Measurement, NAP_70036
Question
In the figure below, square ABCD has area 64 cm2 square DEFG has area 25 cm2 and square AHIJ has area 100 cm2. What is the area triangle AGF?
Worked Solution
|
|
Area AGF |
= 21 × FG × GA |
|
= 21 × FG × (DA - DG) |
DA = 64=8 cm
DG = 25=5 cm
FG = 25=5 cm
|
|
∴ Area AGF |
= 21 × 5 × (8 - 5) |
|
= {{{correctAnswer}}} |
U2FsdGVkX1+bXA8RKmyV15nhSJMop8YWZ/KDTIAyxCh40nGLghYPXCalkX+5AQyWJ+xSaLnQie7CxheyaTZDjPSi1FtvlKd5Qr6lDYFInF2aEU6TE/U8OoGsKtyDirK+tXmJjA+3znu8Qpzh4q8VhSc3ndhgVJo5A3DHaULSDK57A0hFZeAvTA6YaI12jykqtc45/kjyEK57AIPdv7y0CKkKhrns1UnZ5YKMlJJgKfOoCYHqPvHSGbfDlSxIVwUfSDTCL5mSyEynB6+sEJcRJPTBsFq8cp8gvqibHmTxevcsqMLniXdJ7uCkJU8s7+xlDI97xvjnxJbKdbC9Z/KDaeOUH+x0TeWqYBkSRHLwvIVJJggRUqMXZmM065UaCF5TqNyW8oDmDRxe1z2Lu/6rRXv2nb/snM+wXZvvjTTPX4sdBMw9abMIAfmABbraSSGnlrfP/xLRYIjJZx1nxnjri7d5mbQvZRmnMbwHf/UGFDG4Ag+gZMsM3dJBtLO1KmlTgEtMFK0PaHZ0HKVz783zWlZMm9g5gPcMWt/dCRt6HmS7JdcK+HkPd9jjd1iFcyuODfyl0xPrTkzx/SOHzEaL+b4dhZ2ExFcwGwq6undyKNEKUJeSpotbWcbHLWoFC9zeij+lhmD6OPBIPoq7+5OM9PH/f6K7gojdzEnI/p9wUHidy7peIFqwxMvnCaEFz702iHmwDMszGkkbD9njCRnkRJ773LxlaTOvQnxTaPxA2BibEgHaIdmQE9ILJxeyUqNK+hzNeyYqEMqc8flUrxlgbdMm1JHkdgWy2mqLAzpdJSjFlT2bxABhqL4+eBPDwY5rxw+0+FR43HQGWPY7JjI4pbEPUZ3Gr13JrU3Yw47NHfYLHtW1/JGpOu20hBII2eecraFiXdusakwBdwdtz5yu0d4nBIeiK4P5hupdAKRyexjZ7sS2KrhW80x/g1nMf0ysiL3BF2wb/+4kqKu+D5MYEg7ANGvr60ii0BFMyxgMHgiH7sZz6O9M9YyPKEzc/p8z7UhF834oWPVwy27V9qif94xA5lbdz3thkpfdIe13iv4wR9UJRhx1ManPVIQGnvv7ulUpIhfFAJvNNYThMZg7XJxVkE6sX1VRby+D5af3O8Fhi5t11NeCrZ7SFLQrUThYPlAJuKLFaQLRPFeGcwvTuTF5OCy2dhoajvprrrpeO6h/WUlNFppHhB9D4xJ9scN5YadIF2ju9H4aoLcRFSreuvCpIUapsNdyQa1dEW0s2idtlfEzUuY4hN8oqjyGlwle/6Gagg0/vCI2ZMToLgdeEivt+kNVkbVTsLHcDuWRtK8Z9QEdBZcPnyrtirgNFp75IPt0bTha2GHXj49jKRbDZTXpWDDu2qodh3u3ualW2uRjj7nDY/6CfJL0Rs17rm0q0uF14JRqKR5fpxX2K+IIDFDNYQ7HYsUpq73yOtZuiw0FWUUf9ogBnwrPoz14MByWLivZoO89WQAplo0UjbQBTfDn0Z1DJGQNMGmKAiRUecSfOSntEOowqMC26BzHa/afvNTbAUGxEhEeb9G1IWpCVd6rTdSh6vZhIw3+PyLyE9lOlqY2QHXaQJw9lL6jliZrhVYgHp+qhDDdpulo/nQuIZfic61LjonBvXd/H58j1/ACKv6V7deLi1Jmky+WklmUhXDwdVnOiRLVD/xFLSDBCmlgV4oSzRej8bMh4ItvzAxeeFOSsbj2Vf2I3dmnUzfZDm3YbxClyZD2pCaBn2Me13yAYQ3eYyDF4yM6c/jiT6TEKzNeery+hNOhdSgS8X5BAX00TAkl1xerO15OF58+4+XaFaXpP3hfoDEI618xfmorKJbIzXzdCt5WHlmwLnbNiB2fqGeakjowfxpb5Xvwg99HjsAMvhpWGLcUZfr4wo3DKE6jSdV//+7UYV5Pohe4VXOKFWFnCT+fb040v7YHaIyKEJ68jV1+2kILt4bHxpkEOrIMOoYVDTxeoMYq3DX8sqJ0AmXFONS1KhY6iX8ov2MohAbmNHYwPWZKYiij1r8sQxkTS9eHvVvIUVlZvHdr223bCvzJ0esLqwxcaxKBG7HVQE+Ra1UwxyGn/7+4xFBlQNaMn47ytTbw4yw97lxZvjMfseC4yVyeQk6Qs8b7xOGrz7wlZOatbyguGE4gGASvoKjxOIZYVLUX1kOVGW2iu7WRwrpaxM3r/yXKbBMajXPOuiObNG0t7G8TMcdtps2sIR2snuxuTH30KiWZKYvlDvFdmXZJ1y1r8hDarbdpzStVk+9mJtKE1o/NI30xK+GUXGW1+afZDcmza3Ma62pyarJ5UIozaCSxYTshyFykZqf+8WliY3sg9liSjo7xSZp9L35yGYtD2Sc8pgvJpJ0l4dKLOUIAgtuI/KL5aKZaN15ts4bQ7vziSaibQtqFT2zWJIeHUsgdLHS2OiDhCnOC7W+e3hqR781LVPrjKpVu1o0gXv7S2Q+RuwUiYJVVt+5xieGAKkdUl5iVUade8gbE1d546r0h3NJFOmE89zF7Ey6ndczYznqjqIad2371C90LIBy4JvzZ3KMaTMYt96AyVkFz4dm2ykYI3dNBTE4LLIPIDxXdjhG5Op+ROLTQEeHJQIWWSc2nNvYN7IA0YAltCv656KIYrbGQlleo8zeKg1XAsrd6mO5tybpY3k5z0QzN/+Xo8WF08a2J5r1t01J5P0+LIoOXXyhw/NKdSujSbrOd1L6AoB1w8O7jx5W/Z4rWO7aJ/G2JcnPIoFTrVHwSfMxgUWTK7JgOW85Mo2SeoTj8G7/58RLjzS0IGHZ9ODloC6j7D51LoOLwnOSlwZGbTp4wj/05dPlsmpXvV+dSO9mLWayf8otOsfyEIE7HUyBF8ilt5TP9FiCA6kxSpusjlRr0FOJTeIMnj/mghB4K6OGndwogwR5AMHERxBILKaAMPH3bypi0hrFdRrSmdI0ZwBqFmH/KGEqYjCx6R0J44lhsmrOvJWwgSxrM+wIVM21wA3b58HC0zzIIG/Y30PgXuR2lBXtw+RcejWcBfulu60AWmd8QW9VNZ8vKwwAjBrZdfDe8rFDz2Aw9sZgjSmJOMvcxjoZsw2y/9HVZC+MT2Vw/pmP2W99XAQxF23s4xjT73sTiimVvCNqJcWDfxyiV4D7euzkLjEmTL7Jgi0H/sXWCAmtdzArRTwoWuZdYUp9vVh53J/xERH8ly61St/8XMDu+NXDQ2DFhQgDe+FBQ0jc971uVgjjwKS9Rm2gBvsxl7KoCPZ1VTYlYIjrrhpz0LgNzBOUWXkkryMafdDOkAmuX8sm3Pr9o7BDS4VJsHQKqSsziWQMZPSFccTl84F3aZA57xzURa8BPjtJpH4AA0aB8Ob7znS8jm8fFsGBwuRfGPp4r25vGjIVzCVtHc2JjNvdU+iqw/Z8juYGiGHCpl2qbAGJlPHt7oDO1fjHL4FugUhRazQ7Md6CqiGYsEQrL7NMixpZZnlWaedQYiRqLM46K1d0YyE/Ob7gWCfGV9pq+DbVnqBK51Zkt7FxDGYTozlLz80i4p8CacKmwbkTEkEOM//XZov6TNHltA/MBe0IdSxroBrtG7tvEIXpLEOkxH5/5Wg0Mg2cZeZfciU0O58lWsf+C2yI3RS7Dwy8emSKEkuV4aHqqvI1FPiKiA7pq9dEchqbfsQaCCdV1YyFaCcO3wDUNBrp5rvu9AaRPqpLAmNXwy8/6o7ql+5idq0TpfVF69mn8j8McLpzg+1PG5ae9CcmSQXo8zm2U7bxgWUywnChaJihLMY7gBGrGg61ZavZj4YbiU0iR6L1Atz4rA0QyAddtJ7iyjmN1S3os0VE7eczK35dLayMtHKc1rwchsBFG5iI+7t0wQ0tgRe/cyKX5ZLMRWOPuJFDvZFNUKd6x3vNK4jSXsXPsJ3+JIYl+EAbGXtlw7kNr8YeF67AeBX7yLUSFuXjVCctEhQYkyZS/TIX5qGopMLgbr7FgujWhj+dhINpC+nNde3Q2GeXJzdNdOz79uouhA/Ejz5ZshHk4qsmgan91VQyuIXpdT3MzNBACXGggzna6ajbfVdWjEogOXYAQVVQBd1F4QGhJSCJ8NuMeRD6Qc3nUhrouKQk1SxRtRCQxprmD1XpwgeNPNi8rEiS7CTzG2LATU4mfAvMYMk7qKbtG6RuWqHoTOeWWY2DwPV3Ix14R0f/8pGJZ53vQvdrYwsMRg4TzOMCveQ/nLbZ7t2mNb/PrOMn1GuvvjgjftjfZ/JiCAzuzKD1JrkEeDqf/PgdlLSHj5nBOUFF3B8yTyCaTLIFvHHi94QkjCCO/mDorctnpr6Ua4IeC7SbnXgFH1luB1RiFpL/Mx6XSrXagiG8gCKAGZSu9LZOtDDEDE1hW8VyVm33pX5+q6suU9UwPM6dO7CmU6CzIEgdg5gxQ/kdbYqpGEdTmgq5MriRlnSZZ0S3j8iPtXoP6F/CPQrjHg09M725y3ZccE2QAGWQppUmPsNzUk9nM/kp2UIsq+CDCpb1pGbBRHQaNpy8KvuGOHddWSkYWOXljaX9h07MVMqSCL0gAdsefWgAt2o2Z4s9Q7LqbUWhJbj4vc8fCpaxXAHMC8V7xdUf41fDxWztpK5KPQZ5KAbzEyc2Ya+vDRlsaGAysgiFwUrD6SEU7YTg1mhnLDzGKD5jSU55r/5pSBwspSDztQ8eMZnbb2P9jt8BV+lapeBo2WFLdulErWQbmPDXCa2MKxWjoYMqqItJChgaiKpk1TASaOPwVwec18invOYeHLbTEors2Ba5e0QorfTP5VEXF3al+N4jptiEpeSl2cp30UnIUD0OTH3BmNIVb++/fFkgJBKH3FRjAysQxiGWEtO8nV/y1xZXxwwZHf6zeUYbkoZWaTxBvxUZMTqbW7w/lExjsU0N578eyMNCR++zr6HL7GPpWNYbUlx+SHd1MvyPdRHSJ3T6nLkMGhO73PuSDKqNJmRjK0yP5QWsQyMI9DHLqW2JU2kBaVf5JVN1rVyKhapUN4q1bMnmfq1+yHJd0SjgQNviMJvZVPs7mQBmVw5q7WaRZFUq5yi3ll/kl7Yb/hWI8RWKWUaSzM91hkhN9msvfPFXWtRq8I8cKzOtX/4aAPnCxj85J7n0CkqC4Bf0gQSRmEalc3LuzdgyqQGSKmT6GXKlbwrwcAXVsNZ23S9VhEpuersN+6Df4TWXtsAj2oyIvaOBiWQPQuXH0/iWSbC1PS/QZMogcNYN/Cz3dpcQZKpYEKvpkRwDBIIr1mEERzZOwrs61Jnz+IWgnWTf8LyFuOLCMUUtKpOyRs+v3LmOR60yS5MdpYSZl7RZttmrSNGvDhQDwI3SsavmXpe8eEgWWJ3w/6CA47TU0k/f4+4BQRu2DVXk0P6qY/temwxdwJ0TKrkukpZKEkVW5H8nIZcy4fjjA1DZFDaO2peziHyZ0/jfxkht9dAF5rkAHIiimxdUfQgx0zhqS4RX/0WjgQivNfhDbaG9/IcjZTwksbxcEZTz+aRbHAzjqrE6mZG3UrSpR3zh4RNrjjPp4eWvIMYezk74HYEzmRMxiB8c4dNKVjUrr/WpsmHr8o4XKeh/LiKijR7E84Ks3WP3XLB64dXbFHTYR7GW+ig60xRSjbvv9D5yAAzxK2wUz1nJykF/acKK/gWD/zNaRvFvJuCnV+4erBytuVo5E+LUI3UP9SdgsBxY9ICYrcGQr7AMTqLoUCTemPJR350JJ/3Em3H3Lx5LkLbd0BIVvWoDXAfQG6cSAiCAU951GQ9Greobeb8PgDJBbGQTrHsw/c4aySdkc4cbmKQqun8DQYq78ogy4Qm67sZWD/83WhW1G5mgGTGUs3RHmznEfLpxbTmG0xvntT3RBPAO5H/Xa6ObI1+E94cXuwY82NlKskA1Z5D+7M+HJDLVKPFzByoUzWO0gpgeK/8YZAr64A0isiC+KItnJEJgHf0JWkeBMl7X3cO8zmm0im/+EtKwKmP4L9mtP2NqgkKKoF0cNOBPIF5Z3deNP7Yx327F5V+PpPYLyV/oZUHPQWtrIcm0mZ2mvJ9IkPGAZblkOViwLbLh5xtKwclc1u4HIDIWT4YlpIi8ZNXyEF3XtQdhslbqo/dPHuOtkyvcTW6Z1drs390kubHhmkWKpmb6CapgUGS5oL1sF5wwMN5d7MOjsKmPqMLlFh8t45b8aRhpMlSKVjthtSX4ciYcNdm0pI725nIv7VPNFBPxxy0ROlAoL7OR2aJuewBA5f2wePp8sBVR039L6276xK83+FwbBqoyeSl1Pqr0sZgf8OLXqnkHwpKHIXZDmoKmPWPwDQYnnNDtHkacFhJaC4Zb8pKk/uG46wCDs8vfWpPZvlRHM3FkX5U3JCaz9wPPdAQUjRMnUoxdJjzfJXdiEX+qOUZoc0LOEyFGqSj7BQTVtwzzRCjMuaAmizrArB6bu2L+xytsn1TEgYNU/nUXjuc9rxr1ePIKMUiSHrbFZ/LXxhpspjEpffH9HTZyKzj+8/WlLZYLnuBchPE8q7bC8WjP6LAi7DPZjqu0NTnOye1BhHxJ/gjK6kOAVKh3wxRAbpMn13Tipv4x7qP7cn+UlICULKoGZReLcT7tQFRgLe0ol0vtwv2yocUOZCSbUlkHR4zBtBqia+tbS8OUPSBS2APT0WrnNVFgqh5c3ZtFjLM3MNKsgE198OTvwdYUxQKNNazaJyVdttOuV24mkLql9bC3+/p6GwK3zE3trQdCV7i2QURz8AbxpEaFwopPIFvqsxfWk4gsJm+wtP+BjD+pfw6FcfKfVG6j3HHNcnAKh5pIA/LiGd/3HLrYWYPptM/YmlkqtHT/vUA/n1wBEH/3VJTpILn5ecqL+9xe2MGI3T2OrW2XdNiHmRujg8X4+l/veE4EIWi6kdyZ3wm8MFaWkwkcxdpQ5TtfVbj9ZqknoqLaL95xr8ePvzUYYrJWp5kUhqFd2Y7NX8nteRvArkGLeM4H/qq7LeaG518xv4B9q1ufN9cAKhi7Ns8OKpakpBlf57TsL7Wee3XVDolaGZsp8SkxR+bvJbOFtSyGqDE14wgsfVRNfmgJ+5CjyEm2bBFzKDoY2nHVPRecFcobU6+8yyAyFRHutrx7qJXTqJ+TCz+ldwUNyVQddE2JT4r/EH1fiXYJ4N+qDY9mqexQ//K3DSOb1J4TE8UzQoFaL6USB9Zbjt8lfKNB7PjAdR7NtF+IKXJfNTGeo1AjKk0ahmL260n89zCE3wnRerpU/jnLijYe4RotZSPk0a+SwFdWlIY435LXqnhGmYAbxgAZtFcrGRK64wfzMI0xewCQxd3W1XrzjQkF0vphv2ubdRlTsjoSgeHZgR9rxOxjWtFgekQF0VOu2sZOIMLdpY/3lEbhIWNwv7tX00e38D5aNOnbJ161RoP//zK30KJgpdO8ModHrQNzHQCCTtn+pZwRq5xTahljf0MbprlqgEG8E/+mjbBegMFBufnRmiRY8JNzzN0teF42Boy/iIO+qGCvv1gXEk7lxkkborkaZsKlEw5IvPilbJEb0rmMlixEjIlVy34J7YrFghzt3AQlsEKL9SOMfkKaqEo67439e90DF6fBDO73FqjvbCh3gd9fij/6D27Jje3H64gn37eWG5Ac+pTKSvy4hnAryJetXubFOMwwrSzqNAOdaJua85gniRY2KvkgJZH2xaBTAP6wsZSYGqcbvfxSXRlj6r1Tc19IX7jpueB4Fqvsfok+WvljKStc+RLD5D27YGuw4yynmQ0t4V7EwXIvTeMRozRal1EKv+C4mtWB9vlHxdjcTWhT3JD6DdXtJOzKgCjVih7aajmITLdH9vlgcmv5dAHgKWbsDSqZyrpl+U6PXm1utP5pQKTMkiCAigdYM4zEp73I9Jzk9u56PbHfOSuMuxjUcpfcWcQYayn5gFv/lFl/t3LhqyGaTeObGOiqO6yxdH9w6A8ih+dxg+xzXEBZ0CBpAO6rAnXMnqj4jMGP/zJuU2G3RM8zDiIPJw2FqxueyfcCC8NGv+4xf9stNPtBUjFQA49zI45rAAyJ/0m2g7UxVZEY6LwBFAGeWKJIsR5n51zxtZ8iFhUWm8n7sCMQ6jq3sGIW91VnPjWkRibksFQmgSfLpX5ba/VaOE34IGmph0WND8hYvCz48bVJ6vicH1B5llK5gsYYKOep3u7zwz1KKW1L7NEupId9Bf1EP+ltpM1xf0lQYuCbFQAa20pyeDzwLMHKojhFefA3udqfOAoCStsCh9/qV6z90SX6pEY0KAujO5CMY7KDyeZKcZ+jPVrjHKv0TExgScGuc7sdI93uSc689c1Qw52ejVw9aQZPGw5kg4yCdHshH4svXiYU9VfCb/CNv952rAoMr94U3khzhciq2xrkfl9U38L/inOFdwliyuh8hNiVXFHjQwgC+ofiR3WZo4bYbUyasdctdvjbH77jrFCEUskMhzswxrDWmqymrnFGepCV07rXRm2s2dnGeDVV+CDhH7Ubyu2mu6CrvKrMDZlITVcoov1ZjdQIepsRZnm1kMW46NW2pwuL4kQIaQ6JOz2w+sQ4Lssj8FFZ6aZUIqBUk4o0y3VAv2uE++p5pejGNEmdiFaXA1aDwbdSoNIBIxzbnP7gdiavxQpZpIubg8IJYDypBEZYV01cfqwwIO5u2vIBeS4zBDQ067AHTWrg/QpY7r0qRbGVfuvrHrdunivA+Rv/rW5IBUFT5Rf5T1ehOudEj40D3suE06jrGC+rSpKGYTueoWd/p3zGjboMX5qdgOcwRYxxqyFjhvNZR/iDttS3GSbLbm6th92hKGnt2fGLsEIb15zFN3asGTq9KcKaPdwV992DJikaqipKoSgdTunwFRJMmWQMKUwm1sq10Mh9VCCYDyEhf1MYG6OJhVWB4IBGppfhnhglGGR/ly0kL6AlzzscG5f+3wsAwCjmK/s/9Sbie2W41LTGVxQV43gBY9XAly74VJ9tAF9GtERZJj6zrE21l+WVUj0iFSudF/jFj2kW1HukG5ZiSVBV3M3LYWraiHEeYhCjw8TgCNhyXsEnNLvnFjeZtkNNzAtlgg2jleUzH22zAHv0hEvKqHaq6p8aB4EYCtaJ+vLhauBYI9oweiewFUzW0xuXKPmtzw5BauiBRFoMN41dty5It9ghXZC6p0r89tElkI8GyZl7ZODcjjxE5gSmvkGrIoP5d7SHEezce/AjYzf1mFeBJokJSAMoPLhcYd55mpwjMzjVGvUudvB2/xnarpRzriRqt+n3XEme0SXQnqMzw1dfNAIc4UjekcZbuQz6is2NGF/udL/3dMpVFT+Dq+ntUxopvXGSc/Vzgk7YnXGUIrS/Ec5pExHnIEAHvnjLIsbMClcLoiTfMUX/TJJB1EE2o4LR6kOxDzZOqh9ZB9gLUmvaqVPhlc1G/yAjNz+cvtCznxZF2K/ISd55Ae6snSt5S876Uwr4IL0yw8tNsrXXDtsYm41bf1LmASkwoJ9j+ZU8YUcTy4+nc1yyA7v1DrtogOjtx08BXHeerjw2Z5GmI+TRjRFSl5nlZKTMg8hIgxvv3/kDFXc2PCm9syMTOVhX/Pyg9uuuH/LYQC/l7oOMe3Lz6nkzCxSFO6YVfaiIhVFq+cKnWwWP6jDrnEeGoUyYmVr+s8fEzlAIaQGwZUGsZNpgbb6wg1z3wP+zCTpmnJQ8cEYoUoWNBl/PuEh0Bxff8+X0pDxuS3/Q9pJeNvLwe3LUsY39przhUpSghlGX2AWNH3Vw5ddP6WNb4EJIWKWrXQGIdC/XtgNUYdSAblwty4r0CAuFOIeAc1phanHsDkMawUHrG3Pqz9k2LxHuSaBcjIWcSPG8selvKujIVSCw2t4ybf97Ef2CJqd8Br78gAorzixxqxZJSNL1mqMKixtGjHK5N95t4BFNMIcFx/Yqq1JzbbRCPQPocvaJsTOe6L9hg3yqraRBLPD9Cybrq40MTs/58vbjRZNBhw0cxvxEOL31GSK7dkrwx+YXqQjwoBj8k2n+phMwnILnjT6L4fyN9dsQaUNXzjaJXeL4hfOBs1Sywe3zgiEJGlUHEupMSxPiIZzYS8/Tm998sXnRNrremXF3+CoulALImPz7RJuDxnrpvS1Ev2a/DgPlBo+2DY1+GuTNZuD2k3w1NBTXrARFUsXwrZWpD2F0mSz9/CzNbwN16Xer8WH5aoOQcapP2mBz3ViCODLB318mRjPTNckRxQzM2KNUd1oVv3TLOBSWbqvX7aCQGu0G7XsUsEs4rTMUYrDrZGHwz1k4o+MaAeOlkvgkxEM73w/rTJYS9Onr29oDORnRPFLSU/bL7BDzvrfpq4PyU1sEdks7+4r7rVbhSYBYZ93ANpcrzIZQ4g6sQv8mU7WakEyn1rJO2CZu5HejpO7hxJfNWPclJRwUTHLqj+b/UaV09yaLWG8UFcxCKguNLpPlQZZdUhrzMCYrh25UdQLLZpwr68eQqNe4R6NdERGQAxuxyqNwxWJFdcj2YQnmsLkx0Gty6tjuzWbqFfDe1d+My1mN+hT6u60An2Tql9YiRzOMMtU1hU0BwmL1VKuAz2x0/SJAM7gh/CxYX3RR/il3HHWMvZ9c8RmT7UE8Uq3mhq+9PX7tQXiV4auqsVwFtCOy6y76Q4f9DFJfKkPfNqXkj7ACL4DWZylvKvKUuWflNW4I4jwBUkktylXZt6eO8fVqanmHzZ9Qtg4symCddigXrFHJ2j6q3aHJ2yxqjU4mefVzxT/oyoAkc1EIA1K+H53cPNuwx6yRrqnwVYQ6Ro+wJ8MEfnUGkK5gSzyNQG9E/3zrrtkkPf+oaq0YOHJubwipPNIjtuzc9V1cCwqkAwXdYZKCTY6V7OHMC6PMDY2bwwIJSg6Xh1DGKqfgm1HXHnwPx9n0VAogdbOlHG4pc6+3oluPW7C/ruNdcffP/7xp2DJqkZ9UbrVyghvhyyKwmP6J+H4RCuSSmcSDyNtaY0/WMGi9mytw+0EixuR/STiDg9OhW2ZtPdqOyIsdQN/x1yZZlH9FvaeicsnokESS8cKs/0ZxDhBfDquKNDutbDrr3tstZh0AG47u14RH0c7fKED8+SNHRZqtrtBzbSZ1eLmp5roM6AMgsiverH1Mx+8aKYi6U9JYSsFXxQ0a2tx3OawRNM9ThjwxcsztgpEHBEzaZRroCpoeq3CTpA21naIPLkuH0qNRjYRcwAUfvYS51cMSs/chRK3CimTcXTM83qE8LWHDaaYFNt5iHbX62RkVW4zPAgEs/K7KsutwTGdZvMhdyoVYoaxpqaV2F7RchDL/ZsSiIwjQfSXCQ+lrBD5eEyNnZRMyNU1Q3KxVxGWLTDbe1vjSVV96tpzVv6lsLe7XtAi1k8WtcgtX2ThuuV9rYbLFJ4zoRR9vA6Uqs1O80s50/EkVXmelPCTXdaakqZ9DI/6fF0/MS8zpSt9+HMThA1T6sHuZi2gf+F7tkaSFqetzD56xkZcikG/iDP8MoUyCwznnCvbVIcgEVIoMfoNcguR143SloWAWQbqKExhScsSaQ6aH/7S8Lp5FmX87i+NSmJtVHoRbkA1NPnmMNW2z9QrmlwbpxIUVAYSSo6lQiq6b4NvGqwE7Y5lKS7Ce2XoptA5hyrVGPEFcBluvZV/zKlFb3UMf4vnpp/uAhpGUr2Rw1a7PTm/Gq7H7vMFgb8GxgM97JvKNUKfNDcOMoE+d7gaswIiRIwu344VGinKy/KGeHfOFhIzNgCO125vVaSQp4mki7kvg/jdaJf8JKrWKiRvoAslXsYecGJaAasWqbmLQTbvjSA1axI08KxqGlz+yinvFvjBQWF6jADO+2nimgJWh8Xhq0A3A7EnJCo6aXIfO5E+FxK6Uzze4h2TJC9jZlIYYPX3BynF9uJe7gqojpBRiyciB0pdeb039Bi8ImUPBOnanCQoqnXLFXfR9+GTfjGnU7G7GBKhByFVpxXZQkaQdh07tOUkzB5CDM+zIswir1teJYU6mPK4c4/wP9k8mGDiskyFDdGLclrjHqqxXjvAtlj0uvn4z3x5ugAt1iqok16NFSBuly8VPQgJQ4soOPPfw1Cwvf9AM/GNDdai1Xy6dQBQhVHmrenMoq581bXQYzbnEiqm4BDnTowE8/4ZhKf2UK/+r81LHHst9x9CiGYkuFzyH1EjENtqzIavnVzql17HiClKurzNmVPA0IFeiwB0MZd9lgixbKtC0G0Fi3MAdjFLUVzAfrv6uBCmy3YVraZBC8JqpW5uRdVO0mPwmnFE2NleHpq5YDsLgbPLlZmmAXLXSSJH8YcKHQevRluug43EYs5SMOEORs7aCpklCi7vmyTRq2jyN17j5Tg0iOvyrFC6indDqkS+JZX0hx89QHt9SqKXsArWwxFrgGix0hZxox3v/W64+UTho4WQ8oiOUPbDAx6N8xjgMsshZZGa8AjvpBJjuh1pN9nzqbmJcC9JFJR5dW5PHVuQJBqIy5mZ+IUEaORbhoB4RnedwiP6gJoRBFmf/1BYVSLwo8p4B2i53louukYgSbveOnqTH0QZVGERTGdxfe5js5T+//q3xPyhdosgT/2KY+2j/dxT4WMblErwkCDSRx0Nm+6ULIcPMFzUAYXZsYI9DRXiSfqlciAewi2FgloBmljkh2P1icIFf8+tk4uzhCBw64Vk1qzT1EjJIHt6uQI0l9V2ocKsTaD8jbM7bVvXvO5k7dyQ+vaV2KDDjC9c/9OMPaVcocKP2BAMFyeRt2ezgWqYO/YlVYLG2PM71YwWKqkaweXdJDY40Dkj8gpb+KqeyLOqKY1NDWtUoH9wGg6ShYLs7ufgk21UsRblWD2P81CQaVZW2tEi+S3qKtGZ0/Whf4Nzzc9RPRXyV3GRV614JsDlM1l8oCftrcTPw07v1tjWsF1E22ZjUVkiaZ4H6/d/ycer1AqQDCx3HunwunVZuTagM9bm0hmjAnVPa3EWIMGTv+i3Y2WpTkb8iM7W2j1tixxVLg0zG403aTfFFq7N7C3INHWBxDBQHpTuBQeHkkxu1Je3oxDiHtfQJ4/ROJexk0WqZWh3OOe98i3d7E9+1U4iSXx1qx88Kni2Lr91hisqpJsgy739O/uYPjidM+llx95iK8btGWVkD5qXROx3AGfdKgmdT0UwVpM2LgJV+mNQiDjHZAJ4pesZMSfrmNpFsUiyPkbpm1Em3kWWG/lrQFdmv8J4FE4tAQfufCp0As3HbfDi8xdzEP11gLDjvjwTnbCa4DKX4jWMQtcFZHdP9wc2KDJfAQEvV1buyiIZV/DDyAVb0cQdaUOxmliZfjDvitGwD11N5eY7jBdBZIM75kFPoG4Hrli4Dhhs+berR/SdwI1LRhPZTW2+13UBODY+03BUafWVH9ogbhkl+dYWUSJVupo4pLWDwIE1BUGNyem2ReeXD/KQ49nwI2PyCb0tHyfNda2UlRLyYGmcBPDOcS+WUsR78MF+LdOFMv2074WdGm4pn/9LjWuvjczNKin4UNjvicSnUyRG2F/UXdqab9i7tmbFQ5sQK5gTCiDtF4DLpE+7yHcB69V5mFpFp4nZDNYiPseZQ0YraCcJlt3LQ8ZQILO3+8pYa2fSsy5MbXCTYbO10B6VNTVvEXChASQEGwZwm+bCmIvTtketuYKnMi6KWa9CupdyC204u2SZZiAK9zzrkaGAPwWbrAByLBP04dGb0MyLmAV/s8SKHNPi5jvjiunc2GvP331KxNtgf+jhexN1jgtmYqyFuKJv2WuNiy5D2LT7jB/Yrt5NTxyFX4ldsa/eonpYvg/yDtyJOEZW1U9I2JJrt+W6pqzkY6QLJA3/GzYAtZeyyfqwjZ/0H+IxMcqiNE9/8JCj43bgywhKTddK4x8XVK2Zv3qhjcPUN6oFz9xWT3qVKy+FZSc0ex0F2CNeU4RW4lyts4t9yDPnkeDIXPHmSx0qpsqLZqyVTviLMDIo00afYUsLoops/JACPQ2PlGXXzREPOsA0RTz49fwVMfUTJIWce+uTgaQjVtwcHjUbs+VzoKdLy38TZZ1CYFbx6RwPQCl7DEsire8hlyyo4XWreEMSW8z6E86qDDsng9iRwL6K3gQ3xJUzcSnf3B/AzxV62Klh9k3h17vstlXWPxgaWI+w4f9pZiEYaC7TkTnETR13ERTW+DRKFmHSJL2Rvg59xtbHYOcrlMeQTfukSLlWcwh+TLluBfE6R+joV8BU1IRvJnRBmshYBQ/NWOmxU4kNmpBcibv6sjrBSzt76isypuFI6Va9N/hvCivylTzI/pHRi31OygSXOXXUcY6VGcc5gRq8y/C7+Oa7PIs+8aNKsypPwmMlfXaYvc53olEaoIIvS666pHp8GivtpI2Cu40NNqpFNOhiceul3wEdFNz8rbJ+iSjQZyoA2N4B8P1oLdQNmiMv/DKflUu7mnSnbbUyjmCMTw9OOl0Npufe1lehfeb5SURUTzcmFcJf6JOkhBtdJlYjHvjWPsWA5LNA7M2tccypgtkEnmf6MX0j/1mFOGQRYUyU+YseDnGHPw1bGem5KdieCL1+KHMxCINhlF5X6jDUAeuv3LS2TZ22G1JXtJtPXxX7jyLjnbvdLv/MCt0qsiyZsODiQJDpMHA8k/zo8lnhQ8zGV4gp3ETLzcct1s+xCC7OrNFkbuoMO++x7uoBqRKEFlw5rydy4T9thLBq0pcSTwOk0dJ8Mp9CLixRpOXjVLAleXr4a3Yu+Uhh8pWhEM3icvtyC7BMIVonakqH4Nc0kzaWJEch7giiqMH48lA5ZdpzSel7XYPW8ohyJfwt2ocULffeo8Rg1eYjWCfembYwF3QVRtMVwLxHyZPKeT1acfJ7LjL0dfj4JBwn6Sj1PgIliKavabyutibeedQDFvaPQZVwFUkUXFNeEzACMDIK5CKe2zAOMcIKZJ0+pazSsducbPgNkfmT8c62L4+igTxpJr5pOEc/3JLZbVes7sg5ibzLbZaXuSlg4z31/Hj2edyzIktszX73LOZky0E3HhDVV5wD0RhQmSnVTdltMHs9pp5vxYsJXolnBjpHwBqhKUsgx7ek8wUWBf5ZKJCcRsVR1p6ABJkSLsmJ3aIvqzyD93dA0Yaw9qqg7XNM36WNJU5difRpsyo3yDoHw7Mo3sXxQ5iFtXs0cTclpsualn8fJp07L4haXAClrP2B4Zyz6/DANZUT1g7Kxq8lJot+6tReSgulW3U3uJYGaAf5VM9VD/AcKQZ2mFL1TYWjDijdvo3iPAP6oNPtLJkrlgRdehpZd+SNjmJ6QVyxY9MpZ6BwOCrxxl4FX+vwHFSQMA59GWal/oHgP3I0NvIUqcapQgmVwkCV3qgE6BHYzO8PT2tUeuyeOOGBy9tBfmlTWXP51uTEokwtbrfjBRIwkpZeFxg56FSUtQS4t5ShZ94CSkU6k9FRkud9W7dbicNGU/ZRoZEbQd2kgcasKfyYX3lCJHJ22AkASLJW61XRHUwjxTCTQ2a/gOx5v+iNbgIevFmZrJI0ugj56ao6evEEpGal1z/MxzhPIraLtsxj0bAf6mzBEs8VQarlv4c34s8Dn4yGAh/KneNuOtTDJJC23VS/ioh/zVJ8cs+LWoL+0iwqBxKPBQnAHaoFfoDBnGrfYWOOiDYpeoQ6t0yNkRXMp+BR9lRUv9dyMxV5G0OhbGJ3sruPWBk/vrkQXcq6u8geLO/0+hMoODdjP1zdWnQfJNYVaKC/tw206X6hP8XY2rYffn7FH7YfstRS6Wb+RVPFguz1gMdAG3t/SzHlnFaJemFP5NjC4gsJFX+JG6nJ9FgkqP1f0zkrSCiunRBccCeoOzJT11RxEPvTQT3knMnflno+VyphNq8mHxAGualcFzVBugNGwvS1mt/tdAtmB1NyQyUkkw4/DZ0nCV3g8zZHSFNEty6vI5Z1yjq9ILbtEuKkgTIPw3mWEiCPpVw60mGdHcj8Eun35gCl4va7SB71nBY4q8K3dUlnVf1kkxDyZZ+/+8ngoVSjgXhWbDJhv2tuJC5FbtOtMpzziTrAsxXg3APesb4uSZ4vswnx6KJEzetIUFsBXdh0vmcxg1o72usTlMhb1BQVnugzxDrsMcsqq4d74el07o/u173bGugNGTjZwWhjGt8I6F8DxsdgNywJ8iQDB2yx449kq9n2/Jb/qRD6EeQvKqumADJT4XgxvasV5osBEpsw3e9JAd9B9ysuRrITj+pdEegkh9/bU4zCpghEYP4Oo7UOH4KSWxu8BfhdY6n7DE0ZZgG2grjWq7nP4nD4TYWKG/SG6zjIS46OQngEUsxlfYJ0BU9/ViLt9NNY66OEqDHlC4xk+mv6pyIt6v/h8REWAykVI2qFhVTn7Xj8L6T4oASBzVhtYxUEKZvEx3CUhGcTT7EuH4I+f2TPuaR00s1KJ3D/44Ff/aLEF/pWE3btIY8x8SJp6KteOSNHWncr9a/FP4SbkVDyTJHcmO8XBxEdGnnr0AXdflwN5MKzo+UAoutHl7JfiPBZC0NTUSKxf8I6v6Y2FtcnCF2hyamInpPFaPVKdwxXT01i3sKWdVh98LHxdHKIbiHwx4D1lg1MbklCiSyd0H4To0Jh/DydS2WLvDJXho/aZzQKHN7kfnmzIWev3igolzadtGHithjPScNR9fUlRqXnW3rJlKo81SXVgXlntTqwbvbP0KE6c78riRXhWbcOhG9h74cAn6OWLVZLvZJGsFlMEG3UOJEyjdZoF5yEFSe/3eL9D+hw9Q9bc1kPxbXV0LJGtCBV1GLqiF4YOVa6FFHURsbnNIkwTb7o01JOa4Wh+kYZE1HeUtCydOYLZPjV2Be9BCXHs2f/AK6xIp6LSdZKaF3digY1oQ720/phk+wCdE3NZdiheCMnIMG+nAvTGGJte7U1Jqe0/GVwXUOvOwmaD+nYoLFiHRElBdSmFGB/o9KcVmWh1TayEBrTwuIpToaC2V0I7qkeYodKYyVItOizSSvBLC1hu+R8DdVuaCVyot6p/lEqHMvVTWmSnAhV5eNDT/Tsxn9Ag5EmPkRHVRpKKIaIDbE+S/T9cgNRBuVomn7SifUazm1SyjMxQ1PIandsyx/mzQ9OMfVQL5OCiUf9nK/M3X4ljbgfHZuLP8vC4bXfG1G1+ck14utiqhKSdU/8Ig+RNda/x8axHyKRyzdy2k7oKkfS4yZhFwTGMCQiznV78eOLEVt6aPZdN/BwwMAxvFBSHV7Rq262S8WJHuFJk7IeTOz2WCUz8GMcpBzCszuVTa1/RaCFBhndUXQsLp3D9joUAgaBi1klfM9al4YsgkMvLzQXhBovpfiy+NcWwuT7JYGKQJHlxtIYFbpVfu2UqDZ8BaKUoJcR2ALMorfnDIInbRKWqkKVBnKOgsc1ykGoNICbyI7ZTiRB4n+mLPwP0CnrqkuUgx7cqrzfBohoV20SilNjLj4sRZzyCcC+xFG/yWAT1r0bM0Ub4/8MxH4zEprnCcYMIYJtwVUX7h64lGTZKzpOHVaodYV9kLC4nAc5iz7V8kRrEDeBjCE2xgN6f8NepvMzqiCyAFoF4PILc0W2hF1owOEYk4Tv7RwJ88ftXWwFYVLMYJdaBhvteAiB2jz4jADZ41uYQo4Q/O0WxYzlHHGUNO/RX9IHdoTw5tgVWDoLUZz/zsqRVbyaxOzcZ9BHKtNsf9aONFfX0Wr/hCPwyCLgYjotip8hfikvCAxzuqrn6jwkiB17GWvskuu7Bw0PXQZdA/vobMqF3eh7E5qqCpI857Psza5EEh4zZHFyZjX9LhUCUvO81cvax0aPAXU8JMRPOFqifapw2km3K9gqIRCU5K4ufGJ5D6t1pxgZCKgoMEpC7214rnxe3IrgaHyz8RC1ucc4MM7M1n+HsZQAdQVctlpjQblPLAx/MxxK4DdDAlQKKR2mPGStvVWs7zGak1OvzjV5jaWeBoz1xT9h5c2j+rVdLu9KxKr+F49EuGDg60wRez+/KNNZEVdekwO66qhiu+XY7U/M7FLk/WntR5vBQizkNACPw6LU1jzUW8vWdfPD1Y7tdt6lWvpF+vBZLQ10qNdjy4onxNztiXSKSO6zgr9TnkB9XGaaRHQ7V+0tCGBsKVBlEUveUQjJSM+C6PQ5oC45IdsZzq6n3HE7UMc/ckSOh7VaL7HoKfSyn8gZgajBxM0lsu71kUTGTPLTVXNHYPvt9BP7155x+v/9/x7Y27KFBgs/D2JnR0ripLN9DBCgJKN+7w9+Y/z3j075MB4gg+46FJyVdWSX5ITrQY3zvGixo18gnHzD3uKJ4X9PmpgobIOEco5e6NrbawA9WhVXB5llmcpPyipvqsIL217hEcA16CHdu2DTsVzSIfHXklevV5QyyrLkRPbtG57T8y75LpRFBTNTz0TxZk8HYkYlrh89bflDY9SV88hUYAK3a07hBdYoTwBn9uKOhB0by2x/9P0Q+1eTqVJZ4Gm+8LQQzsY4i4UqYx1GBaVgeQWNvHYaYjdRKARppMQCtT060rLLZh9VdUEDdo6bQV+hK+5caHv8gDUWAc8mlTs9pkuTxXUri/+EJknrXcEl/QbST9EBh77XtY7Kpr34gDMAmEG6Bw3kaDzm3HU6ezgP/q+r/AxI9aQd1s9jYWIgITEf9LbrzERBPODXfeod/eqsUaF+ukimkEUnfvlBYXc7zxbSSODeMRLuFdSA6YHJzCu3jpEIF+bTbglU7YufGjXAkhmPNPcw1cgw1/pspvuXw03kBpGEPQqY8NE+wIG6+w/Jr/mxcBVV0sX2ivOnchsnWUidS0AANfoI5liO+Q5JlX7tBY+m/+RLHJ4bNSZi7I51U0X3rtYMEAI2F1SKu1vacNDOSlQU5ENM/hMLa2C3N3qZp9ua78jMng3pNLJWWjQsKALJJW4tg98H81YZq6+2cE/08i3MEakluKVYg6SeE8PwPDXmLKidCPGm4TXK+X9NNAhaqdCQo0j0l2jfvEgQtTUiLnaz6490cHxOSSOAjr/+IGqK8P5BMDk9iwjV+uW7xlCHcz+aQdntP1TLootqLRcUSph9OKWsuFcwTwsPqP8feOoQW1XR2YdFPevA/8bfveBI0E7HuahUWir4lhLC/D902q4nZokTLZSbGyHTnpPxRL7DpSzMgg867Gyszds94sU/qCsFl6fC0kCL86Gx0e4BB9mU+peTPI1URoYoqnkMqqmYFPkZA81I6aJKX1gZ2E2iOxjT6vQFrokLQQVKvgpLOtjAgipbpEmQi3VGYp7gbqziIqxb+nr8KSUtRufo6QIYmMaTONclLruO9ioxTpFiM7Ppz242qigwN6uuKqUnVI6mm0XyMN1qkYExZqYD57htimXGrT0eMoBKWPJCePsb1whFdoX40/zH+YlqBX98ksvIwM7WpvcJU2bWV+S0ILJXPekrfAQ+JpcOppkTfZKTUbIzG7mqT1p2YEYYpI3iasYosPRbUe9rLYoB1pNMCcAI6ITk/mfrWQkDxAj2qjsPdZ3Sn1dZ0BXwGhubeY3EONPTpvF/hYYTAPJZ5+fAk6eK2kX5W/NacJmTodgKQCBWdWQsmUBnagm8Jhq59fOaRZuGQnV6ik9KuhVtTzpZ4Cbu8jVHLOT27cI3OKCStI9FxD3RC6ktDicmVYDz641zkBAM51Cg39GHP+UW8qjVXrG3rJu0KrPy+hcyK2Z4Y/sbx7pXslrYGo64Z5MDrPzU0k6xvGjAQF14kJHHMZ+rUixoY2M75QBiQhkXSMtLTAruZly4lxNM2GxbCdyjC6Ev+KUNFQGkO5Ry3ZxKypRlHJFPXH8Tmx5TDBdmlvvNeRuoFvrIPDnsQ7HLuY+Iea/s7Hnp/Qc80/VaSMhPjM1irmrzmIDqI86drcmZvp9pfpvFlBM8OTegWNhBaLJ6xxL7iTdpIk0ZcOOlDXCfLGx65jkMBkgtrODy2+wnapVRKJMfNAAS89YJcSMrByhn+H/X4LgQwY1gfXDpz3jN+W2Mb5Mh9ZLTl+miHBT3D1Q1+D/NHuuu0obi79H3Rd7Iw3qLwRyTufmKV7B0pEAolE9UDfCuq0v4bY7h7jioexTIR7oQ+HUlp0bfowE7SNqLrSUuEnXiiNaZhXV+/LooyOZDAIUMOIor9qrgGUE+sDxYoufU40yUWP96/1UqVSodp+rWfUveoTx+jSGr5yJ1aWzJpivbkH4oUB0E3yftBQFj9Hj+M+hC3LA+FJGPr9kGacNW7h3rx7Vm9FVlO4CjVmAJEx2Kq/yHk4rKa4ucai/Y16EqmXQPg7PFaN4+eWmsssJHHjiPGHKarptHlAF5AttVj31FfkhlxWBZxaip+C55god3aDuBNyIsunybe/KGkp+WI0dPmsv0Z3X6kDhKdATptcuO2IFGiKf9yGcHv8+G9ttx1xTHYhqAJ6vuq6L54Hr2w63V9LNRKEoextXE2gh8R0RWIyd7jOth+WtC+qAk+nXM/5TOkGLAhEGfbyyWCNHl9QUqOMhlHBnSQYy9DNEa+1vSZYqL4WnCGT4v3uQSwMcSAmggJ6SdzYeZtUqcH/9PSy3LKjXHWycGifoM7sTYMwuUsN0nIgHPu4qD454I4lemqszOBvuPpEpW4f1kVsHJ4ztfpeVb5F2kSu9J3WwgqjskdRqAR9ipnu935moki9kj4XMoPPvQt2iyNxCQkPUyakCOy6V/oy+upDt8o1BfPDdO+wA5SldE/rzRjXitvz3WXU63/2jOoYmJ9MWu3POxDvqocaJXb7NqL7PTaB35KCa9TfK2jdQII1n71WjZ17NHrRsXrrq7b4xFYVugEgZ0PfQnsde3iehFB6ov8TRdGO9q8MxS0FeBVT2dBox4ikvtzA24CoNQlpEQwR5JbsS7cqIun8wC4c+QEn4QNRzofgoObMqe7D5H1nj3TbqOp8SdnUwSOtJ2n2Mbgzoe+z1DdKBc/7Lx5uziktA3NUxSIR8ensMgADkuchaPUkqWF619GbkWqdsGoZmBV2sbwJFfF9itmUQRNYDNKAJ1UTgN68sIGikbbfP0cJZXLqVxufHIxcsuknvj/3XdMA45bzJMnuV4sl5rWxqA4aFwszm+My6XGd6in6678PxfRmRd3iyQnkN44DPuzvcJ48p7fGAKsM1kB5/kjoSHkGvX2QW4hAmn8vn3sIZtLo/fU1/8RQGZ1ZVWJznkrNqnmSk9PYVdPX2fzsPSTE+JLJTG+G50pBDOE5WMSQP63v5NK/VZf42NONnUouRpXxAqZNGFfArACBMXdlZnJJ60jiwps9O3Sr1Saf6xXIRfGZ+AaQ6o+eW93tUSD7N3xYQdCezXdb7FlPXvlOJTSDvgDCMeGq67YBkQYfgt3g1tPkxiYNZ0ndI4z7Wwxi1zhF/SfkeQAwNZ4Skm/wFQbpV5ZyQ3hLhyxEoXJ+gXO98JVdOKlioHFilFXVDNT3kZfAJRQq1+EKNcEQjEh4cfa/nkLTnodqDuY8Ov1yA2H5NPgh7adZLmzCfzpXEe3gGEuAWk8x2OYbt91WPrX7DwSG5im06JQ3uiR41W/p0Ha+GuExoODJBNS9TjSJs2gtLyBipC4FIbz3/MeuZk8WHP6/HiQttv0WfxeSDgjJb43ejkpXo4q26KrCxAS2tGvx3UhMosKWizJ3fogKruwKGgZgvgzlargUsoE3OK2mwdyKj51/S3E4DGpWu4BW+VXQJqHKz/iTqvQ8xfdNcIr40deAiOhJYI5xRVFz12J5uOpR5trGzexDz7d4vJlb+7bTe2iNhFnTJwDdQAWLtmF5eQmcmbnpX9Jy8hZjGjOq5F3rQtUuxWQu3vkhmN1ZGhGlc+xj7M5dwASEgZja7tG+kWaQbXf2g/bVk0//YitTCrNGT582EiZ9XicGObsXWsLFnsS76KsqYKrdRuNc+wFXiqZoooOMwuHE+EHFA2iDRbA69oIuG+8xWKaJeMN2fYc8yhd+SzWAYthAs0M7qojyveAmf8IjBT0czuHKkdgXCToR8gKgQCSl160MeSK6uJcG0qymsc7cPMjMLOuN6v1BsO3XpRZ2m2KoxxfZqluoeXeqJ+mrmpHR8w3xIgbAircDNqUJ4N0ERrDInJsumrcA4PicOOddlGZqziEE3mtrTU6rDh3mQFSe1lja9+D6jG/F3OKf6vUBT3HAfHmjaXg7ZnYJ8IwmeaME0jFncqd3alnCEYK4W7MKuxABeiW1dQeyxxajL126Hp/tafuwX/4NaDjCrhUMThfRZvysTP41qCf02JBJXQF83Mk/MUm5obqPopdJQ946oI40PDvg0PT8bm6RdxlH7eJxHIAAu7EPn/blMi31JheU0Ehq6aUUMfO7+yAA8EEyBZrYin6tAiIDBWObG2bUquBb3fafdaBcM1mzZrBlFmVcPBRQYYe90fVjJcWmXeSXhLZh8s+CtgEvEdxXG9CRN83LlZTIhXAxyEzeUxngKaznLSjaXE75TucbASfV+hrTi3DrFFY5eZlTvMsyKy0jPrUDdaXapjvhWs6Zjx8wyl0PNokhisiUYl6m1THHVGpmGgTHYnwrAioj9ryYh5nun6z5CgDab77DQ8esHGpG0Vx7iUQq2Ba9bOIOosZlfLSyZXoNQ4D58ZEiFGP3ZH1iWkExZtxfd02YSLRxtxObvxBBEWDj4eayS8UnQmmlE7aJcgQ2GKrJVdf2Lq8SM06wgsOb7ZuwJdaHLpFCt1Hk+lVTakvd6bR3JravaQRPdrDZ3YkWm1Z9FRDoAXuoeaaFhYPjvpRWFrHfq1vG3xSb88jAdJ1KaY1kH6px5WW1lJlPoorSgWYBAk51Y7uWXlEAXZDjLj0TZpAfAWMLL7UO6zDBJ8d8FQvdtwPaRJCcmbuTFIlZA01Bi7Cdrqr7hiSD4XZpaM80ldcqWunVYkFcfCf8Re7izA4GP73P13716soe5j6kiamVWV/GGdmr7SZf0xRUmmgLSNCA+DZQzk3nKL5zfzv3bCtRPi9dyUdjsNm1cWQ9PXZzmmNyrG4arPg15B7hR2exCwGgGleDl1+xu34X0H/dk9ZV1UbiCeAyfQvmYgi4XDGSAZdfKAyyEFs+s1mrN9L2dYU8mggQOHPUaI1zOI1aaOBykXdnWa9Fz9vtCzDR0mOhPQ4Ypv8uPrq5mb1yzQbFQJnXWU875aupsdf08geAtb4O5063Nk9Xlz72RSk/MZDSO8G40ZPgNKGUAEnlDj1r+0KtIYJ7b6UjSPQaoHXdGF4a3UbbmSq6Tm5K8j/W655P/4BrfwdofeLO3ucwqblrVicihLbHfwFYcvViwJjQnNcGFyGph7NMa5TmgkEZyvRPO78LjyVTwC5UJmpDa23x7Zt1lhRXVVc/hwzOJcWKVmq1VeLi1T5T/AX5mUI6gim+0984zqPPz+fnYB5ZM3ksdgkSf5KxQLYJJ6WzmaBU7zIH6V/isi0dlvQlS0MNA3pkINP9GHJlPFZN5sYz9M9d3Pu6MzsZmmsd3JZ03fVa+cUGglADHcGOVYw1K37fo2WQy3rTfhX+GnQaa9yq42X4hE+Hd7Rtp65tOgm3kC0r5E6qgrHzZV3GQJwPLVXij1/+ZC32iar+xjZwvjt6Q4HmS4/dNGctQhu+5Ip7wdfwJrE6bnkeDupx0ZeEee/rYLzFAw+Ea3hB8gETvwkQfYhotutiZpUNvn6qmYSCfAiPfKHpebYC58VHHmLhdg6JWDC5/mz/DCnC7e01XOdw1z+bmq6upoV7/UIq4TU3jAriDlbdLB6jwzCZBp0ECYZS3pa0j8XNW3tGqskcSWeF8kxAid9uBirXdlaD6ZdobOW4GxuaHQxQYNLvKlzBSyavDVE1wq3hiTM1gHaHkl9zeuthcJUMW6hNs4e1jWovb/kjM2TlZIcNszQso9Au8WkH5h5JsiO1nHKXVvbfdMJfWlut18S4JdFTGOPbVfAMD9nt39zJJvNt5GIEy9oET9HJvusZV0Bme7fhWo50vug4Ur6N1TIv2/OaiPAb8EW+zIhTtjF+IKmmDDeWQFzU1Mo8waRVcCyP3ja35mSeldrM8bO67kGNAFJ6uZhyLCYJjyQM1CkoIRAFp6EAbxSkcjSlz+JxSqbPwVWxIOFVPNb8062SS2LS5lqzId7nI+1HBNc2EHJt9shoM8BS0CjdiukdVLjm7JaW8Ax9mHa0CGdVO0gjtxTxuBv1mzdX2IbQ7oCRQRhYSZKnJwUkipY7bjSmnE13fywfiRx7siJ2Tg8aqFBqEPM9Jk9Jwlz2nyQ38peFkD2aWELCB1szelYH2JL8KJN0tuPcPfwJD+mqb4VvncDQsuYaXyZy3KR31H/p8Y3waO8lEePX/nvTsp/TB1DyDnbVgFVZ8SXPIWgdwyS0wBr0qWYJ7UtlMLbQQrfujVhr+xfJKfdcAESSbHH0hJm7QnLaCZdHvocUXWEBA3lUUjI9OAqJGfGhem04dKDXvuT2J2qIJ3Fuw1glGMl/6YJbUV2FCeJ8Fgg2vlkhvwQV7boueOYv+eEz2jk2VbFncXzQrGdhHOOzIgL4v9Hp2PDTZezvVH6jD0VJ26N8DrVZOVBfjZlW+n+NAjdJcP6wxjFkzTDaPQ9TNZVP3+oj/ppOlU186o0+n6Sty6/8CANAp6vrY+PKpKFYIvFW9XNt52Vsz+E5PpaCgUVn1tG90czWOLPUX6R7UQuEx9DToYFTiTYDutL21htcBF+06ec95zWax1a50j/FAgR/Ei1iT68H3NxsqsxOXbp/mYjMxa9ZMcLMmqKNJC1ZaTWYn2hf8bgeCLrN4CRs5vSHSd3hSnJp4+6Var1iGJ+Nk76ABn7NsOPD6tpROEFe54cQLTHN/Tkyfxg+4Ii8FFTNav1h4qlNu8/EwXXNQ+nixPjz2Gu4FIPPMKNLox6vDaDuN3ZmtZ7Mt+2cowwucR5Jabbw0F4ulLclYp/0lzGPgj7c2MR5jtQug69DItQSZGWlgRFZJvFqnrso/mmXEpSTLju3yE6HdY4P2wPvUcDFfVLunHumUh9APGMiZi6Y/8a1XUSTnmxW3zieU7DGlr6HqOQtJ1DWn0mfhvSMeKfI4bpfni8witEM96VkPJD4uxFRt8S6u+mZIAfbhKJ41jMBc3wdkzcgt2TSThYMVvG3ImF9sIVr9a6rsyWJzISK9DI0+jMAoW5yot01EiQ3HQi86Pa2wfaJIfoIOuYJe9K5WW7UBD2gwQOcHjPVM0v7jyzFYlSyG8g2T18KWZDVqmc5UslVY4ajpuFrGZ1cglM5hOLMRnGIUKdjGBnZojCrDQrtqxtxSyh24TSHgxq9zEBNhnbLYl/R4f0iB4YCB9wHxRLbMzXQqZuXyRnhrSxs7TVwKneiN6fSbvKqTxbNJhvvpZjfHUKj60Ibv1GpaNTAyzy76o4gFr4WzKYdUkdkW+PuW1Zyu1A6zI2rcOScelCrTtIxsuFjQ3ubtXAHf9/RdwD+edCi8dzLvDXkBGd+Xv5WV16llXSxbPsbATSvrMJuj+PTq7UeGyYSBCbmbmaUYXC62vf3h2svlpEWCGcgD3IUAX1St3iIKFNuF7XykNT/R70W7BMOMzsWPbTqyHM2MMcnxKPVJ4jVU0ArfmtyMOkIf0NzWXcOX21LiKEy1fwAlQ8BSoLRU3rWe8rue0JEOxBvbwOKP8+NYmpjeE0sbOyUxYFE1jGReUNisXMrRtwArLDKfNDdWY83iEuhW88Uyk4ryrvfSVueIqA+8WGwBM/poJL3mK54H9rFRGmlQgUpyNm1Mh1ro/xIBRgxX8Kt6ziNXIgK09iFoXicqxHHhHnCW/McMFmWwNQn/rH2wP/uDKvRS6YYjvqIu7IxppJNdiz3epj4PQ0dN4bEYWRyIpbmz1lvjDdki2aXmopUMgIubMK25yApTxBtKkkrE1njohYgaBC3wF8q4kAW8EuakYHVOvCElTQ0Usf4tDfVGDxMt0dyjGQE6rMMyRdTKAGSBp2C2aZ6ZgTmT5FEeUvaaKpd3oVhOCs6xDjVCGm1+Aat3yRKpu1jD68XnJjHx8PNBz1LPSOWMEJITe522cXFWKQ5MT4IBe3tqc9vSWP32zhjABImWC1BtioM5spfgmv/45D8evTbpmbqVvQtiBJdG+MXfdChMK2caB5e0DEistWmblaH5hXgTK85UrGbb1rtJhd6VXtel/JkQwLchJnzJmyonEMtntCVxjAdEgW9X/7+KxrdhadaGxDeak65OyV9G4uUYPb2lTX/jQATbszfkXYPmVN0r2ZuO0stj0D9tV8+6+KnAKrk7YVGD1/kP0wvTEfLyA0LLFHux7K2picCJuRj2hR/gtANNOSCmrYewX98mlt3vECuNuzo2jU//9/Ja8Y0bRMlz6hocXnNG8qtMBZxQ42sebOsEJ71yi7bxmz3ZoEa0aFzmZzZh4de7Q/T2znQdUDd64yvKuFXEvl+lmiI8ASPgQHQxuay6rs1PyBk3ypUzpyHnIfcRu+yaFKClo+iSf5w63lfej0+kIlIpfxyg+hiT2Ga6jpG8YZCWJ3vPQdhThPI5JhooJMa73dV+Jws4YoUAhcYBtKS27d99gutB3BGbGUyeMk4ALyMP3zd/tGuTV1dYgc+AyyGJgi0qO4WDrWoFiEAKx0DVxQQ//LJBAFUtNy9NQowKuwmiM5UiDKEfCyEptzQHDjB6WSY9PZ/qMl6CODZISrHtE70NUP3/MOD6fxxKAfw1b8XF+zRsWqkIBCJcZ3isLVNxr0CuWIIasnxXF2ksXcFJjkWwMjdrCJSVWSEkiyMznTpLQBBXfsf7l5MxcEf8lipuk7Xd6yH3M+0yS7HsBnFnXsplRsmpoTxbZO02/ZntRB9mxlLLJkR4pn3bx3yoQUo+3D7clOMMYBJt2KDzTt3Gu/Dg19uYe+aLZ8XqEOZB97hIqiRtVmhhd6YAcJgcsZHQH99HH5V90MV/k6Of+zP11KUFQE0fPutEe4kS0iDAKQPrZBRzaPz+R00PRy824pkKuHY1keUwFRkkBNczV50hO8WC5Qr90qouAXwvS9OzW4iqws9pr3I/JmmgFOngvQo/LzvM8FiYnoHRdgtM98uF6diza0mFbXXtYU0xubb/63kiY4sPQisdlC70CC67XuQI75s61A/rYzUXgNCiFbk3Fj1mATeTzDetFClqk9yitmPLVH/DDgf+UNcK/3xBcv0f7FTGLBa4MwJMOql9C3MlKWG7B8FsZHhPIsbmE+aCCp9HAL8BwYGV8/pj9BnCVWSU2/W1/JW75csxJDB1C/FgceCfZxPoibQD8jfNmS3jRqKoyBvZZGlnoVXem8+p/OIMhRdZriUTBe5fzJXn46k+9fb3ttRIDvh/VWen/IKRwswSImia/aXu/I06Bc03U2NSK1/lVDD3I49SDD4EEtnGzxuLwhiB7dVfCxEVnM3BT+nTjLzdkmwX+jblhwg+FlE9GB+tnlufTTRtpsnKL+yNpUaz+EkZV56n1tDIjPVtxhT94iA6abTpLUhlNcjMJHdaCGEiZ0uG2GpEg2bf9/QUG7tCackV5cwBNpQ6UXCwlngGzltqc7g0fXXYAdB+Hm7KFs7oIGTASyYodmL6ZMlwNxKHZa7QsLTLpHHIrLyzJuxrO2CpuUTg2LSgMB/SyZwqRir4CDTy0RLrnY3EDT/FlIR2N29PTM8Wrm83Jbl7PSpDgd2+hm9OlcETze5i+rwdfJuYF6HvJoW+GGc+ht5oGKE8mSr9XbRhBb1vuBOy6Q/yAVuiiy2OWUr0UV7r5VUuHg6aKQNdjea6WlgaI7nz1R8uOoX87BiuZhQzChFan+tnfOQUeUzgRZlEu0euk4O6g7SDYgGWPCJVf7ixnXi6IPJVfhu48KECXa614uY3vJU8VWD/paqkQWYtAF3mlBD3gyPbrK4k0tEmoKBITe/wxaMhHR23N8lI3zAoZoQTU4bHgJVcZn50mf2KEvgYwfRaQZlkbL5RiEgxVVSvnoWVfL3W0XqpxfWxNI7oYBueGimgLYri1m0drjxcZR5LfSXMrD+ReUbIyDKytwi7BcNW/J83TQZXqbxs4FWGarbyXOIhXNZqJ81kKQOJRXWBDXGsKFIGGLjVZVcpE6eUV1YC3X2gm2Ia75vUHX8gQORmRbv8iq3LdKPGBBjvRsZFJiD2VjLqUhMhD4KbtX/Ktk7XWGHgp0VOMVvb3O5I/5U9QX/dN2TNYkFMXUklMDKKISsg3l1nUoTYsFYreFN72My4F2iqxm9ld9q5GU9DJEI0HgpvXpNGAOz5Fm/bwyCkYyqMYznrGochsEBLtltShoKRCxn2W7LgfB1yKVZ8ccKL4yFTm7ZU5MSqAOX7WokLHpCZxueQ0oXCsg=
Variant 0
DifficultyLevel
692
Question
In the figure below, square ABCD has area 64 cm2 square DEFG has area 25 cm2 and square AHIJ has area 100 cm2. What is the area triangle AGF?
Worked Solution
|
|
Area AGF |
= 21 × FG × GA |
|
= 21 × FG × (DA - DG) |
DA = 64=8 cm
DG = 25=5 cm
FG = 25=5 cm
|
|
∴ Area AGF |
= 21 × 5 × (8 - 5) |
|
= 7.5 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers