Question
Leigh has a picnic blanket with an area of 5 square metres.
What is the area of her picnic blanket in square centimetres?
Worked Solution
1 m2=100 cm×100 cm=10 000 cm2
∴ 5 m2=50 000 cm2
U2FsdGVkX1+Jhe+EC8ByZrgh6bftbDBXgPTwSv5SuJ9h9FaINGEZuIZUGvjbLhHW2piwF5spMe5GSiYjB31YcbsX21+yF8BWIl26XPj2/AFINQFTspndSffrK2Gr4L3PoY4WWQZp6OU3OgW41qOQ3xofnV6JyycxU+h8JbLPUe3zxwchdp4MuiQoBrEC/Gc/+u5YliPS1hGJKzYQ7j96fX4LYUQyzU/t25IfKVxnKU1YjTv9K6r2xeTL1WkddTH1NOJnfzuOKhS+efWRFHiIMK1igqKUeU381f8UFYx2d+bLudeyt4WgquN+KVM5PHgd0jte31Yc3i2+l7GmOJ/ObjBXS8og0U66NJ6l0JUdJeVJ16FtLG9y1S8CYlRr5k6Q0XbjNiA+RJ56umMIFcU/YERhJfZORtKpiJsAl+SMDk2t5E4yKYwBPlKpeqxsSU4m7nM7q2xoJxBe1AmINW/HTteaN0xDfv76OuzGHpZ2s3zjX7wH07V+s08faEJsz8olUz92Ellz4MhIri95JQt3LveVao8ErIVpvOKhA5fs/FLnuzd96VyvAew54Avf+DjZRg7J9ySRdWlKdKUVfobDtgoAXgFnQY+fYjxY92c3kk0BflgkC1ta9Vo+Sh6sGi1RCZO1+YZ+uvCZMYpBk+bAVFTnopjePlteM0MrgxgormsfGJU5+jzJzaCX2YzyVvQVeUfJYYO9k3Wd1e588puCgkg6n3gUaeXErEfVkf0maxMsih0SenheEKYDGni01+Yu9LznHA6NYXcd3UTouaG1cvP+oGqxs5sxAGAlQQFhhc1eI+2dKyJgF4T4dFc+w+l1zKOepqRtt5WSuGWLVVjTWFQZdp+60OrVbEI6KUYhnPhNIrp8sBMYR7egdR11XYK2JjgCQnUJlNk7fTMVY6eABUbSwqBJ0OWEPNRXoZNiDV3SNHwzI0K6Tq+bTEgTP7OZ6vFMQReKqora+ziWA+gHwhGLOYe/6R9UJ7r6ji0i6dLCLKb2K2fatM5Ak7bVOR4UKz92dy/5dizHMYWXkM0pIj1VqHSvmYBGKt6VbPWAqnDlSa4udF/c6s7LRrnvBD80lwFrgannUvalIkQUgOGjoLIKFRroXKY7j02op1u7+gyRU7o7oljZPbQo9icevQI4gn+K+Xp+wjQKstV942fdDNt5xKBglbnMrw8fWcI2QyN87kRc0Iah8trr5KLmWCYadNh2NAutpop6eBusLN7qZlcPi9gE7hhmBfFQReLd2qNP6VIuksFwKped4eT3SSpb0bpAHu4z8YHXg5Z9T1hXAtylyEzsBK8gEdJOoyille4F979sKjxRuDT5RX1K7Zbb5A+X3vg3f+fBgwrwegnJoMn5ToND2ZHVDwCOeaeGV3qWzbeTttN6y+2vcOgI5w3/rRi7iEJWguC6Ni5lcTNHpFRewzkJlhXtWCFkf/Az3x1t1Rb4r0KxjxnCvhn99+FTW5m2rizFvvB3U4CUupgiQaORisuM5AJDgVWpQEgdXjy57PJe3OwkHBluOhlHzgDdxoagtPpq20yNUA4NzOw2PM/tMY0+Nma/1rnX1ik8GdIVPcYBNck9uKQ0+KEO2Dac1W/zYqDJ22qft5wRI4OI7da4BiavnTUft6KgqzFJ1UiYjdpC3bjX9fLtGkt9vpbuUbtBU46OHxJaO1+QVjx43H3YbNGfObHZj82O1bVP7vbDGJFSGQ9JJQEdV8tHpbtAxC1FUeIiTL7KI4F87sdDGqrq4HKW8Op64suKtRNST1Zn24CgpOqd78C7Rg+keVAAE2CrRFRYDrZTjXiip2DHLcbF1MTRPyOVRhzBoAn+7u8j6KPgM1tlJng1NhTnPn41tn463