Question
Dave and Helene had identical ice-blocks.
Dave ate 65 of his ice-block.
Helene ate more of her ice-block than Dave.
What fraction could Helene have eaten?
Worked Solution
{{{correctAnswer}}} is the only fraction greater than 65.
U2FsdGVkX1/g3KowP2kQPaasyogao8kIYBhDsdwBarO96UtLhuTdg/E19MP9VBTiUwmRBe8PTX3ux8Tx5QNh7TMDR8MSN1Sc0NVbRViMU3KJQggD7iEi2p/0IeKwNfEnwagAZDVxJywJMJICYYyl79VYcWgXzzHP4x0jRvEQhlYMh69y9GbcBXwzxu2sgMR6UvGu+mUJRvgPHixHx+HmoGLh+LK9DFzODcM+a1uEMikQx2JHBPmZyGBf8sXRVXpOf9uI5tBau6jhi46cNJqdcFUifLWNfzTOlO5jwwI/2yGBpDbL3XqbAKn/tDYyIbBLd9PjcAeIagM3oIDukmwXm4LmZusUd7MWcAAvg/B8pjJHcf92QSAO5P7oA2aTfqpnXbcv4xGG98+s7jW7BaL0ooXiCd5na/Il+fOHe2BdN9IfQGI7zsPrHtMZkoQgBOuZBb1+LZ36DJw992ERt9Mz8Qxj3D4D0svadXo+xk0WtXLmJ/YM96RDtu7XNhuKHB+IjtphPSP3NF0slx082L1Bo08teJkx7BbZwrFxX+WVmdUf7ZlKq2h+LRSArxCatN3r4jP+UlW+mydmohpwQqI9JweqpjCpHKxXmApaooEtRdm4w20IMLUUGSY/O+gQ8fyWTAQrj4qlcIAGbBIiIMwBNEDH+rc93sLk0PWNfb8Io/hQURSSrHJW9RjYlac82f4XH5GPjYlHukUNVtguYT4vAXd88b9RlvIms9eJZC5ziAack/iza+um0KMC1EghvyKJ5hY8njpYnxaGJCu14APXAGa1OYhsi3J4y6ffw/PN42RGJuqQYtoMg2R0Bi9v6fJffa9N+TRkFzqiMILWtPxHrBdhe8/buyfh29RDmYEvGOWZ7RNT6CP0s7wiEX0HwaQuwQQNb9oZpsz5PQRmdaaW03cKekDk3i7VzmR+1tt1RUjYe4x7hFUwoNYZMW8VIYGLo84cQrll1sKAWivNLiZDRs3vpbFhj3kRTT+qGJu9NvHAt/yhlzbXki55pDVFDzZUVPeU1jDBE5Kg0a7tmjJWwomgxb7ujR6n0QW4E5H1h5FX0fxYefPGsAOUVvrbZxHIMgrOBoiTPcn2arEXrggAz1m1Yz6iLJtMXMpCnbc5RP/o4ebDVRVjJ7fXKk7FU1Od7byQpI+FejPjiwkaV5QCfNosGLF2qdq2b79Vd6JcSZW8ueyEt181olD4acDekqSq7Xpum7QXHp/+vQ2GeqC4N5SmzNb6f7KMJIUYheDMSlajWkGvNeu0X7H3LGhentVVa1rbjUsgXuKyVvYRVmEDm1fan5Yo61KlL0Lt1f4c0Wo01KkKPNhW2lYqUX1aK/j+oKyfgtdTs2Ts/Ql5SJpQOCSYulaCJ3ZHVBdKme/6zLF4ZCxvS6xDnUK3t8SLs9riFTpM+gotdTRZdul88ynJnJ8x5IRcFE5RiIAWpiLGez3v8jcUTst8ckikbmWy6/m+ynuUPrLrg0d3sbGKq1fPI9qkBvb1HaeTa8Qv76457697wk+6SCAso/91yJxm2UKmkTo2dUoQEw0mmeRAn8FPCDDq7wymyVH6NdQ6EzmCHG5xyvdGxt5pBnqOrDRvzGmbxGlwxM1yoD+Usv3gyx8kaLmFLQk/nXKBsDcSTLSu9W5zqSlX9Zu9S2qyvp/+O/IVY1p/fpMzoDvzghS+t3Z/WtUon4yykevH7WNvCv6SYrVtxJIn0p7nwr0qmSD0KA6a2AxqahbpAvszc0N+NMsLJ3v/2ddt7HYqh8hVX4+GZY7AfVKXPPcwSkkQPOHpIt52OdQOSSPXk9pw37Y5sktZtWi5MXDsN0bVMH+C08kPq12YdbLqrmNgDnIPG6LjKiYdorA0DfZoD2KsfFq9mO847+VHmVPvUGB/kOLZdq8yB0VpgEqviPDj8BK4W/FXPpiJnmTd0oCZ+x4S5yGhqEHf8G6cwTklAFr25//8w8h9Jgsfnv8+TK2puk/pS/fwMR6xkhj4Yw7WojGMpisOKSvTlZgmuKrtPE9rs61Hemwmm7cO1GXdkoLzub+M0FA/WdDzfpyy+cJKq9Bsi6rRESEVDWEXb+luLbhNNT5TkrFNImUffuQtOz7DPkrgkunPq57seRde3G78cW0WthJJRMDY+cVBX4wfrGsDcczpPzBzNgwwveO7HDmT75pZSDR/gWZknU9WYmalF8k/O87dJhdaYo3C+E5yKvdHhHI51BQ3+BxYPLQjG4c2ar5gKOfXTRC2FurJpd1uIleZpPSF9u+oaewOHAIwcu1/gwEI3VqmwpJg7u0r7fEFIeB9h2osMAAc2tke8IgW1gUgK7DJSmFb7qhw0/JZYCt05G7gV8MTmMSr7qhrgIQeA7F2gsSQElzv4NIcvGAHoINYnUzEJED9wLQPyKDMoe4E2Gu2IFXmYo0mserOFlo0kY+NxDblYe/TY62GcsvYcMic2WrIYQtFTKA5FuwXoUAHCDg7OCRuiJ6wWPXO8SP7hmwuVy68Rq5NWIBdS/IFjNK6Nm8dl1O9TbU/kZF/6JMsJRDBPOwmfr7L9BM7T+2PR0Y2uTyunD7tJiCZkAZF7C+5Jum+BWruSEfzS9ZDc7laaYkFN4mspJWX9yaumLhalxZVyLymLZ3t5eqHJkF1mUbMVPX11agHM0xEyJR3FYqyc2vC8k+JO4S8BKdMb8CFxVuBmULFtjWvAGuZ4IPpiHWtJ95zzIwNcfOxPIFyf2FDvxMTk9dkNGQ9d6HEwwzKYP17ZyMNt5pGg86AJhOk0fTsUAYkBIQM+Z1EMZsg3u+YwvxEzoIwGxlj0EYaGpaojM04E9rw88yK5F8sdgYeCun72sWCyVsdypATTTTYAMDDVhAHfXJCRsNHt74YVs2iJ0wvVcoECNeMKCZc375sp4DJ8UQKqTEX+Qw5+0YR39IXtsJ295lJYV2grNzdKMJSg359TgXqMXxr/ITqMbeamGUS2NwouUtXYbTRxRZlXeM49k6v014a4f1487nGgZGPhnYfhj+uTvRBmO9/Chza9SC37rc9dY6TqL8Lp0HBRySUlEEiUlMJl9KPjzSlKa67oSa21pABV/N6KYnLndQXRS5pACmPIIpbNYrHK62WKkAutc4GzwtIerYB1UGDyG5MA8QxMI2lP1qC09VA4lqUERqtV0yUdiSSuap0hyjPvv6zNjm2vPtRjSu55xoF3ju1o6+30k7eVX8tps+dnyJYy97KxD7hzfdzCmNuZ29AokoTdnTXMspAEuiNQOElmnUojPuEis1eBf5QbKZCvkDXaSIiYg9ZvA8IroDiOX47NZcjU9ZnsbJLP1URCvgHnFf7OFkcQ5QdOhdwL4AfiUr1tTc0kBkMLd8SOFJvVTh6AFRa9Skyr3nNz6HaN6yGD2ZOGKipIIi66pS2ROuZLuF7++WJzRgY3QTVy9PTVqRtG8k/DSAvAlPtVkib9UwcBYNb518swIzG1FKsjeq+3OiV/NBgLHQ1GGQR0Rfd60Tlw50/lL+GyWde2gmf/X4sRsvMEpBP/QmKb0cNejNQ8I/mHNYmzhPRQvVsr25MAXbOt/mrilSpRA0N0K2hILmEwjlJf7JoUQi+Pp0vSGrAoRjjm9z4vufspNhjgZZuQk5Z4SD+D1nPzXB3XqNgNAmDfoZvmERaSesrmPLsLgQ4nweApdsBUgRZSHGre+a/n7A7QkOTjpWmSbBdqSd7+F0akg2shEnaBjWTMLpqQf+qyim84M/wh91wvJPRexl8wyc55s0lU8gFLJ48TMH7edpkJlbzuy16JGdHf9wrenpZ8yv+5JY9Gp/prrPJ7kIOviE0p7lYTkXXjzayIm55TiK3ngEZwLGBXx+xADBkf7qbbBN4/S4aid7RcUrDX3s51RtX52IzWLDhiDUz5PLF74bEOXzubXDgdc31A9qHfw0b9r0XMNkoPsAt4vlkF08Ks6SHrgpy22xqrA6deqBQVnglxJHeGtblb6oa3hR/a20I6svhY143eQyPpQMoj3U+D4Xwc/ufuQ3/Zcf8vxP4SQVVra7dhxFmkT6H2aUnYlLwmg4jxFFidyWqQ4DPU+tl1oypAS5V0bB/niChYqGUFKA3JJiejGnsYUfX9MB0SxDm4ELUchcw2PRcopo/0wA0M8fDCOHIp7Os02WCam/qPpLUZTwRtbA6cdhw4TTTIGxSvvxrJqndBPe8aMhqfhIABpz7uhOL0nUUC3ixTKBM1g5Hg0vmXtNAfK0+3kM4Yrkf7Z5pzk5g2x/dyjLQCF1XlbzngiPxj1Wa69vN+LKzBDBeYDDSjsbmg9I+YSQoZqgl9HKvtFF3PywWe7UyXYpUqf4wUVySr96HF2ndqZb3KY4WszFbO8zZlYT7q7n/g+NPdcofnvJ4YMDxShVmf1HdNYUp2okSJ2HVPB9Yh5FC/+Rnu6Jv3RPk7QrE8h1B91V60QlOAFAFcu48bHYq5JwC9IwjwbhpovQ+unuGjaGMI67WkoqWmHMtgNykdvF5RavEOjHYdwd/XU+50rzaoex2veCQvXKLUasVcd/RrOFMxiQ2LWj++FjPHkbw/qy0wyEonk+SdKI21lJ32OQjlBhJdU8Ez2wd/F44+i7VoOAYnK0Dxzfko/2EOwm0BCisVEwlI7ZDsduaJ1vI0dD9o68lRLacua4qGgfQCiJr1DOe3KKRdP1yvhHwMHesIr5bV+mHZx8uUSLxHggHZMdtLbRh/URvocAOSqco/EEv/qyo3xRxBnuUQ/ig0HrUtnsw/e8kNNOfu73Dz+f4Elt/VSrwScjjgqA4zSOXGMNPI3zcJmnFPHvlS0o7L2kqb8L2hxoC3ibZFJSlY82jPAgWLNf4pvFGyygOGnjtY011/y72VaoghntCbmu7WWzDO/xBxiKHmR6smRkFbWNUFkx7vftizHpeLb69GAMkufRaBaOY8jmjCvp8Sn7P3TLGhkd+hWA3aNkDAIem1CrKTqpc9UkjyAhDANJolmEIm2mMUri6KJS9pQ0a1ujHyVmQKP0uf8FN2BGV7mydN4BT0rhcymM0TsuuoRYojGziWcnYxMPXiVIgM/Npiy40WKechtssbgcajqNi3TlaPnXKb8qgon6P45+dREJDy6rGsGDXW7DXO0caSR4+BNngVrHW4/sredevz96UYrm8StcaIQU479iwvyMTYKMVRyU8U+PgjO6MIV1VZd81/6F5Ip0QQf5ETJQcIq4mmIhUmGeHbmMfrRwZE2/q4HGEP2JjdElMpcp9M0GwjK0kmn+AEnur6Ozil3SDj66eUBF4yCawbiYUpExr/NsSF5a4rMai2kkOi5FLpt9ZAwRihJFA9IFz9eBlfuPBTXPCm6/O2iwBSnhjD4psTvaj+O7b8/Hu1+zdohyw78nbWceez3mQcsHFW5Pv6aDRst/FXVG+WY0EA2pWgfBzuF931urKsxUcm2hUKAYtWDV7CRrQe2rtdIjlPXuLLqM5GDBtsBSwSh/aXk7Xvv57bWUUfiuH+DD9FImkVWASOQb/dy5emxtj4Z+t08JMngZN9l5JPCGcKCY9He87MIRi0WPrh3y/KgKHIw3ihng8g1wgP8lweKy76kd+gkXieneysojyswi4vdLQKqG1SINXQMNGjdVWas15yW7TDtuIW8VKo7qQn8vZ7m5l8TjUB6FrD50gvEfv5q7t5/3NbHWNNfC5KCrjFz9Awv2e4kFogw6Lleu18W6xS3r120VVMwnbXde9YG3CYkYsH17j8XTbUPlxv4dWddYO3WDvgwI9u1lfGDEiUyFu7wkyTb+zq4wi2acQVysB+IaoMUGzxtukxLNFWLuYOsZH21Zlzbt2tmnSdAS7VpXUMsXNUpF1GnFqcek7V5f5+sB+LddxwIaqYBnNGE6h4hS9HMIcxIFS99H0vyBzf5AYudSJJh2wOYJgZmNJKYOAfp/xA/Uwx97T7eZG9Fr4etOWOsa7M9tFO8HWUvcvcpR8uubM7rkvsqUZZNwvUST4GAY7JBsYFsH34ykLUKw7h6qkWXsRSaX5kmNh+0vSLNedfiV7Et1W7JqNhC5tzp0gAIx/KLFvgETcLWhFdP8qKct1wXvisQA6loNnbA19VfI3fDXGcmy5XEleu57Ajxyu/UhA2JOcoZ2CGUQjmaEvBMxdhnpRgsEIf8wdyL/b3aHt3Q8YP4sEJPdidCy2mtuqmM8/17JM0i6xPnLQ2ScMqlsLyymhlqjTGzZixnG0CIKDOUqXYT3NHnucyy/kjLs9wUL0N0RbcNL0HCkb+QRLtWoIEiIc8uWN7bkjHyzx69Mak1VD2xtxgAhIO0yy9A7fz81MWFQURVZeaxst7LIWw+OTzvpZFEQGHbyy4cXmulnCmeE4Pbr+27ZehERjZFIUdZQGtw/w0RvuUEeWglSm0NR/wvsgYLFTM8EBKCuAESMpSLBye9X0qXd5rl/X13R7RPs5TEp+rb+x9DgkGLJlU/MhjKvzUxqECGH7UU0BS/UnZ65H8H2C2UgJNJFCXt66zjSlQ2Tt9ES8NcXI1bOD9j5hZ9PSMAM+rb4WhcqwxioGGAs9TQDPq+vFLwdx5cnfE2/9GiijIX/Z6HtZkQcf9Pj+I79zXZ6fYGjC6wGBfqcvmdjHU3nJUCzK0NTJADKk+K4seHIiINqls2ylH7GsU3SnYwTfcViT3paaXRDPpAhiLedxOyXmjGv8VWVRiATX52uh1gtdPiJZ7FR5uniWtzSKXN1drnw0gIaW2ItgMp8QiJIqZEsdvue5qLpzTuad4eCo3PLJrP+XAKEtiWtURvv6QkRAfiY/DcR+/HZRtVtc18E0YvolSn4HOSnVfPZjWiREn26bLYMg6YnXJRV2+gmY9Pc83Og70dN7kAEdkSHdNVOeJjYzuxZam2lEK/Sw4UDlB4TuGPYrkCyv6ySlCNjZkc2Xjdj1Xmts9arSp3GibHa6xRr97U1TYnANKqv8aDeBCxqfioOwGDVOFrEeUhzNfqR4DMHpKsCN1aceSqw0mr1ILN0RpKyqAcfLQPSoRbEx9RTt85IWb6l3+uWQOof/IkfhUBmQGGiWz9t4qQ0DKqT+QKyMbS9vPXdfZqcLW+qKbdumuHkio3T/d5hHpahnVpP3fM0zeK/5d2abhimdn44iKUIjosv3Ps44So+L9F5N59kyZjCk2PIa9YcFN5Gk42gcBPu+N8e5BEBXzCj/6Q5yKNaMtBVMS7HBlbikvXAayuHywTp7CXv5YGD9Di2DuAZhxggDqsFH4oRnRmuaeQjNNMKakSWTp/gRF283NqoK5BQuWxI+h9PQTjaqDF7Ls0duXKBIGL8OSv0u6k9dwXtLwnuCUWfm2Wi4tL9b9PYpWpOOhwBma8oW2fvnFEI4EIEMaejMDTfh0PIg8WImH4FrW3Mrciy11pcRxtodOQng7yUTwogjIyZsm08qzDZB220vP/8AjR48KeI1es1V4qIU0m8DrYozPJDNZhXx+37uv4bzJy5Dk2yR3z09n0bn5ZZv+EZkXQJKYVfZZ2gLhcgUuLZVchakmrXStDez/Pd3X6nYw0eBfOTkp2lfE5qZjrpXk0OgNJ0xzHEeg/i70Sjbyn6aCygRUSHNRZKWoxOfONK3m5xHqsittOllwfoj9tg2qsNAmamE9VpQVeY/Tee1WbUm997curJw8vnthD7v7VnKsu7Ei6XjOaXAsf7m8P0a6s/aM3m5O9iG94CwTXs9DZpBMlD3tuLM2fPi93YCaN3RKhGfxnrymccj9nZTF7WzIi/rGGpwiS5yuMTZJ2KlIIrZ0KyhhQQ5jobJUwiUjjWfZQHsjufltDugADIKGEXfn7p2Ibc4YGo2VXrY4Ae0pgw8jwuj1od6MPqk1ioVZtys7tkyVKmswpqIwTVEVDu82MI6qmJL4Ikw440KDXgeyDqTGZG7TcUtEXiu3JO8YPP3BcpdOhMKRQLNrUSz8XCOnZiFoE3qNRU4LHliIgacVAyuIAV5GlWTZfQnj5lysNklFKBP7KE5cy+7XkaM7XSARpSCjsNK/LgznNAZhyv+KDU4vnTtxTj0VDvzV/aeq7KYD/gIapiBP/ClfFdHgSNW6CmvUEET9J2xcEXvSFT8v/hMNPVnLhYPMpI7EPtira1TJwd2eR2oajfouulOngfdIzYajuD2Sy6t5cW9GnDTc37s6EdXNyOm6CkaQpF2QDAaQXcnTi6wsCZ6I1cgeq+TmTUeaqsBW8SvU50wWu/ljDEdHNdlq1u7BB4CXwEgMLO1LjN1pif9RuWBUG++bclXO67jR/IIwqZMTAHe+P892a/uYxAHXtHK92aGaou7Mj7k9bbjS+7GNgUlwNOcfboxr9f0LbRzSycENxe+cAQa1a8SRft+acPDow+X9b6kRJGAVGS63ewUY9XvcLOpGn/ks30HNEvkOo0oWsZkRcLmkAujdBd2Va77qwnmHVAh5XS33TRExbSRDFwtH3NP3Gerh4SPzYdiA6p3HVJPbHsTn/5qS780fFrG5zDCqcH/bVdujcCqRLyPiIv1i2boqE4TUZQiU+7kHtOhjQnfBDHoPi89ne7ZgU5q3C6HXp6YIpevM1TbPWJIgOLrAuobTk/23hNU3HZ/jZPyA0mm2Ux35NghEhETF43KO/T9cTxNS6h27sbqW6rux0e+mB4kdTytryZq6H5AYBiCDSOxddkSO5V7OEGq9+zDG4oK4Rief3fMHzN+hheZhEagtElLvwsGfwampCkriTidlzd2ZpMz2CUJjEAZ38VCBZFcqlz8D7BiIbBvQIpRewYdOciVycKrprDskPHowJMIRkaZnFRdCmOCUK4sf1Rzo08eMmtQBSLyMtpXnJXYorFC416asSu7um6XuKk2bZ59WIOEicGrKBWJiE/HTT+M8CGhvu2Vb9w+MAKd+rV5BOdoWRz8yxiWq1gjFQQgw1BTpmo/Kj+NdIG5HzKbfylc7nXHZIvehuSxiM8PJqWXvx99H7d6DRcCKvAN32Vp5w6wv8MeaXihiGMd0KIesqPq+Chl9Gsb0sV9n9gm18NncAMdLwhjgzC/6b+OLkHjT4fDNLmbFpukQbKQCYdq3YdeXG5Shb6ggaTmVRHLGNRgWM4u3EHmu+kG2ZeKyH7cusdYgdl86XCJRTRqN70/XSEIRjvxBdQVh5bkEqbXumbxeJc44whP6+Nh5WqG47QYFmYoD9cmX56ojeIBfYpdCDwxV7DGLbKV0dwUiiRCbPgQ2JkMgkt9JZqT2iDLGpv/+YhB66Ivx84qzJRqPSKlrfEMw0gveimFLnkTRJRuQpCifZSKaSgYiaz8XeYuJm8ck7q7kT5ZFwVn5c1OCyhDxfVjp8uHtF9k9a4OCKEJGt6fTlk54myqGe7wYeAlu0i8P93XN3FnLRObQeZXZX6XhAtxs1hog1GffBzXAjARZLFc79yptufsPPTZSe0nGXeNtCwwNgQ+DjgquWsZHRGf2Iu8HFIFmyfUcBcmRFzY+Y2Tn3JAFtuLWtMe3BKfGWX+UoZIc+rn+ef37O9eLCfFLeHqpsIpfSSvf3x42YPyn4vNUrqX1PqOexV1mKn7U8DxTBoWhLATlUEqJepugtvN7FfznM0+5A4OftC8UYeAoKsrKmS7EK3OY+6x0GIz/eGk4AUQ5Kfo97ivMIMIn+kbG+OGFKegLbX9nREcBwa+G+mNPPwzYvIGaCckaxe97vVBYY0T++5bBP0eXUUh4CYxrLSVao1aL3TCY3cbE0RihtiIOS4Qj79U+qcHz4Nkmb9VXpjCItpcFBQWvfmG/IPgjxieHzZC0uvPjZt3Q7IQMwq/4aDN2MDziSRocOrtc9sEvrwfw/4WmKzV+G+T4SoV89vmxco6gnZJ9s9lFCBe/Vl56c40dI/PRYGNdnICfJ6t1awq+A8PWzzH9VvrgrEqAEDEBqKZK0dNL9z5AZ65efw+qhdVSdysXyvxq29HfSVrCc6xMOfiyZbjzAoLx6LGmZP7An/KXKtaM3gHi6wyB98lTu18vnDMm5RITOlYmUwpMMCsJ/kKFVdINw//OtdKhaTR0Kv/Nd7Ivc/zd3Wyhns62/DqwDALMQIc9dU/tUMPIud3f4iDGG+mb4rl5Ov33ne0BY2iokBCKYoAVwkaSmnFECN+2P+m/66orFkT06Dh42ZTxe1nwqfNo2XPs7l0G5jHtKZznUGR7rMcA79Vq1YqPG5yE3r/B0DBjSmvX/Iy86KwJDFSpOGPD1m9pcZcKdbwgkVAG15eVfYIgPleTPliwe18HO64XLhDrHcHEAyqa4b1V68vlWGTBAyUBVKGdqdD8t+ozq43phQnfWkSB627uXI/KaDtDaqxdLtfO553l44sPvUWXSP57UsZu5T1xsQgzRUpjSTApT6+KTR4A7GPwaTbhMt74v7+rcAYxtSEIbCV9l2XbzMKNZGxOVYpRKL3UkV5ZB6LFEzupnw0xKKp+TycozJbZDaBr9fMB3RYB9tuu+vI7NCx3D+E7o6xSs7F5kv+DVEg9hDGYudSXfl0gCBxPARmFF1nwjfCDRIWmlUAMfZc9SuItw0OBqUi9r5XDySGoi808EeerPliptOHMvyqEQcJJsTB5lcf5pc3e1EqYsgCD/3fW7NLW/VLnMAKPJ4QdPoS0eMic6oeXuJgYvfP4a/0Rfi3IqZd9VyG8Hwh6ht2RDjt3VnxaNYfZKUMZ+fm/gC9k3QLCv+XZFAIcpSJCbw+r9+U1h1LPObGy0YKGEa6R2SEMnjj+OeUt1viUUlNdJqJWBEei4AqiRnDSwdbkJbUtM9kfPcKnN0WikOQ+Y7o6CC7eer9dsXM+iG6WFEVNNWjEVsoP0Yn9QQu8nIWyPjP5wbd8Bdu366t0nLkeloCfgXk4hK5VdwdDRi4ru8GZ2lodOOafmnDkPw0ZHG07MPelMQ3mEKBfviXqePqmCzh8KXjeY7zRVxdV3kyNU9rlMRbDdjoSTxuRexr369noAYEizSjgnH3mqbuUB4GQoXZPnvP5qVUENDlbH3jcX6MpyyAht+/VXPd7WoHQMn0+BahUBlF4AuhHam2hzJsRzzQs2B58W/JwRentn511SXcJMOSaJ7l0WP5HwnF6V4VduqjfVC0DMBXSh+QKC4+sIu+SkjyAo2bO9rQniwL0/0WMztieMPy1DP0C4SvXD8dGUNpKLUNXbGhZhxsEHDUJ4aZCYJNJl0XmXKhgQOJbAl64xz2Yp/mA8gNar8JkESNarpiXOKSptfxESt0hnQQBUfbga4UpBPrp0J7ofszmuf4NgcooMXtBFP4SECHHMGxGXm8bQVJ0IKVJlHmGp8ClPYSk/JuYdypqd0xtKAUFLPHczkSN3Ir85GHEAcEgckgfmttjmoMp8CuBxokg7nQBUB2l6+AaxkbbwtNbjhl8IynhklOxlggug5ZgyaNyGRWNBaibk4efVt2XZAT5yjjYF1IGywHWZXsQiBYZoMBlzlMUZe/veRoSYRU2MMqpidAo3bWqpoqGs4fg4UpVteVCSWTkkW2ORcyO0uYJzYP/puMlKfULq3HBnSJICbE4ndzZVLr3f9zX9bS73nuhIaa4dY8pbi+IZI59ReLl2IxmyaCsWWybBVCupaln61d2KXAhPyt5uKLmC7gunS2llKg7kj37bwSTtRtrogWfFpQz72l835NIMLq0SO9LePsjDyw6jepcxd622CbauYbygmc9slREA2xa84KEQeKO0hkTNYKZDRJcUzB9QvcIsPOvSC4467J8l8P+Nq0e422EqBNhuXBo2YRdhn0Uq0wUKZ/XjaJQw9XjVn0mPi3bSxyLcVlsIStCzzWpYGdyIkHyXt68YJYL9f6BlEV0Mzo0+QwMvFwcNo7Tilpf8Wwm3w7QtshNnRN4HM1waYMEz/wvvzS1KD3O2LbmC8Fd6vooi2NMaxaWXlAla/pHo8MMVPUSLQpbAilt4yL9e2OmRQ9HFozkov1TCzdgz9aQCupAW7zvlZ7izpUWxrsPjw3XFQajNRpXggr+TCLOKZTUquR0VVLv340gtzmoc2dYivCR89mGLbf6k041oEatQQpqnXw02efQl+8UqFhrkKdcTIhJyHoRVbb6A1XTm0AFyZfHE0wXHzX29ybYRBTzxJBClGENgSgAuQMdZ0rwsHIzXiJyFlBiU3eObdVb2e8WCyWPQlxNWd9bP/w6cc6cxc1tDGMfKIdIWYnb2NVFxvoB5T6qN7El6QfFE0EZ6sTkZ8CgFNTa/D+TOUpfWXZQCOjvKnR/SNhkFs98z6KOQlLE/Zld+YXoSvOwG/bMc8dfl2Yiji+Gnkzp97zhEr4ashbUX32lccfljAt2W6GJcxy55foubYtddO07vKr5iJvmuPXOMRiybchmh44FwObdNH6UFaABTV2BQChArsFw+sbM2QHBh6d/MOTqh5bNtN2TMYO31I/uVQh+RNFNnOWAVZpXJb1grKj6+hWlXd7VEjmRSk2A2W370T4kiDasHSX6GDk9MuZZrn+TvcAQVEZVl5pbPjOFrS3puIunMC8LUgJmZ+kuxz1Ht8VrXL/xHNxtrBMC11erQr0RjPrkt+nxWFCyMSYvIikF6PXrm08A2PwrNd2l/t2NlExxxOpJJysMh3/7dUeNMAoQN+gvZx08kCzkpmN9eh2S3YvW0l/YC6nhFi7enRFcee0SLEKeq/BcqjenfWnSkj9iRXoX7gb1i23qdA/OprZw09RDDCpuLSFrgdLXNcdS5xcmkpPXupdQ7Hy6BlXSG/D0Nz1FuLFzLuWU4bHPUZi4Jt74G5DcmOQrIBZB693VOLUSvrj/MhBQsXgFdynBdLB/+nBZAcQPNPI/4Y0ul0tVFqiiAVgw9DoL2gmJ0YAbP/ltvLOd2Yk1AJnf5oc7/i04qz/4295r51eomavz3CNbESAG3KwDXEU9WN0KguQ+B2Kg6rAw39lgxgyQt+BcRo6R2v/MWk9THnZKl0mwlRaHQE93AV51wkmSxtlrpVMWoVJvr5/DYtw1QzO43ao/TdG76S3vdhtpwRywBemMgc7cQlSQk9Y6euhL+xMKuEzRTiehEJD0M+5djgNrdofn1ceqfb8d3V0aYndpixo9/7xN9b32wEdxLDaI+xPIfX/yOTJJSLNqzdlLPKgRTakfh4TEK8r70XH2gBRNRY9xxj+s1MH/C3LKqfdRfa8gSLaT6DICy7AXE+ZQj8FMPExKzBZd/EW7gLtNrlgphQyarFu0n8FOowqcxWdKS0eafdLPHiPK1UHp5YbQfTEUKqW98ZZu/NBlNvSQACQxR3k4SX0UnOvit4+CH4r62ZnYinzjZ7Q5mzvdMIWwAesFgxl4ZX+GfBxsXcMfJ3/Cwnk3nJ7AApnp6oc7SfLGqLOHQ8ejUSOHsLOYhVMznVHTOLxDGjOJBAz7hbjTCxxRqoq1V21M0b0JhqVOctkxC97hDRxR2eghMQszpUc4aDsKyh0qVCn49s7JsGOw2a8XJj4VHLacRMqwnptkSqyLSVwUuqHyKtncusLzIoL8aLgAYsXj4M1sGsSzQsmglFwtIL8n7dxxaM1kGqJxWIQG5dlJ/eMX1oFwjVM7KkzOzSSvvkFpIgdTXj+NXXuWadVNj/pi6TD372NZwGvodg5wIqt1ajYZY6I+wmfbeuXhb9XGBO6Tqr5l/zsMbUlSgEHTKXtBQ79JIY+QU8WFRpQ/CGt9+/ulfxkU9mHG47MM+tDAmLXpfySTNld8Cb1WREH4GZAZjiR+PTxdz11iP2MEIxUJf3B2EJe8mOyg1FpB6ggmW7ZYUkeVS24pPqnDnhMZOtz9l0DPrUMUa963ijcPPniXOrfU0i8lavZmJCzeEF8tvUuiC5mTg3UJby1Qjb+8Xx3mhWep8uJcejWrrycv3OlOI7FcQZaN3agEF4M0Zge5yyQzb/NWzD3A9PwAX898+mT0ffv14O5J7RGZMWNsIVDbkZ3IajwLKM/jds5F/ZvGSpCx5l1wz5qFSpK6vghFzWc9CiQniPxw/8ws9m0LCotc56IJMM901Zy3S+FdwzNU0c2XHPvBsrC6H/zH6UfriUU4yQM2mKZy7ODyw39h9zHF+fDF3fV0v3ooT8Z4LshWQy7GUzVLLVdAzdrgw==
Variant 0
DifficultyLevel
606
Question
Dave and Helene had identical ice-blocks.
Dave ate 65 of his ice-block.
Helene ate more of her ice-block than Dave.
What fraction could Helene have eaten?
Worked Solution
76 is the only fraction greater than 65.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers