20132
Question
Which one of these is equal to 294?
Worked Solution
|
|
294 |
= 9(2×9)+4 |
|
= 922 |
|
= {{{correctAnswer}}} |
U2FsdGVkX19+kMeQJrllW+6y6JlhC10EZglQ1bxI7c+kCAof6U/ZznvA1LunxtGF4CrApUwka7dA7WzrL45iVpHuDxULmxERtZZsVFTnAM53zeX/hguAS1BsmL3pIv3PCWKm540bpaEzu1Nc1xUOroTxGgzRzH9E+X+yXQuXDWVryzA26822YybXMw5+sVhscVe3dLFgSa3Il205JKfh4vo9B+T1Kk/3KSO27o4pfcPBH6et9TH854pNH+o7LjHvUEeIJCx5z0ihwMq/Sv3sv78LDkf6wWPmfw960psFhnQJH8GiRMZ98OeAkN02q/nIQhoGpLWS2RIAFN3Wgrcx0iKLkC87Lkx3RqD3O4AcLispG5gwO+eaH/hdijFlbBiqTl+C4Fb/YCTF71I9d3F6XVStlCS9caHkXLqR8mKiJwEPgffNdoCfDP4uLklMCaiKYHcTvI8Xkve9ntv/jdxFVEP4Fl8l9rOKcWdAEDo+W+tER0P/IyM96yFNXnD0nv+bcAktmBRSpOiBwU2dGN22ES0hadBEO5K0w53qZIvDZkP3W89stvxVd24VTbEBM0oM9ul9CkEt/wCJqdwuuM5I9vv39zN8Y+KdlyKjMO0JwcXa8d1OFOggOxAMej9ZhrQw2odiOZSZ2py9NncLcyG7k1/C+nRQp4OfT0pN5/roENiNwg6wE2XDfYoXz3uFr2yIBuPxqsaQzh0P9IpfD1NBlBX/0JIkgBIS9a2BtOS6th0aAJr8x4c/nCPn4QKl9o32pkP10RLF/o2GxmCWQFzrmyamRCYhOPOIWe/IAGrPpVx85RPI4DTozlOWC0SKCIwMQzeZ8phKtyg9c+02VLyCYn8Bf/1sAXX18scJoSpcT/Dvz8kG2PbQPV+gdk8M/iWHqOz1uZQFjvfj/2Jd9YUjM8rJe7VgxIL6ZdZChYDgS9HBTqzvm53d/izNcBDWYwkJZ8CoKRllIrxtHXhz5O3NC2yW2Vi3RaID2EmBbgvAxPerKa41VIDpRU4hSSxiMS+6xUdb9/RalLN5eLBLgZRvqxC9Eoub7lbiYqz7paxhB0bG+ZAlxVdeRjbm3eU580Y3YGJs/hMe9+ZXcMa+b826btD2zoKk3kG3i24cr/T2kqR5rO0Vjx3o0V62WCz/vvJ4A5bu0AiV3TGljFd4+up7QB+7zgR3eBOv983bWUw8QERAJWhnKKZkpI9WgulaOcxWFy26VDZqC+ew+xscvexscqJFzXWO/oi3y4tfK6+ilo0Lkf4i1jD3N382rQ9I0t5yEqNN6FFLuJziGTQAavE4j8+7BG8ZlNPN2kPZJigQKYZ7iFpXwuHbAbW33JKM9u4V+rsvODkAm/wIelJOKaXi/yGTdXAjvR3obhAgLkdKjW1A4gyWoLhTB1eCOPOsZga96oKWiCPCqMG2NOPJqMcOVJIyKJ4zS/v952IpwOlZwcTikNqJOgOH89NTDIBq0q1j05LJSzi3gZZVN7Org7hQ+9YOC4h9rmnS9VCcm2ALQtEywPu0LaYlK+QumEtixalVSCUtypieTNRFE4iPsRASF74+kzr+1HmkwbRsr1XtvkmLIMyzghcsRwvclaP+GF4KEziLayoOws6TNbjLq0cERMI5a+iMFRzMmoxU/nM/Lk8qrkDlaibjUCAIz3TdbJoTetAq3ef/531y9dgNqSTlqJLpfZUXwX/cjqwYF8Inu+OKTwOO/cTJ1UEZluyv+9jRu5graRAlP8e3jqdKJB+QAyIrIJ4HruI1+t0HcF02u9OWRHhNmXjW1civHHEnXSkVxk52PIMf4qZQn71/cHdW0AQKHUmBu7VTTyLAYRhn1U3+i6ASudws7QLPzSUB9tPNnMvpSYD/6QIhVgK+zJXbt5gr2OaxzfWlsTuckjs3CWXcLvPQYTdqSDCy8SK1A2A9Oc5MIhTXZ84tcl+ygQcqEb22HeQCJXVRH16cIurHxBnotc9haSzdYo6bpx4vvRi/A+DbFpTsXM7oHAW6r1faocmHuStwTwxwSi9D7XPaaBZQZAzlAnsxbvomAlaTKiz9H3clKHoFwFUWeVAJ76VdBWztKOKhwha8oPm99OpUNVhv6IUvOe3XzequkudINt7H8lPKrPGHyoExbGEwpzQEFopBsHH4qSoZEcXq6O+ImHbVOjIowZDDWBig+Wiw37knTQ82TcN9WRlqvBY1bMkahSwRoiABJymbo1uJ2uOrVQ6EyUbUF4lqOAU1g8utY7yUrfq0NuG+ycq6XuFuHVyGOtv6/9vfuTO2WzsON90mZS43W+Ur9T462jp+XaczvRA1ENdkpJCY7VIp2SMDcXolifGDzmN7uYlGwIi2ty0kQa4MfqaMQAKSCHO0KszGcfqlaea3a+0HqrdCiR0/U4VGxv2qIe1rxwKfZp9B0LWMFLy3Ynl/HlLc0OzKkvIzWcCJISrWHs80HCpJoqwz952cYrKNr4aqJLODSUnw+6e/CUoE9+QoekaAllOdlmt8680EkPV67jIK0YjcjckMLJIXAuEKYxzrBDr8K2GV3eNVnBLbqjukUmZS7ZLLteJfBnT/EvyOHivL2tqsi0+COtsYEJ4KOGYIGp5prvlL+116cQz12Ht/sVxqR7kotQGVcu3czgo7ugSmQEguVPJcgV7r/rqUk09sx25d3PUlY1DLesySdcN30qPlf4zkRWKMJX1qN6l3blgQB4r8hrQaIVYYZfV5L8izyR3l60Bz173Ez/XxRoW/iVQPtKQvIxa1YeiJIaMvuSeI8YwWHPUZDx75/e4L1LaNCbGYDFegzz60FIP5ZpWEVV+FqonFkSJ1j1iwGmX9am4qUowMF9Uya4L8CikwtLC/qZ4h5v9nSOGBms/NYH0CR0v158vTiRkz5k6wEe50+7ix0UBlIKQ35bc6YpbpDxWoXLoGk/zAEkbFXlTOeE0/40D/YNfClLTa3XcFYcWU5yAFpzetK8Esf4ld6jSj03ed0CTkWki5Iw1HqSIae7fYiziehcbjVtjo1z9qIkFTZqcCjSlxg9D+UNTgYUPMhTT3zeUsKRrHhhhpD80ap7fmoAQJsAej2ebXGDRG/JKnDMpCNB/ntlS7nJMlJwC/XWn0K0x7JZjP5DTpRARt8EdUHZjAQH+OlJP1cLXq0Xh4d5M7TL7Z16nJaHPJ4VuzFSqzOcKe4pkD5J8QLtDZF4XO/GWWbLRa9vO2omNWQGegRgj20DpOZcCmewk3c2aolHdnU+cOwdlQ96jD4EVOdB1/xCJrBUQOC0ocMhRpq90+5D0r2J00bemC3jSmZN+aKaUPkds8/7P2nbLaeUw3UFiSmU/MgTTbFl5tqzCwIXCeljstNDIdfCCo7zj0m2obT0ydhzaIm8cpS/FeCeYdJqrgN3SrkBy+6tpevB53EE72g58RcY4RakKbTveo9saabMoNTrCohB0nRueEfVlLGoL4gCtMtrdMpYYGRXI4wJhhxrQsO2GAb3kZSLtWfqLZZygMjsISpFqHxHyOGwqwlcdkzo+Hpbbli+jXlcdse4HxH8bhYFjxS6I4yfGG+NiVm5UZqLTACbqkr+xiUmM+XetedGf2FerrgSu4Dl4sNjRId7VuexBAwV19ZFAfuOfcpj7d9BeUH0VDG87Z9+jzdfFqwb2QpUChkgjKxEV1janv7gsE46ggsmyBGGGLtLl7yJBoJ7bU7Z4cGjqwJVltNWaAohm2NcgXxP3BBiYcr5sL1VlM5Nj0H14Y8gYYvAOs6lCoXefhdDvbaKC5FoH4lM+yC/J566bj1Lke4zi00/zCtqs781vKgrKmicoF0UM8g4NavwHRuVzSQDPOmWDHLOW23KruooHBrkTtlM3QCRbUlSQj5OXLPkyl03xk/XlcIonXookruXrDnfyv7YbhEv+KskkAKXEnM8kW2UWN8LFmf/tpoWtv2G3NvsJ16FfGDV731joWNDIb5v9IliZ+BlPKVVVk8KfhNg5JXYfgB3ErJBC3lYsZ+dZd2UXpX6vRQSaY0H38YOJlSRaJyGX/KjM351XqcW3w2r3Yv01QZ3V311glPLe/JjSwvxKo+CZn8+xpvzwyYnRvBc0Fzwtxdc+ebbcMGTtpZpYnCfanAiS98IV+drpEM7hSTqg0qv02o7vFQjinhPHCcz/O2zOih9qvwUz1hWxZSv2scEuuW+HW7F8m6QVH0xzrVVgoJRtZHndoCeHkgPs129sKRKq5PAgqzbiE+Tm16XRrdoUoGx9ADLdrh9rxF5QglJ8ttvGbspAuhqk8AcYt+TjmermDBCyFF3Y2FIMaProCe6r4FlmvGr2AeJZthwN7ZtPNWW5vq4kwb5am1wmI+LcdJVI++JdzWTQxWu2vlr9TCvPkhAcyHTeJAWOdVvfzpQg/CyV9Yg4o08OxsVKWUr3LuBzSqR0tN/JBvCNfvvEs5R6ixZJAoCIsB1v784le5JTEUFRBBvFe5TW+C+xPjXvEZwz9yCCcXrlqygGmOdRyDkq0werad3XcQZbiWICmPfidnXikXgpO1+5Lc9m9avL6uXJBAnXK7ck/U6atyX5U2QBMAdsCf4L3lSjhk/B78xhvmjoBLjEc2B5yQulaORvAEy/UFVkUQDrfLySEyZknINCx/3Sj7mxV/d8K2DASgGOjlvO2JmQnUcISejLCg0tNGS+j1HOFusv4FxFvYO0bHwyHHJHzWPSB5PLfOfeanv9rA8NoVdCdh/HNqK5MqeP9059xTr722AipBx4jU5E/F0GDfOGPRD82cipkmYfGntiR0knPg/frP8wpIPQXz/USyF08NiTnwNNH65hjrI9YmHm+6saxVJpCS0uWl2LKBQHK0y47O+TEHzHm6OIXw3FshjJo7eWtSYl8QC7OifM/dGqPjrCEKAdZYv4F2rq9FP8z2uwshBBjragA/hJGO57LbhdjohcfTAzDGsxFwkdE2Mr8BYvTt73i9AXdMa2pxl9nYGe/DHl1Kji0Xz09FnQYo8hGocrqL3yjGR9q1+vbsUu0BPs+UcZyTg6+65T49uWKY06qCmP/puV7SR4Im5vww+DtbCPl5/m3sk+UYMjpKJmRfpUrEuUgEcb5ZF1HUqvlISMXZj9hs+0AfJRoax3Crgii4XTXIRnjafWuDu6OdqS41VJMun/nifGpI9gXjTkwXXlcAThqpC62PclcmrLMJJhfhHuUKIGv6qU7vpWr5C0inefnbfjCXaTXX10JTZMeG6tX6FUWz3+wr7deuGVkC0tsskk4H/qRp3c+B5bHthLKlmTTq9zU4fUXmDvatF62IqG1pkRZkcSTIghjCBrVC1LT3AZ+gNj8Bo32pMgivjGycijzZN1T/EZVO6AQvsulGnLBvt9OiccORXAqS3mMH8F3HyOXr80UaO5t66aGXncog5/IJN564j1SKs3JTpjhs34x4HjIhhlNGjQvkJjFSlUpF5uB2dwZko/HZRvYhCXlBUeUwqzLp1OPUT6uFSRYxIRPqmooaLmKDwYRgTjvXGOU2kIKx8L7+xeA6pJWtqECJ+m93FZTQAzdGfG3o7LI9qG3cbbcNuCOuyNhCzj/YElrs9CHY1xeWnGYCz1rBbDNHAbFHjEzVC7WAC4yLjtCruX59KEonWjNlB5UwqGUGyd3dLSDzXCC3z2G48yVf1ryvvbKTxgOpEeRYmIyVXf03gJJ9oyuWFb4NwcSyKlvOKHy4EP0NfZC2FRjDV7P1CLjHGa9tqxOjor6fAN3XOWT47eYvRqpIQlu0l+jxoWxmKPRXJadxIFMh5TerTdkIOlXlLW76uHBH+7ljJvWdKrXsB0ITAN1oql7z5wGt7D9f+BEq0JGrFmELWblKf8gSLC/qwIBYH0Fj+Y1lDtOAFFPwMnMkG98wM/J6ELHJ6EDKZjMWL1724doubPg2sl0+dg25XR64e4fbyByPF+8CzZ2nnaFSjTZNdN99jbn4evl1cxNgvnjEf6KnWAiMN/KytxHYwmhTJ4NSQ1EzH7txot9HXMKJ7KtYCURpgecRQJMgfutLRc+8964H2FfoyHoxuy3GgZO41teGBUaKv3wB/ZrlVmqQ2s/lsoG9l5FwMXlxoacVTimzbQtF+vTPBLVcals+TY/o3lbIPgpiZmFXDgzEFTbf/A+nqK8NcqXqO/1ewS3kV+t+ZuU6L7GwAHli8QfAKJLDC0pBIjHqg2g6maD+epOMI3Sjn4cUrgmq6jHdlurjEfi+mldoAYmJkZ6R9uZv4DRdeOvZG5plXsPef5XMkUcsGR3vp6c6LLAizbtIFoxtDZmonQBDW64tdyXawigjAzrRALdYcsT/4pgnZGE+wxP74NBvHQzkXWZ8ei/2N+7Sl9zaNc1FYXYRnK+EZ8aucc3NzgjKxjvomVdn8gd+zPX42mj7+xIzT9V12Qvqn2cad3YASgua5wcaZgkjEwtvbn7w0FlMILbhA2pspP+to+o5tRFI8KApn4cJKnfXVrfYiVxBOFbyOHH3Ac04TSyfUNOG0yQWpRnPOjyXfD7LbMf2lhozLRRlCy1dKwH1zsLv7vOp73EL0vOaMGPOls5Nbe5clsSEBCMD1y/aFALLR//BMfdMIXtgc/cljv1LRV5e7SvlU4F2LipBnIkJA7DVw+p4XSHhvWxhxr1goFOcSB7xuY81w0juDEg3fMESIlqhTJUARLBgdZNRQDzLqBxvt6XDorL0lt0LZuQyzZt3s6aLQmrsZ8oxzLW3GU6nVO2t95pajNnY6WrtYIHiSVU+Qme+c2M0iddtjUTS5lPHGHaox/F3LsMxtGSsHsVkCmopCkItSzhCZnEjhUGfkIokR6H2ZPOwMHyQtGJl5zmLRfrRnmmvViYarzCjocLwC44qGobB3AI+jFdAvBlBho5Q/o3dTvvZWmPaBvOyGo95fnm9UVZ9vlhZDEP2s10GgsWrE/gWoVG8sutSWlnpLHOgTzOrwpYcNr14ZyZM8Vzgc1wgJ98Aq9MkIv9qTq5PIr0YNVLuAzvEHOHQcfVeUZg5zHCuusnWFAyRH2QP530p7xFgbwR7jwMVo0eJ6ylRqgk5S4Bi5MkLFWMg6Fgk4j7agQFGZVcM41Weu+wtnm/3A7NBScpy8t8WO21tjD9KAQQ0Zp4kC6llrl+kcfKDgBIfBUMcnFRFvgZnsePRbCaaCT4J1NrD3TfdxsCV1Lav93vosenM/XxLbV/DKWF+x7Qxi84g0iajrLuIXh7saQMSM5iwv13j5FPi5n1bk663WhkFdaLuRKAxqlidnIeufPZy/OTy7cYbctS/J3B7RmMoGswXjbwuKp29Jf8P6hIQEPAfwd750JAJ18kN/wl4ucD+lA0QL+lZYI/HEFK1cx5DB5/XpYMA5NmxMRPjDJ6c1GCERdsE4eBezPaUriCR/iTtIHZ83K3Q3eAB2IqHG8em9Nu4KIIlKEtnxH4Mfq2Ap/CVBQEHXyA6zdNFsaqI98t8g6FSODfiQSvvgtsUcRUyGlSdI3r54L7/w/aT3dS3kr7NrlZTMpgpJsGQok/i2V65IwuvdDJNYhm8e4RO9/9CCftbiwoUOgBhHFkmr/F0NFKq3TGid+vTG91mLZiZht6I15hf7pQXXMhhW13P56Y/8yIAw+LHDYa+w1Pf8qGsemY17MmiBYCzepdcrYFHQqDqoE+lP3czC3AtaMLhDXcfFwx5qL7JYlS9StDq9OtNXM5+2YCo/CpugmMb4utXvOo1iCoo7LxYN+E+T2CkJUoChad3L9tKqmxQOqa+VjlZzEajw3NO8pawpVlWVyV9q5kS8DBdFm/pobEwcpQcE/odupfSpnfepg/c4DbVgrJ2p/BYVYZdNGfDs0mtOoqkFJWv5+J7gbJ/zr0ba9aR/Yi/sA1O+iLxecBz2+pjbjY3W4PW1QoWOcpOOcIcw6S2W9BxYO+haIxP9ytmRRnW/XyjilcIX7oiZTBfMyYvF02PUpwVpX2hChFHEaAGk1ShpXC190y9xv9et3WzZAMzQNG+9dZnRRJWhU++0Diw8hhBtlCxHHd0coN4uvOLwKVl2LpMFrnqwo08JxV+FZr3p8T63GmlZA337zGXc6OvlNQ+CgsKkV/DlwRszSoMjf70R8HFWA3EKcYHqyxoOjwXsjOTnJSATBgLKnA+MpZ0OHfxcTnlemdnO9iFOKMwcPiEmRyy5msN8gTbw/7wogMQw+16PrpZOIPrROgzl1tamduWhUc0XS3+hGCb7YwrQL2kAY+9AdTAI2gSiJWz+mGAUEtLMUGCUvnYh44T3UrCw03vXx48aUfN9H+ekb19rs55o9aYvgHKjsp0PWJ4Wq2+PmmP2Ry/kZoXVxfyT2DzNQg/jyJVX8sHBx/eyR1OBa1/5fhdP0IKyVL03fznMyDLgoSYixFt4jutdpT64GqPqN06LypKxoUOKjRlSAQEyYCz2vHGg/UlwX1dkb4vUEkEUaguduiONJBIShPdy7A5sVNXzaX+L2PlQ8opaMOe3u3QMoayJEB3C6i4PJMdt5seUu0wk/3KcdL7ozpUBAtP64UKLClNZzS90UAmMmQdsLfgo6rkwcLwf/LvNQAe421kgC60U4fl2ZOzcFZf6gMBHPN5LdABAzsMeUW0RFYorwEvp2xxbsT/Kyct4X6FFQED/Yowz41xIfG/2adTQmyGWfMadCJtYvH+Cgc6Qe1jjemu/gcUD3A9rNNEm+Lf3T/1A4FytS8klzBkIOAxzy04M2V7aG/hPZWEEZOZ9PmKEQiUFuH/3EpuyPPLNteNQPiLE4n7kbBCD9E/o4jy4Zj66Rrd5t8B5DNeiqQW03YinXB5eww1Gjv9AJeibOuhTpKPKf26uv1s8Lte57ZRWzi1nlfPqkpD7G9vTOkPl+gSSUmkxvMA8csqoQvPOPRrG8Yq/tkeM768G80uS09TKwIO1O6vW8qEzElEVXQ9//1MSYnWsq8KbQg8K1++8iRhJXD0LEtk5nIy4kZE4zzfZL6abNgJiT+rkSf8HYGvOir7OoZEhvN8Wrvq3YgKpqY0soh6NicFiLG5Qu4I97hU1qsLmNShbz/0Xeb6ORzea742DoawWWRH7/vckqn4NOjSRBKkupQ2lnkD5+G+mmOhEpya36ZkVkDcwhiHbwnM9nXb66kajk8Dzsj6XGFyYf+pTMRPSGCKMnnK5P8uEDzbKFBBOE8btqd+CTmkO6ZLmn3KQowP7ah8RN74ZIRRLltwr1OhDF/ahisvtAmXjkSRN4Jl8Y3edWSmJQn1qRwaPnQRVKuoli54Ws2Bvra/A+48ne