Algebra, NAPX9-TLF-CA40 SA v3
U2FsdGVkX1+wXidgfI+wY8qAcmCB8QTRGDrHVffBzRcj3FXCx9/YNaj8HbBeYXBEM5kkNJncb/U9aMfdm4baV07GJXKkoJYgHiWOdUpEkQqsAlHeU9dqOJrxLWQxN/JuZ7AZW4NU7UeUMl6RN2jBF7OhaFpgiw8MBtHAi9CtdjdAYk+ZaDC7fw8IC68tDcZh7/ueomrE21oe2sEDoIKWhQSG/UynzXW/0hTLR5WMbOZanoUXxoDrJzLx3C4t5hP6kFPF/ggykY/83lMUw0NeVf2A1UfwkhyuQp7GtifqpCUNUevQ29H/+IRV/ylBdzyw5eKK2Al14+HW/evLD7bj8ZLi9RzxMO3/+rTUgXjjQy8gSfBiXxNjZoB67Nt9SOuRUSH9LLmbnFp1NkbDGCfzQ7VVnIxe/O45AjliBHGrQ9eZNPDEffciSfwM56jP7BqIdcX1XchOFPV7CVs3f8tO0QFvYHG0awlIz7S+1n4hzV0o52TodwMhA7KRGhriKemxj9yx9wa2EXGuYEMGxoBid8FIoGhRDhgT1FN+MAgg3YbaW/H+n1mFYQwanEUg+CFLmdqGo4EDaThLURKYu3xmfbAwofWBrCSob9AKVRNKvFJEEqoID7yhkVuYjjh21c3wHBpS8oOuJLD2Ly6ajsAHB+AAZKSaur1M+KjQGSD9K69r5oJjxAhuCFs0j1eS+ZkKZhN0C9xPN0qAoNLRpSm5hVu5mX08zc3RyglPTawgVWk+Y5xO3+eWQsailjOicuTv1YubnQ48uBgscEpIbgd0dEcilvSY1ZPj709f2UjPUMRhh6/u4ZmjUzCEfoSxwkCGvjGpUzugkOEUFhDshVPNWDbQMbSQzPdOD6o4He9OI2oLyWyqDZtKctv15yIfjToY0strLYgE3gx9lamBtmYbEjo6xN7XtbyztsyKsJZrEegI7+FLEEWI8AovpAwIIn1m/8O2gyfn8udAqag5hDrQTGPBjkS3AI4GVc7JqsmkSRV/2wtUDmwWQZFh6ZT98RCO0mVc8lkjIf6gAfA/Qdo1zGeZBthClWUFmstZsJ/Lyr7uivtAaZ03zc1Be34s/KIbe/Kdbu3SPKdXxproZXdv84Fl6GJzArQyZScTNmGBA3u1GvOGKLaRNifP+DuziPITDdiGKq3oQUg8r5ffwUQ1ucAJU3xCk2kjGIHZ1q/si2TacnU82rleaOIBaNf+n7vzBqlFaoLvlOGo5cTUMsMZbqL8qs/9W2g/8imh91SKS85yC704OfmoVFvDtXnBifEumz8gVhdmvvFpmd67/Y63KirUKlPLNBgnrQgZYD7UT3YfXlj23cr48tnz/8Nx/qpij8W98nFgURhP4SxTTZDYl8WJCGCCdsFmP8FGuqmHLEb6OqUdeOtHcg3V661vSpt1Vgk+RyUpbyBcpfnWtAnWBmhF2S4ZSKjuZPZD0hrLRLkfduEfDpr2P8pQMFWB/3wrkeYFCgTkgAAU24nDcybw5NLrvfoaw39ulV9Z893MRWKKLGvvQEkGByXwCl3mj0H18/7JT/gDmHfvb0uHDrcXA6kxIa9Gutl/ym78DH6tZ/E0uO44CZvGvVwHQYN4sDVxXsP7JPUH/r6Z8aISIOn8sKDe3uORzAgICiKgPFZndKVIGeQid9MYQug0+yXgMMtBwK43NA50+1K9UsXsivjsIvcU/gDqVJ78PMcjQsZx1MX+jBurQtwFFSF6QJIBGuSqVMDe0hndA3ZcgXk5d/Yi4D+OO9qPQFgeb1P6rySRMHT2rjcIlXwTAHWWq8kasFvFFW7hU6uRbMYdbYt6Xy/+UxusMubH4Ds+nYXG9LjOA0YxbiN7vXeusqKxebak39kz/WhXkIp5kwTZnft+Vi+UBaP+dHDsqgqGoj6OeJnCQucThOBcjtXKl6uSqq8u2MOuGWSr/PTVf71zU86ZJ1Sbeb9DDDKdJKOVg89hCzrYFi4kjs2iT0pc9H+eGzSi7BPNKD+tLNbUZTD95zSXSEn0oTJ3RgM813YUD/ptox0KCcj8z/sky8LddD5jWQgLfQovMCYDDHNgJO/y8uQw8lL2V+onL5zJPlqjhzUau9WW+FPzGMXNAuNRGFGlXwExjzdxxEGpYN6OlwV5gBqIXf17LG1D45Ye3AxNGRY7hsuYutcE/E/sOjT87I1W4psCcnedc7iCJEZJHD71C4rKYVUNP71l1sZXvmqdZIsj5G/2Ee862eVV79ebmHG+oskWjbHGXvumeBjnv25PkiULzjphp113bwE91o0VZdyhLxQBoqTI+0SrMZv5xT5AyoA2AMYC7LK8x+pERTllNGybVD5wSKpHw9iwmu2g7K5P4xd7yAi+27bv1TGniOukZr1IS+k1ZP/O5yjqctcC91J5wyYcQoJD25vjCHlGqaSoaGikVBOu9OUIn2TBIcC2j1GFBFQMO5eTAFges1UT+b+0iIMPT+cdyXpnKvhMbJ1x4PQ/xhHJKbIEHmGhyV4lkakHq7h83AAtom5PoaW8ABJ0TsJ8APVgLDC5NsGZt+yyXM/ytizSB+SMj0BQbNVYF5fijeoUFGqTjVsSaghBZV8O2s+43AJ6JgU60dK1iC0rHjQZr8e6Mct8/jVP2FcjuTEA9Xi36uqY4rQ0Q4ol3j2ZlBXPzWglwiSAmYBL4t8uymtD3aDCel17Lyq1Z0505RzNrtP+cYAzS6KnWT+7KuoUvhbZHv/9QmjYkORYbXWiN2beLyEvjJ0yeKfO5RIyU/MMkVnRokXBkYKJRXj2Kq+v4Ym9ubdXcJwpMivLibb0Icr3vs60GD4Z5kV2RMUPi+Kw6oraR6mi9Z+54/Q+JhHR0L2Xx+7ggO330RCGwm/+yVrowbeuMhKhOqPfFaIB+vMNY3XzLuivywyQoP9fVSTgxAIi3TxMb2aFJz6rbMCRJxx3bFUwVCLOeUzOV3lIyOPh+ikte4Y85u8SlDA9VUyAK2JXgr917TTmfYvvKKRH7f6qHW//43R4QHGlZ3/vSuP32hTFHUFa/3vhAmcKjmNtXLuY9qqjzwVMUiMyBmc4WWJGovzQd4kfr0o7MbUYEDHw1AHRIdS30Cn6aRxWQOVNVlAsPuLDDED109YrSK50lazDdqWSca+d9jzTajT313aM1uOKspQVzt2sbs3jJ74gUGK1pCQG2gzr3G0TqYVkprGY98HnlMv2qlNzKQPXivAcq4lcs3qlM4msiN0LxAHa0pHfYEsoyso23fO9CKPSB26TUxvfgIl8AuQXypP7Gbb5S3nBw65/4HP2CIYJOga4u3PaAPNQjmBHmG/u/6xDv0R3ng24bzykzv/p7hWX2BxKov8Sn3BebOWS3gdGmHYO0zeGsY7a2YiZZOyOMEOEWRbXpvI07pcFdPQfWWG98ANRqsd0cuT+cAxY+4Kdgt9xULZzSDoZUFn28NUMWrsLHtYR2cnKkJH5jatGu8O0oFmAlvuqkPqR5iC/5FjvWHbUkLQNLI+wMlPY90PpwFCD7EKOx4LE1ttMeqFA+2yplroql5bJBTfp+6JCB92zOcPKnjTXsPUZbu5BnqNx6vTO9hB9UkznewHRCysIudZJ4adJqMkvoaWVYK/4IOjdOUUQvNbcNUCJUN2yRyxKti5Urc+2UmSoPVmsC17bijqwgc+cZnsXD+9fnMi3zEcYYzcqNHAHtiBXhB09dVDJJOCxFinJ7BqJEFPcT3Hy5awu+D/Q+GRZnxltEGQ6Eevf6wIjpfYNr/+0DTxxqyNYoVobJXhxL4VC71beChJ05jFlSEZqBlip8zhNoHO0wyzDhHoF64/f7nkSxR/V4KnBsbeLWnadBkKI4RxHSobs7J5/8BWn/MbRQlvnnSO5Ep0pL0jBhTjlaxAFvyfJDJHZcYIiAxAsyZnhLJfpAfRVa5NneQ/UHZcIp9UHB8PkyajpQ6odHsvuVVXpTs+eXfqrx5CU9mYDXje7yu9H1WUioM4AUVt9TNQ2VWbrOBzhptrmyu5iH5kz5oqQ+Rn0TOyO2Lhy91ICU6VOGpdZEgJQWLjnbgVIhhm073oxqaN/Jhs5GYaLdCFXonBoSda1tcfNzC44Gd2l3gchJJIwJWciV8gBwnBv7ogQ0A5pGOTYDXrV3fdiOperQhx2JpD2r8uCgOirqNiEG9uhkephu1SYYG9aQ2UllN8C//o7G7eewq7gesnhZtev2fUpI+zuG24Zp3j+eJRixrY7t4Q2Lwjd/AcznJYP2Um/N7P2NcW6gkLdKBKABS56qsl8suh89r66K/SmciQDiiGm9DcxpQpIwsTc16xtORuSTPljGSLKHXvzIB44cHoRhjU9kX+T6x5apDzTDt01kxxiE/VqXq7rAm68WQyZd5U7zP18rsX/zTR4hXFLXhZ2qxgQoKJvNXi31++dAotX3u660ZF5iRdXC363/aBezKXmXBi9ucJaD9BBYzbmSeu+LLY/q/FvCLbOWFjVZb4nJlU1B/RFgsWK5+57yGeBCd2zNoO0e80h8UVn58XvcRCUWskKLL7T4sr5h/0YdsxT4zOjgCx7JUj6Jsc0MTEkGE9JGvwfUz/lLYbD8nJqziNNIC/Rh+5medhHM5Q4XaQTam64f3kxms+X/anIpNVa7AIyoT6wLws62JaXR+wnZhZOvEOMFTTv/dVChbOni0gb5a+lZWia0krGgAXqE0XXjkJZq5obgmQaRoMA5GzG26EPJgxLKVEu11Kb+wCpF2Eb+icXyvINkydlwskTR98fhx6NpUffEqUCJumZ3thqmG8lfeQMt6d1pITv/Rp1+SgfGrq1ZFfhWmqslAK5BWDm9pX9cE0E4wz+T8L+I/hssM3MiXVkgCCtFMMZJskrdkva6koWUrslTS8oHc20VAYwmO9GoxSY+3V4d0fhz2TzxIgYuJgRQQgT9Ks0OWDr1gKKi3nkE6NFHJVom5s/I2DAdgIu9tCc8JfZREmolmW+I3oAH9m7/dLOs1JDHzr8T+Z67HTdY1VdL2MY8UEVu3HQFJEbYf1mQvowy0zDH1Op+JNqTHl/3vfEtYd9A63J0ZvVyWxxeCC/jJrFivzwm2MZqQ//2ouK4T2Ja2TLt9iZcmsfbKgoNERyn00pGw62LyMLVF0BzixnDBrGblF8dvW6QNQYjYcrwejeBNfjAaKVv7qQzJzYrGIhOCVSLtYSGAX9N2or8lUYndoPF+w4CXB8XYKmfWs6RuHQtokjhQR/i2SFPd1q5Nqc8j9ePl4LcaSP7y4YMIjRwd1OddZQGiOBpBG3J5yldQ3RBEQM1WnZdKppHKI2g9CxeyJYJLMJSZgyJgka/RyXYhBWzxUW3FKlrpX8xsUzFl1e1HjgEyDWqR9Be5C8Qu+TjU5nW27rOn+xs6MKqpGte+YSR6aTL0TvA4Y5Aw7ZWRb6J1Sz7BaewqvAg9RE7GmuS8wCMguoiW/M7hLQiysroQZUmvo+nv1ga7oFW9zKzFVBWdQar1+35nY9atHKzSECQNVdC2YrPXCb4/Povdo5H8TVqK5Ip52ATK/Oly/2NifHOyYtVclVt1T+N4DcK3uTtUiC7m72phNXSaD7vb14ZCdZydIfzmD3g52UnQSUylV+z3u+f/nBN1vo668X1lQciiXIxhv5840Umk1LrjlmE0i4tlOqqKJ5NSV2WffmSdxuKrKBTkFLhMJLJ01KtQxv1MbeY8oA3ni2+ADYEMO6hd52kXLeN519LXKFihsfrCPq7WwFtyBoi9wV/nGFrvP9RNIA4V7BljJGl6lJMqVUTZFUl3jlgPhqaUCsBLkVmmAX0Y+KNiVAmC9xIJ4Z+8DIXuVuqLaCRdcd4Yza2WtgrGt4Jd4lSo28c2HoH74/6vLYnGN8kuZoHwn0nX4vsLKINELwZqWCMZ2h0+DkeuSgD86p2HWV5MqpyLeB8S918JjQFl9+oOKgSo7VqsIf3/1lpwtFKgE+dHUogWzeRkwCJyPAXBXx4p0j4FmqBexAOe+4tRa50Q/Y3wYise5IOknyUtjjtR/f9ct8NYFUiuT+DR1lsdNsEFxolupdoJuhwk+VsaA9GojyEzqWoFPR/lmm3YJOCuGrpeJoGDO7gihj8IXBcoTTmVAHhcXh8DLuLPYbSDIMITo7t8fLDulWeJ8BNuOojgZKArwF7IfMt9QPlOW5YL96DOQKHNuNEOldbgoPPLX456qpo/MYwGNK6oboSh2mXtR7GW7LuELJlXXCy8zk6h44zaBnd0u71Be54L38rQLHeZS16ScxmXDAoswzK60AGHX42T0Iyo47toEWtbTu+Lq0bcdXr2atCAWaK3j+li65EhSkPiWQuidRZCsuVOthNDEDcQrLNO2W1Zm5YLct5BWKhsTDnrlibnJUZMYHbA/ISHjLVxIEBnnc9kN2wbkhX+fW0gVGa/0lLzaNfTeArKbqBjjNh8IKkZmup6DX62Fk+Z90MAE09x5mqJ6A58m80Zn5h2joAM2/wVbgznk5L0KcWyY+TOui6ZgVrOzqorofQu28qOn7p7n104OOXCzOIVrmVCvURKLDtB56P+HtzcaMV1SlA1dVqnzvry1UaCYKeZkMYeYesvwQgS0qtEWUDVb+aPFcRpNlY+pvTU8ibAxEEIKokfoDVeLNzUSn2XMQKfU6VCW6X5utC+mPLShxlC9EcuoNLqnMtROD/J+pGo+RyFNOZHH2SeB97eh6nLsFT6/bEv30D4Epmxd0y5hg63lyTYh2rgUjut7/eLV16rJWcNaCi/XKWh002UwBa0mNImDT8h0bNem/zlBQonzZfMEqAoyvNZbQLmhXQsdNxeQ13qo5BKmkTEBIBRXp4bT3AfIEOKhiFJfuH1QO40anh+KbLiD/hn5TQ4jYyBRIiHKrmLzJnnj4iZh4k1SC9SjWrlNtOdvKI59XIa6uVGwfU//8FOPwT73kzMXcBo/QdR4nXqUfgoXbrtZz6cg1PZyd+5CQwiE5VXEbo2o1rP4J+TLgJa6km+6KqwaUDabwA3p2dUAM89TTIgUX8IU5e6VQxZfE1nNSQWeN1ilu730ZiU/NtXP2PQXR93P95U5O7QFMKv9W1gHLWqQ+OR7clQqfq2eJkrz5SekGzGtT3cvjskdIWf6m9tqVZNCTPxwygvTKgGScQ9TMSDtUjEfQSxa+p2113OUNDKjVOOdSdEl+jI2omBOotY4w54mLcrmeSk9Gv0JKnm0Ha1mWRWjz7cd6jAWIOQzCJDxrhT52ToDqdc4Qfc2e5xr31oj1AmfBn9pSku/JnwKi2uVWRmjnURy/8V1h5aqsBnyXm04fM7i064lFOHqJWvvupbF9GB1KGSm4N/M44z6LHM8j5ttlyjwozMQI1tcYQwjmsCMUhNJ2gBruBHGaLrWiLBmgb+48urdfLAmHO288DcsRH6kFWfMuDDHe6KgmwS2RCsZDOHWiTn4f6Al8r4sJKKkw7ViQWHOhvQn27z0AlybbCtoSpRwdCJ12LNFRXUYSx1ACIcEO7RfwVdOxgPwlYi+S7FErUWyttcNpTgz86joo5WehuFiJScaLD5Rj2I0j0DcTYejTB8TM+PMT+PJyzSb9i+1A2zqG8shBJn95r3JAKKl00NQQ38Z97nNfhjqG4X75T6TYQ9ZAZz+8X9d7vNgVbcJkwdaSaJjuY3/XytdNFvBciEKw6JzFqR21x1Z6gGgX0KflVCDwJlFpmhQmlQWg/q9XqPtMXuw/QXOrVO4QDidnC0fvktN+e7it00R4XU4VS64XraqM7fCpIbiePEWB6Hk8NyT5q2owzSqnsYRvlbzr7CCKWP30fFqQNK0DpxVrHGtXbLxHIxZ3MXoB/jC3Qi5rhJgmzqFwusy0wy0vy2cpr3b0YwJFSGcOYxRsfD56Mz7Pz8x+Vl45h9nqtBayOQM9LSOL21APSpqzSbTgW4eKQwFyDZGqPzaqLdjXUoPAnkyY2ojqMqsGXWUlofQK5WMDB2x7ToT5sefQqxEG1AL/Q8H9MbbzyG+KJOoW9439qdW501DsoFiJNP/ogjSxS5U0Sufg918RbxiHHCzWSMiTJf1vD9kqN7F8Aqjk9sSuuapvXtDJOIzZy/re1db2vpd77RhzxjQqzPV6Y38fAfQw5cL8Zok67CogJjyEQaA0PEqcfw1Qq5mkiQaTeTVNnE0yBp11pQoyAoJvwCCwnyf9NkAEoL6RSNIRcRb11g8BuRLHBcRak6+idxA0d3vB8lebM3/Qf0Zcida/kqYfBcajTUz3XRTOTIql9hoJSIvNTEqL70M6s0kop4fGtF0PZWi0JaQMniKbQMpB6ubyF3GOKYFTrP7zOGtVK1vXVTujmyAc66D6ipPXJ1H7Fvdtg4Vv+67qjfJPq4YzIknWkPZn5rOlU07OUCHya6ipl81RQnFDRh1rkYe9fwNpYKvruB2vMR4lFoMX9VwbaNYxzfublmTjvERDf0T+mm3YxodnVgA9b7wtnB7zL/G1SXMecY3SZx8BiaIZMwgR8NrTlO5/ivnDR3gZlLi4cr33J10syS4IG5cKE+nwwRD+h2ENiQX6vaWFPrRjLGXaFoidYQuALSNShsF97FcXMiVt5a8zl+LnMlbqqQv39MD7ABjeUlRrGPIR9X4ePw4w9fZoG6RbaUh6+VeUGz02QFg/krRLembvEO8Ipsr4VxZZqfwReln7Y83TKlwiHZ8hR+7UYf5zqCPH9BUnnPtbOQE/j40g10a/Xqq8WqTDKVDk9AViWOAzSYtCdWUTMfI2+0NkuGsp2pySF3FnRSCuB6s+zO2eqWZVbc0z1iHPpaN6rjIfISeR6WUKPQuw832LHr5bCnF9hAuXwqVnH3Xkp8rMFXwtMTfgZXwk2yowNeRB2OPNmq+A/xqAkAncMUQ/4jN59bF+oDsqYw3Tv9psTjr+OuMp1TReBTIsooKDwc0Z/aEOYT40/0uuAp3grQP8Cd5DgF9QKRXCeOVTkN/zumsTKDRrdXqehswnWLFN/lYrYS6YRJTSmmAANz5zPsnlBuZc5+yU1xuhJVWeBD0w+9g64Fj3b+u7yaeLu786HMaUXkO9etwDjEjMPSOKokscsHJXdQ65SZXwxqfMgICl/T416KI0HivA5tAtNtz3WXBfmElbM8adOJrnHTacgGzugUwUVU3PZXJVNsD/HDcXMJRVRjUUurZhAQuYxzvfhASmxC6gFqGXLyd2Yhd4V9HLmy1TIkQJl0vD8OrIYSxH9YcD+8gFwYemyDq3Db4LSl1vqiCdWKtiOBDSgWzWwD6RMR+9olCdRZjFFfl1LIgrprytLr6smt89bNKJrN41i8VOAHthmsqmb/4EEALR0TBZEUci8eWGl1fJ4GI3Qt+1Mb5Rs5/E3qvbRuJT2gUaZCog+k66lCF8xyNfU0IUPzvi
Variant 0
DifficultyLevel
740
Question
May created liquid sanitiser by mixing the four liquids: water, alcohol, solution A and solution B.
She makes 650 litres of the sanitiser according to the following instructions:
-
60% of the mixture is water.
-
Solution A is used in the same volume as Solution B.
-
The volume of alcohol is three times the volume of Solution B.
How many litres of Solution A are required to make 650 litres of the sanitiser?
Worked Solution
|
|
Volume of water |
= 60%×650 |
|
= 390 litres |
Volume of remaining liquids
|
= 650 − 390 |
= 260 litres |
Let x = volume of Solution A
|
|
x + x + 3x |
= 260 |
5x |
= 260 |
∴ x |
= 52 litres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | May created liquid sanitiser by mixing the four liquids: water, alcohol, solution A and solution B.
She makes 650 litres of the sanitiser according to the following instructions:
* 60% of the mixture is water.
* Solution A is used in the same volume as Solution B.
* The volume of alcohol is three times the volume of Solution B.
