Measurement, NAPX-H4-CA32 SA
U2FsdGVkX18oU5OfXstlHGiqCEqWNf/DOp1h5UgoQOkvhH0Z0CP6sRbd3OPvmSWkPJs5/SqxonylVMcV35k4Yz1NTnn6SzhYg3W9n1oAKVQtECqwRFMa3r7b/Cc97OJ3MKbohY2UWorWY9qibrqtvzJ0fwzsE51ZW0d+6NpdZXhxiRhNF6pQJxMQBWImyXuGibYAFOYYk+2U8q4dLUdtUvd4syIIDgmO9+svgOC0IVK5l3oW4MIdYu1B7BAaMTch2DIvcJ3RW1CpDT8+a8JkEf/dyEpDvrvS2MkbPy80eQmUachWzKc1U/BeDdXl41z37U8cqpQ9cnvlR1E9SDXaMPJEXKNxZS73/ObRfj8mynBhFsyrtTuqCdklWF+j0EpCP2rEqby0oZFnQDtwa9/EOi4MLcQi025fL15FF/8dC4RnD5NBRywK+gPcRBy4EF9GSBQjizYqzrDmm7MI88bcfQOfDDD9odQ82RSorLf7BM+JQRHmYuSVUG+xN8IKAYBal5MOBUfWwEUJJH/TwuRPDnCNz6q6x2DBvsC1r9tDbO1x6JB+rqF8jp0d23rRzbGRhMA+0+yVEhvz3v5tjdRpkF1XFbMutinsaNAt6o+zkGPuiVN/bnQXfn3OG/SIsq3qDTd4DFeKwihargiQkpxJM2fwPcK3nY29EwPX6mKaoL8WBhGJNwlRwikSK8utaEc5eeU9umXeAspxh2cQ4BV/wCjqPxACSf1SYWSRfPB7WqGXIytZC7NfKJ5cOvICy5C+i+Dn6dlLoBcn7sNJsQt+HbSIT9tnS4A8eLe+czgtmkali4tqyWMZObBq6jjjmiY+fDrUNL1eVWYCqd35IBmYFiNTXqISF1rM5IRrsUsVZDnTK437KFZ6BVGui2tZ5JZyIDf/fe/5gTGj82IX5lq0h7sjzkoU8swwCs+1YiMyS/kkM/TQLS1nTWXiMeGESiC5sUepY8XWXvL77ModwZYD82nVuM6NBcPDmzzFMPXVGD5jQEfrdUVZXJfJYXbHmhND0QrdfhuBSLn4GiAMe6QJJQG9XCoQwXoKEAZgFHwu6a3+YWnMbyrQXIjIAIUQFLldqvEVzT5t+uxe4YiwUI4SiUw9SSyvbDINVSGHcmdb+LwudVI70mLJ2t2W6Pw0tFf4v1SBw65RW9T58feenpEgXfgcY2ML6RI9eCxrnMtvXCLFOMoC1RFHCXBE+3NnLwIiWHRn9T3W0K4XRFKIG8bcNfqP2tB34//e7aybGSk/xn78THRgw1DdJoXgJL6oGgjxmdGIfXxMktO81uvL7Y5jqOqeiUFW1MqMB3myV4rXC0KZFoZViGfaCWkFKyhZ+gFKKJ4tdzd4O0hxRTtQveXvSaoFiw7nYzgVCuuC5CBYNiZFhUE/p+gfrDoBQQweLKcWzOWnTihaGCoffKoxSb2GDL5n96jeMrLIcp6tEbJhWvXrYcklZdlC1HaEiKZpI0NkzUO9GmbMeEK4ou/baMR5MV42t//hMPRUsk9b+NbOpIlIMmlCs57rdEJFzMV/cOkFX2LcLsVVglhjlFjSSrQPMSatkhQD/vTLhMLSAEPCgDdk2/YPqQcMp9DRIyWj+StH5oxdsfo2ECJDaNjXT4jqjnRl59s2VigGw1U1ilrY8Kf+3JApBL0llbblgBQcHp0nJ6KX5Q32g7kykb1xSOAgCZVG5HpsTkTFyi4bmZJj37lsnJFuoHpFGr+KQe8Vu6NiyHQzDZq1C3nCNPT8rucSPoam/mjq1ABoCZiW7/aUjSiJPlYqoIlzoaidBmI4O3NrE4BFoMsoLTVazQL/8tNjAM5Yjuwb0emkXD+f3QGuHjM545hlU4P0zdmG5ZDo/sw4hcH6Dhi6w+6dGd3RPkWFO3grKFVo9Zb8vvdBEClW8qtXM3Z5bhWGvo7MqDEGfvJUkLORQ/3sU0VKr/IGdk9HKauZxDKgRJdJnb4HVoqzPk9eSW4q/IE8jdlGLCX7MB0X21XCiwyho1Vb2u02Ucq3yegaEv7VXLkiXW3doFWFrNJuP5OW62HzyKt3QSKwEgGLfRfFpDkUyVBTbREe62mW73MDf6SyErFumpUqkgMoHOswgezSIwr9h2J6pxHV2+y2K84Mbv7BL2bW5bQcngF6DPsQPEj8SMapjksA1OkVtoHxiPbMD/vKEy/zmnpHYbO13LNFlK8pH0McAm8dERd+aqkpjlLojioXidq2JPxjdi8VehI8E30cPHMJaLcbFg6bKl3QbsaCQt7yw8aLonfNlThE51Lo3DOcK9RgID4xHNx+q7oo7/3wcWO/Xu2VQB8NqkW88eS0V+PuXjj8uYVu+//FsLNYenUVa00XPltvj0LWZmuWAVGDhkazb7SOccBAB6YOfJ05YbTITX2xTn/hPIWJMhJ92nmeSpro6i8lKfMzX8+sKTZMu97pow11Z8bTID92Ufn+m5rt5MPASQvOVvKbgNFoohpQFjOcQopnN7dTO7SXkRdRQ2TRmv5YZOYk8oOvGomX2H2CY82zT83hgeZ0PIJwLqiALmdQn6SFICzsAH6Sk3HtnfSYldXF6JsMIXiBIizhTz5AjsgA7a0+m7DHphelfP+xwmasQoaZHlpzAUkxUO447YXDZJ1jeJH3LQh67AMa+4IAlh6Gxnflbq2HIp8L5Z31eS8wstyrsvRBHaYAbLWQx0/+mM5/IxSKwViKOn2S8oVYFMyEY1ReLqxcYSg4zV0rq8XfzsZt8Qv94hBDRncJHVwRAfgLZj6D8mMbaBXbQPakM+IS1q6Nr25nHFaoJNPeowuvtgfDyBDcSedgrODT89sKcesc7u2tIMLMvKeu4RKSVNSbxK7gndwkAp5LJcClgUiVGblH83EYe/i33mNWk/4houk3f1FXqhJKEtKWRTTpYb7RLhJzSDQ7HnUlNTCCe4MciKh0V0Lo+heuqvCsiD6TNWcdAovbY1gFA9NYW48ZLXmcgNlcCvBNLWBRrOUaVCLtHC2N/WNHQhVt5kN0ZoKHBj6V7ITJ+fmAre0u29xFXO5Fgudc0LuTFfrKxwNWFEFfqu5jbWXGPtszb8/HTbIbeJZ+5Mw0AYFZ3cbBZbUnxqhmBQkQclNmws8gHihJHLURPDlxEroPNu3mHXV52Sxq+EbcLvvsFIca6KKdzy1OqHYo62qraabZ4DhJml1f6VdmtBluxPWyvzo0x8Mv4OLluihgS/JzrjeWVynf4GVDaTRcyxBsFv3CtDXh4a8PgsNFDN7GN8dD/IOtqoxEGj4q9YyRZRydanuwudCngGCcJsZBvWlpGvcc0wgfZ9OugSZG62iVFbVv0iLokdnywgY/kb2fH5EUaKORbnuYlf5+K8zHFX+EFzGovXAA7e8BsMubBS+8/XsBLVeXWz11Qe/sncrProT0NVTjNU17C+FdmuU50sKAzZCmXO+Sogmaq/OUzjrjNKtf949cN4G2B38y7mgdIQywx8MB3WC3g0T8GzUAipCVzm7IUQnW87MjC9KKW1vUUjgXNFzeDSTnnJKQ07magNDj92FYs/9Fayw5NQRJrHpAvBVCbWdGHDrUsNPcH5tye+EI3TdHfNlkLUgeXCWAoEEPa0Mmo80z3BHJKwAWwTWqJntIDeKkzeSXg/jvBumhi46f+k3u6dr72k+CihLjsXYIsyI3uwc/YNn9LBGT4pnw3CUcFH3hAH1r3QSoyzrcsDm+qCIVp8aneSEplv6DHgbZOaLrCi5quq6/mgwTDX+aBwREDvFHeFkODqjbOzBMEzaVOKNer8M/4k6qD/UfzAVLKiYn/BXDsoFPNP+Ywa5FpTmFY1bbZavr1/9SU9D5lgETIrgSTOuy3px+AhNtqB6Tk8TzkxdJIl9IrHkQ6XRRJxXV/EyNUu+kwlAG83fTatJWaQLDoKYjOyoOmG3ovxTAy8WrTDNdpxVA9z9l679UPE/zqqvZhDyt36QG2RxKkDUzF82laUE5YYWQMuswmcy/LV/iAE/2QsUgqlvbEhkipl8XvVRgcH8nMrLu8oVJiOzcbf6f0hCfJHjWn8L1090DpkU8THUjiFvaBZlhcRApapy6PFTeZe7C91bT1GEJq0Gr9G4daozH6dg02sTWS2ECAx4Tbu2lknhr9b1n84qHi6c1SGW62WFDFmJhIZNhXMsZSEqz3P2IO83LXaX2uJxORCHjP7eViZqnelCpMaiXQMHIMuaYzm0/M9G3hjvTNRgIVxmDbUeyLQpLtlekUe+I3bTSahhCcPseQcUp+Wb3rOWRf5pPMw/wCTtHVs4sZgUsltXKIRLC4G1b3TRgCESqmYOjDmJLdI5GGWxZ39+UJFrDDtGiqQMSsXut4afVCjIdUQzuu8s4AxeSLpnHL5DYRVMqYqi16w+5G5gGRT6uyZEeJOMVgVlhNq6g5aL2JdNkxW2dt/60I+hNtsk76EZAPUxiRLkfIpy0hqGBuT+6OmEYSDPHg/lgGEg4uPSt6pprVOoPnG/9eXSSuD+1+53tUZ3vYlhVriG9Td6wnDD1u26xIzrHPGdhu5pCaoHyo8bBjT2JmTpFakP8WU0A1ZEBTcghPMI75Uuw3xpyg67FFRJuG0pB6WUVmZTImxsiIC7gzpAE99tR3WKqWU8y1DUS9RHPQomU2vRufyhnKJbwtGfXzrAWRZwNYaRBFqHGe9KP/bXSx4ejEZyHLZEdVmA2BU6EMjMbnA7ky7X/zZn3m+B7n2bsa+YRpGK/DXXhJqj5YKncvAMIAaATb6noUIfL2fyiVj+KfB+3dj72BENXSyZPEI/2qThnpd0l9BBSMffKxm6/HYrRYniUpcoVTRFHbjZGEO3s67D5KbvCVBxPW/ZdzUuXBTlz+L0LFbvdTI+UDT+G35zSs2OS/BB9jSHDAnqpuwDLPjaLWDrtmfnDT/mJKC1oESuCSv3evs2ZLLP