2gNanwvRFlGK/6XJt2cQZcsk8utHkJJkyNXdunxozuTTkHWlbJGstaSZN12mGULwLx0a0D1gRmTfo1kYJwe90bZAP2zVIwbr+kLNrr8NKqv321CVPn7Ap8UcJSqq4yTRtIL+H9RYuvq4XdWUHPLvNRrSqBohL8GbQeyh1+faKoxrOmaCArLHEflLyRAPBwsj+K7m/SxoQdI4RvNCyI8YHjOCiNako5RTOHgUlDiP+zeFwQC6bEW335sagEfmqS+bjGyeNdlPIt68jowhZ1W1LkyOIlg3kh6mTdoJA5qy4jIJhvSVFyM6ESJoJ+qh5fjLngROULKzh0ccnkfjs22/ctJ/+9be2OTcOklE2Qw0NtH7bV+Y+NyZZpQ/OWBMHZj58F9LUl+fWKjrlxWR6Ob/6/G0fh0702yYc6nkpksuC7OQdGA3F0a0P+dkBvbOfIpSNRsUvpvNXSI7Q1HewBzDVo+ClSFgl2f4o3oBjLyW8i22EPbxU0zIt4YG6jnlZHJJS0vTY/S/MVFiih6q8ZTbPt8r5ia1GNiA+LDOytqmBv+dfnf5wWXA2sjD25bFM41po6wxiRTnvGep0x7YhRjTCPBaAu8nSkNqNh7+WVxVQePHWOIssv+/0W7saOqqcSkHGgd/m9YArygz+rWf/EnVRL4YhaTL+Rblgo9+PBTtyCvPqbBsvwiIeTT3DTtpKgMATUcMWcKLGQmWkp8hJCbq6l6HGr8oRcdVRi7s+nEapXHyi5o36q8QQKNQzw7mbX2LqAfUwd0KUiJ4cpdX5PKXYg1/shQtjDeGTJJUnMoAaRUuF7+IW5HqXJO/I0KA36hQTheRsv09RXvAWc7LqsaK956fGusaqrs7odUda9V9IMYKYgx4Az0bVsGCE6JjQefuqX58Cc2D6rHumvDmH5iHE1EaDrP0zGHXDmGSDNoDsV7hAaV2LXzqmQFk5oVPR7Dfu28hMfwErzYkwwGQHF5L0i1VukKu4OscXCIvtUuiwU+oUI8fHhXoN/lmpORXKpYh+ZsMQyzpikeSdEoECJJUjsAf6928b8VXWgaKtNFG/rorVdgT66oMKlq/88buobvAV7x4q5qf+ZWIIvvBhLg2hNHv7t54peW6TCNWJ/t0bamxzZ3wjqE4cZQKDXS9yFfkT8z/aefiLRlTY2R9go2Q/5I0zlJpIewyaFro3n30aCWF4oL2vARHoL4goCnVVb70E+dYS4hH6swwZR3l+bVMEu/WTIaYMnD5akyKeQFgGV9RrjbCAUZq9ZmWXP/MOuh3kfb2VqPH0mCODjfW6u+RScXvRAKErh9belF61JBAOQtBmA4u7WvSJ3AlqGiHvuMOGHEdtnrUMn/vVVzk7GaxHvNs20X0NibLP6s/S6TFJ3e0FUW59m09GmBK0ThyUX7R1oP/dl+c4/0KP1S/DxB28VLppx3P0oqaC4mRdmaP0to5SxZt3nEulNmZobAEiRRQ8gamcHPJLR+NvVz56u4mXkNxm9a9ZsgQW9LRiwCrk86mSJG1ygIv+ud0pnrRkVv1LJiBurbgo+k0cvVlUCkPNN8O6esUC38gbUcEJfB9hxHxcdvg5CoBi5jaHDq17c1tp10fWLbLnZCd+rg6TtpL9RHeZUsQgmXSV9sT/RO00mludk9oFzXDy68NO04tPjXlB6/sz+mhms7ECl0J4dWJSWNXD+RPHXpO3CUBfdZz9xxSLGdovenLGTtQJNOJAgtpRo/lJDfeJLnZUp+wsFINkYyWh2huRt7Qi33hUbqKkpIowq/x7Aqgldw7DYQvc+9WUxtCJtOMuLOCAc56gf0c3NeR0sREZ8i0rdPi0Z/nAkD5qWEX7UMA40HnSZlWUlVVmgi8cg2k2lotMg