20296
U2FsdGVkX1/D0g//rg9nOp26k9fUenb0f9Zs7+z0BL3Xh5BFxCFafSu3omigppKzOBYejnu64VaTVp/rmAnZd8gY9+Vo5HWga1OA6i8mKZgHS5/JzhTuVOTX0l0XqltN8OY2mZJP4RfT/7//56tGY4zBooT2EqiYuO8AdJOPf8y4ElpSs0rKJ2wokMQGfnv4d667LpuLo3tRK0l8ASGlg4Vouolwbi1258Z8ANr4hSsfTs49G0oZYdZM4XVPTKgvhvmrwXkciORghwfTl+g0RCuqtfZcuttradcDEDvByX/mqqenat6R0TcUq6s8NzpOi/Bu42M3S6z4TLbKaF4YJCmoCU6cylmfY1j2z18n9Mwl0/DKw/f6SNXS9ESMfHAP5e3Z1odR5i+WWj9964IZ+6aHTgA8yOaFsJR2jbX0sdhvOpE0idGRQ4jEqSqK5X/kBsDgiKJDBzVgV3OsJClbTextgfS4U07Pb2jcei7mPVjVc3ffDsaLJMmoBHKOVlqrfxIhhlo9Dp96VhdYQIps4spcfF9/1hojuMr0ZHvTxvPTAqBBhxdaO76JoUTKPw99FLOVmd1MvdXz2BAD4qcXZip/5ogEZ9p6834zGntMRb3lzoOg3LTaie6UHwS6L4iKFGNzkSybjA7DduXiYn5D3vJ04MxwSoqlAPTdWDajuOBwhXXImjKbYT3WwnrSbN1D9DL0+ejKgPj9hNkjhbCtQk1z0t5TuWGKk8P+rctdU7f7Wm+o0j8q3uNBywkq9HJgOeIKP8wHasFl8xA+lEYQ78m6EGToJY0HPL3R2bukZVWVF+ohr5pEXChKoWS1nydNl2RCI6kq87MvbHApUQlujXmrlm16gWZruHBlBbOHIWMZRK2MIbib0hiQE4g/gaBvAXlPiWVplfZk4NGesBc6xSKbjCYGxAH+vs1taG4DXUzV94KnFyHyugQdWlQoLqJV3OKmW6acZPM18OnzlmE/+plg8tfOrJ25NYGs6HGSrMH3648jS1DjtmQ1kpuRlD57jTuau9pMxupAkzUk6ZzmldHdHora9NEpkFMOVvxW5MUVrgVq/Sql002pWC23tIZeUfEXSbIN9LT91pZZEUnK9zGR+2UXXaV0Z3DcsUW7a6eFy5p0QRT1F4G7M0Mat/hnvCpRindBQ4llpiAH+fMi/CZxllvJJsDcvfagJWTG4NrXeOgyR1624i7mW/mA4QvQ8CJuI0ejzgBlk8nX5y1cDNs0f/QdeosEnsiOlv2MuVWiSQNj09Lg6MPvLrmZRjRuXQ+j/ZWGkqN8UX5ZWKTufwY3MbOGxzrtf3ic1F7tN8dxF2V3tGPZleCMRd/owH/u2dtAlS0rj+a2KTwQHPBs1lEfXvo+o7VEPe0sedB2H/7YYAZguwRV10/yE5zwO2ziupY/DArA0pKFHZsmsQilJI7phaBhV18ltE7Vqcz/iiAgvE3aiyGghlEnnSE7yEsbwfhwZUVgVucEmhVAxLcQRS4kzhWnLolRdeWFjO2mnLUXqaDSWvQ9GWEeeEm6lSw2/e74hfKz8h9N5CIq53CUh+oNWFv0wWO5ujDeUxncTM7/xiJ1BMewBfjKUj37GILIOJ5qRkUaO5kcjbW48kRtZx9KUqx24GXKTYyacnD8zWA8PedbEee8dJx8q0u+3p5AxzBZblgUBKcz/Un/WqEmqIdalqgAzRiKpGvkQnKoH73elnv6L3DHydMPLtmP2R4i4cigq/f8qPVy3yY50p18Ff/566k2GTBnGKj6B/hOcQYjt8NH48i7j25TlJwh6jODEN6RjBQDVljPjQk7evVjQRa+D0mK90gc5pSQ6wE+BY6SFtDwnSA6Sen+/PTCOVjd2hvQarjE7ASqkjnhYzjr9YDIQKdjvt8bIG15CuFjFkHj0RkogyAINxQ2o2dzldfY2OPv7Hze4LDbxi9PooW/9qyrLaGpMMpXLfZNJ/Xe858yc0xWm5QnVpV2VOxDoVmLffGFbvbDUkbTHIHAlJnyCMXg6jGP+QfBHFbZ7Lw8vUE1vs9y1RAOEs11EdYQBqRQQXbDqWE5jK68+l+/XZpxsWm9hQgrOBRo+XrmkKzga6ei+yN0+EaCZ3+elrtQs5SOhr4gpo0EO7P8nc3b5cRlydNqgEBgRhIJdEL+4tGr1zj/Flj0WY6uXBIArj01ndbG/WGrdUcLZrz/toc7NtgbHP4wJkwVLHvZitot4p4c9C6Hhmw30xcWFM/PWsoMwxoGlnWl/OXKEG8IbkqNLO/XhOh3ODm4rI3oTYGEBnjW6Yq1zSBUXsauLDtkg/6fpMqNlir60me/IzLjfNWjevt+df+hj4Jl/MtxFCF3RvcyiK5lobomRcU6P1Is1ZIyW1hOeXksWWJK4DpY7qyTDWDP2WKfZ18PPDDoGQXCuYb1yvlDop1UOMJ9ndTzpI7M/DyaCqUvH8qs0qhUD+sAoHR7PJWxndFZnJhnDru/EGIWLxCUhJXbh5ekmHVCEcZgJwPTLsVuje45aGB0f37pjRapRib6k0xKSEUJNzn28QupIfRA/556kLTRnaqk56tiar5S1mCpAdMy2abY6OYFm6C5clfRxd/8ILiKorlWIK7caKTUnEHBjxQtMGC7gIiI6i9LVMokbXksqysebegKMvsbNmNA1AAOmmdbewfsdHJc1ffTN9SSTbC2LyknduxHgBTRj2so1AgBJCeRc9irzgXmVaOwPqMlUSkB0CPhfWA6txFy9pFxP+c4qQg4SsHNtuuR8/6Nza4RJE2ALSNymPEKNfkSDyolkFFA61QrFu2lxOQtc2viC4GHe2tFzFSKR21aX4AxzuIAV43x/+YHdZXXVV/+5XOZrb4Wo0XToZpE3QwXd+0ThiCp5zHpIvgC3B3X+3j/GbTed+StloN1qq0LFaZPpfeiS+yq1DMjlwVPnjwsYAcAFbNa1qY23XuMrKSWC3ppblnVpGEJAm7AhKOM1yMlUFmb1Pr5pdI811litNu8s5nxk35APioWQ1Fk3k2OtT3m6G6ofn0i3Fe7C2XRXLd5zbMWkb6fEAh6HXuTZhjcNVSXH99gEjwuVcPvMBtUD+0FyXt/AfOzPoUp418q/P5T8lCUFlybDUwkrroja/YdkhyLZS7MT5vFCq/Jcb7cwfjRjDfp8vgAg2x8fMHqz/psDnuVuO/A+FwQAgX9FtVcm7wdOFbelYNRiQa+ijMHoSjAnSHHLN7vLH52HOyBma7+Ky0ZxShUTqS/ZvEgRTLmUuYWHz12ev1R1cj2Mw0a73HDHUSxkBygT1PnEz8lu+HJe8EEz+hcM1A9NQvNCnU/2CdevccdvD6Gfd3j3Z26OJoYrtluqj9lhSEY+C986tnioXXkiXBRHps1BcYqE5HnxfN29T54qeqDdeFEsxOPGT/ZNQRFkTmnLrwrcNBxhOnwhW7JUPNqM8l0s3SBySZaWzur512HE5BjnoE9OcJC76eDWeMp9qQNuIondFthXHDKa40xDaWTSzckL53Hli6xhOfvCnEH0tnXUqiHSPhK1w97foviyeTgJe4HRzq6itabYvpvCSHhmjQWbB31tjxByvGZKXsPuy8oJ5jYQduVP0iicXheXciVkQPhVKMwbMci/V3giTClgfuvMigubORtitz5nxg31yqZ4qInanIRMmKDYcufDVDsB/ptzvoxvUoiJ1MvRBjYxrS5exhZfxYX8liXKtLv8IMKZ4ObIK2AWnQdATbPMzZ6wKG3ZPfXsoN8U6Ff5+hpRKnO5Hilco0i/7D1x+DYGcjKbhEpa8hRGSgPOh2XUj23td4ciaJPOjjOx9B42okX0OTS6QVlt88obHb5TE3zzOTVkVTYM9v1O7AEXMTU2USolmikwBR+i+oksx9udjhvQH+BUt/H/mAcyKneGwHfqBYNCaA7wY9oPpFW8u6ARp7Nkc/hsnh4mbdzdJhoiy2cS9hhU/79QJm0pGLmHDcgKdNK19frniWDqTLxY2D/2ZgAZ5EAImHc+Lgie/DHOE73XhfvtsOJ155b2/huH1g5O2mBHIxZ0zY6WfKSY/xhv6UBf9+jlT/8EDJ/jntkHReHLYgc+P5G4Xsf7OgvNU13SBX+FVN7jrXlb4JSvihm1VJqQZLtTNtj74ABexGO58yx5sJzAfSovYAxfnt/dVexR0iyMNosTHIg12G8ygEA83CzOuRFRUEij/OhHSjwzUS/9IvThpAAk893ibELa6rkdmsDpYFe9nzuiSfHjDhoy7PrnDjcS/xdUCIt+fjUUTk0urN5gHdkokbE6XVm3wgt3lTsUbI2gkJBUMKgHWMCnsHMMYSikO0kx/Jg0YCVZWx83IjAoRluEQW9SqlmRonsCOtSKxCA/qgIhdkZFTu8Sa7MalEEi3Rd/cAfMw3kZVGZ6Wk48Ivq+4jtFeVhjt7lybEP6B2zq1KudpyRjMaUUG5tJwwdjl1gdsuCbxW5ugA652wgU1DK1Bk5m8QMPIIOhzLCQ1Sg2vHD3ndcI1v2z73xgX94s8oEOMFeP+tvFw1Jx11ZJCzf65Bzwp2q67xLTD2nQqgKr3OLQNCO7+GuEB7h86wjVIUKwhmYQkoSDDDs9wORO7t0sDtUL2QN6P6Cuv07faqrIi1vHfxELp7+NF2pw+fKLl+EuJnRvGhomibzsUExkBUeodWw6pHCei3kfZ6VQSSZJt0iEtU8asS7v4r1KET85EhzqHey34FWfcG3JQ8YFL5LFqJIBjc7a5LgOVTaM8kaxjxxavtmkAFd5WDcTk0a0oK6vFOEDJ3dy7Sjtm4Rxp4N7uOJAXgq8tZu0Z37P6ENmMzGms2JWgj7RH67eVn9cDKiSAhvF/EP4gH8KFGeP1QXV/ZCsj77kU+pfplDH4k0WVxiskR6d/2NrLWyQM8+wj4LG0Kxf4aBqlOeM4rUUqbVB1jqqgcMUEI/qHApk9Q8PF7Fwgw1xVwKAi5vwEYAfadFGbAoQrIAvVDzhmdbxoLQ4Q9ckyFo0AoLReoiIdEfLM1l0j0s6WOQeZ8a7ZwDtzjq2/teNs79F4ZRyO0kVXlHcdEE0MSFJYswCCmphBCwswHctCgwIKRB6HvN7Jo90thgRCb0KtUiqU+4WTf50w9dumZOgLt2gWKatVDCoqF7A/jM58gV+Z9QX+O5sQ25vIOfQDejfWF6JunBeEIvLGTiTStPfVWZpgIkJf1Gi/pxgOOAb5ZdjqSX/Eej0Rs8/Dx7057AIRKb6kRuWfjqQZyOFER2k2kuOGuFrCtH0wN7gpc61ZSDZrEiJHABxNeD0LvbPbNpY2RVeQJpf/Wz1oCbj0uGZoGNkZ7L6XOfDLPRBz2AUwpm5NaNOwuwjfqld5h3wsMEdJx1ne/UtIvn3Z/ifd2R4C6LImLFZv0gUClud6XOvrOdATMe03Q4IiOJJhtjBef6NXJBgvdHNymRhdpCGWJgwn4NUcSnI0HyA7JGEQVy4vi+1i55DAnGjzDR2J7+No4ROwUXxrIYN1nFc4TvQyWn31tAOWeDNbw0Fpw/0mh6FfJ2jwfjkt8bymRSPjY92Z1Vc1JinQp8Y//1+Y+sYosE0aPJVtDJVkvqLyaxvEwtQKHnRrITiSG/hGeqWdLYmKSf3d+6ekEaaY1oaFWomg7oUQn503lKxWd/w8xKy8Pp4z2N6gcemluANoa0el9ZG1TqrjkZLqkKkYWEfNGcmkMC7R+i8PSvXenY6FLJcuwkplieaiTWcTEX16XzrR+TFJ65EPzDwQM0NI+7TJyWjK9CfSm2I7db4kwhpIvJiOppBa3rcT0SD6sdYiiAytiOVOIx0dOifgRY7xJwtb/OeXQYKXupQ+k5Ddwr+4ZUsMO29GC9c1kth9T9kzeY75rR6gVC1AeDyxy08fZegoofjj+rUvaHg1N6jg/5xBJw7pbBw8OWIq77owtwm9ucaYOpRtYAwUB12O9wLcHCHpxSyR/fhdSBdeYF79e+fEsb4XodJj7udMp6bOlj3NPe8n7rF2oGYhJNcNKHAm1UwdZ+Q2dAjoPd+HLihvfSXhvxf1KUb1tTH74L93giKo3CEuc+rJr8btQoqKi6cLdilr/RqXLYgZbKD+MwN1Ml3aKuOA9K/9i9aWyTQobBCiBfQAcThZf+dTs6VBNDowr1vyBSIeFu5JemnbsiiUf9/uiV795hBNdOjlVtEiEOR7OuGa0h6PGfUfirEibQwkh3+fSiJxpGTbz87x/FuNEhM0seJv3dEFy1uhN+JWxKCdqTUpe13MtbqolYYpc/MfkizbG3fRudgJMiU6Ue8xrqxJra5CA0BO+iqTVEhg9niPmzN23fYXoK8aCf3GJMyAIM/LITM46driu0AIm3gjaLdhwTLJeedajiqSWZycQk8ko3j4stH1DOLwP24F5xy7WrmwbGSFlYcCQCpnWhPppNZFnCzGTq4AFBk3JZ3i/nxoWLCifHGRTPe9EUWLMkF+/bh3g7BqTy82Mq6cy42yMcBUqfOfC94QEHqR6+lZLrjJ+PPtIfM6UrqWN7huqgWa48OVP/F1a7Gd4zy+wT0dNbR4q5AWuANwKRcMsm3Aycr2FEkfp6htTDEIO1DM4nDnmUa2QIKR27YWl5Uby3pOJM2VNvRGaHrNQj0qusAjir3StQKlw4eJkaj1Zu8CJmxR2kQOMXHxl1ADDn5DpYK52k/l3czbCpH/UoWGWgfE1dwO26y/7eQBMOxfLQXC7W0ff9gfWXSG2pIkWoQjZnp9TqaaKXWCDSaZmD/+Tcg+r0OaN2kf/T3A==
Variant 0
DifficultyLevel
550
Question
Olive drew this plan of her lawn.
Which expression gives the area of Olive's lawn?
Worked Solution
|
|
Total Area |
= Area 1 + Area 2 |
|
= (a × b) + (c × d) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Olive drew this plan of her lawn.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2017/12/nap-b4-nc08a.svg 220 indent vpad
Which expression gives the area of Olive's lawn?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2017/12/nap-b4-nc08b.svg 240 indent vpad
| | |
| --------------------- | -------------------------------------------- |
| Total Area | = Area 1 + Area 2 |
| | = {{{correctAnswer}}} |
|
correctAnswer | (a $\times$ b) + (c $\times$ d) |
Answers
Is Correct? | Answer |
✓ | (a × b) + (c × d) |
x | (a × b) × (c × d) |
x | |
x | |
U2FsdGVkX1+RQx5J/1JRqfeln51u2tP8Z2PxY7HVyGkALnTo8ka1bJN5t/aPZcAZQzfRRp+B5Bn7lMtVuVaMNDxtkSPS9a1FdfJg6SM7Myg8ccMtKMdTu2jT8r8V4aP/nUWmnzEblJbtCKF6/lbPOWeGy/AwmdIyOKMpSgBm7RiFFnghMqRNJUSjQHVo80kExYbpeC5s3X/uxjxhloZ485EtOF+BlvosvwikMgoP8P9rlkdtSECX36mrzyI44UilbBSuWKKK+PBLCbPg+DCH5ClEqK3jSYIFqNONAkAmXSpTeUztZ73cjLX/iD1E5EHA/N2/7koQjykMVI8Msr0aQ99yHCN28tsPDqlhsUxgq1D5DLfNGVknJupN7QvzeSsb8QJ1Fz+vUa9NyjQPxn4gsT0V41cjjcdKvhrK2KOMfi1SUpnEoQ8TYmZuRYsp0wzTtxC5MXqE/XmsXvaNwDKoqEPeY8RlWJLzbfpW/oN1zJHKwPq30DW2LfaHtGrWB5laP2rpvphdx3b8h5u4yLWsCTX8cYGMrFfMOMLGdUZyLYRSYxFycRdLU00lAzisMKjinQVzis0E3rvwyZcIwemSX+060G4B59qhcKjH6Y8+jGeI9Ov6RQivhliCs+WRCJC6H2DS4pmruiKMVAa2C4FE4iyj+8me+YafSLQ+PbaAIQnREYzl1X8NgN75e0Iz/JkfSiv1JXWRr0qK4W7wE0+SRSSv5p4QfhycOI941It2GFy2hGBgq2F+/fah0rz8G02yJ/iWHKV41+JxXDK65s8l0tp0c/wF4eysT30Eusqh3Ere6mdGiV36KYKjUksc8hj/OKIKl5TlWd+b3U245v1dDbeGpCpEmTMj+z5XRP2zooDlOJBxAazivltFVYowlZ4ZefouD3sXzTq4DJeo+oEL2oFAQvWuvALu9h26pNhel/TdqkrLUQ7Zq9Vek2NRuxvHEWu2f8kD7H9nwb/LQ2T6zTeny20gKH7nhZGR/3IE7ZijqM5ujOKePOVX9GMxROcEuHr+d3NasR/pn9/Fe7Rl/aHYOtKup+BMOp/VpMoV+VTJw8NWJCtR/OnZSjYenuiM+IOw1/n7MOEqEvR69z+WoaOBDpXM4JZvk+baejdWlyIlc88b9q1BsA7Ii0DxA1Ul2vTbWCKbONQGvYfdGWNL90hb1uE8MtW81q79vCvM9s0M3MKTDkKu1l5iWnqO3JXZwbTf0496M9X2hcRl21js3P7X+k2UC8yESUC8BmNpgKPUf3NFRTDbUP2tHnPy/aSYy81WPTN89wnVCEau+eigLgPlJ2+tGN6qqWcdvzjJnJH/onCw/qTF7HG0Id2V6/or9Mg0HmZdsNC4eAghiPt26WRQVaP+36lD/vQ1+ZVUmBt6JReAB/No0O0wzEwpTInFCm5vLMKxX/I1j0MmXLyMh9yr1ZhrKtw0CyeQG6bQNfK5N+DSpuk3Reqjt7uPOTygSPNK5aFE4ox34aiBWNTQvX9AZDn0HKgM9IocJ6sEzZAckkPGonJ2ku6r1JzWA4tIjsaRKQ0p/frgTAK7SkOgeTbuVTZDS4XZA+JMuAXFK3GQ4xCckEZvZHkWmPLdGF3lULjSCrAkhzCe0rDTvmJejNPtKA1j+OJShKg1EEllCkTkohkupYIqLIz0yl/t/LmyVgK3dkkVgEmEw753frZnuwxluQZxlvlGbDZ+jtlOYwIQnDRb2xZDCZ7x/myglEC2ABqw9MHyE8aGMVpK3dpBf0XSUy1r0cnbMBFUsqNYL00X33o/quQwb36ym+olBdMMi/RIrTq9wtPFUbyS0MSsrEPGwU2+cpmV1etbQFXPLMFkPZxJ70YUXTjVnuffE4ZuulR/cCQtUtiuZRd3+jG8WDymZmGyrk2xrUr2nb2bHja2JVh9p2B/efuy+XGdoAJXdd5cIE/f07rEQkxJldUcZAWNwmc7XdZyWMV3oWrI04FcSE7Y8QukcLYZBRPV/8sJZcVGABsaOfQxxn8+zaRcf8GAtgtf7NvYeL7/rDvkSXvutDElBdTDODE01Cs9bbYIhwSCBTqn/p6gloqYIxR9agFWdi4NtybsCYKGk9MVoOqYp0mqkSaZbXFJUTJJZdCN+q5ohrfSIIvU+ysUszsejLS/BIhl+GiAz3K/jI9pCGf5zxPguOypYW0IXHwFVN6xG3H7/HrjGZ+0Arr1aomMHnEi2F4ZOx0Sxd2xT+MS1NaQE+U5UlEE2+NvOd0oElH9r14RLw6syY1tt4CGeflqyIicdMWHyi8kdc8frpEeOpnUJSZot7AHHuy00dsH1i3Ov29qE4dINRueiskbAxe6Cck+pxR0koYoHXUVk0GDDIli+lLeDjBCmIfODmAKTRm77ICmEWETdPPc7WDbejB8vUrS+Q9WUBxkzBmVTcf2cyQKBFOX1smEdmaEjKVgZWEeqAjMOn9ALDw7ZHM/XKOdD8i7jvgB3ojbBvE0LgfeRE7ITIInTtpE3Wcpx1vnq7XMyWfBkLCTKpdoZM+b+cVGNd+uDbvhYR/4GtjNy5DhHJ3oatGZkZqDw2qeRXqZ1vZjjkNvSd7Lo//AMyQq/IOZGw5v2VVSNZMy4Gu8khMX5QbS6Pkeot5uudFyW+PvDV6/rv5M2wnvxBq90Cp5pF9lD7nLnMvN/W1o0O+2QQ+l3hSnAJVoTgx573ykQNkx68EXppVUlcmYKC3I6KA1VtDpTDwNWFpPJqG9cV0EwRTPK2EQBuXMWhld8aYlOdDwBAIdW2LE8Mi1UX0FmlYEKZW9ofjRyHqW3qXgv7GcTWvjEbRvLaXLrpLCrNWcI63JTlhMcKMqM28A9XUDR/eUN76IXOtOG+ZccXhK4hdpK0C3+bER41S3dK1rL70rYIqRgm+27IXTzPHFCDcgcL35PrBLxuAbjVT1T7hdJQDz5eVNGX6mkibnJ5fFoGjlrLdA+weTAKX9Xgl12KReRFGfjludith0kzsQR7/8i3btrCEZuWpIHrQXmMfJ+R65nR5v5wgiGvgR2jIr4J/sh8tzwyDKT1hHTo+XlhWXMQX3pc3GmFwV4go3FpB99U9a+W+Ezzm4tQBoVjReUnBhJK8k42qzfhm+Q4Cbnv0JpAmdlqu9MKtwb0TOGpCP9dgvD8Yuhjh61/M1WfEm4t0fSTgVl1koju1Udvppj+UiyvcOJrjrmbRP04uFThTSLnvOv3/BxknSo7QYqnEJ6u2KOvqjBbnSYM8MXtIcIwkcyiX8ceZwxqT0wUKBj9tITKb0nBinI4sl1YEBSDLC1izoPdPFdRXTXm3ZlhSdpsUm2RqBELHiIvs3sc0/qKIvdcJP/iCd4QylrXKKnvh/L3pTssx+DPU+u+58S1ojlbBCqJkOytmRiVdt6/t7KSTGHscx7CE08KKiZKrfLt+GSdekxBumxGch8YXPA2AmfpVM2vcy02aEda2CWlBOeffyFSbOHrL/mTixk4yOErz1QaWViHsgOb2SXdbZfqRlVo4Wgx2rmfBDvIxtUL2D6znNKoZblACyExBGqD1dh/CoL8gJnA3+qr516FRW26zc3kcstGL6BtS6Jog+8hM7Pjw+xRS11TAEyGA7hcDPbAlnPEAz0JVLvcppnwVyW4Ogeq8lH141XlzsuSC36G977k0ybxtMtn+FZ3rXlNZ3uXkDSRQbY/3L6H9sAdTH6YExTmmqUhdS3T7B/Vfw4qDpsq9KSWoJyMEDKFLbxEQCKQSHrYcfydAsXklm4mHX17m0hhv8kE2VYMPlX5a/5uBIKS6A+wnaGFbZcWGvMzHA6PsCkF5htP0GIa1lWZnyJw0iC0R8xrW/B+4pYa6Kbnoe/7Byc7nbo8keyBUmHP6bpHRbwLDaxDYJ6FRn9nELYFCSRbIHMrZUylj3+nLICsojK+3gsFA08xGp2uQS7H6alrCrhfsdzu1ID7tdJtNcpcaWo/L42c9ROednpSRU4gv47o1ixW604pRmOWdm1anmwLCUywJ6CZL5FNWrr8yK6b0c+nLn/RIpuN5xBRIBZtAO2zeBsQyxlvzuhjmeoltUha1OV8jzAHVLPHH0mQqmJULwYYYcOwLnchhVZ+Mg9B19eXTqJGhbvzcAR79g9OnQTuv4pMCNWHF+5fjS97AorthxLY5HfdsTquuLepvcGFf/1zZjzxxit7hbkCTzo5Ob8bRH2mCwuG4H3zhGWbA3G2EvjglZT5XMOXIJE3iTsu3IIFUO/BlX6UPeiWKVFzyep//uKbnlh+d/pXPfPKVoATujtDYta7PIjSkUi0MUA2oXHjfMFhjQqWkjxXs1TBXUMNZcvKNrSQqSYLHNED6rNwVTdWTCU0yxLvlrGS+x7Xb7RNZvk9vyyHqnoooe0PqJ5Y2ZPY1LPCfxwj7FLiA3sfBPyXP8lpiT6yu9n9S9ty6AQzrhIn35wBIGFqvYLsQ6KQ/Pnxl09Hq6VywJjzYeNwZtFRrHaBrOJIEHHwCd37p3h7GJtFhYH8gfU7cCGRr47afuTrVWJkrOUlV5nrt7pyT9EQfj8OvpqaR2TW58a6zJBMX2UNF4Ato11ISn+WNvqQk1fyVPGb9SzLRK3GxjQAA9YrY4InJlxSWGDPDogwjV24icnchDufunbj35RPEiPs38ECp0oz4weiBPcQtCTuJ4N/VQkkk/aYf/mBMBePKMHLO7oIlM4XxQ1QYmDh3JhdNQQ1+wh5VoiqV4jwpMaaWF7TdEhlrYCYJcsyVSsZ4ceV3+zL40NM8RP+3izje2xwtmGEfBgC+hljDl70zZny6vWVGcZGqAyxHRqAad4WuuvPHWWXd7FWZeyS9DCWH+XujQF4skyjFyla98vasOmM29VFQQZmKzbCO1XFp0/+appS0q67RKomiel1X431t/djp15Ct5Sxnni0sG1OxXiKiNnoLiJWgxoMNqrr6fL3Wlw9tWG/NQFqNVNnRZWVb00xYdrLlMbUN9fL4u9lyvq5eZP0VKHA6cCzQKhTXtP68NylYDAxXV9pKwrr3zwYHWEtK/KlrXm6NlqLndtI4bLcmSzUO1vFbuVoX9XJHa41+FsbBEBG8NOG9mzYkZM7hdZVabAEtLAII6EQ7uR8hBkFebzqSmCCNyu5E0i43iNSqS+H3NmQN/Z1rlcZue9DuxGV4J3GhbWC49F8GYMaAtkEAAhStfKGRCW7PAgeRoCIwyVwyXeKt+3s3xupkf25j7VdXGLbAzCUScbvyrEpMP5WsB0++NTf/y9o3UmGe63OYIT76vo4QHHVu4/TpFSynwzbsz21E/DHS9XE0oYKSZ5OZCSWbC7NeROVEb8rJOz9vHC9EMZBPzA8nvhQVk7r02KzbZJHiUmKFKRE13/hx6Ur5TkyHL6OjKm1kXRUINBT5TRIA19OOczKnlR77NGspB11p+yIEmg7f7W39XPo2bbgRCHoQL2Axze0tfDlYNg+8CnYQm2Nl+1MljIhapgitQ06042oU0KeTA8SAr4ndR8IAuWXac70/uPuXqT1wIGs0aBH0QFPJN9Opa233iasOXDbefSgwMUoHroS1o2rrXQ33cRubiS7UgxsUoV7CUVTObR5FZVD18DuFM9b+25njc1U1DyoFyQfs5kHEaJJBYwkBtwAF5b7Lu4UhZsZRkVVXLJIDvBOV+2feudNY4MEMANYKpxKy+WjAM0/PFlCnummZdwOPVQhMwt54Lv5Onq5lkDwi6mW0Z+3qo5kpar82P/vRoUbMygUlkvBE6OceIcvU1aHFsJE5GRsClIaWt62RY0Jbky0DanT7bJNAgP4wRZa2LlSbiyJFAnZm/aZ4+Eaoh4VbfGEiuyqITtU/fqwrdyR/tn/VrmfBV92I1pOICL4X2nW/XhnIzvOeD1qJBRb/L81itqHRXLYrbD+EmBx92vqTCdAgLP1U2RlprIhouxCCYVYZv4/Bj/msacOzqZ9F+BYnvs+uDIWjl0HAgs0yDEyy/6CQU4TYtcDpC+3OFE+6ZWkja9X0BrWnuv30AbIrQEKtxWgcwco99qfSWaT+yTuemNaFtVBZ0vne73ZTwsktbDgCf/1hOx/SqKQK/tNYKc3O6divIwoLwbiKcnFvVn8IR7A+1YFnYTND9DIaBrkLUYJwTGbqRKFUD9g1qO9g677i7ehOuchGiNGPLKmiRhdq7GwFiYl05FLBcReEqT4M2nVPN5bPNBo6RC4q//NhHg+nMFQ16z4QT9yDZH8YsroBgjhW3d1qUdIDrB7tNDkT1RfX9y9NVtXblGAZ41vcYMnSJjJ+mZphEYSvosAs6ewGCzB+6q63TlwUOJmEfKpIFIzGNOy6Xg3ZNEmh19HPGh+c0u0j+dXe/wOxlFqXP6U/W9Pj+rvrgIuL/i7wvjbiefBNBUuYQSU7MhjCuQLGPh3a5dEuYctWA/mkmO27sF6uNz2Rt7tWDjVwbXCRJzTZYj+1C+uk5jHR8VMCjKoldniLa+C13iYU7XVDYlzFvWuscMTFTSEZ/1u1km9YqUfyVGbZ4vtAvUBKK20iHbsieIC5NTOgsg+NguAgzf/qvUPk+XnQ7CSqXIiqPPPd6djV5vmeST482pv/TcZed/3VFOUHc7wZL147YqSUfWZEjSNTSCX8eM/LEIC/B5D0xTuVwGsdTp1d5cS9WbMgYW4iJ+uHweY7C7lEoIX1zChbZNm00kRAECvDaTwiOcVz3oeDlrlM/Bq4PdToSYKAijmDC+vN1P+NYoxChJApNUmlSCEENW6OyTQlo9S8WlwrnwlAoNFP49uJK1PlX27oaXk0wGtF3Ti/fZwprLBJTKs9Tcspe3hmhsK6qdDsY
Variant 1
DifficultyLevel
549
Question
Atticus drew this plan of his living area.
Which expression gives the area of Atticus's living area?
Worked Solution
|
|
Total Area |
= Area 1 + Area 2 |
|
= (a × b) + (c × d) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Atticus drew this plan of his living area.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20296_v1q.svg 320 indent3 vpad
Which expression gives the area of Atticus's living area?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20296_v1ws.svg 320 indent3 vpad
| | |
| --------------------- | -------------------------------------------- |
| Total Area | = Area 1 + Area 2 |
| | = {{{correctAnswer}}} |
|
correctAnswer | (a $\times$ b) + (c $\times$ d) |
Answers
Is Correct? | Answer |
x | |
x | |
✓ | (a × b) + (c × d) |
x | (a × b) × (c × d) |
U2FsdGVkX1+7BvmbMKN+UZzL763yldd6bva9FxZvWRjWzzr2+Cl23uLLiZu3SZQo8KRiJq15phpsLDbwFaLweFmI0QplVKe9RS37AP+yPJHc943H5/4zDNLWokdE6WBQ7gytfu5CHHicZCUBvW6ZG0ydoZLuAO+6cRDkLRIegu3uvbFt2zZ1AcTvfi5+PNeHcuNIB8KL8HIrlFMAMUCzk+RRYhm2wZ81tbfRu5cts+CTEL0+Ezw5rSUbnDqn8W8nXvbN/nXNgU4pZKgWDqgaS2DruVIg6cbXI8T694VFxP7wRs9bLLkizeQW7XUyuPJ6nIg9PN7Q8eHoPgDBUnjJkgEXfT0t7sw80+GE2/LOiBIm/lAiDOJEDwvVelWEVbOej7gm/14lA1vxwZ++D/Zbo5pZ8No0dLyYvYMZbqn2HcC5SxCqlJPsSdIRvxzbOkKeosVVozW0DACNHLpP3e/6cg4JQkYgIlifBN/TZNRbmuy5mM4uPYqbTyGr+bhscT1XnzHBkj6klXWn2ydGbjW7EMA/Al3z/kcypuY0K/UuhY51hN2lLtEw6HusFe/P/zynZnScfUzZ6NM+keA8hdR9dzG9rBKKBQVeg0dHBGbEJUdOeRlGZGU2ktOA9/2RqfLA54DxlgQLYlj/VnO1egc4SXMzii4ERH3uGZuqwD6fTUDXUjyOj5iOUsE7vfU6M6lUW+UDhDSN/PrPjTj02ny1ZC/jcweBpuSh54IdlBopmVPfQjnfqTt+c0ST5AhLPVhbEveg2iHNsyI5eYqEFcamN3XRRe5PLTkNGEA/ujyZJQWKx/vUwlF9g0dCZXSoqV5THC8fEYBxB/OvFEMkktDq1NUejhN6TJYJHY0qHEY+FYQba+XajWLGe9aGKJbyPk/s6Bu1+QoZ4LyundCUNKk9A93kO7za8dTySRKVVLIkaP3U9gUxFP5Mq5qMvhxLmnVfGbZcUA8wU4PcZbUl4nLlGu/l+8DNJjrsJbRyHq/W9qeAaAjkYyQHoMoa25+FPFBOjKBkwFirRECFtVNMPgFmDPK9M63X6aXJnZ5bi2l/uO3E1CgMvAtBH7l0pH8sxSDaJCitkuN8PhdkY4yKrTi5O12FEMyGmd4uK+1ZW6pVJs0Bcr2piGk7Lm0T5mcB1PUowmTszNU8XOcLnPCnfHAVo5fyoLH5lK1K0OxLZvBYxFUZLzihEd4vP6vKudK3t+xXTS7m3OzQXGuy3lTmYsF3tHsc1rzL3OOH2QfAHcZ+OJKYaJly7oqIpRCEQBZbZ2fbhv0bh3uUSMtJ8TQyV7WarGFpyczpuygE/VBg/uILghOeR1BAOEsCnJkIU+JokDYzT0JJzuzl33PagaMeI0UjV7gz6DzuZ4XF0vnhtyY1WsLpuMW8e1LzfJpzjOkn1Sce+NU18LRUaLDKJRaPrqa6GiQqFxUzm2yAY5+F5sHhiSZN2uMMvqiPaLxvKXzvOJ+5pfVEGrJKvOw/+SuZCZEzpyiXKXBSVdXyJxDP6AXSmewAVsPLDyS43PhQSO1x7hc3PJ9LFCVkrwAPmNAwYlkQ9d2eW1rEsiIqJo4YarrGAwiQuXpPNupWhsLvfd3IuvMstQAraIIcEnvAFzF2g7pOsm3xEov7RPMrN81QyiqQWD1Y3E/g6U6vUHJil0tzeCsUfLaO0F3O+oKBFr6CsOFaGmGsbuktxpZY3ikiFPm31QxvEF3AlApznL7t9OUdlXTxGcgfQ2+SyKzR2OHscGiFzEWxjEDKEWLKTYkvgI+uyujefo9/3RZZ2GL2laOpLsKqJrcWOpvWJUPzWEnwQn5o9nuIK+reY3uOwHyIwLYUfrt1n2gK8RZ0MWPkKjA3FH/AyLxLRADPngRBQZOG4ma1QyAb8svhC24KxE3HNoYvRKK8eMjYDmhqn056+alqRrue0hLEkCYiu/+/0DDGrl8XyjL+ifYMNK1cknbx2MC1bJQ4fCbPK3XwBVIOCgObGT+ZbnHtC0GprvZGg1YyndCTga5wznx3MI27vlbvGlMXrc68YoU7f7npLhK0PfNaBXlRD5qkueHuVlP0+rBl/MB5TeCaFHa7arlBV7/7ef4woZVv7ov9xzCuiWo7boXUR/CbxoiU+uc1WOrC8hTe/aGVmwlFJEc2jd79EOzCWhvZF4RDixVptarbA4NJp13Yq9aD0EBtTRFxNi7q/Hu9O/CrkowQy4ASxTo+SH0/axFo83n/mWyp9E9snckVMZ370ws4+KoO6mag2pmaSnFiL4NWOLM4eqU0/pJxDk0rw/EgOHL4GynuOUsRLxFXRyAgGZBJ90G8hXFLDypJA/kk3QLkyvkSqsL81cXOvqaRKaGhtl+05WI/3IsCm+hbX/NZsgrgQ1JScechi88FXSf0P1kPJQWm+nvMmAPa+Lx5Fi9FXPMMAVJ/Po5OVJlOUy/G1OrWCn3Gk/JDKwKephAdkLzIhjYtswBPTCvYpGm7NMK3x/ku+lHwV8s/wPO4+mcRD8DweV25E+6CZMI62Kv7C7NVMQcnewo0G8+shNG77x5o6DinPtttDHkHgmywVf/62/pwQWgAxzCAHSqDwRiJiUNPoC42p6THv6nCxwqNclEzTLw20GE5WBdCizejZbe4KfPoMpyY7nM5lXnZZejrCjWRbO8JYPrEGq4j6PZzXJlPGyYAC1tSp38jTgY+Ei0WdHBQzsWwNzWCNp+j51aKx9okLpj0junZ0rBOhVG3+Qg80NaiJSWTpgmEPJxNvCoKnryNhDCWVHKw2z2DzOrM4WdCYpwlJfwHgRxwL2I2EFBEbAdtKuQ8DPFFVKYLYSfU0V4QmRoxh8Eyeoip8OGIBGmqzYvXC9xalHNKTViRisRId0TWQvrz/V91J4C0yayPaXwUv9p6+b4hWVYUTyo+S4tjMPV4CMoeRao3byS0kshmIp2vEJfrknDYuXsuD2HaYiLQSyBY0lX7Ze7jHNdYI6YTFZRBL3jxbh/GyBh0dKLu6uTM6ST9xBUbNTuoFDu+66UoZIxjH0HCRyA1BdcSMulD32liLyC5H2gwWDMKbzKr7frpRImiGy0j33jwfVlLcWUbopH2ibgM0OnHU4Pc2ky4kPy1rwyjGC0KYPs1Tz0LnBsARB99ye93UAWSHUa49HuteFQ7sPi9SxL7J757J4zQ5oI4BKlaKrBccKF6308e7upilwFh2whyuc8Hce6ul8Z0IIGK/8BEvLL6EMihILGybjQQQZkWJVdkPX3X4URRkzxNAKCou/GVe35+dtdptGK6tnG4tBYf0vtXbeXtdX6YTrWF+RTiSxQS+dMLC/IeQD3m82d3VLynO/TiHQYBXOE/yw8kbmF92PRpIu+ETLwo+nkbI6h1NmMKKEoVsdpvxlHWhZrKx5WLSPqlnwtwuHtr+vEh4xY/lnBGWE4TYJ+ziZgsJyJx0a7QVQU4FfK5vPU5VY9Q1eiqh4SDpoYLeC5UJ0B68cVG4QimR0ZLwOU6HUiy1azmiDfFrkyoU2Henx6J47r+KwRPa2nFWJXTDNc59bAlgRt7hRxOwPZS0U/vp1nvhSQNtChbSnUnXbdb93dRwOh/bjjvnxunWKcy5nfdBPCQ8REl2+yNhQDLF7f/HyTrhv793rmqi/iWKHrKAPMCiyEfcq9X3amkNpw42U+PdX2EfsRQ8WWIXN8t4JOp4hM1X6T0NTzIy6yiR/UZRSXamyZ8ZlUkUEkMcZ6Fbgk6lLGD/uGICrswYXR3ygna+q2AIw3U50AispokksmwI1iRg8CfHg4qsVgikKBMvuOfT5kv4PneyAfxRJSWDJGPF8yHkMhHMlobMJApeJKdCxPbxpT2yWGixxnbJg+jabokVK73eUtSM7sV77uVLVQU/RJ0qOzVXZ2qdmmdA3adgWUU9MV0f43odRpYd3sohv/osOsvg4nSUI8SVzoOxMIanPCTvRcLUBNVGHhDE770J81lM/a1rl3uEipQA1VQxR2BhiCMksunwM2vEkSOs/OPUR0/66uU5Yh8mQQlThL4vRei8YGmswP8sdZ2OW90odWAiJndAFV5M1Zsr6UkatlINRBuCToDgBXvIF5j1WRmav3P9wSQCuxTPoNaoz72kGeWImi0Ln56wwetNF7cmeCpH+wGiybXUjpGMLfv0ykhKS7IBMXh7i3VBn7Be4KqfRcKwiwCs4uOBZdxnCNwJigrmlrk+MRxQ5NoiUToC6COT1JczBrhc8yQB/27b/iazMm5/i4cnq6Gtup5O7wDSxUfge99zPaouUSoxy57o4ciEM8QHgPamfFD8G+4ivlkGJSNsqFnh8qGI+1INDD4EnlQqWR3kAx8itUVze5h4OyXSQZrxyUn64hwizYyBFGW3uQfFyLbsg58tODlkxZRsmHBTF4dE3IzwohI1oYsRsua9Y8lpg+FRW6fxmETGgYfWbSiMmrXlPh8us9aYkSqhFkKvQDz2EC/ccB894l3dvBfMGFr54BXRlwYsBYAjiWJs0Jo3Ugu2LO6UzECJ+mb9H2JWqz8S2d/057TadIaOPJAKeL4RBQYYMmShAGtrXWJyuGcT+F43bRCgCerqOsGOv0HUMFAqW+51ppVd5t+VGF/MtwxN0UVy5bK9qdZwhxwk3YnKjJ1K3ZADkaij7UHRyZuKPqFHt89xfz5VnWKuP0AHF4NwKMREIvgT29pmIuLo4U7odY/hjM0biSIJFc9GI+zlKMbS2fiZSR0HYrFa8nzCK2KQTc5c4OZIntCsm1e4JXGFyffpym9io55Dj8vGjbAndqjo+73ONfxjsgAzQa+ymgT/r8zTm29KCTz9NrFFUASp5stLBebZ7XBVALrg9CGcdvZHOHp0xp1aRGxPxxWa3wPbFfRVf5+WLgsAWAWkOjIeV24nD4LfB4uLXCGApnReuYhUY8qITwqkHYzKttLaTZXoQa3lJ/6XmStSaxt0p/zBWue20jc1W3wNo2qx8OOwgfZLp/sILJebvAswOrw2VNkr8wDmdONHoJV5zkeCP7X8y72kmUleDYryH7lysIqEkXDAjBStScqFtWfVNcVghdr1UrLPF02qpImm/BsxQBbwI9qNO7rbB/dcl0OGargfzE8U7slj/SEayIbNswLfpkwBW5Mcum8AOP3OyzcIQwJ8nsyu6vaW1q4PM3JzwT+0QNl17Sl9587wc7nlMM/ELd+BegH7GfLqLRsT7K281SnT062xqNVEQ2D1KXleiH9zDw3o+LKwh0ZIUfUlMZr2sPnkXAUilQcnnkXZP0H/D1wdHd1nGFQTuW/4gecRWe2mmedY8R+lKwfqzJRGplho1QGz5GF1CJfVnnkXO96YcJbuMrqQzQPu3C85Dg5yT836okBogVT1rKGFYHQmUMLKEk0GvYSHhjpMbSnxEPCDJCq+b3z425k72ZZhPPg2FzXG8bfJC6D8d/tSThVUYG8TSogyU/1N18n2pfPnbjcRCoO3O0mxS0iLVT4sYsXQliNmo3xcBIS4DsD/SwrdsDREloM9ZzpGZFVQ+qF0LCyGlarKkVrsD1mi9Xe8myKtcekdE4Fv7shGtjkzb1IhUIZgUXnrDWjsMbaIbK16rDyHC2uPuXP1W3Dor1nWbUqn08ix/vPI+xHUYFY8dwRkWgJnEIPD9M4hlJBHk0voJ9ui8Tq84Q6ra6aJbmxyiFIaXhZ+OCIaX3fuErN4Nam8b7yAwG64cCHVBJZq4aiZ2X5iyDBQJ9u7Oq21AudvWsfKmGvwG3V4+KkirkY+iYzXhHf2i/9VlKsVbn+LYRM0VtiSj1r8JIz/g8qWE2jtpV8CCNWveU/Q9bwqy3Sr4fiiH73B+xWV2sbqL+jWiFkufQ3K38rCgLyMCK1YcSlRRY2PDjGxVG2ioa7+cFN2wtC0Osf964NHhHNvq7ZbnWTNk225aeyxgarPUQi5o5cV9XcMajp3L7aEbNAg1QhIsvCh/xfxCeI5XxiNlcXCNt+ElgH+3mywl918NGAMj4BkQ1bLVQSupTuElz9U23HTwIoDBr/mas0dFCo0FIxlsFRole5aSziAXZuQOYi/1KPUeAstYZ9WXl/jqFugvq/zWB0RYygg6QSIwCmp6wSEX/xnqFBdIDgQLld7wYpHWdOGho2YqCS0iz8sjYWZqDXEMfxkxj5+5N4fh4Bp3KINJQfxS/i40QeuSmS+/1RVfKypj/KZWmASLkVrYJZ5P3vmwRmX4+JemFVQtw2F0xOM7Mr6ZeZnp7bg8XqrMySfd4f361ti1Ti/5OjsM2s0k/abhREl3KGdBEKWugaAxNlUovshS4VUvdyuH2SL/nWrsDz+LbcuiGXUwVG9Umr5DN3Yli2txUNN2htI2Ac+W9ACOWRIdCm++8qEVBVNVMUxZTtuxlMipH6pL8jTbN5kIw2i7ttlOpXBiJlv/ciRjeNpP2uIilsZOYjYSFKu4qxwh/HNgqooapfc8QG9fsUYBeQzEb6FoXc5ie9ZDP5otua907MLnvi7hEcy88mq963ep/0/dZRRclNM3RgZAEl17xaZKEMT7eVAOPavwXrlxsAyH2d+RVQPciLqGVL9mx2NdAaiIBjTpOZng1Jwo//gE+XWKSE27BSaVpLF4XPDQh06IyZHKsXasNZsKKfLRWJ1YGj3b6AlVzThlXI/SvqcaqGiiKHokyUnpFY11umLi/v3B1iAnoW6LwwNBXgPicIWJgqif6G3gkTjJjoW0P7VbUqOk0KDnv3oBPj57bM2YJ2rltQRHECcHpBH3f+LA6jP3lQRYRtzojpdSsA9UhdXEAsdMihf+GxTApmlfGaIqOo4aG4jcd1B9eQxg7PKT31f3a7o3n0xDwyR3U0Mt0uVToPLjIADtWss0xrzTlHVejoO49lRwtTEx5DUs7m2wLB9aG83STg88pyVSlZTWMz1WYGGh8HFTHgtSYb3pHtjU9jSDCO7WlYEYZMAFxNNaPm4CCZhYFkrgyaC7CKlE94PM86cWrXmpy+F4XvzV1YCOm8KvxRQ6OwBTKJz/7mwi8KHtXeHTwuhCvbF09QxTOuuP3aGNkN1hZy6/pAyBNZmM7ivciWyB+6CKgaI0LtPmTJJN704kITnOClmEU5u+vCPzmJo5Bf1XahXfqu9dRKe7kkQyYLCAYjtGMUVq2Uh1DfEdPQ1vwS1DiuVUOa3a6LiBQcAzknVn5/WpVC+bug4qp/LpWYVfDkjfC1nfLptX3DEXBMjebNOBFyZHbWUgZAqHyXhfiTUiFl+m+R0VC+H20JVRumczkxom+V7i02dHNI2PqNwgqfsAY+VZ+qAPd6C+WXR6xAkzOqRao/DIwHHdMIGKO3dTXNnQV0qYe0j/fT2r1fchwccBtjj6ArGv2SZwL1PaDaJb/ms2tLBgSK/d0G6irxE7Frz6RdnngV3dZ+UorNv4qLHQUwXMEMKyw+23WvyojG9+3iWIYeZbfNwEYxPV8PFEnbgwXxaiud6+kkgt5YpkkU/foz74cLWDAZre2HeDSYIZjoPYq6PiIekhIL6oe/0KgfDiOim7fkeeqeRGSdUCN503ZuFh9UZ1gtyePG1SnLdkkRuPHX3qIQEgnlKDy8IyEPUGdn/KZ7R44feSakgMIslsFqcehDUofnUdOre9Jr1nN1UtNacz5nbyFYJdzuAQ1TO64EcEtVCD76nO2uaxExcIayUS3pmwNsuqRDT7h7xrmSh0ONBwPB/vUdKI+golYf+B6GXbBsxBclKzhSpE92lEMbaktSgdngo871pYDJBsW3bCgz9hmwPs3uVMiZ/EqlXvPOfVGY4XixIjiiAVeQqN2JyBmt28w5Y/tIwjSDa4ZvHfyFSGXgdWpm3gEO1ScYuuEQp09pyq2EFwQs1gK77HMvijBP6W5VFiimFwFGyJ2tpK2/hys0cIz+S30qzEimys+ymE7vKCG4OW+lOfIGqPurWAbX/IrAhCLZDwXrboxbv0CwrYX7/auLFJpAEuHwnHl1INmIPdSyLWw4XoNP+1bEs03M7If4TQiAgkxHxribjKx2eEhEQaFv8+LBDaJpYzj1iNSeOSL2sH66fMpkrpszUB3zl3G4i31XcsNImOXzZihp+xPCG5d6NdRkaxcRYK02K/8DkJk+VYhOFGJOuwMl1VMrvr+PL+/twYa2ANaRjdbLBaE7tXa/LkHDofxMa2WXbV8n+a5oNqF1e9n/YM94Y34coVDGRhEwJde2ZZ0VPQOnnnz3gyv9q/aGzRHyfq1eRFaZt2vL6ttwfrlWz7jRbzq+yVBUnkMcxNA8YXbRcWeT1BqWA1FqHs2TmxTFoeTJHqmO+3UsHty8Lqe3XYQMN7ANcmVES4t1dpSXOQIZyZKQA6ZfoIxUmSEUzrIzaBIGFaCpsNY0VANR7mQ4jNu71yteAuSBGr8wb9ETSdZjk/yaCvhax3rk9Mo3yFa3UejXzpNIIadQeyp8de1wX/4+HhV+DjnDGd75pid79al/VPRwFNn56ULjXhh35zhE2+KVmgd1zK7tTviGZPu+RYyWZLajKl0x4p/mC16CjBOr4x+IfY2DVcTuCBJvUL5e8FJX3PeVxhZe8SlMtPvO9Idx8mTfiOFmPaOJ3lR+dDzYgfkDTY4OpyrEw7KzyY31gwY00Ah9p/Nt8/nc20ldpL9H83WYYw7Pvoma7g3GKQw1DK8TrmUJWsJyLHjfWm3oonMuHEf/wcyYa4RlBUY9j4HSDv0M/kqIps2czZytBrL8ZkrqlFi19PQy4gDAUc7XLirNcA96do7/vDd5JuIhU9DfxydwphvEDqATGSr3tQWoz/S0YHoH4SDeKKUsXOENB54yBess+F7Zfm7iiYE8wJZcWg5iM55my+VE+Aw68BzvKySQBNLM9wevM/SEivzwSQnNUip0nZWWgUwuBBYqMb8A82DiCDuKoMSSGj6XF45H6MKfMs7hsbEuXDmCW3xfWEFbOMZWeVDLp+kDlGw0FxSXv2P9rwioBWAPH0GsR2RuZSxLE+b8G7IL3v4dgPOrOEm/xLOHvL6YL1GdfBD16Q+JbFzs8gONF56HIQpq3J+Ita6kh59YdPGPSRigTnm+LK73io3Ig5dmGwJYshtmqkHiLCxv1H/zKDAsvVIEa5LIVh1LNfuE+Qz1GTf/bbtD3AbZeJi+K+pts+WBc3JlUE/gyAv7bcQTNiq7Y4SNHSviCM9tAPgNYqS8pIxal9MRn5Kgae8rrV2iAn1OtqWcaR93vWbK+Qj/u5lo4nnjjftrdOWKm8PK4rMdVBBQZ1Vp8PW7M185cOKIfifchEMA80Eh8/1DaMZSunQi2QIBkUj/fMhYM1gJdL7wgbDgQfj2vZwRExp/D5yd1S9gu2Y0iO2GL52cIHO8zeZ8NlfO5Kxj668B0fJBlSfAkMb7GZbLlauCDIxhrgnyQ5kZAJ23I+9vMhl3i7Upr3Itp2dRHegPWArG4a+JZmP0OeoR+OvAIzJxzH6hVBsMCGtcI6AjiFvuVvHdhDyHVn5i8amTozcYb7VDysA9Ii2WlHAqJkwDMXRE6bOIqtZry/CNBbLNRCYgT5CGZhkiT4R835bcIVDl9XVQr4CF7TIqOjHn48j4ZMlBN3wBxneZq00kOAxXat+j1pS9BNLr3nQqG11PysVLuigEJ9TT1k2wlPD5E8mvzK+UMzMV8TUsnjJ84kqc/E+lRPGJQTAYyrRp8Z9qHaQVnIx1wP5K0Bou0EHqZEWcaFrttLX2mSHlrTwhIfBZqUjsJmny9Be7Yqy4I6aiCD9mFAyNYHXhT07eOrs0rEgR32vJJmACrVw/wZw+VEwoPFMn9U2yVzYK7MTUZIMnvilEHfu4L7PHv2LRmVidUeemwbYGbhcoDs3KGKfipmbTLlNuPuKP94b/tNOZDeL911T5FIhbQvsQ9CCit3AZTORMo+QKglNgPKiAANctQhN5gyAtWJnarN4AzTf7t6DvfIovYU+Z4YEGch5LrR6qvOmwYvD8XTPOmUOcjLk2CWZ5AkxabXLEZWRH+c6JxIcWK3EdQ8NsgTenL6mhkZmO2RYvqjnfRS/+K7S1Z/hwTsqVIurBvNF2Gb7vp1sGvlOXSmhwjIrMgVmKtgNfo52julpA6/t49oWyYslVmxMB/lRbCWQYgBlCU3JObt3x7Lol6IsPTBYO6cc3VS7JplClKVvopUXcjjN93ZVeoFa0vgK86RE8oRKMG7UOFBLvpoE8WdiAU0BSdyjlblcxqeInDl0PyZ4UbxTmXmHbA2E8VgOg0Qc5RdZjj///w3HhJnYc/gCHDO5jZiJmk16s0t7rMcS/lVYgtQ1OwfMq5UC48DqHtH30iUrFCR8byid43jdRhDsOVVtQ9358/ePzT8fnc8GkPr7jw0DPXSBAo1Gv/5C5sQcFGWTjRPsorS8Svr/Jsc+c3VvMYqH5YC6Z4HkoOQNKKY8zz4EG0otUGWTSXnikSYa9XoGaO6bEeJVVNylDblNce5o9C+XjIcVtf2xEc4W59385wQxm0eUQhI7EXMxbcIVZXHoXjMJrXkL/x7dZTZg5giE9ELXzoABcEbKtI4DHg8eTjgojuwrJy7Ezf3Xw2PcH97XHCcGg5POkqC7/xRRCXAp7Hr8DOprHrTYNbqgkIopOSD6QGIORY6+bJxqWVlCRI/wFock12Jy8wFUvii/A9Ftm54snO63z6CROULXla0CJWqaxf4RKjPoBx9Nv8e5rFw==
Variant 2
DifficultyLevel
565
Question
Vera drew this plan of her entertaining area.
Which expression gives the area of Vera's entertaining area?
Worked Solution
|
|
Total Area |
= Area 1 + Area 2 + Area 3 |
|
= (e × f) + (a × (b + d)) + (c × d) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Vera drew this plan of her entertaining area.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20296_v2q.svg 340 indent3 vpad
Which expression gives the area of Vera's entertaining area?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20296_v2ws_2.svg 340 indent3 vpad
| | |
| --------------------- | -------------------------------------------- |
| Total Area | = Area 1 + Area 2 + Area 3 |
| | = {{{correctAnswer}}} |
|
correctAnswer | (e $\times$ f) + (a $\times$ (b + d)) + (c $\times$ d) |
Answers
Is Correct? | Answer |
x | (e × f) × (a × b) × (c × d) |
x | (e × f) + (a × b) + (c × d) |
x | (e + f) + (a + b) + (c + d) |
✓ | (e × f) + (a × (b + d)) + (c × d) |
U2FsdGVkX19SzsGMuQrI0I7taLoBYw1NHQQrjCTTY9MAHdfqU3IuKBa+D2tzl2bQBksTKrOZlf90sgNbuhwJfJ/oftKblqMm8iHzyYpOq3Hm4V3U3pd4oV1NHQ10gIqtSR12/Xdesz9oZct6yRl5zLZFnKPRobpsHFQSqPlypJ3+Mt1TyWSCm/E1N0UugEWfZaVIhoUhyNwnK5FV3yleDp7xSaBqhbOYUontWC924khJbR5WZecT8Xo/zhFAssXjnVMYj7Gega04LX+qkVodgwKloiAktovupRFnafpYIPVcBel5xWAHtY1kCHiV2gUQwJDg49N0qlGoQLDhLd+X6HH/L9egIJNpSqxfaC2zLKpmwfYouYFHYoKm2PZo0N7aua3DSdlqGUIcql8DAXN8jzs71qRgWotiOHdK/y7B5W9JW+m9X1m2SiWIlMfiYpMwDQyPk2qP6UJowQ/vaUdS2YKrsQ4eRXwWyC07ltXR7xR1ga3/bM5liS9fugqIc6V93DbLx3ZmdNMCe9JrJLIQUO+5/0XL34Pc6nXlBseHKF7BeFi/fpMPnLXLNENzJEF1+WRXWCVh23m20G79EiaCzuhhQ/3DWQDI++1HZr15PLtrxn/RBDyylREvk5uPHA6iVq094nnBBMrRNQFnGc1PDnrnu7Yht/FMiD5pvLh49qyne0erwjuziWis8AWp42wopUli3A91adkGc7OOGa15eHwbHJv9vr9OGWCsaqfKgV4CuREwAhZYehZCr/kBjkFQNn/BHdoePZZ08M+z3e2iTPMD+aLoZkIsoGMBgwKtA3xOh1WYjFesXzg1eaITVKmpdmcOYF5ATMtmxvyQQZyjFvbRykbHShwRmocvmRrZDCHUsat6uSAp0zV/qRCxkQrQ8+n3gm38iYor9XdSkBXJAqSAAy8pbP5dnxzraEIXVrHdLXDXCKBdIELpNegYgKO81WCQSw9LEUtzXyfPC3/SYxGpUT0+CZJYokPuMQJGiWInF9e8UWkyuWbC7cBg8LMqDGZUU5nKB4NjQVmRTgg+9bzgt2jiHWaitm3BCjfbQJL0c6Rxh1GMcbX4vJeWJbG7+F9R2xCw0HdyTn8u2g0t7eZINLWeU9VUYRt/jsMzT5EE6L4//hTTsMfnD+gLnngR3ZzUQuZ4K04I/E/yL4I/8tE5Veglg5zNZKlutF0aaCrQVjActq2MvdeZ7p0z+kp1162YLJoZUCWlF+9qfCBf+rqoX+/xwHieUdLMYPPgN02daFOSBh32n3bK1v+8bzlUgv8hm3I+jarOsR1mr07B83jwotk/l2gbwI95pksWN4g3TVZWcMv16Le17SWZNJzzzK9OwL8hzlTgNTqGtaCMlio1YOvK/hBn7oX8AsR52q6ING4HxXi4XGrAIAb9DLd4AEEflJm+nooSPsCTfHVWu+KCPEGmKIZc+t9nhTngNkuDZaMeCv0XDCnLb5LhGRG5n5Uabjkd6zveWtomQKoP5kWzLQZ7vDuibepb/ko7px7XSk6qlsvzTkoRmJHO1//85JJMR3vLPFTzJ9XnJAXKvi6wwaozxDjzW+YpvoGYat+0GQ13DkCXdzkF6vG3/DRH44Qzj0bwZrY4mjS3eU43JL+YLPjg00GRcNTwSKb6vWnpwMmufqp+7DIYBYvYfaFBUGYk97MfUdecjo3t5fObCt3ThgnZmmLGI/KlibNdhlwCoJ5QfMhaajNNvSOcNHg6LaPjyu+GkmDxQu0I+DkydS5rNri9rO3zXRL3H6/4i5v5G9Yn1ZbZtMVF30c1dsHsOsRikU3hU1nx1HNEX+oCv/1MLDNWF4sOMDkXISQOlqEc1q5F72EwOnDXm8+IqV5V+TIm82M1JlL8AoW2pe/s++eYsbhIcBWOIQ35JjmUGunXYogJ6k7lGJPxyN1OER9Yf9+0f1NeFBtGGB1laJXt5jjvY1+S5LJda5S2EfpDlcQEGqKMObhg11Ltja1AHYlj8Pn4mSvVMOLvxq88905xJ9mIWuKV8uMb36tDkEpT1yyqHvW2oa+4++sN6jDJBGhN4s49qR/wcbjuD6rPcwhiAXU8lnwxPgpTCdOS+pngTwyKU89OK+bU+ycUwqOGoP6B5LPhRojTtgNqJpdNNIPeaarWm1tnUlo+C8XsOSkpstk0L0g8VqLhKpo5vQ0fjRGk6CdVY3+0jGRmsC/bRE0LBprBqtLzqrUkJk7dBQcDhDmTx4wxBkG1w8SPFaERZr5iocxa9ieWsF2fR71yXV3xt8YKTl0WgkdJ9YNWYLemtwZYTScD45bzcaBu6H/cpRqapuWISxHbM+eVs3n9SYVguJdJmzT7StCgM5OCDw5A48dA/jjYvzijQxmIgrKitwdJNErPPl0YnbYJVZYaMB5Wba9dWAmjnR502EnwhGvU+xVihtk3Rwxs894IJwjdujWwOvIIH7QIUOD9rVzZMteg128GqXSVuvW69GIVZlcsEhVBYL7NKgYkNxwjHjL6kBgh5yai1DGfqvCmNWHyipQSYcitPu/uoLi3A9PHky6BhVvbiMRiBnCqBkAPJEfglb47NrsRY+xtp6/IsMfAm8J3x3gh+AJHE7qESjakHHjMAmORxjeLvvD1gEscqWH7iwme1JBzYLUwxiYU0y3UONg3OeXAtByNM5O/+gyHzqY709BXYYocofx6C8yWGE1dr9myPB9pOrgZAe1ccnZu6xVIjt5nsaTZisrbIOBjnsUBzU+Xpbb8lNpWclpab1iSR5/XUZtkZiWR/bjrEWQeGRcFwdsd2LwvTqHHJfsvPihrGlgMYbPJc8O7bu4OF1imHxzgB9qeV9zH3gyWQfSm3tyHhP3BeP8oCIr+redvH6OousrKkdNm42OzVibm+Aww1keNKZUn9gfhXmsPOyw/1F/+wRrC7CGsH/NaUTBVs8kVyAyRdl58AjBBe0A8mUj0Oin+3uDL4QvDOXktmmAVRl9n2lRkDBhwVJlclqo3+qAkKKpQhDDLEf3R32jHAMGCQQo4GieBpwnrhcOz8YttSSL36b8vI8XEZlTecJs5/NaRY3RMM6Co7zmbtuf9geLJMb20DTZlDWRxTtxJNh+l/BsZzEyHnbE2GgZkw1bl0IJ5C/nX9EwVB6r6Dp5eZDGSUZG+OgI2FJlBrOQavfAzCadnDnUpze43RNEx5SH21lTVi9oDOF1Thqr0jAUml8b1MmzgM5mSmx3CuSIwG5fviD3aGASwmglwKGaJRB2dxnyCXEu89HHElrEaEnDpdvBc+rOHWI5GPegSE/VxRTtU0h6KnISEep34+fJoDGbBf4vLZizqBoBknXdCiZoY417NLjnmZeQs6gL9iz+O4FZXmkfr2VtGj2olXeOMdTSEzlZH4ScEwHNf6Q9s84yYCBc83e8+ZFc5AWyXC4T0FFgAZFM7SgfctCRpWMa47gsYIV/goT448ULNpgylgRD/tGafsnUC9mZulHdKa43YtASRw/i5aEpDFgpM88c5HQ7bJD4JFhEWnr5/gbAnYdeOE6Nf1tJD0cGmiKycy55nnTiVqT5WktYncY74ltJpY9q1xAjqnTAERPpficCgRKIullmNjejQBL/EX17yvJo86Y1QIaBeAsd7g50WrPUHpSzJEeXIzlBkaj0VXmJRS7c4iQfRm1IMsr4PuimGly7eo7SZAgAvyFq/QuwtsfZtWZyQO0ppRTnZx4Vh/RPzOvEc9wipnMoQc+G0BpY1DSSPTls+zkl7VCtdPqxK5koB3yNQX3Qhue1UPxL+ftwrKmAYE3BEw5VlUofiruP+F1CNvmZMJz87gEwRTM9ScoPD3AtwJi7pZjkUv5xlI8KVOXRcThONavcawDpirygDyL39PLSAp9LmtA5y0Tdh3BvQYRCvFOjYElNPOFJKLBmLyF7TeWh6JoZyGVVJRT/dyrHBc9uIztMwVxBEmLtnI0JjeZZW4pY+DfrwGy3t2xuBBuHwrKuPth6GbT1zZ61WrC7U8LPZ7Ec1I+eoe5rHssOC6t4/x4Z+XQcUu6Vrs6uac9xc/M70YvIJlCJHHN1pVOsYvHSUJmAH3SA1emPUA4eUOKOHXgRbB7mjDS6scVODVanJBLimcFkMJlilS6aklv+dX0ZRkukpKKxxnBw1YajwL/ZXzH3BTKt5e1u0RniKg1TYRXJBwrTwzpvPdEm7QBzP3Mp5KXdc98r/3K/gpiXHQz28+vd6716WGuPD5vagcv+2Ig7iIcUQaCIac/ZiQAw6wv+Cf738waU/YxR3KEuGdq5zl7QuSKVSjNklr7BJ4+Et3QMQzKdIHpFKrn433moO5tPI+CxStwV2hcu4HldDxeStLff1XXoSxd3C7otUDZHcafsN+2Nq6cWCYxHOIlQ0D8Fo9jSWoctFWXyPNcSh2YhV8QSL7PYyvPXDrNSuNhpr3kCdJL07IPvOkcs3eRjlDzQHL5rNWJTXVdZ888E72DZcuQOvdZlplKp69BSvv8qxnUFNnOFpEI6Rmjs+oMwwIYJjVn5T4/cn9PvOG80kN0mVKKQDCQdjvw0kOdhqKEePHn8Pc9LQZ/dnrr+FEYKMQJO/xLfBCOB4wTcDb6WBrh/Cf3OWiwE3/bc5rcifAMJQIUh2aQIyFXq8TjA5iEdO0i5Kpk6BXorM/J0TkCIsMDXx4N57zzbva+DV4/7MZwru5SRyJJzxjdEDyl4qkjVPmkarfOK4/Kjlc62ZhlnXpVlIPn8czRz7zUUCpzyeaeRQr4PxNnYgrc7CkPv2Q8wDh3UFf5HShuHoa139BZ5uNb9WXxQZCkJXM9r9D6GrUawxwJbcbDjOdZsUyw8W2bEqvckyFCUIesYburIGaYsKLo1+Zx3pmA3AdGsULEO5jtroKncfOcuuED0Wnf8OosAMoArDzHDFENVTvQFUGdbd2xKWkmjnWjgkqt1V1mxxPZwDeTgg/BYfkqM9oZISvYg99B14K/t4VleIwRr+BUwagTPGCARgYXvjaOjyM5axanWvlc1OsYqQ7kj80naSiE5te74EIrKFUj+b5uc682powKSwD9IcdZekV3a56RSAMG1SdNjhII5jccQ2UZqba2tjB9ICnQZD2JH9vSi0hCydAlaIFffjY9x9mXAZ3sV4WC0OsUu5n73PI+QSyr7rJh9BwWY6WxUMynAkMn/SAlXTgG9bUSOZmKwrPOnrI3+DZqXr8fvQ0sfXoHI2LqI0U9ype6wzEfaOJEoDVXQu32ARqOQZlSM5z1gCazittW0XHhCUYgPHfwDtIufp4WvmlBB++zyUxszLICt3xDuLkvU48T8IU0dY83OODQbJdvG4xKc1anjxIAqF1FoyEWcI5TTjQZJzfBqsVS6Hm503vcZ7XQrWAsscjfeDBm3vMwe7OTYqPGe1L/Rq5FCV96B4VCjpKRLHYyrBRyLBS//OTp5bhYWL/AvJmBXkRd+3Mz2QmJJcHNJP/Q8c/hcuHctf+oGPKpGTkWshHgdhbjOCQJaQChaJ2i8FoiYjNPOtBtQMK9ESnkKRWTOuZ1q2hYYNBhVkBFHMK0j3K6F/Um9B2AYQLOuVTA41Vf4zOikikprkA9r5Sqf83iNiJP6soLtQavj26yRBZV3AduRLHCphYC3q0Q8QrgmLjjJV+ZFzJJH4AvnmbuOOqZTQMSWxHzK0VkDcgALXeUQgihS2Ac9N+beTCNusbs+ENJIwzdRYwZMflpQ40muUKDDuu1Ax2ZBPAFgXyP4MxB9IljUJcJ4dXwDfzytorVDmqvzpCDC3Exffz3aOlbVmwe+NxMX+uSniIqq+3y5YwDnrAVawazgH+0IjAVF3kRFog9yXmqNndG1kdkO/yDgXNk5MyxRs4hEezSCFqUl17MQ8ADz0fTeGWpiYeL0hNQHgs93PaX8Yg4T7JEenga4Z4EnKPTHf+kkzKilhIUfiiLCvoqWHLQxI1ma7NAsn6bguCESr3NFdvMUm1CxccHTyZvRSXz+o/zN/Bzf9ddSBwqGJWYdSeRMw/jq2nXPOnLLTcXpFzwtakmWIfn4ZfU0KZ23n2+2eSN5zvXQAeGeI4XWe03pIxoXb8a6FusMjCyrZyZbZLPsXA6eZP/h1rESscJRFFm7c99uV1fdsbQcHmiJFry8WaPcdxD0tYucyRbMjJ69bh4A0hm5H7tHUgsTrEFKHaOb8+0Y+7z4owW1rAq/j5JIFttLh/bRNnb5mMMIg5A+hjNnoDuZzZaELbc4spLDCo6U+uZ+N3UX8Sv4hCD2PqDJKJNH3n9hEZxBruIDmlLgscp6aAt8JmOwiyg8R/9VYjhjsFgRWjfqL/LHOjr7CzZYeS9xk9/rUj7Tngf4ub9JnJ5quPtcuT7QjV3hkqDagK2u2LJkW8Xd8G2aVmG5tS7Pscz2/Vuw2RpexNRqeLYKb/wq/VxLdfnjRy0hrQKPHMVfIemKEo4eWVm25kq3qm3Il4zRTvzhr3R/zSodT+1NHi/GK0TL2x0S1UDLLX6xygJ7xC+4vKKvhz/g6Ovxea55oD3GAriqJcSe9HZgnfF/Gb84W9T/ykPJQZaURgNrfLCj3ELz5PBQCAMuh8AflqR3vcse/TTCrjuRigvff/8D+AvlejqjYhvMyNljDGxaGoMCrivRrtGGQpwy2sdu0CvYZopkgER2q4dq1UXkdBSnfp/rnd29CrDILOHx8yCoGO8hfYSh76CD1DzwyWcA76UAm9DXTa8KV0rGTViy4MzDC5XkSqjME8rYErtjllCsTbfpaDVoeCHScVUeFbbayRI040UBdRe3qDGKTpuxroO8PGhMzE0NitdIWiIKJ1+T3BlTkw6fh9NMJCtj7XPatJitpSlfzcqC9YMQBs3Dlie/6VqNgZ5d4wSYbj63u8BwF08fNt/cbxXb7+1/BMR6LRocZGK21q60EJv+Wm7fFlo2ayKFj8sECPAaK0DRS31fMMpO0A3ItZAHenX6I27UUwDljRRhn2tdgsg/AcoZNFZuvenMt1UOkLq/qMqdMPHUNF7S830qsfyykWHXGDgbPqRWT3hORFF0ExK8VUUZMZTtx+1P0UrWRNwLR1DjliLwUNIj8ik727XfIfjMQjdkzy4RBS2wEfEXbVwB/MCwAZxgawzspcF2KVatpFChopr7g6zB7Phmf+ecpDzLnpsXXEAfRa5Q9ZB6qkiqVIGLUTQAGc0he/iuY4WKFmiyNs951X1auFH81726hs/bq4smNF7zLetxw+PRkEFwuMB27hzkilKtkrLplDu8m3XABN6PASik2BLuHEOMD+WUgT2znPaYsWdRkvwAgT52xf31X56VrUhiprHG5utVPy0rRuMMfdFGpyS16hOfjY8c+owMN8y+mtJFeCgr6slFcx8BTlIpagwTVPfyQcWKdlbit1MwsV7wH9aie2oVbjZSDA3XIlQCPUCNFzB6Uo1IXQnBA6qnlqjBp+wR0SPaHydCL4IBjb2dLe8snTrbkCZUi5thnFKE406QpdePVVi7HZ+exM1bxJpyIZnuBvxu8SodnOSLf55Ds50wFU9PeStnLoa3W8279Hk48rmPSDeA3++Mbe6NqngfDRK3kQ+n+DdXHD5T6cu8zgQKVn/gbXcv0CPiicRGVCcKbkBvwKyKh9/VauF7T4yBrf/RD4tEjrta8i1k69ieE6j48uMNn0LOZrkRzuD2aSnLeNXGWk099UhYUc81CMFRbInhLEb3D4AFhFOOEGaF5dk0reYaPRuOJDIRgQH8Lq1I0l1sehIEQRjciZW3V4tl5oADeGDLGOI+5mChmg9l64NQ17m1mzJP5RvDeDroUysEuoh/63dTFf9tu6w2bJrGZ24OCcxdrv2/iG9gAhmTcm7CY226FcGx5PsEs+/v7z8rRWof4cPkT/Ss+pt4Xmoivvi/XJkKDrrHkc8I7PTLhnjMlx3EVI34DxLYvYouKGZMSx8ePwHx2OC30ntpQQPc2BhDASXqUfTJhmPObvXeW7uNRaFjYoOyxQihmSEA8KkQpb1Kwh6g3h35sLsS5BkMDu4gFtSBjsYm/eeJHCoEV9JT7D8oKPC9BA9a1GCIJR1fDE4d/DGOzDGFw2scXAzsB/VwcENNYAjbNVZb29p5RvP0iUf6W56xKXprS4+ub/FSQKGAkaK/c56xA5PprAFpWUGRjVf783vRsifKFV5ac5JFe6LJReylLtv4WE8nOTImuSnohLilagJUNWSxMxDVeHPOwPYnb3s3JyMiUNJdpj2xj++bF72j9/JLn7aELXvb7Fjaao0fRE9GnbXsFXZb1ekV2PWC1SdycG8s+4wZn/PtVQ5z56ySGf1dtwqgYZc8Gt84MS9RG+J64ODtuKijBOZlO70/ohUobgT/OO6sq2l5qzhdD90ASGUTAB+xw5BXQCIxG+Uw1yr+6heWQUsWGCQkT8ZXHRlu+WLltQxZHC4cOA+eMKGqgL8m4ZpKcydTzVUdWavhhKa5VhmFAw4Jjp8EkN7h2BvPKbL9PG4z4a+EAeyAdfg/uO+9LTxQCb0xGzwI8iVNJwKX3BhOiWatTIqUgcWYUtQcsATYch/f9k0ZeWdbZ/zKK5c0VR8WDEmkKITN8ZO4zrLSkr4FZJKHIhfJpXiiLBk0ILXameMMqOWK/+/f7c1eWABtcWqPq9OfSCS1khHjLyQznyVvBYxLM5oReew413fU2/RJTSurBA8mW/OBGFOaKWxBeqnCr0H/btDKukPjXEypqeveGKdLbI+AaWGnn2RNDzpvcJG7fEWNz2pDKbuLMfkyRNoOs4UPXa89dxKBrcIKgcG3DpEWn7Vu5mkBBLHyX607o30fh2Oo7tl0z8l9gr7pnMFJqXzA7pooPn/kqF5wJmyHx2q3ZAPIjBrDxLGzqbchXC67bBJzXtBl6U3C2dE7j+Pb9DsgYxkEV9XwDlIxT6riWCaTqHOYbyuOk2s20c1tPMF0hjOfxZtEsiu3CbAJ0R7iYy1e7ThaaTI5osI9oj6j6YLcCkZKVPqGlA7ldIBj1yy9JV5QB19nK6PuWKLvnb9ZA0sEqoDRPgQpcU2s3AJ5kmnxq6XewvIIeu+Sm0i0njfMwjyAfii35DL2GlHWOorPmI6W13OcLlOSvZ1/eHKSCygIeCoal1R6tWtSycETtWJED77S3Uru9kjAgGspLhUfC7rQu+Un0exm8LxT0Nejm4qfuKahFW+XanVCXrx02L5qJnY6dES9B0EM0ycCJvfUjdVPmnMKfPjUmSkuMssiIeJfIe/WllxuVYRxfGLOaOf/BBY6X87L9wan78KSLhN8ezNHYmT0uW/+5HYJ9oeokTsN7DMXrnrcPNmTdHtR0TrWTbzS7qTJmMW5T49uz4gHF/KDwfEnyW7uPdFYwSiNoqVbHNnXHwid8Kvodd3Dd7J9jmLXGts9uv9hGruYR90auJVudvBnK5nZFcP6H77nyerddu8pWEmMT8dX4ff1vX+7/hqCR6XTAaAiNGVR4yvj+JldQWWAEMVcV187kdNtFbZlJ0PIufjRDPbvmweq7nmn/pQHP22JGDefCYyAgQeFHMwH50prLzjw5BoBaFmbWeieY2S4pTpoTo1xgaoxt0bSpPfB+OLPPpOD8X06YfhLDdRKuk6Vb8/H3uJCnQ4mO/pJ2I+0FkhXzAieoS6ZHEitvUplUZ9LMP2gh8PYNQ+xQFq2A4VX1ltrQhDskaYDdBjCsrnj+PUFd5B2OfGjc61f4F6cz8CdkyHsD/AMjD6r5N1PogGI/avEnnnkyhNsna2+OJ4oQRGBYSqke+suPriBSiPZczxh1rqMkHOFHlVQWBstE9e+dD5HfXJe4KKAIewR5qNXWD+s3GTpjf/eYbwlH/TS0+3MyDukDm2OjD8g1ekO6mUGemDSyL/bgig2p0cfzTz2BSWBZvUO8UuYGim4gabhR80dmRzfHi9AHwg==
Variant 3
DifficultyLevel
552
Question
Bernie drew this plan of his timber deck.
Which expression gives the area of Bernie's timber deck?
Worked Solution
|
|
Total Area |
= Area 1 − Area 2 |
|
= (c × d) − (a × b) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bernie drew this plan of his timber deck.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20296_v3q.svg 400 indent3 vpad
Which expression gives the area of Bernie's timber deck?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20296_v3ws.svg 400 indent3 vpad
| | |
| --------------------- | -------------------------------------------- |
| Total Area | = Area 1 $-$ Area 2 |
| | = {{{correctAnswer}}} |
|
correctAnswer | (c $\times$ d) $-$ (a $\times$ b) |
Answers
Is Correct? | Answer |
x | |
✓ | (c × d) − (a × b) |
x | (c × d) × (a × b) |
x | (c × d) + (a × b) |
U2FsdGVkX1+MLM33b231VOXFQpBZyWXxJEkOBooibhyPmj8e8KHvEP3leGzRYPCcBoPfnqV7JMso27V7f3YVgAtZY+NO0F/Tdp2NGRls8Mnh8ZjwKOkCvjzVm17EGCXKfc6AZ1CtbHeS1rDNUZ3a5dncB1U1pMBgGd0Ng638wKwcGDH7D2EnBcx4m0XdBEuPrBpCshoENxp21ZbQDuEg0OH8TRQFNpl+Wt6l1iwn00WecmyDMKE17zYsZoOEUzxU4vHyW4Z2OykyRKHKw9xrOoK3laqx+oComUde0FqxrnwJNDANJNv566voRNukqc601t4jIPJJHHtEZebW45jFkB6Ro3bWLMQubJN2sMVIaMAZvIkZhaPv9Ab78tBFJ5Hj7Tg+nlsPuom2dXv/Z4GLV1H6vvpmI63cVxixBODyp7PveIGZOEXhKBPXJUN1IwqKWnhcTsRUcG5BjQxQzz4A/aUGAktJLlt9IZELfbtNTsS08dIwvbSFzEy5PyFZti6vneJh6tn5IUEFM6WazWIb5vxakyVc6j9zdeb2lp1KXnfFbTFpKmu+TTj3lpB2+VI+xlGwf5S7oOn4XMLMVXb8EGXmMrpBpAAKLSc6ggh2V1ajJrUdxqaMSLWBzOgUKM862YLUy3VQmEJuDfWOCEVIwvw8BHlwho88TTwwW7hZgYyBuVuo9F3OELilc2DE7T49Dkq/h2JdrpZilCfUFGr2AT6xK5NJNT6YtGZQwUKA3RIpTrDAFWZk17Obk8mZB2Ys79UtOOVOpp8cnyu2eUpjEWrKPhKVlIJX8CvK/kx/3qxuQB5YeYLnzT3MHvIgwX6x0/Mk3DJaXCYrWVwt8y5zrHZOBm9xw5dGoMrBlU4hGwflQOg83c6JfadoA1HYE/VeM4uYaJCtxTKA1k7pk4FxYaa2fQwu7diDOWLSy8bdX9ashxkbb5zfruewWp0oxEqmNkFdcrP+BqcepDZCBZ1CCPDRJWn1IQnsRok4WjH9YgJTsN1+BNmbcsoSaH2j24w+bBwbDCuc11purN/mP7qrfwuF3CjYSl0glYXlmP+4mo8300AHdGwxlEQ8FlQ5q8/W7EvorX4dfh3ZNQqqefuFRfbkIj/T8F7BW97IVPFZpB62XoEwHsBo9EU4L1svbrbExLXizUDuVYd3vf8RXFKLBrUBFDvu0P5e1WVpQ5kodcbPXgo1GjOcfbWwIR0TlMbpAkoGXdAl/VLF/nFeTMOtIRG7jpf7osFf7HerHKAVDkmwF4l/TPb3DkbShTaisNwLHZahitK9HVA+aItJxg+8opuO7fQ1ubuAL7NqKSsiOnIVIWWSPWKT8kzzsEeYQkHUxv2R3cRHWpUesIIoUvUJ5lLgoIQ2iR76U7CLnj9GBfHrw0QKAbn6z/EYkL9+uaAJLGS9sCc8uJ/5d4JusWqKV73qaD9FMSo9RAdK9ddxHe/+HBcxhoXJ14CZforPd2ezeSEP4UmsHlyp1zu1+gLg35tD2SAhhV7ftGy8kgNZaHL73gF8M1dGlBcqf2Ela4ExsRZsIZt+ioSqOe4cl0efU3VaB0dYp6r5FutlesUNKQZPQ2y0zFwsUzPFp8CLchhrZ6+0FkJ4PDYsNBoJ/zi92XgoQfDWtlh3bwSaAEeFD3eXB1sdpwQyfaB5fMcX2W24KtPm6F4nm0eFA9ckEr/BuO6QGlWD7iBozbPskAbHSCfwGnFCPFavWo5y6yCWHEo2rEeKMBw2aVbq1NUU4ZUOhdIudIVH9KK1nQ+0qcCxEH/fkF6+CKCDSQttl28JsWPxPHgcBsqNZJ9IZMJtMiGjSXf07y6jwfAe7d5ug7+HLW9Ci//bCr5gX7emQEQbkZCZaqB3ks4s1TcLaPCfiS3deELwpMWyCYHLVooYQaRMdgL4QycGue/peyldyVceT2QgsUtK/xqHpZHk3lall+lvxLhD0qvlQV0Tga4Vby9eQBxdeaW7q5OgvliQL5qz5ZIjxlQZoJNKEkqbiQtLobKIEUsf6eUWDWp29HXxlf67jR2xBq1dTffu2oC90EdzlBWKh6Xi6f9l25VGNAdpVgxrCGi1TPfgB32dQ5MfUprOz4h4ybTjY4ijSU3Htlj97pSw7s1x3mWnlYHhT+Yspj9FO9cMVzribH3bD4Gi67A2QwswAD7QP+o0s4TPzph0UdTGgyk5jQAeAHoQB4AcqDzm9lr307DaG2AUUz6LoyoXCL1B9rHAGImcOTrxDn8yORAl2Io5zWicECFtqeDA9DIFm4A67y5F/m4Z6x4ajTBijUI9sRRLF7QSs/aRd2DE1PvHC8SwjN5vpQVuDqBXw3fe8BZFMlgxx6IsGsH0BfXuHDERP2TK4dVYd/yBB9ZoJQ2n5XkPQbK9pnFoW0bysL1+PuFhTwOS6+2LEumsflpFHvtcia3nZuqFjCzpeMKfCRvXl9UEPtO2X4CRIuTYBalFlH8e4iXlPF+ILXZkahPmaG1Pps0J2/KiiPngzW27LD/JK64pe2ygukUUVU0+brNEjE1NLiQ+EitKUvE46ERAZz9YVAdrEQEKYVymy61/WlV97sXTc6jPJDp4EBiRCR7S1Wb69l1hZs1dfT24mlTlDlAtlEqiMPbPdYBp+aXUgqSOIk0WkFPw/sXOzg5gWQZnWiotdRGmdrNoX2/o92hOtoQlJ6KT9VJmCMS9EIJQ5RKutV0muEVtvz4U1OiyoWvZuMoAwQyKDMr83nnhKUo4x00QCG4YG+a5XC1/RO+rIwIYt5HyKwiyy9N2lz4klon3Sa0Tl67IVYuFcYdRMrIUeFKiWHU+gHVbkErlrZ6KWj7jajd+lHurzNKMRqzRv443WRYPY9YidGObZz+CQmvOWA09Md5zUul68KrMtffNvN7zDDmTDs6IhZUyn90uLlLgCsGXGB9IZoF203mxPKTQKSDbSQPriiiKzC4n9pJSj++2nPDiBK2mWM9pViNv/Dj42qeypFynqDbOmcuktGGJpauTBh6rz/zrc/4vkbS9GjimBejQt7WmbSP0JpDXFw2Z52eDhw2l7b/hjuNBqTEiUkVRGFFDWEQMHXvktt7Ea6avVxGDXWYpKEY9pLP+CC0nhW2xhGSMxvqUXtouuKstu6VX1o3GA5BYekbtJHE5GqgB2PzT075BFdKDeeHj3wBzzlabUt0evO/FcbhwderC9JJBc5OB6CTmdKNORFIzUON6Rkz75dFCUDagmzWYp/3hnCxrNikBaWLnUh1hTeug1z1aF3d4uQXZ6yAGGpWDloVopTGSEggFhSuiabxNalQGRcKmdyzzfXPnTZO6Qgq8oPBifAqQlkc+oVJ4x6DFRBc51DZv6oG6Lq6Tg8py7bzdKo5CYls4ZX4ja11w8hyoXXXIy+ndznxl4u6De4iJGpjHMhLXXUpevipaDfbeJcX/A9O//f6+L/s9c8YyEP73RKEXVIY5FklxnVJA75gW08/KeD+/tuDVKTTkJqdZTJM7SnxWzrRAN5ZRj+co4dA2BV1bahzwW7n3Wualv2NAilQZyPDmuZBbgIbDm/bkFhGx+zssc29zdUqtjpHqdVaPA4A8iWcDIr/MDv/d4fQz1/XTWtkWRyMBuTtkTr4FV6sx2ndnyv2C4/DawCIN3w3CvdeqwZZsdCKeBF/wyNcNVmkWbf3FxiixYIcO8p/Ok1pBlX8EyQQSNeX4P0sm1VPtORSgbYrRica6CmZVgUXAlJzxll4eVRq8SWkMOEmFaeRbrmCpiOg/TQJZXfGfJ2/oGSv7NA77oga+QKWSaaEee3z/8LOZLPJq6YrM1+NA3+Wp2nokXHbh+yq4IrA5nUw8WEOTYWccNs/Zq64f2TpFC122QzIYSIUo9phLmFDctYVZ+biVFSMv0j4MMxV8uZ01sdXj5LdvpCAdd0WkH2sd8voxkSK70LCtQDOZR830rwC4/c+yy8Eh3yjR01b/utIPt4XiBeh78r3RXsI+A0qD1Cr3lhPl7SoWsffbtEAvtDKGLl5B6nbq2LqHMAYlMaWz08xq95iJjibgbj7w/r0SqaBGBCaGWK4a1tag6n5g9x87oDf/YowgsTzXdSlxrluvsVu7AbGOjKsWU3HuPUSGxec/zeT1fVmdWNoXlNAfuXdA5xe/6P+soaxflelOW86B/5PaKOQTIvAeSKfRy/4VIrWaaSMLqRHP69fhFafkgb33BBlrw4QfSNUx/Og5x0LH1gAL3FdkEd2UOwZ/afOWnaQA33uvxlmEu0eTBSgq4SiCM7I6wuk7zXEGuQxNp74hF6O7MqAq4cu5zbR16wunMSL8UeCrOtDTTcysMBLQmOyvsPx5PB6H9QRcSMvPl3d1ROofIpy+8wxnCLA50XeNUXAm5enNJBVVYG5UCCNwLeDRhuE8yatbVIij5f2lZGi8oMhTbX3iJYQx+pz+it4M+ZYSCw/GaNW45YEXBtJIOWnoin4G92F/EPsQSQ2A5N6/k2JU3EAJ4hz3Cn6urFW7uwbTuXiN9hN0dKWXMckmkX4Z1vEUXj6pf3DqVS8bqmAc/bZr84T8Qc5VD5eK+cZCe/0G11feiOmSdQvVDPcQmWrRDaH4A2kqI2j3oIBiGdx1WQujzE0eEK/2ZvrE2IiSQHX1Cg0xp0924m9Rl+1b/XJrFsqqNXubut7ZL+n06LkdflKRl9vaZc7SRaE6WYXP6DfWJlIk3BC2P2/EbrWUbWU36Jyy97ruh30iMYdDnX0NyN4LJNOI+hWHCV4h8JAfcdPx8ryir+1pxlw35Lc1JqHyOzDQrRGhOLC+yrpRZhY56k9rrA8YTq0HImc54Y2uXZzWTvb143WPxVpIqf6MN90/zjNdSoxvR50+KP2zc9wVakk5xR+znzRzjhvwcGme0UYES020Ec0MyqbHTIenBrSQTvUaNQkbKV31MZ5J3GM2aC0by1mayaVEYqAjYpCpJeyYmEIzbOgAqTHJMS2H/OiGzI962u2zOOBwnK2pR81BRNRE9CtOsAFW8BTwAe3hA5xEY0pciNFWEcmg5JnvtsZdHBlIH4pHiVJW8AOoFsOz50EEFM8TEsq3hDXzYdDEsWw6GnEHNnyRIzAT7xeV30b8/6WNJ6u99x9fN7aNG2+IcbrilV/tvu+3mlG/1bw7tYhi/bQmycE6VkxWER/qovBaRYthQXTD9tCrSFyd1OTbtMyBV7kW05r9JLeWoS3iE9YZkr74Yqptz+92wNj6LuSlecHgoj+P4zeimSM5s16CTNXq/z9zo0w/zU5kjVmox4VwP+4bxiscFJiHiEE9U8lU+LD7pnP801ezO3fBI0EiqP10RKaqJ86ftVMcLSSvdduzE/JOHZ1FSEp+befvpVLc+PayClz/IjGsQE+vwG8VIuXVPHmNVfSBlwFa5winEP2A52BZFVpgLjHaqmX7LShX9EHixMcEK1W6TVOcs0LXkzdOJ+nlK6fKOeqyptGVeqdtOrFEc4TpyvL0h2fesNVmmYB3PfUwgYqbmVAoj4INxtOf24WpX5TTrAVw1uQK8nkwSBhC7lbz2icOY3OhlIbj/mSHyZHxNjf6YQLB5O2Fb17GR9i42+noep6J3PnbwU97MexMgoWwRyWYjsizIUTs8cRZwFosJWMSuVI8ZDewNPhNUE9LqByo0f9mVZW/q0k78IeHDglNkF/JQmm1tXv6azWbl/OLxUY50b4jO3obw6mIGSu0GORHpFMPYnwxgpAkfwtPRicZn7mYAtovR8ZFgruMm6Dloa4ySv83Uq692RyS+f4tKV+dVnsMnIzPrKRn4QYnC/VP0AVgPYJkuB5B6a+qkpq2secCQUyiBwTHMQ2uR9BmUwi3Ow5B1f2dIG1/