How many litres of Solution A are required to make 650 litres of the sanitiser? |
workedSolution |
| | |
| ------------: | ---------- |
| Volume of water | \= $60\% \times 650$|
| | \= 390 litres |
sm_nogap Volume of remaining liquids
>>| |
| ---------- |
| \= 650 $-$ 390 |
| \= 260 litres |
sm_nogap Let $\ \large x$ = volume of Solution A
| | |
| ------------: | ---------- |
| $\large x$ + $\large x$ + 3$\large x$ | \= 260 |
| $5\large x$ | \= 260 |
| $\therefore \ \large x$ | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 52 | |
U2FsdGVkX1+vLZrhNoRVwQ5Oen4iNQVvh6eXfnxtMXMFpRw2icEPq14ItAk3ZOSVqFBGZdzNe0EGPahQ8dT2SLVUv4RpUb0Q5Iq7ZS1R4D8UYr2hkc28sll18osRbFXjsyCXBkbA3LByNoosT3+gDRXB6H9LcerRpJ669ag8zFxNVh4zFyhiQa0mulQEVfeK6MUmKvAK9OEe6Tu/n2Li1C+NX2PzUW4yP0JLkJcpoOxpujZos1Hoa9UyyW4BXP4wjg6oU6DvKsfTWpuCXRHLzS/47fzv0FsWuSpwqm8hQOyNaVyz0v6+esCGJNJLTqPy2nGXkF6Luq+jNDTxvgQUwH6skdez6N44q8Mg2r/Yd7ZxWFak7+cHsGhsxfRaEBMnZsOgAE7MylRdtDlba+ORW5BiY+ZfeHRykZofQaSf//Q58+bk4y5NWZAnk/dFn6rTAwyNpcDmuBX6avRCcAdVdPZd8I/JESKW5vXbHctYNuUdZ0B8aX1BBHG3WViX6fHW+hPNS00AS6hhd36e1vZG3mOniXHDEfCTMLbQTu1m38NfGmYLlBHEW9pFQJr5zTPe4dBDzV2HwLEpEtMlZxIuCbFfPTAJP6pkTNWIosXmc7pivb7XHfYTBeEqQUzAuZRjZK6eWnhxoP8ltKAiIJcUvqVzLmaa6czplzq+dMIA960fLq9Quqauu4RQfy9TecltLIi+QEkkISceR8hEtvWoDYFsPOZeuG0Oa+jCf00HblVLjzmOzmnLqKj0AVSLeblS9ac63ln02WMRyjWimp/XWaRjlxHHqwYktYIiGUsid/gN4gU4OwUzW8ued2IlHPlz+5W5zwO19Z4AP59nRTrM1hHdfeE5T/fPlLrrqyw0DWLVUKsXv2sbq6zW6GvjuopEVrmDhqSXnoj76iSY4Ylou2aAaxZA3fQG6v5Z3Acv+VEhDSJcG0LZk6ICmeScaK2Qnac11N8tl7slvCRisklAd+2GsBvHVLgGTfOsCm/z4ce6iOg2Zk0RiCIam69/H+Y7xFQtdJ916Nci4Hjg7IOrwcODGFSVKZ4/orlfaaYY2TJ47F3dFGGOSO3vdNvHOE/6etSoVmI2r06hMhq+yeHTkaQGQmGJw8lyLlU/fJuMSnOpFx4vL3uDIhQ2WJ3uXzu2wdTp2YipDe60aY/ZK9gLtKRlU0aQL5VYgC2BAvUhn7PvPcVqgSuMjtX6rnqOXWv9hNhyHA8oDYZA4cjJHA+6+hNSMeotAlfvAnX8eekBmcxC/M6tT1jhFO0JnAj21Gt5Y3Ppee/rJvkeDfjC8pEmZL+YSTpaFuTT7lQPldgbTAszRxBTM8jmFSnItfecY5n+Y/sU+B5dnzb28RVOFqNSGgWUpvcOo+90KBdxS8P9myBe2F7jWs2QdhHP3IFcndtJDdUbdYfbH/jcY9qHQ2qL+ZKyWi/yUegPKCaLhR8z3YMy/NBqhIUDW3Ey3PAJt4NvyrWDKDBiSG2p3hydfBJX2bxxzg8e8pz3Z4c5drnSyjFPJ8QtvAKLh7fPJcLbs/YxVtImnPO+XYxM0u6PRwIdvgxVYIVNgfD0x6tP4JJldLbWUoLIM0gBX5YWl0+2YvbK/gezxTnCScUuiwDdCnOrLVwsoG1zATofVRbzYKAxYCdAqFTP6urkV1U13k6PMI8TGwRLJWNf0iV0gGLvFweqLX49sJ0etWvtpOZdnnahObg2wS7g67Uw5e9B/F0J0fpkgBVrmOV9TP/Tpg45bYPJ/0TMrVY+rgt+/rUEfmXztIcCHkMpXLmpzyVhbnKzi+Mtqkqwv2OczHGT/F7N8RKmDD5egU8PZ2guStd0XYqyDwxl9qFfkHgA4mioE1TB/vI9MZwvK2cQ1zyWhk1/hs8IYWeFIGg/wEuyuVCGNB3YdD5ohdJDhcZZho+ICnucHjDZP4qUoleJElU4iwzTkeP5zsVCOW0xeBJ93YUZ5uC52mn2jMZJ4bm4oG2vpMHXJ+kYLzQMmCbhc6XlsCCynRNs07SJM3pZbmH6HCS24OHH7K8pgCog6+cxgMQpiteB0VWBJ+Dyq1v7wSAj8RYE5Y0ovot4Sf8qWRcDUtjc6OXK/TQSa3GvyoeSYk+VjCiZxyDzMYG09oMdFhdmHK6LOkA9w4cpjws3b71Pl8o2zZJrtGwC45LFYDdamGGQOc3vv8rKCzed7x5ePvXKvdnUVZAO5LMNGqy+VcKZcm3z+ByMd+qS0ABEaROqFJMCJSO4ZU9O2ni2kkuA+6aIim++Kn9aRgEzIG7xk+OEIy7pwkwoxJaUYW/IsQ2gN3/ZtqJspJuRHXzvlMMRlAHYDJ0tb/FbSf/kuXcOZ3g8Sr4HjIqiGNABytxNw25+Y3nQYOoApoSE28p72fXsWn3euGlBYOznYg0plvcz9BDdkeVXkkkP8fF2GzeyFP4Rj+CdYAuMLDVfIQ3QB0X1OtRKxkRfFKo/JmfrLNDVldhXkDMIWBCh20jDEHis1hoc36QJz+dn+L8+rIdXivAai1nXB+po9ZlK29C623fowufF3eFuSHtYxNBmaGco2ctrn8fYC9v2jK6sjr06cPaJ7QjrJ4W8QFwuuTF+4bXsmKHRmUTHbSNxCqEiZvnuf8o3bkPXcNimgGnIEhAqyDb3NwrOmkcvUm7l6MsRWM6HIVO4F+Wu7oOPeT5A1IkVJVxWDivGFijfT+y65rnNTaRp4ODEXcjKrp/Uid2V4JesXgwbkgi1BbsM48vNwjhtdaAAZy0XP3hKe7eFrDLw06lVZMNqC40zx9RgXhqqsvjlJj+We3Fw63WaLTui5apb0ys8G8IvhoXuMZGt+pkyZfhI4hkeuw1XxDkDMwzzrjR4Tng0WLzbxpzbEOeQ6B88ikzg7MHwQ4lnk+IrctmaKYZTUEK/Y4h1Xu0VMzB9YXdl2jFc1+Z3AXKsM7Y8jDNBaGBH+M0oKIWfcV1S93RRMvup7TvSL6Z9Y4lUEVXrsQe8tbf/85/zBpxWluCcrPNjFEVHKccfDzqOCFNQqtgGx5H7Zwfb6oOHE+/2XmaHLpFIdE0Ra+6i0na9lxwzcF05gQxIZe8727u61Uy2FQXrT/lIW7jFxGMvCRJcuugwJ/zV+sMGR5WbhMTAiqklBFDyjHJ/A5qS2FUstD96FX8N3GjpxvysdMw/AN/cCJDevHpTAJvRSJchKZ4o9RNdNiZprgpQbvy7x87+CItdE3iznDUETm0iABYbwZ81Zk00dUbG61HBTsKEJ7o6+0eW4A2Scd8MUxIhUnftF+YyLae8YVR8inmujjAjiCmiQXkJ2u6tF1s2RJs/l/0qg+BinWRtEEyaFNT8P/q8Do88u/QRS+y6fnWxQTnbpC1EuhokIzb7dgo2+ag936kiBEpruqgiyL8yd9UbeRLc8DTNHEeYrETmd2j3bMYh+vBNeYvB3r0uIrTMYvryEQE3p5VZ8JSy0nu11fkYGhwLlG+9GtDyxVVk2GpqlL2VPjkaLPG6aoSYi4Gy3kTA/+GXl8A9tCmuQ2KInVCn+KI6K4aJgvrKawOx6x0++IFVGCof5w0dCwZlsgIh8ANlUjVWx2TzaRCfqsRm44D+9u2uWOebW48bhvX1DSaM3WmrA/YTmUQ46ym2/4+J6ctazdhUF1XadTd+ThSP01U+cJt8huhnvyj7H+pTTw94Hvzpf9bXkulOzMouId1QbmmV/Mo3YMVb89f9ov4njlAPOxz9sHliG3Rv4YPh4tc9i/P6E41+1tECgUfnkIGCY3iw2XLBIGqNvqzdSMBJvGmhl8CsMbRPe1L/dz1Y2ZmedSboxrV+tyNl2q5CLYTHKSsq/dRVdolzEd5zfxFd5dT2XIQNYVg3TtN1D9zxfHie05HdTDJ13/H+Jsa30wHtiCG8/mNMgA1N3lyGVF/Ya6tubIfH0/pgA7aNavOpbmSA9xw77cWWSyRg5tGC4OdcZVr0X1FCWIHA96DhM0Nldk7t8QYjTguM7BQIT0e4h43LwCAjn4809JLiddkSqVpGrw8LRwqfVnfn8t6zZt89X2k7wVd/khIudOgc0QFvzaGRAEewGJlENExO8Hdr7pcrcLYmeEgzi3TLvBjHzuVIQfYnOP6gpsf9uakjABpAKiqP8/pg5c84ptt0W7O1psro5EjuQJeekIYoL75KMV3fqraEmUEIcfdX2CN24kXcTwbQjEgI4uQt8B3NBarvi8wPyPdQq7N0CBAWm5wO7oLX+RxTlSq4tIqf2IJqIvIFWYKK4KQOYf/rYMogrtwFJA4Llk9V4bTu+zQ/hDIsvfplBcW93mq0ih+eoIfoch11PI/b/rheiKn+9nqAd8IWwTJu38YfwwSDs7rBkotdH/B+qMaipKs9urZwKljw/b4Y8D1B55JJ2yMotElQl8TfBXUUmEbnJJekczCzgThnlnLgFIovWDuW9fxD/A8MWrf+QVFsHS4I3uoRQclkyl8jaHhZbzDnfvlDDVLh36oabvbFFIDoVzPxr9YC+O0gRrclQM82zUIwKQbnbPOf4LhLV7xoCSemaFRKs1A49rRta37LkRp/4QNkMcK5Ttfzy7scL5fm5fybSo6PhxmMgYKVBk68GQ2yznfpNwMjhguQDj5rFDp0EVB1TlRmKRmL/85TmnZq+9P+ldE+wSLz192st0jRUuEbyyfU7U7B7JIbMYn3H1cHqkoeIUh9b5EObxtxa64j8Ozz4wYO597i/URUGTxcHJSypbmmpH8VQ1pOkSh3tJQeCFRhXua6GNd9Egok8OwLPAVh0bE+AFziFHkldS91BAGaDpjyDvpri3TOtrXjK/0MKxNd7ocg2YBrqCK7Wi0dkN+YPzdMoxOkr9E8c3QV81f3hEonw+2+NmUpfJNf5u7mjEGWERxPAWwPMzq88lEmJX5J6oKOoUQSXW7X0yNIcv7VRhq3PSl6vGbkESYIVKCTLjxH4HCHgAzA6bnoELCl+VJb6LT8a2zmS95pLKDTniYxtqXPj4IBW2PHrUY4VtX3b1wPjhYaTu+IuauZt0tFFwAHVcW53GZIRT8YHDTp3TzVhDZ8F36Mmm4V3hZbSj8KlVqozLt8MmnZv5K2vfP7aBiT5jb+U8YHny99psXE7F/51QjuIg81xN79+w1j011Dxjd0vfUS5Qi511lmyOSFJ60aAI4VPsw3eH1csEYjI1BFkccZvunxxfiSINmxh/SkdEsrlGHb02HirwlIFu20bmK/MzhMkkQW04f/gGZtewOctcCYP5/3H/kGqUoHfwcCJEFRQ3LC2+sJ6elwj7kwvb9mUkEKFSA7lHbdJCQuP6PHmQ0GtFWEBqI9FylxbSzj9jYf+UePaVna41E+7WtBCuCjlLxXmNCOw6VwtpjAFnjIzr+huRzWCOVlapdPshUHD90tTszn4khhOQyK/eyRgPRxpHeWyKHn8CfusrPCYBGUpXYObJGz3E3GAHEA8AoTVq0u58fzVNGkyrQRYAINbf0yL3CDMBHXxOFWjBZF21rAEqhgSobXwhG+7i/YyK4+iC26z53VB32rdHQPkxlX9HysYzyeXZ8Y4/87m/xXDxFOabjFUeMoZgdh3QpJR7/MMr4mD84WgNggvud/3K+Y67dvuVnJImzAa2xvTv9iNeupvSjF9brTFiTgBDtZ07F7tjp3fhvcUXA69KnzJtQmJvcRmzXrX7Y66JEzaqTbKksEx4bnUCD+ppz996PGzXnTsG6GVv1L0JaZC0kp82/tF9rPa3owdyRC67sDRYsSb02SX/K9fVkvDAP+UfiF0co0C/sefOLyGHXzAReXhIPG3oJ+dcIZZxHuhUXafMFmut4SqmfPM9nVLgah6doBbUvqOXt3YlLbdcN1fzPT1dhOGMkg1Sn07N2I9xKpRCnAX+kmcbCGYuD3avaxdLMJZtAL8QPb46OjzXTp9W3bCZYGMNbqXYCD2pnhcrHrDtdfRPrK/zrwS/LnKp8+ON6RR3PyBKCceJWkZ9dEPXDPe1hgv9w8jwZ8Vah4D9nVbSpeOTzcExFhb9Teoxi6T8Ag5xaPQnTjpoPW22caWNwhG9gKb0x8jfepWKx3dHirDlJMu2WGfWbrZuhmxFPFWFw8p+yTjrRjSNPE+cCaJJjIg//9nTxhDaCW7ztZFZMerSKEyOqgg9oBiN6bS7hQpP2YDZTmYUhOQHTu0qdwmkafhPV1LT6FrKkPCTihHY6Ay+xvxOyhYivG1Tiynoyuj1bXzBOxp/r5/CEXA5qfCAuWZwC4kkZMJFc/46HFJJdU/lSee3LyH0tPjh0MwvTOdOdXeGWzmWrhwVILOr3SLUdQr+Zsz7f0oELw25T5xYT0MQbQNTI9XiTkmURN8wQbxwQIpaAQWsfylndWsidbNsR5VOWzbFU8fiFU8iMZPJb6rhhU4KtTJP74HY3YQhsjy0Kcqpe65K4tdWdq6C3oNnQra4UjoS9n3PXClk/7sR9ph9NOSq27ByrzxYhj1E+EpxHXSsn48lzDKSrW6J/umPJ6gzqbKG1fOgrWc6Gtyd1WK9c5xEmRPWF0KjXg1kOz+OZSl+GKopHCZBwnDaMm1btkSHM2c00aSbT1utY4HNZu3xvnUq53BYO3pdFV8CMNQ0NrSexEGKkFW50FCWqCPp4rlAJd0d3ThbjxRaoqkPowmv+2uMxxUF5bnB7/cRTDx180c++SiH5UwHXB8R2FC2QKCHqcAfKhbXhf2jUZIlUYlfJSFh9Fk4HUvcuJ8ojlgML3TnspPbnG9Cxsy21qugEFBJ+dpMPB5y8uEmzrUdM0djM72gdksAiWv2H7RZ7IaSi+CrKPQU2bsDlA0BcT3P83Mv2e9rPa/3esPx78yCWQb2KSrhzDbv0o0SIH8hHOUecPj/KVeLQIq727ke/fPhnG49mNTRLGHDCtthoofwKJRe3DCI4p4CFxIVurQpNRVgTBH97u2sAxYrfzjbB2NHmH9blfTXBdlngzjcNRQVhoVdmREysX6mvws+lNRZ7LptqZql7B8b1JVZ1JNMOQQk7bTbEunrEvKOEezQT9p05lYU6U0IRxZ6JT7GwyVPkZG9kjxGKRymydRcPp2yRb2P1g/2OzkyGrawfOQVqM9pcPvpkdDfBTx5eDAJxH7tQHkimBTMY8RzYvqHsFua5UWHMmYyK75eQpjIR5F2XZLI7fTxGJRSvT/0JUiDL5GtVHjN6BBDAHV8nacYTQK9zl2CODEan7E8oKH6cqQXy5hDZx15Q+am3zq27RarQzdQJ6CkPOUvpWZ2STNDwSG+Bu/3KlE/jnokY2NLUAvo6ScmSeoeFWFZqjZHs1BehXI0iWSo1+46ZDFMLxRriICfS+ChlQa1pkmhnYtc09POXVoeMVIJGUhJm7cQwDf6LAiQSaV4cV+cFLtsMudMVV+qlqggoucXLtph0pfrm6tC4ZqJsISdiri7fu2gmY2uU4i8KZb45SrAtfjcDrSrOUAeSCSpIJnTSdweJEadFgL8Bbf3l+7L5Yb6Wh1+qKG0zHIc7jPoArVCjDjNSfHqKEDQTrepveH61sFe1GiXZB3xyfkgBiaNk7Mj5I8R427Z8ATro3Zyv0DHBpvZNFONpsRZ2BbT4m52DDeAB6KvQy4C4QlvOcMjUW78gKDOy83dgBXAaFhZ/PBneyL1RKQS15Caq+msi4yy0mV3I2eD7GXV0vsdAh9IBD1PQ/HWkeN3Bd6FBI0EHssVRNDoU+TFpr7D27lOeGbmB80KeMrujW/kTgjQ2cvAZZuAPGeeu4nk2i3xDgun7hwZU3qQsZ7QIXvKxsS8KOod0J35lNF4d43rRPm+FCPFUkuUKcE8KurILQwt2ad4A1KlTPXUp3vrurhMWjZXrtOg3OtygtrQPDiTCq4J82fn4KN6+SE7wxhDmAN90OOuhceAX/f3VICGuV+mCRjeqq8LADEs9islRCvRp/zXnDwgkyLpmNu9KfQo1RvNDtRTcbePyzfSjl2kOOUnQ4d28GYeo65By2+gGoIgLBg4jT9yV6OGKu2GPPWiaGASpmAbL3yKXEvj84ySqmkfGXwXSoO6VrpCAw2p782ZrnCKdaf24jEFCPtAzF0eYBEScEdBepEhBDbNRHwuevteroz4gGNQEGpHi3yD4B/jpCwFPp9vU6khQVDRjJbL8M2EwfvbUMHrg3B9bDlkztM8qgkR1nzzxerVfLiboRqQx/lultJoZxPIz5pyQIK3D2mi/qLKGUSQahAH5Z1pZ5h4qpJZLW7KIsuJtaGhIrZGMiV2RDIaKKh/GsgAw5jvnHBg/wVHoACEWkymptuFmj1Lmzt/wfpqqqr577t/lRuT1raTtHvrOMSUeO5q2jTWopaCnVnyQJU1AEymXMIK4DcDzlvtHcPMcDCR1HUZhZboWIjDFBTZKty6m7+9LA9OeRKDZENQfVIWlwyv0JVqqW9kuN1dA75FoSO6wRoVq5DJKvh3D4dInfa1v15x7EKKkO+HgOyg7unoLMqwFurfjPjKPXIJoC9/FjpO0pmCrbogusDV5ThePRj+PhWitlrAV6aolCaDa1xsUsstUkoYvycATxGQciHKJZQfoGVDoKAApk3cFQkaN9mmogNHXnm4X5LJdN9ieY5BYWqqYdU2+R+IZb18KPrAD9Dzgwaa3rfUcDbw400JWzZ1UMnl3A4fNiOR9wGBzfA2QcgzHd15C0OajcgNv0n6NlMWMF0Te7KvKbOzGCkzXyOUUFbqdGWCQeXpoW4EMaCVuAd+fc7JvpbBwPcRlFt+FXE8YnaT+iULD0Z0pzqiD8trEY8xvzcnyMnsIDlLQGhH/jsdwemEMH8rjWDSnNynSR/zfyQkERJ3xYJjrXGYMtLPK0jQ7xIfYEB3wtN4Qhgruq3leKwd89+i/A9gCYJumZIueEU2tBxTiCTeFugE6dbLI6jWZHGJgFQPbOwyKbwxfrH1VdRRP4LvauDPZxisBLEeSTKUBGmGBDzFg14CaqSc0qzYc5t85PU/U9hbow3o2PnjwNuupBi6NdXRCebg+vhsZ9cGSNhlT1pURjdYIVc67zDoR/01pkNtzMx40o04LwgImIUb9PF3KLd6mFGYfABS5LED3+i+hTO4p2CNjCtnQH+YCPqhmApB08Uu0pL7ItEjvdkTUFv73KTxCFfpf4+4Eq0I8PavReO27dJmhuCYOabCdth7SbFF0qbjfJ0BcfrIKlj9R5ZBen82n1PKO0ozd69iNvCqjsdkYt9h21cKnuftiBYTeeYt1vhn7qfQBLoNF8IKllVZcwGJhZWXe7s/l+yb5nQu97BniyHCKehBdQHOzvRpZt8Wfheu0MwW0bAPbn9i0VeiGzFjtURsOJRUjt1AM3CWG748HwKI5AEbg9t/fanjjl3i3B/+mWab4AnuJJpDSyO4WI91UJgKXrjJjsDMkgx2vHZQkjLcyrXfDL7TzKLR+3EYWJtLoB7e0Ql/9R9QvioRlTyGOoPOhIL7bm9KrIdV//EAN9V9KxVVibzqkwbAK9XsyVpbCKSfjtzteJ/kdRifD0uj8LQC1s8CK9isFNn7idgtbNgUmRABkAs62uPSIO4FAve8hGnJZ2SJmfKSYfGOLNbicMeEq92cwSUAqgqks8OGKXQJkSmkDOhV5mIbqUSP6c3/Hj+rqLEhlLD1rp2nxb147EH5oyuK9Orc7tqb2PKr8cdJGepVjfifGN3cwCxEBY/oDcOqqU9UZxRkIWkfKFaFph5T4YhnCforxwUIY9N/iaCgpFjPJsuuydECJh3wvXOL4iPluSigOrdkyR4AnA/PvVNqJ+g/ZhixsOARTOgecSEKax5lbnvMWhiu1ttjQXVnLSWxiIzyEOQb0FZ2ATYGzTJAvZHSvv/s4jIfOkuuWhuxPCxuyEnf6ERWuzoTqpDHDcFqKnJ6mGNt0AoArcjrwrCYUKNnDfTXCKNUHPQFnFjqjywTAxBkIZ0ztERgsOOzaPkFddcfckFZii26pyz1M37OM5l07YFTFEpUoSIUP5KjMysXH5x7LV/ZHcpLGtK52kFSKQtWD4KqgJkX2L4bkiEYj/Kzz/truMAzwdbXlkPjTYmjNCQ8LnHdEQgz2ISZ9kx0dOnEW7qkCmNXVwJ4hHv/+Glq9Ue6LD0fMlxPPXcLWu5nQHP/m+3FFJzlIbk+TWjZjN3HXYjs1ii/r2sSFOtCCyTn2SfO2c2wqdUtSYU9Pbl5ka/E+qGTW6Ut8MTVDHOFpAs9WdXO9QnX5btjHq2HXPSc7G5dp1ZNh/t6LP780pa8Y+5XWuFAaSaaZle0X6Vr0hBO41i9fvywil8+1Ug7x6Q5KiCyldNgSMhKEH2ZozOVvQlnMVDs0SX4zRexnkswL33iI/zEu7jsKZik+APPX1EmRs8sD1ARibiwyIf54qmRz5M7D4RqieuQ6gxmFZv0oRsl7gUBaS8riu83mQXGjQxijeDUB0bVp264zPQ2yeJnRu7KVpsM8hjynORuFv4+bgc8cCo3EUsSTKr1ieI0PyAsim3YF7rHYMHUsRm+eCKOXZhlKWU41gL5zlk0VB1h1IScLdBMf8jo1O9hTt8ZzbvwEu5Cb7mlvWW139t4Bk5Vqf3WpKxiDDBI7JecCNCPQP8PaT9TpeV6mL7bUJsojW3rpfy9b6LmN1X9a6ESWYFckBbiYCHfyu4sphNeQaNzCRyQOGSU7XXvHlID6H6YERjXbCj9V7efyDr+K3KkYFcOe+KGMqMU2BTN5Fkn4P5YSQkmOZdvkdjcsbnsagFgGEQBfN0rvNiT0ojFJ7Q0R2Tv6w1K1G9r744ywi1QA2FtYoa8N7WwG5dos1pm5cPyUKxZmL6Up7s3lBmTCd/ArMkgTNeC/xGmI3K5ES0WqiThev59+m/USFQfavL/ssSQVDZBvZNbFjH7pdNzsgCc1QfXGD3nVLeX0e3qHvYKaTJom42pZZNOXzUGBui9IdXs6xQNNhy1CIlaR7I0DbcJgxeZD/ycj/3MZ7VZPspBLY1GwMHg/9xwSfUP7N0BvHJAZcYSaYc0gCet8fYpw6vDAyfqIBNfm8sKJuRE84sWHDq37wuF1gU7TXrXZJnRQAlWOCsCtmy9SH+7ePA+2v1oo5jZkKuEOlM4mNePYWb4xoPlgcSBT23eAfNDwmgar65aZGa4oal0dhPcV7GR2ZJkUhONFltrJ4OEB0ClwTsmQdj05Vm5sGOhuCuHGlQq1XWIzjy3RM0PmlMkmZijo/tGow3iyAqR7AkSlhqpQ9VvYWtuKASb4cDMxtfDFXQREu2jlFI+brqyd4Q+izhF/5qRVecc7nA5llB2gfJQ0t/GRiEAgNkNH/SqSCIGCIanDxluSMNEc/gmb0uin7fYSP/lDHoZ0m2BIxLATxLyp3dl9nbhUaNvM9ylYy0jJdxEJ2xKGQ1F9b7D7DqXOYfLKg6OPE4H2yBkWPJ0lqbpQtLVdiSCXDFcHJxMF6lW/MXqUlTJugup8q/ogkM6V93LkvEx43tZz9nQqatgDhv+balFOUkEa19Wtduwn5/G2NJJV5Rbwcymvh5evvBRGy4B/AAou+5ZUmW6QHjsF8T0RqfE9MvzQYze/Nf9IQ5+lM14PRGSiNGJ90r0yb0p5fl9xQ5TGKTLml1U9GyDwZiRufpY2EhccE4ep/m8yCnFTVLhEf0Y8Bg+xFW4h8Q+iMDyZRz/pX9sL8H7m1XkjTwg8MwlG7SJXDhDxKcbTYm7gaM/+ksPaAREHiF2k6OPM+SC5HQzRGWN9AHkufsZjIkhn4t0pyEgv7JB2zwC+AYZmHwMxY2simOQbeBjJgwVYeVc7c3YoOo4Oqye5BqTMJXO0xEA8sjTkVgYgTk3OiqHyNVJtpjzPSHqvidMU0NSdtKhrbnXccKg3z+Ao0ksOX4qYrU1Qh5hjRUqB7dvgoD13XS4ra3W+1Mz5MLzNuyqHR9+6J+3KdFiw0TzFiZVzQ3TrxS4PBIqIsDKBySCAFAjyqqTFKcnYIo8o9HVgF7fqAPE74v4t0+enGYrN/Gxp9jycQ7fpz9UHftMZiFumnjYIYQIXRoZO2mb6D5Xv3RnQduQWd0UJPJkc4ED+OjPr6+Vn6CCu/U/ARv0qTcd5pU0R07rOYYpMCLnqcmDLL5OiVXiGofnw96pyR3KfXyRErDj/tPyjJ/2DuXUGq6g7r4u46wA4XFiCdG00dTPcAxs3BvOuUl4C88po3FM3EO5P0w/myHGwYMVU7KarCXT5MQDJ7PBTNGiLexZ0+PaonLbqJhwybAQ9r0kNSIcvKPLVMLTnc68rFQgNZkrEUMNwZsgNbyKZG7ivIFkq/u5/aUI+1KRNzB6/Fdqzfhz0mtTq9NwSl6iwVgrLEhvQ8QrIQHc9jDt/iy8lfUwrJV7XkOgnGTcEs2neZuTwqvuOMteo7BgktZbJZ0T+ia7vaCX3/o12Go2rIbZhGw1dzvQkPFapLkQBkaxoCJiqaRDZrlDUkiDrdmOE7yaW4Epw4evdlzU/NWgfQHDU7mr+j7w6UdZ0atPJQJkZxnEz0X346iSzptvM2W6e24ZgZf9pTU7f3+dwxLY/rBUE4JiGzHRosZPlMYqPSp9syNGnvDcSADUIhHZQyuTD6hZkth8xPkxTS8fPR1VqeQvVlsMHfuCW7AEH7zV3D9Pr3v4m1I85qIBXsb2McoHrynJBH7LtcNuCwNEO2L3cUNeKvEjr4S59GW3By/9P0Mn/KB5FuSZ5HzZU9mOTMUqDUe3eCJhYElhtRwTypGjgB3N68x8WJ274LfqLcyaraCV9kuRiGq2WG2f29NoDGpN2KYX9g9+kFXX+HMt0T0XHNf1iB5kzJBV9RKmS/kmg9jFZTRwE64yb20Dx4HiVMDP4PVhY8dS7DVi0QuzwNiaaPN1FNH/m6PnMvk0Gm1jgRJgIEznzxBiUOV9nIaDfr+BejLYWhAQqXz8MQFPbxFfGXrO2x/Ix3AG184a/5mIxn3HjnhY4PHg2KzHXTfIare9BI3cpL4ueh/+WGT689XhCS6Wb2KSoCgI+zlemMzXudnp1g7n8J/1GzVC1yLCox7wjSa7yxYKKUS4rwmuiaX20EmjvXKB9jT88cT1NG+60NLM4dwjYmDFRLaEuMO9ALPIUDFc7eampypId/KZntDyxk4GwfIezU+UrYAB+ECxOfqUJSujzuzEUN2vXQIuAq/eSpLYxMLzW6YgRFtXcYulm2be/X09Q2W7G1O359NmMeG4NLdduakvqtRrkrsuTGvd2vYIQzdOYw5NljxcGqUmidim/D6L7scZ1AxRH7StTs00mV7V3A1v8rXSoC1GAictIdrY8a1fxSOD74j8oNs3LUjHBnl1ho1ajcWRw7u6v4Br24Pm7kadHAneJcnbaRcRI41s7G7LD5cZL+1/Rq5ENJFbSMPRfMXeQ/qtio8Dkg27SZXNHxAZ5pwmUrVDc6xqF5d3D25Do7zsukUt/2+5vtu0uV7WLkYxMAadyJfmhJKaVq0Y06YjNfp651AK5h+eyyUuRwRswz3cMoK7Zc3GoDHUqycgWtRIuFSuw0ayV9h2Hwsy+k8ON1O0bmf/KgaJYkR1aqewwsbMfG/3+yqZq6NzFSTuYvbVthnUcd/hatcF0psVcjKg/F4qCNEDQQMBVCO3AKFNoLNnBQ0G0Zkspu9hHpg0bFTKgFeyqMuu/vo799HHv7ZqOVipzwQAE2iGMsy8U9RTgO3nqqqEMRfH2zueh676ktZ1atFn75E7eDxVuLCE77t7ia6GrUNIMtomd07VdSBsy67l8q0/qSJofoDiWQkPuWVuiSyD5DJGxGb4QiaDPniDajxXXn0C7g/QCS5cbF2/U84nbmwCBlEH6lXDftg8HNdw9SpJIr9sObBexZBYDq6tRM/VyE3GWs4iV5yw8FFfXqPC0i0hV/95BGkOmgZ0X6ARYvzQK8e3HInC60DJvOgHdn3QteErn1C7o/eF5LlYw2jEpY662i5Mr4G+T30rJ0Fa5rY1jcjE9KGVIxIaun0dswASBqiK1iYqK+GBkV52weTo0Q6szxd5BbFO6YnuDYz0gvVyJL8Uupvu/ppRQxjd9zJ63a/l0jwCoGAy1hGOaQcneJnhSDyXDmRyPAjtA9FzCJDrhae5cp6a+HCt78hm8ZdNMU3lNe9OIGbtIUIGquX2tCipXVFyoUVxxdjG6XTnKljRLzxktPUtlB/73LU6TMEDmSDBzMIbBQC9plVdgJde5k4oZ2xmN1m5Eg0WLWQf2oT61NUcu3us6pst/RJsoIcGJkGmiOIC8l8cUjzcyeTbBYJUheWFpmlDzJPaQVubd7UmdCzIfydwNbw5HopjzPxx+tqU6WG3SVHkxSEgoZQ6B8A2qI3oyigTvKQI52H2NAknQOIeuM0KI4p/FUFVhKE3UiwY5Zlmgk4aBhIMisHzKscvZKvQc+2CJ91GnolTMlr6xl4Ivqi3TXpNoA7uNG7NvktGxvzDd0jJGK7HV/GfP+1ll6CVhkFLlUiwGoDdcWDL+eTYlt6fZQZiiUsKx0I6gHk6w8tIhHB1a3F9K9sjSxfst1m2FKlJ+UDvgmzKJ61v44pA33zMvCq6rydhbS3zOGvkNbgEcrTV2lLqxbVNABTRnAXSKE1uXrTrIKkryfmeP4wwmkspG9ixValOkZQcFiiZ3UJo46iroAimYRO/4uJgz2Mxt4lnu/xpQ5KE/hy+LZPWnkn7IKZYh3JxeYo9TKgdzU2OUOwqRvbfnPE9R67apydeV5e+qpauN5v+KyBA==
Variant 1
DifficultyLevel
749
Question
Justine created garden soil by mixing the four ingredients: compost, peat moss, cow manure and vermiculite.
She makes 450 kilograms of the garden soil according to the following instructions:
-
30% of the mixture is compost.
-
peat moss is used in the same amount as vermiculite.
-
The amount of cow manure is one-third of the amount of the peat moss.
How many kilograms of peat moss are required to make 450 kilograms of the garden soil?
Worked Solution
|
|
Amount of compost |
= 30%×450 |
|
= 135 kilograms |
Amount of remaining ingredients
|
= 450 − 135 |
= 315 kilograms |
Let x = amount of peat moss
|
|
x + x + 31x |
= 315 |
37x |
= 315 |
x |
= 315 × 73 |
∴ x |
= 135 kilograms |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Justine created garden soil by mixing the four ingredients: compost, peat moss, cow manure and vermiculite.
She makes 450 kilograms of the garden soil according to the following instructions:
* 30% of the mixture is compost.
* peat moss is used in the same amount as vermiculite.
* The amount of cow manure is one-third of the amount of the peat moss.
How many kilograms of peat moss are required to make 450 kilograms of the garden soil? |
workedSolution |
| | |
| ------------: | ---------- |
| Amount of compost | \= $30\% \times 450$|
| | \= 135 kilograms |
sm_nogap Amount of remaining ingredients
>>| |
| ---------- |
| \= 450 $-$ 135 |
| \= 315 kilograms |
sm_nogap Let $\ \large x$ = amount of peat moss
| | |
| ------------: | ---------- |
| $\large x$ + $\large x$ + $\dfrac{1}{3}\large x$ | \= 315 |
| $\dfrac{7}{3}\large x$ | \= 315 |
| $\large x$ | = 315 $\times\ \dfrac{3}{7}$ |
| $\therefore \ \large x$ | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 135 | |
U2FsdGVkX1+9Fi24JxLv8glAsoGOZmT3ReTQseui9CDPJDqC5Ue9jAkkbo4PZb5K+1QcS+MJKxVtaxguzMzZ4X2OXg7UWKaYmCFeBSntipvOhzD/Jgvuq/jQmf4ows0B/grMSfyrjQfqeqlASdBBLAq6BTOaPm6mJN18/pUN737GCXndR+9ccvP/oANYnFPjD1zNopuzgaNdyg1zXZuXb7LcEs3aPlZ6OGlaKR8UBGGH0FzHz5U2ngQ6aroWK8rikTEdXMRoVLkbPal4FN/dgd6qZBdFE6IixEqtYVQEzjbQLLQSiIg5f6QN1v31361NIgYN0+8vmKt6wSI2Zoh4s8c0lDoyf1wZ4NjFKnYpozVKd9+yqJ512bpUnlcYVVWQFctHXqTLm5RRFsNke61xw7DIrpi3lKVgjUS3AL18dwHPJ7n0kf10FCPuvUXnedEVya13tz89fPq6NMt8H4YGitgfb2mW2cK/BNyFFZdZA58LyBmQZGEeuycV6qH2wMMP/ua7LGD3+0JYwwo323ZGuxAaiYn4gU59LOUnm8kug6cnUUeNkdjQqQPNels9227RbP5S4lN6HNNxNQJe5Rr6wmvIYPsApev9O05fDycIW05DKzL+WQ4egvYsiFIlECNjiwk4o21SMHKb5M8x8Kj9DjYP4Gqlo4IUzPZirBj8GU2Y5RMTMBH2eIrZ8Zrylf8OjdfelEgNACRg1FCjAQzogeUfLkCTvJA3qqowR4RP41PUxkrJE3fCnEgmjXgmfUFsu2xJ/bcL7mWuHXzQ8Qhq3jXvlc+F/c2bk6xhDt7l65BrpFii5kvdDCCynCBTxdDcFLS5SkbinoPIv7wl6KShzLIWk3G0oN1HhKthEjpyKxZTBBCHc7uYIygeT3gyOaWqzSKHhlZ52Kwp0gfrH3AnaD9ZGal4INvy7rDXs/8CLZ6kFlKRZXSQ2Q129dQtjPBwTDh5KNJ91W2iReSBvYhryYEbdzv7iLn6AKzKiTZJNb3+ArQJxTGlaOcYsDsHTuPdOLPKwjGwIqcH7dz2TYU+/rBvH3kaGk+t5eO0fYZuXdCjH9tgCTpzoz15NzdE42zVEEgRC1s5i7iLAdA8VRAFA1/QNPbBn2RCH1grFLGy0Pp6IKz1sZM5gaB67klP/385hXN58mU5jeaePZUFCk2IbKuSV0aD/3pK+qqCUjM5tVTmBompMyXm/FfKrIHr9fKaA4kp2NS7Kl5An3zcNOQSnCI6xJaBvoMw1pDmxcP/o8GKyGvfSwM0i1DMf0HtMVT+946fIzArNen7Hda4vj09IGJsPl5CpCxfo7KCc/w1SB+1EtMaDOEi62wXJMpiWIW1Refsy/T5pQrZyOD4zoCxrAifOIQEpgi0SZ1f6BAR82AFXZH/j6PwnXINNdJal1E0hHWrWeb5JTla32OdFuPcCJvQqChH8izNgVIXYowZjlGZP3MZgaJFy8oHl9y31dEC8uazhhW95GpD0zIg98/cpqnjDNn4kcfGOAYVrYbclcgc6x0HR5DlIwMpKQxBpHtRAJsmkcox8FgFvmG/tslUCN2TLjmjk3y1/3PIBCCwCxbUratnYzBhEunGhbInsoZ37Q4WmNLDlZPOrSc693IvPS2skszl1QFdRCpmdlIuJweIo1vdaJZYvwr8WuspbWavD1/JQjp+9vXbCvmwqX+ry1ycU1DbKdrOduf2CaT/Drvu2Wz6+R363KWwSIbPVn0BWoY9PQlPFKchUj27WDjOkryBXqOPbcSOd9kgqr1tT8J5uYQha6Us59p43YrRpugn2uZ+y6OKjh4wuQFEpHDT+Cph33rYKKucPp+Gc/BuDhj4JWpjTYmGJIw1350hxPrOR4nHaYdVezG95tGyAztTYrAF0ym7gWXc1XRzn9r3mVAELktAY88eEUAAqWYP378bRYcNuUL2WwXBRK9gj2XBZXQw1so9uQfEU8y2EEvTOyrrJdB1IMG4sCB8GmTKaxBoYC39NRScRBEHsy8ZRv2FU0ePJD13dVyIVEyhU2olNdhuEgcz6odKlYhLE8gsZ49CTfTOT3uJMHmZTnfGZixXHI7PqU7OmEM/evER1YskiVaRDxLtoNUSrLxmhZlhqT9My9wm6801GRNI8EOZoiNRmB9k47m+5u39EnZUCFIvGhxvsLfuXdqtgYLyExXAnV+MwYV2MOgzs30UXJs7N0M5JK71Tu9PQLQpZUaJCWYIP0bEHbxvr4T3UyyZ2cdW6g2Wx/LkWWuw1AYrsmQKHAK2mNpJVxuSd3jZ+tKITpddgEg2jGc/SQa6aEUJFhOP3fd/Fg8u8+QB8EhSC7D8aoRc/ofHcvA0LiSEOgadewA719P/RtBNHnhmOxbfboGyUUER4Y3iYjqbC3aCj9cREdeENQEitd4CfT5Pfse8AVvizmtRwR7+O/CHP7sIEN4Lcywx9uZQ48TObt638d2q22rcVab2qXR4Q/q6488e2keUj/D49C2NWLH3aRyI/plZ+CsOXWb39wKx3jxunY8HchEnlpB2+UfaAY4+ugvGfWHcB6pvcPvbFB39Z+hDpd916xdjc4JlUTuP4D21G6FYG43JLxmtr4r0QcSsMSWsnr8wjixxtGmgTUWEltoRsJzY53If9XcidbXE55yYSUDJcC39BzJ+FQZ22dEHWR3qU8CRQ1wdRr0UMZ5RlV+RYEBE9XUmRGVfguxC0yiQgxBY9gRL6g5eq8mwBmlj0pw1q+OqFdNzpDQyijrjm9bZvdBGa2Icp9t6QniUnWoHgWAXKyvfWI1Ext0zCIPGMKuY/SOGpNvepivvG13Eu0i4kvxrR+mMTe1Ah9xOHWiH60UrXxyv8EO2j/fWch1GqXYYGnjyJtB8ub8Nso0OC20kxluc+tBaXzQxfOQq+XFQDVwUoCrhilPUnle1rl3BDtRN3nuhWvuF8+ceOMpSQpgWPH+Cv/DswBu9AhVaMIxhZ7IQG2G4MEKTxBx4P0vo6L82cqRNTVC061HqEG0h+dNWP2n5cm0roWybYQwfxs8UBVBmL2yyOdiPEp4QEfAYIbCZEZRbP88oB5gRGqsEtjpv9mjgKPzIDerqgimyegsBO0A0Ytz6P99sLaY5IU9mOOprKEAXw4/+nyY3mfXq2eOG+GyXiIayAOl+17n7KNth1QhwrYtOQvAR3vd9OGoRbbHT581s45sZtrBV7Vb1KV+Dm0wdHLxTYCNYVbmxkfGDBy7AsSI6I7f9F8nd6PXOoitBDQFGM6Gy+O1sTjjtDFv62KnhXJKa2WdbgjVg9QVHJoZ4tktOzyJz5vHRODKuVZcC2B30MID9ZuUzlWKO278alnHmKNUpQdZlKQPpLWvlywpNEWQnC9zqa/VJRX5hURso1mmn1Yqh4CnqfVSd9ggG+X6xNuV8XfWhTZRWBJYpoaMMp8yGNeaszjNJUXMQhRnpOJZ1uaD/Vyv+ZjVhfOwZ2ix4TdHqhJA4SDEtfpcLnuY6bn7GrLOGPaqFoKSPuOxk9lLPCoMvBURPAxdHqfiHAWD1hyBfUErG8TBonTWe2IJKi/UMnFgZvfsJkXbFQ+9eMcHdJFo0QoowcI0vicrupVc5oHMnCM+uE92Jaq3NjGRSxpT1OaKNz2IAx3hG8KG1FceuN+k+mRt4ZB4Uwbto1874eEC0zu9v5vn+ZYWCrff/eYSGnY5YLVqYw+uwmOa6AIp0BpGKnwIgdPfMMPXBeGLxnJfz8lOzGSFLIhnm480/oWFB4vP+NATlVLfnJoa2yc6JgdPFELOZhU1HBodxyeryig1yWrY2Jk5VSEAHGbMW/4vOyLGVE7S7rMQeeMTn4KWyBmUlJzAWUClfGBatQRyUW6Y0Olc7RkwFRxcl8D/R0fi04PTpD3oi15v84SCESm57mmTkwiPUj9buX8WO+tKGBCh4TUdOffjyglyXJrKcEP619HJsvcWyx2i3oXr4yHBt7TZOjGeUxySJH0tHjk97e9YP/ST0LeHOTPKDEaIC+ytB/OSsfPza9ChsMeY5cEkRaudO1XkpvQGRbr8YOJSU02nGXs98J/kfjp2xQ8pJGz6CryhpbdySXocfm2W1jakWJro3O9+JKrphbmTzj69cugK0Y0oufOPytiJah22kbeUXj4yaAo6VRU0SKpbwijdL7hCfkfJ/bT3caDmYgisVi3pzFiSyL1y2wG3ExsUq4cZ/QwHimNo361ZqYUXCgKpTaTL/5bz5nyA5hByjjWUcIPZwW+Y/tn5Z/ISEB0eu5oXh3gD305YmMbDigmzpjFV+kP+dpW9uO9mNPx96jkeWtXyt/qbU+dol87TP87xOYQQMLNoBQiJJFGkFfNIqHOC0U9B0L3eLVPsgTRtI4ZrjbrxlMeHSjns53pK7pbN+gw2KDU991Qe8CaAYAGxVMrcH3SQhPKrucPIicxVAYdym6sX8UvKiKaFbMl2curjyAblFebTU4wEhTxDTw3yU1T06CnvHyntbzPHAq4plrjsb4YIwuCXLCSVeYOPLUKRMyv4rjITorzxWFAJCfD3irUAK1jp8RK3hS6uHitp5jTadzQfnC/LRNiDa4rnLQjgfFoNu6NmgWoQ2MZVgrwbXTrZewQZbPIBk2NP8xGQw6hxEeaSaeNq9m6yy2+Ji6Au60GOWadRBN8geALXNSUgOBlpY4FZVEDYnqww79kL7N56uZ79JvlRYa9pW7DUexhsv8ypQSefjteviLzBQTm6IrmXBcjSDwJ7+GvSkm73MuNSaQBxfZ7iJNvoBWx3ApGOOjWnjPq6Z1KLjtv4b+frBHgUfBQ2ib1t22TPhFlq5Qb1AeWAxL3l/x6I3b/bG+8gsU2rhBlA4+lLrroeCJQvaTgZswHOHWYG5wgYp2TmsO4q9KPQhmh3L4nSudXkM+luifgi79bY745FVYRPW5XbZOHiSR0SQ5xCwhnmMfid1ssFFxrndZX5M63DLylgflMnentoUy4wgHY0spjJmoyNKZe83WaQk8O1aWYNBn2eflCWr4KOUys88dI2YOydBtZJ9xhZ5dQKoLnqPV43BFnNUIaeRkDpj7iFNayl/8lHV1QmAJCayRy6fB4TubGrB5+j0nO/18HSs0HRtGapsFkXGgZEYpoq5J2Jx1XYytnee1TmXsZMJwBuDu443Pl645pr6/FYYjMs7E/VM4CJfaBaMSiZ87tf8jaJ33JWcMITa/OqpNBNrid52mMGFsD4cAA2TjaEwx5u7k05JAv8ugHLlJK+OP+f1RJBCIQojh5l6vYUg9HHrxzaehuY4+6yb4gIJwUkE2C+rCndBCbCj+E7tGGpL26zCCUlaX4f8sc0iddZtgbgPgRbAiYoHnjTArHgG1OF5PmTZB1Xq7kuHTYZ4rN0f3RBs41ITf8mB5XcT5vPDYQcj5FOtf2HBQtUsoutREqRHHQvO2YkURdQSMYXXH1VXCwnwvYkkgA/JbUYdJLU8URb2oIxAXZtuXE4iqQMTI7to+pd8sxt9OvfKd2Mosx/yjfMWL+PEsWYums4GqJi2xJRKK47OJS7cf6zf2465onVjl7uIPDFbeD60cGTFAsAZs7Dx8MvKtIvkBGLahIG/Yn9QkJz3PLbQVKLbAuf52i9LmropKKiYXrFRkFyEIfougUh2KcTtHeY6nxK4PJXNXqxPSslWyk5sFWd3Y/zKzobrMPj+i3rUIIeqCj2Vb/PoYg+xK+AB04yKm1oTqmRtgoOGRxeA8iEz7KXLa6jxvVLZQQdR8N++w5h1WxeDtMGdewLFv9FvvxO+PI2GGV4oLyVaRlFqNvr/iS4wSUtYah/lYBMcr2qWzl2Fd9VWKeGQSSsSaN+e58HYLBxeIzLC4KRlrrGGoJ2RyHEujex3HXfCtTSRk18hDkLCKtnQ6DzaRYGKdcpXgWbDJFYOrwiR+dSNE4ZkfF16Y527I47Z4tuYCAiFqRySQOog6f6YRK730rBYpZnPr/OICRmD2sqbDcBjqDECmz5va54rj1YlUHSsERbR/8FyuNCa0yK7xNiklraO98sWl3W2HNnA13inNWE4Px8fa9xlKf/HuQVKUt6ypyofzfSvosMNrNIgqvBvZ4aqKlNMpczxXjn1Irr/KvoTr9keMpboeRF9LtOy7hAY9mvI+7RIrqpzCjGDCep/WRGe3fB7m0Q+7WK1Kc3uS8BO07bgTMPkqYhs5vH+V/5IU6xMMHy7K0j25AhYX7qdqkfjSsXoX1m1nzVW9DnGdiZw9JXv21kFGv/0BkmE3yxL7zc9QyxbWXAzCFnTxA+1QOx620212xymRbOml3VC0cMvWU3HYvejkVzOmeBkpM8UYsNLT/KLly6GWICLpsU4YfuH6hH+KDcdyyjCjJ6Pi5qKss+6BWDm+JQskiOH+UKXfKShRD/W8FiotydrWYhdqtn+kI7tII2QfCLzBygNSej7mtQ9LKoJBhB5emR/G39+WYnPIIQA5XO+d07LUNrJTUiK6tehZcWH9VjOIMJAl5Z0Yg02j0NWzLviB/i9oqzsrpu5yoVIfc7jnk5nWid8q75i70To/UvbO7a0KUd4nFLsfmkkFCbZti4zw7eGE4Sdqc74LfVFvJwsztDPv9ejn7rXagYsgZuMLlKRBg3rNF36sTAOMqk0OjvDZXh7isasda8NyVXp5LxB9JLucNpKnHJ2y9fRDSrkTmsTez4hREfN/0uH0cceVaWME/XhSPdLY2cx6v3UrkSsUUvDt64/riY1gAkxyhj/ivmK9HH9saI0187Zk5UJctknAH5wXRLDGxdO3ibwsqzvt/UZ8UuUF6kyKxdA4GVq8hGQMqo221uDhFclUDg1kQ6AD+ipUEQKH4Rq7hzr6eVx5CSDzemwU9oq4mHNbhUqRys33GCGh1GW0ZjFg7FY/Utrtkdt6foRAsp1NeAAAxcfowARMP3ZnrmfZm5DgiWAC6fXySdHZkbdYqraPdzuUJ1qBavvgRLdoqoyAdGMbLp6co7RBd2hLr7WtSPHNB+1myPWd08lqYkFhEspMfj0HSWVVqkk+GmdFkd60RnQ4Z3Itnpk4JtgQ4bHucOIATcdUQeRex2BAY88efMTu4jWCCnyMhJ71IjGP7yb7+LuDQXtoICl9vPZutPrJa41k9VZygSUYobq9tOWxNS+hTRLYd28Gv4oq1AqGGZi+0rngBqjXw7hBRc3W2OAulir3M2CgrvXADb/9KmPN+Dd0I/EofcR6uWODobWBrOEblE7RXivaMXNDo7esyzWDa+MU1PmEWyUbH85oGItDdxgHGFc+0PT8lYC5EapU8zVpYIdd0oIl39rOIShHoAcI3BC7hQc3z3C411ru2pNYCiactkkxRh7wRw0Ec+knxqfXiBRcQA3YKqlO9+xr/gxMrOJFjBeJUH+e/5CCP85wM7mzB+Z7mwmaIhLUOSqZte8cOHRRmuKs+kt+BpKHgQNc+U90gFhtlLfMjLZimeCCb4QfQqB3j2EN7RvjvvAQDRKIZQU/+9OPWnj3nZjJu5BResjSNVL6CrJVS8coO+Rrx+097mmCUXAf0zOrPA0yVGp/XRGrF8ohOH0mPM2vL9qJAVkkNzzUri6J2SmpQhhp60nn4rwJccqBEWcV7q/CXVEdqJM2Ch1yKt77hOHfAUjuyB7HCn6k0KId1pfiGKyz7KyRj5BON+zP4JKJlS6cmn2pZdV8ClXlPoykCe4yPVaUbGkEDtyJWR3ltG5aPxk9KbZECZnsDDpvxO60KXQC2PMGreIY6Lks/ycW/E/xz8U9fSrknDnFivCp4GIkcYFHiGFTEFnMTk3n3e80PNJZkyM3fliCFr+VLMmIm6/hXZ3TqMTSdTRuzVl+DUpGZsxzqUAHCC4a/U8tZL2v7IHV/vMyM8QY122H1K/uIBrfg6wHBhPKHdalYCYyKwuDPumIexqxTgClw3BlhR/TPJFBJ9jUy5RoEoJewv8BzK090pGMQ0OK1wZUIN/Aspi40xmJQzvDk7CXzV3uEuelQzhrMPmolLM6DJzfZlzEZSHdkL4OOps/F8xg+v6wx8O+LNY6o7zUi/mcvxe2rH0Td8/6H9WqoGM8GER6Shim1UdjoSnOKDJ5jfvwmIE41sS9HUK32DaPo4TCQh7k8jPLdlkRHXomleE6rFauKfZp/6UJqBLuHwUbS++3PETdudr+n08BobqfJIV0V9Mzo9VLQjuBtZ4XDHG04CqhnWNdCndG1v4oxz9CA5OrO4iG/fxxty9LDR97YSeLi7NfNdCSTdZpsT3JRPkdZRIVOfANjsZlRnJaWq+4jCuDoBlX6CHyd+ZmIIHAXitbMpSs4/owMISxzZAqlZb44ukbMx7ikB31UvW8+hgj91qFC3k1p/0NbKSzjOHk0Cyye3zkrs6OZIfhFatsWp7nDR27VVnHWXM7+DBhcb/n2M3C4ltVQCrU4DrZPRnhzu4uC5Kk4HfBAQTH99+PszyB0GsOnG+rxj1y0ZYYSOEcyW5NPMedvD2YCbJwwc92+RqiFvEhhPQuewVhz2vgdAkJkF24wVaeTtRRFRn1tJfZWA32DAwkB+YueQMY3oN+JOlY4waso6Z0DN/irBf/3YaU4A4ARZRBzsP7xw0e7I8oecUPyqYC5apNxTaRyxrP6Wb/7Jo36RexinKYCFGnjl6ky/W+VVvCYa6FfsrgtUR487E6+nwfa+r7DVCSWppY8b/FTdi6qHtt2TcEO3dHg3va6eqr6wUZEZIgn/Egyy33oLOBllAT1khhTJtUjLfcZxykfLyai7LesMCQ/R1PJkTyjpjxCyKn6yu+e2k6DVPQ8VR4M104qCeYB05JwtKSvvbDjUDFsWDsNsf9La7a3teI5ccacJe/S0I51Jm8c6sVc862PeW9fh866oXg93IoigVz7zUQoBFBexid/vV5UF98IKjqbOZdK9wrPnlMD69iUiDPYoCLLoyeJst53IQoNed3VEMTKLgZi6AQU6Eo92vpWjxaCFq1ILT+RzbHsKvuKcDOn68ga73garINyEQPY4CjNFuC1cgqXzERroQADSVydqVMQw44f8ZECRUnTuUzbjw7ZU5E7BA1M6WbVX6BHGw4ozrvHtj/AJqVr0pCaJhvdsj5ucCCZwwT2/0QdRF8+hs/nH1aBCTt27gmVJGGPKw/m71JjtgDx0oCYDekRWwavAPHtBw7GjELN095+KfuX7+HYtsuw92J5/nLeoGFTlLdDwQRXzulcdWKWZOj3DB+U3sjLssF1XpaXzXniMPjZLSiQ3XxsUSr8YMTgERM6/IgI9PIpGJcfQ0BKSu2YvtiY0KKkSDA3oF62C5QZq4+By9aU/suHlcQ6LlEZWmSg9envQ9qznmSCS4banBYlx+GBiJOncG4bZRWERgc4BNwX4mbTg6aszeGBQR
Variant 2
DifficultyLevel
742
Question
Mel made a jug of green smoothies for her friends by mixing the four ingredients: kale, avocado, ice and almond milk.
She makes 4 litres of the green smoothie according to the following instructions:
-
50% of the mixture is avocado.
-
Almond milk is used in the same volume as ice.
-
The volume of kale is two times the volume of ice.
How many millilitres of almond milk are required to make 4 litres of the green smoothie?
Worked Solution
|
|
Volume of avocado |
= 50%×4 |
|
= 2 litres |
Volume of remaining ingredients
|
= 4 − 2 |
= 2 litres |
= 2000 millilitres |
Let x = volume of almond milk
|
|
x + x + 2x |
= 2000 |
4x |
= 2000 |
∴ x |
= 500 millilitres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Mel made a jug of green smoothies for her friends by mixing the four ingredients: kale, avocado, ice and almond milk.
She makes 4 litres of the green smoothie according to the following instructions:
* 50% of the mixture is avocado.
* Almond milk is used in the same volume as ice.
* The volume of kale is two times the volume of ice.
How many millilitres of almond milk are required to make 4 litres of the green smoothie? |
workedSolution |
| | |
| ------------: | ---------- |
| Volume of avocado | \= $50\% \times 4$|
| | \= 2 litres |
sm_nogap Volume of remaining ingredients
>>| |
| ---------- |
| \= 4 $-$ 2 |
| \= 2 litres |
| \= 2000 millilitres |
sm_nogap Let $\ \large x$ = volume of almond milk
| | |
| ------------: | ---------- |
| $\large x$ + $\large x$ + 2$\large x$ | \= 2000 |
| $4\large x$ | \= 2000 |
| $\therefore \ \large x$ | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 500 | |
U2FsdGVkX19iZ45sW2WuNSLZJW51JD+m93XkiS1UqwVlSQekTL5ae3uXkrNacbeQD0UxGnUZ+W1phWsJfzjt4hi28avlERU22DS5r7Uz9hv9nnJeVPCyKOXRiLhxKW3kCXKwbkF9G7QIPwjHYPjqvpgETdGmvQ/mG8buAsiScPSIpQxqc0jvBg9AI6X8CTeL269XoHowrxvb4x/Bs4v9Djnhbm4if4vhoFeSEUbhLBuAp1gkIG+Y3wcA2Fm4u4T4pFxmHp47gZfvjL8avn+UACtep0P+wv1O0TUua6cQ9YuFmyTRjxpqWtHMk0mMO7J/LzNFHVvGRL9h6JVFjr0E5PJND8x7xpf4OItWnKYsFKozA+atzPquBICF77rGpUY+SmgSvHbQJp2Mwirjv3VHbb/B9Znc30VPdJsZReCuzTOICVZAeZMfs+QqsOvin+o6xLMYLt+OMbmLywYSGR+tZEQjD+3tWIvSeopNgXAem1CsPT2aNDdSi/FWYBEgdMBw0t8AKP4dIE5c/MurCJhuR++pQBQGlx+rzZv/hDVh1rGIGc8qsiiuCDJ0gj38LC4Fs0Bcq6uZD0JjIWc47w4V4ul6/4BwgqEVg5ETsfZQ+aRg70dVRBRhbwiqO83YXaZ2PCr+1OKt5xEqXe/Y/iReXuuEN1ffGr7vpFLpFyw5pBT+bY4tQcGWZ0kuqnyuhNPe2x/WaP8aFzNceAmRNKoqza2Ysniacq9zaId4A7CMfJia+jYYF4SzOPwyvmbWXw0OXvOzxxH2y6pahiAvtFK+ry1Nm4/FJFRSzyzPd404VNlkLglleGjgHI6LuoD/wpxVnfOh1/S1AdCF873IIZFBL12g/qwaOBsJ7j5/ahZZuBiN0fLw+8ZQjYszdlm79C8RMsF3LXNJwMerWoqvXsR+hgYlxJIP0x0p2HgYDE1HlFZl0zGoqPS2ORcY5y5TL2sYqCMsfhYTyFD+/ephQzYnYdWpZ3RSHWjdIoF0vEGvpWcE1mb7eFxuBk1UwSoIdt4jlHjeXtCoNLUfvou0ejQHXhSwzVYw91NaaHmBMag10XVvj2YWPByM5uhApSlF0xgsmVk/GEO5O2ZkYAq3HLb2yszqXjAJkjYj7n+63RFPNgalDCLZzSap93eln6ETXugmA9YCRnJmGQ2z4ODXGPQPgIEa80CjMhqFCuXJ4zJ+2dF/+gVKbYG8tARfwYGlTqcA169G8WRmTiLT11qUn84PJ8MVeYckxEfPrE3Jv1z3zPIbc6HXByDbsaW9eiW3I2hMcz1+BFKpKNxD1aTt1zzQZYxlU/NmuOcYSvuepw3QubRzkaCT4FPOgHK7W2rmP0EKx0nmchTSI0Cuu4VUXhaPolxdNXMsxii1FqOfp86oKxPhvUVGn0phwwvZ09jglbK26uDI1gForVTvbcRVPnGwOv1VCldo2+W5WL/c1MHoQDifz77blt10zTmjGtRZMJiWflFrnpwQmf4O6UeBf4zCBMTMyZff6OyrFqcoMt5krPZvvMdFoYNPvoA5LZUINzNYbo3pt2ztGWTqJ+GxXMzwjcLtArhA3Bdpy2tr4iV/Ed074S3XqyJ8qR4svUt95ibhGXeXyLLTTVrCrXqOLYrvxgMeeQQZGyh5sFBQ6H5Cm8UaXz6VPH+0geuw7euSD38L+xC1bxDkEXqRjgJIprRtQwG5sghM5yFqEkLMkyOBaLSzna02UbQs8UjmwrSfZAdCOZQ6WKLfMQGzO7xTK+vPr/Nmj1/64v9kAkozte/4F/ofV6WtakfgtBE1Pd2TsQQb3Obo1sGKrOboJ2AGeJaCM6KvggJJtZd1YcyjHa22DkzAptw60UDVKx3CexSeTyaU9cqejIHl8DjpnIgeix6faCSydVhjlR0XlaTgcUgB1pzeiI0AF0D97W6zCi+SALasYgf79iWkXXmB5XTD9yNKjFwM5W0RFPGE0hIH6iMgNpl6eewOeiWN4bamOROmwLKs3tUhP/r9QcmwjODh1km/n1GCOCcds0k9HriSO9tt/9ozRou7+zHPxP0CvaKjb3JbGZsUNdiDczeL335kYQT5Ew139ilUqoPnEzmWK1xCY0mcz42Pdh5Uh8PofGHTtDrqCyZ1efASLykcX7PSWqSkb9btK8ryphUvy3YSSsVNd6Zofqv3aJn6LBbTJfHjYJyy2M6qqS7kA1s6vQExnVemOwDxKEP78iM51NmiB9KemiKd45bqQBxuG9NR83OKx2nf9BVwlhffvlej8b2Itctyqq7s8rhK/CSMbJaK13NasX6xqcKtsnP5RI6EOW9e1jDTlRZvF4WOlZzE6vQdnPXgF+f3ro2ZNsiaJ6ZMfWOqQ2h+KzbCbxmeytpNRI/+OXLfCtR4NVQoS0tym6PtNOHllpF4xkWe0ESyDvSWI7pttEfuCZYsn0B5KJXi87sSK/Md1VWRYLIya6KYalS9aixMAImYRzFeEq32iHfGCNbuQUtLT9r4TRe+/e8rhuzFMPpq3eoVizF4XiOKw7Qz+kE3MUSFR5/0sD8s7g0CPs2GSl953rNH2uHQI4vnheFVJ6xzpvLsMppWkTybUDC5YDbO1c/bfDGsiy5VKt2/RVL0TKfjrZwwAwBZuK/04RIlj4lzl/bamit/ru/DVxjoztrGfx40OORcVQBux2jHTU8a52ahAljUxhDbzhCfLdSxO4SRc0OKYCvehgGARXGy04L9fbv5ijoPtdFShLnYIyKaQaYf7FEajF0QZfHsXCpht+Ee03Ok48COyiTB5rAwriX1OBaPD1xpobuZaxuqIQD1bnXhVcIg+JBsrYCUZ24dNtvX66FPRvhEh7gYnFl9W99iO6B7F5M9Pt7Ebvf6lpA71Jpl2FIoTAd4aiE57LAY/QfOBGB7LQ7ZSK7gR3MnAYHHVefaFcrWBYO6N1OE4asKxY9ES8gs5RvgINC6ZDfbIUM/ubo6kG9ThvWItOyDSbSt1fbAemV0sxcdKBsE8PdCyVi2yvjEXC/XqI3AxgFw1bxhxL2vfcZEzZHOG3hf1AxkYg8nD1xV28NtCpWAUDRkBdOJBaTBPd3qokBy19mxVI/4PQW/g/vbkr/QbahOasfOPuJyaMMEkNQNmyQseTXXbzsCqPnTH94tVKdzvN12j8pCDGpkIF7THBEwvhnqeVotKKwfcqSJ5oZ4KWUJeOM8BV5ZNYYSzgFDK1AylufWNznNpgwD/CSypa/bfoohFoM/fMiIl+1pTPUjvP+ZHtFSTuIGCijDrivrVCDYaMInrAf5zRhY9xi5NU85HWDX3OrtEf1vvc14Uwgcpo9Vxu8YfdMFkJlYYs4PNbDxISZms4tRAq0yxsD5EuoHxGgxBDERp7dKG/Ykd7jkCiXxC8KoriaKvTnLnxSslYQ5HFkKNE8ko7GVHz4adCYyBr1d6Adc6mRSVJ+aZsPwwZaItTNLz5m5K9QrXwFAMTUDZjpg6KSQN8Vv2D58t6bzl9G7f0WKVxVYLY06bE+Ba1BZ214hpzLrwGXXUX6TssHgs/13uGryQTgeXPShq1TdjFjPg0dtR8E9mTLaWSvEqtai3NdI80jaKg5WWf8RH0usiJgNb3oTc5cxaYRwlpmay04+/jybm+dLzVOtFyT0zDE3yvi5j2fgfrWoLW3YzypaTqhldE7IDVTXc/+v9b0a+3P3juFzkvq0up+hhfLV0b4SlRO9kwtmBhQhsKpHqxusajcVd28RfDaGjxVG0Hu7fw779fJU1RzoVWTW2bhyvZLCw5seBwWDuFGmkDY68UqrH/6atbRsyASNFQC0s6z1EIJxhlsiXK7OjidGMfm7fGZh6G4OpPTJnC/S1QK4AEtSVTMQ724vBKWRMz0HKXavdSrFMrCdEpzzKevJv5iBuyWYr5E4J/Z1b5eXRwN6LYni1BhLXLH6AAoQWaKDKvJI7WgzDVKqGWp1L3NDovsBPw0wZe+AuO8VoOGtP9+R3P2gsDQLuTAmM/uKhb88o4hT2rwOP2D7l7qWlsbC+JHdHe1CURkKpki2yKqoASF/oNShbxqPEpMie5fIng8ifzPf8TDgECEDfeVfpgK/J0CB46//jXsVEI7A8x7kSuIRv/v1BfOuCTvDccSLva3ExZkm/GpHCLVEZKTVUGpoNKy5dcybeSltWd1RAmPwXtm8814QrVFXSWtPsw1qGKacx1O50wPRRpahmXZStL/qhchN/geLKdxM3Y9/XSpoDqvNNqqyjBZJFj2V3rHsE+PDEJSl4KfgaEtCglOxgzf9Kx3ezrEFzwPV0N2ty7QSxcs6TzRKSJjbM4aHFeZQyqkhA6Hk4Acqll6UdHOVwXFET4VCStmVUoZCr9KmNGAfx30G3KYxwPDsQf5JdBSqh71jzH6aCKB27Hd5CitPLmwQpHQayss4x3Zrww9Ma1oaIC+ZgWUvw1snxsCht1sfAghpWiXJY7Sd6hT8UNZUmtibJghQh7B84jRGvpGma/esFovP6NXSyW5oFw3Llv8I/eLufPGxWp90PesPsgcPH+ETvYbq39gILyP4LTDD8Tdof2YoPC6P7j7pmaPMx4XTKVpdBjTgXO782OZbVIlfONZfbwLrXsupQMUTgOG6UfQhfSIqlTjtiqJzXY++PHQerR3WIjRb2irOtjkJAVYLHOQ+AZ2KhKeJCIIbmgKilK1XTPP1KoKsQ98zCRA6EdvUMXWahbTneVw5tiZxqjE6dEsTdu2A73w9j4EraCaktXgoxjOJy3O3TrwTZ/jxPvoqvl8pevJs1izZaWsaXWkZJ3Uqh/ZxUwWflB8X6u/+YakO3Zs3tFkOrocOaxUnC8zxLUo4YzoyO06mSOL3F9wlca4MQ9ZOOcJW/OpEJhTgHL/Q5KG3v/vGAoXYPJ3vQr1dGEz8wSRtMKo6DjIr6FVFU+a/NeIOovaLVJZOKJmZJForyNswVM/usPT7dhRJGTl1yO9EIC9WRCktL7pYTdJxrhfvvZU7la9s0px0T4X27d2OV9HSIQBb1/UNa8tcQrDelTr2u9W779w/4GOzJp5JewaltBBOoixgOluqvJWL/rRHqQKwDsWM8c4uiTtGuPabI1I+MizToc3jPZ6v7LAm+EkRKQBAtsG3VyihsFH2OoR5TTkQzqoFCfREPsXoITupedhBz1k9KfkGnZIXy/SzbnL9CMJnoVuR0VzDlVBp/8HxiddTXWBnvVAyLWawPiF9nUGj11m73ACIv+H6MygJiEtS76Dj3Ky5PkXfQbhtwa+tRH8NW0oQUZLhofkZCkXr1tkAql1tl/q/lsxNrn229Ppp33HMEuxaTWcoDKYRrdkmuj4EUGm3KUAFyBoNokkZ2ASiSEqHpuja6Vs/sSRS/Qonc53mTwDlirbErtFU+dhd5KxOmGoUwwnpFojkdUvEXjnGKp/08pHt+MI9vUYxalJNne162J56xscDgKUK94oU20w07jEgFC3CjlxtjPJOFUXAahhIGebNTFbWCz1nCTRNyaASNh60DCDInGO0Ee8Qj3qDiUeGEmSrkk72PAvCiQ6V0jiRZ0mO5q3UB6gX8ZAG0GsjgXJU+eBekjjbRwPHr39s97CLkAbv+q9UspUTgdvS8chnzFdK4nzAzHP5AhTv4Yp8rl3xthmjMc5C8U+boM9pbUe2RToxsGDZFqlc3Y+IgchKPxNFl4b7lBrA06j4pGjm0H3nofq3jGJipFE8ifV5UqIJTHmWrTjLRyjSfMUjF9zIlfTY7ZX30rDSnbvVzy1wgY5s4rvMdnEAPboGSGF4nC4eUmLCwYM2H0bc+ZhSNBNY9nbi/Yy15Eqz9dla1cywFHrbKIABVPXiBRGuRrNdy+TNegCQzOhqfqQnYvfvEQT9OiSlA0oKlAnvCeFqLWN7Ug2fvln7EdOCVryqqNQSceKVitofkRNqkUe4zcpKTOe/J+qj3YQEwpY6dKilp9Ryyp7oahBGRfDItu1fo5+JtpeuYLXbPdlW2hEUT0erXRVOaW2Vp2Vm3aZuFN+JOuajFCFiNTDSVM2Wb/jbBIqe2SADoPJYdIrerKVE1bmX5aR/0hB88Sw0Bh2LkPg8kVIYKz37+5uPCQz5CzqSHJpQ03WU3hEWSU8OY5MevUzSp8DhfShiMygdwNO6lezSoQhYwZH5O2iMfT1L7QsVw7bocoABIUbJ7xtD3t+5KmeLTHKK29pW5Bb9DrNaKdE3AVn4F6rIIaaugMq1162kc1nqlPyiW9zrziPkrKomXhhZwhxhdy/ccNnibBvlpbUGzGBmxmi+yv8yvNtn0PO2Ekf/o15KOB1AA/yzzcrMwzNZHEUY8G/fNQg96Cjv1dv/uebJUHdRuQ0o8ZoItxZB6eusIEOJg0Bo2WmKhZPvvpUX/61U+b0SUdjMV2QUg+iiQluDtW7k+L86l3PmPDGZbx7zlX6lObtCBBInJeAEgnTbIpMbSMqCVB1tFjmN5nr+azpO6Zu2F6jITWIfhA26RF0wtHEEJUdaQu1dFfnhQACrE2NP2EDiPkUHNTtu2JRunuCTvkZuAvhFYBau3kfDxVLA92P0RpDpMENbncj2fgyfuLeA8azf0Rc4aKTIUbPZCIF7zYAilAKLNy/F8epbRZRGxqRUUH4Vg9dWMQPfJ53Urs8r+Unt93qB6DopkP26H31VsVWTto+7gBL8Sy+4litfsxpcTnz/KI3h/mr/IRaohO0WQe5pNx3c3WsJuLSkoh+eDNk003j2dsaUV4cAOeFSVM/MH7qGzOTzABKtbd+nAs+jymUBgYl2PLTwLf++ZbUOdIKqMbXlWYBPSTttwvdXUVm+UWtFpB8R+M9XgkSaTpKTtUvK6PXmKPbTwtjQbsHIiCl0zkWw4nmAeFY6Ek9HgF00uCWAIz7K8EmAHBnk8owdabYwh9DFA0NLrlLoOvuFlnnfGAKgJLVE5uU/Tn+rK0ze3CgKZFnejAW2XfL3p0S311RTWrbbS607nfhxcTazxym8Skp3D8oJR9veqaBJA5L9Fs0IiwWgoapF+84QE/U2G+40zw4SLnbzNBhBExVufb5nz5rDjQ7v6zO5RdfsN2ycLbxUnnHsQhVdVv56gbt2JRcfAV1AZ5iwP6B/oGQ4T0jML5B47JoM4o4ePrDXv2XfMLlh1bX4A1/GJsonnBWEJboa2jZ+ksICumEPo9Z2d6ZqSds9mjcyg+VWBUr9TfaEMDwD2SwwPJAu9TJYDsQfs+iAQbIlw6hefUqXsBpTil3yxKMaTwUecx57c5VKBQkGmL3BuA0egDsRaalGruEr5XGcvUOTE1ciwZbAom24ZOlm4TmX63MNWc3b2f+Jagb/2otMsJxzjiuOwCCi51RIrQGGN4XEGiiC+NZ5F5RREcZ+1wv2ApQIi/0txrFKJmnu+DH1LnMGDGZ+mvrBWPh++1qkuiWlqau6qCG/vphFtisVz52v/i+cQlXMoB7pe3hLvtg6KS8BCCs5q/ZmlaWNxkCUDL82LueUK08HWBsvxKcAe4KudckRInq+6DS9EVVuDxitnCv1V6xxquhVPweAXLEdsxNP9wKn+G+PVqNTbj+nnU186kShOQy+F7LHm9GneZi5n1+24bGQoiDblF6xuMH53AgzomkyWp6br/G1t3fdN0BP/865c4+gPnW+gRaXguMRZ79nGycWxvKbPRZ4XYn1tkx5QB7ztarso1LfQkW56mansiUJxiZGz2f+zMds5kgXQNgCVpTfRa+ItysHkmwVmoB+aNMpPtoNMhOV/hR0dkP0QPthExIVzWhrY4xH0oQvFrCNE6wMeDSOJh1gRNEtv10+Ho2KcEAxHjSaZZzh38JhG53e8tb9Jw+Q2Af7S9vSzbKqtLP8fJDcr54ONt+6RDk0a1UURf6jnMmltCim0aNbvBYrUTOgkwwX/4StrlstwZWe7dS9FTHDXpWxrGbmfXlJUZkXIR4Y0lJLLmuqn8cDSaOSErUeUcgQVS5FYVWmbWJ9360pwOMcCTbiQInfhpEirXl0ZyCS8s1GwaOjxKHIfBWlGWPy9EZ4Uf/+01fzRVnefNgIBryHvBc34UEaQVLH3FvdyJ+KvDkNz29vVnWencrFJiCDJC8V74DZNA9wVVK3YupvdoF/l8vZ3aEaxsHQzAa0dhef0ZoFBvzdcFgeVyyNCB7ONaIfrHGErUrf0vD9PP4Qstc2Rj6cCX+reScLs9YN3UIf13i18GfsiG2ZfTxoVUL003rlNVD4RDjcsQMrX8WUVpNYoZmuTvEKqP8vFg+KfCFyQ3t8X7vxlcH1xBBAYyjG+7AOs20qSN8iyZ9B4Vcc3Ubx18XlSpPMAG3EA70w66dy/s9IfHFG5J0SswlcdTjQR7Ve/ye3GKzuFEolnxbaHVboJMFE1j9uHa9faZGiCLtNFyqJR+0TE/h3fP34DkxmDy6Z8ivBmV+NdGJfPra15XlpXeRz7EbDMkEbHrKPkZOPzib6GRXIbwhXgJX63burMpFl3u16NSLhbN2ebCLk2WOqMgnZJ9yXUrAzOrqJ4C0c4qlF5E7sA0jTj9pUAWb2NtK4gQ3EluGOLKC8ioCQQCX6M3ErK+y9xZQkpzdPAqKZUfdDLCQpWU0TlAnrjwAphSArJjB8DmOgrWww0o/WVIa7ZL/CG3E1B36wNwgi9cdkMlawMblCostSJiw/0J8BIUp3fACPfjgewpgrjI2CD8zCutHUe2WjOag7+pUmQBwlKWofXhRXnJqSIK4ItPWF5vAnNy6HYBUZq6RvJ76V87J2Si98HH+JFea4IvmKE1fqJD/Lks5UEaTRC0/v+Rry8sIZz+OHmtbFG4U907P4jOSlVFNULLKB2feqmUKUwBlA3MHOPyD4RjMpe96hGiE4/uvu/HVmY7jY5QV8bWqcQHTxIcUO07vA/NdhxyyYRDApbeR4/YR6YzIGBVOPHvVCYrWYjYcjFrz7IQZyj71T/XK9jni7H7tGoqgBLYT8jC9tKLHswonEXUpJBWDaZ6ghFbTK3HhpTmho6QvWKknG7DnnanNbQ17CGt9pPNWPOlLLXi3FCroe8VgDHKiO/a0zmuTRiibp6+Mj0WHI4tan8w0v21SPhrjAnol/aiTlHCECt0TuyKenodGH3GConmMok2yEIpjxgv/0GqwnHLFw41lvkeyMv4urqf1XkN0nBhP45YnCPZMYrs+cm6BAazZAMDJR22fikossXzMcHHw1IuiodFBfIU6NwUJlK7JEz9moeUm3tM93Kx3E9UzZm3Byguae+8m5QqqnoN78tPgPuYEDuvhQ+N75r72Xw08UFm3bPw/BOuXhmy9szqLnzOsaniLyv5psHJRKv2ELuQvNUfaGtwkK9fNQPowdccmTuXxIp+yZtO7xzKop0EQD8Nj9lu0hZl/XxcSHGzD25cKyaVFPsHZtflFnKvsA8TISD2+5bzaZXFHo7UQm4MGrGydyfcQbUiw4QSUOsGjosSRwdbiFXhnHYkz7g6sY9MzsyoXEkEoFsuVMU7jhZkQdVE1eGQoE6JeokkrHUnf7k+GQme/c9qhe5pydOqU/vjDNEo2QkP61B2mWKNkw16R2DFdSzAlafN7Ueq746YHiSpX0nHn0fRuXtmf63KmxMa/a+WPyc7v52ERtLnSo33wuQOMwIeX9RcaMPwe6oVrcYXow2nZsb3/nNscgFTiqhurGwod0v5ahUv+rW7XDOsjkdpu7fkD4Lull8V5oiMitRZkknmCNkAf9duXKNAK6JrjUCMy1VivFng4lCv7OmfNWl/W8WybhbDaBVIeY298/OCBfSdD4pgIAWlmEBZ35zgG76nuFOxT3L9B37rZG+1uA/xNQSPGdU2MGYFbLiD++uoyx+MboNMu7s8JgWhB5gp0097yxFY/4/svuVKFJR6nxiREkTxSNEoIo6WNtRZ7/84mHS5wPtoN46P3aIbS088YfYfA0S+/gmJ3rbeyCVw+GbmrTgPWoshvYXRr2nFJvmcBI8fpD+Pi0ts5iOB+RZoVS26J6dj9JlASis0XXAIzu3YxLP49nisOidYrPiSCA1TcTe287F1U05ldlZ8hBudFwFNewkSpsdepytKNVvkmTN785EirILFvRkmmKH5PcNbG+2CT1EyFhQJHNLfxEbJe3fvIgJXKOyA9QXA0qT58iMuSzaF6tJjuJGDI1E+gaekRALCO6uj17Mv+lqyowEX9lOPwWMpGTVUIWwcJZ1F88FguZLSQ7WqRBepkWvIqNWGV8ffTitfv/5KHx/QnlvXyGnvS9W3NbY4QTyXvWFFwEeg50tI3PbPJKfTQxR17KKatmQKv5qbdIJIWV476Gq38aA5JW/pTeMYWTmg1jWTtp2EU+t65dAfdVkHesbV43H9rGIV7Gygf8pHL2E63p/xGJG0vVdR2+iuS1YEkkE3/4kzvi3Lo1AT+/nazX91rkUAAGroHBKhZh7kbuDC6lib/BNjWVXrafdxNJdG85Q6rFQqNXwnAfS8+35P+56Om0VY/AGHQeP1vrHCXTwXL2DTIXmlweLRtFWdUop4sT6lzixvRGfw8X39mT9nQdr34LAwqzoyVNY8QLCWaKfHgxHVV2KplaUSn4NH7PMy14huLa3xKOBDNWLhKogfF60aPAd7SLuzLfezBz3YjDZvL4lnynHKwHufzjSmGp4KEEdLRmNsrgFIEubkmIM2geMf85hU7PyQgvr3Nxirrfk2qSw8jxv+pf7NiQdQ1UJUdcD6QntzmJzRIuImefpi4xZf/GFi6OD+XWQ8z3fWhS8wGW3G7Rl7rbPvFlnHwO/NtKVhYnaoKPwpYBZxWTDgBazFRPXkXbnFO0uy0KtHBGRLjdoEKyvnjeRlexZZnGt91ILXpuEXcwchr07yEbrRKPjw/niWf9wSsbL1njgGMYVskLCDza2ouNkFz9fPrjAjRiHOHIQkoIDQqVGpEFHZikc2x/RZU64xtqHoMl+hHKYqVwXkJI7+QUX1uMzkzTRQejrqS5D+O/MCUvbdF1pAQ2N4plrQnA9zIgez0oV4RrNb4W/y4kqVhJ5KZlDJw5iqBoYHe+YdHobY+bXuUg+qFVbj6BEOPfKR383ukY6LWavudpixh899oKZd1EIkOca9wOC4QIkxfS05Up0pDjxP2Q1H7yKNPjFRc2zYEUyXQFkiLSrkX7nt8UKBH4ET4OpV6uDR9cQTwZmZKc/wHSY6jJZK7eyP5JX04A16E6V+DS4l3X15mi6j3fLafU4d9hmV0+fRPuPkYa/+rwp75xJD9gXmNMXqj20C1caVkfox3fx56t/SjOq2htXyv5KQWuctGKQDMBuM8r3Gtq7ZolNkv0R39bhX7YLJ71Vfbip765dSVhYyiHsbSbhBe3sT/VvwkzHoK/FXauqzkFdeZ0xR1Xs1B3/+3JXWH1nm9XAycFnUvCzZVhdHxRGtElJjAP5esLtwJmvnt/sm8x7bD7MJ+NQMxpBOiGY4pdq1mhDwp7mE2L3dNXfqwS3mnwO39wyrOI5M2h+BwQge7GgOXlpyUVmruwvY80VlK9ie9+j/hoXKCjrKQG6Ufe+XYbZ3AQHYwGxw0DV3I6ZUfExSwN1aSfqUKyQK+qaEiHt56KFmk8tDjqhxor7pkdBVMLkAWBhSfApn8Z1h1mePxDTvGOBX2U2NT+7cv+WiYdyxWlq8Us7w/7GAuzQqffM9pURolfrlPQ84Zxp9scpwDK0CVRZirHSLGeoMJt3GeFlAyKcw2VPRFTyXo7wo469BIbzUPGsYNgMfvt6T2O2dAAVVVudNxcKB/Gkf/kw2z33UWkRJD4AlvWT5oGj8t39iZgstZB77cEyLUg2DnkfqM1xS11yu1IV6r0s4HfQN/wvutcYuJn0d06C5TqA6gsBdgbmKpbCsKV/51HPUlxKmsuHr63xGGu7Q0NIgmwvXt/etTzEirEdlpAfcZvPQrj6eBWnntBRiisrcgi1WoMljv5cxHrQDD410iPWLKx+QjldNxoHSBwSZoT22reCSF/CZeCRxQ+WKF4hfMkjLxo4VeOxn49zxJgLBMZnQvlEdiZnxlu2r81NAHh2XybY/4CjfTjvjeopueHYRirZal2aXrym/YVOXjSacA3cKlAy1F9CBy4TtgjtlbAfF9i9u5luFsVh1leKXMDm2eQIv2RIFD1rRMZUSAPLy8wdyoVYZAW7uJH4+wO5xF5WjxNJmtiGhEhSagqQV2occh2geKZ7dGqaWVk+bp07BNi6OMLAhLpzKW2u91wOK9jY0UBe8zCIvPlOH/1t1qL55rqf9f/zf0Ig7JNwh6UDOgBh6mQTSIplxZWrpil1OxcTTVP7fzjdjg+22FoiMyr4/FBQHcs0vZhUxJtS5P+OzTER1qtbd0BPq5wFhMowx4TOfQDS/pQQTrxaPRdEIrPWdTbRFXm1XkXksGSSdf/wq2TkgV8BjFt6Gv/mCTfqK6Y4JzTyLIJZROwJEiSoQutmnYp+BpzRKliH1+vIbspW2HBrFP82Y3rD3tfXaNR09cUgcRWrfbuAV/q2TXA7N4/LKCNqLTbyPHDoXGkCBiLXa3dYOZHN7VjCoT5WhEjN2wElMJc3waMymR4+D1O2KAi68Cv3F5g0Z5Dj3u2Gsy2TOilWsmVeVzhGFSaKkb3LKCZhMeWA9mHnXrd2GAxes5VmiGoSI546ToAR59DZoS8ziZ9j9Re7uzJsbOMr7Cl1/x3lNzd5qcs97ch2nGBx4R8XR8JtSGOhXuo5F+yWC404ZyhG95gx4dALIM5+S1FnAIKj1FCm+rCtv+HKMpZrgOSmR5t0X82sDaiU6TU8aKovmynIOa7NIBDceW+nQuW+I9txrTWMJWeZ5J3XMJ2kd9AR+JvDottU1i4OugSvyi912kRcn15D8hUxyKcGQMgZQNSgF0rhoneJcBED+UmWPugm8LAzLD5VaZdrEkTPJ80YIfFh0XZjUDy2GFzZlegPJp7PTqg/IXmIUx0EsDutYrnctf+OI8lbAWpymNIRcUiKTYym6EprCQOWYqetHnsKRfcqRBqJHPkB6+3j0FrIJQmqGtT4ZPKoe7BTgMFk6TWzM6gA1BpHu0cFBAJBEy3g+nrjMxUc+/qCsitYtAGZ6g31rGmmzJfxsA0Zh9JrmJjrxDk1m0QwhjWYHFvkkkXIxfkik43a7EpkedtUrMuxK+yS1E54hJ3nKC/TN7dYI1PLFo9RqhYgYwALDzoUqTXHO1hTVIiUZAhsC65YU3hEvy046y2lgQMQ3KBpp4yZXdq4ZEHX/c6CxBkvdqQBbZ5tUxa9aR6WVwQxlhz5we4pzzrM8N0lTEad9F4YqqW82Qju/+nY77MNRyqwFvRhPiBomf3P+khlHnfj2zCAR4d10ov+p8LyO7qBt68iWdGABJ17N4uL8ZAzHWJP0FgwgbbtztIGbpBfbIwf/J1QIXzMEajLI9xBXZw0JTZx5ri2n5IX5pe44YRr8cAnb08fClKhNPyt7rpWehhNqoM+wuRU0dopL/fkvW/omODDdJ0otttT+JCr9dF1VsYTrNtqqRk7GgkqfD6rw/eyJFbTj7lhj+f20TNVnW77VO+oxLAJQfwo7WX72ePLfMDOr9vX0O1OHQ77LOF4icOWeK8wx3dhJB2Lt76kkqWo6rCifVprSGkk998Z1aGuqO0eWcUgN4tIYTfMeyk1iy7v5z3LxSVPeiQTndDMPZcLAp6g6wkG9+g3YzwGgotJNo4CwCfEGeJEceJaIHqi/VzrvDwGe6Xcvdd5HBHOfZx5opCC8nxfHa06xlw/nbfcI3MGKeSXs0bxKX6nU3rAcokdKV77RC47x+PZBNKqC9ZY5f0fluPsU4wuuJS0Ib1i7lyieweNPG7ZANIFKUDJ1FDKrgok/FmlTKOk3vX5QarhO2Ie+vuOqO9CeLx8HBzoP/xAsFEUPB59jS93sIw41J9lFVuZLZDGYIfBbG+fdDGQNSZYn1wDB0zQVAZCfVzcKwcsrNZ8SkLTGPutyNh6xFOXouvPAqxad3RppLo66NfswGhaQmH79htyoO2+ZCN/pggC1HXqhHDbIxi7ScE3uekMqRrH4fmXD71e3DZP/omFE3EZb2j3lsDXEo09AO57fSrcXo+Gx6de35akPDcPOF1U6A/2UVmjLvP97oP40LE5BHAd8IYeXqnCMUQcL+5b7bMp46lTGGdZAZ2T1b6ZhG8/D5gDZn741vQgfyyszUwfNZD5WTbJHBWpT8GfMvBIkJVi6IYxjv5foD5CLBjy1lyHtth4Jco6qwblUyL4F4r5gvGfXUlgBkgSumJUX27BsuSrAGn4OPL1K1l614Orw3RU0EWXHZPc6ANwcU0Rn09SYwiTEwzuwB7jkDQBwev820EQjgBMc26F9n1Wt7ZG6HNpEITC2Oi9nJUCNtE5qw0B7WKACguTIHxvTaOBUPiDpK9GvTkgRopyMBQHf7GcaPvm6YpHHxfJIJXJ4ihXmfspMIHUsqR9rU81KXdRV8Wp30Ev/TFO6LZdFkZ2kY1SVqBG2Cf+Za4CMF7YWEV/VdZkE4ragj3qFUhyDJOEVkJi79UHZZtzGPM0c+pvrgOkEUlVM2yIjscrD6gXlPhBfaYWTulL9eBAqchwrXMRNCi8DxGlbKU5q9hsTRR6xzY1sA4K+Bm8XUIkmtfACQAOr4gDAce17YToqQJEoNQ
Variant 3
DifficultyLevel
746
Question
Jerry was preparing to lay a small cement slab in his back yard.
He mixed the four ingredients: cement, rock, sand and water.
Jerry makes 50 kilograms of the cement mix according to the following instructions:
-
40% of the mixture is rock.
-
the same mass of sand and water is used.
-
The mass of cement is half the mass of sand.
How many kilograms of sand are required to make 50 kilograms of the cement mix?
Worked Solution
|
|
Mass of rock |
= 40%×50 |
|
= 20 kilograms |
Mass of remaining ingredients
|
= 50 − 20 |
= 30 kilograms |
Let x = mass of sand
|
|
x + x + 21x |
= 30 |
25x |
= 30 |
x |
= 30 × 52 |
∴ x |
= 12 kilograms |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Jerry was preparing to lay a small cement slab in his back yard.
He mixed the four ingredients: cement, rock, sand and water.
Jerry makes 50 kilograms of the cement mix according to the following instructions:
* 40% of the mixture is rock.
* the same mass of sand and water is used.
* The mass of cement is half the mass of sand.
