Statistics and Probability, NAPX-J3-CA19, NAPX-J2-34
U2FsdGVkX1+8VUgf6P6A+lJ7bhmI9JAxbDR7s9JOu/HHgrDfN5LqMG0iNQw2NSHo0oQYV4SpcHZiGPHhhwF9bJftSjLHsmnyDHP+ZUxro+BCaLFJW+alX+LUaxLt9isLhwFKhdVOp9DvA3uOefGaY6WJBwPmEQn7YKSlRvMxRpzMSSlOsaxLoo6HUnfiqlcmgHpvli0QjiKJdCewVm5/KHhjdKlhAnAB/ORc0B8CCcqjYZy1UGr92UzozL159tfUHsbDzmC9vcrlv4AemccXYe0CshaLOY/BsaGViKpunFyRL893bK0eYxeukSthszoRo0zN7T92/PpSr+aGyNAHFVBX+Lku7Dh/fEWhfvFne1Z7I2N+kghOaxHuephS9ulTk8N8IOH7/3mmTsA2Amehzz4pSh+XR6PRJSqz7FyqRAhIzZVMYh5EbftMWGrUbQHliu6b8PmoOdUjRab/g7XEbA6c7bXHPXh6ag4P+mz4scC15O3gRvHIp3K0i879lNQ4l05pINkywxtlk/FySuY065gXB1TGWXexjwhMTMfUB7DmdcnRkbnyPAPl39wA4I4mv0d3s3iglMk2865zvpobV2aXkzo8Qpk+OCamiRPRKv1iRlSh4f8kJ2rUSA2dSeII2TYL1ky6wn/MzPm/BoYcdkYKVHKiyeos2ACiJp+hotFhj3cWe6fO476KujOZZ8JHONh7GvXd4svpqr/ogPBNjbrdmG8EE7j9xgdv2cQKtWDyn+RA87da9bMj5QPr3fLYgS7JIYr2qRGp7o6qdcbs+wn0PPuoe9evHIY4PxaCuDdqmO/W5QXp+2H2n+4GBp6ajTGxd/KFCcuV52x353g6OQaeGvVXd/B5VlgMgUCYhYYVk3deo+XegYLHGvLSBy4VKpI7/j4i+u/Y2uuOjjcZxj0FxW+dP/0Yr78dkaWy/aEplq+7fLdtyLEYraqA/suNY3zLv89eGwu8ueHH+L+mjaOAIzJtf3exWU/DtTuiN+JOO9kctU7PoGM/xglipdzpNlGDNSQoQO4ipsk+omFZw1iFY6waRhC6NlaE72n2PJPrct36fhVCbvj6Cm/GGgb4OpuND/JR426bLgCZdo/877UU9uAZgIC8/8Y0/ORkeOeu37HSP8XQgfO4bxIjxpCWIgVSQYZQDhVsc4phAPBF0XOgyIWwKYQPmK5qXJYRtCV1hPFT9Cz/vbzQPxz3hmY5JkLLefmd65aW5KdlDunyatSzsDo8rSd2wr5azFWV1hfcByzXs1ddAlFpFZNZx/rxKfrpZihOPd3Ojw0xQfczJdZ3MFvBchR9wFiEr1Y9aPNwttKVMaHdDDb0ZzPdWfKnJk+pbF2HJmIjjFrZGXgepYz5gQuM1Joa4bTWfKkloHiAmsoNuKAWPppQsPzsblceX8ZybVKenpzwRvG8GyGKkUYF1ho0R/ICkrMMiRXc3+byLpcwxPrXasH9pjtWnjS93p0etfmJxKnw3vDI8wvN9DiNOa5OuZFiWe7RbA9UA8BviDixrJ4XLkhosQO4I6p1LiMH5/lvrowtuKPz2TtjIwJdou1UMQUwm/MoZ00xtFGXEgytppFCwwkqpP2xJpBt1jRDMVeT5dgWZFfs6hDXI30N3Isy0l7XqCptgvFGRkXwnzt/W7a47SQixz0iaW4oqCEW1epvuWBgpPbLvqjUgDpqTi+Ez3kAcvFEKO8N3ClcUeIsv36eycTULf0qzrUK3vO+/myzI8whUGakhxdu9c1i7rBhBLopXVkmQmfV4pZY2ELVdKELdeFBZxSB9Ks8aA/yzU+zkACIZ69pRG74iInbUJaf8w7uikL3cMT+ywVjlF3iVQAWfqZyo1ykGmRyX6/xapJ4SQORnl4kOc+bCsebemqL88r0365C1DVA4Q+GXZo3ncQPiHz+2Cf/sAan/lv3CmwuyHIDfJmCHZ8S+I50uR2rbYqckGpZpcSNAy+ZCxUwtYuijx9gQNoTuWvyO4M/d2K/aiNbodOmXEblbV1850udrF4e4e0zILypmyIHMShEl2fR1+TO8x318omgoOjuFDZr0dg3GfddiaHvXw0SLeuHxQpOEBNd8elEbCOHl+eN7FvubeRQ4C7mJt/oKuPrMd5erYWtKuvGBMMlKM/svZBEM/LjzRO3EmMwq2zM0JUwofXYyKTf323XXd4cuiG7PMSYRdQysJAHWecjAr898x6U6WUZXf11Zl4UZvkY1Dt5QdULIRVsa42aDR4quhDKr5AZtHE5w4PHPro7vXujtvBQ84Q34ZWst6OyXOvLX5lYKGgUDlhvsoMPy7XEEnjPKqC505utjazR4Uffh+2ZIofyZqh3X7IVpfeg65qCSZIDhD0Q3KlrX3ZLhyAdMKrC5dXdgahEBpwPXxFweBJ9o7WV0EkSWYlyvhnsf+J/gxF+2Je3zC1Uw1ZZ+x8A4S5UZCZWdfhCNK8upY/sMUhwMV/BozEd80jwzo0iJWW2gSG6SrM1dWqUxV+caYUguKJJzajAPKGMY2FQhicK2KF2Z/2qRvsRlSqyP15uzpeCI1WpOs6sA6Pnhwv49QD/KSqTRNCkSZ84BmkFLZpIn+5kOgKAY7MBoLvCWP+nTSf2K30tpkKXyqb+tJwmz8SMvefSCDWPwPmN5N7NrQSedt2NEzpQPnZcmaRlXkhZsW0nPzikki5qqpQEzvAY1JJKlvLUVdTfqmrMJStDe19W/uzlwAsOYk9Ushfyva+q5ZzMjdrk3U9d6aXiw+es1cAVCvOQws7k/w2lEqQUw53yZPUBpQ1CMXF2Jlu+Ph+vNqjGWKa5Hu4Ksqdf+gXtIc24Q1rW6eriWQYtGHP9XUnrSJI1Zhs1sxGo1zjoWDRS9aZAnIPZnRGRgjB7eUJnrnmsAm9K6m4tOr6lGouV0l2VBgM1Vkj53d8b1jdnU8X+N3LLqjXqEE4IjjCcg0peZTAdDDfQBYUeKPHIKxjL03LRbuh+MupWGjYMGlSXucfUc7OC2Dsgtd8SSZmtGb3O2HIEebAnoXNSOEsnGe/1lmybsXgG2UNRLSeazA+k3Z/h/yQ4tGvlEd+QEylp7P8Z/2SxOHWXb3OYqLqclt8EMI9UEqN+NHm4F8onQafG2jnB9CV+LWNZdMdoUq1zBkCdjzFU5uVuQjhjbqLNotGOq2A9WCeN60twLH1VbjrMjLk2gQcRfUgacJXwYCL5moZIZpgOqojGoIHmr7yJ172o0agKk19Axwfpw9NpCGqtAwXLM8sj2zJTVRLe7s44oaQmoCnkWpagCPKpIbYgoTxGjxjRTcsxJ77B5AC8F8FLJGhdebrCAH4qYD4kyW8hB1ulAxUwRWnVemLJk9dEwRZAgPiLHyVIQaYZPqpwqh9GDGjhZMqf2OWEvoZn6xRYWhfwa4FvxbuRhlrVfTtq5MZvZndaY3Wer6RRGyzpQf2R5Pgwrj05JE8lPocyi9w3ZlwAcWfvNdw5D7xuQyR5hIFtOBX9C0E90V+W7kXxPS+uBYCBiRA4SzS3USSFMREuxlOc2wH7EO37IUOmwvLth8y9l6uXNLyI7o16eClPFzTWxt0IlCCqCvGpCyZ4pjuzLnvuVhjQJg/qWJ4ZZ+28Q/xy8N4ungM+9bJb95FUIf4DQ/dYEbdVWIp2HsFflFaa2tOfQJSaB3F9GHY4NMltomE9Uc6eHL2/rBiZtdshkGPw8/SVQl/gbR2mBozxQ9Tfjo9javrrYKlwehgr3IsMNSsjV5ib1rtm0NP/vOzbv5OoMw1Umyb+B8PHr1+FfP5VWB7yeNYCCsuT3NhoxL942sFAlZO56fOOSk3feaDbjWdO0Cx+jtsjpby+71J5ZAdLr0e5EOFweqPV/rSZkgjd5heu2TkGCnEacma1UqFyj3+GCDjNiVwOtzksBzmP1vZ5CMG4lk5Tz7gs2ElkhHESbcDBDqpx7tDS9Tau78aO/TN+czF7FIyeLUhNuzfOWmtMBkQb1VXNgmfQoAZ6K2dynGoUElm/fwb+RlXONCn4S7/NReLpwestCx7vV2hgUnD6t6deF0KQyMLV7KqsTnzaSxjHEgMsOV+whqhWYfUzy0ehZ22qu6omyUcyBfrysNzanW//raFrjrhGz/zanWbn42zSruxRnRvGEMLMtRf4xhQ7ptTG/dZ5ygDG3rJ2J2qfQgnX38CO03Lu3Hb0aQFlVXRjFAJnTuafe9oQpYo6uEEH3R8S4Fo429d2oX5LRToB1cTSOH4pkmDq9ZfM5RwSP3bbzFN31m+3rg932hZ8956tGllg0aHK78giG1eCpSwVocZAD0aNm5+gnetUptVsaX6Fl9MvHNCSnoDx/QB7zssm8ldA21IEonN0uChVa5b57wYPnpMmXuWyWk3M3eRocisTfml9LjryftcHxE1Bh7M2BI3v2wLuKo308bDtHGtZliD+FV0pGPj39UGFulC+iRaHEM3BHk14SmP2iz4UVmCPLpbsBWz9HvlieKcl2WPpMoxld4gx8xAsOmarGptZVt+VAflYUvIbhpuBfQA28DxhNuT6XWIQ+Od90FDRgeljAXGUQQOLzgGxI4L2f/nC749p1sMxhsWemn9oQ1WHzuQiqta7oYLRGN8ZJz3I/WM2dGWTziWf+Wy7i6N62Pfn6tDwgr36bk3IwJEvSnYelpo+hl1uOlz1tb9lfyOtZ0p5IopS4dKcj8XR/tzoxwmbjkPxaPOygoCBQ/NiCn8o3W/6/hSamooPouWMLToroTj/HW5w4vZLgvTkO0NmsjncdMUzTKyDRbRPQx1nC++RZeAu+1lzjj8ZI3Cu9FXSyhoM0lKiwP3h6t5d3FjRTqmk48vTKz8RXYf3WqSyjXlDdaglLC1hhUcS/DuR60lRlk8dNXFQfi8c4bv4iPJ1ZiEXgDAw/bhsbwk21v/lTqrD+i9hrERRQDOhpefE6/bEVz9al1APSEr0Dd86AMIlCO+/YKwm1KDzQBPGkOFjCpcndZbXUpmyON39TBNza+O6mOtdf0+4U0u5sNhfDueQUo9S4uZ0wvgMjVYqISjbS28QhAPWtplrL6Crn4YutoNaxGKbfP5eAIQzWniQJqeXMWpK738D6F941GfFM1Dxak1qjbMpaTigPOOAJ7IhjOy5JgQDedZouis9hBGia98kXuQixSnuQO5145UJ8WMG2j08E9mYBhFSERSS+YODyDRGD0P645Lgd1LTXbqc8QReDQfGto1580ADFiYg+I74AiYqDsG1Wek7DvboZpORTxfa9E+VUf7/g+uhObPrb8kxkDwWq98vnqxEe1BHU0q/AO3UZZoUUeuu5Mr5i80wxVrUMgeLoz3C+xdWJ/sEYD+K1tH6+Y/bwx9J9tX3Xnw+Y+ELsBfFcEvwIvKIABnqgllyiCWTmTUmIUufijyzoZxZIuy5ZJT1nL1BVzj544X9OX/+SKqceUudeOrLv5Iq7wH0zYaelv77N6DEcqh/oKcHxH8BZ0Jkl7NqTH8FPmLXieNE8rc/AAqNgNgUsmGskda/rR/Wd2264v5Dga6kqR1KIoccPUlr6E3HHvi0Sp7LAr2HPqZz12L2ytTy298A4J80Kxn/8WHgDbGkX1mYq14PbzpdhMy2f+hOMN+/dIKhApWLJlTjFmeaCvIap+O5mvNNxliUIbONbsRL3ai2x0VKPJP7rfifyy7fVnKRSWaAbPCJw2VeVfJums/BQYUtiPZDljqgB+fas5ANkxRe8Fui9jy6C518VyUuubDz16l4dJ+P/WUFVR7Xil1otimyNFNx5KL752SS+YvjqvH7Juwuc4jid4BEMRqxnXCmP3k3gk4Y+PB8Q0xg6tK49cPWhp8e43+u3bD4QrG7GZWJspKl9Pt+gVHk4PXDfXlomBATCn1WgZBuJYRvTnDmrUgGrQT9y7xNQyo4hpgbHDwaSJHqH7yHQzrAvnp7nAmUgjHDzEQjqWnApJ78Rn/7xAKDosSJQpismLmbTfigMlPgzz1aXoVmBloe1hXjtswKN7i6AQEXZEcxnW8e8+/8eYasYMdlulU9TucFtEHBPmDWIY55L5Qrgp7u5FbBmh6a7RTnvYRHb4Xk+Sdw/f6GlcH7n0Ylulp86enQUhSjKoPKcMZ1KTGZpjmcjE9+iCAWucUBzdDiRYXP5zzdOfIx8Ctfg7v3N8unX1Z0dujbn1A15LxBggM/bdpvPnXLY+q71liqzAz7PBATNblxIF8TzfeQMf0hB9ZbDrw5wVjA/Qz5VGLVqcWLJJXqMdYADioplSqa6WJTQ2oDZWxWPLpleNfDBg7jqzrjRfOBxZKZEqlF1Z/Ohpk4GuqPG4e5VCB7AF+QuGSWOT7hxinIVpKXeKovIxJABKCtgtrcS5z2b7qMpi+Oxp4FyzOblomuWpZ+9fLD02wLraoQ1L7sWDT9FE+U99V7Y591VEdv2FHXDgpPS7exbAGptEhP1fUqylA0PRAPPgZqlE9mBferi7EadEruTaVdqgYtVvZBW1Qp7NR0Nj7awhnadfgzM6Qe7nqUW1IUVS3/H93j/ZXiU9kSJH9If+Yg/C9l3iKZujEUGqJE6K1Uipt2PLjfhtDBzoVHtXBcGafGHTvWxo4AEML6Q7d2qZ78CjAZZMn6mpmp1nwqxuQQ2ayEEVxfRk0pY8MXlFKaRgFsfu4va5nNZrsNw8QoyUKcvds9XrSuA9IqsKd+xzU7Lmog7RHOGdT4Th0/wiRh2H7SyUXTUbYRSXjaLFi7XFXwNo6S2W8HLFYhD2LACDG6sxqPRbNEQ6qnOGkTqFAo/UcTwe60L/App9FCR85Gl9SmlFcYMGPUYdXmaO3sUvjmFo0EACfau6gTMYDDexEDbxnZO4TkN5Bzt50LmM4ho2sn1+csKBOuy7+VjHSRY4Z8Q29StN4YQaVomh6sVSkDdmOgX1yDp1H7LHmC4/0K+hpWcze4fVft7t9ykT6antEn6U8E1PVKuokPxymtoKJbExi7nNnYFT1h+uqBvslk4CElRMlGtFNZCmP3Ub5RPyaWgKP/BAg/T8lvaMPaqcF4nrQqGwN0FQ4HE9+PV41VL7uioqt1ofhpKD0d8YX6Wk7Bp9CkdDTUxVrHaCo7dSn6X1pbOYSxy7cMAfYkcOIx8g1tzXl4cQK5AkTY+bGh3uDG35fxD3VmIoJV7pwU54X4YUspJhTD1K/ViMJoOPJo8lvT+qdpNxV9+hqYI4ZXhe46lYigosm10FBV/lWOOGKcD2BwaXj0vM0F6WJTaGRUBWWO88t4pw2J2iU1l4lomCk58St6TGjbZhFfY46pBYunDlA2UKVXsRDR/Oh4IKC1N41a7usAkAUYDRxJo0HdmKTBzQa8JH8FzKGKNAhN5mfY9B1bwfQOgjOg0qSrhy6B6VVu+zZfGU9MaeDYX1DHw2/GE0G+x+KmdUXA25aKsgOISx6gCqvNAAdUNcseY86xZfbpNU84GRb0vZbFev6buuuUilUDFK75UI+OJiDXGM/G4fUsfX92/pCZviyAZLNfN3CCEiZRHbGPY7fX32bPFATXNIftRSfuh0SlJfqwbyFiedNI71SoEg1bk8Q/IDJbL+GNkYLxDAfZp2FTTzwpODDVy3N3GESESxcG76MMdLYiL1wflprkvgHlPEcNV1UwZpbtP4v7TCpFaIUwNpH/wCV3MUmms9W0aeSn4GX9IRek+WhlBjLKtZ/nMfJA7sTYXlCRfmGCWhfxmT8y7xRLC4FSWRnvDciiA8/xxc1ucBM+6Zjq4cacXfDHMZc9BsuinTaxaRFNKZZ8uLDYd8pkdFCZejUi/8BfcFa+DNn0M0akcWhwHj6MlQWWsdY=
Variant 0
DifficultyLevel
546
Question
Ricky has a bag of orange, white, blue and green marbles.
Ricky picks one marble from the bag.
Which of the following could be the probability that the marble he picks is green?
Worked Solution
Any probability must be between 0 and 1.
∴ Only possibility is 387
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ricky has a bag of orange, white, blue and green marbles.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2017/10/NAP-J3-CA19_1.png 150 indent3 vpad
Ricky picks one marble from the bag.
Which of the following could be the probability that the marble he picks is green? |
workedSolution | Any probability must be between 0 and 1.
$\therefore$ Only possibility is {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1+N+mz9UAm2Niop+D4h8OhEBnzRQTgrFYTSuXKARrbhjlqMgk5EfvKWbhXS9frPK+NHRISHa/+EwSC71tYhke3e6US1OoHzuIy4DhyTbYyhyI3TLnYsiq8b29TW00WUi/87F4JceKKEDGDJtqIRc84pRIoEOLfI82/JafUhlq0+rN+iZXQLqOL3qehc2QV7pXHiLKJiqOzasfs1oumc6ea2LsNJUZV6JGtGsaxvzLpZKeaaKzQ2wDyjfrFjtAHK2LlLW1kXdiS2oPNxsfADh547OjnH+6CqCFs+CpfN/CztSo9PkcopsM0TW6NSjfQdVGbu2boIPCUtO5LzF4NZJtb5j2sRhR+4FBlYnIEuLhzEoWY6iXq8YlqDuVSRPvhIG8Sa6XQHYXmd7CZ/FtF5AJIg39NdoWC6Ws9FRhZRHb6N0nDeS6kfoI6RN108zc4pVGyk0GyjJkMS3tOG85s9ybGro6JX5C89+/S6nUCZA80UkWeBmfaTBC/Uk95t5FS+voQ2qV+2cFmywcqlUXWFxJX7FId8/NtGn8mFsV55xV/cTvYoDhd0yEcEkUjoNNYY7s6FoBmGN2kdEwJ86lIRN13Vr1twEGA+PvCgJEYc7m5HR8Y0UUrfqF+JJT4yGMIS/KadgpWmZzMKH3SWq09Y5KPBiUXG+mtKrJ02NYd7Bxm4nkcybRov8PsuADxEMq8i7RA/L8WdrSrfpWeQlN1o3oxsjFCc9qfxbmZqBWsn51LFl286UZYRGNGTu3G+9xBdbNch6sim/uwB2vUAogZDHa1vvsHPSB+L/092ewtzTQaZ5RNwVduPPw9PD1tYOPvaltFHokNrT/N96FUi41wIuMyUGHnix9zJPyw/lyhBlII8X6QhdzrtFCr0ZT+okHBRtHpyK0bxzzr0HaMvtPnGC0A0wn4vEADEx4+vag5ioE1m25SMhkYr2mut6gnJy8A0g4HzPhl482oBMlS/yTMYcCZP4sxw0/uoZbhX2o1TPTbfEEtfBMQ1OCjP1/NT3kTLHMQP1l4fsCZbfsTuk+zSmaqZpc1hKiwncG9ptvLSSozI0IC6Oshz7SFHCXYDeA8YggrSIBhSuIKERdk92nQEK+B04CHU4aT5gjgXhP3AR7IMu4xQAEE+l4uuGR6wI+UVelSYyW7jRom5/xLgLLgNfmhcwjbEYj+hAmPJVo1ynDvi7wGJ9fAyB6ZSjzkChToXX/m9D+VIiPZTcktLXSHatKRdXJUwlgsuhrVDdSVN0Uxdh3C9oW+Sl5NPQjWDyN+6qZ9X/cJXa9vwqsr4igpHEy4mFX8UFlRHAIyL8AfsJYmGd1R+Q/Z54m2RaZIlHyCS/XJSv0yw61vlsnhok0BFTkG4SlmhPmqMvsww1a8I5CnZlTlzoRgd9jiBcxs0Q9DjjXgGjV9vPHONcn6sF04GyumlM+2npmYC5ZvmSC/SzPf5SelytCk6oItryMaINTRFc/N83HYna0tSmiRhbV5UqAQA0LztocTLQNGN0aYZuQus9LjKqnw6ZYzTC7oAf5G35kwm9AMISNgbvgRZU1MNOCmSOM9zMqfAQJk9m32jpU+e2ldqqc9mCZXUeaC2N+AUwkxL6wXGmIpqvC3Zqj6j2pRBUAPpw/JC7Zn44LR5xBII9JDyKgVFoupzUc2E2H23zrulY0nuPBuTTrhI1B/9rv3MsUMMc43WvlUAgQduFSjmaAirSDbhtXu3TTKXjpMlz15vqrK84OjS99KyS5NHCQrQBctxpZk10KPrPcDrO5DBA7mEiLxcGKwlWeXF8WjEcp4K9eUXXz5LKu63ClJCeymkn72VHi8fnYL2eA1KekOIR0JvX4lqCh/T5MLzbDRfKLIQQ9qPtWk283YUUhwK0gkqvJuMuLEBBgf+JMqPpV4G+hmYCTMAgAHDFdSP6Sz5g9wNk73UodU6HFn6NTCxBxnZFbPPRne76M8EkcebiNkX1zWE+H1QpUiNN8txlx9yTBvijXa/aoTGAFn/C3etI2xnvAj7/shFE2Ggi+atZe6ImFyreudE4/03hDFM6AZBjEEVvH141neBwsNS1D4c+8yF8EcVqojxqKY/0Q4sBkHRpsTT3HSn5QviUlGYu6BwCuuPy00G+Rra4cmTU/gHIUo/ir3h2yYplVmX3wNdZldj5ckC3rftL/fCQR0+WbDPfEB/uEB1STm2Hosc947kDSunutSnP+61dIiCs7a/ly499L5c9M9GbJxRiqIZWSz1+7dF77TyX9Lqa/m4/QByKkYDMc1/wUA7TWiozhnZAKm51GFcXJQU7BoVR7ftaHX/A39Cs8QnEsSpRSJgXaPKe2YaZAsCfq3gyL1tCZ1XqyFuuXWcLgsMnY2rTe2oZi0WPmNGt4oUiBctaIvQDjuB+60CDg51b++GDD7a7I+UoAV12bcxBR9SSoSk/TpCMrSj9nUXpCh6S57LaSnkycTCUErsQC/qm/6HkL3RtfiP9Ul8b/lTD6PBFvlng1ckoXrAVqOZ45uRwoNy7uLCuJVYhZ+BntWV6otD8ub9ChbJKv+Auhmmcy8k1lxSF2KthOYhtF8+HOM+jhw/UNfUg28peefrPztOdMMSlrzE9KMiKmV5Wq7rITs96yKcLh8pHPTu2pem/wnOk0tN8eA18zIXeU8WRb1rbfkTN7LKynRzfYJKw/9XGsbFvpHGAHfPzUcYGZtBht1HOfsSVHiaUbiMJ80//s6LLmg8Z4wRf34nUWlnR+x4gc+V7PHAZZjRE4/kfyT7y/fav8vSq5nBkqjTQ/sO/otaDGu9nem4omIC6FfkIqegZ7HkVw6T2cCqUKuB+CiYBsdwsZTt5LT4axFJjLZJe3OOpCywSifqZ8YDgbRMIVj6Z+QNz8F6X5L4cREWtLQZEiJbltWv5L/E8SUzfQtIQpwlGUhzWUI2hjcOqJAS5jejhr1MlTTz0LLTf/R4wMHknNyFXicND/iVow5grYFCOTfe9rpUQTqS9alXl8F5mH/Y7z8KYSICLiOvFQ/YWtuuVEbrjBI6jonGvlBCopMkdjx2q8tG93LOjXBDCHUa1554y66xhty2t6th7ZTJhAp9/vrlgSBWX3HniGVUk30RVHuvkZVtPsHTLrCc+ZRDhAwf14bQSrUtyf7K8C9NztJmXOHxNW3QuKmetGfJCm8fhPPvEIjluV8PWOCdXhOKyzGDIRZXvpFLaRuOVyFP3CGxMubErV+b30EvBbagZFyluyS3sufhI+jvLMPoUwPfDtjb27hxNBwn7KQWoovN/T+XUDA4VICBi7I3x6cZZ1QtsQI/U6N2fZh4s9T4AIMjr5hFKrqDhYiSKJvDsGEtWee86sHvBj5tLeepZlEtP6ZA2QxK0ZNbFMLEO66RhSM8KJk7nnSL+Sb0ykNrkozHmjWcpihwszL/gWVkgy60OEfcH1qeo0Thw1eXkxt2UynPfQqZPMUgkqq25c+BD/B6No9m74dLgLnrLXRkoHyXnWbKSZ1fWJdMcFlqtbMB1YMe7iFuieEkI+vvWaHGTxBRXzUe4adVOyQF3SW7LfUQKLZbmD0euP25pIIoBbW1Friv633IEAP8VVFucN5aBuu50JNQLG1C+kh52A3Bxa4TMKrD5ZyulcJigZzeXRErVI3f7ShMrNlb2GvlUemXvvzsnQ7xYWaxeH4lS4Uf+EiSCQYaD2eX90hhBlBn4GxRJifPsHQeyiVjwOx1S3bXKdNU112yh8RjHny8PjjOrbnqMGsQFyNM5fbqZTRa8UL1CHia25vGxguY0KYpHoBLimK1gfxgaH6VzMvSwH4PBRyErlXNUByW+kxZK2zkPva6bBp963YS2dhaVz0Aw8RpkCMOw3YAR3QcKveQN1M9RsvCJOWF3fpBIojp3r2ZhA/c+i2zMdqe9EPZ2D/p+uNtc2uTVcqpQ4dOHoTQxwLo87moX9YAo8HIyYNncl2meVCPMg1zI+yKtefMduCV0fRlhDqUD69NlR9lYG4Gb/upifuYeO4lnd6ZIGN2HY4Lzwyu/laBQjOoOYYhiF26RQvnxYDAlrzyvDDJEkaps5Hnun32RVrko/wjilnMPHtbTqsXL9hCvNll9G8gDLkR8puc3qNlQYh5ePXF15HmhZKzcgDwMeSbdrH7Apo7k+wjayrygee1jMlj2qSS9KTpaXfv0W+B3noxhQQ0XaUnJtXSK/EjdOB+GScWPgDes235WXeLmWnJQrh+5S3f/aTf2LxTQV9oKVCdY1bEX532buAJOGO0UudicZZv57pMNBrGlqIrSz1pvBlP4i8HWGiJGAYNYgXQOC3GmSlTfx8lXgq9WrbJOcToCsLd/1P13eU2v720ZO6xAMWti/4Jtv5+08aK/QFD1800td+r58heWP3WHCJSE7uKrp46k3eWE5CLYmsgArT54xpqoIBLkOc7gsn94J8sW+aXAU6kY5Aun88bp0KUiSQWm+hCntox9TrJpNICZ+JC2rcaGWA5TfvUOrGpM+e2V9ea8q76WO5+eL44fCI60ZDtpJ6vhPVa+E4h70Ph4e0irqG6CvOwk3teiJtbteKZpfs7YpYKxcQInG4wMvptUv/NRk2nCZ3xd0ntPGl5DnOsTJfX77HnQ6D2iCDrpI7GiDOzu75ZMuP5mR0Q0R6I6/pLh8ahbFcLOq6OKCZVrVuJpUTn3a7bVTIuH0sCI+4MCphtW19HJgo6b8RvI9hwKzTC70a0DkLh8WOCw/tDKyJU9HSB7FYhJfq/PCgPI8Pe2VTYSfMnHO8i83qvr4aPD1FGTd+4K9oBCUBvbZ6ZuUFVLpyfNo9nC+uT7WqRJDMxowdQID8XtI5DsGgi4LrPTJQvA7D4v0Ry+hUb/LTy3JHVtot2GKQ7moT8JsjAdLQ55TEnXyfRmSLgDyP0BasLb8RAIW1wsgAxj3dalBtDV+BC/z4JVp0Ri0NTVDgSOfIYxls+hwMp2U77/yOi3/KWY4QcLFbHbkmPhTBQmRGRv8CF7CueuvlZ9DNxOghNHsDemzRG36m+43g8a/faHz48pgyS+S6XyvCyuIcIi2O/I24suuN4JY+shKR6gNq7zKruNIRr4agEDyxTdWsEyLkGrEQEmdR5yyn1HBdj4akSYavpd8ZTcGAJMrUSYXsAPQu6hvqlv9AXst2ROGjdYqITeiw5VmK7JxxnjwhEwdLHYiyc+pAAd9XY0iakh3QSUBvtl+TISfay/vXbUCUH8QxqRcnHU6faYEVD1LFEhsVcrAMJoVeBrFvqS9JbQXxKfxOYeQpaNI1CQ2zkD+6WexWOmrlBbnTCuA8naR7toxIAhqMQGhLt3aCOsdUhSEYK7MrXXH2ISwGbjEHNT6tGKJBfmEby+51XKAhKULqJx0SVJ7FpF2s8kH8RPkx3DuBP2y9Q+rTuSk1JZmB2DzsOf8hJyDnw8W/LsieUBa4+dWukFP+AbSvbFle2TFRQHs1cpyNEYlqPK1xsxCZpgCkEopj8UAqJZjoKEY8PY2dWmJ1KUe9jk0u2D5rYdtbGIfzYSM1z+gNMoA5i5JN61rN+h9NCU2ah/Z+hRKEVMPBUki7bG9Qeuw6U6uM0E6QCWHQ3GC0AiS4CbpzFZgW5XzRfovbt0rmEeBsUpi7hdKgUSkUQhxbvqyQO0/C9y4DH/MZ0bQlg215d6EU9Ao99U5/l2E26ofY03MnIXahWRTNueUfq8fUAd11LBLTL6NK2s8c7P8VtNxwap24jJYt5M/ji6ThgN76NVpGWCc4j3RRtPGRi67M31lQJyLSQtvCLbffMPwQtO8aOBBnkI8uWWSfng1oO74PVrakm+sbOlj7ofjEVn+pmIFV+BGFz/DOgjNKENAIIIhO/U/GOjN59dFr/QLQ+lKEQif5mgtggmQn1vDo3QJBkMTNWUR9q77+j0y1NScFtO0haVcnrE4zIuEqshrGhTKfOuMBV5wQ5Au47wI5gBkQYnYi4eY6VanKHRgiebZdUcHL03cZ8iiIjKINofnNZMugXCHhMc6QyyIGITw+QdCxHvHOwO4coNAK/0qeK0mRdayQO7ugW+po2oQHxmkO0na4ITe1xj99mq9bfTmpFGlhvHx2Zy44S6UyX9q/lA/Ty6dElqMZLWto0ZllQmMBceIOU1hKsfKNdTfn4Brb6Eagq+pyK+Tvd/r97P/s6kCI2ig3CwtjhcSgP9YVrM2XYZuzc6t3FSHVAKCZuiUKkcTXIEYBYR3DGhESEUrigqiajlS8ngB9e54d7OGBrOl0bbZf+HvOHdX29Pzk7b/hk3BLXg/UwfijpzQ1XveVG0Ankr1GmuxoJ5cGOd/mZzCVZUal0qEfRhvq+09al8Y6m5O3D4mHF2hJPRfhSwMt3YD1QDD7KSZjPnG/8gu/W7nKtbPguoF+dvB0Ia00nWA5Ne2HGym09cm3giVGov2GLgccUnyFJ8uv7mpaNU2MlW6clEvbtS+4Og+QumI2O2GJToCXV1WZOKnLyM1GUiCVHJQVpQ8FgK6U4xRA5KEL8S1VvO7j0T3Mr3N9NIJpsaLhcZ3D3FwucNMN0jMreaQNN7bKYT+QqCL5lG2cBhFoog8eQjSwtBKXNN7QsoT0JTc7CmAn/y6ZkZlcjOPBCVEgYy0624rvRZ9dAj8owQk3JmY6aOms+8A26FJpqBLFco+M1PkO7XS11y5lOaM/QiVk9sWH7EwMIYSvf/J57nizFsZ1gfY+mUWMxVeECPWUrnVgkySMJ398vgjWR0vDuiWIHhEefkf52g/kvxtbHZGFGc4+7jZO1HJp0mVMR1opPryKnQjJUfUK9hqTzRx1qsayJiqcO028dtVBKvCaQq67WyVvXgcGZMnOEtKEiwKOclAKgKsG5w+O87ZVfZOXeJPe8yvyiGgQnnXhtVdgSaE5qPerc1RM1KvEC/UhnGl0NYCAEFJKMNwxuLCsQFHHZWPU0Zk0ZAI3kphTXxQNiTUtMkiO3vY2WLIBbTgKUTVir/BNRFW+r1ouWxGm1CxBuYpPyBv/p+MlM+6zeTYOO1m/CHc5M6ZLzVEyG9wST51QxVR5lJykLJo0O7HKo1aSWvcYKTVqwyzETUl42DMSOOu2amleWLbOJbvW+jyXNCXB5RIo1393bjxi3EQCm2OXPMm5OOUuicCQS3fhZH+SgeM6gPZ6LNXhrj7antdRZ6JZUBvnq2vu7rN7PRvqcNeXOK1HegYZEwpMIafchyJXO6mguIrSimHb1ocJdGDSjw0AD+EoJHG+0K5Aku5v34rNgLxieyCi2ZmufE1FyLLrgLX38YHwwQ7yknR69yewwNL6ub8qZqxuQQG+6xHb7Dgm0OHDHMT9KpGuRkzfRKWpM9fvF17OyfjHiOzCAIOa27qq8FSRvlcIHa66cwU+oT8icUGlonY1+3sVGmN3Y6loBnMSqm0a6JSxiqFLV2b+R1O5tKOvVfFDgmkSQ/5DBdqntrckvUwLvXgTYRPaV8ugTFiDjLcB5ZWlouUOq/twsdfZAwQsESAX3txnXJhVOFSZWnjtrfo4afN38YTUWQAcPQP5RCmLBR5zfurpUEeDew3cgTLnlPyl+LLOIIloRvhFb1BWO4tmrZs7h0Hia+6MQpqhJHZ8SlMZekC94C3l2cF7n3pNXHa5d6PnLfmsWlhc71e7nOYsPfBPmy9DTgWt5xzSsFnmMJL/3rNWbZLqbE/paNprB78jYPkZRnq6mjxWS
Variant 1
DifficultyLevel
549
Question
Angus has a bag full of lollies.
The bag contains jelly snakes, maltesers and sour worms.
Angus closes his eyes and picks one lolly from the bag.
Which of the following could be the probability that Angus picked a sour worm?
Worked Solution
Any probability must be between 0 and 1.
∴ Only possibility is 115
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Angus has a bag full of lollies.
The bag contains jelly snakes, maltesers and sour worms.
Angus closes his eyes and picks one lolly from the bag.
Which of the following could be the probability that Angus picked a sour worm? |
workedSolution | Any probability must be between 0 and 1.
$\therefore$ Only possibility is {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX188M7+/XAJwfb8gyYD+gYgFeJDVdS/xc+DSWputAPiqqc1JAjwJ+6stTfz1/rnU1AYlYOfFCL68ObMootnIZD86IgfpjT56hlNP/yWWdK5eS0R6kBQIFWPa86YBTJLX1zMxsMUQg6A9MHf6ic2BgPPNS7nYH+nD7dGyE8q6oa5ysOabca7q0t1nJRFA4KUOzzKhnvzNhYyQtwprDE+Y84h2pA6/8VhkPCdSS6bAaBdZNgPsdg2a6egiC3qOC0Vz+dvl0+BD3zf3LgLxkHG9amtLElQu3/4kjBRnW4EdhOn5GD2MeDLMEvB6xz9G6vgBXA1RWQwa3JTNeLYkvXNTsL3ByRGWoZjAKwSmv2oBoPDfGxE4ExB+dFTseqNdMw3/JuQ7Js5YZ61IcDTZbKl5050hHtgR406V4EVR92UlJ48amYND5VZ3rUgvXREdzaGFvMkMMpLN/PeJUGSeXBB1idRDQmCpySq+EksJtDVK3+8OV74caL3Uudz7BkG4vJTERUj4GABfjjo2DmVh/mhFdR0hVLZ/R9B//+6zNRmUUjt/7pBAJYM1lztn3aMcAgihWA1vUctZ/R/G5mrfOS/CrBw1T2e76zLxaqdlVINyG0B85WrnOF1gbXLS3dYyH2r2X1voAa+5IZyUkG1WdAbJIA/uTzskxCuUZ6qwgUt9vBPnFASgRUH+IUX+5JKTh52QvUrvwBEGTX4N3XwuPGTZYKrc9PZbvbXG2Y3nFFOZ6M+N0WPJrjqO+WlBmj7k8XlgzNe6MV2O1qUZuTkDtEMT7Pef2Xg+4JbG29oVj06Lvtguya4J+bHo+R4irdsB4EVX+cYkPMwBrvsETFu1PfBwVh/NryjQfYuO+7US1N9u6sHjwlHWu20M9bBy9NtdTlgM6aqO+GaWNHUva2WsLsOf3uOhuMLSopHj+CvZQKiaaHD+HFKyYpFklH5FvwP+41k3ycIX3b9++mpwrvMzyIIrb6qhmKO4RxIAmryxGiwHukXihxbxAgISQf21XnCn7eVVTzoKgYqKHtix3pGMOc/4azm0qojPswgXOhcOSiIr+ZlMy6e0sc6nTrj44kcY7o3oQMBAsGsUJE9oOcJlW78aYq1lC872eCxgcTKMPQZRgEKlDteDtulV9ovuxgxlIz4vj3Hbj3lJjckBNn4fpt5BuOlseojcj99UVmbwRQ3ZOZGKa+y+rhOdJtATqjC21U/GZoeGWqpzQmzJtWsNzu3ChySYeVWmtpCwHpOyGZlXkj1yPWxi27tChDaqqHxNzAlNYovX+CWqDlEbskZAu+xFO7uTB1bGonfA5FxTzU/+VWw+aay+M1qeTA6AsFazV0/zMw+AlrY2A+uD22TcweHWhZ9GskBW85Ha1mKoaIIMb2CWMaU2o8BIXe/mhkXQZt9tPxgGstZI4QGVyiCZbMsGLH6rldahljQdD/eK90RIMN01PDi6PZH8eTfQgY66rVMUl+O0z1iInAj5EVkFmRmo7J973PTmv0CM1TKezgj5W97edLP20i8I884OG1iO/6+FTTeG8pkQqcbaCE7uhK4EBwWl/jXHv/EokxQNPIL2bGFPhiNIvNqBxDwVbtqfiyt/Po3fqE7mHQQYqAhO13nQHBto+klfFnTkgPm6a45zavUB3dG6EK7ep806Rr1IoR8LefDl2C8V9ON8wZbqgDvUrzJMIv5exdIEux/bZuA61HEhFw/sUKBIAFgUSXyM3qJaWaPb2UiXJuWYUd3eIJzz9HJe4o/tJVJnozNMd407bmIlUKvcfpVYaSu6KNK8I6UVYtwMcqSeJiAI0VaFnrMAth3HdJ5UVSoiIkr2Ls2E2/J7SieUptIqpyjMxK9wcHloGrB5odU2UV5fMdLIx5kP3ODHU7SvshNms3UzGb/tlVfnf20WFvVmFaNcwWtHzXN8/2mmUnZwty1seE5PuQef0XSGWzvaRpD5m3jZ3C+hvU29Xi/Ofu9EdOqhB0e0QUOwgP3q/+yMQeMrtPfQ6cacJoip8UEMt/OjKrJmvDVyyAxDIK0k8fbPTEtQVh0Yb/PJswN06l/IpEPoePbpCJc9AC9A7WfYRcsXtSRZZRVwlfGMeivedu873avEWGiv3hZ7JQ283VkHQoozuo2qMPJjXPCOIE5fpc8ts/6ApSiG94cOS4TnQGaVxwymUvixw4b7TDFYXxgjwVlwNoZT8LnmuGk5x/uSPOHymFIWhjpm6dzCU7pv2YSb9bPOWu+mf/rxsUx5ScRM8NahmeSBX6utu5h3W6TZBoMqwi1Im1hGVT9qaeJnkqjJp0Nt0P0QjPp55kS5kzPTFqYPQYK/4+iSOMDes38sNJZ2NdhE+bPlB5SspYz0jkPyGLN5mlDOYVRM4A41azovcmnBqAqWGsX+lzWmrff/EtkUUsG82Hp8MMhloz8MY3v2LWen84eDSlouIt2uio552cyhTyGsas5pbQyUv3ygS9Im0B4LOBrBy4COQBIlNY9Y0fA7CNL9tiuYFoPLotOOfqRWFifeRkIDv7iBKJgD7gAyu7rOV49xGFt0manjpJx2OIHzeFzmBFL6GhsRQHACb9MyWvG8t2bI4Z4xEh9ZtNlcbfkzrcsVP46FWI6F89ADGuxWWY9Xfu6DYrHFW5N0zwMUTFbrplvFawdYdp+ZYV/6Hyw9b2NeCP59mo96XtVkRSBWdu5jRk7tEInl/f/WpcYvbZQJwYjpvwgocbcxETUkvt8bxrXfQJyhJGYkSwShRS8/49zluCNBqsTu4WzwI6fka9pqPliez0By0Pnb41W3UzQphKOAiDYfgoRoyEz3G37zLrDPEUSe11lNvjs6Md5m/sNzdhl6aoVBU8NkjLOt32PElu3rco87T11M7phnTjMr2bhrj7iR5NFMNoBcF+qorqlelns7784wHPpCYFGXEkn5i9eS+hYZ8UNxuRL5ErAZQL3f+0O/3si/2+Tj9FHJlb5U7TDzgTNgBjRJ33j5Q9sLGzdNfo+319BNzrVXeXOrqZwG0lPLchJvGPaSX/TOkVkKvWbT48b51wW8tN3Pmuxy2a/aw8P3I7DgmJM/IbatmD0PiMMU5W4yUXtpCjcmCeMyj5hafSkGSzj+K71Us+agClD2pKOBF9dHNgwP9nR/YdsglcmM+4TuqSTntjJic/p6T8RFTX5xf+xZsyxptSrV9HnRXO4nJGjr4otMV2laYpIEcBYkxwaR/eroAPmK6zKDg1DTnMy0v+fNB5sCzgInavDXLfc7EFDciGg57yN9Pg0a+y9uqkRxfbfSO5wbV7aZkjpPMJvwOFtCXzh2Atx69yBpERSVwjtqSpFRUbUTPwomDfa2iY3dBddhth9+mGWmY41lQeOjGjFaNcehVyXgy7lho2jjpo0UaBTDj3+TeHRHd0Kkaub7BJSH69q+TTBMcLkYsyyHp5ZXYEx+MADbwTq+0mjOjgBe4HvhHtxxNtIUHwgchCIMHzdy18s1ErrbVfBMz/9uDeXeY41kpunxgI5ROe5Xi6YATtsNtB22+IPJtj8RiHUHjGSVALYdo8kLOatDsUu3/HwqJi1Z10CQz9H6OoGd1SR16fjtKceBrAy2VOFmdpIQhDsNcky3Vd9RqubE6+6IOaxqVwFDSmEVYlYBP6dFwCXQUN4DY7ddPLWjNfHBe8EZB4yZP5a1EVyCQUU+rdUqxinAeZ3ICKSD0ACcMqMismDA4QUNDFPHvD0yuNZZd5DYp9LJK++yrTBm55tsLHHNmmHsFFm5SjdazGcqOHkdUSDTicfO3V8krqN39ePP2r5oRayaGuV2Kxr1EKXCDm+x/e0+iCR3h4yw5fIrjoi8nZlldH9Nr4LILKXyPfGUky/LYvnX5MfLEn3kX9/eXD6tcwuBZ7UjiVJ1ftCJtpCk1bddcxdnR9445HGTQbwiLbDdgTPaM0vWhPbBea3+QRH1+F2XFAbD5dB94F4UXDqCjFVRO6t6/8pYdsM+eTczzzmGDbESDAt33dSuM3WXAKDfCqdzTYdAQddVtMW64O5VVMCz5fV8pP/eykWXK8sCClQO+ZmA/faGx3dyDlPkty4r+nBp3CRMxPMLHThlMhxzDxEBttgVZ2zOn8DGyy8HrVGvXFaHMlvu2F02TaasVRTjTiTXbhz94uG2Wx6HK+qhNj7UocJMSHjDFSTEOKeaTVosKYb7G0H0FF8g5Hz3HH6Yj8OIX+yvjJm6UDZNrOEROh0WxacNb6x7rwvcAneFrcifQiUSjmC6iNErJUDkcZVfb3a6fEZR3+h4h7DGBosxHtEriNky2YQA00yKriXytapWV/PMxsfxdNtqVZ65NRl7Rzzp+q13rdpFZn/7mMzp+bmFs47TwoKs2OPaDOX3wapjMzwHNXhxdQDHNkEN5zY0Vlot1GKZnHxcSn2BULUz4FJ5mQLlWuAoZuewsHWAN9MQ0MjiS4sxuJX1/ri3S+IgWE8jnfBabD1V9P/eMljq3h3efHwJzIpU0X51GEZcuYqQQY33CMbgApAYgBp600yjKCFvwSBXawh5YfwViHr1OLSlwixW8BsUPc+I3MGNHSnG1u7gDiirjMv2ZsAAs52aMDAWrI1F98L4tZLsYvNUf7o4EHy1I3Hql3XhW3q2//YzqXiWDJj1xcOIrVogXJkDD4i+ojBDFfWdw6af5XPFU3vjXO+lBW+jhYlT/uOoKY6+bNfUaI5vWFjmWzHx5QKZs9zzZGTaLAclwF7jrZuAQAoxVBrG8c0rzqltOcEudCyIOdy1eoUFPJV9hDN8VufsaJjltIlLcafQU/pqWJBGc1i2CgPGvI9eNb6xvQfTSrJFt8acIeSZhWca/FTZB6QQFBdFVBZTee1Xzu8Z61eizRtrEc5JsO/SQOr920LFPTA4g8sSjWp0X3+26uKJO/sIiXA+K8ciBFUBPfJ6V7oiVeAmSOUVL0IYE0hn2lPAfNLfrtUvfnswROfrU3R11HaBn2MXRiOUXSfGur++gG/haYPmXF9YJ5ORaC7s3kaXnbDg+FuULCweXPTEkyqpihHFhLAMJztcyI7B7q/Hn0SrZIb0L1hU5jwjh4+xSE0OjT3MapZinb8WNOFJXzzaqPOmY8X3tfSt/5PLAN5L/Vq0gUyv8/VUh3u5S9OETND+Znbxx67e7l9j0ia8fNCQkJQ4f2XHdYIHUgrKYwGpd4Q1kKxkv79kuhoSh/mav/KJKQoOt53xbQkf7sJhdkJJ2bcHzQyiLg5SnBAP67e3w/NQS2EsN9nJd1PAOXcbFCXyWOKWa/NJfocEXxhCva33bEB9PcBb8lDVORTjzCkC70Nuig9Qt2c39+XrX1wmotX9Nt2JBRxgrr7QkpB1YVPY1xoCRLhRJp6iGk1kRQk37+rFahPed40tmlx/qCiJPRLGEwJSkFlhqzsYK7kt8/bJoqQP8fFnIXV+TPFI65hFYEgaInu+Ut2nV8xbZCfccNx3yfe4EnZK0rcSDMYPwhnxzWQEYlO2EM3Q7v7GsD5J2Ky7zk2Rk5teUvgiDBxKb7RUrio0rc+oc/RVgYyUMWp7BVB3ChuOH1SkZDexox0O+x14lj7neguB9wbeWhTlIvrPaLQV7SRljy0juv8H1l7seD+E4clKoDKMTq5QnIlO+Ss7ORGDcNZcaqw31ybvR3xtDrYppv2tFYlTdIJTBeeFK28/pjcIh5ZH5yt2CwFrKZTCb1QnRG1TSeIbi/iOWqgJcxrkLUm5m0/hZmZVyUkfMAO6i4+nVHxrL9SeWcQJobWofZ0z+jOAbYQuAwpMarNMhpch9S/JzfmTyzKV2MzFohLoH2rJPQRNoX9sEm7arlfh1CpJhdwz9bzpyEzTf3gBfgOdB9C75vhXPt0fP5FtishCwz6HI8ntDVVsBDkcCh+61OQM8XluT8/scNNIRonYcl7w3FzlpUL6uoXzttX922l3sUELPvRjrXirySuQfmSO25Yv14c4FQ5Ifnvc6aG8KLm7S1vLM69slYl2jLgjGeC/WHkM7TysiyexTN+iGRjMgT80jE0qPdSEyDoVrmxTdZv0RAAy6XwgoOxgBjrwJLT/Df0c+BLUWQv8kgB7b7Xmf1SS2N5dHPPMICx8qDtwcSOct7myi9H/9N8gPJu20kgOfGOFgfK6F/LNyoaDbMoWfaI3Rx9zLyTtMhGJk4nuw0DJnU54/u0YeR4ve45vrNdOvvPT6tLh2CfntB7RcUgV9trTCbvNs4OnfTtwTzNx6dZ63o0cQYUOanrEHnqfAHhKetme1H59dPFepQO1xnwio83d77fan9uyRf0J7ihTOHrou6v5IhTEPpFr/xruleOFAXVby4NfsyKuOKXUw5Wv6PRynsWo64q4ubzDYxRyajwJbtp4Xpu1dEPTfjAk3eFngUIKBMljI4KjyPo1NxX4UDDgD4CGXrQnDyg1T9yUB8GcTQfLTZdmQCE4W6LUlAWCVNIGsUzj/2/8moDcaPK9rrrofz2rr0jVBZKgQqVt3JHDQJdow0TcCcw905qe86Ii0U7RoyIZ06B2OC/NxzOD+aPB47WwtiTDim+ihYbhbfPLvBPOBOBDR05g289goFc967vFzWxQbIJkQBvyD5MfSpWKraStQUEVjejGHukr3IuLTdl94WZWVrkewLPUdA3BAAqQKbEDiXC9WhZCaNMw4/1q7lM+pkTJJzidYpUfjCOwqDu0r8kfKnUvgMPZXPOjq0ChyVCvR62i04CbJgvGv3xwJB4+0IkupQd2GArBSQVEjPWmAmuA8+RXllwz+Yr97ANsf5cnutbpPWlnXRhh2KEKqM92150kbQmlBhu+NsQ20BCs/GS4qJLrLqbrEV2FY2DR5jjjfT1tJGwt+1noXZZp0Q3tz1JrYO6BWyazS1QzAZxk9ohAbz9ZELXUGBw0BFrlE87V4dJREX4G2Gz5Tk+5Fw20IsnmS/nBrtVXys9XiT7dqlxz+3X6zDUWmtlwkjKNRUW2lL1hnMKSFvGIbJa++j+WCp/24Izv0Hidg7bYgK+LsWVFmZbqyzivXSG/QLtCqk57H+92dFfKGU1BhDObKS09syReyxIvdR+MbGlAXSw3nL5FVW8zsEkvLj32a+9TYCEcxxRUefEl3I3gZZVrtcqeKGWeYlmqFttfvuFEVeFtfiYpXcdPoufIo7e7wL0BWPSg0VUOfZTq2uE5Y4SwQsIq6MCjqej9166a8LfxYvFBr7O2F6F/fvrHnQAhC8wjArEfNdu8VZ0+iMLi0fJbqgAr2WKNhZ63eFW8315lTvmjFbJmZ1NOuqLPc6+ZjOGDAw+K3zUfWyKI8G5wxzc2ihCTwyY+IAQ69juH3SF+3cS3I6aFgMyfBs4OdkKmJyLkEqNeFi5a3vDoUoTe57BM3uQuNHaCXp1sK3nn5y3024VwAzzuOKGrOvnUYng5HijRxAYJZZyWq4T69IVUH4v+Rxiiju2DxvUX57J+6oS9CruiW7ITabocxJ1CqgNBjSF7pCsUdVPznRRSJPanPVK7vPz9kE53cdjSUyhth2x8H0UaaXOqJ6u3mOq4WE1Fe7kz43Db3fFo/gjl1xblrnJZGZzwcVJ1Im+qj3+hZEtjo9NnC0lkEsveYdQvPa89h4DciBTTvzI/8os2sZ85JNfG7NBY3FMSYbMS/+JmCc59JTsBj3nf91q2F1hXUOoYzlzMsbydc3svmETuO2/YTbjT31rBaNX+8JsU+fa7kiAs7LqDYT+RewOBaxg34GxtRfmDnIgWD1RL3xwG4IbhGGTH63w6L4So
Variant 2
DifficultyLevel
551
Question
Bess has a bag of orange, grey and blue marbles.
Bess picks one marble from the bag.
Which of the following could be the probability that the marble she picks is grey?
Worked Solution
Any probability must be between 0 and 1.
∴ Only possibility is
157
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bess has a bag of orange, grey and blue marbles.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/07/balls-6-coloured-min.svg 150 indent3 vpad
Bess picks one marble from the bag.
Which of the following could be the probability that the marble she picks is grey? |
workedSolution | Any probability must be between 0 and 1.
$\therefore$ Only possibility is {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX18CpllvYSsQ2J4i/hYCTcP7dBsdxfzmRHkVgOr3DEY5JudZbixPFisV9eKQdPK4ANOwDcdkLBSVC1xUiuZXqp7cWNe+bcE+uIn6HrnoXFcENhWktKbp+TqCc9KsZ8O2i1lkzRHrfBOWjCzMh1iDTznnNPuRgD2QR/XCBRSFan+AjJ3qdLUU5+R47SaS5Z756QQtRCcUXgpoPpNkwJNvEvcZYtLgafVFzVbWQbpqzBr9PhCsfl5JvfbzN4OOEqJdaWJ4NlqbdJYsvMi39qZ7frDJVtrzxNV8Kl77QlH97moArRX9EgsmW/uHv6OE7ZNvUGYaxbQkxTdb7YAyYDXkg07SWXlQlW0C9P+RVMG1WfErynKNBR/FF3N4gjtEiS2RkOYT023Iwi81lDUqYqmyLxtHnMwsWR+m8m/5QBHxEXMH4wBsGBcUQO//L9KyF+jSmiUWWK+guoI9R5iL59FqfOcSNcC1Ubu7FXKcksMXy2JMnFr9TBVmNLETzGzZlprcs3hdimp977cVaLLMbUcpfaBxGuugIL2cz7s0xagwCvfVPdap2NfCc3SiLhdC6x97ielvcANyQA6888AkPciEI0Kk53EFOVDU73iYcHy68VRzs5evDqGaLPyhMJ8LxWLVR5MwbazrJlAEikrgX++ie0ru19AXPYKkxNoiI6aG8XkAOemOfIA0AdaPwfrz2OTDfXkRMY0nzasA6o0bT2xGUGmYoBjm62xXnYUn1eVYs8a3LdT0FXzQYQnRVwoa4o4AAnR9Qe50vXcZ5ePE2Lvmi4hq8u4ZCAGf72NW61NM9qRdxZOeDHkGPlN5PG0tfAN3WcvDsLnXE2VwnkTSdNvDItJbVA6MBoYlR2XQlEQ05IXRtQLNgwkzwudhHcAXm1z6OVC9IqKj5mp2Tu3jVa4zB+pPzZ74eQxYRK6Y0xwRnn2RP2F3LmZihuYAAQJ+7ui9zCo9ZSqP8d+EvNdJRDs/gkkgoYWeCcGw+jJF7j2jyRgLFyYwlWXArRPL57+F3V1bV39LgBSk6+VrAR07B5iYbA+ft9Dn7ZdDgo8TESrj6r2Rx51lDl4lbPhfYUantsXaJ+CCF5vaGg0BXQaiJtns0WAzCVFr52PvqX5lk5rWo+lubPrcyR3CTX9+l+WmQqWV8L0qSmQHcwGRGyWhOD+hjoGowzW2/u0kLfJKYM274KWTEqCUua3vPRl1s2upTpRbJGGDTCROoXLtp+n1GUtRn6x2OiXCwFBIDFhJdPYMr2Z9RD9hjV8jz8F/mUBJQbcqXi6q3i4KbQOVQKohD/UHV2gm5d3uXJgOuyPii8KoLnm2vnTKDM9i/LD21D/xH83X8i816w8TlBAKn1CteCtqfYhPElwgx5hBgG2SW8NrvRx7uNtj5a2QzgHkz+Iu66FFsdhZt17zDku+ksPBPCvFBaHBmPgOnQhnHh/fLPcwZ2hWh5f98FBCY1qvU7cZXPgbRsFUGuwyqSXFqBMV9EHS6GES4bgKGrF2ws1L+lUj2beQ1vF/J1dOv5NHOZb8ixlbNsn9Ko6HrexmVfb4iepUNEAZyVFiBWV72HHOtJXh2F5Lp+mxPXuQvrVoGH8ruZfjpTZ693SeUaxFWp+L+/lbPsZt9z6Qv7a0v1fZnLcTI7eVa2EXKWUMzmbELGzxpduxDDWt1yciWm5FSmLFIP3HfCSogb2Q/2Cac6T0fl04/886qvoX0Cq6dHSYYWFggkRTT6ov0NncuAgsPG4hM3dtU/QVxWeKmVY3WCc+HF1AIYuj6KgbM4+sCFISjwm1AzJvH1SOmz9P9XPdXlvA4HBhyMZ+stqt9AWmDY5evPEl5GGprCnXjetNENoRmxeAvcCDUwew9I1r91eyHPqqqxJQoUSVzOPeEZuMsHQppXOnendy6zsx5yx9S/98kCiKg2KhoBrNCZmd30t+6yUrWoGZN6VlK+VT4FN4Vo+WcsOIJ/ZFguvZ4DhtYtTPbj4pYEFJHjPV/wDc6oOu+aZXrE8hhTkcP7mUZRRyYncbd4p7Z3FLWpukSMvcpl7eKVGtJOW6sft+/y48paVFS8PEtiBNWkDi376iLuzdWtEEIbKxv0XdvEVNdPAkf1p69Pn334YOlhwOoShfxxkVGzKVuk6XsnX/hvOT+LPBMJ5HIMFeWievFSmQaxCUcc8lW7ZHxyulJ1w9dGYJrmMwk7RYKvzKy2ao/34Vh+YUShMVmK/1rhxJ6f2GHOpsuPwFYyF1BNdxKN7hSqcdhH8hwpPH+ETux25bdYDsi+RxqT2AODr9jfAOQE7P8twG1aWuVWDLeknGIC+Hjg+AXbg+5z/k0PQkJLIgUMb4mxkCK0+OZGsrsE8G2X/um2jW5KAtABcrbZCjzTjJ+FZo+apKBqRrws2yCQMOptkWAN47uqHJBW9O2Mr6i7OItB5ZuiLtwvkoiGHfrPrVJKLQivELnqw0lWyvdPBAIgRQY/S10WlCj4uoV/J+ZBSQCvFGD5UVe5ydMKd/c5bCIVVTvkbbBLcPB7LctDtQaJZogfcNtq7epasR8tcnKFCtKVHKHxo3aeWex0iSgLTNsC4mftQIMuKBfBXpW5+2zA1DFSqKPcGjXKV1pJl2FvJd/+eiHhfBc3jGO4kElFIucfiAUKXkxJFrOoW7niyTxqpGbDeDlRanD8z91/5A7GYTxFXhg3FQh/vbOYYS6Q++MP8o+D0ih13zIgWIBPb5QInwrmhU6SuVqXzJnzNPbcw905ZwP5A/CkE4m1T9vhfRG6dhn/bQNkHR00qCXiXvUKMtOc+bMUq2DLaZCk3Tw7sccHFMQLss4M78uo+cdL5Yi16JcoJu98nOdiLByDSEmqTmtQUrdWTXs8Q+WzX/MiQPL49GQyljicQkPtwDgAJG7s6ujA40R7CYGjczeBCPJG9e1E7z3XZp0uQS2wwWkqmd5RhJV4zi46NL4SMO5OAcKS+DKeFd7W4ubNsrfE1x4esXZtgIJZjmTujRWz1Is8WgEkRMHFtmGt6LD6Ia2P4hcVJhHtCdP3sOtrxVUxwPgU9OlijRXDn07a9gVK9VyrOuyguFBbprfvoUnnNhH1VIIy8oOOQAiCO4Dn9A8OIB4USpOQ/ggzR087tgcVcg97bxTsatNYpzlJnyxECSTCNDmRetIgGi+TEFwyikd46PE45FLDAYYP8/J67d3LyKTJ5XgQHcc7ouWoDyUQaZPUDAs0GmPcw9KPKIA5196HDJfdI+op5NzmUaHxLlrIw5762+c16DZk4GSzZ3+7I4/XwM+OSXGygzA+ECvPgVt1h+aO/RIp/7KWKb5ExIzl4zP1x9tqxlewgCHM0PJDxjNfV4O9w0OmwuTg/CiXKIOBVdMIoFf0P/rlwEhML2wGH9+0mXjE10OggcNGsL8HII280cMywHqXEFrS3MOJqZS4UQ+wTq32sKnipJdxfSXpAg4q1ORAFci8emHa7Uj02BR9s1Dum0ybMYzGMRmlvJwuPTw3ZEYAkbieDPOG4z+6wLPbJg80+0BOmYhTb5eFDO3qUZMs/M7FoTUAp7HmmjWjJHS1p8xeH1ZDyQubrTRw2N8R+mSAwRd7Z+cAzeYLnyCNLhQmlRUMkgtdZ1XMUXDZ6gJZEgBsyuIJ5154ZpwvDT4uC+7z9qS9q7X07EgIrNMJ+qyIb5YuDXbsjklYGjt5ylE4FwYUUuBjd4aEbVvqSdHm4Z+zI++gsk3fbW4wNdkmlt25tW3w1iqwVlpwU64pQJF/V2oK9rpVqr2hge2YFtgyMISuYLbKSmpjbzwyjwGKbvWPgXECtLDXCBWWAe94ec+flNgIswjYZyKOuywAVviDYnrWz/7OXpGC22402zwgK4fLI32sZAGJ3oR0q3/HZ3qTaahlr/O6TM/+gazoDDOO3xJncTxZ8LdhKttf8CSeN8fhEm1GTTYuZIHDru3FFt8v1n5XDopNydG5/8bO08mPPu3MkTCUnJGaSBbhKmuzziz56w6nvF7z/JeJPJTIbt8rW7zWk+5122J2KTvVbs3+NRwH5AVHBshunqIzddaRyvliager9xuOUREZn3w2eHk++rykif6XfbUlMqiQ/vSx6vTNS6pFc+wZF7bWVpBFo9o1c3zi4Mpt6xvJ1Ee5hWK/vMSWOhH/xKTLla5VEicC+EOo4mcUjFl5KZYvD3kN4oMYUM1mQO9FCBNgfen278l5hnKgmgSeaixB4sNVpZjTqWNPNi2IPH7aQUiBpnPYOwXF6U/BJNM1RpXfAG3EE6l8pdvRVOX/W51So5Nfj90CA39K6q8HYx/BSj6xgT4DlRNFjVdZjg/B8IP/9ceQKR2nVC4gt8iMokuU2svNrrhu99CgjQeEZfueq5tHpKOd4Yl3sQZ7IelqLF/1AE/CCKpsUtmvzRvhJDCeoIq9dZ6ZogHK7fZZ5I76e/I3bdZIB63kQLGNFKXBv4SQVFykHezxmsP+lQALAK6GnIfLYD6a402X2Y8oBAm0r7lD9HFEyx94dZlPRwr4A6ZFgSm2aGrv3apXxuK8YV12J9CB2Ji2tdIKhseNqCch/g0Iv3sFaJHEsSm8D00Zho17eSgzTFUSCHNwbPsYi6Nha69BUkGDiMyVoSWJir/i+SP76sLKug5GSaw3bv8Md9QftECIfh1fR7/fva8LGAYSs78cve0mCDQYoyIrM/taEb/zIAvA8sr7XnE31x8f4VLEWXvSy5JTZp0N8Ov9FXWKKTRoaqrV6FHgQa8H+ymn/9x8kPubnGmmWutuPfky2X0bhynd0WlSKyy7FzVdXKjE+3jvO9n65xFzLGqmL1wzQ8kTyFmmLoxGN84eYmUFTHurW3i/4AdAwgC2rw5lPaNVT+rKeMktbIOcjKSMKvGJCae/BpTYArhefzJZMStA2IxUyR87mbUwDZlWfpYi/qWDi8q3S/3SeFbQ7KQVE+rrOgmOl3vbOEKi0zixv/ti0mJ+qUCuDa3Mh9JEjq1z7d3sE/KtnlUTkVFY7oQOgp5LlfaYuMhwdfWCwKg9LbCreCJNRBt8St4mnJsqDfj4Vd3QIUrH5G+c58V+8IAjlK3J6MRRBfzZKFrLvUlubQttWGfqF6MeQDXHUml2zq77wtLD6QfkJuLnthvXbwM0bWZ4i+IZL0jXulV7E24wt04bK31KCMy9tK4M19jbWZxlY+r0aBJswKdS7fALabkOBHc1VtLafBDBo8eFCwqkFpm7hNqRFW6pI08tw5NGN6+4xj2awRtiFkihJAAdGGD8IbBPfwSapCMPsSutRx/nF40epxxqCy6ZTcsofY8z9HDiCtl+LtE0GsAroutTQd08VbZTsxV5CvbA3EzOY69bC2/zQd1C5tETX4mlWpgceUUphtdbWpgzOd8ANm45KTiRqFb8GQqDfSl9JdQ1KAgLXJ+PARPCdGzi2lKmcssdIEgs4qM5wKKFa15AL4UXJ4mLQ0TsAm3vWGtiKcZtBPOgqodVzJZoLuSK6o771zvKYwfEBo8EcABGDyyiv2/zGXJyND+njXEMUGHq2JruR8aQ0sE33QaLEAHWs5yb9pMSEuE0LlI4T70PZPuLE1sB9t00TxEFGFLxfq0320LnhHWGMJEtrhbyFIUdjlkdqRZnIhpEcyQDgk4PY06kAbpDa0XCdzYoZnSGTfGq74VEvPJ5CuiX3f2dLxHsUL1yUgRFS6Dc/D3rGoWz85dbRZP7Eb8LfrYGhocoW3oIr2ywoBDt2m7Yl8teX9uFPucrlE6paZPFmyqxW5bkg0xoMJIGx7f9vQTj96MxfdD5OJvX5LQN9n3s5Ik+Zhazmzp75Z6hypcrP4NyVXonRd+JgAZXXHaJHaYlTG8n+6g6PnIUG6NJY2MAWwP8OkgRBuVzhv41oFhrcmCIyAVDQoADcKs/KZ8b5Uk4gMUS+yETv2edASVgAJ2WcAwFeIyXf4q4/KajTpF1a0Ya/XE40Cn3rwUKHuDh3Il28hRTkJHsAqyBTmnoRqO/o0almK9HkTn6UJWKDrrDlYNxc09yDbWPvk18LZn3M7ZIC7kNcnnORDuFZShTTdUKYd0qHmMw3rUgfFyoPRNj223xzPD+pMBgRhMuJEGZoaQU5/FAHQqBWmMydeQMlh2bU7tlm5bOQOy2sPx5zL+9bq5T8lV34J1Fd7idHEsrtPgK28M9mg7kdgN8isxhJ1GK2yovWS2puOp7teItr+VE8/DBp9uwbytTm7/viLLfMGAGucWHZCTu70Nly8xopm0iu+LmEwi8Bve4UXlsFt2bPh5uV8+0Z9WvfEu82XUydgdJ7oQTzdE5XCMx8CHk7+7/VkPtKG/4BA3HUmCAI7mnJ95YZKDWk+74ZcNC2QKfDToki+rE6aiNtoPm2DwcGUvSAEqnVA0ntJsum9E8vPV8xPtIJ5xOQt8MMPURKSxrfDDUPxr2xc8XNlt0ZValOF0LyjYcqYZUJxBGf8k+DD2eYT28gg4WV695tkHI0ZtsByGY7+ftPa3F8wzH7TkEA+x1UwqbNVCCHowN9B8/LwjIKcMvTVjxQ+EwTvEH0wfs9GZrF01wUJFAQMXynaVJCKi2SnpmBs6sd4Xnvr2pwWxDvRQ2vl5/A8MimsEeLPvWIcE0T9EsUQLst7Pr331hAR5YQNgCs9OwInuJrNVNctRrmhmONdfkmVMggWTA0jd/fWRaNy8PNf/kT94kLIZ2etLSOohbYX/6YPDFbU1EvDX0ANDQz6pSRIfqUy4rFMNPv8mSbjkKdbuMLpryah8yiPfNIPRzheo7ASdleDxW6gjmQqjay3NlXluFaHK02b8NY7FiVnPZ7PMvkUIsdB+XfJYdZPDGnFYXDyyMhTsUzmh14PFu4xM1+Li3+15y8lgd1HiqS33+2nMHtyjTvsp7FCSd1OE1H+JaYBkeHV/KhaztvaxMq6AUrt0IiKfQf3O80w6ml0e4U8b00fQejgAYqfuHt09fwLLSb+jksf32tDv9tdF/Cr5UD+A7q1PIOh6B9d95JRo61CvgtoTHSmAMEdraMMEJKVR0/DeBDH4CGP1HXtwdSAPbttxKX1u3TDXmPc3vVJF2g7rB4QrfS0j4BjrvYVfQtseXC9mHzYHdqo/tiFYAvqoHwoNK5lEANFTMsaoxRXyfUhuAkcBw+Z1qwcLxdfYo+hjBC/r8E/dj/rL8iUZFXWALucWTPRCCOaTZfXZkjozE+KGQaLF6Ct8gx+ZH3e+NIu9sFyMn5OKNuNuGbg6Jv8F6Q9PQ84hfX8pVLeHOOg9mQofdJM/Pj5NHaONY9d1VchYcL+YtR1Gw5ViMnswGk8ZqoMAsM2CBgY5b3h7RBS/XKXpDG3I4BzDJ0JrrrtbnXRGcM7IKMTaGa62f24q7PIPNB6pj0fMs66EqPTdzrZ/yrDWxSMUcg6PND9BB6FaTvjtHKXocjr6BXlUn09j7usa3Awe7jLmrAvCQ0NR9K370Pv+ro8DBkX5x/qgfyAKuuRQra58YIxBBgsvQuBzkvY6cLUZHsVjGeU8iN9woVSyenywQ1T3YLxqAVMs3RBU9r4LJHjAX1NOvO0gZ1qSH3JuzPPXsAT8ZRascUJW4XOj8o/goOa0H+9NS+TVpcPF+GeYWo3F9KKZ1Vf3WpwMnKhSB/NMzaxrtmQ1JUiPNAPxhQAeBte06KnAwXdTlAUdtRu7OlvnQEuMlWTCctGdOxH8O1REIkRauLVskGEaUTB5UR8s418UfY03B6NCv5boDFyfG/ZQkiVQ9hbMmBJjlxh2sdhIVt2RQgs5Yw+
Variant 3
DifficultyLevel
547
Question
Ringo has a bag of gold and silver coins.
Ringo picks one coin from the bag.
Which of the following could be the probability that the coin he picks is silver?
Worked Solution
Any probability must be between 0 and 1.
∴ Only possibility is 317
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ringo has a bag of gold and silver coins.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/07/coin-bag-min.svg 150 indent3 vpad
Ringo picks one coin from the bag.
Which of the following could be the probability that the coin he picks is silver? |
workedSolution | Any probability must be between 0 and 1.
$\therefore$ Only possibility is {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1//+/CLoF/DY5b0jQZfFteu73HaX+chDc3evLLn7EKLgImsswq11KPuEvrKZn+k0YR1InOuiQRFi5NYtebOGNZdsdep/r1Wz7zsM6RmQkAqL/KV1GNAP5Yugr51CPqhrT5L+Fh/9JNZLKlj1VAs7HisL/DOWxNXl1J+2BWc/bgBqg6OvkZsJEUwMk513CgVBuQ8OCRuu2ZsiGoFtHL3FPN2Q5zpKzX7dD0FJqrOmEBG0GCS+eE3285Dc/RXlzk7xFnGr348rqw7vwPnVPC4shFMXs3mpn9tbcC0TMBQYD0aQrrlBt8rm6IMwVb0MUJmiDFWhGKjkxsCZkhQEyJCaxgb+Qt7CBavB1bWnX5cUCXJYCGcmsJYIL8/9B90YO67HMn+dRMymjLqTHXu8SXC0nS8GeQbnPr5YqJnG0nJK5qYWD6dy92GaB3F0OCq/0XOKRl3/2eNN1/0Ce26riX8g/xxr9+7Dgyt1bJEMPD7f4SOke4cOW8Up+Y88PjKqhcrxhvy/CxO1dDB2Q5ma6N7E2twYI2Y3qk9MCKA0n8UXX6EKmfCzXHawB5FfdKysWsyzzE9r97KY4fAlysf7gwQOoiOXlYl8ppynipnSb/dBbpoiyO5ewyCAmhWOI3P5r0hEmqgbJP/ozRD7pqzWINIBljZUkgvusHwuqqhIwKBZJVQGnQUTSvfF96lDRLbRkP/QQbqjeB0Y7YYmagVAHTtTriYZ/0ppQpYU6ikYjStObk0bpbz4gp2GbiT4gAb2IjYdnMx0hPkUoAeTx9jZmiSIBWXm3a8a3EkUAoJ/+hTQ68dueKxtzc12ZR3+RtVf4AnguAVpgU1w5mU/NBV83EG7igwNVHcYDqS06k1WzK+3HTFPe5qK0XZR3981H88OvksEmWOd5niatU4qcDfsNbwebT1FRdUZUY+0A5DeLYu+NG0k9Onr/04R39JdI1SHlfdEPtmQulVvWhp3Z0UcO2lxshhWCSII0lEr/d6U4mI45r7kMDEDAnT9MqMzibs9HGtWts1X9OsW4AzNgUZ/pTypSWPWpC159R7yIxOC4MBoixCmHOAWFjbm8aERLAb5gyQzEMo6AjwZVvjpL15qFj6dnIu+qS+yZxU70qAG2OnDo6ugbOVxZ+j3ggBZKur56QptC8zD04eBuo3IV9h7eCkaKzeR5HDWEUXtSCdh1pvqI78H9MErVXDIAKqKyjzEMCxwZs/wFYpbLQB2AnrLoy95BJYhUYodYzdYtcFFRbRtY6I6pDOaEEknbDip9YvuEgBCIHXlMq4HXPuXN5PQJJ8zEiVlhIvpdNxPhpB59DE0ZlP67ttYe1xyO9STofVtUNKIq9aq/r6KLFWs+4+iC40aK9kYDZnPFHMktGPTt/xpoDRxAeBsgpmlEdBhoDs+I4Ue1HeEWeN6I49awCEOSPsgNazv17X110ClqpPBd0CtkxdsK4nkML8xukjYT/Mzt+rsXyfi2zRywEWdtlnnubIVXAL4bIGRPeEcXBc/0sT+89EWFWZKA6wU2UU5xuKv2dqe83u1tQnciOPbzOkHJ/ztJYCZygSuhJ7zzTsHUMYvWqXbFDUWq6jFCQv1O3W7nABuoozDCzhRMjDv4EtDO2jm36xHqOw6SMfwgo44f4w986T5bBWHSXRjNjX4T4+TStr/tyFoCzZyUs7f6tLz3PZUGRiNrOqPA0KAp6IZ+OiWsskgGbj/SOcq15hBPLdq8UPUIXx6amqSZj+pufzGqMCocL5NtrcRyMcng+M7M2/X2PSGENTI4dNPs5AsL7Ba/a60MuafMhT/7/SHYP0Cj3USABtnLIIJ8UeLAtpEGBRsF8pNiC4d/yQ9j7o7d3EylVjD3A0smhuLR8hEL8wtNdJKs5P4aerXza/BkGbREZxV2r8a1RMexoFoszhH4SudR7bWYIgmvmhWduEE2Deb2LhiSHk9AJ7h7QPFS+a5wwFXBiSgcIMRjVsIESF5IDoJ8oD8QAWuIKbhOhWhAwPow1vujW8jFQLrSWD/AZWOhf7PcQp5GNbjGAtlVqJFaOBKG4k4v8pGHwSOjKdWF9Y9dD45w/8SbT1+cxrP2/E7vE+Jhc5IRC7e4AyqPJcOsNAcfwmkeQd2H33/g0fLM8yoLM6MmW4qe43E8AeLzA8x0WwpQpnl4Z1aUFtLKdok9/uiVcpfa7ZR48tuw7DwE1HTw1/AC8Gf7nLjd0ERswnjNDdAy3ig8y3oUZa1DmRMAjMYLl6AbtcZBslwm8TAPvcNs0BVQYoZTAjfQ4V1SAY1FkC9tuJ89cyjmEsa2i8p1Llr6oxmGQuwXbOU9Zm6TN6bOcYwr2L39Q8obpMLfG6pr87eweDR5XcT2sYv2+iZQGOqcFvuDoleLXEp3F2RH8FSHVt7qYGRJTERk7Mgz/E2VT7J6dIIJTxRZY2YBbTKhUcvMwP+UG12u2lGzFcoIHKU3fqBydr9dmNM8X57RakGvUfqkTlws6URXQGHkODnnpnfrkfpWgVlM5y6jQzPVFlXdxdWCfEV0kuOe1fl8QgUlfc2yQ9H4pCVnce8zxG17hbFpPg9R4zhtiSVCL9zUXGyMOVW2rtLyAVKSc1qpLs4slSoMiXMR1Or2o1Zb5T1ALe4upJfe67+lKl38hNdc0p66PW+FhSZdsjBD5kGGbdl1EqOLwFPI9650ntz2p5cdVaP+Y+0LDXOm4nj5TR3AR1Sq4JcP0XCYrg9weCRtMPNqB5nljd++wjdQ/GndkR5JTOBcHoTGkZeLnGac/MXyzozsRqbZ0xdX+kwX086LX9HFWj8rFh2/m/rA8+Ouy6J2o4z6Ykp3R0xahFwNuNxPFw2Vqwvy3dAhe+IKb2ADz66/1Ix27n/QBtnHvUnMsS38oRiiLr+uhRc1Lv/x9bBVmAnkRSHxLCjbPqFDA3PNFxGQIRNedhWuKnsmZfKa+jIN2TyQ2opZbVtlC4NUsI+BENiIUZj7RiXSiJX1gkJQv1DDDz6uBKGPXDfwAiHuiQ3Dr1evNEZ/9LS2F7ZuNMp0FUr+CwL58w3Cl8uT45ijgpgr4eBmuFhSESxGEtRyR0rAFw2H6N7JRUF+iJATOI2CVyMz6EP6OWzPvvcLcNeu6GJz28IqtwhuVJqRsDvMa9SteC+C1OMtndt7nW0mYVdu6WtF1TGc6P+fje3b94Tu81r7y5zUUttjGidIElKFs4vj2YilRB5CXMsXmOuRFvpgI7rcfI2dUW7mwkj7bpz0XUbBDWQs+VUE+vuKHRKM6Cfv665YYcx7bbzXf4o6+WfWVyqdaqaY8hfkIBE/41gfRnVSNwVNAGSVchg2MPKOVzSv62wxS4nv1TxggIEHck05vI0FR+cNv8m+ieKgkY1JAdl+eedzWCz44fSpvO2v5QOmYEzT5lHDkzyzcJgwFJe0esjdivsJPTbWgEV7lAQ197PFA299Kn+rIOr17cDB5gWYGbzyfEVUVvb+e7DHdy9R/u5Nfr9QlyDklVisWgOP+AtBchiJ9qXr5k0XRewKfUjRHMjMrWnGaIFQpHafQ1PXzsB/JK8mZv2X4NJV2KbLYgzJWWrKuLxVUvuTgbxbD99qPMnNHAMwyV5Twpj29fndvjXFdVsoiyCaIisV5SVg1cOddWNLkdKptIKuNaHmhu2vcrPEXV964GKf7M+aM9HvBqdSsd0RtkPWrMZaEDKaDmGxwpPzkHKMuFWXjyb65UvdFeGXq7Gv3IIwxFqDIg7ISfC+qxGnylItYZhkqp6slxnc9VMgz/4my/ogTCYlFFN+YyzYbm2T+K2Z5GzlttyZve36r7AwqQVE9RS1PCWcA6dAhT5tR0SIay1RF+biPQyyRUY/mYEsjsmhGgpvmMI6buyEERqHxcVWzq88KIDSXOWH8vpsyAfH0ijxqBiyfMko0XmoAhI/dw2L/slGEICfmwEm3aLHg1HgfGeGhIgtPX43VkvGSE4+NlGC7lmL+LA9AYTQy9Y8EKXpRoce/biTPi0x3z7Si9SeSAcggXaRAfvD0PsbZMWoCCP0f8RcMf6n7DJjSGu7BYVX7QxcyjW5eOcv7H+D3yk1Vh16JPFm01nw+9yBnoUBNerxu+DN2jx1vfAFEbJE0xjXTEeTUno+oPZ147s3h0XKcXA3coQ1b0YXrcwuFk339Yhqc4MGz5rm83NaEh25V+lH3ILBdlsmsylasEHBQObFfLNvLc85nYY8PPnAdIG6Ohvn7PcBTz7M2q6yDoR8OxnKZjfZYffPb5uuE3ds6hg8rKnyqbgGk42Usr5Z/ET4ncCqGGb6hvTInlbsJ3SjN31ETZjSIWeTSydPEus/xuO0MA4zu2hBipuDx+/8AFF79Cpe+zMDhpWaN5Hy4Vy2yB5RsvW064xhvqw2eKsDBPLiSu0Ap2CJsEYyrnddX4Z/tkGwYuhI6CjFsMs++Hy9LBqzNs5cB3jlCdzmaEb90166aCsfQqvvgIcHIneChVImvuwMbZltoi6Lpp5VfeXK8DUcvss+QW5JJ5oAhfCRAu5UrauEfsdnFUg+bFjEaKk/7a5jZHxBr/AecXG3Dbvj5qS8V0LrMNrbge1IELR8o87sIdZV+PGHEUnoyojui3BQwgpsEk5iWJHpGMTLJcPXw0BS434XQg3h97/OqT7kfotazmzA+NwwvHCVkaUOCSkVtYjbNskRFZlSP46TwO4hzgB+8Zki9CnW9WfT3j2n8L5prgTW6DvSstGMLqrRsbb/S5MFJa/PY9SpgLflY1if7Dk7YLXbmoDrwL6H082w+seqIwABo9b2nLy6InxeLXnoDcaSmqCAZrsFcgodVHpZ7H/m1U1uNHWlCIDfEnLLda7+lw/Wr8jbm1S1ftxOUFoeJm28rH+HL5PF1HP5HKgp53SszwIPWp/OsddITigUZtOAxw4LoKPWdBMdB7jSuk/eIahZgK+LlQB+hOup63JEj7WngW2c86BsopIaGpiMO9IgOH5SDp3KqZ2ytjzR7ghjV66RgXFX6O3x8KMDZc3Q0yus42f8WQB0hvuJmxFfSH4Ny1a1ND+1UPztiDhtlFSM2F76f/goUSYJtGJ0EH1wVCjh57wd0XKSDUjfs8l0z7ao2ODrklXzpcK6cPfzzGoPBWiPLDTw5eR0vEIhf1zhgfVJbsIe+NxIx7oamWxv19om09iuebK1e4pe7q0fIXM29lJEcXUd5Tan2jTGgZ880QE8VqyeGIZrkL7++GVefszbNadiwrdL76n2047lLlAOq+ZCQFtcRPXXR6nbycrkGCNuNagWuqvN69Qi41LIPpKmIyY8yNx6lzOfhYgvzNSsflHJ8e+OJbcfUa7UPJRjbTGm3kJ2aZyc3EI2H1xG8Ol38btx7wvXzIYkNO2EkkJypDPxEFagKKYSQ8OFqZxJKRo/Vjh9L3XF+97pLrb03uQlvtjwYxkLcEa4bXiipo4oRoOCCEm+lDbEMPLM/5GUPACZ25ZTrHHpPQrdeJqp7KrGWB2v9XyO+aC7+ojcI3AQicCd5rWcQtIhQrk9fc3rrsyrzAps42gjDZB1/Zk24p7Mz8/Zuojw7LnP0MK5hZ818RrJErHVURKV6edtBn/GCgAzB3BrP7qARCWytK7k4IJkatAteQxwR03K8/ZT+ri8768c5r4qsLfPKHzR5fOP5tYp0isvATv3Luan0LUkv2k/uzA0f8cBhVWIaOa7/vRQxQtvyVObbBECxGNBLGDDsD74VmHh7YOrIChbBzt3FeD3xC8OKemxTbsIKSD90AHDmZcijybx1GMXYluVUFxM1ahMlCNa2hqeGM5UUl9Ba+cJYe+pidLloUsBfCL8vH9h9ZLP/5KqMfowSFVQU+LJ9poJXR8ddQrLNmQrs9MvbzS665K5kNxyhMJfCIUgCfG26Z4qMwa4d90lYJjIML+QPs+4iXY4uigQ90Q0SaOMjixJlyi3n2PsuG8jFXejCOWMOBkqOjfI+fCTpQyBcZuQHmEZHRH77/URUb4ZiuHkBmV72D8W2wGX2dI2hvxo7jzXnM2I2Ro2BikiqYwSJb6yAKxVd2O16tSgNNZRmONisIClsNN4F5eUMirMFogLVUf62SBS9kkMT45M6ZG4CXy7FZUUwJSeoS0GCeqKPpWUPVAHmcEdxtM24tKfjci2ax6Y8rs12PCT+Lg/DR9+Vi7O7Q5lBo0Y9pNVoKBX0BTICof4XiXsul1fYT6SSPNJ04GhDTN+Rcq4REfLGQtN/+ZEGY016WCV62eW6vbMf4wTPdxEp92NYGB/FM9XnOCg5mrZ8E5wXEYV6Jqzg0ma9OWvIlyCWk1X6kemZF8KxNMX3schC43az7defc8odADTBXVUlBSZBc5ljFK0R/CR0AiAktc4hUtvq60mnwkTrugWbk+8okDSqB8Nq0eguW7Q91NirTO0QWdUHyC2GyBpo6svBlk1iNH3Kp4yvQ3sBNJQIoD0npqjPb3LlLm0P4cZwsOIhgPGbFB8toueRx8LcWt6NZLbVU5P2bPof0Vn/GGEnVmbxiad8Y1P3bq49ghqFRZUq6cDPDh0oXW7tZD58wEy1G7WQ0dHddP5Wk1L6KT6L44VPHQcfDX4h/c7F/EWAALJYWdF1KfrUbhVS8lDx1Kxgnsbqnw2MTPhW20gY7OycGm8glRoPzUnRYXbDPstaNOPKFJ+fMXEKUXo8fQ2AEK8Z12gCs5FnxfeP8axNJE8AqhHX6hSHJKXLiK9pwEJp5vP879qIQGOGVjil8B506RDYHpbAYlEcffNwPgEFxTSfREu3IEn/892aqgd5r+UcSaKEn+R0Mx1EQSoZbTt3S5eVcRYL9OopfUBhpx+pwAz7ir/BcSiHfL+/8a8G0ToHPQYA8SvJY5bjOZSAMT5Hj5dOzREHg4H7KNXYt4ewzpo5cw0c7bAyCJhJAKMIKO4srSpqs0J3nRnwtGys4i0Vc3VZK9vLfDzsNFL7xqKnWkIg/26QHni9EaZ4nU6N26BfMSbr5rq2HNBM+353SWXq3SxwdVqG2VM3yUazytCzaBm+jPh/l/x35+6Pz+kARyFLeP4V7g+203Cudi+4vo26JBPuwB3CjOZ4PRFm2vSjjj8mZ3ZZp7TJn/OWgYifE90z097feiezGpJWuGrmDqYTFFuIu0zSvGKo/Wb7LMjKwizIpqGscKk0f2Ip3m+0Ppjk+HMA+bWJFr31/fUAo8dCVoGEL9Uc9tLi/X8EJTH7x7CipGINkEi8g9/edkTSPZ1/h77sOG6EXbDh1t1HVv2JyTOuMLEVyAtbBAmclEima3wEiLghgOyvsGDLYIdRkHmSQS7nJW5QCV+s0u2A3G4+et0ydO5UEfc3/O2IGXPwWFTUXeeL9Ho3quY/aOCMhz8lLnAbPVTBr/VtxwT1geu2BxqF/UQQqg43l73VspOxE8nKdmIlrE5Uz13gDO40tgoh3dVvMMwNPCofbxEHqaIkhCFTcmErjRzCXddaq1DPrWARPESoVzLh/WSKLVRJqlzRf3iYlLrivkg5f
Variant 4
DifficultyLevel
545
Question
Kuki has a box full of balls.
The balls are red, purple and white.
Kuki closes her eyes and picks one ball from the box.
Which of the following could be the probability that Kuki picked a purple ball?
Worked Solution
Any probability must be between 0 and 1.
∴ Only possibility is 97
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Kuki has a box full of balls.
The balls are red, purple and white.
Kuki closes her eyes and picks one ball from the box.
Which of the following could be the probability that Kuki picked a purple ball? |
workedSolution | Any probability must be between 0 and 1.
$\therefore$ Only possibility is {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX19Mloa8OvsBLOHl6RenNvLzFn8/WJWZCFE/JEzjRUawgE5EmoWTcYD0TiM2m6Zds5nGccb1Jk5zXOaOOv2yDImI31UvilhT80x12Z9FFUP5IxFC1QJPu9N6xwPF2KZEJSPZ4IkIToqbRf5G82FdnGuLsyRjgop9zvGbF2mKlMw8760xnIrVrdgZ3rRrxXFtgjAL3Kzh77Sz8gDK4mDMSManCicz4OAd5p0xdYbESGRGQiy7lE+upiFSlvxVmXFT0maYA7lElovFapRttNAsbHw867MuTCiQ/zfQqi0Fghdqykpahx5JlnLA/lUBGm1wkVr/xIQci2tlCevO/hjjpg6wL8ctrxc114t7nEbFj98e6TjZUCSeCwVY6i2HUmv0sTdFMzUs6t9KCa/VpanHVcZ8weWzlmzR3dhM50A+V0w7MEkyAhX+lnmw7WDerQKBOaKaQLkdn29uaYhVQO4UG/u2BNKOiokkvGnmf1QpAZgPiPgTPbQ/ix/Z6Hy1TKYSSnzX9txMTH4mJFM3Z19MKwIDhlc3nFu9FABB7gS/nry+qLjo5Tfr2mSGn9vBQFcoVwIc3ddDEc4pwcx+TWaIwZzZBy7sUixemO10lNez2ZILVZ5cmD9blZ+oU1SCgA9Zb4s7MA5nHvqpBfdSlCvZZYN1ii5fmO1xeSZ8BjvvKknkRRDf1CCakYL2QsBHYtGmXnTZ5Oo92NAHlUYjTbbrSVcIXH8VoGaEfsA39SMVZ61uHXI72+rsz5Xg24mGsUrxfzedNyY2aihi6Snr+DzZMVbwQWQyED4UGvXmLM2KgqUTyu2bf9xxc3h1KmFLsVX7dRAPBFC2uIV813Cu+RxZvJU8+GmtIc1XeQgGP8nbTqvTkBG4TKO3uiijr76v8T6Q1yb3Rf2iV95de1q6aWN3FgVYoZuTSQKLZVvJGZSxd5IXWB0CnuXrOBpQGkeYEHIAuFN24R2gEBV9ei7/9A52yK/OajpucuVYbq+lZTfv7ry958vbGGkp9lJp2k2r1oLSgC0vUkCjUJ5p+ZNsKSGb/LSZRRbY9bURxd7eHAYcA7s5E+l1zjznHYUhGGIhOBvNZT4KJiArpsuuuXFFW2d4jIt7ydtj89B1IiqXdGpDvQLpekUVQyFXK22D+JBeTlQUNcbmMKvour1zyduPNnoSofBmHtFAmkqjL/44izw/WYgsu7YBM3gLFnPyGDygcswFKYSVbY5yvjQi9pDj6g2Dz0oNXVCHNs8jHJo1tRmWUVTXXp1ab1F/CUlTSTNSyOLJvo3tuC0+6SlIEL33iJHHZjflc7JKVWWxT1ftQVqv6Gf3ANnEPa2oXXIvu8Kr5k5vEYBbc2q1KEv1lqsMOh6HkmGt0s460S4YHqyH2fuzcKA726X0pP2HFQy3Zqfcg5mjVbwy91V2QSqGJjDq2+AJSTY3knw1PkWYbrMVMDhaupKR4VYxedOSWqO2YGM80HZAWvMrUB0Hj+bjotADpE/cYfCAWrhzLCPqmq2NC6Ncr0BOuH9YQC4Q0+2P07/4snICk9Dlz/Q6rJFxU7InZ/Q5JLVP/ztCRzBFc2Gd1R0Y3/s6yMh+VkSvSZ1phFRvpgZzohdVRulw8cynde13G1YbwsUgEsHHUweuDyETGgJO0fq09FtKo5o0aNnEKCk7yUX+1YqMFxru2pTC651C/tLcRSuWYkzGZI9SCLfdyB/CiQT2bOL9Ynlg6mLvziiu9twdnWMrG80RLq31wr/nGlR2bqPIXx5hrB2VyQlDiW0jplqVoGc8zDskwe/ZzSjhQMyxTkfD9x9NVXSbooimdOMuGYuY9dh12CHGv61PVpjWwwCj1f1B6GZePzG8ZgwJc7xTC/kIPqgFaAjxesJUhRjAzfFd9W4AKhOoULau+5JlONGGrUO4XYvaHgtNmsFLpxAnHL4NZQ8cj93m5NnnO2EktWYekUDaNOzQJ7IyiFhtjHb8xUI1Ky2HOaTNSUxHpjKQJjLJ7836I/hZVqyDygKF5eY80PSFQ62BZy+l4DAwX3AY/KwpCSYvMMi7iupT2vLOgLaUQLs+c3La4ZB+KjI+8eyIUTLm8cSe0ltevDNRY4iv61cU4ogAX/2qrZCoQ/1zE7VC3DFIobMccykQCHgKeS0eGZNtsEJfdgVhR1MeR9rMOnuLHQVdaLJJG4y/nYF3ixd+ZwOfMEsjUDwnvP7UlnRi1d1i/tNhkjwcWh521KBLpmUjN1xsSIHqKAv/5A1bL4AzJM9vGiskCHqtZmYDMuTnrH6tYdxBb//8WgEqfeWqW5p0CVDsSdkvmpsbydvnZKQv/p73waBfz5AfpoXHlZySRFGVioXkvE+YrZZQJYkhtLJAKhTI27yy1J9KFWCgVJfDF2a2Zt4HcntWtSfRjF8n32u4rzu2LSAtywyUuurseKfbQ+Ed1bQRuaMgQ8m0medKGy/pksEInlCipqnmI5cOAyxeByocW0PJ1sn2AOqxL3YG7958dzR5mKuTAWOuap0S4fRDiWhRscSvA8O73sRMdJwE7smd6LeJENqAvh8w49BJSGYDlE4z4YeR0S+iTXs4F3S7EFML601S1MuAGC9rq+/k4h8Aj5ZGvSFr65/j7BQO0RshEmwgU+RMym5nAsphxQ+POzOoqpNZXagtm4p3iYyEG8ERy7u/bo8Q0cKjNtJXorgxFZz/3hC8597zMlySZccSD3OFTHrqSLkDCNGOImLd2eJ92RcTNNlraBmyPUu811W9tZbWKIixxEvip/NSxaUDtQshlLQd3nAr7X9iyltO+CqiIMnfimITntMw5SwMD9gUPS3Rzw4E5vAq5ome+VgKjV7UUFzoP40I1eQkwrhF90qTgr0Pvhpdxshz+cvSQnjxRFZ0jTXlkmmvIJ7hpLzJ4/ZyHKVkqbOeI2pKsQs4ldqs5PRhsIDb+0ArSmJ5lwW8fPJsnhiib6kwR3NymP/ncxhCMOtuoDHiK8wiB4f+jyrNiteM+hLEPdSR5lNskHmeIT9Yoj+6HivCjjlTNMxxMxEIFe4nvZQeMFpzmheW5tnaoQYjGLemc/B4pnOrB8TEaa0mzOzPgUKocol3ZZs5KloSGgbnSp0U2WXPRRxmPo3aV4R9iiL7KeowCf0MjuYFEzHHwa+5Dz7k8MvMGtVh1rGPEGOwqBb9uqjZHs6BzTkzuhB2fzFFcXRPhdm4PgRvNs81WFfIvbWv1F/dGoDGMqu/sKxWWh8XwnN46ikvPPuCH+u6IDMGGh/1kwVx98Mm5LKSut8EtKSH/G+z7+uf39s5YKF7C0kfBvcTrhYVTemlfeS2U4M4BFyJ5nmRAchgEb14E5Vs4eN96XQsS1SKt+6lvxdGkAyCghUeF8wfkpzASsVovpDaHUxPGay1KK4bjAVbs6eawFYaAcYYtznz1zqWBmxTaz5mymIHi4ePnkpWm/im8BYbzL/nXINBgSjxC8l7r4ZpbAk6RkbYYwG18pWWDRART9kFQUEIgdnBmfKzM2uFVh1OtHCetNai/q71oaBlJFGvpVgEFokY57OaY8/V1Z2Qd5+QqnsfBdHY/Q8fQwbaUNf5BLLyWzqrkHaJsHwrkSEIbu7S0jtpP4h8P7yCLmGD/sirI57fkDsXxWLoS6Cv4fGJmbRNDv6Lq0C1N9fg73oJ8tCCeOlt9H5SvE/CmODhrX0cuayILBNUssgsdtLJrqDfXsmOD8GmStJ29DKS8vsqQ1lV5D2Gz74vtkdOa0oO7gXG9tNYwvBialtVURKsgu1aG5t5+6+ui5sCGbDTvYXY/FlJ9qUHTANBMbsb4doND/+7tggac1hj/Kqips8Lc8zXA5W7nQzPpUAMs250Ui34SNq8yXoIaHKY5SWaB9ixv8Ytsl4xxbA2Q8rh0dlIyawmmN/bXPgdREsd/dW+BI5NTYTO4g4/XX/hFsmHBe0fO79OJKthfa7Maw2dRiHXBp11MB0QGzRDpY8f5KwOeYRN8fJeQcXMpmbYelScUMMdy2kVRmS66rsvbDHTWHAnd4tSBfkpRC9pYD1hvKngmhNf94Pt9hx+PdIV++CXl6DK69dXwwDglZY2T1UmHDFaIE46060TB1y8fum+pW+TMtAapFQRMHirHUgu1vGeCOziCF/7Amh3bqvjxkB+/5HaAuozODls1NfCnaeT/kDRyFH2jiUCDwgdPEuDZz1scIxYK/GMAK1nl+wsdGsiyM6mrmHPx9mkyxAywYx0K5/PpRxudNtNdvj/0Gdfv1G16d5OHSMDWLrypnGfsGu3g9eFLigAWGxPqHckeqZ85rQZZnLMpYazWNnPiF6JbEOoUrOUu/YJMvP0ftsWaq4pXrX5MLnLc+wij7E02laT6HIjIaAACvJWsb3AFQqPptYw3vMHox53mU4zVa98/nL+y5oA6gUFPQd+NOAGu/bzlsJNiQzOF7p3Fjq4enSWY3ajeu9S8d70Owt+t/hZ1B2LEi2KqvzIkVZY49gnoQK23khAp1cgw+uaRc8xThOz6vv4de3X/ukD0dn6WhvR3sJVjzC/Eww6kOPiF+BFcXJG+oRCyKPJeom574eZ7t2JBGqNERT+rehxg5L7CsAdQvyJpWb/1hQbTOQZdc3kYcp6xKF2Y/eKWSpL3S6Li1jlVLHmc6dtyislLoZDOCDMXYFJCuVkTg7soGFsw1spsHbjiyusVEewragd/2uh6p3iazdM3RyV/gcK5I/KqyaXgLbyAHv3s0RmVUNF16bKUCge+twQOcYw4zSzUDHWseOIjdt0R2b/bAnpE1GfRtU5vCh8IsDJT03UcVh7F3Z7fTYGMA2cbKecKxjc8zKXuDZt1Ev09GbHXK/mPQDrjAKKUup/q/RvJ+9sdHsvikvNfH2f0veuHJTpnRe0nu7dDiIqskCgvkBVbbT1i1FNfucUM5C/cJ7JyFehEPsrpj9+xlrvAL62SBPLOC1/+gWMEf4zNObvEXAGIeue3pdK6OCdVUbhc3jy5zOvvPQO2O2uYyHef2wYPwslhHOg+GYLNXR7dxt15bvTwrSm/xXk39HMjO9JmkqsrQNNJHdKf4C1Cps7oA1HccUWwjLKxS0NGnkfVf1t8Fgvut5tm3OYOYiX07x0/4z833Cad7GGhRT99JJIGyY70/Twygy8dMkO1JSAWtdd1YlnxWKkn/dXuWDT4frgDXv/q8CuY1dhLN5vYLqOJlo5JELPH+4OMkgEd7JfaF8KwwNevPhXyJaW4pAKZf08+4rAZ9DkK4pX3hPnzXCrwtWMf5XSklDNwIEFT+0tEZGlsa2F3d+Iww0W9wU1XvWLQ3DmAzAsdb0sd9q/XeeuCM00qM78F1VMTAussXeNN8g08xrIUzO/8Jtu0iuS4g9TlOCykk+SmhA9GzMoEuCLkKtggUnKdd6i84mCfTt8gABC6BAu+b3oc7x5NSCrH8UPmIENH84daar1GZq3QyM49LAZTo89DiIABTeTJzbXDqbHhNPFnYL1pOCemFdC/L6r5RX17e1PbF5qVuh/hj+Do3PixCbeAXekwDMis/Oi1N2PJQHsU9UFeQJAcDD4V36SNawNdKvWsTXQqyBNL3E8bE+Ld4opy8oZSvcaIOz5QpAfmfJkFs9gK0uUrrmm9omGXbe/250Q/qPRVqhk9GwAe2afC5lQarwJuoEtazGZB8h+RHcPdfmSJaIuX9VHR4M939MS3nfVFGqixvMmEVVvQ9jBdwBbfgYDGkP7/SUTwV6LywRNh5YMfcV4f/oHdHnKADVJLWYmSAASkrHRlkRuqoVFmoiPdc72IIG3ahL+1jS4foILMQGYIYeblgKxXKc+n0piOfcdR8pIQ1TcY+Q5XTOh6UgOpDm9O7JSXhakHoiRMZvx27dIP52PN9Y98HxrjgCk6f8Hm92x96pcHtIwc8see8K7swM5ntaw9hvZ9OGcA1TfswyQ8adJNh1+M2BFlBvkfbVG8fUhIgfblLPviPw89hy4PkOqYBd5Jl81VsT4izotJ2wZv5AYivdf5TcL/eRUZPKPOQpyz9An2clf2UnvOHQow+djeGWDWWedf2dbqBplxLKxg+ybHCRisHPPok/sheV6RtTf/xLPQdNyQWMtCO7XDcYnHe7BDvEzGOZB1ISRwULSoCiWhAV5nFmsaGK7l0DlN2iB88LHz8vyYW7LCwakAEyt/jEBubjFegHvXPdVUHD4bMlt02sXH7zb+BYoBIX4hJTR5Fbfne/IxnUIU7MYnKiibwAYyJqYTxTitIVBLlYnIsoUcrUyK8qmIVis3hM9vuo/kVe/5Hr2nmrCcBFlSKEHVucuuEKjIOQOPwX75SHOyADL2xoEIr08zVfc4omo6QvtY2CKHRAvSgKQ0kqfht62LqFRM+y2HAoURwUT/OlNN46laTJTk3O/riIrXKKrtpYAvOokwUpHcYYedKxVISZYlr79jaZ8eyMy+MFwKoKfJMRbulv8fkhIcqYIZmfKrDRYJtkQMi3I5sF25LgkalMbJnMscHVU/FIXNZ/WQ+W/aFxgxPDZGsK653la9e1cvpcUK5kMD0ozMp90IbCti6+DD6wWpRUQF6Ko3rU02er7ybLDAjH6ae2gXUdhpmTibVLF9lxyTp4ZIJz/gqKFjCB+XOGsdEQekRL9hdubSAQ7rAav3ToQex7alGX2oC57AYTOH2Nv+1CaN2o6YByaeTNCreNYTOFS5n2VRDtbPPm4uIgnMg2d3orDrs7RB039I5HiQN7DV88wa7Jo05JuQDxz4/pzKbmT1dNYQ3MySOyNjhQft+Dmt5kmlVaY4fwlBs0ML3nKIGw5lEb46sqlQ2TnyMVRcIAH7ZkS9mGbCSs6NHBLOUuvWPAn8aYhzDtfIURKEK6PyPXAydg0JG/1sbIJO0B+8ffWTCdGUyKlokaHRt6nJNtjWtiBF+Eyp9sbjYl0UGQalXGam2D+XoGC2VPVVBvW/zrGeShxyA/ZyOVDGYF8Sz7MDBZZ4/6hOdrwMcFCHDNMfoLBYXbmG6ExaLY13d+5lOdwAoFX3cDcNu428cyp6NgfeUzzeZ/sd7gGmeY5DCMs66V5yq1Vu3DcOELGo5+Tf6PX+C6BeqzwSDR/3ti+0RQL47qbHIogan8/mCc1GmHXN02N/f6owfuHsWmFOxy33uBZeBd0Bk8CIyaz78uXXtWH6QWL6qACDCC2bFPg+eGULXnG3qYG18ww34lpSOpCN0s5OM7DZ+pzEhSMOa/7BTOvM8wlboK93krq7QKyyCJThIjv0hJ2deq4I3n8fwb+VttCqbEgLjuPDVqmXfZjq7qDZWoskuvFGj+KsTKWmCdDF7kSQIeinXzWLvUAA9J68Jxu7peJXDXN+p74Uuaq9giXuMHmcmaDIxB98EMoy5WuT8GYcIXsemzQRh6xQ7UzjVmpESjXhWrpil25Z/+2/HfN22L/MAqr8n05U9mPsdYKlX7VvWqZZKxbstUJJKqC7cFcJ/l9QSnwZ2IPN5RJ5unbgr+sD4lLmcEbxDKZ/9mr9VJsT3pLO+nXaHExuKaHtZHXUfsE1xTda2mG2qfCN24Y53hDRqtqLpYsoyTW7z3jbaHAwZC+D2V/0KUbe+rOVAZIvz2PPKHjmRyl2AryLpyKEuNuHFqrf2DxPh7IjFoyWEyitdnx+brfijVrVG9L7YHZP/quakizKjMA2PSiaFB820LEXE8=
Variant 5
DifficultyLevel
542
Question
Min has a bag of table tennis balls.
The bag contains white and orange balls.
Min closes his eyes and picks one ball from the bag.
Which of the following could be the probability that Min picked a white ball?
Worked Solution
Any probability must be between 0 and 1.
∴ Only possibility is 141
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Min has a bag of table tennis balls.
The bag contains white and orange balls.
Min closes his eyes and picks one ball from the bag.
Which of the following could be the probability that Min picked a white ball? |
workedSolution | Any probability must be between 0 and 1.
$\therefore$ Only possibility is {{{correctAnswer}}} |
correctAnswer | |
Answers