3HQ+qlyio8jEtDh1urJZB+b8N6UYgb53+7WSSBHN6q3RG+z+UANB2arnUD8goomM7CL/yOIqqEVsQTMGeHUouZWIR0QBi2T/VuiYLhMR/fwf13WUqytHzZPikDYPhlU3yhKvQAS/8e2Pv8nWhandluIkpYpgVUFbH6/mZKU6ao8eEgjatemxuN0Ct59T+0ADc+hzaSe0eiZDcConN8+7vQ7dJCwDpF3DaBDytCJcLBgt5XZC/9lICuAl5cET1EBNa2JGYfw7pqbRT5J5yeMZUBu6PyjUA12hXYEZGtSoGNxyrqpHOQEd6My5+dGtYjCGVLwGNdaILRBzQEDR7b4sCMw1GfdT2LOU9cbQcA68iW/Xebc0gyTH5bnjtn+BgVKyEVZWDBfQZjkNALbzJbmvTYfx9Hioc31bqS0isORoLZgaeAwC8x09WguLwM2aQAXSNptfVM21VkxnA616Ngult+MryV93M5MZMNvRfRVdkboLXxAcPGyT8ZjQOSkV0o7AMod6yazFUNXWeFRcImezOxbJhk9RLFwASUB8DEK9Dkvbzuozuo6LTTZbVD4tCExou/knF/mSoRXKv2GrYE0idgAzpoNKMFEGKMT3CydaHzJndujRuwe1/NwRECJ0AaodYkyHzQyAe6RDb+iMotLzcBCffSCTMUZfMy+LQFOyGYj3esGhWOd+2NvSzt5nMxF+YNKY5EtZPiB0XZMDTiE4PnARfdzBGHNY+lk2JIGKetNS5iGk8XJJTkvKNTYlMq5iEra7/UolASDyqukJiLC7KrLzHGSK74TVS/IFId6pVc1EWUBQ1WibBd3wk8902BH6v9cNQPE2kv0W8SubtnaN+p4yD29hMk3CsSM6J3nRCYbOkHfWhUsg78INXjAs4j6LkbpUjAsIrqTEgsVh2jpbQ9Ym0KF9QWWQbrDJY95LkDnq+S2TxMvnSfLxOHRgDM375eFZGeJ/uckAgFn0X7R58lXhCiaaDwWJyVLZJIVX3dJZOJ+4M7twSvj5PVwsykeJljXzU/6sFWtHa+7Csofu1SO0TgvS6FinCqR3GFeaT2W7GFRd97ysU/qbZrzoZaw2Mmpf/QwB++kC1ZjwvzyFh/04GNB7NonEyl7Kb7753WqNgGegxKKFDR/A99aSeFW/2O2sO8SEx3h27TjP3WFGaTNKEGpvImivxormqvoGP1nMEKGficK0BRKvkWtr5lXymt2LHUkr+9XXURJ5t/6111wqFGYS67N0j2p8TXPGZPai/kjCE5bJaB0IVUkGCTREJXe+wfc52yytahxJOy5iRXdE/6x+nsN17LoTejx/CGL8l283tF0k0aI/ocCg7EM3OkDmGxajCz5GnqnlQKN3qi8ewM9ZTaEqC+jAsoGSnx0ZE9AOLbP5mk7NyqWfoapg5iCcA43Xap/Jts3Ri3yl+EShknr4b2OrbxA4Bm3+pLwE1Rltr0tJBARTLcuUjIj4tzKHzQ36WsCjfxI4avnz5qxzzVUXAaAZItV1WQsgts196JNTtdg6xrU3Yq5tYrsdj0DXrBxJ+h21LfrViUmXgluBi8Bg8ujflY3ZpJqg0EvaL37LNPm1vyRPmPEadrGgIm1CztV/dAVj0JQ6oKJSRi1LFhu+RzPq5FPl7Iy7Z8Qv4YIatJv3gqNiEaPd2hQRkJbj8HBSAXlG+OkSS32zCjFgxLbIFqwk1S/BnfHi0L0OKvrZ0yjKPKPd82Mmc1oW64cmY135S/wIEGz3oPYfp9dQqj9q2H0rrrjAzaY8R4okD0P5xgFAMMePsHAseXiRpIBvwI6sLNMla7OTpG7AUVLQasczfPqJ/uoEELUDSiHpU/XLkO4cVmxGpHghjkXKwMfopKI6nwgI+QqGGJGOMuTNTLMjs2EvHdneXjGOjuemT3PNNIItz8GpbmPrTbogeFeWD2bz30RetZY/9oaYL+OgK2+xnfRZ/lxpFAnJT78DzA/PEjGUgdP3hSF4ld14oRHvBY+m4neb2amxedYvHJ0Y6viqDnwA56a5b9vmlwSMNCSmOrOZVQZILJiQQlRbJxHMYxWa/9d78yqepZ90lcz845t9iS68jEsmhnjBXTYoilT9Fu5CC00ontqHHqBl6zpBXRFxi+X5mSc4jDOSYu9ZLARIEwpKChgL58vRDR8KV3DY3j+HoQqRVa/6HZE25oAiWBxl3huSr3hkXg1gNtdpdIQunoA9bJshYb9GfEmU1nwe3oO6au5v/roc1BttljSUeGD8FL22RCB/a5sQ2kNzakJRNUP0gCk+UG5XJTU3Li4EXxWH3bd2/BZpqZDf6K6fuKOi/9ZZm1U9vpvAl1JMCMCw8hnMXz14EVPCROVCfnIqBi4dqp7+u6rbfcDTHvVtmPSWeNcNx1rXgrSMgt5RNfsAoO/ZO8wwbdMTW1rCfjcPheOqm5g9KIYI2f9yUdX/DCY3tOBt8k2yNwgrLxcdu7UPP2kMThdds1A91HcyHiHmwnezxi5mK9PzATebv3O4fbtDKmfNJhCf6bHA4rSc9NycKW3aeGK82tAgN1cGcC5QgvAOFcseTPBnmXGLkzi/uOfMtfdvHtkYjKt/zuSU1+wK6i5HtuzQTtC4ocmmwfFeVrzlyzbV8ZtjJLQnogAKh5Xx8x01LFfdyyeukYJLaCQbFg5YUwDjvLcxv6d/M5X2dQqnDUUSCI43vxSkdtKltsamRqx7gZ5occbZZyJnP8IGJMPQPfRmcBUrJKSdro8HcIvWrjrYpqzuScTyVXXaQZycuxRq9vcHs59f1ib6BvakhI9g2EpzZAVq+7GEENs4H0xyZZkpaJsYJp8WPqKoGkupRgyZy7aOFHDpm3LueEbflOOCiIFoiddOXcrPd1AlYDvOwGssIaYtBWTL4RLi2MEE6lvytw/VYxK2u14chNyhTnumwrpj31+lZhbX4aikhXF2VkQ36acW6PJxN9qgS0+L0oJs8wMYjU5jgJgZSubDGAi2Rs8rC2eN6fpwbnPMbD4+OG8sc0vVR0yW7WQFtPCFUxb8Gzr+NSmIws0v9XGFzXHFLMzkLp5Cp0xRqWY7RhbMVLRkzNNDuOqbSrTxjRDuX1QYF+nX3oiCs9qEgNxF9BH78EQqyFf/RmAkFEvsHJm7nq2WKaaaFL1QmA1GRrMqTzH7uEfwA4FjdbA78Zsp/281c1+5Ve1q4qM3fvUZ8MWofDqa//RxBmKr1qQGONwwpCZ/f7pItdZeoDhBsBM2Z8MhuWhBTUZ5zEaRAhr5RtH4/wA5+LaoaqXrqThrJJ9Vf+M92Hl7/UGWycVVhVwyXTb897KPNm4+dAZQWN6H5nHzzx9yzKWUlT00KtS/xZF4Z9EEP7SZICKH4+ZiGIcBwtPSeN/QvGTWfSRq7JO6RZELplT2DZGUjKv4lqlrVpzGZlS1Qg8s30HXT6e0PegNn4amDNscxHMCIUXQnZlTDINNICsvGmwN7oOAUow1xbo5woBVrLF+vmmuoSI8km2Bgg8HCkm8OaEa+XfvsKBcngrukz9uCz7w2PGldp4Oh5RswKbyRyliQCA49AuoCPFtGPj+FtpscrMDrfo9iK+2fUMoeyz0e6VMbh3ghjnxehJX9x4fah7FCfBlgNfCVW1vzvqlVpkA6sxaT91ODLHrdgsu7AJLfNxRSHkFH1lF5c6nTmzEXzAO2G2AV4zJsp0LT18WSmDd1dqWhhGxDtEn5pLr2ycf1SdE1bu2BdLyp5zLC0qZfCARLK7NHv/TZnI4DlVG+T2DxCQsngkkE3cXy79GreW/vq6omg847T5nUF8EKPzhKpwTXKLy1Imp9GdNHoyECDIvI88D7EdZfba/MgAiQXeoRZUvb9Xvo8wTee7GUNpXM1i9rHp7CJ+qYRdwEsGEWi4nUnBubLs4xRekYwknuUQRShkMO5gs8f6sUv/BcSgIULpmpWwsr2P5rpCnqz7Sg4ocO8I9JjMQKs+RHrCD0nW5gkzNm/mKYhdaNdYzZlsgpNzS6M15f2CMAdzCGA2VzUbVofuHDiF+OAtv7fXt5bCVRIyYEKWXvTtvptj5R3SqX/6kD73vRz0yc0PWx9A+Q+3pIgasRJBnwh7S8OJqAFMjnHWQjBHBAXW7Y+UaExZ+gfIkfSvYVM8K6MkHZlzhZFrr+kRRXEuRe5sF9tIMxGhnNLd+yBSDaJ4SKPXhtyhcIzGcQgE924kuJffev0weD1eta8ztur/4iY/LC70CElQ9xLfAeY3j4yF7JxLlM9WEWPcA7qDwa6mAnzLqMvnxG3o5/1ITGm5yLz2DJhLuPjrwp5akzMUIF74+To9UUqqNZZv4zlL7Ik3p11g5NR7sGhplz6Ejz5snznw2i4GVr7MrbsEDLnpW9WpR9dj7MCtKJ/umntNY8JprXrvfJrv+eGP8RheCtxzedVoB3qZ18/ATSEmIEw7yhA7IvUFFLK6R3nq/trfUoenUV/G5vSVJgzRqG7dopTsXPwPfKARrYA8e/k3s2EofAcWyFsu3NZxalOPraf/opfuLUdyDwjo5Whul88W+rT55HmmZebm33wzLHKOChlib1gTPUEPZNsJP0wcQyDjnEK2jEVlcs9LrMzuqqk0o5nmyskOP6THOHZNKM/lCCCZ8HSzGJlaVkQlkvL4D5bczeMbSgAqdBPo+UVK1DuxDg3G6QKt0COm7DN9hkPqjfle8cb4t8/z/6sJPdpGdZatDxYgED0SrTuCmlJRnMmpr71oO02t8rRYb0PLeS0xvrUFbyP/5WsSUKwkIQAOxZVxuTPeSeQu+PYs1S13IeMqtkVIdE5sAx9DSiTrJc1ejhKU4q88DwNpQdT2afErDeVe9tXgz+dCkgwnKMCvhcG4h+c4dtgSVOlBhOH56sWBUUKIuZIxugVSBM1nAo8tl8uQFx4a/ZbkXTfgQiTDvbyS4hGKiBlV0dF60URzgW6GFVyz73dP22tU1jDWoky8Vqdz3h9uNcH1nqAh7sdHZGeRX7dJ2evPJw+PHH1UkeACECA/ZP9tfSkmaAPLu4sQQ6R30F+om87q2wZa96AdAfgp+8tMQzx7b1NC/kwChnxIcALPsuZnmmNpfn8FLEuLI8/NoQ5KtXxTOeQKP29E8MMGDOI2eYRpkFPveoQ2jTzPxywdWl6XeWHX6KRA14pr1w6pAvQHRcURWlD96E7Mb2ZUy69YelAbhbjCN8wkK0w+PBHkocOKPUDQgoTls03s7OC7rSzqUGsel1SLbwVyJtcrr34nmigci4ct+ONmYZRCLT2lg7yZ3zouglzfDf1GwA0wD6ZP9ak0X6GmGJb3kGk3Ek7EExbTbm6t9Vn9gsPO2hiMXQlTRFejCkXPuvSb93si0M4c9MoZfbW7UhT+nyXcGpTizj7dK6Orh5RXD/b4+VUekJ5VeTL8kuC/JMEuSlxPlcUomjsP6Xs2hpRf6XrsL/tPRpOAVJwtqgmBHmR59mVe1gT3Tbbsm0xMkKX0SMJfAUb6H5PEQKdT2VgeSmPt4o79mKQluPpC4DFCZFCOwHzqsXewrpmdL+3zCeIeL0lxuvqK1I3pYFYXCsuo4VEdHyQZS6TAX+lOWSWSpvrNIRmzRq/k8fea2jZPQbOyT2Gxczpmk8TMmC6RMD+SjMM6AuZvnlSwRmfQUSjh/ktMtE8JPFY85SfatWdQq5QxioXvcLMh/Lx9GP5Z+UoMhkrUb0ugeLyOgYMB2CaiUCybUeKFVad/6zEDQqO2UMCiyHQX23it8pGAG2OZnoZSVABg0/DpZ06QNSqWPeiBxGICC6VLKu66I9Skzwb4t+Kwkff4NxT1j5Qj5UqCno5U/yl1WBhY9Pjf2c2renx/5uMzEBin9Kdos0IUjbG/UeAxUTdCrPc+5bOhBpyxVCaiQnBdF+k+YkjeBIEkPtTpyjQdh2BWXdebp995iWLOYdnUR8ylACgfNu77D+4RCpYyPbXbYLSggKJsLRk8KtPXNQJWXNGm/qszrYMpZPj/jkEAyL9I1AVkM+VkD1YPwzLxhVeAZ5imn1ymxWJRQVmmHMyE3a918vj0KTovALWXzNgMRru/pYdl4tk+HuoWq0Idq3ayZvu9ZTBi89e9ijtt0vi75D6Y2rZ3/qYm6b58e5gE7Uc78HpUJ5ToJLSnppKhJ6wmdRDiei8Tu2poSTNCy2jGFGB5UIe6mrYmgy6MAXxqisqz51RCKvNheeKHfPFFb1DUdL+2clrI1TdA2gxLq0pBTCMGy+sL3vBEJUwWcTvsWGgQoHII7fDrevB2/xm4YDvIfluJDNFlcN+F6ewv9gfZIsXmDAS6nfvKVl6VGeuo1Nc/nscJLrO3Hg1pu1lMt/j1zGMFk/4yfeKE1s4+OWT7oznAx+DzUGTSf5L8WnvKrOps8pglhIL5Gx+QsD4KV6q3pW8BCMPP/s/xEoSWE+b4PZt43OdATj0od+j4bjdpvhLcMGW47i/wdhB04vJbXU1F9PgMC48aCb9OD6ir9l1+ptDBGj/xcUDPo5NlNQXRU3jU7PFQ1yESg+MNSctVzjvsdVNezJJGKvNEPfsCNAZzMgIeMgDEmTOhKGdIhmo9Xf4KJEQvTK7aVkqC9OEr0mJa3IH96hZVncLpX+hpaGjiBa5l7Yqfy2QmLdMgiAO7NtiIzQ47mbGF3sufod7AoONkHx0NTW2xuoQ6Sgm/sySIKdPSoEUcJvvYl3wFG1S46ArdSXE5AGt8Dem20vLbf1weVVqpEZUacf4q8fgeGDbHB19F4lXsZZVxUvos5evB5mLIGGx3rQouuYZCfpgAkSOJUqYEb3ikn9yEXSaPAWN1TnfUQhLapg9EPRYzhbcpmkPwLw
Variant 0
DifficultyLevel
780
Question
Mickey cuts a quarter circle out of a full circle, as shown below.
If the circle's radius is 7 cm, what is the perimeter of the shape, to the nearest centimetre?
Worked Solution
|
|
Perimeter |
= arc + 2 × radii |
|
= (43×2×π × r )+2r |
|
= (43×2×π × 7)+2×7 |
|
= 46.986... |
|
= 47 cm (nearest cm) |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Mickey cuts a quarter circle out of a full circle, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-H4-CA32.svg 200 indent vpad
If the circle's radius is 7 cm, what is the perimeter of the shape, to the nearest centimetre? |
workedSolution |
|||
|-|-|
|Perimeter|= arc + 2 × radii|
||= $\bigg( \dfrac{3}{4} \times 2 \times \large \pi$ $\times\ \large r$ $\bigg) + 2\large r$|
||= $\bigg(\dfrac{3}{4} \times 2 \times \large \pi$ $\times\ 7 \bigg) + 2 \times 7$|
||= 46.986...|
||= {{{correctAnswer0}}} {{{suffix0}}} (nearest cm)|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 47 | |
U2FsdGVkX19aP3DeKpqQhZSbhcZTvDKHA3zRxcSFlx/QpIMQ5xhA/kL656lzEBfM4u2iWY2eL1/yAsyxEYvsDvIs/jUmlgzo00AW59ZFoQ/77wyfJ353FqyFgQG1JSsjzu79Hoc3frgaRWINooGQHvAqXMcvUo+VXc5ZXijZqfdOzmZerAhvhnfSRAnvHdAPEBZz3xvXnPF/zvGILgyuHX3eYXvQpkksZ7Ia9KypT5PED8n/Tli1vW+s0jix/g6hA2dAz+LavfPfXhLZeVb7a8w28HWK6Emue/fwQhXl4IZpsFZoPW4px/xzp9n8hQ0Hzk8E1bnAw0JX6INqZQpdSeIQecjqfHca2kmXBs1y5Rvs9ppKTqfEehNQpGuY45lurIyTQsXiIulcpV5uElDz9r2atWoOS2ZyAgoxWHrBaAY/4ESqoJvm9GeUHox32Q+T/BA1vR1cJq6Ev/6uIt6DMk/38JG0G1zJ6lp6uXYsyJaZPc9Xwi/MNmzzUlVGgqWzMNAaVbMXPs3Wfucjy1Gc9O291lYt0oAKJ/MfzGsplWndtet6VJp2Aq6yZRsD3Dte0LuZwEEctd2WEshsSXg214B11TabsgZYUIhQmrCUnU2MRzwbeD1T6+VXUoI3zqd/SGRgPte7fFwTcL3kKiAsTeDb2ptmzpFNKqVAcPiuKmP2XeTHGDhqM2nb6dn28MFvuVdjDU2UVjBVWZu7ZWeyUj8pILq4rvd9EQHgXU9xbrGWh0XIrF44WuE61tv4upzc/tkpRKqfyFNEjiS6Mvmk3EETLlV2fVeuwfJAwQkpw3wuPAwlDk5uXyPGgs21UkBMpWxayp0H+NRyw7aRY2sC5UCW/wPlCt7v9aUfeHVgZ7PF2eiRUJKTSBnmY+28le7dACIm2D/pxsuH1+09ovCVfyIaG43hytSvwybnvK152v2OvsuKw6bbVOtqoe4qxkFgUf0McYNWjUu/xNZPo+Ow9757o2jzfoqqT7mgCFo+lIT207BkwthGTDaAZgEhdKqpjXz9eYUWElcY7MwURKC7Vp3A3059FxgnO4G+KXLrEeEOUuu079GLq2ZyCQHYG+Jl7lgNU4Ay/6BZkxNdHbVxaE3VVUhCHT/XEZmPHBrCE7kIX6u6NyRjD8Q/tFbq3glzECu9mGY9wlEakmVuuRV7oPEAw+rDkKa8lnkr3kVKHpJxHoeJlFF9mQHJIcFegGkKtUv0D8hdCdj6HcmUxbvzu3rMvvspY+Ux7LhW/YkHoJq24PW1EhNSut/2hcJty5lePepBnNoKZWwoHiVNcg7kv+xYJir5zRpZ1C44YcP5/uLt6QZ45lqd4sT+dGzFOtmsvItpjT5vbLS2b7m/p/Z32YqMdbY67bxRAGYCVOkUu5YgZZ2KgWSNGR3sGEdAnFvBwNKb9KziN7Vs/NdIoytHaNjEFBB7KkR1uqdGT/FIlXhvRehv+u0G7Cog2OQJWxWaNb8dd/JS2PT3OvB4x6g/KzeJv/HGbdxE4RFrufIgToG75S1KMSbdkj/qlqqStYpRd3vQRLTLeF5vLslMH5tF/+hK2vKQQvphPH1WUG3yXkNURmJYxxkZ8051JJDm4/neZTEI0E03wY6y49bZWKbbzUtaXU7b07PhQ+owoz1GLypwdc6T61WTYxmBx4sM8gYd322ECBhjDHyx/2u9m9tpL1iKN3+Sg757MyS2ohDCjlEBPYYUoQ2Q0hOQdZlH8SJIgUALyXY3S3LQfxAr67IEupM2mnd0/7AHeksCionrQSDEWtGAhZ/6BVE8ABhKlPpcY+Zsopk+9F08jzxJgHjdNXIvg7QSuiJIMg5CE3Pa45F2R+zwrqy6vHVOmYXxw5wh3Mvd7wpnoW/Lx/9l8HiyXa0k0o9JCqdVGsOsNQnKrxNUB5jdoukKWro5jb0zfF+mQpgYMpISZCeuMSdenam+Zw1f4EKJgL1ldMSE3kn3a+XVp0uLGVENnmXWPhTVaJHnjs1oyw2eDDmFW/zwx/sgnoJUb9SggIsO5yvhgkQTz3eIhuz6HwBdv4SVd8cG3Aqjo4X9qhhMuVN77ErCTsDh5VMpnTCeb/zRnf9rahlYU/OLPi4eCFhZ9DtGrJaKOHOHrK9YX4GmV/RPQibndZcVjn7Pv7hIMB2rPWOYWA/p6u2DpS4rw51B5Nb0x5B2MFgEXgrEHAI/Xmz+XgLIRxWOFUVRsnlci63XSkUKzwT2RdY12sAJR3lozu1kfNiQYVaTsdLf+r+7SupiiQ5hTI33sDlpjr2D4/+eKo2M1K4BWz0+Ss5JhHzip6A2CcL96FQ38wIWvbo20h0BrZ3pqu8XXG6ajZ8usOmOm0hOu9zKWyJ3ntsFW4GWDM33WnJ44F0yfy1L/GSSDfocFo7a6Haz6VwpcnQycgXOQoO1tTNSv23g+cSXM8IKjh22hr35hSEXyocpglr1rrtNrYOZLA5cRcxzWDEMHcpClOZYIrHtjETM+rTuh9LWw4XKwo6llo+GVxfam5E1RidBAkpnbf3/1aAS/sweG2yYQMHAddGMEa7W/kZF+Yh5cO1XR2qe8Un3UWHhve6I7fj2epPti1F+uulyTvZalyCosooRhf6HPaatfv0sv3HSqjPQYW0qSi5YQkgumAiSmGzbRRSjfxdZlWz6pn3D4woQIP29ux21UtrU7HWZ3ZzH6UTvrgPI5aAzAK289L/HRrk/sZKuPQrFwHGsvDleScdBLyWFjZTSGG9txW3NSzJiZQOEevJmVBmEoGwIHz43ZJTVchxyDZyTEbjnBM7LYAbta/gXCP/WE1E5sAUB/m386bhf28068usoYsyCvuYIbPQq/zUtSzo3ZeqhOwFPnJLefjaYIslzjQOlsNCnvF/dzg6t4r6Ej7rQTC5Bc7+gAi7fvalThs6sjEosIPlHEodI75jU9hr6hxTc2AxeRQ/taHj3Znkkz04nIPUXZjK44sfpRe5qj7hGGLMeUIxO/6Q7/WcDdvn/ULWvAK079E1VAKCuAyTrf5Uw+d0xQkpf+Wh7tRSQxne37n3lvrWS1v+FD/Z9MFRu1MV08IJoqZu7WijTY22ktyPZ6Ac5/88w+lECYjVoV0Uc8aWR9hI4apGWl3V94e0JAc8l/6eU1AlIWIAiGp/ewIpAW+QCbHiFGItE/iwJdTDH4IBrB/zXCtIg3J+13eY4Gi20vOqiBTsyujMAdZYk2KI2ugtJ0T4tcBgEoLcug4h0mp9RU1/PuisZqYwU/WhWyojkMcgkj2f9nKt7GIoKjGMK/NOt5vnlPfYa1XVqzyistR/nCh7Mt0/CHOKYvXr/P+EPuDHb0vM4ZIfsTVzDqoR5tFG3IrQa0ZeHT0gx6mtKaOVAv+y9hYfD1AEQ+2OlYylWVd+N0V/uExgq/p5xLEVllDDKNjk81HoAqt1Un2fQE/+fe7BlkSztGln/O+vDCWpdvEKK0yuHHDsccoO+YxonvI6YxUOCv1H+TJOv5EtMoKGP36Jc/YLPgQAhDIvJnp4iIWVgLpyRX5PllEvWGNPsrz2EvVBQR6DWHT8aSjxBCPC4ZvhgDrFSJYg/cN4FBn/A5ppleS7sOAbs+yDNBFnfOH0hov+F5joVQSpkZDDenrdWgdB/voSYYUmijOxLFjvoYCUknYuFNhV1RgqhZtHC0/vIxKaZq/uVmopTUWxWkNM2ZCLrB8TtAkl4l+s4WozWdUovdrO0qVEdEN0TUHOvT1M6kD0D2vURhNHoetWMMf8Her1NQPIN6lRYiFL/LNJLv/ToH/VXAH2r8Hq6Qpdk8EsUMNQgTq1ssMgzhSBk1livG6uskhrPJNCj91rTpePoJn8xbslV/+wC3t2mSpZcQyF3Ox+aOovNLmym8H3X1EiqBh3UuU1ySrUtqFTyCoW7TCJx2nX+w9lU9XhdnVtJC1kHttcdwmG3gsZC8OurwyryT0SoicZOyKx5zMwSGkBLfxrncs0YSrUvNkrHKuddmd1Ja4WW4KBHxMRlbV0tZiUz8uVu91jmYTLiK9Tn3MCG3WZsrhKAiDw9q48o3oAasBhZuMeRu1o2BJKL70hZp3IeEshdWkKMmPoO5MREbQ6xOG7Te+56zNIge7qFlKGVsAGbqh08Jf2l6QYOKrAtH3IqBbjQUcar8GwAt70kGqtXo3fXWGpAD6YEBKzOhxodE9set28EPM/wMZS3G9Qe+9GsXztbUUZgnzJsy4yOeVKdbu8sqMUZeFvu63fwUxR1wpLiLCn2olIye7mY+rhW5Dbfcn+DjR3OMK9UwNDvAAZzPHeyILlU6cWYV5KrzP9MVl/mL2sDxqc5PUdH5a3gZb3260B0hOuQ1H4rC42XHrT5I5oYzRsfZG6gxJjcfEJqbkqrPq2QcaJUjve+BLQBSRx3cOKuEF6R8vBNNMPnuEVJ3qaf6y0mZGJ8FP9RdJiik9SlH4TRJTwCEvI3esiphKj2mUnp+OafkXfotDNbwNTfnHQ22h/9xQljkFjC/ZefYt0lfgzXGy90fvarvUvCLn4mPk8QuykmvVfXrUxkV63gG9+U/gzVT+m/RUXHUIXQbjtgQ1QzuAOJOaoqKgQahxQnrsooOg+5h/Kfa9iGEfNZieJJOt3uFJiLXFv3T4vYMfw3F5CtssBjGSNj2iJjuidMw4plnK2l1FSsnkyGEGUO+PZmtL37OyZ36/0i0Wk3OkhEOxbIps8WeGoZsWFq2MdsYqVzMeRtEg4bGtLCQ/4et3uixecmCzfHP5f+4eFts5S3jTWL1JTYfmD35WzFTr3KJ4PH33j0+oErGwa5eZcn0dLhaI/rwSiJWnwhFwJHxL8QmyP3fHjJ0CAeuSrgFpUfqiICK4atHf/NasVBIeYbktTsTwt4JQoeDpiF2jFcq7G2bleHD3Bky74W30+xd74wlsVczh5EXi1ygC1LnHy72QO9YVOPrZzktdFTVhj0v7LqDiV6t1enLbTmku1TDBnNap2RSdnwxZHeHI0QeufCf5zpNZV48V16SpKMt05TyxqkILitN+N2SclUMq9SFIzM3s6AI+jMVZ7qkV3bHT6APpI6qbJhBsHIOLum0F4OsLilzQU6uZpB6AigJWXq3xZQOIGQM/ukImFfHW27RH0dImoEFUvHBfKUCYg2hX7DHMkaaNYVOUkU6WOZ32CjhbHYboFWEG0XEy/AyWtIaSp+DHWG42MsJcDrron1IjXfsO2o8xWhbQ2H85XgroebCZfTDpK/hWdFVWC2Qr1HGzxSIAKWgODetaXCNFFAOvQpkTectFXsHa3vWulkQbIkT/Q0whkkj17TqD478paJLkXTyMSdir6TO3ticCDMZ42WowWjgf2uFC8dB955p50Lggy+0lrFhPmpj1g+te6J2j5NjWzyFOJlrH7N4jNSlyMqPlm8YLQhq5QJd3S2+O2HtH7CNWnJYaWUy09VVtjH/pcDDE95SzC9onOAbVI3imyqKrBOxh0jsEe9tLZ0ktiQt0kN8slBZINCKIMZSSa5l/0TAucSchkoSBd06hlc1mHH8y6QrMlIrp2ohnVaLs58c6miyRwMdhkxMrR7tm/1uM/fs5NEgpNo3kIcRSYmUijT4rLG2u9rejdZ1WPNmsS2iroaHQrkwJkoU7X3bfzs6e4GbATcXHU5o1IWxpTYJFasTbTILFnxwF9pOlUsIe83iRpNerIRR9Fq5Af9lV1MfuhhK/yF9pSALVgOvkxjYgs+oLAwQt2ivhHbAft6wbAs4tfGKGWD43mqAt7SvwMoyVvpg/NGamfmQIbD7XsUjIBKC5kxe02Cav5HSlIyPzuK7u2IZCQvNZHV0ufirlQG3NXXH+btAyLYlpLfnbkQt05R2RliDUmzuoW1p0zlpgR1z3X+hN5opfg8bZiWTmud/7wGjSnxlF3NWov0RFR1jnElQ0PeWpV10nLMQG8aedCOGpAI1V73H4m8KNap+SjvbkJlqMRDWehUlGRZJLAKW+RiXxJTbsWRQQzVEANp+H/vfkQxBHdYk4rn5duGJe5otquzVcrDi80kPVTMrZm/w9S7Y8RXcplRk1mRPzll9U6PQUb8i9Sja7evID8AMHJOGEp7UpPhEHlscupgnRzjZTzWwaKUwuFQ5OJTK1OZhxRtBnIWeYbtjTLEGTCQ21usCDqLtzLRheFhfX4shIreWr7Y32dd8MyeujU0EB+WzxBTgJDozejCNc7EHPuUBWV5jMb8gd6wWrESHlQizW3vCt2TDUPvZp1XMElEywSZCafX3LMZeCWLD2AUIgpm9eF0POAuqHPe8/mdOu0rIDYxBFRfW3zVKhNIqWL4jyXQx/JkqT65lWBwzlNIo7AVAwdL2PmRE64PioQrUuUIY5Jx9sVjpcwB9knSpVb7plqXLxeRodJ9K1jfREbdg18RP2xO7BY6P0PVht0swcmRcHfQXd7gJzriJMQscR6jVz3a5Fr7eljh8znbQq6f6bvSMSAzK33M/SSgLxTnPTx/MMuMrROTeq31PyiM4I3B7d0c3Oaad3m4TgnvP4NPnpUxOilofV/yRlk3SbwPVDxKsp73Cp/PNZ1bZn+7I7VO0wgWf4/dH7uDn5gg02WT14zXpH1+becVxOnGaOyK0aGhfn9iZvkzGFI3mk9ps0rCHVf92e7dKudMj1S0/ED3Lt7Rj8TGx9jpR7CnDvVRqkh1jmADHua1ogNuEJdz+Q2Pj2Rwp7DRaFdzh6u1JCBr1X7m9rRLGhJ8wDWx/zbHvSzHGavJAaJnxfEbBno5tymL0nj+yuDLjHx3YGcev7qrGipdgbPJc6dxgj4vFHl4UhcAGIqmy0RJUR1x4IcOKAxxuKTaQH82I4bXzqOo7OM0wmeM8+MY+O+RQ0J8PWWDQzmQo57O6e5EG2NakDcUXPVDV4I+kz42CVPUzwjEf+gror5F6Idkj11Nx34BQfcLB6xuAyakUvD0X+ob0Sbu98QbOJFA9CePZzNuIkjpzMjXI4e1WvMqOvNaB2GHzNmn6F4FONj7TSU1JiJK8vDKkuEDlzQM4ljLZMzTeF211Waz7oz1etwDhzmlXF+GsBf1VX2gSt6F1akn/Hlu3yAl22h91rBGhGSh1+sttzgvTPkqUdaN1ZREGcLmjPsAHKy2H+SSdmB2JHDNSrWMRPhX/qGNHe1ucxjSzJeCTIRTq1q10nni69MRuQGtepS/F3sxQraZdlugSQBeANZ0422zep+Qu2flt4a7+cVsZsfswxdgldSj3EAuphGM2ZlFI7l9++vvYu3bcRefUUekSpflGh+I4oOzKX5nwkFs3MvXtGAy5ndeRa3fbzOEqlGkHRO+sv8tCaSzR9395w7huhbwry1Pl9fIMrK4NzTvWWqWVxwnSGRQXe5VgJphuYnDzE+lEbtstg7Rne6DSlRwnZnwxqI5EoxkfWR2UjRoep6+JCz2htx4TBOeuiMNUDGhiUFASper7OWg01sOYFQWAxuyiuNxriaFybytlPi2SI3yrXZIl5MW1bMMtDKbRouVF9gQ6nay2IiTjBNYOkOG2HZ0h1jhz7YgL0Yto/gI157ezAJWymrBhsYwbbEGlRRqXX2P7BE8jNQRA/WVM0OAJ84ZyA6XcTIaW5664ZaIJLELQ8MBvsX6/DIfj2MDB0cI279Ux5XmpKZIhXKbPLr5Fce164COB3XTJwnDi1nHEJyB8TQZ6V+dBiAPco1vGsIjfboIwYPPfrqS7/GH45dxA7JtNM6Qey8s4k7nsI7TwutUwVgR0IJVMeIjA1rL/4c/Ijz6CNC1tJoYcUzEWns2Wb64dR6XUA3Q4IiluB+mJpUo6xh7xeb9roqFKEjjZbKo5zFl4rSpFkpVnPr2KSA+ijeCnxgdCTBoMvZ7beBiqIerM+7KNec6tKlhBc0bfDOvG7ZnxZ/l3c/2hLguOSsTXY6MjSQk0U4ATdhN5RLotUErr59pSRhEeaWE0JA0ou+NZguOlgv1QcWSixUgDs2MGHyl9n9G3CJ2nhOTXxrOloYAZVZx/nGFcBmFawpf6M5nJb55s4UFbmHOJcXRzRGWgVetkTdNESUUFnHvQ+8r9kxpB4/+C2DN9LPm9OWwOthScVTJZ1BHPHwQeQGL7/5Fq9VWbm9tNbtQRKQrCnn+j6Kikb+YgRWeqDSilfmWFDwBwduGfSi0zrcQbhF6XjF5KHw05vHHugLUKOEacWrxy8YbvcVSzJRlGdZBTX2i52Nz34owl5pnKsjHdqT1LR2bWSLyG2sXER7eSz49GwzNvzeACsf1kmwgFMQtPZDFR8El72/AlzB1L/Tlq0KI6kraXNs2fDY3/zbrXlThKFsTZuy4Y04X2Ieh9ZtQ/e/fIX5pgLobH5E22+0jgSlaakynd/cD2pkxoMz9LuufsbhW7ZH24mLl5E0wIKztOOyuP1TiZYhLRRiwltViLyoSA3GfliEB65z/So2B2sDybowJzWgz3zXLi0sO15ngpSWQtJUbNssmDKapPnlxfCy94b4JF03j2ls0mSr2VqKfHJqxGkcuI8TQAc0jwGUHSkMjKABZvQ0l09gIZ4oW3X6/VZDkXkjMsAIChJl13XpaznJI7I1aal14GpCbYH6KS5wwdPW5vqqulq/NqWXpsWKX8LW3brf2JcHOqfO9ivTcudIXQoCXrFFyEy45zy00D5LzMTMcNw+YYTjT13uQpzkcULI2rM7TvApCNWQy57amhpFFGpRS4WiripD1a28+3pPxsWpzO1RuMJPq4Q+pG5AM9Podi4AAm57g5fOsqVssE/GGeZLGk75p9jJZXbxBA4Qf4wU10LorLqg8O+YxFZ80ky8Y48zst9D9zVDalpVsCq4G9hJNvGsvBtmW/dBuz4Da2Ej4V0CqLtU034zdeeWtAPjt34cS81AsUcpb3fTPBoH6FEKyWIJu1lbMVRKjJ57F/TK0Ss8EWH3nT0L2FhIjtv8Bgu635uFg7XBfbZgl/OQeh+ejErelgf39iGq8NusPfMbulbBVjPI/oT4mi7OONA/EhlLP+3IrSA1HsitMEHKAVTa31m7lVO03SZB8yyS7Bae57d5UDZcjJogp3eWvcCWHqvNCCOnnO0GCaGFkRwwO0xEwkBL0akc71E3mJC741qaspGHpZqQ+zMJGatpoKl0/hUE0BcGmfT7kzwjnRAYb4nrEUNYOt3RzRgqOwJcKZNQ4xEWSWkZhbVGk1zQj0prA7FTsmS6kNy0NmjE7mTb/lHC3/JXh3BpiIpBkQHLkXCLVj4JRgw7HPOH4HyAgKjdLdU77uqtFs2zQk2HHIKdWC2t9gP3j7U9YTxwA6KdZu3NW7Chi3ACtNxfOFkb4VGdoOn7drxDk2yS+VOPMmFB6dVJi08kBm0U4j0e14CxKj9A+M2TcR3KP5TW7VOvayG8BrsxpuFr7AmrCXbaiTkY1HACgAs0LfJmxVHqGTNchyyu0HWHyGCVMJEHKH+/8QD3v7z+WIQC73nKXYmuVOAIaY9ui3k7dR6gw/UIFcQjO74B343XRMxzjQd02cYTrYbI7qhl3HUUPAO//lXz16k7xoNlexPh18PncMKuIq7VHpYrQ8DXWTgPz5t4w7z/SgQpPSNRxxXnnWtMKaZ6xbV9QHb1flCVBzFWWK9Ne4uxt1dGsPTXZh1zBTttwr4wOvY0CQnAAiLztf3lCbiwtlHIZUzNtqhcrEnvb5hEdmbXVOqzQaEpAghRmOsCc28OIVTWHWv9RRGTTgheRwTDwkLNVcOhsDxDubbgIP3eYlV1Cw1ujHnOgnLpkyROp3Poyans5nAUUs1nsSFXGx1WocO6vgZIpJqnXWYV3nxA6xWFa2sDUp/XyrSkmTGI74uknMRhT0Shhf6yBWV3fckWFHN/b+kGtlONA/+uhCVYHLLc5uCFgOYCLL3vNZ0WeoqaYsvKnID+Xwo/P/7+YetacnApoHlejlML3srtqq1n6Fo220KyNLbS60NtnvCJIneqRLOJyeCkMvE5PJrd+/uKojhL1Ac71gThmfKeYdZu/KxwDQHZ9WVnEsh8FpIaBp7XbChEulJTSGgizIissVaRKDhjYaHlYIhlRkHDCXoD3quJcfQVlIctKla/pUzDe5SgGDUt9xJRrUyTkRhnFRNnv8mb3SPCiEyXoKBA3p6z7nuNgHSKrUjubfanYG33OOZVONoTVfsESqouFGrdHjXiOWnpcxp+ab8vZ/e9Ia0MZKag+4Id3nT8sY6I0prRJxaxuBOtj3zcYu/DJt0d2yf+jy8AZbG+n4EoaaA9rJHVdTNZu4duAhnepq+t+p+geuaFkRn5QKc6YmiGx2lLa/kkL1ly4iLOdYdBOLq0qZN25E88K46QW2DW3kF/9GR31NCLr3fDv4sGH56tvTM/a0CtHin36a+9wEbvbeQ7uvena5bTrlbrcKP0JA4sey9Q2/3MMF9Od50SmRNfturYQAKZEbg6Ms30qoJilcWL97h+ejph3E6ObqzYfMTXLC+2Ubuzjdx3wKpdf51a8fVYbb9JOEVfUchKi8c1EjvB6TQ5OIH7QVdlOltryt/slrWIZJKnYnQiY0dfwXOFkxpfVEcrAZz/b4DwkslHLxqhdtzsBkZ7rg7jUYZNYwxgtj5KGvU0R9FexkUb4hIRugUk/AzR0g+oewJCXKxB5+guAP9HW6M9z37wFtoDvZfuYfF21YGJjPdM2VvYxeZOydevSP/yCfQi00rg791cNjzYgfk3iOI2ti+RxyFbYXkVtg9m4vmo9PPi7smmn5E/HZZXaaIdGbRVTdDiWrvPxNc5x9dicu7dECmmAEdCPN7P3ItwJ+jJc2qA1fJMcjcppWG/SF7vKJ/Ia6OsaQQqgevlhIK8+a7Zm4DWB6nwysZpvFYCbPD/7UoP0U+iWW6liBOyyCBrD0Gehf5G6qsVTIzLq0Ua94Xg9eFUDO51gulZ8rFFNpklKRycgc7K1Vdr9sRc9XhZ19WbaIBGPlzNkiwG92YDku/pILJa+s38immuKerr6waOjQgLQN2ZRKfng2DgYca9F2RxcF9AOfxqtIQK+/eEQ2GxXoC88sovZ4oqr9Ki/bQLRe3r+U+1VhnzzQnuXf8lASxySA+Fn/dNStl8IMSThk1Y1Mv3OcQJWM06BCyd6FHk6wtPWj53tijmhYhPbhfVaRKyagKv1ha+phxFMyL4fhjbUM/rs7CXQCl/4a7z6hE6G7denOPeMtle6Y6BDSe1buDt0Kj6P3apnWuZ/d4X2XuxcSrH97tfLleN+9Klh61jx0+OfzUSH+B9DBMRsWv5UmfrfIjJ8aYnKnhOyfMSpDjrLjlGlMqQeezsDAmuAXPkamTf8Frd25odL74fXpLuG2I6oDLdy/Skih4Amf5/37FVi6zpSB2eT0QT79kLq8pawjCvgWKXfLKR7lAryTD3uzoT6CIgqVBAi44bVZixy/Pi04ryNnhgEcw/Uwy7T/pCkMvt1jPaDvn+pZBwkWAkaIVUsA7/+ypPz/9y7NpzFh6PmRGORR4sBLxLL4zYPTi7hivUOYr0T/2FeTT2wB+Za300mQf1fV5ZR3WImtAukfYR//qxpJGNrlfaJkW2h0UpEh5ZvGpcVsnql5sgCSKdmCqq5Qr0lReHou0mamHV9OtPxp0440VEPGhtAYkQMPFydm6TTjwCFfV+E6RJU8qaCcRAGHlAIcOLILVeMGbX1NjWQO2j4TqegGmhWRukaMCJ20fDti0ybXKXUIU7Ae7LHC6bA1dBi2iFnVwpkWjOxdppHqceZHWfV7x1Vmnuoaw0upqrqf8GbggeVbxloHRdFTxaAY72DSSStYveWMRhD364OABFtFNReyngVtDigDxPRUGK5gjGzamaVlntQgOe3Uly+hHVhhwidSubi7hBsTqGYZ0v8jn3RrYgbqjcQXfS+
Variant 1
DifficultyLevel
782
Question
Vinnie cuts away two-thirds of a circle, leaving the shape shown below.
If the circles' radius is 10 cm, what is the perimeter of the remaining shape, to the nearest centimetre?
Worked Solution
|
|
Perimeter |
= arc + 2 × radii |
|
= (31×2×π × r )+2r |
|
= (31×2×π × 10)+2×10 |
|
= 40.9439... |
|
= 41 cm (nearest cm) |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Vinnie cuts away two-thirds of a circle, leaving the shape shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_J-NAPX-H4-CA32-SA_1.svg 200 indent vpad
If the circles' radius is 10 cm, what is the perimeter of the remaining shape, to the nearest centimetre? |
workedSolution |
|||
|-|-|
|Perimeter|= arc + 2 × radii|
||= $\bigg( \dfrac{1}{3} \times 2 \times \large \pi$ $\times\ \large r$ $\bigg) + 2\large r$|
||= $\bigg(\dfrac{1}{3} \times 2 \times \large \pi$ $\times\ 10 \bigg) + 2 \times 10$|
||= 40.9439...|
||= {{{correctAnswer0}}} {{{suffix0}}} (nearest cm)|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 41 | |
U2FsdGVkX1/dfack7FXkHmO1eW2yUIbKGbVfW8HpbzgdsU82nV/MsGxQWOt1ahvKR0LRJlUK1a9DuIzWTHehm9dVLCGsOHU0rMv3MDIRvmzmyDoQmhnD9zCaZoTQ+yNDAn1gLpFfmQztXneIcBUWtOCRejkJLhqSUDgI0iBnucB/qEoEsirCxELhS1J+vdZUoLQgFVfHc1+GP+NlkEvteDJWVhRJd4OyObkLM0rLOwDIIORVRxVaLrlA+KSHRNhpi0U9ngQoUF5+OOjQhNASD+zA6hVG+Iwttd/wa8neBj2lx0GpV9xq7cfa2jCoa/HQew5mA90bEnU7mNonzZ8FtzCAdJZY57wus9exeRDd/vFKB+QELQJt2QBWlP7ywrHeSTeEbbVnDxuFeq0fmBiAgfadDCtFg5LmZOyycLAeCMNC7kUQCyE646WBxPUuti0Bdt5KDYM9U+StirM80u8HerBE+TLvI3P4rOY7yFQefzmeBnvd8izTUeR6E7auKUePJKVAjoEZfVoRrELrI31aRgXtWHjg7lmTYR5O11omlI/vSa9WYfNaiRB+Ip8M6ctkcMLg4q88kFB3Vwg4U5HXEoBZbzoeKnRIkGzz0l2+ViJsXBdZ+tdWVUbvYRVYuHQBCtRtq6YrmWlW/DFBdsRsBkqOdYMZarjjxiGxS8FoGOgDvJe5dct4ZvKK2jitcOR6y8kKVnGvDKZqPna73aAQHKDTKlcg+JeF3Yp2u0rYb04DbdzpIQh+BXb787bL/uc/tn607+iK6jDqk9pBgZh3el7BU5TARQAcUkhVqqlTjSqgV2j95wzLwZI/IvWlRLrUGXipRXlJ4FTeT6UMq7yeEKVQFxravxyMBupdc6qfjoJtxdBA9RAebfg+1tjf5ZTOQDysB12IiezUDFWfOR4ZGzLTpUsFGdDUUYbYKjd6d7r8P6XsBEa1ry6lDhpWcFwDXhYd02ftmQnxjhHi5ejHbj9yNk9jaZgUl9PdEMDPiPDaJ1bUv6bXFE9Y4jo1Ub6Qs8wZMS+CCce1Pzt3mfI2sSNcCX0AFE9RVfFkz9fqc0B4b9FKcV08BM1mspcsvYbaPkwbKAfa9kVBuDNvGUE7N1Gti8WRS9Ez8t1/hwg8K3/DcJIirCY3auk2SD3BjUqKClFuw1OwjxabP3rlvaKQ7RJb5VjqoNAHcnvzuUCJX4pBxJx3Guz0Jl0S4lkSOGuCaij1505ZItslDQZdOMtXlME8BIxELJ5qlEhcNF1ra4w4bAK/KXlre0Q9sdB2V6I6Eovw5E1p4XPMGVGlJy55JnMw7FzosurcF6vGW18MkrD1eP39b2i4ZwaM3tiR1waLejtr3RRkujxSLItlQDSmD51hQXr4oYEI4RfX1MfNdyxquexTaB3QNjYjJWX3a1OdaOFtqEmMRutIqcaeilwusFuGzEYMaEWkBT6l1RqTD6grxBzih3xm0arDSO6YLzcw/AIpkaOhWrXKl/xDTGPWHcYqduni6g9YpT+bcGLawzdhelzRZ3WlmU6yERI2VOAAeWIvo7caOnoiZeucmdJ+aks6tO7fq2tyIM0ZlPqwL4kpKVTs603hIsd9RcFr3qFkRv7otIEsE/+g9BzxTHTL73Nu/E4K2qp8V+v+6G2oSBO8eEfuBCuHYp3oZOscb/6NLHm1vbSgEyRPjBPuQaj13zBHU0ZV+4Z8C7dfFamGOQmAsbgMit2B8qt+VS4Tktp0qdpFt5BiMtITqJSF6ad6vZ9Op+lV+1kEsgFm7Oxrb8RyNGOCvnSiXry50LRRU/SNw2MLPaxPSe00XemP7HxyhpNJS/hp9PA3gRSOs9OvhY6HAIwZUvWr8s4LF1OYyX3qFSsjR5pL9nDNQ55MEwB2cnuaqo7gbBL8i7gstDbOQRY/aTDEckVq0KRGacBPcalzq5tWEaAePs41Pi2i9RBnK3ZiouRBHWKlyeJPLWno9uhoqPOZOjIVyKYYks0Q+AnOy2ADJT8ZyZm4LqoFLTczWGFvF1zjNOSO1NrNxm5NYweolpCeK5gujlpHrxA4hQ+3UYk2RgyM77/+HwuCLbqPyzKUvVBA2h883GRSA91hCEeRYfUfwiU/QAIJ7sBplYAuZBTL1hjntdJCE23BhoQZRU6ONsW/iHF0V70rHkYHdZ1JtZMkjGoZ2PzCSJW96GEF4F2DROm5M1KT9KMqZ6x6xsTZhw03WAw8wDTJkbapPOB879dQfKzEzKFv9QBc/B1v/RyNPI7mU1h+e6PoLnVtdK3Pd3j5/D5nJP5cHTQuJ2pnlAYse61ov/MMCu7iVfA+hKvIsUAcCMDlkYgnOwIB1lbQDzbLt5Aq3gcWgoU/sSP87mvmg9h5e/GZTXXrQ20xjAwYNNHzqGsfI6SGS6iuaaKh1ZddDFVnvEwnHxS51oemlDGxCNpPsGavYK3sxvmBGPASHhbs1tU3obnHI8NhDl70EiG02dyBVp8dpDYx5ZxDSMLSiMuh9Q2FKgIh7VSITb1Kc0R7kPC0CjlqyRB33uRr7icgoZ+9ql9iXIQ1PzPBklJfSCxHdSpnqYBT7GNRj/hvtErMXdWL9Pbhl4laXf+0FV0TqwJsOHqf+ARy8PdVLD9Lxbt12WDbuFo7orthUFStD3HDOjnrp3RbUjwU5y8IaO5YiZ/ffYjiM7FunFs8HCv+JtolCXvcKWtQaH1Id7oSwoRm58WjJZ5Uc/o1cdBvz/pNOETKLse5WkAHG/FWO6GWN/jwvKRnv3G64z2HGwiaBgRbMiJuDQ1GnHSaSHUHubA5FHUGWYXkubZlONqX0wIPfvGQ7KSkSbwbnBq9Q73+3sfjMqWGyJmB0irggPqUsmPhYYtGBeCRdNiHYYDOT64FtVOu6cLZJHeTtTRXMSySOatUqzzpZ4lWREn8Ota90OaAUEFPnWZ+zdv+HJb9h0OXGLsilIfVAiE5OBx6pwSkEcEbQcqE46J4LNpqNAGKMgJBUCobuUIEejDufH248StSxzgDMHIoD9o6gu8Sf6FMB0BfCMexyXj7KNyrggN6BWMtkX+11p52/Os0RtN/xIbVFDSexVpd/I8c+picX0MTAVSQEvI6pSDWwonWMbfH0Rc3wMKzf9NeRaO5VofSG/risxgCyZ+a8vajQ98l874EWJVLuf3QHh8pB5RcH/Y3DIrmcFfN5IwREwvhA+A8yCA5ceqDQzJ3t09vfkBXQO4wxChB/+eT5rK9Q4s8NRdFPayJHpCNo7y+DSxrUQXh290tJyT3V+C16F3t/LN864hATGRkKFBbv/jqCtWgw/DNTYdAaPx8Dhi3w4ZDtoQK/r2lCAHJfXPYxut6hqy7Wv0qnUSocSG1hwRsv2kLGRsTcLBk1iCUfrzkJEOXkywbG4+zMkcNJ/qzYz0JS7otsjlUyV8g8/8oN8ytC80IJanfDYet726POmKOOpeNRYq7tAYd3BOMklLt9+W1pDyWxqLsxOjbrqiB0HALfN6bh2uOj99PXwmZRQGx9aVbCR57ZWT4uQPMJm/1WLE56W9WEBrEjfEW4SBomco9Ndl2utjt/01gGjMbeWX7cXzKeK6wHPblAxaXRp7GRVV+Ygtxro7z9PR/RhHpp+mdLhDOI8QDQqjF0t/6lye1FRiUv9NP/2VjONpI8bb1+inPR8O/5+krJjskdZ05jiEnU3EkwUFlI4QNGiurxcI4/LvmxCw0HVCtgk8UGM73GEl7pxTt4KNqtdFTFG0mTwFegV/YIxNMWnF1/j3pTYsLnsdgvNtsPXV/8A8cbwVLidMxM0OxZGGeJzehLVOnDVzDGYexNJlJ8ijmxj3peUghhnHE3L+rHovqjvu71Mgc3zBJSveyJIZsxfiVzwinwYM1L6eog3DfSDxaa00g4nxiglvFjaMBKHFe/qSgdwqP5v5P89A0MpwKVGZTLYJQBON3FyR8LXYZtVDi449YdwfvMhDYsj8s+PLB0h1dWiB5bYAFBCZaRVtQ9TSechAcXU8LIz3FubcrEDXZ5ceH9C1QIzpWwoeGmBwE2GjUjJvV+sd5XDn7dc8Jo9ALpeLnS5GhHQUhG8occXfa0dNpWov4TuH04DeoYHNqw4x+2mzKQS2rJiTUn25+dayBUyUuXr2YQqdGunIzVKd5pPio0GKCoGqD4b0UuKE291r8refK6gPGen7EByGZAWysi3Ya3kKOYzk2ufESJPOwvMSuyhy26