How many kilograms of sand are required to make 50 kilograms of the cement mix? |
workedSolution |
| | |
| ------------: | ---------- |
| Mass of rock | \= $40\% \times 50$|
| | \= 20 kilograms |
sm_nogap Mass of remaining ingredients
>>| |
| ---------- |
| \= 50 $-$ 20 |
| \= 30 kilograms |
sm_nogap Let $\ \large x$ = mass of sand
| | |
| ------------: | ---------- |
| $\large x$ + $\large x$ + $\dfrac{1}{2}\large x$ | \= 30 |
| $\dfrac{5}{2}\large x$ | \= 30 |
| $\large x$ | = 30 $\times\ \dfrac{2}{5}$ |
| $\therefore \ \large x$ | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 12 | |
U2FsdGVkX1/dVG4CFCCBscml/k5/guEZ9T6brsNKb7DBQOzkP224ihDpJjw8fWKFTTgc6Fv4xf6rjSAql81PXdeAA32kHBr68oWnyc17yg6zERWOVgPp0WVeV9bDTX0zvWE6J42adIfrkZNuuMrTe8fjm3jaCnEnXqhsWQGM8rFZie7T3Eo5oCZFuE3BTs2csP9mrOz7nluuuY+xG0/VwCn+UcStHqFd78iylFyazkvc6Bzp6mmgIyDY1PRAj+yknZsvTcYRT8D3ybYwvKJLtBNZyVzoFMq/ig3iDkc/eT/vimENnRcdRAY1RIDbBUi453NFcgEnvDUAlY3XAUxOjM1t1QEAcQ8yAD2h1Lm5KgKeQXwh1UOgYUj6/e/kB119gtNSQ7Lyma9Et2b/btgM50AXAOMDuVXn0cx4RpvWeWcIgmJRLIK4tgSTvGoS7Zmd/K/uh1W0839ue0VQOslSR8+zS9HKt99pl6JzhO1Z/LuhlWF1F3x0pUxFxlOeLyr7/QvhrHXGutYu9d0zE7wnc8LpryRgrZEUfG40hu2L8Koxu4g7uej3+s8MH25LXIJ89Yv9+rQqU0tPIwx7xEZZ5B9uPNblUteKZvdr0hVfHHGkAotbl0NbzTPd6ZUv2ZxJrBRzR9/0QfzFfu0jeZaQW3FpC85w4C4KZ6L/56t4g32OeZ6nV4IgFMck9NNSvnUc2R0oR945lWl423ageWxuxHA7yxZQLT4lBfRwGshEFSk7LkJQW8TLhVv90yXjdUB8ul93CqjIfiE+p/9gUy0zhyVINPUpEKrW1UabXROnd2P9EcEan184EXDih7nJ95KSjxyqDa7IKscuaez+2lkG6pont+kprObmFw+XR83idOc8Kghk53fFWhUHLoHmegKqCtSKuBOweevpgoEIrX4UHfb8jkt1wnQR1mCpVcIS/5VFXgswpbjv2XbuDp4o2v6upTFMATmLPGlLbfJ9NbHzQ9+hZK0Ik1j4glHo7Hw1C3k53rgzwEG/4dCRseARtNXsU8ahMhvh4fkHSoHljYjYefJ3jxz58Y30UwKD5gcx1U4BURKHhguYinFbl3qG29KLZj8eYbM3h7/kZmffBa3Wu+OyzMkeVgQHUvsBGf6bKsogZvLXb+Vzce0kWRJLgzAi+/S2GzMTX3p8kcE19ZU7jZrasN/8ZzL4YkLQlr4f8sCGWfvEBo9FidpWgB1ydt/b+2LUrIf2UKXvYXq1mkju5g8lOupOJ8B95B16gvZqBfrfV3hkv/IGW1qPbs6Z2N1/f/ee1Uwm9KlQn8mGKP58gWZrCZCTFMKudcT2Rv+v8V13FL14MwwZliTmcV9Hk5jFgZleOD+WyDMDYhJHxDTSXy+Cdj8wATnICPdy9CEIZUKgyEeUgZ+7d3A77iqzfQlo9jqz2HlkoercBaMRRIy3fdUyPjj7zgZAszmQHxlT8C/53HPDtobhOd/2WPQPcVN2aqtirhG1Y5OXO98+GR7xKE8OpgZyr6Odzgk4IZkRUY2dgx/jnu1uMnjR5q+VJyi+rcWG2L/LGZC/lMwpImeuzhMImygOAkIGaLN59c/6wk5ZvxuptrSsB4OXb+t6TmtGZjVaxdDBBbqLgrYMb+CwyGQtKhJoSy61tqgS8tXCuwYKsdOSXYr4IXbxz/c4o8FT0woPdr4MD0EC5RwDP/DDSLgTZuIt7kc860h1Q3DgqQzwHMsX0BOBaL1rgqn0xT9T4u+WAN9R+wPWWzRRap1D0VwSMeiIxaSlfGhaVlDgTZTPxIyZjNJsBLmh5vgFMKHPOnqMf2Oh66La9oIjYaCtpvvBp4gHH1SaHO0P6TDfsywtZpo9Oj+QQqKk6RMXzvfpLo6J5lIQUmOzi6TbkT5jvfeKVmlf55tc1rpl5MNor3HoaSdKX+JumqdxX+ST+xHeUzmMlGpDMTOi7aG2eGG/dL/OyvaIq6hXV+AYlF4VlGIC8y2JbZi20e9YAXUHmcVfDNOCqxXVuyFNZYkhfffPCR/KDP1g2MOnkVceAtgqzdiLyrK1jtb1uZP0DKDG6T4POELIkYgJMFp+Ej5hjMyV+N/Co78eGngO8Ujozosh5IdWp4AIm5jHaxUMJAcKcyfaqS3s+C5mX77zNxpojJ2izdGZ3C++2iQGjOHGkowT/U7dUyNODnaSDS2mF9bz+56cRzH0ZAydNYOFCuI+tjDG5vyEmVqwomgcDsK2AM6Wz24/6CWnN8BPs7lhSSmtU7gdgN3XYk65IU2kOWiWmm4s7GQcm8S5pdWVqf00MOZh9k31tGrNFmuXhqn9kCJk3EpIedK7Eba+dXVs0O9NL0VwEAQvyevXKSGxsxXwL8vf1OVmu2dZ8hp2wiHFts+kSm0q7vLBqWCSckiG5A3tu6BX4UorSUwwuNsyqmveCDtZp50IZ2PeNmwCYNa0Nv0qIS8nVgqhht982EaoVp3ShXH6cHRsilJOSfhjF47ZWF3in5SI/uqcej2rkg+vxUtzC9r4AIOur1FVtnu5LVZ6MBfXqdmkkUTdn+K1MPdUvd+t8so+4iKnMT7T2mNqbEvpL0fv1N8Vx2SFgCsNVMfGiqlMB2wjD1OfCJ9h8Px+d4cbXpsj3PA0XilhHu0+jwJDQpR4l66spOpDotsZzNJvxPZYdsDD3wcpcfUQoxesNkqoJyULF7HXGDn4tpWcD2F6hzCOSsyY6lF4+tLpskeWw1cxw+uG+UC108LOLEIO+lkbd0p6h3wqiqjxRLecV3KC8qDWA1IASZH4Uo3HnAs6L7TxHIJHQv8RwSmr8Zg9DmhVOKRkvzwEEqKXRWkwXKoTm1hEbx3o8ALx4AZo6rtwccwhciNarHFozcJeq/UXJB8Ll80UUvFuGB1FInZW4t3hqbi8lpRyrI30jHCiIJOKufSIV9uAXSCEG2oSdUahD/xXPNDq7k+Tj/0i+BZyP5+iahbp0aNhlluuyjJcne5d2TuWv1rSjjKLSyx4ILlTwh1t6HemIY+AKMlP0DjvLbF3kIsy+lJBVtITAhO7mlyK0QVhvTbfkEwm8KmSR/3PmaNTWkrGkYZVkZtBDdLKDgK7/E0Oa548BywBqeheblCAhMff3Fx4hC+X6F0J3YdLisg0+baIBs13LxpAmvRigO2kXARBpHFva9myoD6PhvngFEseW/1ChrGaMkB/gBw9gxYWE+Wk2hcw71b3Vtx3hC5ti9kJqTqW6tKyuHukvE+j1nuvDwXyMnl9t0NHjGr8NVdollcbvFD6KZAPl8ZCRoVfu7XskPfQs1UehcOiCJBzexVZ573eMPAxFnyFSbuf2BIu0VZf2ZesbuU8aeSZKeURmLzyeAeuvH46XLOxFn8xozA8yGc4Q/azXDB2klj/RpM8ehBl6CbmqTLGowIpgLsedBrOg9+iYbKKg6p29JzpM7rQMHmVvJlbUY/uxx6aYrpXWg4ZVNEoeHcSkjcTH0Dk1aDOaynmnRd3/ELbiG5rAoevGTZKselm+7KaEqG+QzSvW8fT/UOgPtcm2WYLrADd7buAZWahLX78BeXsMm1YjBJnfAV+q0Y7rCrU7udsXgm/esYQcVoUNG109XUGjFIcURlmgbB5+4x9uxbqRgzWVmPW1H6C3D69Lh5KjWnjJoDz8YQmIUaW+8XgXkgdJOM4SXAR7iOR+xK+jTCdE9LAR0Mb5xSvOCyKChkH9WGuDtbm+r1Zvurt7QgElNWZuxKf5N49H59nLIQPk4LCHvwovcpijiIXu7a3kNpnpOGJCIfW25oIIHLnkbrR7CVEV8enchUIu7dPYkmvqkBOkgWWvyzsRz1IZ1HvIvlKzs2Z50LtsviHttSXHTtkIPqLsMxAMisekgrIrQ8TrCOqA9+SkNKRI+HAiT7tDCmpWYxfNuYyQhCQ2TQXlx/O60DLEjpIcsseW0RDAKHBTHObxkTbwS1bwmd7VTDvBZhjGBAKbLZTH1v8rYd6dvR/vGx9ovh6NAk3hrkBxF16HLc3JqjIXfx7O4zaH/TBtCu6wO+d3CKAiqUvA2NJkjaJ7Z+yWiDFmiSBetq5LvCRci2LJg4Q4inmrIRSaUh9nQKhbl8SHYCHlb3orSumR0S7885zFm8azX/RVWjYZ49sxwsStKZyRPczE/UudYJueTNT83h87bu2Fn/eSDP01/Jxoh2FGMuISFe2PH3SyVYsE+Ah0n4r05REcFl7YvdDak/0bX8UfMBd8XC9pW5YFlM7xTzLsJEYal3SWTffKzfjKR3ABY3Cl6tH5bYM6UOsH+A9e9dWLP24jL/gGYnoJomlw0aX+zirECqcpKmUBV1r0To+CNinBqnbMS80SfyFXHusuoZS/DGGZ5V9Gkb3MzN1AgHH6wX8HMGrkVuCjp3lvhGlHw6iVBmMZhXLtfTGx3zrulTM35uR9sULMg8huCs3YhNwhgbH3rttza12ObcCzzTz3A14D6Nb7Tx0HBJnfDjvYcoUBZM8jrieUws9zaiELYBYzM2kcbUXTYjOWX8Xt1gMIhduWxdh80PmbV+f8kXOgZIUtS8K+e+OTV4pbv85gn+qLE9kUbt/LSbd4K2/eRo8wB0zxS/nRhRS9tlmogTnlUSV+hxmnFadwR8sBX8RCCTGj6Oze2unQUdvx4rmdhtKdbM6IHRDktRQQ7+14JSDoUrP9RADBk8zkA/Y0oymeeoaKmnMphfn/uZ4SjNDyvyGTlzvRDdN2b+GHKvgrFQxGV+EHNxeZViIh+in6s03rXoXURGS+E2gNILar3FrJQ2SIEgC2y/3HnZk+Vez2RY4XH0K2X/aFAIpXoro/rTXkcd7GX9k4hfJR095WhfHLEc1MLAuvdStaD3f5wl3oULz0lJR70MVF9RL7hAKJNIovXJ/MiTAjDckg7H/kI23sTv4bpYbnh82hNLaWHT6PZQK31StRlMK04Lmu+M8xqf8zzgI2IkjBvSJf+K6nxCQNVu6cZ6dlb2uY2g5o+8jvIaPRepvn+x4KXiNPmK3BdplHIKqsNxVldkXHmdmq/MPREcksOhNHhzc3hDzBxJmh21IEz5KhllKioJrJNRLKyd6Pe2tCWKH6yH+V7hoe5xC2FmWCdUaTBFId+hr4Bt2RzQyoM5WKa3JVLbE/n+BmX/5MPpn2A6mOs/262tkytOinLaX5Gzm17exc5pxCTsursntA7D+HAENUUI6TiC4aIclIGo2MKOlsLjH0727QLFExowfjf6VdI4Ae9M7n6Il5huTAPE+62yhj3aaQJMNzrcnSjUDdWjwAeNdmMsQ+j/9ICc2ZBUx2IRzh6lpg3oqCDLdov26ro845fIzajQH1FhKuifz5yRtuLzcwg0oO5gcvKTrJpkxYJqe0k478NnmPx+p7Nfl5sgWDXPruD91+wNOjYgRrgghHuE7Osec7D5SgUcjWtSwsPSM9OA4ok9maGY3eYKNk9InAuteGxVEK46LZB6P1psgBU+D2LBoWFXBqKh41cbB+5I8Y7l02ePtNFoi8KN4QzJwI7Q/K7fAt1HCZuyuwofPpxRUQgpvyatG3mku8UC4H6mgdOGL5wtuq1nKMUihw5yHNxF6XnD+OJpsToaxrYfLV7mqZEAfjb1G/wvpxrwvx7gbCSJ7vDsW0YjJIHVCE1Dx88JZtcKm8Sw+xBBRh2l+kugAORC8RGVjiwpGyZo3/Zha/yPDcfJ1m4t6QApPhyZxgI92e4Ab3V2bDI3OnyCaoXcYu9OxMNLZy06JC9tS1TGOa9LE+7TTyrmHnbclsqegaW0B8nTgkB3aeHUMWqH3LtTVJXNrEP27QW1N9GEO7qSGJfgcGWbfAHl8ZIXSuF1bk2J1JXV8y+vtKYLP4Xz4XkkNaNaUPjMfSKUkV+ouI52RrEIqnVzGy6iaDKKAVdk17oruKzv/a+/CKLHoRST/cFGT/udOegnjL6BCfkjgqR2uIwWE5EqndOBbMB0W46F+uQ0JlTs23NDCZNnysjaONyrJ8qV5gcFZj/MGVl4AQ1aOHT6p82eKV4Rx3U8j1ZXcnu1n4ymSuMDbbAmW0uP0lCnc230nnWHYlZDOI8FPFXbUqvIWtI6tK3woIZtPsztVSt6UiSoxXxg3crNes7kBKMZJA3zGLR/sTeEnLtvkkW0RMBaacx08gf1PvT4mttfNcZdugFBi3QCiolNfMJvRDJpE6WAkLZrbYXXnT9Y+FRbYasKSRnZ6e0n2xSUlq/rh6+yp1a72FGNYE3bWwO5B0CNtlH4OTQcv3gEwYECh0MuQlrWErFHDmzmOOHCTrxbQRlVX+a2Bv15SaBx9zjW5qEUZh3NamPZTvb3YXXxNLn5YqU8rhhYdtRja8WA+CkVxStF9c1vp/lpV8QmBuTndDvPDylTIcs7MzUfORqLxzCDhZzRscZ48TVrcsJU3UPCgK7WYGAGKExYsit2GxC5tqjpQhGW80Qnm6Hr/YWXB8C3a+2PO+0D03VfqxzPuroarDqHQM4HfAEZ6Z/YME5zkU5SPU/VJ6Cza6hMXxEC1dwIL3sk7AaHrX5827Y4Lq+3eofIev4WSCo8K6LQ+aytm5pZ8XdiBBK8fAYP78bMAnNs/Ez2rAfHwgJS12+XOteJBAYjkfottR9usNzOM3UbCFxgBfVbAko/L16aaYoFY5CaHqNJwh+18qGadcbHEdHBZ2EFZ1FTfp0wWuVmXi3VYp1epKDbHbRJUDgwO6VF4qxYVMRzKL5mTI9/tSU6BcNvd6CK9rD7d5DQWi20nyqIdDcbMb5E2M7rIJESmqKZct5CbQyHulwGO5v4mkvkccWL+y10LtgINPhqyvGrMYpgsFJNxwcy97lSNnAJHKoskCNkohKkCWV8sgJEgl2I1H2vLQ0EtT0V85L+57PfiBNWq/JvFxHApYAQVWLD4DuGx/YCBLYtioqTIIoIT0vPLegSp5RWpfsALeV8GJNgjZ66YLbdok2I3Va3bHOU9Wo+RO1zjol136V2KJENTMv3sblCFKzxE/333ggeTaxIT+zXkjsGvzWLSGnZCkikUqJaw7FLmgyCU9vRctG1RqXdsr0xS2mNuhV53H1X3BEH3rw5phRYgJtP9eeUNmToWzgYfnCd/kOtSdzrzhT+JQbrwJM17LhpwdOndurbuzTJ0QVeT2VNwHp+zESubzLwDNviuo5Nm2E954PqD1XVZCU6BlSLqK+d4oPG7LWStTKpddKTFkSo/OD4alSzeruK2qOZVggm+UR2KhIpXNNkA3wXqbybUw5OcJ5j/pMNSX/K5tEGWp7vJGkHBLeYaegJmsOfNLGIXgvJQwGQuP1JHarDBelaU/TZEp9poVbynOocR4ol91kwBP1h09M4Le8Dl3bP/c0auvUkn5sFW72Z1x1MBv8RndK9geA3WAQlQr2WIXiFWEPUekeqGlUSo3xhA6JW9EHgmvsNc2wxlMifF9r67I3Z22mXzEmPGI8XIoCsWNmLHwuF+xAFMn3lqq82O3g+p4hKyzdIMvCoXwS5c3bb0mXOHFWARfZ5Zi8FhQOh+5XvVp8WZqQKhkgPnFjY1yH49o4kvQsYwWvLwzJc50zO/Bxev3McfU4BQM7GspSXMVz1CYmBUO2mYUEPs6JAme6dr2yXqU3rIDivoQs/8tMStjpBToY0sEjpd2n+Zj0neG5YHzMhsJuPT5tdhaxQnKKYe1nwHour7H8ejkcbotN9lfgmBM9wgtDRkL1/ZeUdd/BY/Xglf+WVpPcAhDwg5W5sXc+H+ZaukEXBOcHUJe8miSgdoxget/ilHhtgWYpASo0x0SGkS7UGfDT8Nc9CxlCNiu8PUwHcyvd9nJSyqznnDKc8sYEUizO1EEWtEuI7Foazzg/wEess/6wIqrPclD0os0OHccb1gvFJBMemIZmaskHpTR4pGhADRtDrz2hMjctJbeN5eOiQwXaw6ISdvo91rn5UnLRKTzjyVSjy81UCDNieNEPo+iMHGWk5k0LZDLQZ4lU3W/1PFA0iBC1ltrig9er6fC3CzubqROy4M+CryEU07JzALBzz4aMC1ysAe/mmoku61lcRWdw8bzS1MXMf5eRVIeBQpSN+k+7kBtHp1FiZ7ckLA2qpNW6F3+5ukO9G2RUWjMYio7y1grzcuQQUYZhQioiSR8ffvlidPKA42vifnpKYN+5wA3EOEF3UKomdN76sZac3PWgB2P9diBYITOGwGbQyG6bHanlb9aP9NlpndTBeEpjjvbDSYSk+vprbtw7U4RnfiFFfaOSzyZ38ZpMsMJCSl0ufS08jzpAyL80Db2Inodz7ljZYypmeD20XmL5/DfjqqsUBT/R/PDDiIokHGbxiFCdMaYD1eDevRoNkNh7oNGYSI6nmgIxRAI/37SzvPsvLwX4frUWYAK5EvX8cYMtFKToHAx61K++QHyspjj8y9qzHjG4cwi9ZcfJ4YT1hGvJDhy79iqnCPoP+btlkvAAMPAQvcNJAL7XeblOMnTlg5NxxCKKR2lYLcZP/I0XRlrgUSTHZ7YTlYsTSo+lue9vDIF7zQ6/g+qszwH1bAip6H48cr+VRIi38Bflx5+8T41MifqQzrI/DJAtzabzTu+plSCFFoJdVbKH9tBoEPG/d8jV/KJjESyuGk3nUP4cx+iqDSD397hS10K/k/O1fo3o9KZTCqqbwINm57tU5AdlxiXHA2AuXZin41fPcco70do0sOgKRnaoB70cANc+TtUH9+HgtXOd6p5sDxnXTNSwV7T8Fapa8jN6dEe1Ca2YCdHDkUTGN5Pd7mQdBrgL8+iDzp/DkU3Fmy0kjLSaah0gFfB3caFoUV/QrMuXqg6GZlS0igXnQQ/0UC+Pvmo5ObXAQa1ZEwgcwgjjEDPWTx3sXVTfliUqdNgpOG9gJkToD3h5lhRhfKpUMEeX0QrJdKQ4Ubk770YzkIk+5NX+k3oTaSPpWLxFYAvpwV1TIKd+fiyjTsulTVEECgDWXR96EIDnN9hq8+o0FcoR5P0p6z3iNrhcPlQMXoCStLaFpayXfPH6kiMkm2/SNx8CPHSTyPp5VkeLVxyG3VNOE9kjWLqI3MK52unE4QaI4vXvXwKh65EhBK5BcjuZfTrUP9l+3vdiirq9STG04H6kOwtfLJC9lVPmouF7y5T78osamEDgdsCWZ83qmRyagBjeZrAgunGH62M1LVL+r9UA+c6nWFU6y5uLeJk8QX+/St1zaSQ9vlaJbrEF/p4NfDjmART/kCZxSimUd3b8EPEx+3hFH4h3DauKdKkawAomLNbuPY8ZdJCyc/R2nkMUIdIg8ITY976PPVioeuN+m4tKIgfiMPt1sti+JJdJghAKi5JEvsem3Z/ylF7ydKOu5hV/DoVQDR/mtdVtCs1ENqBsOQm8kEGkC7XvIsEQklbCdrQZfGtCVrzb5qKs3b2wh6IqHk3HMoFKc50XpRfU+mmCHxAxvChngFjvJ/k8NgGe99G8y6aNSzhLRbqbMsKZD6RPLml/9GKsbCi8mWvLTUbR2I/s3u+MSZaHb+fwEgrJU/aS3V8Ibp4QAEcSPBrl0nPUcQwHax4G/4zO0H6KuPD/avQA7zs7xIymv4vxEz6SpJ7r4fMK9Wgo9Yz7b0o68K6gqDYsHYMR+MkMA9ASsoJG5jb2YEDIVhftjbgyW4yGrGZqRx0d9YpfsWqXpE1xJ/9ds7CByq34aEamBjp3Ku53L/OMn4ermHqxzIm/1gACrNF2LE2E52YkTOF5LFrh+VujgVqV6eG0JDb2ZfMS6zlYM7vlGXCByhct54J3jw6br52+Q+yEAnxrAAUDKCUd0QF94q3jGDm0O3HuNBQeOZ8VqVxGrYigT7AVvBX0hvV++ZCO68A13/SxaCH1NBe1bpc+Ba0ENZwJGfeIj2kS0vyhjgSIyBpUt4CAe62R7vNgj0wRMgzmP6ihGvvDb8E1x4FSSVButph6fpA1RezmNDWfPr6AlQmSoNfBjzG5LEGL4gqbdtk54mP9XPpnBjm7mkiKKs+S9gn9+naqRwa1dHAbipPLpkDU+xdN0hbeV+1JdRTIgC8NazTv425kXTDP2Nes55DFvZpy1mgMAMJkhaMVW6VbCat9Kr7iK4qxUHHjJLP/LKh/71CDwDtn/A76HKTaNoGd/TXnp9xpBUKT8ZonUCDPse44VeKQz4m2TVT6FpnOt9IiRSMRQcLjdSL/GBWfVfUS5ANPjlabvPha230np3dwAIaolU9/YxdY/7tD14dHP/Im4mwn5SYuCQaUOvt0ojX9l6ha2ZtBZyrluzj3P6q82ewp87hhwnGqC68JZ6vygW9mM0/XU1O1+JXrOnBjx0rJ55x4uOwAJK74tRChQNdocX9uZ1HbH6jVQmgsVAelL7j3yp3X/XixDl3Ys92uUsyWk3acA4a4eW4l+VJB7ayoLc4lYh4qwKOleRNPwGHbp//bi84cZssApL2jX6Dk/yLgY+1fUZVoiTP1oXjpqpTnKQdeksWjtGnwIqPx3Y9me5FQj/pQXhPoX8x931uIww2oRAtAcMgJTM+KnUa7E9jpciXlhH1izeooQBHZpnV5ee+MAl1AYkQwrLvOICpngNEIDegdDNku3bmqrn6PoajrxRc+WyfIWXOkH6/WabTRS03aybmAt5XCKJyXKfptOWP4F2QaAsb+RXAPntyANSc9T9j7aAUmDK7RU7iKWeUlPtcjUFQhmEvLkSi3pq+EcbyMzvAg3fbVj8pIzhp6rA9KU/k4CQCtC+lfP3uFpJml8SrRZFD/gKqluu/35xkAJzoMmclHbT6D84ney3vwe0tY7EXbdsPN/FqK+C2cwFd48SZkVkxsBknTBuaFSS3VbHrYyVKZR/h0DHhKibthlLObGWEG+L/l7RarumQpzKlZDOB9EtDORQ9G2aEfrMf9N8uFony2nQQLApVNVqbMIepfngT2aoYMoswhT2G8yiLY5QvIbxNAIsAI8ByO/evVWWtJ8o4ghNHTddx18R+dmUUKt+iLx84s+W9Qh38wI4MlNZ4HbsZmsTXwUDV+M8s6nOfrA9qozwawjOKrjxZqoyx8nAesMMZzj0mgSDadkmQAndAAtvCzVcyTE+f2mjD9XRVq2dc0mqFHkK+mLAu81hB1kzgCFh166AZMogHV2DnfFNIC3isXAIlDxYFiJnokr51J1F6Ko0SLuyrvdCmG+7pzpbmJbigJNJBJq6c4wF2ZcOO54Q25dECa01M/cM980/d2UtA0epaU+Luf4lk4UDsz/hQtWFtQmIhufLq9KW8yapr1V/pb1jjlwJRbZ5dHeHuQ5+FRzMj0VUhvYEiijHVWkYNvObJTszEt9zxTonKMJBUeryscPcFiR14UuyYXRvbC0s3xj8CnqaisvNCCfEel9XaYiCExRcmGQww+T6ZN3nU/R5HIWjd8eEBdr56iImRzKueZAF0h+ExcB7GvALLzjTURjEA3rdZkw4huHGL/YPEkOWmJ23+CK/0hpIM3crze5m2Ev5WVYzpdh3/s71DEN57qmNymEAalJKSe68wtxEgMIC9BvzWfJZGtZNBcOPhTZuRZBDaFlYu/Mw8trStd8aUmE4weDrfJlQTlUBiMLt8TpbUR3xaygqbOYqa5Z5flIWkOr8Vr6Hvc5Im57C/F03iyNMWBCfFA7liKMMkhqoWUVrwaGi9IFnm41yaKHka7UVKhcs0N8b0665s3nTViEwOTYJ2l3b1F0jzGGr5ZJdgpGigHqIup4UQvfcj+T7pW9oEqr3cFoheuxxZ2wGbo87zmnkKmaEYh/4c41nvmWlmCUQOi3O3lKWVg05QEIaX4uu4gtsindv9zvN6R28IW2fJ+RfFQeUJJreBERIe/ts1iqtNJ2XT5jGVhT/TPqDqFunjp3maok/hp2s1SqnlimWG7lRGmQNO1//fbtdnkBHRaeb9ifihOL6WWAGj1Ic93i8b1zKEZmexSgbNazSps/MmFiZNrAdLzcfgi1NUxp+BzmdlUN6wmE3SCPcWn1X5hk5MPAG9eeZWbw4hHKNAKP/mbmVso94jZlFyTgOeG37C7XSXejQmo5k5R6K7JaKDCXse+DR0awWzenuX8fOOT+Alzsg8mvT2m584PM6Mij5V6XcbmgyV1IAdUB9opA6GiMkCNOBKijZbD+jtr79XtJIqWqZSCawO0TgeaXsQuyFBtXC+y/MPlye51nnr/ysY6ihR7CeTrettvFQr/6seaFD+HR7UIRpNVzvrf6SfDmd9TiDEjQUTR/nBRO0H/xkMRWc0ihMIErxdac0p7okQvS5WhtyWUKzvSFyKhzr0TCA6Mh+WoMZ/Q3xs3qS9Q+TArNkJyFtzeCF9sjhTjcSKt2DbBbDaKTG+UGSD07HI8O3ky0K9FJ3B8NItzcib2ESOeXPMKaAlSfpmsgCSm7U+GYgEXdEA5xlvoe9AZeA7HW/+avUkYDwxyJa/V50f/rL2Z9Zzom8YY4856HWqYFDAKdHV7fENA/CXvn39cRUQPN+8zkt5P7uhg8J6AwSXxeYrS87j0ShfP2B0sY9blBmRk4TPZwHPzGQtzd3YhmoWdNdpujAvn1r2LCT3cySvz5SDHcEcoNRGJLpneqUiQLC1+/HO2ZJwze9+NaCOlAYBLm5csO8gGQFpaZSIWyrKKKE/04+Z9c5P406s2mMX+sVoMK2zs6utoSReuBb3XxBv/sMvW8Eb+34kSVgpkyK2+rUc6ZrV+kKqemCF7L5Icqusjb9xQ1I9jHPhydzgP2CnnhfWugAOXDH9onJgFngZ3BEZF/GudxeibicmmQtgal1WUCTvR2z3GUMQ4kxXH0wqSPdrK1rMAkna6spUAAxnoXPI6rxfGNLXde0gJcf724h38zV/WfLapRGw/t+yHlfvW54KbwYPxT5ruGZuUi3MJcEXcAbi/Oz1qdS5jhTRssseZXvjwOdDciHst6MJAnYmuYe4MnmEVhqyIrgfY7uqUhdgiqQPSDHm62EMY+OGjMZ+/d7mxPPUyDyIo0x1Zv07HvYb0MgjwzXJbJSiEobQCbp+sJB8AVtXQJ0CgKUOcB9dHTSMvjGMM4hCV4jHwWcJ5X7OH9CmmxAKMaQlo7jVgK2Za9M/vNRH/kz8F8JtWSJ2y68TnOpefrCzHkOqXFp5a0Rv6G/adImWSiok7J2Xgq0SFJWRlKb5ftr32g5+gE/6vydKTY/XkppJgozNIt+QmfXd3PpSh0b9CVYA62T5bkkuqZmclVXAdGhEabB00f/qOFNiW9ybyt9Xj5OEayMlJ2DHTKF1HA0Ng7HBoeu3LVu/XF4JcKRUN9BiUeI6dn4YoL4vu1eDSqoE98DI3a8pBJRiLFECJPBKYg2DjMLmPIx+Y3W0jFQOj6vsg18SKg4f+KNzHj7A/cETKNIa7+H88oaNG1RZe4cS2ODVLzgfjIhD4jE4iBfN1iqm7HxOR94Wlnp9wKHFczqCkjgerZin5gCdZC8zzv24WFoOq6d5p2/vww/eWSSJejc1lh2T80w6Z5t8PQsbM64cJRyGXN8OdVFCXVYh7qyVnsEpPgTVu2kENlGJEBKURaRoLhvXtvzLgQApmKMb1TH2VeT8gHWdP4aJpG5T9vn3diGKapboPDGzWYLddokExSORVpbTZqvPQyF3ldBT9XVAmgWr5p9iCm/3QFQikpvovbOxVehCnOhPywXsqMVIdcZ+qGse5qYGJBMkKF779JeUi1CD7PKTdz/LwA+gJGFu54E9U0csKWe5A0pvxy8H7Be/e5t6jPH3aHW9LSDJY8nfizTA8Bj4yCFAYzwAuqWncUIxSZQJq9gsg4BAqH7qoW0oDUDjv9zQwl6znsjIC3zUpQJ2UVI2DQFnQMYnjr9+L3PsVxbzeMabWiPZwod4ED3yarkl8ifIVzilNaedvtbjI26sw7eFXrpK7de4xWS2JCApkTQtEIl4SzYrikKX1QvwkXXE5el0IitqduG6rTHEaVc1p84rThA3vgeixXKHPsJeKgOy+NhrhEMt7GJqT+YobNAPMgcUbsy9FtT6DghdTdIHuKSzTAgcs5h7h1o7NZa/WyI2pTKx9QSqHMQiU6RDsHhDwSso+QiZIJKnFMTIu3Ib1P8khm3fHADWU9qRqR5SxfsH7E2iRtN39MGFYk6w/7+f8Um6mY3ylRawPhCpl5PchWCxh5H40jt8nr9b/k8ZybqjHvy7m7FPIBrdQjSZQZRLXM26p8CbT8rmaHyLwJcUsci55C6RgbkqZup3o1gaHlRLkTTF6VdnmpMPfehY2MYINUA3hdc+Fcn+ksho0OtWDMx/B+YQhJ1bKibrsTGzHfAZbehRJpHGwQyTqevNSp7xBJeZxlmVKNhP6ZscfwSvbom5IcGWq3n/5qCIJzyhPX/Ku+EX/97SJCyB+7DcTuLUZFByEh7KV8D6VFkhI8lrm+nWlciqPXNcbr3bv5UWxitBasuAbuz2q0Wdqd9p9uhrN3wvazQufDXpJSKTEpC8IsFZsGquIi3T8XgFh6E0MGGu+xY45XeamKoE1VC8K+yoQWs2sUNzZwFOHM8erpP89Rs3LZwtFLvMenlWHKx+B/DmxVTr7HII+2d4VJOF6drF2Qyeeg27vQu/uEe9pK8OXvje2S0VSeMUlx0UGgn2FG7ak8uvawDjO57FmVl/NmbOtNG0OCe/t507tTVbK8WuiaARwphJ7uYcALZp5oZ/H0Nz9shVI1huoysLz7/0sobTSntLaodcJv/fWfJcx4ik0cuq2siZyum519DYiaxnEqbz+APDxZH1y3z+9a5k4wIGW3jMbKvwOX54h7LyTJFoO/7zDdE5MS4mH99jQRQ7DFpkoRsPn42oH1cITaRYggjiJUKamBI/XQ=
Variant 4
DifficultyLevel
748
Question
Julie is creating an exercise program.
She includes the four exercises: burpees, squats, push ups and box jumps.
The program requires 420 individual repetitions of the exercises given the following instructions:
-
20% of the repetitions are push ups.
-
squat repetitions are double burpee repetitions.
-
box jump repetitions are half burpee repetitions.
How many repetitions of burpees are included in Julie's 420 repetition exercise program?
Worked Solution
|
|
Push up repetitions |
= 20%×420 |
|
= 84 repetitions |
Repetitions of remaining exercises
|
= 420 − 84 |
= 336 repetitions |
Let x = burpee repetitions
|
|
2x + x + 21x |
= 336 |
27x |
= 336 |
x |
= 336 × 72 |
∴ x |
= 96 repetitions |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Julie is creating an exercise program.
She includes the four exercises: burpees, squats, push ups and box jumps.
The program requires 420 individual repetitions of the exercises given the following instructions:
* 20% of the repetitions are push ups.
* squat repetitions are double burpee repetitions.
* box jump repetitions are half burpee repetitions.
How many repetitions of burpees are included in Julie's 420 repetition exercise program? |
workedSolution |
| | |
| ------------: | ---------- |
| Push up repetitions | \= $20\% \times 420$|
| | \= 84 repetitions |
sm_nogap Repetitions of remaining exercises
>>| |
| ---------- |
| \= 420 $-$ 84 |
| \= 336 repetitions |
sm_nogap Let $\ \large x$ = burpee repetitions
| | |
| ------------: | ---------- |
| $2\large x$ + $\large x$ + $\dfrac{1}{2}\large x$ | \= 336 |
| $\dfrac{7}{2}\large x$ | \= 336 |
| $\large x$ | = 336 $\times\ \dfrac{2}{7}$ |
| $\therefore \ \large x$ | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 96 | |
U2FsdGVkX1+yg1qlSr7ChD4+owbAzkHsYqW3l07D0tdbB2tDB3YAWboYIZutNzrNB2mZbpiOcv+Lbvxa6SkAU3NAJbJgmwr030cvSgRYBPGQ3p2O3+yTvOS06lFH2YofxlKB213PSdVf1VPbJir9gArD36O7mP41ipTjL+MiF6T8HdjCClP89ZKks7BxSzNkfviWxqkIe8NrdySVcqUdU2TY68Yey26UelAbUQPoTiqJbmUOglcRAjJSJHoBVCng7bq58dXELL0xkg4I20+tg0Px61Un3MENgF73ej2lasiwwYzeuhkU6AbILBdYZzglygfhxfRNP42xmrhBdYQjsTScqdFYn1yGj0zZ9Hg26ut5DHHwTWunL1cpQxm1/FT/IxiovjnddH/EKVmaE+XKwOQHsz8NBNv5Su04oIrmp+N/G/+Os0hqJOalf47f8J9CPFwJZkCaTTGp5yLRJzzzRXy0cjvdfM/V93LgZnd2Uvhpsmulszv1T4nblNPndP2fC+c/ZLzdB7vEAUUaMHUFyyA4uIH26FSIbUdsSR5doLSW1f8tJnGnelYLKXd89SO6NvfAwLAgMBjGFgQBKJIJs9F0uKEGpq+osyC6YZqeVJSvnXjfmLlOj0oVl+8zUYwg56HOHbEcp1WbgLRMMI+DamFcTPHtgRujhdxyWODk5nCBllxTlFVRhCwa2zfXZaRvY9VSXwFNnIqLDmqGjTizAAYS0XhpZNvyS044TkQFD6zOcD/oZJzdmO/oPgL3AYBSbX7OqOIEIkcmIHyCSDovv/o/JAqG/JcG8T7bK/wGkfkNJPDkk9G7oOtBRLlB3NyjBVfwN14XI8LOGn9C/PJ4uqhuII7C7Sb/JcpKPiuqPBYasjd7F7XePAh+f81bNQxum/0vyQ343oCFwvsb4XdMbphIRwukBIKc+aLbCYXwKUHLyyv6fNB/SkemziTm1ZP1xNMi5+cf0hy3Q3Vh9zd06OtP38TqcdCP4vDphm2Yx3e9wuXKHUDbu8TtcYsVsbiaE7iDnQJEYACau/GXugDwJxnah19gfBOkiKdShORk3BUtgDsdiZbGZ4qQq/yENVNQKpbFk1l5YI+GFZ/y+q79iWXYAwjbsPgdBhfmyKXsCBXH5H/favjfc/8kNWLOPgeUpDWhny0mqhNlohIv/BzMws+pTtrfDFZcPv5AbjrMGbZmbGwiMqzl5ZfKKPNfkogasyWGyJXoE0PkLUg5kI3QY7tTXHTV/YgTIh+NIQ97SGsWwXk7UoYXGPKx/XuBMo8OCRcmx/FT5ypV4dixogttQIfe/Ia0qNfwt5RSiLK/xwK+wmbxJkSX7quSO/q+JtlQlFeUjWAYy+2LEKJApCkGPPcJrE+KqwAfZEHwaSmtWkjdII8FJHWBSFxgSejNhhCYI3N1js4yVSewKvUo/40rI0WFj5rkLH3M2PlKAV4qgqn/T7OPxQoyNIxoAScBcMYpc3lS3al8G8tY/Np6sdpd/IBUlVeQnvliHqnd8c+5eURcVFpLxlDs7tFmcDDL4YdK5raktoiGSBK6Y5DFBWg38HEQzkF+RzyKLA3sDnhbB5WBItjEXwgl9UVZ0+jq9tk42XhLDy95ICrG6wAuaStirKWUw+tnvEYlXei9EesA9nNmLujefx//ZmDv3fFGw5pdmj4pNuDUNm1TdkqiZd0ZAduzhzW8ad95nPFHWOC2IZsXWAeX/xICK77GWR11OyNOUKPL6ifgOQ6vEnAPzphD63lWO8egnTC5k99+cfVRX0LKBs+hIsM/k1hnSRJ6GaKKStgAvBv76oa3eJdgZm7oFDdXLcQJiiaH7kDO1culABb6r8tY88H7xr81oDGRDjBr/NXGDOhVatl2ZD7r91TGctEWk3duwwE9tQDmC8xJ63cQ2lhYhULuKoxxf0QulC0tTtNUTCXqvWQ+ewBM0NsmfjjFTL6pJHPV3JpjGlMbplmKcLbXLXD/aabS7UL3MUs5eFL/TG1UnUHy5qhG0tw91qj/183hBYQvm4KRSwjzSeMHNO825Kjx/+FyVEpWgEYIginhbtQ8chComfjDBmkaCLrrDwjelPuwFq/66b00te8Be98mgMM6cOCxZEVacd9PnTlcq1CU2VkXTWgxXyMKjqU6Na6Ruq2uz9Z/mCXYWwNcFAovS4wGtmxkA2GYEjc1wUKt6g84nN7rLyZ8LeEVZ9aoSfTTBcXh8R7Bb7WGw43ze1b3GaI+n1bWkeBDbPv3x3v9YQECSD9ubkJs1kTfHA7ESfAJb1uL0qD8ZJr5mfMIhykysGrYPoxEYzcXsY+rLjr3ohLgJRfgJt/jl30HWm74bfLpwo8Y7mOyL0b5hhDHUDK4rlAyYZIl4J1uZOUHvSZjqpdC9JE/XGzzLI0iJc59SnpgvpKZjxxpuxcIs7UcM+Q5h/BkqrYJDPw6D1xKq7RJeseKhRMgRYp45rLDoU/iVdEoDxl8AvjNUgXT5e1uJ2Q3yCjMVwa0dFoTPk/FFDJCY+Jd5NNeSWqPLB4BKyb9OitFxs9OvJDI9G4EUcqS2U6Tj1kYu90ddvEeeIgGJpCBMkz34otULvzF2uRdxZFu/4LyMpoMxIn+aQNcuPPzRF75XzoUDVDujI1u3v0MfEIy7hCbhmulW1iHpMZ3QCAuPtIkioime032+4DHqqnG1Ep4iSzWtYoG7vIuUEBp/YHSkOh5QQYfDiTIL2kD2obRHYm2id4m8eJHq1mIR1iYfgSIDXf4vFyS01MXVW5h75492HjmRHOS/u/iZFNMO8Nm0s156RTld2vLynph/fbUjdqR5PEST8wqngS7c3xUNt0vCaSbl55pfS9qnkES3/WDE43J9Rs90D2bAsvDkbXgSA98o6kjWpeGCsD/3glkClWNeKBl3oyMJZn4hFGGfx08MttYraCeJWw4Xc5FNUsqS0pO5oudyN46T9RJZ7L9PMVbA/XAOvdx1XNunpBLD0cHBuB+5/ayE4HpWDbpsaYvqHfGQ/7i0HNjDU1lRxw5KVYXFGrQhM7NCnCFPbBJ8NXWAMzEmOCaVWysJXO3jCWeDgxlJAqMGrkNNJlvgmn3XA+zWDmIeOEADFdgmAWR9u/2ijbRTb0XdGB8KXGc/+Ao4YTTVblyLM/PJVa8MUpdeqqNO+2DH3b59Ejo203Zf/+FvZGg0c9ZQL7AQAPyJsQrA5HRxeFfFwZw61VSpuGiiwDKidQf+c+sV5NdXAxQIDIzkEr7w4Bf6EqgfB80ik9hN2N28D4Oisruz9MqhGmP2TeYZJVf1atz8as/9I6X1ESIyIk4LsokfbyyvxvHcT2B/5HPD9u8KpsN2SGYiAZH2PVCveyaVreIJxhV3oCvrwCxVMnXhLGR5m18Thb/SpQksHFJ3Ijf01yck+gZpnAMvjHZlczLbO4hvbG9oAbhzxovFTCGr+OYQs7kpw8ad1O280/IAUUBhzSwGCUNYdRv/QKnqsrqJBSEYKTbE7DqqOXbUDZZgjJVnYJcBc1OwrFc4PbpcwIB7ip/mKYr/1fRSc0z9R5FUNq6RpS1mm7UqLRhLf4BO/28YHz9YjDKT3aHRIyJTjcBQFniBvyWZmGnM9etxSBwmqp/Am3FmtORgAi9mddM3VCnif90qE0shLtLOLC2u+dvSjd+BYaiMF68L+F+flLo/TFjkOEZa7GX/TNriBgEsQxFlGDkGWHijPMcByr924R8K6Vo72nZk501+50baTHbI9CJAvI1sJsC5PVWZxMoOo01ZaN+UJgXM98X4TaZ4kywQ1KvPzL2TKW2c09PUA3DTOZ0i2xdjpCMbArS7LSLlgUWgwm9OpaQsnWfIJ6d0aCildrCOguuagMfhSDJo/bDguNFl4ASL4c0k/+KvPEWjVc+fa/02A6d07oHWZPKKFtdUxq6tBsuM/KiigsYC8YWKDozBOI4V2oefG8zWJ3iaWEm1rlnNWVmWkTJcTfwP8wWdXAR1UgVPj8b9y8U3AOcoFVVl53JZFNVgxfkT4WBAvxN2GBIgWB0RpHDqk1sjCZ7Apg7pnNqFQHSlZl43eoLy9CQvek3vLciv7ArK9asIkBFfhKndxgNOMPiVRibyn9BoHhCz3nW+ordjXin7RpW7wAqznC+Vkwyx7aqAeTD/NrnO2HtjxyDgtxF2rzUAPG651K3/ZSet/TH1yYueMXzXz2IAao263NORhrdTiEHyEln8fMLipJELJrO7BR0PezVyw+EL4KOceEYzXIgkICNKhoncKzwdEzjx1XbqjXurZfXkPgG8yvs6cqMlurPiemaF3lm32uG/fnwY5S0XZUR6jPHWwKy/taIDP7h//FMB6j6H2vUOszbLPIjc8o9N3/0zgNk8gyNqntMbu354BqoAUG7rWuAPWhGTOHs73DC4l12kKa7QWMEE0Kq7lfsT9MstrC5v1tsfw+h7i0HJNsmTemmPQuMFqI/Lwm8gZ4Jsrc1fkXk+1WAT8tOe+YtFQGZBsGpCg+bmYX2C4/Pwp4kk/tY28j+sfXWRcEoNQSvqD+jokhLKP/zXBwprX0GXDqV8m/6wUQFPtSeLBDpVus4vQS3o+UBrLj1BovZIAXTPX7qSGUL5G9ZbZLdjj2TUj6Dm5YfgfPjPXf2ikPnD0X7uPNYVgbtk6TWJIUyD6hGWYpQKcT/6zZO59aJ7Jpei9Kie9dR0eaB3eMl8CGrF2jnijdAFYEYNaqiBrCIUvkqA4mZPkr/YVvvVmsNXTQmifmW9LSaZigk/APCeq1Aj5OaC9Sdiu6IKAMpkpa+6VABnQYiFWjM9ZVaAP9kGs4JJhvaPgeqgaVqtq8aKN6s0Si980TCLp5bKSU//5e92A91dOEGQ2q81/e60f19etnjV870eJrmz629HSgncyGTmXeRK/aJq2UrZZMMWmJYlgpyXKWehrCw89t1O2qq82Ng/mGKoUB0lfPFY+IrJDu+u0UpDvvmkmJcnZ5/l6bZt3RBMeiUwBU79dIMYsngheii8rzVoB5d4J9mpHi3DOg3Lbnixyr2LTomPuqZReenFruM2YHEFTtLHTK3/hXzDdNZ9XB1JaWuToLDTTRtI6k0pgrqkn9IO8g6UCM7Tnc4/1clBzf6LUM03g2S04U0yZxc0x2kK4E/NRkn9SH7q3mTb3MTWFxQP3t+BvdT2gKPUxmcOrSRlnRjexaKxX0gwSNkihwHqJyEO2kLw/b9IuGnOHm0zdI4p+5MBhrXrKMqPYqLnSUTzOph9xosTBY+U7DIA0GbyJA/gbeBdQ8gJ0fXFJfOJhWlKsHxkJDuM5+cuoSOZcglVRaKVLAli+y8VbtCQXta6cw8Wu3HlvmWMEUyZJr+/Op2JtYm2rfsUNv5VuPx5jE+nRXv29idNbJwVlQzNw1kPRh3Tp/Z2+GWcXL08Oh/hywoSap2LS9JAR5I0zkOqY1g4StdON7H7ZvHcH47vRP5xnPjm9jJ9/Z9kjD7acgZ5+QhXqJQhipQr8We89aKwhRD1cr5NiyNMt2bIq0uHcX591OJykxXRREKbnvXKO8Norza7LX2kWfj2gLbhHDMeymQg7CJBKBYS5L9inMiuDUiefP//8khX8WOjgRGHt5aANVizQK02DQ3XgeTBIDH8cXiXPYlxKpcbrl3bqOq0Zr3TjeUPRqAlg6+Vjq6IAuB6Cvr1G1VBiSUMYdRZeAF+BfYnAGZoqXjxUH+ctv0/cdYFY/It4rgPo15gDJVuEV/TUUbukUemAo5tfBt0hENqjmpyENP3dcX9wiPJd0/CmHmfI8TNVn89Y+tl9WoKrs/JxVKTjJoS62pT0NXkLqhddfEdLkSSyM3A4CxO+acWRzqbwXzpyPBk4vTaa7OhwdX4UJFjU7rt/9KljJnpk4kgMXBay0L641JL/wyDbiqaO2ivJ73TdkExsbUDzwJPs6f8OFHH66lnEL/DnWk1mTN0HRJuJhlQKmkeHJqgWIpJYBf+0ycR08fhqi8oKViL37dnzkMoZ5nFFEYmWcBJgC9xFxOWF8Q+PchCqoZn5ygbQDlFndJuVDG981Z0GokyEBecbkbzQZK1vdgTn6fhkoe6feyhMB7DuI3+kx4smQM5hAp1CCMrjXod4pnVP0NOsJ83OuVIjhwpQTxFwQUWTh+OMuTb8FYwzvrh+c0JsWBE8MOPsvt36fxwkEnleSkQonnaeAUfN/fNnJptuaXoYCrlBI8vGpCsZXHbmFOWWN24n0uyGkqLmeEu9mQTp1ru6JmOyEQ4HiC3jzWrn6CYIBlp3yPZEjMNCXMBYyuPAKr712IIqHLYDyKOfV367hNIIRB+4tD5oUMQ31cIvXfhI2LQ2bgsASBarNDnzQrP7/aoY40RzFLT0D0mI3CGjyrzS9szh+0HXE5szWUI7XYnHDypzHLY5inSCf5WCXuI3bQouz9q2yTrS9xkc62ccHTgP2IQQpuAFoLhaBzawX04zI46BQOx0gKpNAKLzIxgDOIj8BPqlq2txcrVUiGHJuc28i1pLqA+xOKqhhpx6aJs98kE2YgF+GQeXNxZy0UxEkNbnyaYopKwyAYwZdlpzKGrcPd7XpBAqDGFe7R6MBBd7GgwIPwyxVMqxhDdthIkgHhg81Xs5VA1JQFePZQM451ydvH7UE18VjjlKmd5PNwqakHPMy8drbx6K1DdlQbt0A4yKLcqPlT400LFTKTVynFfxyJP0btL3NERLmcYaq0ipuKGIzwBtv1/hbbd3V8AUaGEk3urLvLTsllTC2IWqDWJIsITIkVQQ1PaUxp95ADpuJ5sLe0A9bzv18LKH9bLtkKPIDepuGw69wl7KUcXlzQiSbBE2qh/Z0ACghk/LFFxsn9NNHyao+DcPbb39zUa0XOTQ9d7I6JDERGiJUjQGyKbNKfqYDAC2Ar2QwhL2ru63gkU5Xd/wHTSDxqSrXheqyQlrqwfudb854mAfss0Rjdz4QzMf20IWeCE1hgxcFs444p+k3j8G/2bBxUuCm2Fke7TLN8+mzPN4P2ubI9zOKiTfx3N57sT/NCoxyYrW2MKhH9JQEAVswDNpoeCDxHjqibSL2a19o2ZRVj2jDrkkNgDfbSONyYjhNQgr45VY9IKpOaqpRxQg4ecTI1Bz/ddUtkccG66L0LTWsbZIxesUyI7jucdjF7uB58L0eKnwmdoF/PbXIV7Aa/nyq9uQNbPfe6MFp1BZkgcVAkCaOzdM9U/LK4cCXTifWHrgAWStGbb94EUNjBd27dIPt+WYIVEC+OdI2SMvIkZmiYXuFFDZs0sFVYEtMTB1xmMwkmnTWZiJwl6ZRzrvtspsVr0smAApeF1eLbcoWWzJaW05zitU7uvOAlwMgrgMjCZneMLMNbjfE1OcVbrCEDz29wDFdW4dsAD+kQze0Pdp5nRdeURAeUXHh54UDjw1+mGlRmIqsgbE0V/+6qUjly69mH9kKLjglZ8tXjIgZq84N3odksNRzjfibrXBCqf1xHa/sBtyQusgaldlg87VAB7uI9lPRmy9P4XsqIbOqfai1uJZUE6VMdkWV3JGYlEMagtEy2I6ES4g8vwBNr6CSuC8qRwV/TlMzgmCmmA6YgQ/E7EK3FNUTmGYbgmAcCx+JWJ6EIjyIPcpMVLTjMcRgvGCa1AgaLXLK2A5hyL0CZ5M0K0+kKtapPcrh3wfMHlNoN+V4ifGRUww0HLsWDg8uy7mLm7oR1r/oy6BS7l9j3NhVvmAi2JK1GNQn6ry11G5NMnMJcZejgzCWmgqxYWA1ekjQlnJDQ1VD5YvdSVkLtnTES+Pd/xiZ/YC3qoZoF9hrFUgmRoRbmXg8MukMIexdEuSHnl/gN6n2A9TGcXgmD7di3xzKrZPE0ELe0sIuuOfeRqEYsraPVheyicuDpK5UnDbdHDOqb/XaNm+fJwW/+NaUGsvrkMHs88vQTT9vtcno+RFwTsIsWULthoyBaUCgxWQaFVY6onajnB3mioSW0QKy/2b6Ra+O1bJrv2ivwHxIseYAXlwz/YAX+TQB2DUaj4aD9pSfnboHmZVJirRFyYharhcJzuG7o3b3nuX5gbPJD1qoDsqJInndILa/OzWjm4eYTRMYI56U/lQBh3epnCKvNwW1DcuZ8bs0NygYpzgXg2Rm9f2GBB0XMd2H5tc72LWSvqcUXoZuIZjgQFji2+MGEwG+fB8j8QhZkc2fv0jELWHWvKdGJ1exvuzDUFEknCPLT4Ldf+D4hHBKoqHGsrlKUWVHYo9JtNczCDeQXHaXGnHY7HRMaFFfGNSEWXgABjU41zMeCTed9XRC+FtnRA7SfNq4CBkWG09p7hQdwN1Sy9Hn6mItw+mnM9WodseN2lQNfRVwbC5mY+fUAc9tp/euldibG0kdMaOrqcj2LiBvLPg1DqK0gs2DgER9bSrD0gbswVI1uN05q41OzE6czQp8/d7YyKxtOrY567/D+aq66Mtq/+10/EOb8FK4rA6yP2Id8pcKnMsfSCfraBczIioScccEt+YjBSwCCmFFpO3mPT18GmmOi4EoFbP+bHq4P6muID0I6ryvWCqhEzHKTYgWfd6wQ4ZYy2acik0rejp1Ou28WGZrc38Ldi33rgo1AxoL+qg6FjZtG8PFnd+nelHFSmF+K1lDTz4lesnz1vcJPeU7d8EGojg+MiQF12LXy8hs74eG6KcQKVbIsf8sAOF6ipBkBxDhU41kBZhH9Zi+VN6xboCQGPzmw7xbEqNm95eHE0UeP5/IQuJoYbOHufMSlnqUPfnZlM8SqOFrUPLz26LVu9/4s7JtuFuk9vSAvTk0377kADGQNEUwBy7uAs6kptGFxNY1tChbzu2w6RnLS20XU8hGGF2U3H5wqZ/xSXbGzBnT2IT8pAL5nNdiIqqxnhsREUEBnsRG1uNUFD4qejhZituU/8J/iwq3y+kLAYEd4iMtYZGER8dL5Gj3rgQldLxoKPC8omwuKxzMPyW5PW0KAYMVTwj+qWbyvdZurawp6purUVoTjwAQpoeeutuWC3FV4Y36A6KUBOViyfzuf4MGNnihALmfau1M6jd6JkmNlIDcynjdj/A9ifowUrVREsnTf9wHK2MralZUHhDn0EzLaxJKXs+dRrD2Gc0ub34rgH2YZ21yGO5Tp8CDvyCJ/CxC4LjIHeHMO8C6YhcWQEClJPoGH4rt+DRhniONTjamQ9BA0TW0B+vXzRQeJ0Ef1XtS24R5dZMWePqNNOf9o+0zQHv5ApObapqm2x34Laiwi7jerhCOt5gcYdFXmIfgf9oB3xr8PWyE8yumvDSIHT4lpiA5qw/gO2m4VS+L5BHp9EK8BhLCTuIGzwpGDuOwoBs438zCBcKmUkOT/DkOMxVfqXFMUww8xjyqctpIxWb/3fPe7CsRhSlbMfvfai9zWZupfM82/y59WSaCTwDMqdGsQn6HWCIco7cbHnGj/nGdEaWasvs76w8fPZMQ8B8lC1hhycTwASsnda2soKQiYizcW75eMwaTxPIGaQCxdsOGXYTKzFGfGZ6YJvSLHATvsl7W3DHT9c7Jq1mZUULO5zs6zHG9KF7qBHWXI7QpnRAi0cFo3WsdPuyHfzl6AmKj2GcR74V1WTrtYAlXs0+inVJAoxraAhae24FX6t7Ynf0dlVM8hu4AcOjc2U3frS5+b1P0Fo/DMapDBtyWPtni4dZI5md/p+xrVkRoykt+xWLgTJ+e1lyEqbi3D+6ok53ZVAlkm+mlKL9zwIEjiZupi+21CylZ25kmXTa15mAQj+DD0qhmHPAcCSWLE0XyFPcMpj/RI/OAaSeNdGc6h78Pp0eyFwjBjnTql8DSzJl26Hq9BJVw7JFGn2oeBa2lcPAvC4iF9wIne86vA4dX8/uYEGxn/MgMk1cIiMqirslJwnKGq89kWwi0bMsb7Y0BQNW8RK9etike4GyP9Fo9uGvDvRYhiTSxH4A6Prg75OOFH5g/rf8mb4fqscrC8R+bCLAm/OQpXj7LTJY7FXovMgtUjL+o64CSW49CISUzRBFB5HV1QrmNnycSWwu5E1T3ZIjw5V1Rzhro0GGdPFK+1Zy5Ls+3rT19sAnkoZuLl9l1j4gchADqRjWwnwwhMLl7cEdaGHPJhZ2WAO/NuAT0iN9YHaACfj9cZoW5J02Yd9ScXyDZ++vVfLe8DIaUVjgtziTQ2Mrp/On4rRwFIg3eq5XMo/KuqoP0sUqrM1e3t4Czm8gsnK20Rpe6bWYd0Mtnz2QJUhP3YFTgOLtvtgJHwrsb8MxScBqZnT9t/HJtGkk+89oFT14h7Qc0tEaV22OVgOgGoNaJlQFU38kJZGaRdgpJ99W2XUUauZQb78Y4rxeQ/XfUQtamDt9NQn7cXwU9ulad+/8fOV0BSd47d0BFPx2/HwrreE++q3s5m/gqPzWRH5AJSVXj1bY2YyJqQ9yFQOGGHvQYjC2CfoDsKIO38UGsICGGVtsIvoDk/g4jbbNy3eF/zl0OFDo3ozmNQANFUeqHHaCkV9Irfvy1RspYaKa+utibkM+pxsGfG8u6VPYSsLEB8yTRjiMMqEhlUvXGaHqzoTU6GkcZUCX2ztQ9w0qge7Ca1p1+CFSg9He6vAxFbXHaKHOtBrI2TZ76n8DUDZSkPgrokv7Bd6H6hAfaqnFNAplNWOZ3IEqlBLdcRvrrLQmYTcLj6BWxRBmDHIbVW/s1bQNbTS3+HRZ6EXtYll3Ru4jIwTPqK8FMHBPclv+guKF4p1zKlSqIKUQu09qlrraJKlyvGX8HjxiK+Wib5Z25ueIgw29P/LRpRHfzBC1Y+x0ihebgQbq5xNoQTo9sB/a/Wyk6s4MtaUXap7YypK3+dhh1NTcT6eUMIOffmyjwZlB6fbyx4wj23r1VH/KGiTY6rdnzI4x9mhbSE21Py+TgPFaRU72Cwnht2rH8hWFjaAWUQrSv5RVtz0bHvWnhx9YjFNHQ15cv8Fxl4tw+MEFZM8YftqdbVmy9p8oEg7ST+uVb4tGVWYltoXGJvHqazNREnH76JDoaoJX5NRpv1mZmIQoigHcXT4/znyVuET35dnv83+lS4oUIc/A9sMVcQ1d9JXjlbmb6Hhy2kAsO8EqFLN79kh2U8GcZjSZW8uZ6emHYmKN2qIgTcVyvEWgVifx76WNr8ndocUUQscAVaPycOcRbwKZ3blgDEqQQYnt2aAsHOYUXThyR1A3S5mfzjJA6H+IcSoTTcvt0n145TuvmtQMTrFttVdrvvXKwTQtcEdEGvwq+EvIHslNjIn/5rNZ9Ng/lVgOrfsxEZfg3qSouon87yPw1NT0vKI4JL351O2zt333rm3WIyrQpZ7xfGRD86iBb4vyc5i7RQlpNYwQd1UKqfAv1xny1ewayS0pPav5SsFL876CQUgnibCf/9rQ1aUWpHHI60GtA3p/0uHXGITca0Y8I0o2ysNd+o6MFYe0J/7WebNJkCuY2tQyIKXAWmqt8DfIknP0Yaxp97X4t4CZckrhZ1008qhCFIpFYKIPjxhHYBYj/d7ryMD7lSwxFvnEHvsUtrnRVfFUq/NE9O/Ls9l7jaBfk0E5icCkg2RFb5o0HqfRHzUnDe431i7lCONzKwlz1a8sfq1o7sjH7e2JckkFans+fAP2/L3Sj2gJV1z9TC/KvQlH1DX/HvsSw4XMpRCrd3O50q+jQ7oUdRiuTLO16fmRqqxxWvFtyxLi2qAPCo/4bflZZX9DO5q2n/hflUR4fJK2Ny0YbYi1fiQ1+vuzPdQrOsIWexaNHuRAd4aTM0jYIXPUDuWn6lOwV26vLWfErwo83+NFGWCqPBtiNoFHwX99mGaUKddNL36G1d4lpuwxbJ+PtFt6ClixNYuYYbmjpv49OaZRiIPRF3KAqWy67sXNuaPQq9NLGA0B+nijC+xZHd4pNFknQcA6ZZgNxufjANSO+SnuEv23SuWJx865mub9ZF8ktvZFpzgZQPJD2dgPaGS87Eaf0RAgb3lGo0NaeC5JHaeOAnmgCVaz4q8F0Gv+vyZ+gqCkEeVXRdtXD7XVhhcDhd1Sz0tGWQ+iu+TumfwYdq2wyzmGV/qtJMErgeSk9Rymg7armm8Mh4Xzi9KksLgWvVGdmH0A6dFMX47c4JV5Glh/RZHhgsYo+q1hPb+VH9tmnZoaNuz+iwVQ6hviKRxqC/PrT7/bGBGdNKwkBtIHUEC7e3kEL3hTuWRm8AwOs6DTC36kScDK/jkSULpV90VftmYAhch8sW4MW1oinnHpl3q+UuAnG1qN23fW9WYqg59sOvjyeR46E8Os4eLDm6Wp10VxpBmFMRBe3ZW+SOad3/yF02I7SzVnoV3AKkSxKIFRS4lqrqkvlg4vUttRLw3gIQsy0inty5xP5ID7ksxiBi4ZQhEKEeCx1Vf0BEnSDze2P80ymXSLvg0WBYzM+gYkp9iUbSQv+rUCP+xGUJgfq7Y/yrqJ1PpHxKJfw2hmkmVDoltU7ZRAz+hKcl/hl9Tu8QiV8WPaNULNPY9fGb3o8FxDgf5afVfJ9RzwUUblRrQa/8bFwzLZPF/jaLQaFbnT2YZlSu/qJ5wz9vbZWwnhdoEREYfdnI3OfxY/U8BNN1seWBewvGNPYRTclDtJd7RWYtQZKt3VsuFeBlOLxdMHv9rzz8qq/psZAbxaw6TYb7KH0snWfOzHa/1aISCMpn0S0srgfZ8DuSGFSJ1xUwXzb6SNdsxo7i1iy6zz7WQ7gpleTpw9QvZc7rO1ldYAeNwe02yaK+R1nRW3bGkWIbEoGw02A3iGgfENCupH0YjCtW691j0CwTUs2RrLnAz6PN8bKJUgmcDhm8Zaw/fO3lv9XoQJIjoh+w007AVpKn4b/ExbZiM+2xOajvZROcNXBUBPDIDoiY23LA5dWTTEY5uYBBmC7jH0vKTvn2OEdPkB/WAHT832Su2ieY7IhBhFgw0owhSMcp02HzkRzFALC5Zly7ectmt76q4w5kz4ien2dj2CIelmca5FssNnRwQxZAeEBwZn4BUZj+YV2c6hykIbSitmymkGmdXt1f95kDBkjh7cg47QtuyJ3nRhtQidOTLHAErBZQpEof6Qz243D2WBHFErrPxOHQbfW1L5oIYs723+NTH+dWtwEehzLVPPo6rgZgz6WyQpyVK5CPSUpTTfb50f5HDP7iOOcJC2eaWuKIPvpX/VPjEFegLJBk2/Yo+DvW+S7r3540vvfBOW/SbwKLqPdDEzsonBl55fTnCuc7Bjgl48umOF5QpH5yfJxRdsoEdgBHBq0WFJ5YYz2GcQoOSy4oiqI6gxmluHIplAbGDCijCwREq/5fDl41nH+I7kNx/DAADlg/cd9+W7DgiwpyszJZVn1ypecaS6Vhil18X4tK8koYCES8vr8E9iGxV4I69I1DWiYHLfvRggYSLjC+mNNGWi5xYmcMsScXWMgqncf+HfXFTGZ1tRDNy3hPvPptTTj386Y2RjKNKywbdEeHEakbbH1e1p3cMSWfnkaCDDo2Wag2AEtoQphRC4WtJw7iAdzGPxFJ06+wHz7fVSMXHI/2v2XYTgIpnIFYDMZI3nc3W4xYsXeXWd/3yTjNiKvyZRUxcf51Hh7DcDLH4obi6SbLDY+w4sCfBMJW+Oso/IAJ3toIh2A0bwIgPf50PXR8Nhs+CVe8pDh41mh6MmYeNaS1BSd3B7GGmk6ANQLbtUaXCU0pkfNJuWxRYWMALU4DD2BnXbItPmQv5SDE2EoDbNOm4tBiXYdQ7OH4uZQAx9cKKSvtYNrLE2dsPv/UVQBaXUMaQDjI6oO/o5RjrXZe3Fmwr/VLxlVtuKCwzT5hq5O8JhOW2fNGcEDWbD/b18OS3pvh6dEcNn8wSFsyioeR/L11VWZk5MKCCYHnTK/5czWPIEB8VeN9o2Etf/tAx8Vjasql4hnWeGRCf1fNzfXB8XjtpGUzUYQQZMACcmK3duWplPBIZgBLBkg9a4cwjpmtNkD3ptzV+ngiQjGkkXeaTsTQUPC9wrV9v4yIo+IyrD/xbX/MYXfODojnZeg/b7PClm0b7+WAFAcOzTdBnMI4h+hVKVKCPkL/a4WaxHT3TpcPyqf2ZT3fYLDHY2Faz7x3C6TyeqvfBprRn5EpFudmVm16hQoxJfytheTqgG4N9P71KKPuEl7/dxSQFnOEezs+ptrHQ0iWKx6tMUpQEzDdY4VLdzJWRMkxcNmYOK1kSVeTf3ubQstmzcA4yCXNCOmrK1jheU534p3jRMML/EgJOk9BPjIdoTUcX9+vMFWJCJmP9eOiu2rRFpKOOIVgXnHDPdzDMR33uPZj2YYfphZ68jgvqReXL+u7DxG9S56HS3Isxszf3BIHOUTe+5uq2Kw7J0cE1q8SO1jc9B5ZTkR8LZGKRVxTTFdI1fmVrnGXdULDKzgI74ph51b26j9jbYxn+/wOb+0hUq0P9dlh6ZzwnEO4JT58Jd6UR18sesnULicnsWqhnqFGc2z/IseQxrNpb5IaINL4l3jpchy/BV6XnuThvqVMucXVgcn8ks/0kWeAFDmb/DeSdxlY6o8PagiZ9Tu/5wtO8mRV9FB71eoe0g2t7OeqbMlrMfOqCXvlMaVewtMZNOHkSSxKx4a9ztfvWknDPtWqgR+0TDeAPN+AqU8E4phIGZ/TYOe6atj01kwttIZ8IlT8wHr5fCMGwiTHr9Jue6EHQYHu5pym/WyBaBMMq6o+2aMMxlao08H+hg1/Rfk5xsQ8YC7PchBEnD33YvfZNgnVLqzud5bOw9rOMHSv8t6UUl4UZRygXAz2iYqJq0VCciy6TjeiSWw93icP6059R9jfkHPycPNH8hv/oCl7y5XHoboIUdCU8OQCxdX//Hw70fshviDeYZgAkFdvlq70gDnhcVMCO8MVsQiKm7Ywxqdc/BuDSOmemAe7b6p2N6nRZpWmmjLwl5JQvWaksCF4eQrWkAt7gV3BH8/Ptd5HfGLzv9eVz3C0MYtKnkkeMnj5fsRXxJrHelJEqvBT9f5XvZu79906s2mOMS5ATqZ/AkYuA3N24/Sds8IK23aFr/oDtl347xdG8cUK5bOkFalzVXXOi6J8Syned2TB5Jyk3K7wP/30aAjb7eSMMH31ieqQ/KQL+y2wu6rT7Ev4Pc/stMDBmFFBo9KMMEZMb5HHjj0fmEp07lY5JVkaM8imFlSFrqAfrmCUGh6TDTYIUMOwDpY/FEuTdIPaHuXgbJm6/kHzEiMt+br+VhF5jv6M8akZThkkruhHTozFx60zX46nPJITXum3QVaJlSMrz7aFXC9MYrzWmu48CCKfFcrCM3oH2SKp6VXGQOBGkQkseo9VibFW6xzPgdh9t2i/cjsuy8GjyQ+qpDH658sg2Ypi4x8WCMlKg/kGusOTfehrU8VcVjqYF97g0phcaSmYk1WzeS7LFYa2EmQxe1IQst/8IWKzhyLjmPkfS+sjDFe1hpZ4gDi194lqx+zTe0G6hRxmUUzQnkwFRtLxkoquMN9HvgFOJrvvi2Lc3DiAP2ZWVb4CcTjRbEpiap9E2WJtoOQ9nsinijCLtm9lhQl5r4VxWwGY2jDFSqpC9QqdjclRZlesKG89kI88JU+jueuls23iHp75RWQrwvfuLObgqVQNLvfh+QISG6KtZpATSjUwpfadW33TThwl
Variant 5
DifficultyLevel
750
Question
Kira is organising her school's athletics carnival.
In the morning session she rotates the Year 9 participants through 4 activities: 100 metres sprint, discus, shot put and high jump.
The morning session is 2 hours long and time is allocated using the following constraints:
-
40% of the total time allocation is taken up by high jump.
-
discus and shot put are allocated an equal amount time.
-
The 100 metres sprint is allocated one quarter the amount of time of shot put.
What is the amount of time, in minutes, allocated to shot put during the 2 hour morning session?
Worked Solution
2 hours ⇒ 120 minures
|
|
High jump time allocation |
= 40%×120 |
|
= 48 minutes |
Time allocation of remaining activities
|
= 120 − 48 |
= 72 minutes |
Let x = shot put time allocation
|
|
x + x + 41x |
= 72 |
49x |
= 72 |
x |
= 72 × 94 |
∴ x |
= 32 minutes |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Kira is organising her school's athletics carnival.
In the morning session she rotates the Year 9 participants through 4 activities: 100 metres sprint, discus, shot put and high jump.
The morning session is 2 hours long and time is allocated using the following constraints:
* 40% of the total time allocation is taken up by high jump.
* discus and shot put are allocated an equal amount time.
* The 100 metres sprint is allocated one quarter the amount of time of shot put.
What is the amount of time, in minutes, allocated to shot put during the 2 hour morning session? |
workedSolution | 2 hours $\Rightarrow$ 120 minures
| | |
| ------------: | ---------- |
| High jump time allocation | \= $40\% \times 120$|
| | \= 48 minutes |
sm_nogap Time allocation of remaining activities
>>| |
| ---------- |
| \= 120 $-$ 48 |
| \= 72 minutes |
sm_nogap Let $\ \large x$ = shot put time allocation
| | |
| ------------: | ---------- |
| $\large x$ + $\large x$ + $\dfrac{1}{4}\large x$ | \= 72 |
| $\dfrac{9}{4}\large x$ | \= 72 |
| $\large x$ | = 72 $\times\ \dfrac{4}{9}$ |
| $\therefore \ \large x$ | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 32 | |