is4eXlsfeVZJ8YsbgD6CRIm3kM6+NP3h1WE5/i3/kNtnD0nuStni0ojDx4LQdTuFc3VQztRNdU66bJ3/b+bFSHP7bpsazkP6Hl9gClnXYY04zdahQXsPNWILz+8hjkY8e6fUZ0cz7bZJttiE70SOwZ6CSm4jvzivTkLJJOFTa/m9iyftmT5R9ZqO9gQAwxMNJgdFSUrpIHESzeVrkcwcqV2aR7sEjVvWW++PFAYsCSZ1ohyNj9JCHdjo4SxkT0dZjnWUWXE8nfcFKwt7DHB+qexgIZsRVZvFDYZ4gKX8SJBGzZm72Iweh+wACc7OAlx+CbYIFqWRk2ahMmEUGvJVSLFD7ZN2gja74MTzYe1yX26ZzOK33WnZl5CxsbiwOCqlZu0btAa5GLA9zQS/WdvqRSUD357U3pWVJ6yRmIQGd72vF14iRNCd7NlJUAxNs/1nhZm/D6eRQIRHdmvv4Ud3F3XE/5MxUwst3GCxYb978imEniMkaxJ+XiX49MAp0wXyQ8qgbQSisvZwP9dtj2txAj0vxf1Lfu1WgRm+pQjfnRtyYWI3EU2UInQwhVHy8YMrgXSsXkIoJvdgJ07Co8czmhdhaPFixN1UABkpoHluq3Pjw8oQ3vFLNg3YCQPp7YB9j/BEetur2htMCncVybh88PH/vCDlcOhRDr9a7KMjmMRZFUxfjGioUY7bjpg3Ok9wmuRt0MzLoKemaeV1osQMewnkIYRwmWa7IDSah+p37wtA1DtKNSgHm4+D1iXQLTj4IPimjbdzptBs+nufAX2eqp8ChRTHoDJ5AB1ShxuoLAAl4ginE9FACALgkQlnt7kx0BDMwxSNocgF8W2HTU7YKon/yKD4JlkIF+njH3KZWfKskkxsA4vLDAO1OCto262newTW1ldd9MHH3L+DbaBqECyDs9+WqdBrpK1U8K0Fi2bjq+xF1/O4YXN11wu6b+oAf+HBd3xXxA+8hkxB0QaQWxXknKJj+tSuAwtdWFz2vVFAbpr0t2iwtfpCxT3YFtqfYbw08eUfTM9tahmKsm2lwHCE6b071kMiAka+GfqXippQJyJ+53Dpr/QM1LfKWkUzZumvVfwfuPu1nJBQ/+LFP8HepVF8m/KBBQX0dMvb85vqh7LUT1BOTa1Qo8s8isfUNHqepfPziEM1URi1Mm8J62mmwtrd/GlBZIFi3lT8z3QSwK47O/qscAyzLBTZtOPywih0CGtXKcKXjs23IZfJtx5Ie4Frx0xRBGBYIw8XuKHFApiNzoF/FA4vhSW10woK0moohUg0MJceYvGX71iXT1DsKMbmbCXet0pWWTDCIb7K7OcQq0lC3gJNjXSC6XF2DeH9Sdd/Up2qWQkkuN9hg51A2H8+9vRkXwUYhdnqJml6CxxV2hw2UPfAogXyHi0dGi9ZVFMSyO7YvAAcMrgwYmsnVAt4qxGy4Iy2OI/3QX6ilMT3b1ZcCCic+mXWjBCSabZIQ5HyEM0IXcpUaEWxXWmuVx9zdRlfABR2DKxFHsu8+5/JRW8Y4MWK57qCWQ/kkgXJXjiuO8kzp5oWn2sgNFqf1UHHe1LSgT8iPDhgwBkddPfyXeqXx1ANwxhIL8KZ
Variant 4
DifficultyLevel
549
Question
Tran drew this plan of the gym area in his garage.
Which expression gives the area of Tran's gym area?
Worked Solution
|
|
Total Area |
= Area 1 + Area 2 |
|
= (a × b) + (c × d) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Tran drew this plan of the gym area in his garage.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20296_v4q.svg 350 indent3 vpad
Which expression gives the area of Tran's gym area?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20296_v4ws.svg 350 indent3 vpad
| | |
| --------------------- | -------------------------------------------- |
| Total Area | = Area 1 + Area 2 |
| | = {{{correctAnswer}}} |
|
correctAnswer | (a $\times$ b) + (c $\times$ d) |
Answers
Is Correct? | Answer |
x | |
x | (a × c) + (b × d) |
x | (a × b) × (c × d) |
✓ | (a × b) + (c × d) |
U2FsdGVkX1/57AgwJZ1yZ9yKw1BuWcPy0vXjgfwyke5ZmvUtWBnEvVdQ53hn7XM5czWWdHa6S7VKzPrk1dA9UXp5wYqxcL8u1oI5tw/33zMKYLcjr2lB/hyIrEXEHK9PYDSaJ5icN4icU1uiPSmMn5wcAc1CZsDdsbSErQCuP6H4NcW64eM/ivywMNMyDLJ8HaT74XFMoBkafTLxUDRXRZSnrM1JvRyag5HVQohZHfIBJftXAZukmr8HO6qmW/M90yFmvTbpzdhPwRyRh1i0ypRpNcdMzdQkKzypfwt4UJL4WPHKLvWRzYOgqOzDLj3lYrj8O3H/eEgMayKG6AKh/2IxExCXP2nwxwIbhdXlA9zNNnrvmpEvHtFsNRqENi3nD3Fi+8hSSr3KsNb9D9xVxvZVSXnJTG4YeRK3eJI/XDZQu1iNo55hwrymvAPx+5r/fh1GML9JItbWBUNFj7yL4znQIuYrnqAZP8sy2E5X3/O4/esmyj/iNbydo0IsYKBZpSuhu2wLaVQxdy/78y/aCYbq+ILNW6Ox5AZ2yWiiUpNCRdzcSXN/rC0ov09n7GS2MgW8YwUQ1u9gCXnMyS8qtWOsuyxHaZ8VwX5KLXjNTINdkY0ouldj8SwqSzY7s/cmT1p0itcvfLdYL9Fr6dztUmEyfbFoNiZCwG5y3EOVO63hnh+Dc2VziH0eL9hJILdfw31HOWmYmJ21OWN11TiY7W9XKBEqsiI9YfoheBX5hjHVWb03Khk4cGpcau9xrMvpfptMmgu8iNbN3YXKr4/Hc5VGeyX4BfCTe+xZDSlG/7XFtWZjDESZ6wbPgsNsf4WFCY9xAjq2tJXWi61dFAFU1yUf03fvcpSvXKUAV8IxhXaOM9cZ0E2MRMBP2Eu8rkgtHKFo24tEvO/wcsMPxS8pRPKf6+gA1CHFGGSFKiOIflUmYUnoN2p58q6w5M46ojEsLcF7NzxMkHLZOGV7Y637WZkJeewOHeZeFqnkJR7qRJuqXTsMivOb/5xYNSQZFrD6y+udDVbEq/SxtmwVCv9sWlmJCEyjg0sBuFwUKN7o7Xpjdyzf9Qr5628AY9WUfM/ZbKkyXdAkIKVgFbsR9fTE4VHu23zbLqqACAf2/8fgDXijawQbevEotncslPebQyi747aJw8BCrSNe9DSvq7z3eJb96KsydZlDa7vFy5owC3L4nQyVJwlx+7j6BzhiFqrW5zbX0CFWUF1o/dYzf5Yai/zfo0BiKVMH15XkpnypWsHKw/iTka3Qcl8tZpnnxBHNDLGimabtYkwso3CRW0tSa4skW8P/SKAqwSEVy9I5TuYf4cV7IxD92U3CoDsuyF7z6LjwEtT9nFbnAi86Do31CX6aWMIeQFs8gL+gkpljiTMP61EHfXvTBr1rp4JGFNRXmqfv/ocA6XYx0GNJ4t34VkrofWDZ1vPGNAwQsrN8XVVovAqnOiw1Ph8GL2y0JzsCBB28AbDxKlOTg74fPqDFtaZ6lFt3x6jmcaNyKw/Lcirp6FIKvHUUS5NTEnbua1y/272cxT+cUzcbl4uGVmroWWsZohOMPL8pGS/E8uHLsM49EH/aXIKdMdUcXIKsRPD0uURjs5Z1dyT2607gJXyDy/ci/JGcbDE50i7Fsed/vqpuCv5miQencCQEr2jr3ubzI3ydbs2/73ohJjrAR8UHvkKWXthoV4WUUC7wcWbCDEFTn2YZJUFmJH9p32NxpCGAdV0bGuJhmh+L4za7dvsm0kS8Qj3SIX8Lc8R1X9kCdkYrEcz5+aqs8pA1bSVxMcHjkwxyhd6m892dm4+QGl7Qdlaj4+NpwCd42tTG7e6Y3xHy0qjdQBzcdf1qB5knxWuEP46wXAMBzddpx5IvLDk3aAuDXB648LpTxoD6UCR+PHr5sfxAJjh4XR0seCnO8pNAjhp3ExHpeSZDGHDwQUKzNwmHDrlcOunThttufqH+evYFLqN5NBoXzlsjDN8CtKvsNhfdT8sB9ynzsfiYlomhvh5FMH1XNAVAmc8I46ujy/v7y2l+Eo+4MZXnDDvAg1766tqmh4u+MlLcAIYfHu6S3haI7k1BdyXJTnhbx/WLHEJoWb9hDUK+ozfzEVwYyNxrEQYzLytFFi/VCB8/nKFQS5gbE8QBi058zUQvX2GPlfDW3RmGQmd7iP70oMpNkBJvPtILH0VVHZZzgFD9srutMpqqB/k5FMawOP7AxZaNxgc2poXlFarpVz405P7qF5BQDC8wUXP5zK6AxHAUXbbjtmgGxFMtiQCyuUFt0VJOKCJCpbXD0EJfXnrgxZ05LHVALr1iVfcIV6f1MuP5LjmEJ7NeulLgvviaP24H1Fo3AVUmvKztQaPFXxR28o4SHeKc7+lssfC4tcUpAH1Y/6QsWaNZUDTkR7iR8A+6jDhkb3xJrVXh/U7mrn83NTwYphc5UxpQIYav7jJxwjso+k8vMXa1mlg8cJtEI62os0q9j9J/95pmhj+GaAf/MSt4No8A7sSZ3CwyndnIwiCnZM5yPBZ5bIMFHKNjHq6fSFbu1VuXtnMwa9cEjj2aJEGB276UTawys8VpuKjL1Fqkh/8dSKDxcVysYvp4ETcbnyjy8k96kmweJNDpbyLttfsmbBMaCamVpfu8iOiCDF+bCbYggXvA7E4xWPKVOR4NkqOyifP46S0VLsTInXIMWOXcyRVOJeX+LjNxXMrFhCO9LidCRpIvCzjKuHZrChBhnRrIpILfmGDe8e3cuN3pQ18Xe/clzsUAYlY9jHT5iNlXbx6H+NzZMw3jVDjOLfma2BYbbsQVXXJUxdFSswDtpeDPF3zOwbW+hB4bavzLrj7c4BOIiZNzPcPkgeGUHURsHuZ1D85e+7hhhLv0id8EGp5m6QdWy0HRv8D2gZ3q2jRkVPYQZXmGMs+BITt2wa6dbyH6ElwaW8MNsVJNlZbEKml6DcL34JDo4mlmXctc2fieeEcF1QRxb066xBrpyAc6h/+Px5bhsRKDnLLGX2ofMXK0jFGCG58CmMUMHZIZxeHi4BalbbWRDUOGERBsVSF4VK5rsN/11N10zv2sJvVoAVw6rZD30BurC+o3ZeWoXQDJMGS+iU11Fgvdo9OnpNpxkexEGGE1+JJLH4sJQF04Uv4I781hk3Oc40H+X1LCr3+AeOQcCZSbGSUww71cO/chiW6wULLK3/uovnp4+eCwrBpGmy6JRM5UifirOIV0s3eEbCE9sBtI7YtCWwWK16VL0Szhp0EG6Rk8WYeBStVbtN4GCY7LJ1hNzZIJ+af+NQflyo3vLXqrQIgrCH934O9leeOER4SBBlzKWVWZHeStGTdzhdiYfdhhNSxPvfaRGmG6lvyLfCDKnnWBxz0oJOYinIHEKTDtsSHy5LgxA1ffbw8FTuAEmMRfBW/viD7hOMM7L1QA944oNZC4fcMjCVvWbnNjudC+o+V8K4p730MqmqePN/KAvV8IYVKhsz4CPHH3ifeWTR1sxB+pyCLEhIiC/loIip3eCkBrRTlgq66hRmRp4HCyqJHFjIHvs9BMWM7H6T21knxZoUgI+cUdrcJ580fVQFl+/uvNzvnUFeFSbBEatUGUA8/e2vCVyqe5IxxfejbyQ9dVlsb0vjF0cpUMMhqzHcdCRdjiGxCe9qiXX2S7u9NfbdVPcUr7Na4YOjT1BCKpiQEXpCoad+tyJF6ylV5IWWdepwg4ImEvtJxvCYlViq94HSoXnGsRCwz7ljkVAyMTokR95eyLQmxEeH9YJyAY2UY6Mz3BJ1nNSXmH67+SxeLJD8bZrxc2rFkzEgpE4MXZ6ktIanaownl2JtmI9sLGvxy6qE6K8Ph7+4bjWJUUa+j5WsMG+b/1vw8OHd6eMFlPkAnX9GGDDxkr0Iv2S3sEPC3qmPL4rLbJyZ6r3AwC29+ysFgz9MwErko6a/n6T/JAXbbfLub4xp82Mz+vhQc6yfXuGS4+conBmb8sHoFM6TMahIcBaasBRXttU8Ek1wEdKy12Z+NWTImukQzin2OAzm17jrqnJOxwRjSdJoEcqw8nwPYyXRFNKo6qNOk3IcWBZ2LvBrAW8VXTW1aTxBdVDN1BUGAN2JwdQ5hXQ3u7mrJMicO7g1ZTz6v2ueNMImGM+nG6utweprosBjec5jImETqcy+TAJQTZhUvcQLOA1PPa1FMjiwbpcB4MLYGxwM3Jb+zgShTIUXJfjjTj73ZEoS0RnXqDKcX1OkLSLMgLikVT4z4N7CJvpNL3RwVBTYfa1IqdFqxKnC+Rc2HZtpdjkhm67qL97hv+2nIKT7nry3DU51UOOpamCruJ2uxbv1TjfFThSPwKiWcpsZbTA21LorL1Zqc948nosRTB3RPC4/Ba7xgw36hShMdqfT+BgawNW7fmJBqa858EZaNbpSJu2wUGQ3Z2F51OQYynQdi2jZMOvrs8apraJ62fJS3hjZmwdJgCTKQW1l0TXpfJLEIfWf6OlFFnV3/MNQgcA+Q5J1t4bU9qhz37kSfwq05x35EgZ83bOmUvcaY0X+bf+ph7b0BXMISDCP6KT4N+J1qSoch30hoP9a0x2h19nQwp+g62wED3PwW0CTOFNuU9eSwKVDsuProOZ9gLbUV0r1sTQzV9Zwh3PFuBgO0myE+OMmYqJf/3F7HN1TVhjGR8txpHCClhuAQuFLvxlbYvMksY8bHfb6971WBX+YRf2p94QRIugfzzCR9BiPPB2mE3p78U/BhHxUw0MxsqdEm/rJ9loSbLFgICMnEg8LPYTAXyy0KPVpOPL7lQCMDX9XAjnqyxS6IkoZlR4ZYjNPwE1ye6hVXx4SEgzfwRdalNxL2PSpkw51UGaR+zTnoxQjFZA4pVHgV773xzRSdJ1/0NxZyKSOXJ/S4+avRD335X592tTQSLRLVjfwIysNP6mOWJlMzKD2yJIdr16HzleMj8JICupb3b/0OLiBjVvjYkDTwQBAQseADXSTB3HSm9FrlyL+2mcelvGxsrHll5c1m1O5NJzIrhUwJfZ/N5CO/GzGEw/kRyJvK+gBQm4uGw93DofTNjxj/C7EXHaSgkquird7kaPY2E0wMmEkVHZzu4tqOy7Tl0WL4Om8VNsaX1ANOFKNtk6pIDmGTEe8/HHG2N/DLnUl5e5xI+xjfggqj+QnIhjBGo8ZZ1ATDhoPH77ZKhHtVFIBLtGww7gJO5BXp0ywjHtcYv1e+4wfyiDtcQfkfN1U2TYHa4AiNurzf9xC7bYr3M4RQEn13zRA+t1DCym0hmmHPkBKpg92LYRXZIDxfqB5+0x6epIcyEoSlTtOuwU3hYbvWTbV+iF0ftivDNE1JvckxCTE2u+qI8sMARO7wATvp6lLPc0D6NN+wTUuIYGFYJBKXUZ3QuvTUd1r/jfHm7sHZ/pP8W8XS7XPFJGqn54C9Ws37ScQNZLE3OxaKO8bvFwRDsRodUyIXNdYndDqKMyil7Tfvac0pAExIWgIgwbCqU/inv3JXTA391CUBIex7IboN4ec+4/l1Z3JFxkLpyS7LydKCtWUUrIxivL4yag4h4ZgwMZNBHK4GCEH9fVjQNur3leg22iJohNXJGqvHo/rrSqQxYjs67/mgcfi2gvCS5YXbdMGG4Sss4Lho3bRnrTXDOby+awbpyh5Qv8Cqlz6/AwQuxbjZ9DtQtASaaXlMuhBFbQQGbOBMoZYRiFhk6oMdGRR2oSC2OEGX1/4hp0KO1rS+7JXRQ3VfnkZwqGY7SUwqvufRPgz/oluS9Dc6v7kSCXdhGAYJpjhakHwEqcxucgEZky+Fl65TXEy2UKjdgZVj639AUL3do++Zltv1yMB1JBMJlHPrUwE+qLHarMwV/T2eOHktTK3+G87Cvj5iYbPCQowvA1Eo4mP2O3on3EXLyZhCC1Jl0NwfIMj+H/9N5pDIHzF2lzBHKW2+3uGzu8Zd6P0rTCnOAJzwDf+9mRqzjJLHi4mc+mMzmemNowm1XvWN5iIA5UBsEAetpwYHs0KTkMYpaqc3s+p13X2S85A5cONq6XHqMmPTK3ELCCM8IolFeQOgRi+zhLMVL2H/4HE/mViKNbYFzZOZ/rbdqZI1baf2ebmkKoMRoi21bLQdX7ajvu2VFPkHw3aSktIXdS5O2/K5vQgrHK/ru4pDxDAMB07+l/+2yKgMODBEwtg9sC1RbVtTCPBdqyzc15wvn53wm4sGtX3R79U8gx7Dt/wccLDEWj5N0MOfutv1OdZqvxy0XTMkcoRTPJHcBPCPlnTrhtnr34Mf4SGH126YXvgGyWK/H1hpHCU2Nfh2rnV4Cs37rraXcjZ8gWHhP0KYLS2g6rlCB65OqDa458zRrEMXaD2rV3j492cFdBcYDAhj2AFCd51mbThx5yxYT9nWD7hz/83htXKufUsVx6sHr3V7iuDOL9eiBbQCeBb0x8y7J06OHjawmdaVbVj/sC27cviWU8EyMrpJnOLSpVunLN89EBtnG924FuvX+nmtG7ArCjSxxZTfi+VAeR1/4mYNFFZMJu9eZqRmg4CL1+TVpzfJ34BjbTtWUFqhlp2JWSradjSNuzFd7kEbJ2oBogW3NfuPk025h3fA9O8wb710rfIs3HZ9+lSBr5baaLbqo92OfmrBnRLJCTnUjFcukfg2ZLFTXXUHASQ91sklyc9nen6h4fiR1PVKhDYk8xyYcUa7jnhcLBu98iD1rbUh6/qtqzq2m9NwyQW9EGhZs4exxxe64iSNXaiIRTlvorJaP9c0HhUssLhdZn/Ui/SCEnAcbiIKSMistouTcKzUko21+dIXf+9fWIN7Tqad0+D50KDp/nFOth9CvjJYnu5qv+7lBncp118Z2WarSDAM/xHq0TDpQ3QWKNdC+/kRMED0nl09KwLbBMD0TYqVTC4brUxO0hXJieuG1vnppZJ4RtIcEMEJonMGKmQk3X5le3SpK6EQNa05ybxk3H3aR1t7lqlO+5c4xZE/W/Cue/P78jn+mb0dlzasybvSYmPO72p0WglNtK7RTC+UiN1rcsxeP1JGNFCBj0b9nbpujmjQULbv9weEY+HFYOuvtqJaQKd9/tM4XHVWjoz6+REZk34cHSlxirKQwxWcWxMjelkdj4Y37emN5ii03EZ1tgos/tu1EY9SXwl24uZBP7knVLoP5b3PVu8QuXdlrvuYYXa7UZUb42llqsyUeJ8mSR9Sc334ygeaitB/a01wsSqTUG137yl0nQb/62eorLjIdwOstkV2aZDIFeuAODzyeKenKPsH7KLl583nhcSdVAV1vPT/FLiGhXW/faM2jr27e5ZXt/zhFZ1n8kUWbZUIZX78bV4WNt+PvjfUT9Qee545Xu/64QH2LYx3ygr7KkuLTkhWnnGurvFElI8jm5SHuImD5buQfu9BlbvS2BiLywJU4dxdPppw2s0c5g6Ao+0aHKXU+DCr6Svw3oMJh5dsDkcTKRpd3/UDaJauPui/FGRlwbFTVWRH3XnUoIliUE8T8frXLEv6ER5/YiD7+S3VQMaVt9kn+2Nr73mybvMY1/x+puCUfB2sGJlTGjeyIe1rbivfQLy1XTzg0yAdmxp6WfcauOilLNx573q9d5EL/g+MwEm37Y3e96fNZauGzCD5RBQuqaQqYilpF5J0+HuB9JQTesOl75yU39G3rrMkC6X2+YbkfljSiYTvjz15DiOXUvuCldagnFQwqMIM9xw3rLm8pvPpsMtf3hU2j9Smp9zm390LH+yRS4RK4NPR+qoMdU+yr+nmhY884AZFTT3SdgFhicBOOjILgzMnH6NR9s6+gqa1Bw95WM83Glb6qKF1LVhRgq4jKwJ7D2LHxC0sO6vvTyHgEZS1l9BpWQuSKHIy/K3pL01MYw2xRuaZbl/4qpuQVQ37DQZkO0PaIaEMGugry6bne83d6Q/PYrsadye0Ar2rk9P99H1itS3nIUj9ctjj2VvSd8Kfo7DehilFLMOsD0sDKLYkEeqB8+YAEZ4e82I/Gxncpge6wgzyj7toMFapQg3QTdEpH+5ph+Ji4wOWDkSRXYh+OJNBztodoqIQAXe/enASpvFuRh07bRAE3AtrdIpJ2SeClzPVe6lBaU24WmUVeBsDSk3XSM24deqoojWWYnT5PunSBcZgTiMNr0rw32O/zdCLUBFewlQ1cD8uVvXB8vPZn9Yq/br16hDUEbR6dNABf+gSmQ7r0A7y47kkMtAc1zSQa0EE+xlnzl+KYV6Y2OqHm/9QOeUhP0GlJWtdzvypeREO/3FE4/OEsVvaXKB16M+fBmVSPkoNMg+9gA9kzhw/J8oMRM5BWdngoZYU3SvRHkAuPYQM99zmZQEdblnMt7ccTY3IrnQ1eaxdEOJJ1oYx0MDDgjyA9g/zF2iTC0bIvTEhPgtt+UcvDEbQHSpU8dbMScucQbXxIUFYTFfEO19uB08kZjvWdZPtqt9YfkTayPk43568mcjEGY7FO6btxw30E04LmB/CBoe6azMIDlW6HuwyR0l6I99EFx/RJhUqt44TV+TAVwEBBIeNcaNoS3iY/ugXmUwMWvM1IFcLg58DNg5U3bYJtJOcyMfDUJaDqe46807X+hufOpeN4SrfM7ISD33QRpHboRcei6FXk1iFaK1JX7o+CAyvinUWhYRUp7tHNafCe391DhfNM13rUl7ZeH0AJYqce0lTZn+c0XKU31GWQjJl7oImXXkiyKvObKwQK86gjSxiOz63olJBb1g9if+v5HZklCrRFljlMRUCoQpiCV9o30eEwmQ2O70fmaUrlensaBp4Qp5I9ZsFLNIxf8OzE80LfDyk3GG+kexgbipmkPQPGy4s7bPD/67f+Rwj2LHPrSWkHI7a+q37CCmSHfWsT9RQirPEWFzsvd4+s3JpcAejokKK77ntRDTH9kootLRxPatyeIVyDYV+rSo8KO+YXSK31voJwbn6iZN+0S2mojAzhYAogU934hWbYS4PgkPRpq0lPmvuVsfVg0N4vH1t3JGLwm8VFscWNDJe8g/fDWD3vic4s57c6pDTjj5N/9NzRxrCdMCrwvvDEqOmWaHBl4pbIudqE7efYx/Ks+fXxLs187B146zjyWAysmy5SlzteJ+xhm7WJp4vJBjN5QXR/J0B0r0X2DqMrsA80x7KF+EVZ1BHNGik9LLjsJp6kYWs3ebmqiwjekBiflBCl/BSuCzuaILfENc/p0sTLNgIZ0NW6IVo9BA1bMjdX8wNblUvu6T8uACaLdI/d7zdvt+59UKYl9QN9soKPmF7d3dp1xP5mc2zzoGKsm7jpoKoMgKEN5TxosB6D8sC8KFZBlkxrFcGDVWyMZt8O+O8bgvO0coYdSX3lalnoGOhIEpRuN5uKOGIdVK7OtQ8NJrAVdfKes8NLdHHjMwsuS9+9ZXvnFtTJO3oarD3+mxEyCtkOmMRFt9IWeIwtnmp2X3lkPqFY/fl0y/BUVNhEeLlzgkaY5W+SepsatMatxgTJldn47YxyWEsTv3ztwZtto+MdjPXB6AKu0jKbigbkmnd91t+uwrhHIWE70uNligeAdN69FYIwmyCcgRbUDdN0zRYFib1xaMfMzbAOSTy4XIkSk0PjhC7ITwY4OlLg0mR9wzd0/1OrKlgPDFaLQ6HY6y+YhnSq00LpvyKxL43FhrJ+VrNhmQ7PBvEo9Zq7acz6o+4MKGfgb07uPKUUWCGqnAw/ubhWnH/CLHKsiKyzv3bcXizolseOM/KHp/i1MtWMEt7Tj8ijYuZmEASesKf1DSKDSpdrVLdjEDHkHmSqPJxkMdlxAYnE82c9hgMrOKEgkZfda7ERncfoDu2F7KWjo9SGzmFcMQM6XxqxGGfLYwxeSZf+0f8QZEJj6lGNYOcgdaSdzcTNji9UFhQOxVVbBWp9RPLUE6w5S1+GCKoMdwF+AWVU+nJR3s1nDx9qx3Q/cQ==
Variant 5
DifficultyLevel
551
Question
Aubrey drew this plan of his garden area.
Which expression gives the area of Aubrey's garden area?
Worked Solution
|
|
Total Area |
= Area 1 − Area 2 |
|
= (c × d) − (a × b) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Aubrey drew this plan of his garden area.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20296_v5q.svg 350 indent3 vpad
Which expression gives the area of Aubrey's garden area?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20296_v5ws.svg 350 indent3 vpad
| | |
| --------------------- | -------------------------------------------- |
| Total Area | = Area 1 $-$ Area 2 |
| | = {{{correctAnswer}}} |
|
correctAnswer | (c $\times$ d) $-$ (a $\times$ b) |
Answers
Is Correct? | Answer |
✓ | (c × d) − (a × b) |
x | (c × d) + (a × b) |
x | (c × d) × (a × b) |
x | |