/IpKjzdnzcN8GOv5UGcFWbUm3rvpybcu7Td6dJfDXj7fzQkRe2iDIlRhxDVODTOWdUKOd5qKBWVBer58AXm1e4LZYTtSrq1g8vT8DphEQglreGwOO1gYbem7pOsN0FFyUw07zHw5CKVOI8/SMbPF9GjadQtq+kJqpvUSYTHvXNiu1a3tE8y9aA9T9FuuftnubLNPCzmQS8iCyOde1Hr0mj5vQJ8hzt28kFTLBCCi33JPEevz8lcfJzhJPHmJnNUgAaBfR8oT3NK6KPAPe9/KPsQIHjcDxvgvGF9nzRwrimPRcY24ab33G5AHovadXnyoMakltqk1G8B2WZ8Hv2l2YMcXVqQog/jYfo7p49ijK8km5Ovh6tgpL1S/xkwfHh0sesitRqs0BAl10zjLfsYJCxmtRzfqt+l/qb+Yrz3dqPzAZ3r19SDA7BR33THmsHyM6XHIKVus7b4CjhR89Mw55MAdsam2EPQS34f3bhWO8khbtwNV5j4Yl0RSgZy3g/180h5Csll39MSrktfBr/je9KJazyMdCv2pvVuOkCCjus+FkxAjVe0ekLWeEFqDtH566dDakqVuushkahjLfSeRPbC7vfKKB5NWlxftPmyHrLMEkna+SEEilAL2JzHs1wWRq8Z+gv8Yuo14uU3wy1Bjoj6f1ow4gN2HX+Q2XrcO2wYwvTJGWsSWOrdGyPFi0d3SiRcOtV0nptsTeZZ8GxiasdOe4ss67Hk4oRBakR/j92x2iaj5Id42/4f48i21XdYnCiVjwXywPYHWCaRqYXiVF+uN5wXz4AQ5bI54qxHVM86sPf7YmqoQr58sjh0XOVMxSWsrFSgsSGpdCwhGG0IWoA+nHtblALk5hX34r1SHWjM29/gBbSM3/jEApV5tHQ+jEXHF9CU2Fj13NuDNRocpxVjl4rEdk8UpYjhh/u5UCf1SPFgU5jr273GjeNr8QIw9enkx2hm1N8YFi4LkfUlYdqFGadkd3nxD6W55zcZY3E0h6jDD9dmF1wMuMSKQ22q8FT/yAl9QZOkZKPWz+7XyAsRP575qdpPodXsO87PhDCbmNm81Qv/HhddoCe9RDgLb1kqkc2hNLzckvIdont1IYlppP9suxHYn0Penh8QQ+I5w6oCMoenbFL3tdsTttb1okB+6bFsahTFksPpZEhOHDWuqLQ426GjHmr7974EkpJGGmpQVT4zfyikajB5rNc1OlHybYPVP88Iw4R9O+PrrcLqsiJqd3I2DHPphy8x+EyzRPs5sWUbfox6bvDhrQOVaV6V+G/QE2yr6ZxZBZ1Zof8hR6XTPP5ikYgKCTuD7ZgfGHEZUzea/9WeERej1LKXy+P1fk7DTP1/PBUOqKIB3jWjLkzfNDmDaeOdDzSfXuC+ks3i3x3MnVaEPTIPkC60qtoorFkj56GTo0L8500rNL+Y6peJfMUM2q6Tw4pBGpOwefEcdowkp8UriH8hOBEufFoijpj2tWmlFjwLpU1zJ1QFthTMWF6mgdTSrCkpEKQHjUg9PMGIcTTPyT4UvsH0RJ/VsmpOblK1d3lhUYJY6lphfco9pNDOjSsYI4EhCRhFzJpQbYRpALBLAWXs9Te0d4r6FaobYGAcRDYZZfEWydXKFBM0ElPgGrtclWh/Cz/4CQSQKsRIETpTBbjqnasN5dyy3gVa1O+qlTY=
Variant 0
DifficultyLevel
611
Question
Which one of these is equal to 294?
Worked Solution
|
|
294 |
= 9(2×9)+4 |
|
= 922 |
|
= 22 ÷ 9 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers