Number, NAP_70055
Question
Which of the following fractions is equivalent to 5%?
Worked Solution
5% = 1005 = {{{correctAnswer}}}
U2FsdGVkX19D+fR/hexz1IIKZkQINslIvuPta4UbdbP50NEIoryYS/IJ6K83nwW1vFtj4mBDLIWuGaRZ1+OU4i5dnd0TA0bk17xQrlNi0jAU0PPiilCST2nRoosJc3O47XkzfHaxK87KiwcIY6CvNgZ2m8O9aTVYYDPY1z6WhkV/EO+P14XMzP8lhJwwD+0xAunXJL+whHnYxVDzYI1l162EjsziRB4PrmS9hNt7VIh4z5D8OuiUTdy6KH2KD/dg+N3JhsZmINAewM1dYPWmLcuB7B3MO5SvLkCPJVfTEgCj21xcxDlHaCGqbemJMFJFUR7rFA0GQHMok5wWhH1phr/EIFoqFj3oY6DeB0fby1+BRSEtjiw9Qywb4ZjhE8RGx85c2Z/15JxgqIlAjvhtB+xf+kewzFh6fTNHalpITc93zhFphOyBmTEfeYdw+/kGFodOxG+7imnZ3IX0Pi5p35J3y8ocHxaAA4wVTHjQzt8tTnAtL3Nz1FY7VErqTetSfPTAdweJ7VKzS8xzRQd6R9UtJVMh++W1fGlytw01/OR/8uNci1LFiE3Rpm5jPsc846wvMclNxeIiaekZqyJ0Jm0M81VDc0t78mWi4OVZgz7U00yqTk6cBZMK4NgPKPCjmujDzBdx7dixxX+W5ZOhIOQ+MF4ZZogX1BKaROMwdn5TyvTXmgsMQK/OkVGTCawSCN2jbPT734S6mUIGiynhLaHQ4rfb9HlQROvDVRkQUGiCxzeWyVtEILn5KmjCC+JJkxkfnSJg0TLcNA0848dt5jlCwGmIUu8r/TzUlsNRGb2h+o4U9QfOzrKurfIBkvjBJx/k8G7BEMtgMDaVEw5RS+iTWFTQoSfBMPVHJh3TQd7Dk8MmD90+M44+0QZp64f1M3CEyYCS8FhqEOa0/3ZJrnAsrJVtpN/ZlBTX/9PA+iCgPn1i0IYPnqGD+hTEQo3t8ErbdH+PgPMVUHyPQtFRYH7RoTZn+A6lgVmAFUHhMNKl2RWlOx//2bmqDGHeGhzW7K/MCHph+S9PQQyfjz7VLiGzJzXk+EXjXkRIBGL3QzCWNkM4m1jQ0Bq2hynPfQvd8L0At//6f1BrQkNcK0dKc4QFrLN6XLPXoOjPTnHAfmv+M8gssSZJrpOw4QtY/F+KDTclDDXK+GreHcI7RcZ3my0G9tfC5nafPTRLVpJhEv8kpr2iV5DA6BSefcUlY4VFh0V128Im9o6+BTdTGIld1nk5XELxGBJysEOBrlByIwPSlEe3ErnG+2yp6w7VAE9At+DM7itsLQxJsZ9ipEkiYaymIdx5TSxAKVribNtRgjCkEc0TJDa5Zet+65k48HUbC8CDIZCI1GTes0E+pOJ8s1V/+tzuLmXke7hmXs8gnL1xjSknmesmI9iEds1VGJt68hdkPCUeOcTyHQ2NPENul4ELlmwahI5WaJDeaa+uG6+eOTaOnj68MpN/5RsvMdJZ4sWaajlcOhLesMRhwMwwPlwhomvzUadO4QidI/GMy73ecaQLaXRD5YuZhcGXFSWaqS2Z6obkWfq/NLVxZof31yyW5UvnhMpxZoGNqcTCxqUvLDTGopg/U16yOqBZtWM4F4PYvYcYacqIEweVR7wo10BAQTRzjoXoMj6pQwExwNb2VvFC4N1cgMoA7+noH5kAjGxUulOdqP3q6tAYRk9CzKTVG0a3kl9OIFGhfoQkLDAahJSjdhKmceXAL5tOf7c3MQ/j7cSm16wrlzIYVzDR5t9ODbiqnf2gxZPMWxMHil8WD6U1dQBOTCOC7cl0iP4Cg3HEFIqDAmkLswyvESKW9y+qHnFPQPHXJ4vgoGbXZpNFK6fU1aN27EoF2CwxGv95rQbEdffB55YARvd8nRzDab134yd6Hz8Jr9XbkwfIrxp2tk8BDglH+9DX8maR7PdygeMUWf1YnXPROJ/1COr+OUyKRJzijA7mLXxu56o6B102Vv/llyxG5szCyxL+mTs8AWXZj/grvjy1l7Tcebj9a18P35JOrHobEFiN2pfwM4A2hgnIExPIL6aDTXFoxl7k7rka/DzDgPktkDIoha10v1vrJzzub8XVm7st9/T7chV3iqQ5K2M51V2vfmhRfJIQNKAwYX5zTwUTWtZXnVWEtDhKVWCsb8n28Dl5kUikOgbYzH/HZqRRXyovJhweH/tzQhajkOzELbG6MRmx3ed/myQ6njXQRGlcqEn1wsi06lTNLbfSonOqgHcN1qjHDjEonrtz0ZaVok1vqhp0eulHIvLNtaTiRZ7OWLqy9HAJz1p5fVssLNuD1jYqqWomCXJyZLlNSpxPB4Bw8WQasHCH01mVGVoTbOPNSHd6kC3ewjGGuphm8k7CBm2QmY8aPJZ0Bo8/RZHJnjB833KSTnAbZuOUqzdBBpBoVnDoO07BMJXHU4zC70oCwpnGsrL2lG2vYK4ffWYQp/a94IV7YXr9avDbATXzZ/HrK1lzy/H4ISL4PsG9jhx2dRSlwqg6AeHLIaIZRxo9xuDi0sBL/eTT2fyzTyxjinsLSQoFl4RHYUBWjFJJAjVO2QsAlqi2iKURrEyUwbnB0zvXsq1knPmKPDLfrQrfTY0i8MoK0JT84s1sRCvp0WQk7bBzcyrEQ0wYzNImISF/xtLDplOnO39i/yJKjNsYn8byX2CdL8O8dw2l1Jo7NcCoYn3tr7iCjSCH44HtfRqmQHr5aE/jMMjEDkYi0HmDIosVzmPtKZccqCopNmb0NcMDcNa9XaW/vaxVAcXzcUBV52kkZubVIbl4K64dcJeSav+WCEsy47hAbS1P+Wzl4L3igecTsxRdpv2Nw05J0gtD9WmeZ2mzbd3qhxrVdFRN6+Fze/P+GElEhGcQrBMKeXKJ3yHTcOPvdokzN0IwAGI0B67CHY5yvrLEYpRD8iYT0GMJCkcyxLgz9WkVQBuYAojal+lOm3zQGeh0AC2KzpLNBnIJzlZHSoEc1ZP9x39T5cYXGcl776Ayx9O0xNdAk3FFV7bXz5TYy5Ch89gRq7CetY5gnWJC9ZyNIcfVvytyIBvI+2x36X78+HqcD7nLi1NzLmFtp/B38TH1Xk5v00mxvGZ+LpwT3klKZmMXgX2TA53401YfT810uqUsuEwb80D00upur/NUjsjCvTIiahYcPtAgiwoZJwgnrYsOhClc4B0k36KkNaO7xC5KFWpFs2ct49hOSuNhQ59sUgOWUy+Jj0/0RZAarSfR9GbrJLtzup2P+AW1lZAdhi5PN7NJNS5TZeQ5jC6FhGGGVqxjVccCIYkg+S4Exmf1BazRT9iiVNG3c+YdGlICoJSFeyDDKsGSMvdgmmn7khrGMjJPA0G/CcMYcDeJCY6afnvuxJhToTBEJUDHCl71HBUCByvR9iHX5BE/QP0riEi9J9s0t2pYgKPsskMrrpkN+7LnLHs1ikMgqyDqXgvL0FVTCOBgOscuUWbw+HmJKtEe0wUucOInHMk3kaYetzATIh1+lHwQiksZoh2F12O6CmdbrkeZnl0GUc0e9k+fsv8UZT/QBdYJfFZzsiuUnLq2DQBhiJxepICKqgfnwOP90xY8UW8YhsqqmNMAdGMUkzDHMR84ia3TcMDelh7RAHMdaKGeWWwQ5gvl7indJemZdUsoUlib9KfhRk553ZrSIOERWZE3g+rPny5cNCyLfyW37kdUJUmdsYwW9OGdx1YENjO2IMk+rlFfJyyon1g80XuheQ+ZZrPUJFFMRI9eSIokilhKbaU1m/TQMdNl+raTyDjFk6scpGZhD1K7yHXcyTLI2yEYeXAf1A79o0DscalbkVcWDta9K4rtbpo2XjJsYVX8tbPkdPoexpGiDUvgyjeoRLxzAt+xS6pHRpJd/NPUKsnax5mQBbi4cS1v9Ui7cw5V8i8Jrs+GPUsxNHyAgrg6SPhMJM1ekBH2jFJdNoMAwF70AC4wNmqtLLkGDiqvzqEVcd+Ce+s7Vjwme75MUjUnxAYiwSBII8EDuUdT4v2G/GeSgZ2vhshkU/rpNQDh3aePybjRHd8oU3hswNphFHBCpVsovGPdnpfKk01Qd6DQf65mjrsvPVASWdG/Q3qnfthgxctGUuWVLWGQWYoZG5EAWBRjIjejbs4rQxj6JK1k/UPZxR/gwZBngURbIaXQouxBdI/jI2gg2aiKKP6W4jVkZtunkiXYRHNJORcLcyVF3dY8b8DdX9IfJvPGP11J4HOIgZ/RSE5kqhuk+n1hsuumhFXi76psT1zfI+L/D1m59mOo8D1ybRqUIYiTx8bOAHtX3z4F2nqPf6R0UR6DZ9UFd+3XxSdGe1v3QPUCZusiMGRohNA8tzpK8IDt9dJy/4OT4MqRZxnouZYs9sv8/uFlvZJAKQEnp5nXs0eiKa1R6Q8LgfaXnsFS1N9rOEQ2ecEpPyxabZ0Kq9GoJU7cRvgBZpYu0TqnvxSZTc/72qMboDoAU4rHQe0yha+QoAYflaOxtQ/wblY7KqeFSBz2JC7s+w9/zm7voA+3HNNZS1g0Kpxz4IMSlF67ORbMxLAz5wEE7D/cwdbBDeGHyuKQLOJpO7IMFiFnlZ+P2yhuiidVOJkJnhjeTFvZVpCpiBj2BT6hRCN85X3K0qjRNYcIpe5q87Cs6k2tku3cta+S6AksbY5xa7+KyYXGIcO1Ilh3wwFSzNhp8G3eGUsqfv8h4zfJfPGgF9O/e4PO/Xoy2o7+yM+4gSyadhQ43i47nMwbNlBTkvShVp89klZ0h0LvRk7UcRW7Ujw6X7NACfrkxVFKfttQ0RWuEaXFNVeMls8++4e02PK8pyWCxx/Qj2nVDkFbxR3Z8khrajxJo4OqxrZ84sioLoq10x+334uGE6g1kaLdP5hFIjgGXnaYbuINfZUcAswdoe51Nv/IWVAhPaSHeZz+zpVRe/df7EitAKNseeQaSo+iEpL0M+M+I8cg49LXip2VvKt7L2o3WNhfl8CfMpCU+wtVKxFadTWuLXyip9POqB5/lmny6+k/H5EdqvVpznkTkjDhKxMHVtfvuKLDeFLj4QYwv/8DNPCm8xjI+HSb7vYGNQALZnbDi+6K2gZBvpEoTX5DxU6qZuIcrtbzLiyuKcrY/YutSq5G3PzKbJIxFCYzdI8PfpURq3T++GHvjxvc1vFcgrUZh197JTdswRpWUZidlSZTn14aQCOYx77WrsH1YZOMjrpndaWDGwoHTkTM0Ms1BdtbRM5/l0iotvr1/ShwaZy3k+FApFUqHAvJk7BkltTKtlgffLHWkpaDxRJo3HD4t1pEdjE4vjsdfNzuf3pvqI7VZIxtM5NAdHfvGCFlOjKVoNJLNN3x1+0fFFbNC3+8+RWnl1I9q+HqlF4dN9457YBTY74h6dRXjx8D6AavZf61AmT5iCUW90jMzMo51t8G/jJlXFGzf+dw+mfw9b11IpPPrYa47efoIkCQYrRlEwtQwv6zYJPCtQXvXQ9hfx7THF86xtaD715h4zWzI/Wc1QK1pr1b/HboudblQ1q1V64GM9bqb61gKkIpokA7puuXpjW4CD1ulCbOtmlDKQ1Ob8YIBRAzMVFDjtfLXS7s4666cC+wfqB96nNLfhSPO80qxePiZVJ3cJoBa/Ay5uXWW3SeJIxNLYLRoU9QLSbzHI2Tvw0MHK6NFZ0twgD/KKCEt78wDYkhPRsSFAuAJ6fTwbmfwVM/hp6mqH7yIU2lyh8xKGrOPev6GDk6WNbhuteAXW/VePd3iCnGUVD/+GOFMPELIA8p25XOkjSOjx9ksrPN39U3wIjKIqR/9iE443teK7ozJam5vg/U8yL//y7++FpsJ5C4xn9odhOUfuzeMxUhJEsocr2Uvi8hPCJZpyCs/1LBp7vNN/yJUHeP8tgPyCMImO11B1chQhCsciEJZnsVmb5QBPRgHBtAWnOCg00VwTFyNL+3OOVAT2CXg7f6Xat5tKHylKMGoEj1+kNdnd0J+hA97L7y/h3hkiabXnlQvB9ZkAu18+vRh8S5N68Zkqub+rQtVxl6UEWKIdnjsVBwma6wpie4pqn14xUYdE4IPtqdIhwOh82l/e5bM/oOVvlOoDaW0bUddTyGz/++ud0W/tDyOx/dEQIBaqID5h0Oq7YCcwQNxIIkAvR5ICFoyWJlAO3BixzUYjew0jEdjs7OicWt24y36TI2XDWgiDVie3Wla0zYbTcsTK/rZHF4YF1KQjfBi6CgCzqzLXspuJIhNTdXKkkr7gDDiHnrdUwV96f2QAnFEP/SsSE3Kbo4pbtf6BR0WEbKSsqH7DPkTJJxG+KST41HSPzkuqX0I3Hm1OyPZfegpllYpo6TBHd9S09XsrpKO+QB8Pz7OJ8biIVvTx+t3a97RYMZYk/9RNxZ0kOCvd+Ys3FyrpXIy9y2Wn/7mi0fjx09cahQgoN7elVttQ5TDHYUonu4J7eaQXNAuZZbFtriQTkZwNyk6AChSOMQymnkeCn73LDeVIsw5bApCr2U8ZQl6tPGta2A46T14hpGdUO5NpLWAHPlQNcjEoOi9QW+iHGxB16hKhNGg/v8XFmVYWe/1dXWui4IgLd9dRxrf1NtMiuQFx2ikYZuojadJ92IlVnpLjMjfgUNQnRADAK9gcMdwzTFdssvrjLQcLDk9XiaORHk1j/OOcPoGVCFTw8D2mAtcCH2aTYido58dXO5bnC0WvasvIa1JjJtu9tAps6Nfh2JNlH8tLksszxh76HwU0Zg+/ZZKFZI6yc/jjKz70K+8v+nsWY48UOdHgOLaPCn4WVtzDV/2XuATLil/aqg991/drcJfrSGKrbCATnDhiSCiMyZsxUvFxhNPn1lvdkCIOMLCfpJjjcqx4DjEnDzpYXSRVBrp7K62oIUJr+7xF70QFKxUtli6bL2mjsWGSyzfG78EhRVeCwdz7wTZu/FQRvl3iab52X/fxldO19IOjYbN5drmYle79wzhf10pZgdFG6zgXvbvJe8Vop/Tf44YVOJO2NvhCBIWRP/7SRnDKVSokKs9kKH6hMy9kAx+bUZ10+SnWTSbOI+STGE2fIMXcIo4Tk/n1P