAe6nK2nG5FB6u2+KragFX+Vt9mo+8ZDh8rrXdsg+jAgMQGrYfD5l0wffAsMEHqEZXzqqNoDD58rK0SYFLTitsZGSqrYfJWxGddiSHDH/LQZGi6wXtIYvwEMM0bBaxkzyK6Do/D5Dmrdrp20uQ/9WaWq8itFSFitC1KHGEIb8RXqMQ3dWZOIyQv/L0dgbbXSCHL2RraR0juICbYc7GBnbTAF0nz0hgC8c7CO1yDW7KZwva7W3PzhngJcFiPuBjd4R7o3sNiXWjRK0gg8fG/7UTlqiQSjKdvT3hBhhMfbhK+6K/aYGc97J2svi8rR6w4FIb0+mRbN2SwgWKxAY8YWW4kXT2wHUQrgGhu5wWDMuogDfJtXoLjJsmn7n2N59bXiupxLqqLE2X2lKXlhv59c7gkfufxpvIVW7UHDFVbRg7YHRLf1Wz2Mj21/bvedDMbhJSYdvkYcv3MyIFV6JcWDxrunnz1W0D8v0+9osJ5k7mhcdi5jPkBWEb748cE2mJWsFIiGS8MsjH9CVo1Lu6JAe1zavyxO3rfne72Bf4vce3OyC7WbAsil6T6RtB+FNboSO2WTAn7Q2t4Jnt2MF3U2Wx/KVXG0ODMZsUt2DLgRTLeZQshPdoXxFrSsNaxFOHADvQnEiUsaIOp1oAmnP1QUw6EKwB4XHzOHinRyKCS2LSmzIdf20xcKwIPrQtcw8Ys5IEvhHcr/SLTJqkhZ8HWxPHvlW7seONBQS2Pf/WFbS6/flaFfN7JxUhVnvcpwIDcWBNh6UxLq7pZt+fLQe/fWikaCoA7f3sidhpYB5XzduzryY4O2VqBs8r9EREIr/E5DOHOqh+5kTCAi1L5CrT9sag8hDr6h1xUVOY1SAwI3WMmGO8fuICtSt4jiynfdH1WW1UQFKH7eQpwsowweIsMl+Bq+d2QzOaJk3KMLTFS5CmO197bFI3Hh9lanqdk3x7jtgF7FbeDHDEG+9jXN+JqLUtih+IYifEtAw6Agg0lT1INLOWZMEDumoJgzatAjhDOyd7yUTd0Rjq81bjG6SmhpvvEjXC5N2PwrQgadUaYkYyuZb7YtIfvZafOJvyVwucOBs9uFXYhbV4NFVog4s7zcBNesNznJfah7JW7SxASG9BNDpmiG7ME99C4WUFO/pD4xIpeslO20nq5Mk+6kY41OYwI8MDStDqjJcnBKayTTdvpzwHapaSM5ILK2FL9QrlKaRFtTHUAu/9vD1E8xIxKgTW8Zwg9GGUx4jSdMq6mQ36EZsTwNAz+mmbx/49CCdwhfilckwo3O8DDYWMlB4maMr6VmDgQ1obCQsU6zgZSuFPmzfVpCXcfysCSWwnUKU7agU/Ze1kHQzMLfWNLz7zwPLJvsikHYe+6G7ZoEKP+vm66NxNCAtBNPzWxyNxvWsf+S45VBIymCpHdtV2gJArSIBKD/VOrDbD4l+EY+ZHyp7fPXvcJ1wwP9kpinei9a51a3Tyv+uS0Z/G2SGbDAv+M5aTtDtXRnYBDgWHoA3rZupwIu9b0gZmZiS3j2kPPstTeOi5yc33cKquQ0u6IUBzvVfrOT8VuzNvJAmQQIhHGki0YpP4ExOJa7uFAsQDL/sQk/rzRRrUOPn6TysZrGYjq8/w/dRvQ9VV6X6C1MZXvXyyAgjwqxc9Bpm7ISWiZeW644JqjYDwAxKhIqeEc9wu2Xk+1F6zO9arVJpm9dfgL4vRCvMO270njBWis9ExAv7unR2SteBr4AUE8QLH8O0CgejbtmV/kr0LkBKIaa2hUzYz+sg0W/8nis7IRQIxziT+7MLHzwTxe336HQAEIRK9csJvBqpr4UZ54kTXh+FqSmYCgPKg7GF8BND8KHoOsj3MX0oU4EGpWkYSjn3//uHEuf+qsbkNAUKyNgGUKrzbn8BI8JDzKCzNbeFEL7NrhndYGEx0CpifhrIz3UYX4h8qrGiHwxjA8imzFLx0HDQucbKCTUmkSfpf9FxOpocUKcwKxPz3P5K58rmBmEXYMxYEZyzCr791DEaC580QhcSqlichYw78fvGkwTSm1n6t6r6gHO0mNUJKQ5571o9oVKlG5gdubjeGsW+/bKpRFNeXMTfM1THyy9/2GAw8ww9JdIeol1/8otUAAOs0MtzR6Wf2pIoCxcTbEw2yUF54/g+Q1eLkPnuajsmtPvAB+tDzf7c3BQijXj6BfNEV7EKVqyYdTdbdStJ8HPc2ICzIKvSuE4yLzbACPNBVAUMnDtw2UEbr9Ag+A5GcF3AnJBoRFneORpVh1DLYLH5QnkjNpm1crZwPsdelgVSThywNbbYdj+3AQFJjb/plsB3gfLbQBS9YG7kagMbLxr5ffXBTqI5oeTdjHYoJPpDpSFeD31pEuzdKOuSGWruSH9okLP/x/p33zb9M+rnIBOACideAmupLqG
Variant 5
DifficultyLevel
593
Question
In the diagram, ACD is a straight line.
What is the size of angle BCE?
Worked Solution
|
|
∠BCA |
= 180 − (46 + 74) (180° in triangle) |
|
= 60° |
|
|
∴ ∠BCE |
= 180 − (39 + 60) (∠ACD is a straight angle) |
|
= 81° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | In the diagram, $ACD$ is a straight line.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50073_v5q.svg 280 indent vpad
What is the size of angle $BCE$?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50073_v5ws.svg 280 indent vpad
| | |
| ----------------: | -------------- |
| $\angle$$BCA$ | \= 180 $-$ (46 + 74) ` ` (180° in triangle) |
| | \= 60° |
| | |
| ---------------------------: | -------------- |
| $\therefore$ $\angle$$BCE$ | \= 180 $-$ (39 + 60) ` ` ($\angle$$ACD$ is a straight angle) |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers