Number, NAP_70056
Question
The weights of two trucks are in the ratio of 4 : 7. If together, they weigh 3300 tonnes, how many more tonnes does the larger truck weigh?
Worked Solution
|
|
Total Parts in Ratio |
= 4 + 7 |
|
= 11 |
Smaller truck's weight |
= 113300 × 4 |
|
= 1200 tonnes |
Larger truck's weight |
= 113300 × 7 |
|
= 2100 tonnes |
|
|
Difference in weight |
= 2100 − 1200 |
|
= {{{correctAnswer}}} |
Therefore, the larger truck is {{{correctAnswer}}} tonnes heavier.
U2FsdGVkX19dZh6qCG38G29Ryvs7oANFDA+CNfd8U06dF0vNjBTBnM3JtYVT4o2m3ShYJQ6/cu5PPCvRui5inS5ugXz7fF60SB4/6L68axre17nbeAlapNnb+ZjwRGYDs3BRMnrwNSdjy5E4jS0lRVzeK96L7khn9wiH9LGHTztC6wFQKXkTbSfN5cyn2IQtlSOLyHdVYyq4RMe/TWE+Xv/iAqZ9QSfDyuJqEdD6+otCYqqyQuVBIoQYzTxspN7eUHo+UAMzvH/EmiroLI8/eOvYFaPrOzmAWv/RBapTnM/b6a1zLrd5Qi6rpYBYODDXPOY6ksptgRU1UGS78njGbqpW1TQeGx+SwMg5iqC3FdBxmIDw+tbZq50Jscf5ZFLK4XJQPI75ZaNJ42VytMpmGieM2f6/7dTE03bkpEyTcdZmsIYwp9j1E6MJSuVewNzk1sMvj18KMlHNEpJIFf2/ZYD0NYbTMp/bj7RuHNqC2Nhl7535GV3CELWdDFRMR0tTi3Qjk2wNEjridxmHXSIgfDGqIf4Lag4mSLuH1pWpY9Kfzl24IOS/CTQCSwaNJpxCZA42Mv8IzYerSOEUv5XXK1WW8E47ChQvITpflJfC5gEIqboxc04nxSyrQ4qqr+cigYzTlov3SP6hkEtqNFKkaIBZJqJPU68anBVms3eQxOI1SvIFLZtY4UxJ65LGKQYhySm4hANhldJvWBC1S69H/hCUrDt+VYsdmIKmHf8tNqBQgibkVAsYRVlvBQxqWbUBPX1WSkPGU3uwyJ/cZzlLO4n6b8o7dP7DRJ9MbR1uuE4up0K5cIaXhatzu47INMZJ2T7LqLr63KeibdLHAydjRXUaawWwDYOMpXZIfPB92hNaUFsZ6FCx9QQk9nRGL+HCHC7sArU0MQZP1v3bmUQ9emZdJ8XYF4jS7dJIOfkBVlz8INaWixyLxw0Jh/2S/g+APLN30eJtHhC5rvgG7ea1oB6OVoN7dT4lYOn8eFzOJ+r5sr933eXyvmrrXmQddaA9GlWaMmQcJSyv7TSp0liALOalgOrtkvJSFGfRVrK/HjXyF0Rp+06oaTK3Qk/1+LSVnWD2zbErkmoZ7MBdNX/765dbXJVI3+veQTbm3S+B4va6eDvBbdrguactkIuFYcfHHzSydPobJuIT1ugNkh6YVRvKiPOauNfjyEvBbQnJ9GdJoslCEr3i5dNo4XZoaWfIayZe/WWcYNCD1+gK6HE/igK3upY87Xm5Qb6OHIpCAqJAig+eEnP7T/4Rd6R34/giYO8OzI3jmvGU4N+B3pgNxyJRSOzVl//J29lohXhaa3kbWXoGr5o7FopitqG8o8rLsrnpXYwVNBMStVtV1qmAhXkiFzjJJ7FJYMDDwGXHn7gv7WNuR/bOJQqheKUVLg+lKuTMuMwI1kTrLaj39HYq1WOOFE/aq/hY6K5kD0yRqYqnukoW81rJ6oK2wNz2eLb3WLMcMN4pjOJK5hcqYSvVF8zVCx4EnCNXLEiECIspjlyC4qDXkvo221xiic8L9XZcwZdixyjIoUFyr8q7wYBMovkoTgfafSXjPEByinWAXujY1qjlMGFqQjPfkVBY4wPFMxzerSDIqheawZQf1SMqF1HAGKKtjQpAyC5uL/3NuL6e4N85IDCfzRAnV0rokgLERC9ksW1gs408/HF/TNrHow0cZAcoi6uH7OQECBTFk1k6pomcN/wSp5XTMAd/KATAxYi7DZ7EWycEmVlOQ8L6udHSLy3xz7a/vuuTZjm1tZqLxGp3ya1YKQ/rUkmkiyixmsmCujVSc/gtZKVenyVjesulMBWafsvdrzycIA7SszLG+Rz2lAU4XHdxGPYQDHkNiWTY2jQDA4d6l6vJY0J3145hCUU3w2rrt6JvXA7Rqa8YQIqKH7PWiIzFErs0TAbnZ6zHQvJD3kY8100vE6QFRaTEJ9PpSSIMhWU4eXVbs/DyVHkwpi0R+6eqTJXO5dyT1WcSIR4LBRRUhEPXpivcCXnayKDYCMtLaKBO6c5OA/HNlMSBzXH7Ih985g+npLkoMgVphkgPuzF7thb/p8+J8RKSJ/dVpGSbfG91/46FzWMpAVErL/zBIqAS/EJPk79O/VdLKlq5kBKXh/aS3AH43Uk9ZwuZayKE7zePbik8DqPX/govv4WnDy6Ztp5NICu4hTLISrar05bJnMOzX5K2IMic8qlEhtWisdTiFnvLW256o7anbUmT0G1xaewprj13ta6sV9tZCjkZKHbTgBSCNTEQ2rQMZtkNuUq2/tEKGmFEa2o1fpa3B9B5T4GJnVZkQ1Fmfhbv/m+hXUg6BAjkN45AubYZ90WcAD3Ukqh5S23T5v8pU7QEPiCzSshkjbuXRrsLuDvb69nXeY8l28dBBes7uw69dTw6mzCJmHS5nJhNrrzv5FRd6I/5byMzWCDpFZ2TRnKsKlg3hOMm/su1XUZi9R2BoIwCMabNO5fZjAUo3w9YWY4X1ItUPDc9gK5h6HJtHYvXJfbUz4MSS1V4C+0z7lk8dVpxb32NbNvG0PTfKuOiiDvGsMsc7C5lpD1C1aI65V+PysPmUUARO+o13MVggoBApQVME+o4bUc7nhsxI9fa8wphhmpyxRVwlnGWohOjQNhPYpkQNsMI3cP7M0GeRnNcbXmznam9DglqIAR/FceF/Nx/l23mxC6lOdQGdKZQ3mSgnw4E0syghFQVvD9TLCdcVD1JWmTabZo7KUSrzj75kW+mMlUElW90jPX+pthBVhJwGJkCTe5pMUi5KXLDI8XWO1U6dMgW1S23VQ282bNCxe8gEoyHg/kdcloHEf8h6j0/NX85dlXTtUj9N7kv/a/3uGxuTVx/wn3cDfI9LzdH3ZD6AvpIq4Ag4xpo0Xseef86H1qqnJm5/aSHp6M2EPGTzLBQaPika8v39ZarrthbJ90vVhhry4/7KMFhENzBcrDk+Q1IFum//92HKFHha+NGwn1F5x1LP2+gaJaoeF5Iapxp++MeGKsMEnUWLcyCOYUWuk2oV0UXOZ6hfsi4okC/5mLV8zKDBK0UWetvNXN9bpGmsLWZEQ3fEQ+uvzj7efyQKamIr6Uo1GPFngJEIhKkEPXAUhpZazPMe8eewuVZPbrTyi81CecN12+iBL9r2+7zPO2iJinPO/wvkfd75a4TpOlulSEE8Izrcg+IJt8b1AP0R3F3UH4sbHwQ86afJCfAHdf+ex2H/XiMbiOKGVygqHjb5M3Kl+4riqN4+/qPf21RKnb0lcTaMpiuvV/HxxscepDGJUvSXy5SepLZMksoUPmtVQWc1rXSY8BXxsulHT5UTaWfYEgJpJalHwR/Va7rjipqp+tMaPWIJv9qd4qJCr1h86vafTA5cSFZoLxN1sPAN2MTXzh++sDDDiXSXHDzaLproLsdbn+u6vuJL6J7Bv3DEAPBD2QdW+LYe/42P6dBLD1qT4QtI/H5vcvLVCYJmvGeSEEL2OLBVYSIK3NTPQhrHDNCZ5d06AVjOYxaLSIV6pHhx4QcWvBXVX0buxL2Wv4SM1zxd0feG40YtVvDosE+mASKYlaLHp4vNu2auCCRCQkk4EzkcIzPKh7CEHviWr946lLk2FLrW3EaK5muX0ZxHB+DX2cLYx5ggJKyXQy0RIJi//xyPLe6U/W3Fii6wDDLivFvskba6SwDQvY026Th9xcZcqe8kbz0e5z9WSqDNPpg2myDHVVHTgPiHMX9JrFIP+mZpOCfGLyrz1xZk9SRN3L90zdMZzIKg847lN4mX5TqRHF9Nc9FRXH0+ZZwiTvdXCF9AClg3SNw0hdbt5TS2OkxfObHDaEz14EQCrMCpSndkFtDHKEAqAV+cuvnp2FSd3UgrmBi/wK8SxM1mVJxTA3p6b8sgTakdocZOmHEqG5pyaCy0oL10OJQ9kKymtK1gD+29qvO4dy32LKMmGGCS9S5NCENtSRoHcHmHu3VQzRk/qIIO2ZjW5HGeIwUeEpUcp4gu0pgs6TsXIEv4oHZGB4bGqyX9Qi90rhH7wN4ADwwZa+yZ0UDaZBWT6Gk96drulhXATkkLsmucvA0iZQOgtINNxyC69f+isX4SDE+B1gADRjXkuciEEek8G0eeSUaJ5A3Ysyd1VPP01ljPVjcHBBZMmsi/3NUjtxgbIpu/Vu7SuvqiqZxTX3z4FvQJHYUdmIO2Lod0nrCK4UIA4WjtxR1bT5aed3t/l5N1ct7J3Dlv7l3y7poQ845cSqxD5pRrEvkO0ZHf701cD8ecU4k+zlu67TG/x3hged/54vAaqqde7EWopyoF6yWlfLRCv1g+VRklg03aWRx1dBnUe8X3eadC3pgOfsCPgmyaJuifMOr0ha7KVXh8/+c2FPA79tJL3TskoXX7bvJQjJMTjq6X7Oy2BLnXXSQcp3SnyFXAmf0IGrt1rXLo5kEZ0IiVMCcWUC9TmOWfghfH/C8QlgZXxPHc/QMxxAJ/mQLXLYs8H0BqoA9mG2o/KfLVccIBbZAQwwMu2Pc3uDi7sqrRL9NnlHvP8R308QBfL5HYpbi5SMmvwtvNgexKhhEx1h9LLh0pd4Dx+FEWw3V+9Ll6EJLv3TF031QXL9lTaX98rP8d2pJL4l9p0pnJJm38WwDbFgB2GCUMOR8EZ6WNqrjXaxFnkI9QZGneU2wJHEbfXO1ZFhL/A3PSt+swQrbtmAITC/EyQAeBdLmI4DY+vSacbH70GrkmYAvavfqy2zCTZz9of+mH+CaIILUhbicsKeHosNfVlq8