dAyBwHn/xy0CP4tq1/Xf2PG8tDS1SV1G+0aZFUX6cHH7vKz/qIFNMarmJy2/08hohc56qDFaw1YmB4/Y5N7yYtyE5G0od0em+5Egr4hpQRkTZ227yeejY8V4S7EIHiCiXOB6eXrh4PIf9S+ilAdu7TWq4TujfEoO5S2adcYpzMUQ7t7MeDY9d/lqpMdtUSHH5Tq6BwW7B/4NgZBEJEo2hnLPo3lSAj0EwLDh1Db5DpL0qNpavCdEgPI3w3ieLtUT46Wx50MGCLwl2gMbr4xd+jRxKxtIBqJfWJquZV2a9Vu0dWrS3ukDtvgaUhLaP3j2mKc98/giirogG2fGP5LxdI8zG7RTI0EDoBZDat0MgQLlBjCcb95AvgrJwZ4ziTeuRMHTyX7d+8T3dQMiKYn8tZBTN946ORPyd5HdVw6OhDuLwS9kiWM4XWO60DUsDwUGVlkY5KDZdZvqwmPbpytFo8Vyoca65tSxZcNSNgQu/TgiMjMgFhPUXI5HGnS9CixH2z/dOZVhcawsV5U6nsCF0TwZnpVXLg9Dk2XUnqEmjZLU6zjAJ4LFYO0E+uvbWsYoGSTtJF+koTJ879wLsIiV8Eow3fULSCPjGOdZHMAXgS6+Ej7WyqYBe83P9EWyg0LIGBP4zfEgPS/gsESL4uW3n9/ZiyZBQOBTEpxYRhXyo83BBxp9El6tZX3AWvrGSEOmPSeZcY84etplfKBAS+H7w/EiRpDiU2Ut8TvyMPVGnY69EmKTFbhJVeWXafBpPzLwtjm4lDLjZ0/ktUE9xP6Av1lI13f85eCU1RitpzTNf0XAqrlwsuHdKPRC/13assr1dGYS1NLBFhRFrtlfvkiMhNze2SdU/8XXhcxCqorR44eo9E8phWSlLLK85/YFLQLc6xgHnVW6j/PQWuX8RQQWrI6uEacZ9JItdulnoBw0mB+RA5k3IF7gg71NFHZmS6JnMkwsWtqcEb84SkciLWafa8+pGceZzKIFZqyeXDoNfWy7ozyybLyiMi3SbNU4Y5Xw/sVd9ImAPY5uui+9sHf9r0gwojpLTSDZhZhW2XpojArWBNoA5gKOKO4vPYsRiEmSDuFT0tJdEhzGGBUKmc9dhr1ItfuAjNbHDO6zgXwFDLb7JEtWSdHkylWrj7ItPtbv5GdoBXGh4M0lk6zel/JyphbXmACdnqGn+HLUao1NPF5iVI9JS/jvuA1YzrC3IsQk7YNECOu7Z/A511LjfXq38L+vVwrSlod6nh/5XKG9vi7QAUqiTOLwb76qTNfLv5YIoXISsaZq8BecT3mYTEb17C4FjS47QcVVn0fUZvw+i2ECURFnuPwvDeYA1rWei4MijRJf4x1o5CCVWjGcXqzbD9GPEpqxGJ05YtkYtV0JWE+aLQPwnOVt3AztGiJbePtKnGmLPy3M/bP19MetzIuR5j8+km35MzhJ7qOuOPzlexivTQuqI+Wh3LKqKzY3piuVpWmH3SBITL6wQ5YVr0jf0zNiZW31/L3ze3hoD/DtlmR3Pgyg8Pjdt5Ld2CGOeajeW8nE/Q2flDCUOR34RIJeIhGMX5ViQGMZiziZRz0lw/xLPUHg9ETxjVW4Afcef4kmgZEpMClrD679MAUgnYX+WPB4PUf2ELXQQomFmQ7g8jvIRqH+milamI/p3DaoXi7ARl/hMCzKVBFO0HylOlnvWJOpXCcaFtakO8G+yczq4JQHJXhg3AWyZI+0S3MI0HquYiUGO8Rmfg7r/YRyUqVgX7uQ36ywjbXUZhPbgDYvvU2eNKQz/XEZ0jG5r4piPJgWdgLCbnO6aYz6Bb+ecI470NNxeesYk64vghN8Azge6kCMT+YwtLpwTHTW4S0cBWMYDwwJzcGRGf6r/nC0s9lr11z0kyBDTgBNcddctm//eyApKj1vijj1U/+TjZqo/9jUp63tRnY8pc9uvH7LoTfllGkF5qMjMK3j6wx2bnQwG6eRDDcpHCBtKmsqr+SHHWTBVnq3qBwLv8xla/gqO6UD27ffZXTgzmXIcPrQDbgSBGUc4I+gy+gfrsmPKmCjY9jLAlpbMp/7s+j8ifm/B1Cn31y5CqZ79FsSNQdQ1nW2otQeKCzdTxzqrQWkr7qZx/RhWZILx1Kn6YddgSNiMpDcArsSxjTjorKofTAfehPOmM6KKYNLJFDa5xFnBAqpPh2/sNgBm3pgbmnGVMyQX5Y6XCnB4O9Qj0vA41aja6k4iraJ+AxVA9OGLiSXhY3o77OrMruYw6GKu3u//o2UpNOef742G88wdhndajIuubAlMOVW7FHMrkyWA5ep3fQ8aqDCbhg/EOpr5DxRtAQKjMz4dMtE+F9jX5CUgA3Stne5FI6KEjmfXmAFALGpg+RACUNQpQhsZ21Yw2hgXvkP9DCcFCB6fsv1+IstOaraUGCgNPozJOaWPud1U/qG7cqHzzkHb02rYqGpx7z22RBoLiezcj2T6MSgbcdUiDWfu5YQThZ8pQ6VZmMxtGEej5tE01l9WME2P6SukyZPeaaCcz9SLwvfsQ6TCu7/RpAESoPS+BG6IP0HWHOP8WoVEgnuMVa1IKsL5irMRx5rPYb/7Ii1zMeLAs2cJsjy/8zSE0zJPeUkC41xu420+1XcALMixaN5XiCqXTE8qVKCwsgOgFdYakhzsN5bMfgnQyEN8QaUO+IdanZGDMJs6CBuyvEVnhmTP1Km9LqYjCpG+yoXZmJrdBo9l7BI7WLFKle4XaYaSZPg524eiWOwxzKwgDRp7rVdUpauTj6Fr9mF/+5KLzuJkh/IQre6UI9Hxv3oFlhen2f/08KOVYHru+h82nqXJPkPrrmd4Gzvry/SanhzuZzKM4COtVMMRxql+M6BxORjKb7KwjkU7e+Afyl4DD3pTJEBFi37V4kGEMGirEvZGpPCgUmFKEoXHO2isCx2C0x4Fu7nOLUXZk6ASZljvnw5r90pDwWgpJa4A6km/NGErFLm7vvZc0Q1Te2unxvvwlS7kZyP+xiaTlwSNlumujCIB5ngkz7m+ahYegVtN7CHmZOZiNMcaJDCra3+1aFsFAIfcjF2lq6mgK0fsAmA93U5XoWfMwf6X5NhKYT9sxdIPlVTBG4Tsp0aQaJ6D9w9zoOzaS+/A1+zgRA9Zb33J2J3ZxPnuIavHFXxBSeZufajnbJSopCIoPQOGg5EskYdmtgWtXNmoBz5vspyJMZX3oU5YO0QzF2fsMlEYDaPRZDS9rquu+yCtm+VvdbWcsmMZSDlb5nXRBMZ1kI4e+gMVHjp7aJDsiMiwqTlJvzjgj9HCcs0otp7coc8xhmBZMVNDgHUkB9dRbRrstT6TIgqECAA3q7c3ihV+6vQH5Q84m6dUPW7nDW1gb9lhryxMPKUny/Zn6AGcAyrqyFTFQhWpFy0Wwt7kV9Fd2PAl5J2n7NGFVppQ+nY+j4c48NtF7ZeZOSxG4SKNIJ+njbFhg8r3Ty0qwSBqrqf+yjy+P9L1xiwMhXEoENw/a2QRGloxqVoXLxHI7QPQsj3UECznT0+Got/xlAVTF8vjqP9l93afve8BznUcLV9nenu+8wQpKkmpozSFGL+3xWfURrk1aVEUqijWUrTkxbNw2LMdu0FhuS8ztpDjx1M0uSD4wXoXZvxqKkC5LjHVoh+DD0sKVAds9WFP7CHRLDOj/husl9wYzf+kZNzk0s9H/cOQKoTJ22tVmt/C4lPia8Zaf1M1Ax2hinmaYRjfRsbjP25OVYoN7YEyllk/c+4+frUN1Zu+Hpaw8RPeML1Kd1dgfHnS6cnvaKb1SNUhnUDGE5HcJ4LAXs1AR4dfkccd8kt0ZcQK/buRQ7o9pOjDzVqY+JlydUSJbdshjn4R5/6QB/ZYhIThspeMdvFgyT7Am8HJ8MUqcTVKcpvFzfRfjr1DuwuMstyBaF+iDpUbQxkPmK7opmUrEbmEjVIpjqZu2w4NxHcBBUBMh8bWt+trjCjJbKeHUm9BDViNgQPytr0AlpcUqlc+pSLQFCa8XPCVJNtQa5FGcJ+fFttNAcZUnbVq7z/WQmumsrEOLh8QUVYM/oGaElo5ifwQRHSeXY+ihHM81HM19GVXQXAa9NLZNjLyUCG5oaoUn1MkbVfJGNZqVCi2aS1Frriox4j+meBL4FwmnIP4t0j54Ar411/ibKWhyZLIFOM36LwPS+JJCIdpMDgjqigac6d83EcbTBYUjxsBp6HR2l6Q44E8bcVt60VGlPOb3wFyIqAm9EiWpcizlUER5/Q52govHbAGWCzKChmAi3O3OSTn/i2p3uDTUNQoYUqzwO0GzJMOQgpHfNbSYJacz+6RFH49iUFPoz1ZC0hYJs/tFsJBa/doD0wLsWr762w3hSXlPAjIO7cbj2FJmGYJjr+DxnIADBIblZ4VJa04A6OI83TT9oUSR8kzDYrsf8jaribHYQQ1F0FnpiryTPhq7WneZkbGcsy0FEqfN4U1T7O0xv5lG/CWPYTTIICh8CvQ7/b2vZo6+7pfpVt9X8MwPtyJPcgGgzH4lB/I5CQAAS11aGePPHpk/KKCowybOLUpzZmzYyBsbajWK1pgcf6iF6n445SibiJp3V4M0XbnaZ/8Wjfcbh3pL0QejBUfF9M5jUA26WBzvUhNQhFxwuv95cAUFTra3qauYS3ObmR78Ja0X2lyjuKOI+Ss/q2o9mvBFx+KCUUuLY9EKtB9Mk0v8Xmu62rLbDqzg/8/tlAMwWkF959awx050Uy7/WjPoGXniQgW5RuzJ/d4I9ivotcAjHcgG9cRJ0a8OWL0F8SzLeurlw5GTtFGV5Mw+8Y6SqbHk1VHTw3VR/s9y4seMGIEFDwZN8UXuF6MOlPYMh5sa36Fx9EWg+1vQYDNSfMzoJYdEW21AqnYhdIhKNruXr9oJ/P6Ftuw4+KIfa0lOh+76ofsWcJzhJeFw3OJQNGpKt6eWTKVpModBEf3YnUPR+EQONwvjUM1/e2jkkIZp1ENLsm9cjv1EoTJMoTFWKPTb8uw5cq4DcqpX62NbiBNvxjsYpWY15dSOew2Fk40cuU7ylpq1ZY6DvQ4aK0UflLaWdrkhbWvT3caymZxqonn9LvC1At9acoWdKeRJcj4fVA4+IWweRl8bw2jkgl0roW/x9RMVjtwr9YdT4/Gvufr0diPsaWh5XJZ5VBRj5QUL+ds5qDDMdMB0XvSxCRP+lQO9TqdjUyjzYEBRXflUcO6a5aCy6tcMzGHH67MI8/0XNM2/H6/FS6HXxOKPMuKm4kDKwKOY8mDDh+USFsLnIgiZdHdBTOo/suDtqdYRJU17gI2xMQ88iormI3WluXy0ChUPpj6sTZPZh/3Ad8tYdWAoUYeDAqq/YdQShhQwIL0OT2NoIqGBe5uSr61GoGs7sEM6aGFDYR7d4cHfXMYdvy/QdBP/ZWDJzftj46Llg83aSN3UNPbTQlb6osT0ZG4lhTQYBeHrEmcRTBaMlP5o/NPZhTXGxmnqduo1BpOeIAWmVT0mmcpnmY3jTCx+8QdB5po4Ws5aKD+vORyzwC0VLRSENKnpqb2NmiK5y+XC3gchRVttWlt8I+qpv8ySUHiF7VNcu/zrGUxCNVzc27grZ6zm+qSt4MwgPf0c+4+F1M2zcn+cUVikzohrEjpQUYza5j9cUum2i90wHjE50WD5RLj0hckhtdpv4pzZlZGk/KYwna28HgEnUnD06rW+JkhJOWVZ89KgvKTNE8JKKB75neN68+oxXhl5YXmYjEOLKSxdHT3uzicgnaZEiIuf+JMje8eHvTVZSmC7yBO97mS2mLhMaAP3kFbpXXh/k4TDpbAS74QFGFVy7ctc+/UxuOkFQGcdRxmgBYh2UqX7xYU+O8UuPZ+/tR0O0zJwlgONW9iGrsihxca+qskXPynKpHokKz3uAkn/eqH69nMjnoGYA68sg71fQ9rUgoeNEowcDeFJ6ARrzM8DwLemPJOeosCHcOBmE1s3QJBiIUYBbne5bSyf9hhHxvU3DpjQcVtYcPq1OpL6WMU76FVFsVVu70XMwk6XDHcqag6t43qhxE0iVMrTZkfWOGmZRmonzLZkFfu4R6R2qzAhZw4aXktm8eFL5Pv/fdcFZ2wdKtr2fTb3AqKdk3sDs/oHxZj6y3EahBqAuknDmFSW8fON9595U8uSgmiYSIZZ00Zmqnbft7vtGBxqCUiisc1pC84OrnPsnbkdDgGEFG6XE/D9QF15AUqc/p+7WU4bWrdmkHDJIsKf/sMPt8TPrTuADXKMLcwjge/No7dH+t7FnVU5kd1VCIWFwTZQHzw2gkS8K/FIf05Ztr1/2W0cQIozhQrKp1gEVfA33ciQ/d/tDxfD2rXvGI77b9g7Vbgu3y3OlvpNaXFkA5u7mqHbVBQANC6OPRQbWVS2B4qPdFyLWUAFPNthCNOOaSbeaL2WmVvvsiFXE647ZUY1nYkFXZZwXV1Mb5dTEjePNZ5eyU9Ht7nPUUPxjdBvcJtGZnMKrBXbjvfiiEeNNi/27FCZ7Ooi7rexZlosDyxa8S5EvA1CPcsfg21eHFP5qUqB94YCO2VXgpYWKhwWnZSd/2OPeYv1bVtheXkp3Nw/nWYXgrJ+wDTrS2EjIb5rIg4qugvPo6BmPwRhZvLEbGlKsCecYTCFpRwZTh5UYNoZAEv3iXbs8JYBekSp5EEKU43UL+KdBzlY0iQODfdSY5z3OKDWptZFaJZyHAgNhbNBrIkOtYTwEW2/TO0TTdKx81+/jvd3YtYF82HvOk8HkRUbuP9BTK4C1RQ0KvzLZKtlJk6dpPAYec/VWScRgt1QQU3Lgqi0iREt+47+jbwXbXFw51qzDOtA2sn5XLYUzTA7NXLRv9ZprlpJNRw9VuUmUxldFX1nPosDJ6+v8dvz0b+IVYQIo/jy9vB+1tcazw1OC+eoUJQkn85nH3CRUl7upPtT5wHQW0P7m0h6RM1IGeuEcB6E48GldtWgkagnkPppcSO8pRrLI62uST3RIQ0wy6fjithN/3VJghp4bEmMy3IDR8iRnRVCFJ9eMSs6z7d7Sq68I67daUfrpogoBfgPV8ahEBy/pXJbxHIxTEgtlh1r5HBzPB68SDqsR3gnpZflqm4vB0+n77e+q7TvWlVxgZUPIAUnn27ZndwwMqwkhtcn0+V7J07/La7yRGb5K9EbgwswUMSyiB0hZcycoFM6u9tCCu2uLziBFoQuqRlOyqe1HflsQPZuZxQgPEFU05Ku2QGQv3p0I46LDHwaKpPocFAKnpb+pQyOcmMg1a92/u65Oq1Xjbakd/LsTzcBcYeWB3bMZtThZJcHt6w1pjRIHj9iEW26Z99740uSVHBmhaLUy0euKa9/JEV/trWaxrHlbBHdV5o8qi24FhUYTwcV0+a45IegixeEhOr55WjLDXkCZ+wCEMERVvw0ZC3TIpZQH3t7Xj8M92tG6O/T3RQxl6e6uOVpoV7ZelC6D+XmMwydYDdGpfb47VSWFmCi6YDRO8cYfF219XlHNriiPWCOvV3Ch0Llh3TizrHxI/+KQnOJwSckYNCv37GUMGC4t7frDUdHWPfuIkOz3UZ1lFnzqMRwBynj5WDoQNZpw0rcYl1JO/iVzCvTInI7gisnDDkKonUYyi9qqKOv99iJdDEuNAFcNAYve4i6dbPhHQVEaroV2AgH7AkF9+fDAIwflLYWXzuUP/fyZ8QI7uogYQzKRtAOsq/oGFYLmVeLe7b6ptwELIxoVBS8L1NSEPKNL7fC1+cY77naWfg4o0R7FS6kjMlLDw/u6wG37YltIlKGcL3ZX2Ao2fxhBEoiSLCUlKGhEjsBY1CxJFY4KRIFklQz7Z1FojouCg5OKSATHx0R2eTHq7gJwv485Ij3O8A/vaPvUwAYqBD4k9+DsPJJMw3jNtv6w+Op0wZLctm4/sKoeqbmTkUuzKnGndzM4+aMr/MVYgDu3bioqN83sdWK/iEIC+p57BNLw5kY+znacx4Pp9e1vuL6xbfqIJ37QR4zThwIkDMe26Cg2BFBRGVcAHaJNj3cvhZVCaybPoH1CSUh8S8JWQowSNyh5jK3HzLsZvtZ/3No4lGsW+8Zn8KgVgElCbKAaCSFMqKkLsqphh/L7lxPFSoynMq4kyTU1YQK5q012EnL6KR5bdi8OeQu11cVLXFHsnqtLC4Jpk0Wl+pBVH80F5T+0KlB9vQ29JcKmMap4FqV2mdiCvufJpUGnVO2mLRWdP707BXm1qIhl5kuRQT2dUp6st1Avtuo/Qs7Zg7MBteVvNKwFwtJ6z4+BF9KuPgQjMWtfDuy6YhKDAXxBEedAyaQRpoMxMgWwNZ2+PPKVWvGydnNn+wcWKGwz1Uu5S21+Oua2djGMWOuA0aOkVjxLbYqersy3WlGZ1GCbWUKvl024KRLAnYDOs90+WvCz9cITXfpYVIZgi0IK8tOvMpdMxcqVKZlzsArrJPe8QLoKJWPd491BIKmMbpBKRk9hVxFNDxuPtU6xoTDKVyo+jaT3V57QSommwLtKpGH9O9dEcgQn7mN02O1s4r47vhZRGJRNHa1VS/CpixJttesateCTOmV3GgLt9T1q6FJdTvuruM7X8pm9GXnPG6kr4WDDLFwj2/NxZmOIGvQ2gyrXQB7CL7c6YWEkUmsybtdI0MeKdMBTEdDlrrJ+GQE9azaAu4fnN1TNY5f7o1miD4k54c+8XV+qxeiDXf+hyENdh9RvxqY06NAxe4O9VvpdkALggDK+ANBE2SaoT8x4YbNibk0tBsdat3Oj1/z6YK/+TJSpvI3WhX9NqGhb3PVG3myS81nM7/9TjfhKTFqKd0HgVbYn2bXTd7uOolPbQ8FjAJz/R4TDng3kEgVgpH3XpAFwxRyq/XU+6TNvX079quMg+gCJQEBGN3hPdsL9hiyXSqBE4H5/z4/bFgydiUMRHbDweNU6ROU5XKHgnkbAvJZwZ5a9/sLwGTFSmLk0uuv9/UC/HUBnBSdo9ptY1+Fz1UjOEgXK/GBNUbSpIH8FBk82IPvRaXeSnas8x7BrutYzbAJBZj+k60r5Gh+A3Tl7B60RsbDb5AMXyKemjGr4yalqksSF5iNKoM0ajN7FHrr44qxaPnNPzThScN0Z/SJX/pk4S47eVPThCwUwyLg31rn9Gtm92T7XvHiRvCv3mZRJOTyWipfpz4hcgeV6il6I4oXZxrLaoYQeIrG9/7SFyIPVDO6+8aPF/6K1uP8XJIu0s7u4LAhOXAL3H9effmgyIW8f9/x7uovPMTHHxeVQwfcaHN3cLWmhkuxSpWp8fVrVoRaZAJhIYQIOxworu6jOyAW0gR0b5/w6cboWwoS2jOBqGmH5lxRf2ZPVXkU1mCstEYmpfk5vSALvdHm3GakmZC3KSy9b6LxjPSIfpnvm+MdC99ZQQBJLVxYJ68+Kbk8v2pkP740s69UG5rX+OxDn9bfC2Q1Pw1bisjqvIWzSTWRdh364pGomdE2KiVTyGLiERoQX16jFZyTbwJM8AEBAsbyPb1C54f0eFZwZEA3fC2uWP7AheEuztzGoVfqvDzfeP8EbzputAATpo8WpAr32H64os6ciEzC+wHktvtbJJlH6UcJvFUO03pNu/Nl1oiHGscfc2BmUKqn1qGEsNkzjTocmcDwyIeJI3nV2LuK3uiR2oSn0Ve1D4fRvttPI7x07ssSvIL5XFV2ToKotrmLvLoBNIFrrJ+Rav2YyYPcXU3spoMQ3nVjy7UBPg6o8tOHpt2qrG7Wo2Y8yE5oE5IHH/5+hPvZWz4R3tmfa8OGqypycKMVLoaL0dh/6SHw13l6c+2imV+Yyb0swIjZ8FFZmYaVf/tb0HbruxF+Id92HP4NFa8F/pefoFRIJuMw2rivhnxB15OpWG6ln6KTHiwbIlFU1slUGnkYR2igFuhS5f97GJOf6qWDxd+dpbOigFIbc6ZzNIA4iYRy99Cox9lmoanhZxixRyW0tR91nP+Wa5/kpMqWyVgA+y7LbE1vetO/8kehyEd2xdGwgGWtmMCz2jFzx//Z6GWihUWHbk/Z8sTSmb8Q1aWyPAfqm1eNDDxkCZTOJbU4eVwF0TomCuGjiQ9YaJMA4o6TmPm42yqcZd0A0aJB30iwc/49WARrzJkSRvBYRs5Iezvl01BvzgTYRObenf9w+z2A4PkihGTVj7AQOitD8Kxu5mWJnf44faT5cMrR4WAsYufBsFt+ImSS23sKrRA8xuNCIXCoQGSd9OQd/vk5uIgfk4gYdsemkh7/tbbXQ0HqvgNBgJzxDkZv3R1nwMBWAlMctBnX//EBQQcI1yYZtvRBxTIUIqmsf6kZ3sidkGgMt8vbzZjxMITSQ27XDaaiqdgNeiJ1WRRez15vRw7Jhtx61VEl6YMYZBERLE88q33i6PDQssROdSFKjf2tuCTjvx9t5PVMNlFfSbORfitqXlhpZt9o/wx/7DqZyJKFSLwIiMCbyzkAwiM9IVGt1CMGokHwFH53mqTWsQ6T6zKcu/Km3pMytxHm/QsQnSPuQd6b0R/1y4QUv1x6Q9gHt9bX7Lo+bj/dSMWPC3vk7p0wscU3yOHMR6G3c98LDkmWo5h7aq+yaVngqT13hZzrkhy3q/D+A66WH/q4OGRPBpwI3lb2/HT1fwIE/3BtSB13XKJyzjEV9QejfM1gFlMZ1XwexpyihtxK7820WOjDoZlzqgF0eKr0wreFR/bvjhGMk8jI5FA5rMrau9GG/Igr3XwQsRylJpByRyUf7l4hl8LsZfzovtvWe9/05V9L/zwHG6VvVvYIbpBTb1DJnsLkRICpdS3RJsCByd4W/TMbBNWPYu6GAOJGIYUuUmu5QN15VXHPVcEEyxZKstjpMqsUXMsfm2H4YWzz1y5akE3VhkRfpnM3Se9tSzx2oD/4e1GxwZj3w+mojzKAs3Nleneo+gXNhLZcxflmdZquvZMRc7m9hTnkUwKaccdoNNZP2o4Y9cRZI9CeqOEHXTWp6/UbtQMMLBUE2+Aszvrndj69gZnhhGMHaGoFewPguuD39bzrr8Tyxu6AB3c4VAQiuq8E7waNqbbZx+hqY7yfbPvMOUQGlko+AHqy4m4oX6i0KRv+0AeQIqQVNDHt5lijeLROra4+CVOpcPeClNKj9JY3xx4Y33/M1UqRG7JBbvU0Eg0H6HmnhyhMkL843gvDOkdNqwJICIbZK3O4OmsgTeztQX04J9LOOGcndDWJ+fUQpwtDElMMNcH+Dqd+o/5aJyCMapNO59sxjhFHP+t0+LcwdwSRtgvpb16Lp1JIynCSle79HrH5znfzdmAXtTMT4qlWA3PvrBUDkqJ5bETD/Ux/K1Cy7uIX8RnGuSkY3XTiRsvb9pwhBx0smEVm8HhEQ+XCjP33PJ5cFHueEsvI1ztBav5BzGzeZGC1yGCYTQUi8QcE1IrFO8UQKcGlCfV5JfdBgO9dmcSjxR6j590VSxHwjVxujmUasnSWYPT/eMXSn8dr0vRsvhGF/EqCE8MvJOKNLfRugeVl6GgpsGmPuzrOL7oeSrBzcxCEIFgy3qDSokztpLK+cK1SFSZGIVXbK6xeczJkXhX8WVp5/ub+F8Vk7M2W/8W4Dr7sqNs7e2bVKHAHzffLxy58NLij3YlRKNVxmP9E7VHiCqX1DGDfomnBtFrY6xWXAS8NnD127aU7+gABz6mqDIi2W28S6SguFK/ZZtnfuAadJvzKzSc4ur5HNZ+td5c8krkG+dCklnwOFYi3IDW1h7QxbEd1mttTic2b5ueMKChfn2RzZdG4XAjK1V3dO9lEVyRk2eqkA6wRsfP5XbdCRFAKPE2tm7JPw5HPVZLlT0jZ6SgDkkKXuF2GmtO5in+F57T5Dbi2AJo2AdgdhO2GoUJhAgqZ4394sNsTcrhqPbX6UCaY718OqqajIhKi6FdafovLsmb1EW8OlzRugTfbwgqsjgZRWSR2IFNMJmm7wjOZAn8SRAktwVtpltDxE+8lVkqZf0wTcEXghaOKUeXc+RNoiCqgqTeBcriMHF1JKB243ncrTtqcdK5ga8j+FMG6c8xq9kCOI7jpFPcew5wxTmNo7XbUdD/OE+dN9oR9/vAuYDQLJI3R/b6hAbocuOks99lp+rwFDV8LBQPSIUjCE/yQT3aLSVG/MEqTStjNFo8feMfLw+EFnMIAJMlXEir4TUN/+QgsKWjVEJcW7CxosHyjHPRwds3Vkm3XeVPD097P1vuVBF3XqfQHPZQacsxdxLg2FroDAZDfsqKpo839QeaP9YY/4n4Br7l8XZeOLFYN5KPPfnhT4rETPjkeHiD2mk6eQQ55uDDIm7Key7IG5gC1I/VuKuRL61ci+MEyWxvR4K8pkc+nRtcNG74d6GUV8oRO+wzHDdVPktc8qbkTPAFW527jQYBdZvkxUmv1kvH/nxRlxSlX7qJH5Y2SpwqOh4eIRJUdpnn1owBQcOPZHTQYqbLDXUsYTC81Z1nMdnuIl6M5vqsBJT0jc+c9eJoZsRX193xqlh38jRwsk0iTAUNn1bF939o3pZsAIEXv4unKNbF2KYSELiA7b6hjQHnjOjyr4bAaoGLMomCAZZSphTPMgC1Otvf2of/JyuXJUPLTMEPLPq5K9yjQ3eU2t2bqH+DKKxPD+sP5qyqpMwfNmYisP6DX1Wa4Bcj2qkjsprL2KQw9zESfR8HxGe5kygn0XUl/pFHQOgJtqgM0rdwigLjGfnYkgSnjjdY1YiLzoRzxcAEXCs7zqJwMUtzgyJjlQVk1FdcPtEhM+xFepBYaw2+whScY3tt4BTThbaKGhe62oLsSXebiyct7Cah02vta47bANw0iq5k7tQ565DCvoUKtNGpeEYvmJ59xQIC3ouFFeMMmqvNarYg+EtDLi1BDqypdKqPshpr1zb+ZjvWD6ZX+7sZm9X0OHbXuHCUStONxd/ViNq6XFTYZSIuCfiJDAKO1GLupCuBkvaqgnY59Rsc1vgCTuhpWxIvxZMGRbC34lHDcgEcv8z20Dqb2dvcChbE5sjUR58TrcgJM/kBZj7FId9GveHwfYSutRXG3IbuP2DiluNfC6h0Fj2uJw8j1ZzwxSq3ecSUfE0U0tTf8KcrYw4CVWEa/3i9eVTbtsm/5oDBRm06yalnQlHH+XF0fsnYzRXFY0iyYPL7SIMrzJjrr7Uo8/ur00kPBQnSHpySiaF3+EQSY4AdkgORtsd+egYdsDiQyU1Ku+dEMr2279A9Hoy3rjZKeyU36TdIvbd10NX0T/JdKveTLjjsyajLXgz8HdKVTEgKZI3Wp7f4uUFtd2HJ80Co2PEFsoO4RWQodTZGY1ReQAlr9XB5FVSLZ0pTAbnJrlXxh2tPgGGd2r4jijMbgca7ltqPS+8ZrqeFiHjzw+VtggqRvuydTtZU61keMBoF85YmRqUDIQakPIhVDWLqdS1M/yq7U1OFv5CHtHOm2IqEecozIc5bRzwYZ7pm8/hGIxksTxfU48V32iWfPV9GBDC1tlXp9d8CCAtDGQSjY59TexGJp7KEAx+r/Iq8S++lLZknrKG1tt5bhdZFkgzwzjPaUFquYl+sbU0AzBWDNPRR/i/U0VSXMCTdMxA8m9er+6mhUzJfmezYva7fit92pAtwcWhM2ZlHXO/uplQzQOZkU5FmZN+Go/by8eBHet/V+9SKKYCrBSA84Ho4TVIB6Z3DuWQHvyx/W5r7oqAHmFk3dLF88mzTL1QcPcD7g89wxIGgUmkFklenQlsf+br+Si8ekhn6zDL/UNT2eqbywDhkFgzoqyId55B5XYhf9DN0TFXp9jDwTzqK/I0Q/jO12O+wTSC0qZeObLkpPfxjph3rdv6ye5CVosg1wjsvVjnLqJZdtfWlWyvubQxR7WSAa90/L2z9qS8YBu2iiLA+wOgfCA4d6TCsoiPTe1oFT0rUq9fBxETmB4dxXMMT+cds3L+D8H4xiHwMtSgkOWy/NivZ8abkpFiPvuZ7Flh80bGNXo3Ov7FPmA6jvCzFyx3Ecgvy/GZn9VbNeiXkOqgNPS9w2NLBGoBUjX7yE5sNJ4NMoBAdBbV0vmBnsAg4qKvFMQbRBfWf/TZe+XjXn72OQn
Variant 0
DifficultyLevel
685
Question
Leigh has a picnic blanket with an area of 5 square metres.
What is the area of her picnic blanket in square centimetres?
Worked Solution
1 m2=100 cm×100 cm=10 000 cm2
∴ 5 m2=50 000 cm2
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers
Is Correct? | Answer |
x | 25 cm2 |
x | 50 cm2 |
✓ | 50000 cm2 |
x | 250000 cm2 |