3WdnVjg7MyVkRni97NAheVIUKCkZqBB5SJXH/Yj6XcB5rAjWVJiXjlXdrHLISB6mh2SuN6fNnsF81FClcg9wJJzaJDqa5yrg7jwmWqbN+x7gyZCKoCNwzswwaBBS9pv2dknMMyAVXb7cBlt/EUyDMoNcH21/gUMrXyleQ+E8S3eOw1Fs6rk83XBf516/yAdKmAMphHW4vlJDKDqtzwTt5QY5XZ4LKDNs7fdjoCBm8Tikw6VVz/OcyLMGAIa4G+aXXV4Z9p9YzD2lVtmrXNUkPguarf0BDVnZp1cNw4oUkYfbg2ifkRXW96wOJQ7RfWzrmbUeHMZsyo0heGTWyFrqUsh0xPC7kdGvMSn3cLSXwsIPI1MAnDAiJ/v2r7GkF486mOg3yX/yOnGMMFQg0hI13COlf/m+dR8nJr7Tex7SHNqOhZ6Qu5nUm1fmKWI4iZqkjnQrI6YCIiPAxhwSJ2Ho00UVV+HxlOniSEBcymXR4I6YLLo6HS+9Oh9nni7DpksVw2PKe3K5RZGnFOEq+eO+Vg1IDprPiC4e4PRuHM3ki9O5mApuXVtZujEwAJXnh71iEP69+cBWgcOt6oB0nE3LQmBlyHwUQnXJPrkrLu2XSCjLGcwSna8UD9gI2dXk20sjgFWgULp+hc0S2w+pTZrPoBBM8pG6QCkSYS83GtQjhQoqbju443dOEnWiXpdDf8RlogYiEtGUInN9/oM/QWIXT0idKRYbOQhP31/l1AjhxaUMNSqvE90NeakTbi3fNwurNH+HQ0ZBestrmZ8PukjfN/bnScqXWDT2xXzAdwvV9ON1Oa9RGAPWin6WRAJit+Js3bMe0U73BD+CVxu73SJRxw3+JoXQcGaIS/XzfI4tyBeV0HPbCsJ2wT8nwAW7f+fubiS+VwPFjjxTgCbCvrN+2mhzHyV3qhukZ/wTZq/1uVkM7Ig2ZAW8Yhd34SqKVyV0UEvXnpXE+pV2vSxvnYrP4nFJnT16hMEFgO9aFe9FNpzt9F+MEZze8CcsnSv5AFStu9y4QJg+BZNZZrBCV9osI4UgCaYr4fyuTN2zCE9ouPrBmx0QxBgy01wwJxVBWzZ78VAmUSxCJMS3Y2fLEt/uXe4ZKVxesQRkC/yXD77UqmMyPzraj5EpELo5p8fbfgaqB6FLmXSvSNJjechuufuIPzVrsWBrIJzMJSJN90QWLu0G1ySc7xFucj5BX4OOBRec6ShTxkv1rGvCJIuYBjcNHSDJCvohbBb+9wCtNSVqNeLjiUbdKNRu9NsTGS+2txghuVufiIQCmoAltqUe5KUnIj3YtDWFBSqzwvpQ9M8C1l2cbsOLCq5hKJg+GRHA09oJSNGJZ9HF4XiQaZx+3X0WtV5tj6VFZdHrwBbEzuBqlL4HLwtpsXAIz+f7y8b0/HaqxIX6qAvsDa1dhpWuo+TwFiFSoW06IhBGvbIizCp1vjsHiQN0pTsBqrWz+H4tpC+0hNQnOjCeZHtjtHHiQ/B0C8fYdxGmtzR7fnyYBb+iql8OcPt3iMkSN9mmUFjPqlrQNXqeLiWGFDebFiM7xcS/R2Z5mHDHi1jKIL7N8Bm9lj9F+t2P+qEAci7p1I00nED//bjUtxoKUzO9XVG4tcDWc/BLXcVlnc1JZi4ue3M0vzLXTfIaBFpxy+QBQnaU8ucUl7SNq6oBE9kO+KHXdJHi+QVtq1k/pvqTDtwTKnwBgtOmky4TKFGJ2ib3PVlNl74bYVjE3hFkuvsgsXCS6Rp+KBWArAZmlYqHKC+4zelXsxRW6RdawL2eb3eE61GQ7gW+RHMwaRKtVXmSSVE+3r/i6H4uA8cQcSRJn592aZ6k1tteUDKsQtLgWmTtEU8/wWaIlg0oAtVJs3YTJ8jrCWtCRSFyFwomssWqrNs1BD5gM4c6CMn/gxhswcrvN4girW89UMV7ADKNTmw3KUSinL6opCQfUGSGkDh1ouYSxUCRBmpEKz5KYKBtQR9V5a/oY+hbCKHyrqFB9ur6az1oSojHoeaKDcq3J/iyENrCbXYpzyjwQ6WUaiKV39mA2R/XesI4GhfFV0gHkRRTHCCXFg6jPu9F7arLgNgzZx6N3a93Iw5HHtzlk28dXFgqqviR6y2HWQu2c8+svQ15Fe+1JGkANGfLSIeoWGLLWD1rtMb1BkQRLIF9CIgFciZezhTMBc0xREkbeUWwYPGTeO45ZvBt9mQ4qU0QLLrS7WO4kl86eziserNqWakem9zhehPoIbKBnguNWGSGHtoLbhDMqX9pZ483P7Us1dcTXyRXV4TyKku6iThQjdf84XZRAHXdJOIzRwoR/VlbYEd0RCk4Ka22OhoQRepeIVF7waMyRk9LIAGbWEFKTqVerf47mvQb2aHd3ODpenmMjVk1sMhdrM8+LgLwAsm2P+x2hHXWwcRbDBsccQJNQ7OaiEJ3ScViegb37NFvS3kALYB/PHsqRr/Ct+Mi6IwCPZW+QjzOYKD+Yi9RPG3P/HYolq5GBlqeDgD4N45rhWuTqrWjpdr+DxQZEeTekiTHwZkxq6KuB20qSxPLhPbhKWKJBQVhGsJw9kYabseWa64Q2jYCKotPanHWBfrjEegfjf9Pl3NF7e2ell78VKcXE5H17zW7ZUn+JPCNGk1oNefiiiDfOboMSWbP8yBWAnbsbqdoQbE6CVToh5qiD9AMLVbc9dSDoDJrRvd2wiQDFMQ1wtcal2sfi+PuhS8O41Q14DbJlaHNQpXwIaxlp9S8tqZ3KwC7aoc2YBobW5PfswiIjc0U9Y3g5mge7SkxKjlCnGDcbaaiJoAMLVk1Zw+//troLYaXW/JSSAZCqlp77h5/CyTIcomCN609+vABwwMg4sviAiYfrnSTtTUqM5mQVuC+JHEAZ4xipiZ0uoHLXl/lwbGw0QMLqECdF+el8Y12TEbpuZ6D9OKi6PAn11Wq8S8ytO6Y7ZMpoHLO9Veb7C6d9Tlu0KXmc4y7SwIQz26YToiWLNwi0DXJLtaxnFe15x3TTPF8XkfZn/zBFPwafzC/HLimxv7XXrtdazjY4i9N8QyCCDfYW464r9Kx8a6hpY15K8swzjWI9+klunoVR9ECy/bN25iXqNWkb2HJOTE1TF/GxE09o2YVFnLGWb2dHfrQJEe9NwJToMP8C7mkNpM4xzbDTSm5Awna/LA4uBtYVX8mKfR5fiI3Zv4RaFhvs40CDNRQsJ7ijEI5EVg+MGTP8Re4ewjTmR7mna3CqZzu2eIEiDDWeOx47ufZEoBNdaC8YfRxmrEqJbXN/+jLWViA13CAMbG5Q+gyhBxu7uPrY1AhQfbSQCzMJXCW18QFfD80LTTSKs0YySoePyHKKDq0nUC2DtQoX2pvEPVnBk7bG9w9sf/ORRVAfNp7SEAEJO05ibCHZ2dkWr3RMz3e6Un1SnKspGuBEDCXSCQEd/3f08QbRM2fEwIG8at13BpVUWTh6J6n8SxsFb5rO/1gJh97DfJ2obvsRV+m2Bhp1+84KcH91I1SSL3TRZgNMe3s/392LZkRTpPww2Ha4MKFjbGnngFvr/ow4KbGJ9bu7YrS0sTcStYzzDf+jw56nirzu/YDzfyA