P50dobXCOnkPN/vnU+oYfo8kcpyvs36OplcrZ9SEejXCrlRbScCG+Qy8z+rSlAbyktSSr/YS1Dn1R0QeriilU8KJDwl9S3gE732tvXxhVhpqZxTRWVq85/c2BloTksaMxUnUk45at2g9noRFU/zfV3gvJgRG3u+STAphOgZxqxEx6nUCQuviGBSkB2I9M/v+cCO3KdDELx9Dor2Nmhl69ZyM0APf6Eemge0pEdORV4U7F2Jgdc+F3O5dVXFAhdzGZ6PcIzYKIR925nNkb+m56TimL4FKTgZxxH8f8itF/avFACYcXukT4g7r+l7l2g/tcPuQU0eawGoQjOAi/7cxqAzV8nD83Oowz/ltPO1HJDozFdk9Cnz7kN7hRbZmslqEqBU43T3Qvv/SO0ra/uQL0MRc0zPleOVnktxnpwCHC+ih5gBb+4L7LCDGEjLnqbaXQC+9bwX2xRjz++G1CVO4wVm0NQ5sat9sZsd0g7n9kIRrOBYGe1NFS3XVfzzf2k5Tg6drN6GbB0irsZ8O0YutbLYhD/yETPO/DO1o34L3GArHIbR9rYKsq7UZRy3vE0LES1SuUO5K7953Z10U0ZeFqIjikAqWRXCiAHPysn/LWJVYJxkW5lPJotz7FD8JzMiSGqLnoki72nQZfAvvA7ubhQxHq7wy4O2MPWibaPfreuL1KEHrF2vTu6NNUH3bDe50nj/eWfDWNF7Anx1LAPG93WKDOzPHE2pNo3hVZ0UrCjzkpOp+mJuhJEjaxiH0LnuPJGUKpdH2eY+rozchAgikPdo/ndctmYSXr8B7fBNWf+y26+M8LGDmLlm10ms83lHR/ytROIksuVJQAmo22XSBjFmWRmV08nZtbUkRd7mMUmDc3clncZoft5/MPuTqaz0go/7lEEPheP+tQSa69FFgJFjn1AKecvgnjcgUNYH5f729/iHi7EwOyrxktCwtJ+6h+BOIRDQP0+OqTJRc88dmpV899YBQNiMsWtKNpeE0O1tXv+qIHSP+R3RdnGVf0fqNj8250n9NL3IndMSL6ZRVb+YFBtw+9AJRNTQUZ6aIv/Qt0HZeqoUDJmLPIWLINJQiM6WEf6ReP5D0MPhJUjfPhMvwm6ctt8Nym9MPh+XPKn/4vH8hpyeo8Jgw41Eqhw75yaPgfP/oM1su1QCdG/Pkw6+UCNrwu+HwgJ5VtHLlmYB8y2Uqu4fNVvdtbJ3P+uwkX2j99ZIXpDwWutO6n/3q4spj5GO0ZaJgQiL1lgXR+Vy7N5/JVNq+Z7IDlwo59wFTxNWZKZSbSFAHdL9syo6jAAt1AhDch538kZX7QdNO7gu1hXTHOlYJwHmypG14fh+pOqnnOU28V7NCOtGvCdeaxBalopW3TMSSgz6OclfaOAOOIFb/TS58QBuPiRzPb3mrhBrTt38vsXLOwsWPkTS2SB744Y9C/iyA/lQuVVWCFNOH5GTxkWQOck6K8nCloTabgD03n6w+LsGQdMpx/ujSzPspTMar2Lefulmykt/teOAG9jkKwULwPZGmrTq379XWLkHL/Ef5h4yxKY795kMLqLPcFbHGyXbM+eLYtcdq8wR6EwSW6/jOnhq9JooePTQyT0u7TKBLeSEs04wXlKsGJepkOsOW2IhWc91iDtJeAjAgndWhlZ0n5coSK8WYKD5sGemzeFEOi+7kXHxmHNmEgcEUbYehMTQNeORtmoM3983Y5D9z3uuvOd66tD4rrpXwuRA2OaUeFKDhEwgggYO2AE5u1blBgIMxwK/Ydam0ayvP7Ri/IzyOk0qRigvsf6J2faqJ5QYWkA87PlSYlBGpNUHl4ciISp6b5tcklGp7brw0oc5BU7xLMg7fg9B5g5ydAJzpn0vdnVCwEa4sLU81IiTEahv6hLQ2ETYdFvSJ7/3meNWAg4p4LSjB0bv2MWjkCqrk9z8WKxpRaDMCYvWqnlilmM+egYP7oSptxgvU+xEYiXbgXIW/82TnkIvSzm7K1nb9ie0qthX/c8ZMg3uoKVTSAOAGlbU1YNmgn+qhRpvxjiHh5g2O3pH6ghl0+zhNwZA8POqVQXLnblaDZbXgx7wbKZWti+kcHW1WsMeqqVLlw3U7p1I3h3cbCG/dg4CJzIz6thDpxJjIwFjozx9Q7G5aeAsckD9oLFgCLa8FSGDmaGSIS3/jgGbDyAILyJ2wCCicey1Ga5ftUdJxcaoRLYkiGdSH+7n1j8Tjw4Krip6VfmtpFFpbEGEVJtZFDtRtv+a41Gu5MVRrf344xCwzJPwr8mEYTQp4Jt8hMnr/D7ZQGkxhiovPlQKJ5JEHFkThYKrtDRZliGkJbAwrhkshHMZM8oGagei+WOSAWOb+Xh6C6vQy3fdEVn2yDpDTgvS6hNNt6WxtGDN7qor/LfHXSlVR8Z7ZQpzf3bikewiZlTKhvWclAl4qVtGLiYAq76QzxUt+MahMQBSkqnCgq/uJjlnvX/t9doMFROUryds1izDOmoVAFY0EeA6kZkY3rs/7o7vTFlcqSHnSkd2IMJLeD/NnUAzyR5FWjLOADiQPtLamy7jr05b6EdGwugzCsbEd4UvFeKsDe5wgQMtPM7BVngXNae2C3oyhsFgdoFeLDo60Z7nEyRN8jks0iEIqhFA776OMR8I6JnYkEZ14YtLl5Uces2leu/RJoBr5PJYAx12cHS3rdrluDbO4pQ08szNnh/ecSXXnmplv7DUtVXVYnroXHvKaWpaoE40X2rBrPGMDAfE/DgWYaQofOormnvHP5dEvJr7gjaeQt44eNN6NGEQevI5Tp1UOQ3E4loF18V3o6Mu8uPME0yZ03V+bpO6sXE6IAzw9r6Bke9vHiiXowN9XcmGbbY7ccN9YfgS1nYZ2sL/DizCCbfO8PG3QT2ByMez5v0j9W9GorOah0BqhgIMtGs68820EJYZZHDxYp6UYMn6OQYXTCks5lEaXaQgEY24F5+c8V8komAy5+u0rho3y9e0=
Variant 0
DifficultyLevel
570
Question
The weights of two trucks are in the ratio of 4 : 7. If together, they weigh 3300 tonnes, how many more tonnes does the larger truck weigh?
Worked Solution
|
|
Total Parts in Ratio |
= 4 + 7 |
|
= 11 |
Smaller truck's weight |
= 113300 × 4 |
|
= 1200 tonnes |
Larger truck's weight |
= 113300 × 7 |
|
= 2100 tonnes |
|
|
Difference in weight |
= 2100 − 1200 |
|
= 900 |
Therefore, the larger truck is 900 tonnes heavier.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers