Number, NAPX-G3-CA15
U2FsdGVkX1/YdsiDOM9HQHe8x6caWPkdYJEI6g1tmkGCkMBbOF/Q2H8UC4qDGXKOfbacgePU43/K9S2CfWhIIdPIfPVlDTrpB3Lby1xGYHJeovFzi15lpzxg55DcH2K6Uo3faJ0JcHi8M3bMUMiYJpRR6BoZp++Nf1QT+wACCmv2hBzxQvy1N1q2FJokVuBAwce72nNjtFdbqrrZCTe1N+s4RHQbQaOpuOnuLHXEJ3ih2L3KhNZ6uOdKKeFh9WIvAIyoXmpJNPIV0DPpc0zgprltjV2hn8Jh6D7BB62oZdor7F88n+HXuNIKvy0DlbbazIfj2Wln4JdNhOFEKu85u1r26AoFvFoZ348ZM/2iEB7wnzPvXF7+1aOe1HsLfyPKgETapIrUkks+feYk9iHwByZl6hKtb/5W5/PfhUBO7SYTzYTEHM5hUbNzb+pUUI2ZPWu3k8el2DVE5r/mgnfgN/ZxbOEqbQasUduuxgfIN7rNA34Vok6OR3bT6G+SOKYfQCS4q+iE2DSvceubSeAe/26iSRxWpu1XuANeEZibJtzjHnR6gLgDzMYSkesFB1Sz0b3SpEZhMBaA3WCpBuBMRqMJyRLgI+fO0LVDJ11OA1u6Pl5ZndpBMo1eaRZfeqMsaeyln+5hqkfzdVrRV4UigY7fqbKCIzKY3E14BdNMJeUV3/x1aEmsUKxKgutySa3lSSLwyBVOxCCCbegxNCB1vPTqI/CgIA+BxzqQSfl69vm3NHHCjWx2eQAW9mzm4gzyNyGXKxcK1y3d5egkA+X6zCWoSawuBB2wiKQ/1Qtl8IEIssmaEnp1jXbB1StjIDFXzDqRny61YdcV83njh1MFv8GZsTGxoIhjbt5bQD7ZXWjpAEvSEuUk9HcYLCdNM0DQhHOD6NqZYM8jbpvo/DNDbFYgF7TpyNDOntJq7qEqTh5RiTHMzekF0RfM1uTt+PBHVHJ0mT1P5/DmXHXj7urz71r+0vgoragVHEugr0UqRkxH6LJ8w2XWEz8ZEFjeNC/+Bn4jJ8Z1Qhum+jzxerjEr58420BiCQFT2rRxpfBga8oLZxyjrbbwYVVkh40dAW+E8NKWYdJyuSFCtndLQicgh1yJwPA9JDpUj9DcWLhKi3uhGJskY/fTaooWiKCqWp9ec2ZdVnFyhFasPgxy+mkR8T+6e6XMrFpP5VPjVmCw64CmeFWc/c4OSK+IEQxnwfSosff2NJNHp+f6KuryhCHXKpFCe5i7rxf2MCbL2Nmem+j0iPQJ7pLrPYre7zMBKkfIx9h9XlE+/GXoW+XPAO0jQKXS/e2CC4dIPadBxVZfdkJ35DjntPl/q32MjAlNreMVXpWbs6krV0LSC0pVXwYODZB0DWNxjnu8Jgn1JPZuRtI4LlsAxU+Tr2xuFH/O9FnFcarQX0kC2oCTXPbwyQfkITyRbCRCc4Gp46avB9m+mvF27yJ3twBsxRFddvo4yQNUu8OdsLwdq8/PVVvKituYaMnweDXrbGUUXSi1f5Q6xaRyIdF/XgN17Zd0NngLor8z1N3pM9hTTp4g+ZaOwUx1yBfqSJDLqiMZTMURFGlcDEz2pUbBMODOpmegcnVniDe9+LvtrJSnSbYeAuquAWiwdKTqzh+2cBSTWSdYUE5t9ea+NG8hIk9g+oz3Gj2ha6HV5v/KBcDzQ0EBCYD9GUBygMDTlsyd8eDUX4luDBw//YH/JY1FNrmR5oXYTThWXOaGXA3IjUpFthKjlXdS603USZIhwILAg3ESLJDCQJajP77GRRC3kQT1VwpDCXC1r5CGOleFLd3RZw66HYp4mK7+Nf27xgnqeuEHfMQeERktUonZxtSLa9LaVvRABnKZX4sd+2qPP+/8dS3+uukVRekkWvu+Dg1E8U1bB0DaKDjA2FbDdn/PknuuVwHwLm7no09TulzEkerdNHs0ZnnSGnQ0bxUh8UugnYaw7UOzFru9xKjI3HuOEQI6o+BhkHtufvtza7cJ2+AP0khkdzstG1s4crT8OpQ39H4nUJoYw2AX+xQuYOysK2MbHZ+fqRDMlKAg8NJv0qQgnwT3Pdq3GmDEMeQXEQ6KLVwwSC+pRz0UGHtyTpKUCg+xOQOeyqt617Z7TdhLDt7dzj7UKQKC3X+BYyJrsGEvdNiRrqu+YZDFzDhsugGxtEy+AUL/BEXhAb+ydz82XKxr033aLPOJoJIt34bWjTpt8G9hwkZGfYOKacCXNZGozmuxOmrtYYFp6LciunyYrO57ncAnOqTe6nqqHofOEjqIkJaktoDhoil5LNQ3xOo6JUah4lWn7MVum7oD/Ys8rteFpF2Cld7cS5pMKhqzRI2Qe/4lrxsKqe5FktIs+ahtZGsGMcm1wjC12KB42Rr+CKv/kTU3tXnoEVHdadJ0nykW6rRO4o0oYDLdnyAizXTf6AXpvu/5apZKUGmjy8NqORv8olaj1a469nRDPG93JDEEsod9Q78i2uOeiNDD7EqlQX0+CC/pPDKnq/hdA0q+Da+4BBBJIkBJBeAYGkHBSGTlKp/VAe4DbNhkQR6fnID5CbpDFCE2LgeRRXs24TAXtMIqLiAgyxh6SxgWDOmJF7JhJwlw4LIopH+Uz7sXczVgQNxM3RqreqD1DTSEBOZNsVwPbY5Ip048/Uqts9S/+xHhg2xlbq0Ju2xrmtwNfELzUUY01nrTrvHQizZY8RCceEu5p6AF4d2Q2FxnZEsxo9+bdOpss9nuxoCAXHr8ZkAkK470RplSDHtwDmiKdlj2+lhGV6y6/VZ5HPHAMEdRcKie3B8muQoxYkM96nmY7PPDWnJ+aJ7x7qqoOgTB6rZ6UrNFOPLaXAdQTihmIV4V5R37KVPVDU9AXCdlGcEX/XE8VhOFbbMhFECdZa5jN/0IIv22v/ngZif5yP74A1GL5l6UIOGDvZIZRwbmwMOrz2Uk4yJDgnA5UtSTuttbPq56OaE6IU+IIWLpSokmQo1rFePKsVOKLGnu4VpoimvwBwMz+Tuw4PDgFuk57q6kZe199iTf7ayrSV7i9o8KzwxyclmRZOoD4OinaCngnw2mWcNM+oWIHI/y+SpQh+xIfqJEpTubh6FAE5F/1SNZhdsK5Ff2zwiUe8VLi5YEI9uXf7o1hc/CV94HKTfZaChOcdmaRqsXB+CTLBgqq6rXwt/qa9RJd9t5MwpJ9Hy5c425sePO5y085deWlJ/hheUIQ4s/EdRK3orcuDaRjzCfS57ie0QUDbPZ1EqMgQN8FqgXrJui9wYIr66vt2Mcz2dUGJHJqoOc7bGTRyyYml5Xhf7fjC1tKkp9JiBi6YnlrPT+JiGIgaIKy8AHMooR/9qvSL2ztWjCS5sZ/ktoY531GQWHeMLW6UrNozXwSIoC5rdnae11TqeAkT0CvaXLLVsa/rViIa1rEiMcbhGRUn2EhIFbHpvyihvKo1M/uK6VvuF5xwDirfFlWcNOt1uwzmCw+pDubsIz2APtXEl/WW2Lvq/iMkj8nr0cVEddNgm0Q9EqFQ57tHtzGLr4ABER9Ow7W4vv61hxfyuTEZAdCxQRDmYRQ4ZmT05OHv7C4orr4Q59ZpUnxpPJtMdrCFwH+iWeqKWLdA90i+bOh9GOdDfacw0wyqLNC1Ad3FffIAtgKB5jWB4PCHYlXEYdVyqXbyrn7naIx2DwmSYkDj2eZwX1MQQrgg6oa1KSe3eFfLQ7YP1jSmleGV+61TDJo8cvGOMLjOShgrAlYNrJpXvs5j4bZHmOfJLRh10aIqd2KG+YRw1yvGyRxtdQ2Cgvv4UOb71H/jwEKbw66z5Q4DTl7Qw+LvoFxNx3KUC2cbUZI5TdFtz/GU7COOvKnKeUWPUiT5xMDMGPStqUZBZQIh7FOQsGJmDxduIoQPPuOQweKAexhCEkNorRrl8hbYX2F+TfBd8nzDq9h/O0E5ElstyJNogzCJK6BdlERQuL8kUN/+o+YkbUCovYXFpMs4x/3EXHVtcp535EMg4bXYB6GsB0u+zvqnPmD3XgvVCI8E0yB8RIc0cGIyMgzU4Vak59cy5hK3wpXv5IvS9M8Gdlhw/W6Z3jeGKE54MtLC07bJqF+x8V5pQG47FNQCHfd/a7iF8tWXQvF2Ep/9rUw7rl2RYfJf3q6XgpIi44oLbKZQ16x+ol1Ah3pkht9+Y4EGK18s4xtV7fnCKNYWfiWQR7tRDj7sOZOoo3PW/kXaDKOH9bgzQvwZMx9nzfueRxyjEF+20GeiuFrdJvXVTbwctSjBBchGllOCzitLSG5MzXPcS5Pe/1VGLcyX8pzoYtRnFyNNHb2kTRHnfW7ibjrXUlp6NADC0sH4plW8AO7PxqrJWnBaQBuytTvi2xeMLceiH1ZuyrgEEbpD43Bvws/zXL73C43WjQE6q2nC0Gb4PFA/7s5WpbbF3meOulBaa0vrLGq0DLhUHAhyiANd2XBO4/PqkVdiES+YY8J6OWL95wEA/MKJP4ux1gkuppn+kuxOLRclSed6Yb36anH+Rcrh7mT9B2rO93zrU6w7cbCY5RDRufsMEuZIGTyOEHIVJGiHXncSnKtngIERGQ1gsBMa6zGPgJrxKu2XL4sWwPbnTexOS71vEOPkTN35bpeeHTd6xEuRTH7+0JmOGhV49UL41R5PQjkI+5SEJC/K0yzHnguWmOgXTvczRSfizGQShf57WCcOk69Q52rra2JNjog5nBjuiCgqB0G6JV08VEZQs2ssh+Mhk3QqJ1YtQqYWXdJ3+tsK/rnfTaLbSW6HseOPua5wmisWTjd3fhd4Q+r1pQHd39fQMEXa0o/ZTF4q9EgMFdvVwqezG8BkCYK9rr7293vw2/7XOmLOU/swkrOsgqbjP6BvHIO+lhLKsuBCBzhbKhqbtBMKAM1YhONk/O1eBvvHIn5/lyBxLkeOzT7fohBazO4TQicgflhbVNRYhprXuWAZQR5ubf9qqyuVbJKuOcHiGy6vAQazfrf0/edL5lddRXiEhD7IwhfhWZaZLCFncoG6i9PGOrbYP08MgTh4mRWzf/jfzTdvQ4pIejct9e2PnBH45wGOykrQH7MceR8fUKvXWZK1DVmkQuG8EzXueOiCCdRsR0PUmPJHYJjnPkBlVUoKvdkNZQxM10UQbLsN6OuabFdSAXd/SCuGgu4z/taR/eLtwtAr4kNLRm9L+tnN1Qmgimsr4pX/lTWBC4z5o+hixII1Yqt0aIDd26EayWY7P+LZlrWtwXJja/1HsCRV512zeMFziCWGrOtvltO6gOuynQtgNgR9dc52ZPtlRdSoaMJGf9CJZP3J56NSJ/gbihjUvlGtc2KgdyP+yi8hun4rte9TFgN3VFug2faN/kLXrXd9Mrb+Q8NhstSlWxua8/YqxCdhbnZxVy2t/coMDVW9t5LXeJc/WdVTq0pbd47HMnRQ3t80j8553USXCgay7A5gdC+ocpjpIUkz3cl1V6W6BkT4570o3vxHz1s8m8UQfWXzFP+WIIq/EsUzQ2sH1rR68B92GbwFYb0s2Z8FfpWECFYXguL5+oPfpAr+w6LJwbPA3eYaoOKZWz+qQ+MbsXGaXzM8GJyjkE9O0XMJZeh/hRXZrqGpU5BNSTs28pjC/JfgOFCWaXTeo9eHxm43wom+Uas+yF8APPEWMiC4dd27SaNJAOoLlPVCuXW/3zQK6qZM0zZB7b0jKCkyW1UR0aYC0RPXNlG1HltEDFKoZEV9jnX9G4whUjcovSvnsFf2W2vpXNuAD1E5bXvgNVl7QxpC2yeY17kD/0YQXpMf0qtW9/5ZbCYx8Ou6tH1zcrA8HbwVM5y+aVtOvw0bnu8laPdu9yAp8AkuB0XbWF1OAPlNaYMP4U0dN9/chncAwfJ3JPX3UTMR1b2PpIX0p7aDtlZfWgGQBEk+MEYC4MRKRjC/BOpcBmq4wNFuXNXMSWaxugUUVQtUJcOXk5N/FMc0QbDzJ6wLckezNN8VsUPSfVX90cO9WuJFIaBnS3L5l2bnRLfUxCYeXIgGUjTBE7PxDAmUANOfJFtfpyTLp4lrqRYbO2wjmtxMM5D4dLtbbHCd1D0EBSFGGRoU0imbPLz3lL9ZEZmXZkI68Jsqwwm4uKAUrzERf+Z/iiOk7UWuD/1QeEOg0SOHEF4GVVOTjtEhvfwi4zJScqxbK3xaeSur2/Ay1/+uLpwPDIs5dxn5U+cku3eWtIVQFAAoXOKHsdOPaR/myU1yFo9U4q6pGpIo1M4C1axy7qzo93xloBsWS7EC6XlzvImzxR/zspcuF2NggUJetLQTu+XGtqndxcxf2r+V9w2MtK9UEnXrN1nw82DoDEt1EA6FuTDU8S4vB08CcrXsf2hPiaPs6PuHZOlmL+hUfzq63RoOOXsTSynXS90zT0J7Vaj4kKyMHlP6Mvs2vm7EkU8N572sQtKId2u9kSqhZRI/i37sZNyGgYnmfOeU3z4fqkAyAfmXphNzOBqHizmXgy/pHoNKdXgXRi1J6mU0BxoMK5mNY13hQ2Qg/2WrV7//AJFtIMLZe32sY4kQI+2JYuZEG37UoWAhPkEnFBChlZj6wDLAWCc/WknTEHcOvKvebBvCctvQ6Yco9p3zzt2PwXhtbIjBpl+fsM40mQqWvIk42iGRCU4vutqlMyrO9atPH6BSzikjLMZs05253nxrmFQBCoanxFmYPOMObz+O5zJKbpZsBCBHx8Hz3By74n+ln1zu03hSdE/U+jFAaCNmnEwHPNfsKG2heNLIEXlq9M164Kgt10euOfs52l+T8GVBklqp5YICXWqanyum4M0Ada+G6AAKCae2qW3LDMXmn43gyl9V+ptAyA+l9OkSurKrASDJspVWs+DgBcq/6YX5WdNQKLwvz//I+dZm+nDxQ0WN9b8MA/tSbCj9CnJ3HOXbzzkb3Rx6LlmchTbkgeYLVC25h5fDszMZIazbCNpWcN2kyLr/6Xj9BRUA/nRtPc2tBLxfFw/64rmKikqdaBdXXGWfBH8ls9HE8zXsBb5JS3cnDpDzHRtLBNlvOisa2Zluo2Rzs4YsyVn/IFK88lEB3xrVCqwJioOumHb1uvPavjwyC+nP++UEUcPWiEzvNY2fRC6o/3oJ/L5EBv8Bu4xooI9yRUrazL2GzgxuoNCu7ZSO2rK/SzI4QtTWpdHMhrOfynuJmpSMT3gAi6exfrMZOO7fNeDaA9aHxAR4usjqwB1LHWJapiHHAGnGU+PwsxMgKeDb1lEXhh67JpOTs88Ez/FVQratpYECpPFSkzBFJXlKie/QutKOfe47IlHIk+eBDJmIJFDfSlsh++1WT0R4IGX13f3sn2KMDCyaMK8/zEFnMooMcoLXF0rvi+ROe8UNY/M5paTLkCpmkuSI9K/t+s4NIwCLBPMUT+BPFigY4QUi29UfDBrOaetel9QIIe93UO2uerKYzSbOcoL5tkN47+po+Be+K++vZntP4F4o+9RyHScr9vmunTSv22JnY/hfCSLYQAizFFE2o+pWtIXYDJtSgPBwRoLxriGKO4sTmPoS86AEPOm53NlwLrVF7+pIsHfg0AHyWgtJFM3IRFI2hANFm/rI+tlQutu0WBMg+ZFXLJvl6NQeJMo40EpSSWHAP/2+4B/HA2SE5Y5gSHn6/mSXj+bY1ML6eRgUFl0F+s7lTWus4Zw7voaR0rmBzhifbD9WbXt6RChvERTOqidJtb+BL4TVQ683mwaKRtsiV+4ntOQODdT7roGiCWGTKPUP/Rt4KFEvFiF3N/6sKcZ/EHcJ8V9Z6baeT6fJ5xVfxK/LRk0QA5lndjPZl5+DAbPRDOJ37HoFyrxQozsTTHOJ8KgIaGXNSCJo96a0FXyzd2OrFKfE7O5kfBUKGaibGv82ydnei+YA/Y7fldkKARFuUJAEzYo2M8ce/5OxJ6b6SMQVeN5QyvmFEPQSnWPx6Ugui0cxVTh0Xd5zAiETzG16lgiSij4hAdLIdOzB8ClZFpl0Ge3HEHFPb673eyCQgOfwwGZzVMsOE2TJy/0N+P7OVQ+s2hJHCYdx5wjN/W0dB2xYBE08fPyp0Cd0DHQ8w+Vmvo0ZJQRFHzsO36YwGbeyOn1hcnkKd+hZxHkwROk9i/Jj36xIc6qHAq0fNZNi+OaJ3uz6DHAAmDYOOvalp8OG59dk/4iHHnSpOwdY8UAeFLKhpfyWgp9NREf1FtLnmt6u0/E7YWDnMiBIxXYKz0FMNHUXQim+c3y9KDLpm+6kDR+lhJbrLW5sXplYJuMgzmx27vWmbYwvyrb41XoQ/iV/gbCfNx5VNM0qvqra0kPCqm+3CpJq+LGdJdFvs5NuwUZj3yZwbynBA65Zb0C8qB/ToGMFLqcwRyzYuc9KIXijVmbEr6gbv5qIrugv5Jbd5YkVF+pc4kh23IAfhccJZEeE1Y/eMCFHn+QALCbTIkOACZT5w5JBAbxQRBS0pgo8VVVjuj0IEdmcZ9dOPR2xgo0qaI5npRfgmg/m3vNbnBPU+IyyumRtzafhtSjozEjZN7kgyhd3IdiTvZrq43BJg/erzEY/ZZbySRbQq8ib0kfHN7tN2+4JuO477jqndd+7Cf4tL+v7vcrInQpKn08B5shNzcG+Qmn9UaxBixBtQ5ieHU+dy5wzOqueDHVoiCOIFUFMbarO+4p6Yp7ad0Iapy2Q8f/X/FZrm724GrJi7+3beqsz9ncJvAixcT3gBsUThrziYRLblUX1ORjpIiTaXQwSGPLTeK5xuCLQFtwo5oL7Qp2W3ZhkuLxA4uzspIj6kNsiLDFT/WjIrsYFAMagpTeJuNFZEKAD7lvacxNS48JYI31l1859NjQMDBDywlNtGJo3z7ZOlfVmbn1B1cyAdW/ur8GA749COsB47h5aObrSN6OyQflhNH0kV3dhpg8dbdPxFGwep/c0AFn2r5BgGEn8MVROuLx3v1mDxodQGDph7PpGtWlELdkEk0xM+ulRgjikUCNM1faNo2opDgNZ8xkBHvEwOqtsuGp+R8/wTdrmztBlWL5CZvXbVlB8xm79egbnYqSA==
Variant 0
DifficultyLevel
577
Question
Crisco takes part in a walkathon to raise money for charity.
His grandmother sponsors him $30.
His sister sponsors him $1.50 for each kilometre he walks.
In order to raise a total of $120, how many kilometres does Crisco need to walk?
Worked Solution
Solution 1
Test each answer option:
60 laps × $1.50 = $90
90 + 30 = $120 ✓
Strategy 2 (advanced)
Let x = number of kilometres Crisco walks
|
|
120 |
= 1.5x + 30 |
1.5x |
= 90 |
∴x |
= 1.590 |
|
= 60 laps |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Crisco takes part in a walkathon to raise money for charity.
His grandmother sponsors him $30.
His sister sponsors him $1.50 for each kilometre he walks.
In order to raise a total of $120, how many kilometres does Crisco need to walk? |
workedSolution | Solution 1
Test each answer option:
60 laps $\times$ $1.50 = $90
90 + 30 = $\$120\ \checkmark$
Strategy 2 (advanced)
sm_nogap Let $\ \large x$ = number of kilometres Crisco walks
|||
|-:|-|
|120|= 1.5$\large x$ + 30|
|1.5$\large x$|= 90|
|$\therefore \large x$|= $\dfrac{90}{1.5}$|
||= {{{correctAnswer}}} laps|
|
correctAnswer | |
Answers
U2FsdGVkX18iWFhMPpKE2JirrawGIibnM/34iACc07+MVrPj8n/aK4GYJGDjFn9gWHPQ7Bz5jGNX/Mq2K6Y2tUuY26QawB+nbuX42pB0mr40pGV0s8noG2ma9zWPMGW+81sIg3PYaPPW7cAyZFQ8oyDot/ZZTaAu6Cqrv0hghbqxNJ2PqCUPPugmbwY+w3lYPtFfM2zFqk4B11JlhLewXzHaaUSwETqtdoWMRX9ccJUadxvOWfU3HCCJP3MrXyrD4eWYjEcLqQq89253GO3aVsnSK19QsQqnALLC5+3wPYGEkwXH7Yt19PCYfg8u7LWRJd/lbbtpnCY8HOOe1Wbot5wcc3id1M0f3q0vRKZe0jf6rVe8AqC6DNGK9DaCy3Myj/X3SWY8/3TAfMR73y3pDwCHUCsyUczx5TWH0J93B5oW4jBXvcJ241IBBdFvybyKfK9i4dSMo4izmBLfHIHzOV7JztJw5BvH9NW8ZWu5Hg0fk5RZS8IyaBT0qdtQq4lFEM0pZ9Mx//v0F7tUDzmEA465Bi+bWvtKjIq0D27GCtNQBUSwvbd6P1v67tNqGGIWFOArmzLGB1pH7/1pYsVID+t4wQJdC+Eqt092jTHtLlke5QNtRcsFhux9Og0YL4j9Y4C8uuJeVNpeMNmFWILxiogXvZtzoNUeXbDXZJS+0JW4+9b6OqZcPT2PGoSVXA7GUggEzco4GEb01obdJxGqmfnG+2qqxtIkALiHPbyW8MTlNFncd1QweYte4PyEdSuE51eUiZHIH/xz8v/EMY2oaVDfVr59QpJlr3xTP0Dnce8ec8jmzICHytFg83MitBNy8myytNrgsFnsBgtd/Ovh0CKDQ3x5I5mMovJw24Qm7+CaaYTIOyU2vUtOqiBE34XPw1DABwuczbosFzgnWfLCyzQY7nWPFYooXTKSPWrRXs5xmRJo3h+UUUrskD2XIfyA0HS7QPE+Vc/cKXeqDogPinwVxkaVjKN7fQBKHB3AvAEIIPYrjS5K32D48fo1LbjZwzy2UW/u58ZHWi4tu2EJQ2/F5FKhj8sTo260Nlzn0neYFrYTnKBnujRh9zY+zHU+9qbYWKHBRdUvdbNkZb44maA2gFwDl56QWchSfB2iO24/QTsMnbFOWV80tLepd5fmIaKCi52Gt1d/6bt2vrPxDqcnhr8H/uLm6OnzgynQWITApEEtvnDirdAuFfy+RnyqKTQUWqc6ezpFXdsZoxaHueqYbqQ9oET830A7gWER+FaRCdNEH08Fo5M7bIZ5P3tOri3RRsq73nr0H1p71tWCvh+CgYyBlvEKek92eV8DznXk/kNQHo8/N/FUKDFlJ28kd9/MIK/wECZmtZarRwFUQl7d5TbCPA9Na56LWpB2lMXf148cK4FdgE7mYVYFCrZpPc1c0GCgpELSkOaWwrIJDqTawA1/a3sMeJHXxkb3SylH9B0ujuRO7XCekG1xLYxeH3mktrNcTeMtvd8O7wwjj9nixn2Jyu0roCRwOuyEn9Le7T8K7RfvBu2NrBUKIF31rFMGSQky9QJqYGTdCf4oyDYl5t9q6sqIAV+ArDWjO+Jzc6j4lSGSh8PkcMEWINmtck6ibNvHfqFKON3dIZX7W37srwjIYU4h2SOB/bEFljUTaOFhx4FqhFwz82MAsUaN17v3MJNbcmJa9WXKuSfmT1CzbOITwSkeG0puSdmd4NyNqXT5TH71NdYaJXLTeqbOhlgOqw2Rsa5HUvz52pr+eluLX8ZhBPtBdyCGPZq/q9QWLuiQ7v/o0se7LBX7TRutzA+XgLUu4nOToiYbNK1zrhVHTc/ukJ/EyQpDhhO6VyfRIUS2r9fhJF1CZex/MOGoZbFlw3gHSoItFpReZ53yvlm9fqRBrBFPIjoPfc0A7QPGC6fBre8/OZbtZTPjkW4Hu9YTdfAAFGbwY0DkLI0D8OTa7oiG5Y3Gm64m3lV5RYPYgCVPQScmyo1sd2KT0WACcOedzJEIiQAI2tMSu3kkcoGG1n3a7P6kG9qy5I70zF6ITLJJ9GJ4mvLLrzHQ82yzdG/5a3/kFo3CSgZVAo8U+BR7HvvJFFc4ZNgcVXdRZLNKNsJwKtlUBsDHwFvsfegoGjGS1uI6064WmCcrU1oS1mnnsO+cNy60ZhHPmj2LZVa6nLcg6gHRvkR9iBy+R3sEoW2y+QV9U2aCXIMM6UJSli0nyJPOT9ZwPGw7gkdhcroGGJsCdhgMHB4ru/yQtk1uu0VUu8jcfU4WiNe4Jh8XASdVA3/QoWByoRKcn9SoQ0MWdqdpUncpaT6ParjGA8cxoyEuJvegseN6xqpdQ65/Bf23ki8p4XJLTLU3kR6tgeSXErJH7OkeRwyuo7m8PSeqnBCU31w3LraS2Fu6gpjTUKoDnmvFnSpE2GCbpYnTkdSAn0sd55wN67t44K7OnK3khnY6jY76Tg8iDfvVlcL9cWrzIUeuhtXBp3Wxr5XtkshVUA3ELxIvzcE+Lbfj5SfpXwDfusyYP9kgxkAfle9rWMC3M6VCubTKTI/BwQbTazI04CjlVfix2RykwuFzktUooFR86+uECf9GK0AG0o6v2bR+1SS3on/CsNQ698HgfSglyLJgJtAiWnoWbc1/lo2DUUbKR9Vd+6pi+HFr/8eRbtzwoLawdmIHEJqzCwiYDv5jPTpo4P6OFGbDPt7dQbtIqGjjxR3wgfwCZH3w2E4IUoDskDOhXH2lKwOj00hUJtOGXAuZ0KWZ911s0PhsdG4/7rDVIaDyZLE5fvQc4wJMRvCg6XO8HWhXuUcpvSx9hfVOtkhetNSPU2h+cKb0cEP9jTIdkBu7defR80egjikJhPD+A+yAQ5kaBh4QIShzij92acV5qYvTjbWO6yHwss001Ehvlyk2YqtZ6HTo6iMxXUie6wclbioUdNBUGo+qTuhCRuzoPY6OHlO5vaMfW4Vi7FkkXrmE9WeC00dtKTYbMj2R3iDZVT7HxQUte+W6tDoAdlMPqG/pQ3iDwgeAlbPMimjQrS+9bqo4mxKa1CpZmrCOXeOoNSmEVQ85sqSGb0q7+sfK9lGhaQppuWXjhwW347QwPgNhRBWnWcwEcqdSQjmnw1sPUuHgaeD+VpteMlS0JB8pMuQwvtLIQQ2SHcW9Uh/4otNq2TyCwP1xcYAVpU602CyoWAzC8aOWC5bY7U5fAMumKI5LuMapOc5bgKAEydi3tegTjVxgTZea8l+LmnnNVrays0kb4GY1IK4oq5T0O53Lt7YvSAU6nqjcbSRVhlUZrce8NmSsWlkIZk10cGLiuzhSDEhITzgJLK+s4J9JXqsqZDbHs/DVU7PWPR/D8PqyRjMhPDLDMyuaCrIQRHu5robtc3p/MuhLYxguUa87A3uUu4JW8FAwSHhX4q9maoHZK8c0JPJaQSmp4tKC42ag3HXA/R+agJE9H1R3Ji8nE89OnqqRbvCPlWqUVZ71HxFfr7dQaJh4SvF8ntf9YsotHuVtMkhqjzQMya6vzkfZIp66IH8lQDDSL96ApT0XEhRtarz79Cdv1NxHcmcR9JgHaJU4KYuCSqHnZrztaKHIlUnnmG5sz/0UdzHf06t9wGpuzqFwj95m/+DehmcwT6SQn86QsIPr2bzHrOs7U6dKAgoG1e5XKqH43fpkGWxxWiGmdb908jzeHeWkqHEDgQ6MspWu3R9zRGsgCVZzWd39nSMuqFZz2e3PTJ87k6dCh6FKnWpxghi98LKTFdffT4/eNM2fGIKhbRBYMluDEUc1hVrhabpr6FGrYZIukfIkfRJrnEMtuBz6Ked1r4gCzLqhbTCQBWjdVvHnUZfTmaZajjy2VzWC+Cqfr3b3rWg38XCe0dROxXSRi2BEtPs6wmxMeqtdYJLEAXLixTdnO4zT97ztf0ljVn9Z9qwa+ut/zOUlrOJAHh724Q5ra2g1nvYAY5rbQ9gub95Hak2735itg+56Cl6CWWaY/i/rrfIKYfNZyre22eGpxi1p96tR7noUTS/Ee/P3ASK20D4GyXW2rjKPwInAsztkglvHKWX5BBMuHrk/NR0rHPAXgT7kFR5kkrC20b3LwDyBjN4uRKKBpI+UsW2kUU4W5aEVehAUEt8/Uaw1HGKWAo504GO+mJYPTzP+QZIZRojk3sYqYuy+d35OVI5968yEIy9voic98I5RBPoydMmSjulRdkRrGzrO5jzDSsD/NUB80hQlznMZYcNPetlDEdr1X/cnykwOOaSdgRsd7fezxuvo/u2loOOKhmP3JDumwjsGVxTb+SC6XKRPvH76sfJak7OhaRKiX5PkulRwAsJl16J0lm91ec6D9f7/cp43q7Eerbcg6GlOpcOc6Mg7jUcqOHD85SvMQ7XItGOd+S5ba2Kg1TBkiBxQlIK2qvQdMEIYyoUdu585PhpqX7hqzblVC4hqzvcL5eqlcLSBHAkBQAvOzFOE/tYsaLoF0qS5HLz6NRxsoqxfZhSz7ac3F+eFq+6BvO6rCbdYp23iOH8ASNmRXgsJBhzNvf0sOc8fHTAot6s1doFrA//jc53fCmbfLs2l+ry3NSJOzI5Y3nSVtUQk55eFxqpddPA6vUxe5gAgbq8fpaTNeUMmp4NhURfr7mEiZUE3ZEGIY/+VOSZmV+x44vG4fuSyaK8XLZxMGpJmOX8Mp4eqMUO4BBXRrIyqaYTmAPsaWZeE6QUOwCjPhMWd6mOgoQy3dQZn99GXmzvKMK0TQIycGlz1v7afcM1f/tyt9tzfjzGv6FvmPSU8Eqq+ggMKID9AnLbaCD+6J3TLxjPDKMKiTzuznCmoMUdhe3Cple0O5J73XMfyiMZ7GUrJmg7aSor6x7xnfUMNMXaF9xTWLT8yYQT3/l1ogVIeQI+ACEcF3q3MTgjBagMx0UcM7GX8chR6yglc4o8gLPcp4bCTqxP6uiLoZz3tn75H+61R8qf19jGn9w7Qo2/P4gnz84cQlS/9WN51TbOnaENRldCHRAvQqwd5cEcC5yYAYOTeipzVvCp5frXK3wGya7CjVZAp4KIVd587PS8k8+vB3TEVG6SxxQYN788x8Y0q9lOhvksniLxvEcrCLCfSIUS8/9X1f1CTtgVp/rYPHRrokZUsttPirpetELBVBbXVFc8GZ2uW9JHSVaNz+fm3S250ys5bD7PRAhHDUARmJNi/c24/qMX8bJGQSArO1i1SJCq9dFNAMYnWdUz82OwYF+sx4g/YTje6fvyQzckwdnEADe6i6RYEqWipmOx1I48OYeeUhBqIhTZ9QaMDytCnQVsePQP/E4PXDgXA0JMw6T4sYDfsKbPbtm55c6qrHgX6X8MyuSrwZ36L4zcct194UXsqCgF3rRWKUwtIVXrOTC+gcpZ2TSt2NSNuwNzXtvaFvEMuUX5BFSYoF9MyMWWcZ+q0jMfEqmT7YXpv+55hGR24w3PSn6ieJ9FyAP8ojMRZhZbjEF6yCRTf9jYDcqfAUIy984fHnM6iOYrgNNdSGHNAc4Js9bKM/KO7CPVApSkM8ljEe8uYT07o2o9zuAjMqyTrm/poCr38BMOTM37ibXpgSNMtQZpLaK3UUdtIFsZ5WnjSWF4NEmywGGK7mf8rD55HpWCbYAGZe4IYlJrmqM3ScaNzANXZ9ZRNn3L2gn0vHlai8cSYEamBKpIbwJE/3Bgn77NeoO6w/SgDGsKhoFhw3KgBhtaTQHVfizfMtUBlPBOqZJb4XuqV4v2rijTE+Rmb0U6GljrXqeeNoMUgrwx6K+d54ZfRnMen1p8p9Wuma2dsguGTrWzvKumATnwRqxLJIhKWh7vzpMCwD9x3bkrR4vYgTrJ8pJUgkUL6q+2zVgovLFrZovGVXgDAAEk/3YH/vMkUrATfukygwuck6xZU0xVuR60FfAq3b2LH12BrRMwdq5sS0X1BSQyVoXoMIVE/vnunB2s1hv+Yk1V/L/ny8Ylr1mQsLf7S/WvSmLA/vL6s2Sb1KDJCP155tOhb5M1I+TkynEmbPHJ4Vni8ngy03iNorOCDdZg79YsZ/dOAf/XrdxOlgcyxU34dW0/vHNz2BOVCaAIwgyT2NXsvWUN3JuX1RSPbLvcQTSVZtFo6wVk+2UYeO7p5K3sJXQGjet91FCJGSyT/eROlsfeO8/YIP3dlFJh9qE2H29PTiiOvMnSki+gEE3HpveofrtOwpmPCmX2a0WZUrnIl8/Zyv/5wutVnau/5Te0jopFJuzIR24qolkcuLWVnyE2P4+43N91ji+J8l5A5xevLcfjit+XGx4hZJWgu/jIL//vuGJ6X4Ys65Lk6ePqDACXnyB7PnvPqJaX+NWk3M6kNlRvWPVZXbixmY8N/4tWtQ91T5bGYqie69QABDXbO9aCfZmEDRFIoTyGo358kOTv+F1dz45dZEGAZqBT5hHm9XhPZGtF00kwmzhO/lVGAo+hOa1V0N2X5fvSPlcJqqFixR2xzX+XEdIqTcHs+VDKa3x51Cuo+daMgeRJDWg8ExMAJYwZrd9HYSM5aHedAQkDwIXOVOhcv1PJtSLZUUVhyJkTZt5jY3U8NxHNN+ppGJ/6CEV7yA+teVUPZCKGd0PxyXlfpf7U+5HKmDSmI1cznmu6rxhuj3Yqf9RSTZDAePgn0vTPVyPaxjS/acwlK/NJBHWgZxkDaGHD6EZnq+cjul3d3VhCz9wUrT1b+F3dXeVn+93iv7ezElgLJVGZ9jqv/PV1B74S/8E691yMX9oifwJGl/r/vbPYTYmUHcNv3n1TaxQW3zPizpgWBFMuxBSbPWU1+2VL799y8tP191sqP+edIc7Ogilf2Z7DsJVYQ4DGW9gHilr+aorY62c2xIcjCX078CqSzdAwzI1GO6Ibfy37y68uXdP/ocpzcf2GoCkmEtVr3TxxgPIIC2pTCDLKHx1b+bq0+Hgc/8nLHYseeMpnx+sl/TgGkgpRlqMlg4YSIGwcOayU+lGahScUShaDWUfdPWuvjnp8pRLamcbmWaCsn9Bpfbhv4phAVto7gdKgon1CDCdolvY8q39uvBuNXMAlB9K/LX8lUkch5bLn+q7d1Kb1f1v/6ppIQT3ns4fIZa4bpfM6seCMGMS26nVJrTIdNhaJ1LMcLgYYaIUTQkf1/MgD9RSBoW9qDfGAeaszPQNF96bSCbHCi0vpWxh87Y9oxriOUCSeqxibC6h6Ur/xbltS0Ztc2v6MDBSWzFUI83fe4ayOIDikuXiLWUWTJZT2WDoWk/zjU0gU=
Variant 1
DifficultyLevel
573
Question
Daxx participates in a walkathon at the local cross country track.
His grandfather donates $30.
His neighbor donates $15 for each kilometre that Daxx walks.
How many kilometers does Daxx need to walk to raise $150 in total?
Worked Solution
Strategy 1
1 km = 30 + 15 = $45
2 km = 45 + 15 = $60
3 km = 60 + 15 = $75
8 km = 135 + 15 = $150 ✓
Strategy 2 (more advanced)
Let n = number of kilometers walked.
Total money raised = 30 + 15 × n
|
|
30 + 15n |
= 150 |
15n |
= 120 |
∴n |
= 8 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Daxx participates in a walkathon at the local cross country track.
His grandfather donates $30.
His neighbor donates $15 for each kilometre that Daxx walks.
How many kilometers does Daxx need to walk to raise $150 in total? |
workedSolution | Strategy 1
1 km = 30 + 15 = $45
2 km = 45 + 15 = $60
3 km = 60 + 15 = $75
sm_nogap >⋮
8 km = 135 + 15 = $\$150\ \checkmark$
Strategy 2 (more advanced)
Let $\ \large n$ = number of kilometers walked.
sm_nogap Total money raised = 30 + 15 × $\large n$
| | |
| --------------------: | -------------- |
| 30 + 15$\large n$ | \= 150 |
| 15$\large n$ | \= 120 |
| $\therefore \large n$| \= {{{correctAnswer}}}|
|
correctAnswer | |
Answers