06FcXFYEDhlHHVn+5PwokvneJx7iD1aVZ4Dk3XQBhgQW6gv3LQjqO9FzU0QH/qlSVQPob9eAOmpfzViEmCXP+KAcw13GiL5SNwrXyF6Tw5QThedsyfWz3rMpg1ZJdgXN1kDo7GEqKxV89QIvJSlsyOlPsNfg3Afj6sp01J2xOLyHISf0pbnqXhJ+D3HjKSBYneUvAc0naTu7ChQ6i5mCcKEbgqAYbdMSr2TbIS28/rCY+OGfRBf3njZXtcsRm9UwIEfhQOxEUnUb84+Qs7RkahJQAHwWxUca4Jms7ln5HmJxLHqwKrIeXgL4JT2hJYGalKfAWjoeGddWnpemCsKdBqzn+0yhMgUgMCDbejWMeO3/S7J/OosM8Eav6Sxm8m7QooiN1Ewxc++z9ciU+0VD8OCK7BrO5ULU5feY/FwVvtnzc9Fb1SysaCE1uKgnLkZBcC9ZbzZ2J5mhpaLxLNz6LJMlFglYEnf8DMxJ6opAch5OOSrNVPZLD0GjLDkQy8MCikTUoAFq5ZVv+CDX33gtmXf0hdrVK9OVXmX4CHORq5fjULf7F3fmIZr5MM2dzjwwuNrG+Z8ckWXue6KdaxEfb1FzCVq6y9j72kxKgpuqa5jbckmEk1oVgZn0mv810L1qzVtEqPJUFOVR84O53Jsk+sFHPQkP3Gp8tDLTgwuuXAv4qx/wSxZ1r8BayH1uskfQbyAbgSMBs2Tib/LdfMVM3fVCIgV22xtp/RPqZ1LT7KUNxL/aL0w1PQ1XFqFwvALXMWaaO4c6nRXfAwKxK1Wlvrno7PcH9trMdjkqU1MfZ75yliZogFsx+f/OMx+LHszRKA2W2wSEUOcePJp9HH3owmwCCW3LOU7YHEwoBjh2mxFb5v6Z3JyVvlIZPTCZY0TZsu5iFHvO8OBbMgAyCaYx06r3EOOU1cbPG2nXG5LiX4pvQXho2DojswXpI4bmoVDoT5HXo0YC2RfshMZsKtxgbGQN9mvr4RFh6F4p0zEK84BVomYtUF6KT8nA3zeM6Ci9EqNmNeaUAGrWa6a2Fo1tpteweaBAJ+hqrbdLETIRBDBN/i8EusnFUY2WrFAPgeXDPOIrF9eNzmp+zbEmAp1EDH7j47ImYfnWlNz+exBEt/4j5637Ee2vrWZApVN8/41V8OecQ0qRACYWFNsooQfgA/3r0OozFmly2jZa9nieFexoCpcVUnV1VBTA9tFSuC38T9C4m5one+qHebbOPO465rcDelPBM/91EczMqBkUm7PalcmX0OR8GfLaqDrgKtze6viiYSXLdzhFoe/ErvIdbYilBVY23Ej5h9OHIp0dNWK4Y5efNQ2Oj/D5uDoi6IxuBsDH45IWdmHT7/dotjDt1RctdOvWp9sHmyaQ0ljrzljRqDrdOPx1ieABkeAw/BAFatGRA3KZKeKq9T0ynWJ/wLhMtQvwI2TkB4qnVEZyEkV9IzUSazFYtBWnCp/jmGOSf/YRtyzOiFevDWjUXfLLv4jlhn8X+HziEmMroIbdTq4SpYuRLNdzWl5nBC5tnqywvUeSdsYTmo5Lv6VoCZyHcanwXaC0o9kcqvGL9lzSr6WbuSA==
Variant 0
DifficultyLevel
495
Question
Which of the following fractions is equivalent to 5%?
Worked Solution
5% = 1005 = 201
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
✓ | |
x | |
x | 20001 |