Algebra, NAPX-p169742v01
U2FsdGVkX19oB1mtOAJcWM3Rg+VCnzzWh4rzu5eTqxEYHlppsfw/A2r4pEQufy0BmKDIVLnUoMgjxvtN7k1SNnkhkZe0BMAbkvrNr2ngBleEusMhQ3Vs/VJUCWUPxmDxZV1DeMf1+WxqdgL/UOP9MQaFQgJeSh3jn0tNrC9PfF32gftvwIvf2P8mYUVHHHwbGAHQtsLssvcZ+2Z/se3WEATaFdgS4PrIKoJixzNMtIqfkzFFvxCC0ZHLAz8NUAVCpUcjoHFc2Ga1JyR7SOseYRumQhv0L4mXt0WNbVf5ghIlQ2ePrlkgNk9oi1wQ1djkWxOfWeDGgXrHab2WPfk4IF0DuHAGFdfyq2ZL3qAEnB3aF4wLVV390nZLqVhX7jGFJqkkrWkCK2qoMVEcDP+7vN5BLsvdx1B+UKJ8Kw+B2C5jV//Jal2w2OKhf5hH2m2enfHU+xGXPg1J95pOUTc/9IHuvzf+PnNlAOC0Y/YEFvYB45/CakJfZA4hfK6+P4gBaAdiSncFxBzkQfcYINtXOx//1UNjyApBDSCOhmGBFDa1JObAizXcjUoDOiLL/KkhvypBnoZSC5OVba/e+KYSIXJHKPTXWJLVDpBF2XJMcbLebILH0zSI7timVNwtNeUH+tgMo6qWH2p8pwbVpO4qAN1q8yTD6ZH9V7ADlrgoQx24Z3YrG8nA19R/fXCpinuiLqSIvydjT0JBsfXV2FoXENQvLfzvwFHQN7zs44eIIATWfDV4DeX9LXHdvlja2TFv3Rbmbi6yy41R58v1rrT03W7Y0Kx3vGRQt0ZvmvgmSOSMuD7zZ2ZLhZS1zrlBhQbGfUNAFCDONU8vf3QfU8Ha/t2uXw4xSqCxMrPxUZZFG7Vlj6kZFsnqCoj/MjF8oaHRR520em/P1GpF32r6iRrlNRXnfvdq916mVyLKLpjX+HUwjCodZk/8/kFzakt8HN0KPW6tNp53tFnMnNd5PH6T5olBg9EobvuOgxkRdbokvotsjujMNsLgChBJNQBrVtSL+wy3HDytHeT/Pn/n6ael9a6C5SGVj/kj/C98m5ae2BmbjFbOOfszLQmPnKIxYVKgCDtLfSbtoguYpxFO81IlwF29BDB4AogU1b74ViMYvqI+FezSTTx61W59siYqdjyGJ3CkLCbBj4YnbzwahZ9gWiT1fDbofBSezQihoyhTABIFsa/ar8OnOBT4HHxWKfR3oQzwR3l2JnkWZgPQzwPBre9z+cQPyRviH6aws03w6H1OogvRVforh3+BfugSFKTClJmaTo01fV8CT/hhgJNkhmg+sxtVF/ZWW9Qt8DQ2AHFW7zGlmKe6O0gWv4nTkUKHbYI0U/tM+ZEaFfAyo6wc+wc2dZiIrkqxK5M/VUVU233JXiYHBz+BOWZd5t1OLfT+YtVhakxXDAFQmmX15IjaOwhhZXESg294+ljm8J24uBfAhvZVeJBkEdvVC8jsldO5SVJJ/BPWgKlHtWO/DTrZnSv+VCtktwJ1XWjXe5T+u2jYOAs0U5jtWa3BAhEqLcL5HQuFkvFSRZWkBwnfrz8GLETlF4ReFNwkKUqre7Z7c3l/dnclCiAZXUbAwFVyJbqDkdBdxOeHB73ErQbbNw5AO654iIOsPMmQ4Ag5WDL0AOPRdzkOXB/YRO0lcLPTgIJVQXi0Bz99+6GWbW6Tb16RfH/+0m5BHHBDvIalxs+bNq/B6yKlirKTGzajSkIUa4r6Pb6ZqP9WHe8KiS+PdIlS4R1GBtYa5MlMfMXcmQU8pEn7G/+CWc3WCSVqrukKb4UaAEMld2EpEwMxI80gSEHrtURqvmpa5AP6EObcntZcch4F/+ObqHQzu6g5d9/y8nSPRh/9TO/g+dV9n/Bad13UTYt01kOKvhZDwMmIT4qXGENTa5z+6GmikeMY3Tbk5z3+CYRYJGTZsiL42A2BsJFV7Hnc7iU3IHLUMyBmLbepsOINHXSZqUsmZ+yZgkwJLx4YixEU60mnUdTKSUbjvn5WEiTGkxKH5paiItBPQhJTNIhjpK+Ox33lMR4oFia4fHXAqfjVLT4srY3HeVdBoSfdVEyTrmhqOz5MVunTlQgnfZJPAj4WOdzkbYG6kY5/BZu96L1h9B6EghD9yyZZQ7CTkQnf5+evaUqtxtyrR51Fv7IJBqQZW3OkKOE+GRWsCzWt7j0CSGngudnt3iZ17RIYyqS0bLmY1yug66z0LtHcz3Zg1B/kEJDSWomL4vYpgUICX049+bl9DZeV4ATIJnRZ+YziLCXPy3p8Lc+hxT6tNBllZDHOGG2CEmLCZ2YbUibKZDkz2gPQHT7eNWnDEfV0dKAvhm1ysXkSYNf4HSzGXQBPIWNR3zI+sfmavLKNnhEA30WWFuZIpPYQlD41jlvMiOR+rmhZsSsqsc9J5JbeAJEd6ecTgxdMVr7fVOWiFvNkbhm49idr71ALKJx3AQzl900hJV6DmpxQ+gaEnuZFTwaXJ0VoZlTnQaJHqK0W4Pj8NV4td2huge8aTEa3YjjY7NPkpEfm9KEytKo/x2lAZYzJKEv8csmqmmoeLWwftYJ888RapgWufCPRbq8iG7Il+Q32jXvWn1bdFuxh3TH/4YQ1F+gLrW9NX5mijXFlgIw0J4hZEtSRXJC9V/e9KcLyoNTLSzdO8Z0H+bdE/vl4SbhOly188DkCTMlPJ/EGX9gyN9es3abqHz5qDX41AcOwDk9mdZLkVKtkvB9QV1InuQXUIGIxjY6jFfQxYKZ4+kn4950GsvGRSbyLzaYarm9zQ+hM14c+5xYgiiYVCcKEiu+vnCa3/H7uui5VN8CetHesyxu+SE27J/27i2uwRdo01CSBmI9i4tompvLJGrys0KPK0PnBi3CPCBICtElpurszPv3/9fI0kcAgXzdss0D2s7t3uA0gZ3WZhSlcU5+i38CiV89bo3G/GRhVqjWlPF8qtyMDaC4578qRCwJPfrIxyOLbOJidjpshvzb+LZAlQDO04r3SyNyx50BH+UVO1Orp7NQ5xw6g9qRQGu74/9MOKOehmAyKC8ClQQI8MfvwIn+swzrfo7+QtYNIPma315xRUX2157kWRQkDV4fZfDJl19mFD8A1O1v2PlC2xAv5hL/wqsAxRE1MaFcTiPNRjvxm+u2/DHyu70/AX246ply3icPrQWnsjSf0ceYwb7cYcAu2hsglZMhDWZ5YlykvgAVfjwSSLmoz8z/aUciE/UIQl0NjqFU6/6Dt/qN1HTnByFNeT0OaDHbzMTLzKbr2Juk4trjIAHsl8kFQO0jGL7e74MuUHxiyKk18BDf6lsyq+aTX/WFGLALI4Q5xC5uMSQ9P3/sRze9ZF06RvFztTWyTTLEspO4TVzt9E99vKjaFWZ/pS/Is1wGYYV9W8bPTUxsOSQgeZEiqgc1VRLyUsH5/rVoyJhsVGJaIsOI4o+zqxUWdYvlS9pMR3rXwjJrVofAL6Vk3n0OSpTThQA+pYQYu0bCSm6kYOkokHQJjIpsuR3Ty+wwpw7bLb8P4V/NahPv7OpFCs7Pjig1YdUExjrpRw3u6hCIvV6GJNPajPZjmfgmfi1OdKhcKtYH+mDU6TvCcOQ+lhTzd9f9CDvOSdS6bESiyQXyDVLekKheozSACXTPJD/jkJ1Pu1rVQaaDqmw1CXlhzXcTnAk32i/+P9GNZX7q9qvSxhiSJ1gp8Zguzmotk2KR2Z/sg2IdURetnSnLeIgmkm1UOiy8pue3hwvF9QJTpCeOJQ+ncWgyDvyDTHW9+RwzH2NlCg0j26AiOappn7xYtvOEcowgB/hWCUD/wWe7ZPfxf3xrzOAzYNAsOF4yWLLIcbScocjGX89009aXpYK9mxO4JWeeFyrGJG7IdS07IZ4KWohuiJxbFAJhrypAeqCRt6KfwscdpT2LCWWng2u5JdodbuioVAN4pQVhG8fk8JIDkWxbof3h0JHh1IVaphIzOIyCtxRcxzUqVxSvwtGlDkBMFdbVFa35n6wROO7/XPuBkLCIQ3yv2PZ2Xq+nCOrMt9bFuoe5TA9fuSRrMana91wR40drP3HnQc5XOuiVWqGxlK0z34dwoMdYOJALLdD3HbSJjylmQH8VgRBfuFpF7aspZvHiZkOS9XtvSLBoX4sXbxlo0b8LAhdUaUJBmcpNSXu8iQGQX9skVLvUknnXCiFTCXKTpJyt8H1ZQO5vkn55SeeQcHCHonk7QaihOP18d3C59y4pWDU4+9Dnd1oao+4dd/rIfppp6xT0IY4Q8BhfAZx4n0MeLZSLEWo1ypGaTEL0046Z16MceN5x+/UfnEbT/W7NaGImwL9i5w68lIXrZ46t/ep8260Twkn7nj3VaplTfEpxvOhTSvOn795OUs9xMBtCgg3L5K3ey5PhFeegON1aufbTqn5pK93kXz6aSh0hHoNddjsKphp0oWSr/J7ygYjbbE4vkfNtoEA7PkwxTlaiO5ZUrdM8pjXSXiMXMrUfKjj+otJH+0m9R12+PmMawh4/xcpq87vUKrdcPViwPOrGZjPUDVGUZVVXPJEYV2haYmNMpz8qxNCXKTJLLr9seCB1gShC+OsrsGqEkJGPvmq08Uwyz8bLvWUz4S7APKBYEZz0OLZVv9C1JmsMZv8qHonH4yQzZAcvGOwkNsn5Nm+DV/X9jALA9uK1Cy7Jz07t9mXq+maaY6l+uqjJLoCNue1DmkHtPWmfiyEXz6WBD7foVEVcZjoNM310Wpx4sv/Br4Df5yl6iLjS6Hw4pf4+PVHbGpxYQQuMe6u7h2T3305HWCKeVRsLg9NIKYHrk/HwcDCqN6nXK3cZYALZMccRJTYysrpFaRHtpgWRkNhdrR/LqBCIJp49kU75NUKk9e2CfuZhy6Y/klHxKeP/+sSRpziJ3Mx2w2icsEsUVlRG8TMyx5bji01vGgPR57haskhCUJYY0+HmNp5gIuRlx0WWmH2maHeMkyPfNjiRsCD+8x4LOfF6B7+GY70ftCCb0QNq+HglZ+xHLeF4+w3x7dGBmJapDPvqfeStE1varjrUSx8u5VXEESVQN6tHRfqLynDNq4bV5ejkWFbM6HdyTdhiycpeNpa8WkUVnVoatJ8tUdsq3veY9jbxWB+41UKUd1NRPuJ8NbCIh29TdKZTtrF6e2q3po8LzvlelhUpWH1GCFLcXsLnRxanphNulleN8EwqSSE7n+T6vYFxJzLeDpHMzxvV6/dH7K6ukQSTZyL86Pj+UGsoA0fvdo1Da0NA29QjIVgVcl9fR7sxKzeftBfnMtxVdoAx9qijEDsb2YuFgqGOnxAmUf8xcE0E258kYogfMO0VqKrq8mOkwJiYjDnKeT2PswYPvnUVr/IzPsbgGIRFrIzpgPiLZHTjHZv6xBzSfcuIt6Ym3LNcXUssZ8zGG00VVVw0KgNWxnoCNNNxg2zDs0nr8u6nOo5bpO+FGHJTmVs3tEoAkdRi4rCPO5MsbeIac5W66M8zhphTU6/mE6QepmvbhbiISDhz+R6gJ/ORJIRbD11J//NvWYo67AGPrfVBKc08jikHcMjmAUz/j8ZDwDy3meIQmDAMC9SWXW5Bf0NPWCompKhgH932holxH6d3v4Y71STRIHff7QoZJUV3XT0JGV1PBEn578+yaOCk0Y7b+M0jq7CUwWIuWPiTn/IYrmx7ivU5Za53OVfNow5BZbBcBnrZ6ulWzYYA0062uvFtzVgiri91mQ13Wlqqto1xh52bPDfrSs53DxQjSLgSQQIf9DEgIsthYUKezXovDtuswpl8CUtJ8MaA5mjqM4hShIaMdQe++Ev/4Ey3igZ8Acfrupuh1X/fWQcbQ4+sWvglbG2pgZRnk++v2We3redkwClewE4FHcn15MZex/JTEz+mY79QdgWVIM2nHGIUOlnvPZg1jtkmdBuDkhGUMra2kT1mHFQ6h0UXVgfkiovP437cp5CpcrdvBnmaq/2E+1jWD+xi/5c4UM3DDzKFgGAmfsTTPR1iXKnXYC6v+CCF8vXbmT6nTXFiULer+MSDujU73Rkd5bdXFl6EleFmcH9s88D1gSRUVpvt58CVZeEqxHDFyBXC1WnuCtv/jxNdtQ/Wjrz7yKR4VxhCichjoQS1GzpursmE0sdQmnNb2GDTqWjm69NlAoZ1kBdWF8s75Bhwfax59zjYa4fmJqiyEVmmNCp9hoVEY3SutxIUjEew4LoVQRPNO8y0BsQDR2tu1EohLwlFhjvAenxT5yXoJHIDB6PyEiTaDA8FQ1BRfFFdt2g0yXMkq3WbvLmBp6fkde7U/yz6gV+LdSG2USypUd1DMtCOAmNoTSynSVC/e4nzNo3tV1z9VuopdDJ9DNlUelZKaTZq+zqXJQJdmLWDgZpLk7yxnlmf5TfkkBON2A/We0g74Sq8bBf0iEvEkgH28WvSu4hrNGOFqY1bTH3qkkGAA72JLp6lJRByXb0I9AXcy5HEyKlFYK9kACX1/9QwmYwELTrjqXdMDOCRcnijCB0e3GyNrCBi5XQAHavqpqcw7282kKifjtcXIhicTiTz5ywL1K+XIZIGxvk3fnEcoS/+sTg1ezJn9ZsYzmfLCw0D5gV8qnENRw2NFXorqlZ/JD/ZdsalEja+cUhLQitDLTMQ+K9hd9zWHyBpiESrW5gc1mVlrlhDIsWW2oC6lgOX/HxbtClGmdxLfBU5q7+IT81BEw5kI8Pulsj1Mkjw758GOao3Wg6lRwu/WJeOcVil79DuZDvB2/wIMi1pH53xWVhA6qRE1UHwQi/K7r6xrtRYqXv6W0BKZ3N31BoLKY1HuBAFsCsVQTHNOPKYr/wSHH20iMzWb23T7NVDh1BrkJ1mt2iH0p5ikJNKmv7LAAJE5O/YLJ70Nwha2zyTMhSzgz0lvxJdkRgl2iwLtcNpu8GJaZaRYRAYgjt7MBNEZTCrre0IunHglBedn/Gb4ieL4rEYUDgnUaGqOfYI43f8PaPHJthRWOBNecZSdRwg1SiG5z3Am4bVb+CMjoDNSMMDnhxYgik7PzgAcuPZVdXopK70I7HGd6vRc1w74e43R4KaoMS1KUf2nPZO/eICLRosOarLccoqaUl/tGMhymHO6M2gz3FVY2XfVyBiWNuRWOVjDg0GhMahHCU3Xb4VS9Dnjl67Apke93NBgLVqj8FNRF+ErAIhU/550H2TZ1mde/teVBpGZpumIFpWjl7lR7JqYtKkNZOLLUI1r5A==
Variant 0
DifficultyLevel
558
Question
Three corners of a rectangle are shown below.
Which point represents the fourth corner of the rectangle?
Worked Solution
Consider the top left point on the graph (-1, 1)
.
The point below is 3 grid lines down.
Consider the top right point on the graph (3, 1),
The point (3,−2) is 3 grid lines down.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Three corners of a rectangle are shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/35.svg 350 indent vpad
Which point represents the fourth corner of the rectangle? |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/35s.svg 350 indent vpad
Consider the top left point on the graph (-1, 1)
.
The point below is 3 grid lines down.
Consider the top right point on the graph (3, 1),
The point {{{correctAnswer}}} is 3 grid lines down. |
correctAnswer | |
Answers
U2FsdGVkX18JLeQR9aOA3vGZeXsEBnkLroPl5Yf0lNl712jTo+FN92mE+jCD8U4QSs2SMZ6iTqdUMvK2SsiZ1kKgVtH0K/PcPP5+W8DSi/EiuJUHQ0f+8phmej5wd5BEQLRiz8WvZuGmz3A+ykt+IdHsS7mRliy7zYe3KQiDiiwJQAwcb2PpOiQtlhnmw5+PlVQ8r6Ub0zrO1ZLt0hVj3mre+iUQbRx/zvTvgw88pEUogwZbkurXPz9ksAlIhBYPwedYdC+jtqTJ63g9EH9xs1CUPZjFqMQnt7FR0GAnhqlHRBIIH4AWHNVMi+icGCjW3BXwmiu3LIyX7kXEjwH9IuDKtio4LwNrj7g1Zj9o281T7BFSuSdYFQniYiwYgFjZF2oJHzQhqfDmESRQvZheEuyDeDv70901bcyD6ae1M7N6oxy2aP74pteMb3tgDxcKdostLeNIpx77uTGO9Gps4raNXiNUSQ3C3DD2zV+mPiYRTA6WWj5hnFWzHXMqvFCrifGo0h7qhJ2DqLbUNoGnYuV3htaFMjfdKkR38NIwg7Lv444bwzlsG4Xs7OdTDL7o6W8GmyJYV2C2l3xKGoA8OUCraQxmoysFawSRmqeErT0Rd6Rnj8kvs0ywcP70vcPyWAuYalv+Uo+qO0PYFuQwB6zNsbO4yz4KfB/dpEPmXOilUaUJmZp7NUNY1FyucCn/rAMF7vg+CKZe+Ai7uwsDL7VWjK+hexbdHLXO17QKocVUxNnw+gN99DuTLQQ3P3bqI7Od8sBIbK4txeK1QuMVkAWSm0xBjBsvhE1LNZaVhk+AsdXxG1tlVderVzQTD2WZ7O6LFfBN1IefI20CGqMC+7JqHIh31lN36VGhx59zUAb3l6LUHU9Hb/EzpU42bC8SctbdzaC4EvIo1X0+CAkDXIbLDcoZ2Q42r6mPP9toHSlABVd8wAwSQLECwql3Mmd+Hsuvv70Jrt5zJNmo9Yzz7A7wOv0BDmhPJH808PNHviFnnqV22ZxOE6wI9S2seDvU0RUiMvHaltN5VbthP6LThvaat95+yR70qAPT5s/everWJVjBa9DxiK0wUJCuTKXU8XnEBPsJ5bSBlCiKZSRBfLIGuWIqMr+aglKf+h44bf1K5WMBEfw5FLuAnJib0DxflxVP1ZFLsdX4TiUCSPcrVEeWyIwgD90iQNreGQu3YdOrIVGoOgW2KGc9oTbxDvmmsUxdrINHHvV7ZiHFidsN2+IVvf0LtEnERGw7icWNWHr1kxjR5HeB2LPwGlDXHwhDofDQJDTU+NYNPIetsWKmuTcoHYO+pRexxpwHGmwwiExSUOiLQPtdUklas0iJJknr1Itmrs87HvDXqMpMFTFnTIEnpuHRf3OiJ8NdLF5qHG2bJZGk0wOHySMwdf1vaKQesvZYzWtebMxErvHY7k3G1yBReNjV4EcTViHE/d+e3c6o/CpMW1dZ1m6iSFpl/2B9izMi0ABfd6KYsJGZzI42BQtrp4GdQh+wRflbMJAIqkHPwRjLkE45ZDx1lXjsYxdlA/+Gm7e2QT4LNS59MOKmvlEjD9lpx7bueZnGy67ia37jd42p4j3aXCwB1+IiodHdaHpCveSjKc9P5v0ubqImXnQolyCWMcw2lRM35zaZ9vG31oBsKiHzn2+YeBu/a5Ubut6r1qL97vqvK9rZBrrl2q/nf8r5+cZu/89wuWw3ikSAaEkgAuh/155B0e7HTQHBInEJzHrNUdvGlhMQr2FJpk1xiBjBp9VBg5vhbIDzy0yJejzK+jIrOqMJQJ2zo7nB/F1e6fBYZKFezRqmMqIAkgAvdxHRtAWSwfPfKFJx7v3U7I6QxmjhwIiopj0dvXalxcKxIoYsL72xQ5f6CjU6tdIXJVVRh+gDkB05etRnZaSE9FOrjvEjxVSB+CMklv3KXRMsiq6tANlfez2g+Z9mkj0sBaOOHFHll0x9kcLRyA3ubXQel2rQFqDGbtdWeFxyzo1kzBZa+CWq2yY3BoA3C3TypE4VsU2YGrvZeVcJeh54e22KXPzSrCGI9Q4RxnAb0yOx5w4J+B8C71dcBFep2//qpi59Z/V9tSMQ5fdjadmW7zE0Ll6A825U/+RO9A/GUNQ1RjGZCv8hCe6W9rBzZIQr4PLdXLVF9iQx/YQb+sdB81qLoJPwx3k0RNFgJfnwnQcSGPGpu3Snf8tKyB6hzk7mv0i8Se+U64gDRZ+QfrYj3/xaklnLmD2lxb3yXDnZ9ym3MVkHaFx3L9EHLQereMu4f1E3g3aipiBmNJK1Tf9FBV8KMzS5oZN4ZHtEpT6n0nYsvFh/FFCvpCKgjor2qL92tYqpxZlCDsaj7DtjDXz/Iux/SpDFM8Po2y4FAdrihGKB6kHPph2JAkX81PCikHyNKIuBn2dhE8D4wzjEmWLhdc5rl8nBKvrltAHfI3S7TuIPzjAoJsi5IttfFtAR7VRvUWm+9OqIHRhp/eOIRoditf7tleBvmLstgSNZ1u43b4sCNtMadBCp/EQUy9jFG/rKGzmOZOdrUVC9FRhGFbtCTVDCnoTOpsRvSTRbjH0FsiAJxLmhg6kb/fuetjTg2cQPFnjuRVxc4+1dC+8SJzjak8WE/XVL/s/ZEeu/dmI9r3e3ZxnEaLhzPI51svjZ/m59C3v/sEetC6yT2lkV297d38/n63Zss3eDJQDrygNZmB3AUQRXRCG4xucAc92uZOAmicZaVRK2j2JXtsnjHvNoS+LWWN3Cegjw7IU29mBrHiGVKrNWBeNRYsShmHk7Jul35IsSLjGfWGO3TQnvhUSBFFNk4mEh2dRE2CxE4y4xxm1v4YGewmxZTg/LVXBcUKWj66SppCC7IlCINhzfC+Ja3wdE8PSD8na8gcA2X0ogc70OQka7FEhHEC9oIDfkkf0fToU/qTFREFpHhiO6f/wHlGRNZFLETe7ez323qvDYnugOKs8AFZ6TfLR+AuyG9fgeesPEOdrkD+BCjPJsre992yq9JhgiDVFDuOKq0mjcNwrtAe2DWq3BTR0L7uzBLdEz/iaeRE1VOzaygqC6oest+nANjdjlvKEl11rRQLiY7lVxrfaKW9WAbsFYa6BQsHNWHO4GRMZ1gZV1kVvBmmR+ZEzSKSr6kD6GRc8If02C5MzUF+L//fJ2a+o/DhbTAdjQMaLN3B3Nd7pY400i133AhFJQ45P048KcFMpsCG5UTVC59nRL3rGeJAXCz5Uf8zj4ruqkQKpwxW+5m6l1Q39KF2vYEffsmd4AxfmDHaFeS+G7maHDXTbwLCkM02QHW2GS+pC0rHjB+tnlZ+HI7AmogyXNxlDPOcvlT15TNJOQfqNEaKir8/8nJA9kY4GSVaZS65PmF3GtJmjAls+T6IfmQw9EMg8MvxVdvHK9eD2ULM4K7ESq1QGnkGWCS1fScQp63FkMDDA3Ddzai46L40cszz/r8LBmjy7mvYZ/N/l+YLKsqhEmH457JSBVtubhgNnrzENu8xaunRvytvDb+Kl0XnsvVcsnJBVbImZ1BViYskU7nNqxZdp/xlbGumc9UL9F+/QfY57fwQldSc4U2u/z55W68ZkEKYxs4Wlt/mAHSSde19doV4NyqVnxyExBgRw9PhcfYmkCRpS2Z3MO7akxDY6+VtLAqJMLuVHcoeh9JK5y7xj8kqpJCZwI44Uco2/enXAdS3Dcs3mRs2Q2zWapjBG0gNZcYqoPZ3NjAnj6ZcdZChZ3PvzvbnyausYCk5kQKpleayp1FLqToe//8p40fxhpVr6H8bLfrw3GN7vnyNh/JLvh6r+4VRRMifcAXyUp5mEGlkfY1hdNKF80zn9Xun7A4sQCWUeNAiZsKjn4K4EbQ6QvgjJ9pIe7g+ovVADJJh/WYLsCdYpaA8M/aI4T3L1F9ggTsFiCrlgMHiwmLoZLCf79Ib9TD05W24aTfVZrDYxaEjZAVFzmslvbB/ktNMfO4tGEU+merkLxhJ/2UCmppk8XSDLFn7wkCusd5D8B2uHOf9IUK6zUv687K4Ed272KKTiWItsXLc97NZ/bFuVQHn7/g/9dixwMc9m4B7x+8v+bg59Wtho8NbmE6Jf2/lL/ECBbpxiKovULNI6uB+v6lzafWsZKSKhV27tGdxhkbIn83wLtuuroBzZJfEq0dogoObDm5g3OB7xzabzlRwG5gQ0HYnQOzF2fXtxcRFrSF9rVuSOMGgji1EyD5tFSfGN3mngrGcSzl98jhuICzjWLEg/XE2waAVtNIal9tYjD4PLFlvdvol6wR0u0Bw6ULT27SzliXcCbjeLHl6XU9ghqcMutugKFpMBSdeydLLBp9UP4KdXhiZ90r5I9dOExhAd8p4vU73/kpzax/uSJjiUsVdKaXS2D5YRLK3U7HVMp0ITQ9eY3J/uDOp6N1NH/eFlxR30aTxpHlTKrle3iaDT0EzlPCrJdgcjTsirAuGQUE6yTMeEiTa/w7c3WawQFS9O3XPS2UMn5NEzRscTWjwTESQHsYQjo5T05BZ5QNpPZR0WvuCwx7ofqQaOXpgHS6Gi2rDkInRdZfEHOw4cX0B50QOvonLhxnvlwhx1bEe34mVcY+zlYE/9g5eCZAYG82v4uIy63+XiYpCb2a0sfRRgurkC9qa1W1bT7NJlU97vkUGVwuk9hb/eI1fGi1fsigfzNqUCdqTCwWE9yDer3tfjvhd8KDWW4PRrnV6Dz954NzSm03jHGaCsqxH/tlZTWJxGSg0PNEXuvmGDvIefpWRv9G0ILH8wWI+KAbEx+NDVuPmBRKf5Hj4tC+GCeM9M7/O127Wkh8DZi7xqWK1fJiPHHcwLL5Vzfh8Mogq3Aat22W2YlbvDkcRMx4Mqkj0OqWZ1nMbBuNkyJu9MI2hOCRSV6EG/09pYW0CWvrjf2yr3Ne5QBz+hpTRdFSu3I3VXVhoNEJYoqC8TO/Tnek007a3ZpGy/CtSQy5JxNGtaJygj8VJ7V1z/Qdatt8y+EUsWBF+Y1sOHQFPke0zsFUqd3K8upbb/3oMt7Cf8VQb3ecaFjxGsnYNtdyQxDn8IhU8Hhu2tnvuMmDnbuabtxb++W9hvoTkB0k5woMyd/YrnrFzvN5Qtu+4Gh0WKbAYU9HDc1v7q6Ry+uPm+zvXoOu4lmboZw0gkbNNuEjAHQItMXhXw4jCZoGGU+EQ5msvApWGGDCDkK5WYONnrjIBANRwN/T/2BKSS1QRve7UJBTM+2eyEE2sBmhU2W/6riX/K9LvsOIpPqCjHT+AYXqdlNT8pY9tgbZu9caLuGB/7Eq2I58JACvb1BSu1ppjExefiJCmi5KYPmNRWYQIEAV09pO2atxjbkD2X1NMfWQ7G3JS8jQuOXlA1ZRZGYG2UmX/OjhjXbOL3IecCPdoXHppXHe1AyfA6C8FsiGctGbjoun3wLRGsWCV0FURF4FIQVRgxh3YCP/Daa9NCYvIpaJ4xMZn+HEVN/ahRklthXF1y3A2ynnzrxUupC2J6FYC2bUiZRI65ZyE91uuRfkdiJlsV283RA8FNtKvkGYArks6O1fT/28alpjMqtFNFAhxeFXNBWA9YA5VijLcAsPHiM548IJe3lHchvrPL572Gs0U7mLlQJ1qxghwhl4+3GctPrAKx+7MhdnjjHxxIH9l9D41/zrEhHIIxgS04OuKhbaI4eRYWUjvx2mZ37Rl59HDdDcjpHWbKDkZpl9zGH4foFwlLfOdidBPkSHsTtL5fxsNgCwCandOioFc0gHhZXpj/+yD3n+pi476/nXB44YsiPWh01w7Id/peUjRjVyy3/TiHAN273M/YUJiSxrZydEqeIfJWBc4La37AWZ91udLc1jRzSkx1wQm2uuLCuXQD63Nhqwax8jmm5JLxxBy4GQTCd1vJY+Qy7AfKAZ9YCjcl6qY0VfouxuRgMHURgWKu3x+gzGVf1kEqDH8KYrXCTxLdri1LR/ZsxCsJ22geSMDqBKRMPLM+Bh+oHQ+vHfOkjOEjuO1ObO13sbrC0OvKQC3RoMgdnKlCveq2Ji+rHd5FQlU1g2wPZ
Variant 1
DifficultyLevel
563
Question
Three corners of a parallelogram are shown below.
Which point could represent the fourth corner of the parallelogram?
Worked Solution
Consider the bottom left point on the graph (−1,−2):
One point it joins is 4 grids to the right and 3 grids up.
Consider the top left point on the graph (−1,1):
The last point (3, 4) is 4 grids to the right and 3 grids up.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Three corners of a parallelogram are shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/35.svg 350 indent vpad
Which point could represent the fourth corner of the parallelogram? |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/01/35-var-1.svg 350 indent vpad
Consider the bottom left point on the graph $(-1, -2)$:
One point it joins is 4 grids to the right and 3 grids up.
