Number, NAPX-p123173v02
U2FsdGVkX19Du6bLmRTK+Kkx+e5Mc0PHe5vYJNJizC7y2x3OS2SzmOqEBp1OdIiaX/1Or+z042IZHrLbsxE48Kup7rm22HnAHFscBMUzfKbrgMGjzFRk9Vy9Omc2fgM9HlM6u/5IG2LwedhtfqJxg2Xl8TN+5ilmXDPG5tHynAkjWBCFZYUZ2Q6Mjecaduxcv0oZ71G8uyDALglohvc6nUkPXrH+fOG4Mm9yolhflr62/IYr7VfPodzqWiSDJOJcGBgJJtsOTh7eYdbhQ6ZUw68oInAnHbdHVaCSgFa6EZF9rmJtEr1OvFUzNYMG1kX0gQKXPzwQPaMM3oWsJUmEQdoL+uAPvw1vPMAESQ89T1NWC923bFoiFW1aZ2iOi/d6RmfAjDnLyOcFcNUR0BoytOwwvc2CbY5qcyh7J2KY1iqzZ7Edv7kTlmzB5JZrHb3fOYmQC7607ldzexqsmwGH/uj8+hsP4cc7JQVIkLs9xpWS7a1xYbtZd7bD0ZFfKqUT1Z7NnL+rkcVPFDkK8JrwgvbMpEaGrDHvR0fy7rcZt3JwtXdY4eUNyu8V0YqhEfPcI++VmSiAZxSJvp3U1SwAmJCFb2BGZyJC440NXC1fal9lTMVUTHrdBjSroC603Qjg771PDBcyHtpzVyOSLh+bPS3XPx/Y/RB6GYlLMsUns3m/PoIjp5kaxCHbaebT/pdwIDx8v//Yrc6W/jxSnLYfwWa+LaU1Qy6b1DqdUrpBEgnQMkUhhmPE78jfbymq93GgcgTQYzWA+cf2LOBcWJoDcB09TNl7EtYnKrbBXjqWKum2RevpXrCG+vDu5wYr3+mKZfIELohLpSsXeaANzfcZPGzKHbFuWtDwfewEAFlxDMvc4eqSotcfIzPyzj8WN+A1kYrmeeYlo0m7UONsWblEBQIEUgGvDOLSt2t2SiEs90eRazkOtatbdGd8y+MSv2+Z8J29jjqBDlq9tixtaVw7XXvDYhX4in6liQvXhRmxVZrM1DKrzjJIWOpqHJcSA0MKOHBUjXDHs2hQMojX9L90ASo1kwTKwFmTcvB0MXz8cCwf04LDnAHzQYhIIQ001E77CMIpBHMkdvB2hEGG3vdXW9bpMgL/kbpKGyxAwJx8i122cVuH2Cix5e+NtjD+zIoc+BCGSiWiLbLX/7RBF/sL+ccGBGqd+psxHckkbhaSCPZkSNOYGDOAL2a4YBsRizMr4baT79dPVUT7CIBYdQ9qWM3s3X9oSj7y9eUCWQFPSpdFjCvpVVN+EqzaamD0TTGqzil6UH6Hmky832AHoFuI8Cll6shOy4AmYGHp/ziRfdYiJBdNlfLXPR4CcMmyfDoCJW8XfUGzzD+UUvA9FHRDIjxIsecJ8alnQDBFO+892O+j/NTyriSQSfXk3IgbP3UnhIL99tqcdbMvqZHVAfR7sNEMxzB3nDhNWeMn2XnIPrjEawKOI5wvIwyGeo4TIQu9isYAoVLj8xpuDKIkJDSO9yHn2N/2wcBRelTalXyUIQoL7moj812O5Wmv82CL18nBM/pUAC83eq6OuQRcWe/NhsrUmTA+2AJWxmGT/GmPAqnELEExGSK/diVJG2mAfgBxlywJiWixZzWl6SsJ6i4JyS/DVOEukK0NW43GmzzV4p9dIqeqIuzPevMr6l1joofmCq9Q5Sfaiw04wHl6tF+lpSCsM5MZcYBsKonMWeOFk3jOWetVuaY3IOWfPiQLPOumJz3lNal+4jQgu7GTq6y5GNQlBt0wh9lOY+YBodaRQ2JS7hH4/zdFYpMA+6IPVyCCbr0nl2NOT6LH5iC3bjQL1tknah4DmKxopMriw0kJM8t8+U3785enHtBZBrIISwepvF2ASEcXiV5cKGbE02YpXC42rfiD5KXklCDi6ecWlKWAbGqjpWoZ+3Nq/lqxNCLA9nHJ7DCB1V+/La3oJSVJAP678chYBzTDMmJhVjPsMmeIYorF0JijCD6ztcoVvmw9p+7HOo9iQYQQ3HQ9dVzZ7/KmtI1LGoV4WrxxBG5wnIiFci1s/FIXtEh8teAJuLhKmrOMhabRfDFAMLshkSiXESmq8PcB6SL5DItL3j5hnt0Fun9zX/QSXidMWd0dAaaRsNKelWXjA5cwiF/w7/1QPQ5M1C3cFfucMQMw83vhV0c+9hfhfYqmOxXJSQVHbnN3MHyxSYHaacMCHo9vm6GjvdnPY8DFpZ3Dcvj5r66qcKrRrQ8hL89r0Vgi0nteOfOvXGPVtXpQoGXz0kn4JYl+CcisiMyvjZV26gfTggRleN4LuGVxP6hF1O4TcutZpAnMh6G9GdwIrwuXpy2tkHsRFCVNI/M5EBsevkXxM2WTlKQ33Iu0IgW17q0jlYvbJjU5oklNNeU+WTeal5bsPw2asYAYX5Y1YCF7tMPhy6ODODrqyAfNR4NOtZaYP4HsoM+5/IxOWMbzu3t2gNfVilcj9z17zF7OFselcTExDa7pXzAhi4hDVitfLQBqdUD99k5KjWphVty4szziXlXbPQKc4i7wCc1AEjXhM+zV4FwisSfG3v5oquFfnRVOksIZOzsliUTzf78TdUMO1WuGKXvB601NWfZl5JHIt+L56bh+E1YBcHkwqfPk1z7siT6bExsxaCCXa2AN9SCpwe3rkntuGvBLAoLDWaHSmktyJNyRpo2MXsxnaheolMkfSp/LNQZXEancS/N7l5dBhxqPxEIX/C2EDGRLlVg6BEUc52714PApj6qSSUyJ1rX8FQkCqtRWVSlCTt0qhaQTqTsCDgBOVskBqZzzoO+r88JetDJZX/GhB2k/zVRYzQNc5XRVpshQ7OwWGeeUMwJ3ZjBiq5ylG2XNBQYbG5GszqRIh133/UjkeV9Z/nXRNwykLq75liKB23aAZH7rTQ5FEKKrtVlroU5RYBdNNZByD90kW9tdrXDJK0YvqhzczASeImq84R9W0Wc44rsjJlVGXnQqUgaCfaZxbrUvOTKYykxL1vBwfAuANuVbbHqgnLnNGljWE6zAm2KzveRrkdBoJ1MgotWVzbzRcFgsGp0Ipz5S/8v9Vad5Nu9ZLOrO9t9LpGeze88lKdPxljfBmBLZCxo0NI3aNgxGKMWXFz1r8O4cyziV34KNrI0f2DBaxImkkRQC8HpQ1SGNdy4gNXrIOIcVaf12fUPV8OfG0WJbjEMEnp1d75WXD1G7LkmEekZrTyx1LFcuCA2bv857WByWpFcyK78lj14HH82dMquLUEbAuPnulb5X1ee3k/JCsTLJQli3f9KwuTGNAqM2SI92CwFtOZAaScAHsJxWcBuJdya6U+oXPOItw5po8N5RiESMpF6VLyxei1BJemUtVQPLMHimH5gfirjS1vvjHFTIQFt8DJRTIgQ2lGVfY7WgWyHCKB1SdcNY3rGOY8yFym/DQZ6MHDJU+0u6Jl4mQs67hnYrxX8qVOvAzctJvCnoKRSaXk+0g412Vfxsu9D/Q2zcuGNJ2eBDNxLj3vAF1hvicOz6TEopurcFyGrDx2QOd8sZ3oHvOAoY5KyYzhAczk6YJ7HWfiQqYozCl+QmWgkKmK9srNf28hXveelyIWwANRvceetvTqhRXy+TnkeJ1xMoSQ5O8LU96HFgL/SVBgPMRJoMZeoCh5ud5CqHyX0id1CoaRsYSbXWbpsjKQcBAHH01pBrqbHC/bnhtNn+tJbDmCl3BHgRRm90SRiTvBPsBt19aNc/twqo9KqxlZKt7Fi+ZyfoXbthK78V76sk9kbsGrYBOTTLv+aML1IVI0uX7XDvOdVrw7aWKJmQyJMzmw2DIfUErFoldZsaboTSegKEKSeFE+rUaoC5a3yqwMrWhaey33n8y5dYS52Fm5qbTsmdKOynjdX2GtpZTd8V2xCVB2wOdU5ybvtXcEI6J+0bGDMzLVl2CEVANjqnKoFnZQTcEWi0Sknztgiqksj81NXaAivymUhUJsD+E/09FM1pMrTide1x51ObRybjzimZEqYIeDh8777wauvJyZ6bFQoZX8/y2cuaa6+ph0Kx0BsgJMqcGNnIByn+5fkOXlRMXlnlFkFGiv3Vm53zbHJAF6Psui1EWt6kRSnV4Ykj/xDwC/OlWHZT7fTSw2s9suW+Wyw7BvScwsZZJyrm65AQCwOVeXm64sC0i/z9ns4wvrFxTGeFxKne2fFUsBVYoTEUyySPZxX6Bx5qBJ4bsEXi9OSsX247t6GN1wPyjrbwO2UMX1tajHdQfN0AXtJRrl2zEbLV5pOQntz6tJ55zNLvZFp9b8+7FkbeaNxpK4QjPTtOxarZbgn3kSc54ehouiJTLN8Cm819TOHOvWgUHoOr3bHJHFg/UHhADmQADZ9AlVDwIlXe1vAg3YKeCcNo97ZCBq2yPYqzbH+l4oWqg47TPRGz14AzoO0vbMFWebWzew7vUq914XMYoswx9OfNbvJPye/fw5v3hmA/BW+C6BOtEZo2s5TJuppFT+ZbVW8vtkrZCWA35+nBWcTnIA0p1PrUiAagjrDypDK5uM4O5JIXbwt0sso9DpQ5KsP+tLfRFlE/0belCCynEyF06RAJwsXWFnCXcLgUbhlfAk5F9X3uJQspgR6Yr1jy18xnoWjns5asAxLO5OZBG+ssiYLqHD96yX3+sWsH/aw/ZnXYmoVv26rKsEB0M2KD2yyUAutiUIMkD1wtR8wYL/FCZH5tP6D9brUsZevtvxloMpy7WT1linsZL76x/qkSUL8NhcwsOc9mTpNxtyktInOnKuByfZRXeVY5lh7BI1iLKdrPvjL6u9SuBOpDDu7ES4XuhcWSD9f/SHlwzPwE4G/krfJ+8pM9qS2tIenrkkKeLBBVXrPRjRxAp6A9j4gXEi4y9Li26e+ONZ8g1oTYqUSLNpaN/XSGUYCLVmF4m+34ZPaOyhlrSKV2actGTVu7nrajR6gqW7vqnneqMIcDKM7uFpIqwfdet5gnzOBbFTKwfqjGJFQhoiEfyqtiPx/FiHwjIJxwJfa6XhaBEFcXkWp1Nu+vZg3Ct3lImGEJ7nFaU/aZ1hMdlub9a3FTF2zRomNlLJ3eVGImigUe96ZaiMI1hywTPtk2RiMy5ZHLxRt//uEmeVBkbyk8lKYlCOw3LTlTgxC5rsay8sxRkxgFEQUkK7MkBIFE2D1tJSsUXlEVTuh2JOQ68RYZxSHXjHqDWlaT8eDnu/+OA2Kuynv6XqWopxUu4orYW7WM81i5ldOUxVk53XMEJIzYr7KSLP/Xef+f7PJstgnA868h3+F36vBHtc0OcKMlifZMuXH2p0Tjz2jev09tKOk5lWGCW2rh4XO/cb3oJ14gdY2o1k3x0TTE/Q/9c0+QV5jfBvLjhPZeRxE2ERiT5rFtTBc4hHstd1REk7QNXrpmo8ruIz7gw3Zt2fAGaIhfhWvY6Ivh6mGDJTeV22BYeIcJ9OECZi17wp4B2MLDA+qShD+Cb+1st6NFO8Qa3nPAF5u5fsWb8Xxa/NJXHLuKuHgBOlO00x07duGZOSeCi+CyIgWBBKuFCQz17Lm+bm6bvpYPyk81M4SV49vfr9xqS5DxwAru3kDUFH+3Qciar21wHXEkQ8wYQNx01sNOfrkYd4T16YFkxO3hw4JcbdAIDu19Ex7ur/QDozlzCK2doxPgUX2cLtXVrpfs6UHK6zw1Yo9/1lUSTv0WF3LUGTewtByHlS38iS5bAuz8EelN05uz1vKcTijsh68/cRUJRBtm0NabtY2685blB+K/VKxbpNfbpIjyUatoabmcC+JSnIOpM6bJJxrB6CkKt8tu5A4+t7QtZJUDtBc1uslXHiBPNT7z+DYs46ljKJFyx/hfN6SoXro8EeEKlsN8dncWToca885WKnICCyoEMK2ozQ2kmAuwuf+hLyRPg7t1VnOGcDh0tJqac6R5lI/9ZdfAPy6Kf+LBPBqNoyRuLa2JPz89dXLun+Adh2wl70XVepX1Fj1zY6NRaWukEDcQGelB0gmT37ot+UBZsLvmCD3X9knS/KjUHXneyb/x5KGbB4pXhin/AdWoFpTeTlyTmHcgAZ+Ev+lNk97w/8iQIqxSA418MARDQBH3eVs5USIdNnEvtux3613sgj6oMAV3n8fd5zA1iLehGevhDt894AXW0CvlAFvUVdfHaMuTuTl+MjeyCdGDC7rTfnq3U8hs80ucntnlOWzQ4sFHObq4zCWsqDANQbJHKqs/bnhXPO5iKd0nONt/dDrhStZv3VtvXvp2SSGBlALRAx+8wEzd4a4bfBZzURBH3pgUfYswMTI4HgC40wJ065ec1TZjOlJN3Ecfyet4/z0veCXrZHGcKiSqjfaCGc0CmdkkbcZ84W7h/VB8gRqIg4vH+MsyS9WAnXEN+7ovNk2kfbN0RzKzGxw9Wmzs2XdUBlvjLUqyLa41oWWDDYBdXFvUhKH3ujrb5LW8rWf5zoKgEORvLkoEJwzMPARnMW3nBpR92Td+TZ515X2SIY+sZBSQHiPC0PUpGz52HVorox7p9xEyyu3kaIc2ZkcTvXjmlQdkhkgC57GBC0sAbxuOC4Ulb4Zk67byyj9KLxtIiQDopKEzjmSSKccDAJmBZibY2YOZkSY6j56GLmdRgX7fDOwPElogKX1iTXhsYj28fF5dPz2mMcIgaCN/vAkAvl7tEzdU0cjYjO7Pf449gJ8j6bP3WXbvtiAE7QKDvci30DEcq5m3R3J4NGhDsAsbSBHW+IxtXswcq9VeLSJiNykHyPSpgryF3OBjxxODTjBowGgg3BpNfzRFTKqEymVLlFHZ5s5MFLUVXia64C7i+OlZb+FONvnmPWmT3oKYYI4Bl1J3IpI3fR8+1w4gTyualqMBAsCwF5y/JCf9JZPmlsZTHZj4jr/dKwrf
Variant 0
DifficultyLevel
455
Question
Gordon buys 51 of a kilogram of grapes.
Which is another way to write 51 of a kilogram?
Worked Solution
51 kilogram = 0.2 kilogram
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Gordon buys $\dfrac{1}{5}$ of a kilogram of grapes.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2019/01/NAPX-J2-20-v3-300x204.png 160 indent vpad
Which is another way to write $\dfrac{1}{5}$ of a kilogram? |
workedSolution | $\dfrac{1}{5}$ kilogram = 0.2 kilogram |
correctAnswer | |
Answers
U2FsdGVkX1+PpIsKwgPbnQi+b+R8kBkqrg1V242EaQQfwyemaHND93BHlhSQaa45cT8yKPJ/Ao3wZeWGJxGi2F0sVhJkqByWQbrLPO6b3neAXkHoUgOSLd3+MT2V2om0FGVpUB1tLN2IOE6t24cNOs6+sn8L3GtN7NYb6YG+ipz40sb/SmDZfJYrVf4H0rkGl78E9QhYL3RWI1x90olpOYVvw7YcWo/iGxlz/qJfeZ836fBUcvrUt7ykFfsr6NHEFqZS0SL/AGj9uM93yonq14OkFh1Kg/0B7m9vmlzdjdBfJXYb7ri7tnm7cb2j4M/agHuCTT+nPOpmKwkAPBCh4BOFIDn9LNWtQtYP1DXKv74yVyioQbdiwg25gThsmWwvFWD2T5Q/SdxYsigqXogqDQnjHCkEmXf6Di24RgtNkhL8fV5GnoizjuSJUHCei5CcrxtZ1RqlMdvsHZLZ4PlwxvAVTl5SqP2YOTgclGEHlbt5rG7zp5Nl1LwD7Go3PUS5f+3afnKAWKpJwKHBYwdE8wJ8PbROqxmNCRQiOA9OfOYMzFqgN+01nKW2d+HLjdH/k8Gt4hHfbdUMtQkNT9F4O9g94NyAxlcT1A984TZHvH6UkyWy1Elh3i16GYVcOuY3I0BJ6okO5xldl/xgzcFgcUyLViy01S7nZ690IU2BWLkmbpyCY0VSGWvS3fHSSUkev6Ls2NYTw7RrTbf0WXyVtB2RDLA34pYCO8vSuBAmrFf2htiDiowhpzy/nCR5eR6xxqdcSKEXKDArTZQm4Rxwww948gpgbThGIZYrbRD6Wo5lkpuhqxbnHvU2MzjoY//Aq2Ebls2hAY3ttr9rbSYAVnLW8j5HUH3wwo4mYCvkiZB+vsbv08VDIykob+731flwdLicUYS46WaVSCackKddeLq5YwAAN09dREo+uNlH+RqwryrpYvCKsvO8erDCwKz8GvWC2G3GmpMGtRXX+XtBHL4vhLZQUrB9LSGnsTz9gakRSndrCc9EeBMHib11AGyPP3XIhmOZqPQX4/h6upKb5/HnYTfY4mWLVpGUkHpDH6nwa5VMZMvtA+Mv82lZJqSx4b7xAt8K6OvZscOok3Dx4MD3yVujQUonQDwRE1U67qIuwhxh4XLrmyyIfvPIQ6r4KZLwLQErlcFNLnXJ+hf/3HHmjGEs88hI5pd6IOr6wjexXVbGOmo/4AEsog5JBIAcmw5TOTMzgVT8wSbbuK/OuppZZH+ZWKs4e0lO+xF8EfLfAkAzimxtLjpU2aw3kHovJ9frIfIj4nnMiUK80ob4bIRuAgG03mbdYHNk6dQ64S9kmJyXFnKzsH5kygOOI2zf+xRWG7v0m1doptg3AVHMjMnqRzpWXGWZ3lVxwjQROLnfTsfNOHj6BvZfg324shPB8eOJpAW0HfpyVNIX+mh269xvWHRiOzSdnv3mDgeXCe7EpJSar497XSMNVaJv20aHrv4CNa8Xfb5+O/r04iA1sNkuSLegENxJvFalHQSZOw5RONEGLbH6EgsXXK4TcwZOXabDsB76VKSDJCKwM7Jrf9PNzG4Kvu4jMka7E9Li6d2QewIFU2yREH7S6alEe74eEwsuy2AUTtCc8QLd/53U8ESfp9JPE/b8HrCcYIg5wYgmf9gt4svQGd2opGQdFRSCaKYrJY25O6cUHFjzKK7f4WPfCWGodwM5B4MztCzN/y56yiZZy3r99HskoG2bXx7p3kt+NG4zV371lxSwO6OVnugLheugyoUOByz96BwDsfNt7ZmBIU/mvvzHGuAoCm/65NLV0pQ2iJCGP95bkIvyaAc8FYA9RtsKJGMBx4wNJI91RLAQbEqSeA0EmXjJdrNgivEmReSKEbfPB+PnzebUK6mwsS+MU3tb8B79C1ZpHSTzOWivukp3FklgYXo/oGkbcc381/KwiuqTpLZdqzwk+irVsAbnTTIYkCAngEuYnlA4EQM9q0/GGEOHjMOfiltX8FRicNNQ0g+cafuGdBXLiiMGVQFBu1WvUWZH8xloIYbzhjQSZwSz3rR7EixQIdNIa1STfnDGq5iEihEiE6pE9eK3o0rQ6TvHQlkgcqQ2FpimxC2xjB0z/tNCOOeo351KZhEKqB5XcI+uWcSj/4pO7B625ZfRKY49F575/cbdbZaJITlaAzcftFXVZC557vUDmRtafI+rUdinKKSbhYBkIsyu0surrHMcxZIxJljYMgLn/VDVFv7Ay5bV1RPAU+RfT9TO2Y8pP8wuMzAUx3tWMTa7/AAT+7X4nCd7GCXrfe2opoj4rCP8i9SBwFpkAA7kz0roFYCYuPg950w2MLkKEEshzhSW5h1HCLOmJ5cOg+bd4x/iQ7IdCDPOp8Tn/3Klu6KRyng6vSjzHvDmP/kQjj2LksVtC5eWqy7JI35/LkpjODseMYKv637OW1zEor7Sjf6oYmRRp6jR9LkYS0bO6OnMjnGeZXm3kYrsx2Vqsf/HnfgZMbyvy0PyPBLhcWKi2o1g/ruDJ3pQ2P7/o8fn0zKndxg9QAx6a9w17yIT+IZ5lMwaDkH6Ta9BrTIyvOmiCU81S+X3FXxsEhzaVfzJHNSOgPvhC1Qj5yZiTVXiGBGZWb09hSUvJh7WeTctW4C02vBrmJEwfU4bYtJxnJLqgnzSFvZsUWLOXlcHeYWlljk/ckiywNUPPdkenF6Z2M91I27qhSxJy7nM61II+DBGCxXwLaKi9Y8U64bHh7EIqZfDSApMaTHNe8N8IW/neYWXQbjbygvk3IOfDWlye9vT+oNcsJhxcvPobhsvGMTOBUhIEyTBnN8hYhIXv+6o6V/FE/fzadKHR8MQjFOd4PAPWVEvWERstoOQhwBTrs2whX+Npzf46x4DaUETq1JUHM/NShsikvVUvegSO/Wic1TCG1IsN3F+fcLxqkmrsQYr7h4/2De8zpCGVd92teXlhHCg7Pj/iZWLruitfY9h9VISh6Og/IWqJrVda3Fb5IxwXjcq2VbaCNiB1AB4pGJ9Luy2YtlU80Z3GXuONFDyXczOhEtgD/+RyugL5wpOkT7hwdHe7+mFstFRtqmRYR8X7FlYUWeU7kLqvvfeqCXoVfydYlVInoBjhrMY+nAbWflqhA1X0rXmO+mCJ5aGoDioea5sn+J9lsI6kFaRqch/rclNifKBRodpfOXu71t26ATSBFPgSgT3v5tpafLK21Cb1XvC8wMzDc7UApFbO0Htt6J6bId1z6hx8cTIfcsg1XCohvBe3kSEOFiQT9s1kOldKojNdYV77NIJ1PGmiOvKgNiGq7f6bP9UQeEkYW8hieZdYPQ6OnbsvWPJJG2YpB1bqPgXeVanA/m/783tgXzHq+Ufj7ZfObNnvJV2b023YNypV/puXU1Ai+1VpQN0w66iCYQZy4LZtjdntseDYyuqWUNeG154aMGqYY7mEQxCSmR6ULToo2qHNZ/v/D1dAenO/EhhlGyRZrvWvUN63WRt3ATfrbu+LtxI7N78WpHmbbkgI9OwlX5P3DbANFV5E43VudtwZWawN1VYz87UbtksR9lZqeBa0Py1WT9tOgk24LnfbxUUV0HPUfg4RCXVWXER+IhW8xExRjRL+5lT5bYr0kwIHFhM/dT6O4wlqYDZ0px/5RIgxf+ZhY9VBPrIJIA1ZJt9XFA2+EljOLlXACTCL1SQDexOWzSi0JEucg+YLZMlVdyOfsi8V+uYZByvJBX0hmGDC0qRHKYHRijCzZex5FbUAvD0y+Rg6z53qTlvIQVPlF4/AnfzkpwTOVnhWi1Yi7tgIbB+QN2NAb+h0dK6uowoPLuB2zCFA+V3kbMoqf+6RP7wEtymgIPNnPo0mNB7zydOqqupWtU4SEOH+IfQQnHZuyVEQR83d/6qisawMVBGrpLVhT6oQtWEamYfjEGEUJvuc7MAof0SN8L+wAXCQGDMaisdeePt3HoeQWe07c46kU2EN79F4SPxUjsUkqxfm30kT3HewhGXnrc2F9wAEYgCx9eFiQOUrhMXZtQA6wCLITz31u/lpeXyCRtPi3SyYxsXwPt6MUIxOxT14Gzbq57Mm7Iul5P3MSvs5QYTiqIS5F1nHF9Fiszk8JItltg+sGA4PIXF2XoKYNlWyQ0RpBI1lYnUi0tv8GD+tx3TMolipue/DXe+9yIiK1FVhpRof/JEV9xJi8SuggvBxMcTQAql2mlD61KaqIYLWFF3+o/h51frzsIaBkVQcy7rbi/OuOpgWkQ9tZ6n+LP2LmbJxiIMzjIQKjOfh/Q25sTiN8BNu1UAeRvsrZwutJgAbDkXQSpVhs8ADpKBc4EV9GhYoR9D9HsVrlcuoiBEOHHLe3k5hj3IJ7smc2e1J8mvNtL8t11OIHYdLXuUrR06+a4aGPX4uZeO56xQPdk7Z9LyWCQqPJN9pBDi8YHCxN+kvVPdN2ELxwP+sw8vHczdPPiRnN4/0ELSKZ9qmTpdxPf8Zz8r35Y8yBn0qYtOjm03FBdgrbgiPpcmLKSQ5iIW/YauLbVUK8fDs/u4AKZAo1ZnC0KWEHtV1JirYk5zzoeWdNQ1vZB9qHbCsNwGTXWhKHJDys1RoJedCLPnQ6JSWls/6UqI16Pk4qoqES/jAa3FJv/hv3+id92gl0Lp8tHshdb8271kwiYStW77So9oRlb1nmUD5IwiDXHUAJbzlUYH02vLUTd4otFuCbCEOpbFGBWjxbbhIOFSqVWTwN7Q8QRGS68tbajyOcMmVUFjRY88OY5lIZQzA0RaZHBAID4kC3okAkab+uNNplKofof1Wk/AdlkL3K/rWfecoSjs85QUvx5xXEVG4ANe7JPPBZewnOVVOnAmKHeNjp5f7sFWMnBKXLNZb75WsGDobRNlISCwx0ouoh1GO9ZqhTrkyhObkAm4GWj39lbPHXglNP5sbtV2V6azYMHkSFQ1CjVeIMOMbn3lqxbbX+DFZqQ+Z8s1zRaq++WnAzfKeSALb189VNfq0mwnAnbhfITTCb/1NSkZ4K+Mg8q6db14GRyoOmC1xzkB+XtY9JqVD/g6DLG1HsjoLYnqe3FFqUZAHkiITie70LnVgFfpyQ6qRs87AxykktEXRewKQthtNn53Rzm10t0EdE9Z6+kcNkQ+1NSwZLzfFTxi1AyfHb3tGccJm+hDZPwiq4rsmFcvBktaODA/4zgwBNUyR//ZUHrwZgvbKEe0BKMJ/vA3cjebT5yYx/dc3mpP64glZ+/dBzpGyWBunY7pOTyScI87YbkA4hFmyLsNS/hFm4A3g1yaaWcAbx19tAGhtDRngaPiliZ4UsTG7YAktzyc9XYOVTj77DcmAcQjQPnV9uo8ag0fZPHUwv3uZqqpWL6lys3GspJB/s64PH5FeNV1SuMSIsHGVN0bwTOGO9RavFhUsgEbZaI4pjE/DygPEjc7DBecQyoUndVUZPgFBY2mI7qn3Fp63ZXrihSAcxzA7k773iOxzyo7H+MnSzSMZDJpkfKQOpdqTiKH6EM3LQRSRcz2mCsv3HMX4BUlfhxpLVNbbd4zAVDDg0/S0slNcIfNXd0kbtt3yO1KcXz/zPqoYVAvGlZwKmWRZeB2yVvOPSjJpvke7KKQZrISIi2C4of0IWyX5G/mb4axdbSGewuXNZWLffexiecUR129kqm81OVREZ7Ul6qnLtjWOrQTj7kHog4eyuK3vIql5H/XFMnlgIrZxWJl7J9CJ1TIVOgY/UhA4M8hR9QUyOzQmGuyCALONuWft0GPrF9CzcaG7AiZks5IfDTHe9RjU3jfjd6rPfRUH/K0fRH4NweWdMEAXw6NP1g/REe8qZ/LNNxNdOu/4k7IfUj4NyN0G7r85lNoNF5Bsd1hGZwQgU8Q1AQ8lv/olvpzsG57Nwp8H03SKIVupBzLeXukXqM+N9ckf3hY51Ezn0Vqgzuc5QpUiq/rkpby9hTJi2v0uUKB7MJWXJA0hi5MUFPeQ0ObvDo3el0eWF4Y5/AmIRNUc7sLDsF3mrLmtukcpZB2ojOYR4wtcQVv6CpVLCik3WsCajFi5CCia7+PPpQoraIxX48fMB9HiDZeK5rWY3j++EeeQrEMPRIz1NexgjiMH+QYez/Iwp7BPx1tHRp9Tc2w3ZAOic9yI14HSvyj2KaqXuUgtBp/S7oZGp5vAt1lmS36dJ9xBnjgHaybY5Am+lq4sC9Y0nB3WDsgJ2s2MF5KIkK7XwDkMgayisDCZoWbFYAjN3hc3lGNfBFwBON4YwGoos7xRiou7tetjjtPbxBR/UXPnQJ6C2NGIhyswiCP+vd2XfiKgpaQtfgMogGl/eoq3xJgin14SaGkqtBR61C7tB7ZlX3bp3wE+cbIYQuyo9VKEduWpbpL9H+0oKT4c8VvGOLAO/Liyj8TwkXX4DoDc2+iVkprKKzDB9sMfjTdBn40ZKU6dALG2PQVLrR1va2Z9a2lCQThqlQo3NZU1uCtP13yOwSLVD7d/6ySFHDT6HFUmwaHmodBCJTx7gvgo7SLUJs0WDvvbYX/otOsY9OC2BVikIHYr3LIxoVbd5Sxj+d/0Mv5PgN8y0w3RaxmBCFTQVULbjvowPETQElmwXppHiUoUvHGFdgmAjzQRcokUqpTezUbLMV5rUz965oy9k3rGh6jFGYgWpToPgDdP/RFBodaVZmEDmh4hEM3IcDjEq/9ekq6U8by5oAiGdxMoGiv69LkPSsx8W8HtS9XFpoC6lJJMthIK9p/TjaR5zYcVaKi/qINPVGlUPDOf6uCcj4adlppV2n1ER9RPezcc9ZNH0NyPVeWAjo9XVKW8S6oShCjBOaJhjPslzkH+FMtbRNfOPkHH+qd2ImduWVpiBc26hMmbBIzl3q4QrVVz62Ll+kD84v1kxEJm1gnY2dboQVYT1LSahPlgjbhxc2iX1iZse4D1yTABURERnW/iyv7IjUdWq7kZVDDlWk0PJUC8rfHzl/cY1HC+1znVuzulnjDkwlU3gLC8nVzUT6PbPVYzjVPiA/aiJX8rGQv
Variant 1
DifficultyLevel
455
Question
Carrie purchases 107 of a kilogram of gold.
Which is another way to write 107 of a kilogram?
Worked Solution
107 kilogram = 0.7 kilogram
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Carrie purchases $\dfrac{7}{10}$ of a kilogram of gold.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/10/NAPX-I2-18-gold_rev.svg 145 indent vpad
Which is another way to write $\dfrac{7}{10}$ of a kilogram? |
workedSolution | $\dfrac{7}{10}$ kilogram = 0.7 kilogram |
correctAnswer | |
Answers