Consider the top left point on the graph $(-1, 1)$:
The last point {{{correctAnswer}}} is 4 grids to the right and 3 grids up. |
correctAnswer | |
Answers
U2FsdGVkX18ZHYA05/F/6L/r4Ow3J9U539bhszpDwWDaqwDOWAO20RBQjB+blfJGoRiqfX0oO5J7Fo/i+8QuLlybzL+0Z+0Mqnho+MZlHReUwDOMlauBk1h1kQrAIAq/kfJCwUSm9+cKaTBJkyDYNSEOQSu1TKEcJRZf6nDC1TFZvnrGRAYQ0KENngIfhPzHDd6PnmTWHxvsX0P5cFJO2EV8YSPEUOKhbVgqraDD9eL608pNP/W3qjHKnoLu8P8f87SdqkNhCJ9RJq9rv4GKI72bY+zhk5Suf09yBpejlaGfzX18FhosAHNW3RnagSdmAe5l6r7CUJJW18gLCvHhNErQ2qbglAZrCw1QbJesXyHiTbxPZ7JQ2fx8rwqDfgpbjoeHYxAO/gVF0h12CMC/rDwLza9GY7Z4Dtr/XVUpSdVgXClkXh8hgs1WEFGnhQEu/qvUT62fI1SgJE1Tn4L4B4lnz7V9Qy3KdC0Lzau+5qgGNfFtcvEN+pViUtvxT7ggImvyJxUE/eKTyNI+1+TMlchm2UuB1hIBPs5I3RucaS7+c3uHSLoigGPkA6koKtOr+QTML2Rqvbtfqwh8oydEUMqL5fki96G56YJdGv8LrR1bfqLzaJLN92e/H0Smljblq17zGR3vDUQwlLKR5oShH6QH2W4LJTWpOZ7XeCxGbYcL8VhK8YlwiLf/jcSwSolsISyGUikmQrj2GT2tV5mPXQaoh3FC3IrZqId4AbIxWeaZX9lg6ECHrh0j5v8CMRe+QLey9zSKGZSSFKMWb4Q5bI0w16gBTh9S+YLxlYWyQvNYUlHAoNJQm3deeZeqDR6k7Q0z6E0zY/OVMRU1gwd3WjRKbnw0gHGQegECQlUBa7D5ZSHqOd2gqPfJT+6Tj/ej8qdC2QlK9OhGJbZVMlsn0XTTS4SugO4+35fhHXJCMcjJAiU4mFIAqmVBI4j0p1LjpeEblIuAL0sgrsx4Gj5GN2KuTmzNYOvq/aklrHk//RCtqmfYQ9irV2QvBZIlzlhBCkg32AgoFjuECd/I4SNCXfYaDNxk5jUeDjSUuV3LHYNKvROFcj/KvZUuxL9cSFTzkTLWYpQhKzCg+wZUYitI+AdHztVwIhowBtJujyngwClB0qo4DUfK/epEFFjHDV+F1gTlhlTLPhzgiEm7jXFHmFwu1BsZqlJuBBCtXrNlC/Rr/uZBJpDX1T0mbM5U1VFr+HaIvorybeAVn23YnMdYvmKBCtd2j167g5COvTInmR35EeH7uy5DjmgxRzGwzKcynILBBb94uMW4/d71SEqI7NZ9K2IqMv8dAoNiC7sU6G1w/OY1WRJUqjvzNopsKiPpvBEvdgyvI9uUfyows2aKRoJG6tEb+zwm8x535boMh3Kz2XeldY1Vj0XzwIH/emTv3X2cmM1pProl/O7jmTQXP2OrwXbJSHFxLdMgXG1dziqI3ep45PO8s4QCmdg+nIMbhG0CK84DfgFUaQV5VKQswGBIY9eQEKMO5bm13QqEgAAXSU05jPwNlWHpsVbKnSk5Mg0odg8S9mQI/GWi2XO7Cqb+9DP2kJtH/TK4xmpGmyS8y1E6zWMcz58DonNsW5Loz14UM3ln+2XBt+U/VfjVuzz9b2AeyKip4rufENhQ9xIQ4oWF3gSlSDngpsNwp/LxgDwJLxicb4ZHbELYoxXOprNNJAWr8G+X64kK00m32Zl6Iv95Bwetlz0K4XgvCNbclqHLzncHKMY3bXPRHQtKjV+J5ishcXttvF9VxIivolLQ2aqqKEnTZgEZQt+5xOZUezdadUw7ZlHFNowPERDGj7/E6C92rVGzOBVtL3c+yHlBLfHAJ5Sfvqa3RXoL62XkhTkzcbvtc6JcwKYTZTR9btj8bHy8rjAiPuV0elIU9hstGr6BfuP/51XZlbD+cS7bf/rWpQV6wPqyIBkcVIYKdGJpwjbQuYWFjMmPVDpN4Q61IiksBJOSU1AqPd1U0ouZOI3F+5SYI9lYCZyAir8Ip9x8BTzgG5W3JSvNFzGR6+5rqc4TY0D5MLpsfk7snHO7lF1NdZe9UuyGl6kniZxyAJ6AsrVE/5fwr5C3Ck7LdnLSQvJk1F29IdEhr5R4v/Hv4iCRARzIai+lxLVecBuJDEehHljJHddWrb/QEa9qB7Vx5vWzxMfQaIqU6lQLOKXIjWEiWNxLs5It+kRKhN7B10gGbZ6ruuIjLYY2caB6yYPTqMGCqhWXX4j9e5w7u/KFNsnmsCLgtlW4UQ6D69zNAS0/5e8iM/C7tjW72ZTaOM29PZNIOstnKj+3DFhoyfxnbLOHTFtBZ3qdTBY4PRwkIg9CLFYwAtLXpipTlGPRZxdF/OJXfV5hlF5uUYuiymFzxWBpjmuGJCckXT3+9xuevqTPtEm3YWJHzBqjGmz6Eh79t6i5X0RcaR2m9inD2FgmeIb+RGu5BGkbVNGdSIsn9tUiAV977POWBtgkq/ylk7bDwUWaMYkR/5nmWWsOwe/9FVxlR73Nhm7kQw5AA89BlXewZh2ng3CV1x8zO8cBKCpAZIRCQm68AXMAMaFfEvchdy/79mQDJZaGpljPiKCbRtijR42sA7sfYbZxPbZvijtdTuFDK34X9iJxoxBPDovOr6hMAlPq/NOHSd63AIZjo8oNC5qz4yvIQEFeC959S496ua2YH2yuUNn4QuWRFN4j2ABnupm1lfgVEsDPWz//HE3JRPzvSoENXONECNqxyE0tV9FrQUo2GmcpIR9i054zm54l7tAekgkILhUQsrKigh8PBm7323KtHtuT6N1TQVsGqoRHkc3Zl7ddz8dUpxs+yq4jYoVuPMquRDZpeOc7cVNaWpHbNS4aLieLf46z4DEY+aNwGA2uPaFfdipfqfvEnO+BY0iZtpXbSUiqaE/6i9oOTLECMlZrNgrEC6s2W3NjXUZI63aM59Qzmxy0gmbu9yAyxsdVFwGwrZ64K5ASa11d2kyoF2+vkBjc2aFEljFVKDrpSJIiavMEZimwpzhHuJdqGBx89tGsFSLW8Ie+DKFdbZl7R/x1Yopp49QWdS3wqgA9gFVaZWEZqgHhLV3UHh6OSK9BNd0CodJ0kkolyDI2/uKbDq1g2Vk1pwmOIgjH3ikqK4OkrDB4/qP6Rjxlr0nbJeyneVI+x427OeHWO5yrarD9zPkcjZ54y1ct3NsaCZ9AItbGlUnTUilRkyNJtFbXPDm+6t7onUFN0fkfLBlcrUPxsfQq0uQ/fLtPAKhCKwLtjzrFQn7UXVjmgmON2wEClxTKstuPkVUOOqaZkZcl9fwFxPQBN8DNFh/00AL2WKHYCSFWMi8xWUWIyQwOK5uMxv8JyezjC4MdHJUgp+FtrqusNHw7C4OwMkvwUQMRNCQbs6u9tz+qNyWlS87L9woEVrrK30AWZbyfGMPHtNOXq52xB1R5KAehGD5GQm66YYUpM41hYdSRtqiyvzxRNg4F1y+tabQeYHzqZr1NPRUV4q1ITJ6+lpzJSZPkZmnicJAGBkcWFu4tGFn2idtX5TsPf3gK/Pr+jqBf1zIXOC3WA36iufyBgt6nXSnIhczfhsEVFz4U4BxiMzfulwvIpvBPX+qhk9vSqVBk2X4UNAJLjpjjjZBqWBJBS0pE/beUaqQM+TIEDzYrepO+zo2fImf+tvg9FtRUlk3g8OOzJcVu3IZwVqeYXILNVAU+kdWcoQT0HRXdksO7163DdjJM8c2oIbAIvLoeMWLVJ9pxDZOUaY3T9O24fy72wUasqLnMYM4I9YNX104KBrzgAzfPYFn1a0TddB5k2v+QYAvDQel+oPiIAVoYrvXeLqrh3dAOBPhJzwPdQApbeZadsYIiYlNzz7OGbk4ZEysiKBBED+xWF3qDfef7kmY3WnGa8HNjMOiG8hpmg6mXYwmQRKGjBZpnNtTLgmbueQdzQ2R4zqrPp/6gow5wbedhphRwA+nHexp+TJ8jzAcYAQOaXiW0ZVOjRkE6769bx7KIsWrGSZPOKve6XHUQNtdlouRVWBhVq7bSFUzLkDzpjR/t6f3O5LNwFzecd3UjViYiJAgvxrYwGxbMCYlaQwELpzqZefqctyLUvjuaWtnVOm4VYC387tqssVtGrLlAB2TneVizXds8jaYKarGQKQ115SZaaAYztWKF2jIlOTGQ8xYpbmga6kWNaqVmztg6NEHusJ8IJmUaUF68tX6IsBWj4zVrZqI+FcQjhBUWxPywoPTO/PUYB3XFYoz5t4BM0XkKWRzNuWLJgKsYOfQKWKQmeLQHYGzypCyXCIEMrZb9q5lEbXDFcOhz0gMyAfD+F2BU4xMwV9lx0nLlBpaSYqlsdlMpF/JlloPJjUv892l0dlcwI0AXZse2crf9aiNtxnwI0IciFBbCtXGkuTRuckJq0ZeqA2mHnd7J8ntUHW9KfYZ8Dk4HEJmTh9sqp2E8fK2jF/XahHTjR6S2sdlyLPq+UH4UzTS0cbkekIAyE9UqtrAkXfyKmFubboGVEi4rtq4A/KrC7RCQi5A+SwJ4GAdgFl3WI1A07DsoIk9BxCFXbSBLCaMFs1onO9xQVUV0lXRzD2wuFM62DwKtdePYupamU54UtDnvWsl3UA8n8AGSxP/+2JRuLY8WbYVBo1fkYcnMLuWb/GOTqr2uXmAX32x9WCNrivbNYKMx+L/eU+R1z4nAUkWwKRjy7MsRxkj7cb1ukXRHlEqZf3v3btagPNoScVrXt6hoykN0Ah1Y2AwDZPhz1URj7WFQ0ZQTEmKgabbJUATQfshSgs/S87Mtux/yqDMb99iGa//x7pgTW8TkueqDEhTxBwC5wri0Z29aowMK9LDfyRjxH5yePwveWgPTDBnPAPlKPl4TANc85ELiQOErGoQRlro5+qdb/2ijfbjNQlYd2dwLAekpvSHF3zFWjxXhTViQd/NUVkXe6P5PITgga8dKgSaz5Ivpbso9n7Xi6e6MvvkUDrkxMIY5cx+fPlyaS+lwurYNv1X6iqeQ6PwD3g2TWqyUNsCuQJJHcI1pGanhxF4qiXUeEO9U2AGhBeTexQgVrm69lW3m1VYhbb0IFOB9imyjlUL3F5lUWbo+CEynb9SMPXJh8qAeYKbUp/LnHTHHZDJ3tMznyonnxmVEN6zYumFu55GL3ehpHlauQPdr7WFLbrhNcj0u/HrX8hmQLYpa1iWPX8lv26TDIX1xxQkNg6ZupFONua5RzZJ68P0xEFPiv7x3x5c8IHpPO4/QhKF/HENCtsQLu9W4RM+b1wwMBh2CgQcx3edkLt96vDp81bZMQGVXQLwwpy5oBz1Go8OF2kTz+355GOXBcdz3VJRw31ys75AgqVFki8dUwSH95v58L9PK6W2gQc0dnrY1yymv9+SRXpEX1QxcNk9xclTXF/voNnav27Hox2wMc6T9buxG9Ixsop6LnTFDuXZHOjhsmZy5NtJdS7wgp9Scihsr+60l95ix/P1pS04Nmc12FMI26oOtgMyfLrBAgECNtUOyYHNfwsf84rg/V1aco5/a4zA0u/BgrGC9RbBnGjVgttRF3DSygpkZZ5BtK49bx1qLEArdETFa7cU1GteYRMgXvbTMjWcBpj+wyPHnW34r5Qd3Tq7a6Hy3TqY5wzaWEukNtvC4b4lhxQX2Iyl3zt2BmtrnEzNXBGYqtZZ7lLHBNt62U8rwJuC4PLxUzFg+JIzvsPaC4PJ1XSUZ2Z0FfIAtcFa6vTN08cTrwJVHp4dhGl4mQ9yijvWWEBwmNM36aGCvLEm8LB+O2E3hppml9YguJi6nHWrTGrvAMeeMKShuQiLoUNHE/zjpGgWqsqmh+n9VFtMQlJo97cM/MDUbzj1wVEmLwD5cDyfVlSkPx77wYAcgFkdazzDM3qnWKFNZDfjoJqqbjzNHeNolm6/dyP3U9b9ekMwZ+XA5+TXpDQgrRfkd6WKPwEUnQKCd3KmZsR3OOqTYh2tUd8zRs7XNdksijfEHJ7Rl8wAXr+BtbLRxB06Oj8xVyR82R5fYXL1f1IE/ientW3bDdq1iAjbdC2uezWCFJNkKvPHUoKlzhKr9JtXDWlVpg42vuCLuc4/LWNvsgJ2rHJrfmiYn8xivvU1TXGjnjt8hQQQR87GBsPv9Sy4U3F2g6pDcbRZohDxiU5a9GRJvMgi4s320RFshJfKlw68bkadolhkkB0XwMqkWxk7UYAzKLl9Dehu4xeEwdbUwNITS+/7gGQfHIRPMFAoJfX9AfU5NkQNnbD0XXs88QH7DQpdBsYGeVGDMYU0nDNWQeNuEcAFyQKhogfQl2/asyB0Anv/VWL2QAfwhxatEr1CgYu7XEsUIfGB9KvuFPUhnGY3HZbc9yPqjieOBQjJeRGxJlrDlhuU3F/5v34CxLE3QVM36zu68Hx6LSsUjq0Q6NbqENwWYxCF3N1KY+xuQLCSG2555lsUdoxWuWfwavB1uQ+P12Jx7a4jbV1r1fy6WYh3ZiAQ6sBdiNKXeTL/rsPkkk3P29nfAQt2knf97AJD1ooYbZ5DK3MgYtL0f3ocdoBVmiqQ19PdXi/mDwjpQt3v/s9Ry0Sr8l27XYwQDyI0uAUIMIqJwA2luA+PCdg0m2FXvtWhkMt/cJapJUDP7M3pIGab7NF3XetxVIoP4/O51x2XZ8/gsTaXGFTE6ScUFemBo2xoA8ocYxNRCaYoFe0vn9spTWVOc/2GMBx29GA07S1vRqIkYxmwTlAIdORVaQ3wRAFGNAJsK+zLKuwVF6Sy/xqv0z7DvFkTyQYeb7tZlBv069jF3wnXzFiN1YsURity9KASXHP1WFl7gBnHRUOkqTBQxmoqpDyn9VlRUjaafTxK7AAuheka9xC7aQKL7hhrzD5JFosfb675D5H4XyvrEThmJRzx9U4NlsfrVotqRVaESct15BZ1gexf//i+MNlDwOKd95TAbvSwgcBn4oEJJpKGqIQAMCiLjBgBmtSKqxgIFa1Iyzxr8Q6BcNI4gitZLx0Lc28uGN07v3pNjujX6RQ+zWfeY8YuaHxj97G7SvNBiSVLzVwY94RQD5hSsIL+ExWexOyWmnT/6elzvaZSIRxchVViHA2jLk28Df2+j9036t62HIu3KAjTqm3FYGVoNmGrcnfNdutHbykuCDoqGYZjoNIYiOlArHFiFf8eK5oSg1yoc6065wndQT9OmCnHVkRCht3PHFiZVXx001PbZTHB+mKIGvEmc/pEztqD0gPPhywyK9ysIDvPul8E7OFuo79tqeMtruZiMr/VRuMt0ZDiiviDo5gDSvorDu5Qjko2v2Ns/nQVs9SdA+RsTLdDAhDHhZe6d6bPF+sygnO9c9QaPKtmPTivp3ag86aLM7ic13k8VHV1/AejQAxnqpEISJYXPesmoaLw7s6iVQXzH61xTuglEOnE0LC9VqMfXG7sskyubCAgMiAIwD62P7oXpygbF9vGrwN+OhJBoEcNLQBZvQcRr5iahTYyyl+kc2nZT9ikLGgzHkXd/52EZxeFek3KFpyyqKsRKW0uOqNmb60UoQwjRU6oaybwJr965JKh7vga0/WhOTtTxRxxdZNJ5qJ59fjip2wwyxNpWecr9RG33YfaWvhja0N/ZR6vRvTgqu99RUTaDEshNI01waAoc1HRRn6gvSRAqU//ciGVW50Lq3d7ZIG1SLlabOTXYG9ryKXIMFy/6NSpxCN5YydoWezhOJS4pdnynzj34U9khjl1jlXxuNysjiVsqO/7MeJnHuPEN6lqLsfYZblPoCFEVvqfYFcgdW6w97NiuF89m0NHfD/7hbGmqhpX2qLJqxTRbHE9/93R7EkF098ckqZopWnYXZYlG+3g0w9FyXTbkEZXWKznCnjOj0a/fMiwcjlXPrhkXMsCQ20nVOTj9rasOH4qGkaWTGQKV9EzFRrT2YW1c6d6rvAiuHM/4nAiW+1F9htXdESz2C2hrXyb4u0br6dkmHKfijMV6tG/HT7woyRIs/AbfMxNKXXqDlUeWZHeYiWT6Zm9yqX7iGaPSLWVEEdNIqQ0qXigz3NoITyCsVAQTdGtWBqb/Yv1kAyJEJzYgvJARrcXgKj4ezz6ZKhvx5A2LLitKCegFaaMs5rEDnSBCsYmz06U8ideyen+GGfnnlbgHFqdvLpnnsPKYCcYuzkNy0tlDZPIVxMDWEGSdWOjtlvT28El3HQ31WJUXyf6rw7lIIvWpbINoYUI=
Variant 2
DifficultyLevel
561
Question
Three corners of a parallelogram are shown below.
Which point could represent the fourth corner of the parallelogram?
Worked Solution
Consider the top right point on the graph (3,1):
One point it joins is 3 grids down and 4 grids to the left.
Consider the top left point on the graph (−1,1):
The last point (−5,−2) 3 grids down and 4 grids to the left.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Three corners of a parallelogram are shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/35.svg 350 indent vpad
Which point could represent the fourth corner of the parallelogram? |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/01/35-var-2.svg 350 indent vpad
Consider the top right point on the graph $(3, 1)$:
One point it joins is 3 grids down and 4 grids to the left.
Consider the top left point on the graph $(-1, 1)$:
The last point {{{correctAnswer}}} 3 grids down and 4 grids to the left. |
correctAnswer | |
Answers