ekr3SUkUz0TWS8UyKGqhX7gzanxDPn10YQxtzD2nUM9Nue9lMU5W0JhbSkm6z8X4Jm+pGbo7mJzXZOcKZiVEWbcUrg+xwuKFZUaVTjByjgsHEhKHXBNHdpvUqSVi0Ul928+V0tKGyT599sb1jYlO6MMjnKxF7Xw6+0WwR438MgFuU1rQjFSjnRaxXDIBZZUsI9XJAVJBJqtkvKCT86BkYjZ/aX4o2b0jSaarLiplsTghHvgFV8MlGrdYxikTuqwWXLyKn0eVrbkhoVzniF1mmLP1/sVsuZDOSO0efB87XHeYZ2fj7cX+GtdN5VghNV4fKqFLkooWBe+g4J9JkIIkhHQUFo6okX1c+r10o8lCaPffRCmmhx+PGRd5akx+mzi8R1RPz7iuoszFsvH8B7dl6JOd9W9WfNbVSM+rxeicg2AfD0yCIPlq5Q+8QTSnjIjjdC57NyD1Zz1D8dxQQ9RJmg5z7r2LZrBw70IfedQOoD5PtczRdKUfhw+leF5TF5nEFi94+Y8KrJZ5aQQVuziYxTkMvbOTBXFzuP5s13bgNuw5dMz6nORyxC12Qx9NK+68o4eFN4pKu6sfDQ5xsadw2UA+2GLZfwg0lDUwPdeWGbj7/ecoOmStjlKFYx0s97OHL/I/JAr42Bplgo1CbyzonLn0lW4c47WCBraHcPXydG+5L2MO2+prSuoZU3//ULqxMGQ5qG2+06n/SOcaalxUcqj7oGnIcwH4M66yo8Lr9ZBPPlY2MCtfoPKHY925sPP18QmxEEcQQJ2E6IZ8fv3tSLzjuk1CH7aavxqizGaGNvwBzRjngM8Mpb2uaAGxMdrLEz0bacbt4TIHe6Zx8fUZoU5JDGP5wnbDzXjTkPYIw/GgZFPqkQIl5M935quK/YinYY/DBnv8pxloS6032DQN068u9h7aNNmNzan8+wBv63onkBgEixCN7zdd2ceH64NmF8qSpkFSPyuaRekcYArMFn88jU1S+9CRbzqMG4MUSaKGAhqkYSVu3pD40iyP319odKQ7nBv7tV12vY9J1J8eBx0qBOPqVZLHgdMur9aDau71rAMXbbO82A4aE0iKBBn2WkacxI4sjTeCCctvLiK5KuDT3LjZkgE2CilbuHK7AqKmY8m25dHwWIZdkrWerd94Jl06QJg+tL0TthZoYWe7GZ4ozyRUGgYNbnQOLZg4Eu73eLkTUhQplUKwFJCxijWk0ZDhUIQ4TZXo46CTjLFNq7wquFinlXnqToD/r7EKw04czOZnoQFtj3MNvYEAyezOCNXlDgQif286Rtb+wiNcV3Yis37cvUR9OJx/LxkEavhPARCRa86bkhShTERbbxFKfEIuHDnuV7wB1bROZbSQ35UBjAHVz5oeGHZvqFXKyjVZ6kJBsR7Al8pagLklxUxinswwQgIklG/kbYrMEboIjX/loeh7tH/sB38FamtvXGqUKuFA3s2Q/MjUw9K+8wltg++Bxfp5ix/WNvKSjVb+EZzPl151SzRihPibtYM4qaPfI0ikaO7DK8bX2TBG33GmbnJCRtK8So40Cq4XOF6liLQJDi+s+0G2ceYWF/Qrvn5Zpb61BMHHsA8TEbhmHc5Z5+mgY5SfjZACYOKg6o7BmoBsw2SYU7g1S3LOE9vzbEAaXpG6+P7a4G6sEO67bsnfjfZa/gnu2lue2pl1FULRgaZSC82uYThRhX4LJEvpJwtfOPW4XKYqjgus+k+nhefUdQPjmflQv+pJBWKBRjffHQtvdM4jHQfdSzoG94XPyz0wJmq7OHNPBiB59GFL4EPcDFYZ0UDPIjXE04bpZRH+ZK6THNPEFarUlPLGZINRWRaYIw81uqpk6aIccFOxQjn+61PhfPJJzHu/AdulpdeMzNSRkZgBmvwEIEGW+XZv276iE0IJh3L/MJsmWwCZlwlfTTNlPiaIvUpymyg1xTiH24X86QUE88zWZAsmeqK7eBJNIR2SFWriBNgeUdLySYYF0Yj93jIlrtCVC1vdQ+GisU2NTmAJiNFuB7v42+eVXrOyVwkbEdv9ZGWCd8A2N3HRLKcaGSndc4dKVkMoHzyoF4DebC+wVKHcrVpaFjHSCSSy4iiK4hUw10YrX+YHHlr9Pi2BGCSSCm4HASCI8fa2Qy2JeVKjj2erTtg9bYYd+XncUdqSzkwzBF//bjP21Uh0luBhdjqKDKqIPTbOwcLnyh1T7XIdVYpkd6o039d/NtpaeJG8w2Z31L17irj3MC6Gk/LOoHqLyLJYPRR4JtSd2AchX8l85+BAI81NyXTAku6WzYv7+lHQNDFlBjmNgkrArr6W6IV7Eg4n0hpvrobZCRf2yvnkAwCDh7HZ4J8UR+gbmMjCND0aBJ5w3AERm6PgMWjNLDYnbthDUAO0VPfNoP4JPyicqDy+BeiAgiIdp9E7m2wLfG+PYK3Fy39mIm5Dhkh+CnPlLymJ8Feh9f2IHKiZ4Un4CfkeIXLBiOi80WMyCj2pGJHy3HfFeg1zZHVvRje/by2EiDsVTPFk4ebbj5SuRkTeMKdydKWceZ8R6vkVDgSS4QL1YnmI7lT9JF0TxS4n0oyOAMzFx8t4sixl2AdSZ1FID5kjfAJQQPfvH43BWq6T83ZpnQ5eUgHAWoxhcJE4q5fklW0DrHkYtzVaDxa+kdM63ryN/7+mP5mwZ6lZK6jKoatuQndanMR5wLFi+CT0409td8OSODu4cu2FfTb6cKqmZjDuvmeRUpQ82V40eCvgliHMLMqyEZOcRHpE74v5dU6KoOxPHNjq7gKkshbp/Y6Hz1XQWfITyIUP83Ay0iMhnRKN7nd8aWhCW67Q47GTFffcCH5G2CfkB/Kg/mpWFRmeUoCwUw7iaL1Xz4iXA2cwQpXj7ChzRiwKLlTlo7MUQ2kqOxtHcxJxVRwv9A/IOBP6elywZLZkkwP7c5O2c4rJuuQPogita0AOgRX+LMzHSufbNEowUztdtF/3M5n8CV5pCA4JgoHHMzNEbwOsSs51TD+wn/04TYobQPclt0Hk/gx7roSbsn2YFTQusI4en0MDU8/WdkEKcjSQTa/gA5gF7Jz4ORaESW8fgyn2XfkWH9FnE3mUo6qtbsaTMm2nF0qdJxHwLgrXqa5QfyfeIQMKQx2AK5EB5x1hR+15tIgAaU60QoFBNkV1Y5fIOu71BwWFQOR5dR7Y1U4cjYpi5YXlhYy4QP9FGS18ErsNG9gCi12CWslrRTP59n6HZeV8X5kvr4NX9c5j12HReKpRamSul8NFoa5mWnuY8JmZgiHmvtOkeoJ0qXtNZOxLY7csO2+S4htkGTaE1PgogGjhP2UXOpBe+mFwLUNbMo1h4h/UOPZ1hSDoqGH2tE+ABpSk0ixKtjAn/cRq3rXMUifNkwdFHRUL/dq3jhUonouHcOsjIWEGdIn6Wdu06R3Lygg1lB1w4Dr+kfKQ+aCRsFs3VZJ0KjWi1VBNjIZZksjuQ/qUs3/Bfe+I7Ov4QduPAVsBQGvySbQ/cIF5NfuJcPA7W4XaKz1p8/nzSuLCtzv4IMRNduLXuUozbaZVJQz/YfxwyMTMvDDbRcFhOwALGmnGZprxND26KXbEnVtbO6rjioM6b94qaa2Ou/it5nMPfOxwc3kwQFyQZ1Pj1oxhMENtAKngVPBPWCmodHAbHniWTcq30x93FuxOXDuLfHtwsVN5uO2HQF8u954Ixghbx+UXKbyzbQxwOJOICp88XKp+MYntFrKZUVhUAh/000B2p/7DMUl7+xCWvovxkxhBvgy0AXEbrs6zEdkwtlS9+FuD6zTjf8Sq60Osop/1k5Vmq0krOnaILXcFPKNAIZQI264tZHdbkb2grwEJNSpHyaA0CgGYeFx79KhWDoQ1ww5JMKgG0cRflT/oxQWCwC3FV4PkI/RBvQJjb2W+Pi7PalXbz3rofnt5jdSbn8koNuq9U+UialEP1+TQyomRrjywZ1SM6F1FsuuMUC/ZR3tm9W3bYE4GK7wxyzs101lb3Hq06RGQpD5o9zqz2/yiHQuFDMKZk1AgEpCqxXT58x25iQh0jUYwr01yT8WDWN/RJSLd7am4wDJrFryqrwGbVQbllNA0WNONcpub6VbPqrmTHsClEMS8Cj+9/jcWtcqjWo9SeiPinQgymOcKQ1n/YylsIR06rffkz0XnxwCmOT8nekshPH4AhIRD/82LCOivyFSFxC5G+u0YuF8w0d57gsT3jT5UVeQk4jGskm1lstDqUDrDEr13Rtiox1jzFTwLTN3D75R1QnN0mlKcyGPjEKbzhH39q1i6xI601xqyg1wf5ttr0V+m+Ph4IdoIqOdO5e/fDORu5Pz9PwoSNv8p3cmgSnJcXjvkiHv2AhrqUs4iridBfiIV/9S4zPcwYtkhh80W3BKyF2LHeJx1JxxG1rB5vcobBdKEovQVQAtUUu+2Pm0lhBgc5VCYMmRnDVOCy5YXOPa1MGKwFdIdeAi1d+9VCFCdL6OlOiJtRE+XDQwytoPfn2zxqwvdVjPp2SxmdzBzdiKpoj/TulKTZgDdFZIfBRJvZA96CsbHsElCBwDQwZJs4kBS4wPQ/eJIK7idfbdM3LVyWd92guYhojip3vLZ5GOGGpLImzvR2HljLn3oiQLYw2vf28+1MtxF4cPlsQtZcv6kfdkU1qEGlqYxIydFBqU3JGOINflW/D5g1tNQVZs0kAAtsTfDPxv7XsD4kiG4huOCjNJDpVvb3Au01HrJgox0z1zOYsvkKYZk32u0GAh1lainBafyYBazO5IGpLRflRN+yKbXHQpQmjeXXGMCqXpudMosAvfheh5Ft6dwlr00kZVJmsZkzcqmt8nBt/2TcdlXqqLV+W+3YltkgGJSmWM1o3Tv+4as+bEyceRTOWkNcnadyPMEeleOP2SAueL+Orxtr6hHaeXBxfet6gtkTQ5G5YysIAz3z5hX1/r3c1pwiK8Qeqf5QmN37h3u4vhU7q/VcQic3Va+/8vmLE3wm6DxJVBIPVISV2aec/fNK5wXmURypVn5D5fC4OdGNWH9wPE0yGFArK+J+UZcBIj8LK380+Cx3H/hGJB6vXtINSM8h21pXT7loiN1Jek5HbU4sGe8uD1QVxn2ePKESDeVM5of+xfNYAdk2GvrTOVVfQLD1TJ9dLXLMi/Pu7Lvh6qojhSXGIqPLulrzdGJYfjIFOzYBUiy589WsNl6/+rvY94eLnbCKYtzwobyf0OSOVKiivNNgZ9g/iv3HvXmYUXfv5Rg0OFkFtgToqseNZAzQ2uFNzmCwfdW8ylbo7dMJAQMAg0UktHAXvVEyD2UDazY/A/J4ET132L8ddaBh/lu97V5cpAa9aDYBcenPVMsQhnkhFHmmJcFkqQ6CqEqd1eSRWf50KwA0W6I/pcVLNwfF5rws/G0AVE7snkbiR8MMtV3qPQN4wJIKud1nvEUHumFh8q4oLJxH4r415T52LpzcuPV46EPizeNcIQ9yeKerZLU7rgoM8W6Vc1MRvoUaNOYJsZAOLYvDCzXJ6vnlfCW/xLXlgn5uGK2qU/vDI6QbQMOLQ0JVl1iuOvXQNg5uOQfvIgNjEIiDsQv6C4x6AbcQBkcHQud/CRqyLc6VKanFwdCGIoLjxnwDibtjf4SREyxpuzWNzKcuuH37YH6tQnTg0ow2mMck/EgT5hUcWAxtATnMiKJACovkYMSF608Up0TR6M74O3jbiOkVyty6yxR2884Fct1Gkeu731aVIKpGsFLsFTm9LDxU50sKJeGC/hBxHtCOcC7WLKCTU8b/LR1Fl7IUA2VMkSn4Wy3CLFSjMe0czF3ILVhJWk8QDX7+RqYsfNopfjj+Ciud/vMmdtxgsqSPc8YCmQHoqJCMoUeCPI96aId0Q9PtmxVkn4orQuo/AmjeuhqKuxlb19WOZ51LpsM6Q7o4mSjN10hLHituFD9vcuwQRyEKEp6wK2huUaJ27d814vKmAWEQLOTSZMD55JeVk20SncqmBEB4smmXeKxrtChwHaEF9Z83qA3HkZVLqMQMfxl5u22oh5ZgMhKOgj3paILfliN66JYed6QaF02hV9slHFCJhJ95NpyqewAVAsxI1kmfHecexnJIpZzUOMzPyYOR6AeOYP1fLW3/TxdC4E6J3uG0+yrYi2DBqRoB+1o+KjAqmurbIW7osK9xInrxFC+5rGJevxQJ3xYpeRetU+4poYcZymFmS246/MzNC7dR6NjodgrGvQjFxzYHgWHJCWLc2KcSqFrqSqxAxdXFKMyX+gtjDOw0fPbDH3QpAulDTCGtbikM56G4tq4VAaS193Nb3FvAPP4fVE6rn1J4r64dzdnfTuPBMRKOJaBx34Tl6HoeGkuVRxJBKqXoRC/5xfv3oai3Hmg/gli0h3zl09SyehsJ2BWO82aFdbO3uV8qBac3Wx77LVjJcWVUpPmLfFrax5b+GRM4GUVZ0cNkA5F/rtHhfff/myBExM/b1bpjrd3xqSO1+BeOyosDmahei1TX2gssFuVw0e59wC7BHQqGPiVk0PHucjoJkS89Ad8F6qq+GOoESq3G+HsVWzfHX/CmV5oTW2ZNJweXJ072n5CvylJIcJaAy/XrqweDvjVVvVGdaY9IvU51hmUil4qO9tu3cYqPXD+cD5A9Fv4d2OI129lLi1mjwDc2M3QT6gqAfHketwn+NhIBITyvqipepp/TeUbxDnEUwUU4+nLW8mgHIv3Za0Zu+RQOdkpN7OCBsYeAeJsgYox9kql0D5eixADFKi/F72etb+g0V8uhJizYvX5RBkO3/iZro7rl7rPLw4039NIBfIj+t2tHfOwbUrFV7hRcItyFMo3NhmILXCNWo6qk9c3PC/VS58RZ/P9k8viycA7CDWYA019gdvC+/g4mtrZwosLTG5tbk0mxmCFVXNb/La2w+P0A0jcBF4Y2iNiVxuRf4prMmvsKWJRQliZQCdgbDUGtewEOIJdaXl4QGGfMXvVJV7mnHQdUBXcx20dwpe2PhqxuOSO7ER/b+lmwIrGsPfFuWBqQwG6ASS0WElWS37MO3V0eIud4CkbQFCuEJRPS/XHC1jEtekFz3zgLI5q+riPdIrNC5EBwlroKUA5rFQ/USjNAAjzUUH9YMCtdEKNnDSQozbLsvdShOhJlzKjlpee2RBrBgYlcuG5x2QQk1e2tXhcSFAa/uwdKCbn8OHUPRiU3OTPriYD+PXivHBx9KBC5+4QdMcWxaQ86ASK5z/SwhOqOdAbx7ZB3o+x3BreUWszvosYp0ZaEjb3tptVVJ+9fu8bitk0GWIrIDTHkWM/35vMlmLUNUmK9dZSEdZFSFqpadl4HFNLWyK9Ip/PlytdFJNQAgoBPvOW/SfMqJIAwEoU1QVtJWBVAJPSjt2BQXEmHkRD7z5NjbvXLeWaQLB0ebVCce1mVBYcSSJK9Ru6+/ipeuuVNXMBqR895/KHCQN/WeEeDDgErEZSn2hFcsFHp0+HaBEYFzVKdaAM4NWy2MB4+P6wX7GoEQcunKGT7XK2sGiM3B1WlHGi7XRPsHMQ6G9OJxxacRggOF8wNL9Xg793udlOOhUZi/GaOaYjY6otHA3t3WAKRPW8Bw=
Variant 2
DifficultyLevel
784
Question
Milo cuts away one third of a circle, leaving the shape shown below.
If the circle's radius is 5 cm, what is the perimeter of the remaining shape, to the nearest centimetre?
Worked Solution
|
|
Perimeter |
= arc + 2 × radii |
|
= (32×2×π × r )+2r |
|
= (32×2×π × 5)+2×5 |
|
= 30.94... |
|
= 31 cm (nearest cm) |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Milo cuts away one third of a circle, leaving the shape shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_J-NAPX-H4-CA32-SA_2.svg 300 indent vpad
If the circle's radius is 5 cm, what is the perimeter of the remaining shape, to the nearest centimetre? |
workedSolution |
|||
|-|-|
|Perimeter|= arc + 2 × radii|
||= $\bigg( \dfrac{2}{3} \times 2 \times \large \pi$ $\times\ \large r$ $\bigg) + 2\large r$|
||= $\bigg(\dfrac{2}{3} \times 2 \times \large \pi$ $\times\ 5 \bigg) + 2 \times 5$|
||= 30.94...|
||= {{{correctAnswer0}}} {{{suffix0}}} (nearest cm)|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 31 | |
U2FsdGVkX18g+gIm4khe3MePZaMeFIu5rFv/zP00j/lvfUTf04e71IPdChWiotGqzPATrDOA+tzw8NTy9HUrq8DwLED0bDD2WtkkzSizomgdLHyE9FjYbdpTvS8mUNqPDtFl9+OufAYapy1Xcrk2JVEEUdetpPziIe36wiBPnHFlJ96aMjNuD4v8f4dIZHZL0nTS3iDQvgA8RQPGK+pDMBF6uFGlY5RxdrczYZWtpAKiKeKgXMOCTbdt1HmiT5jRsdkSWa3c9YmP8N7Ww9E4rYWM71gVa1mcVQX66ob+3/94pug7N8KF1T3y2Ygx2al2+G5kFpb1oKtJoudamBRczoUhsSxhMbo0MRY9BtxBmm/VnKVLIF0073hsfFI/nX4HB1rzOc+d34eaC3D9zn2QfVRwEY+Kl06eN0K9VBPJVsgJ5C3gUvwXcogUMAAlzRKz7NlWntSUJ5IkggqtSuS/JWGydnl01x3QZ5uDQXmBBhdX69hc4TYlSGzByOfc7H9QM/cIl6UVWlGifQdbSUY9I4dbBqdyC/ywPTH+GnPFLyNVSxwIj8wLT1YJrEE02PUWTvQcvQognpd9UqWjP6BzM0ZQ5lBdXK7glYr1YhUMoL6+Csww/GK1lNfUo9RCnjhL2tW9JDr8Xns2OPT9f5AG1hL6siN9/+5FGG8aA5uuzC68lc8lPF9bU6q3O56qH5tIEdqjSVwx0RaHyDFasFnW9dAgkiCRijaDpntTgbueGj6ltHh2dP6p+UJfeUi6uwMUFVD+egage3qpzRSgFlVZ2DcxHL4V6LDIEBxt8scjPc06DwaVyWoFkScwv5mjmCWy70eRuuUZqfgtVDTzMOqzxQAgBz76TQDt5iG/3y8MgFmp8y38c4XWAdC6O3EB2453oApPfnbPBTO0ZOHosyvHgjZoTPHvWLMM/JLP4wEb9LqRN42AtMplWRORd8Ivaa4mvBQZM7JAzTH0hijyBxUVMO2E+lp0w5lm/UDQZuv05yBH01h5FiSxiA7e2b2TM8TgWGvnhcQJXSobVvhwYv3yR1SiKeMxIdNImRDD0/4q+G0uYqDVi4uw1sT30IjG1buMVl+na1XMyifTSFx42Y9YmOnJxlqGGQLFF5d3fukCYn8pleEUhj/+mYOwj5zBdIWEKKl/rTsKAbmrx3XF5tan6zZ4DnC0OGZ8RjIcym5l9oCERNxqg+XwRenYZCd75LLqZ7fBFRHFj1Iqf0Khg/ioCcNdNcFo5p8IQQOzaWud/pAXzutugnIF7MXIGA5hyobv+liXRjW0GusZeC6Go/7HLIou/0iDJKIvyfDU2E4lekKWvyw+B1vGPdivaAPWokUzaPGgKFV/GZ2MlsJEM4aBNhJGV7N+Rt5liSCx47GwprLoE7vzMOEMmLrKhNHcu/v/YPXIR5pcw9zejyu1pcJ6fGsMycUXXrUiH7k+r/EtIR1QKA9/lxc5cRv9lO4hKPL9a6cWDn/XYxGTNfHxk9HSrxAcoRUa7RRn3FjkzxHZ5bCj3YdlnHvTHVOJ6XS7pquxcjavm2ffWAsMo7O7zeN0Kwr/8R55ClPJfEOLKtbgyIovkq3fgBKD420Zv0Ln/vgiNetv/0roI7JBZ0PL7K5QfcFYzNWf0tAyndns7uys2QMPOSeJ+nJoVKYMBbJ9vx87BW/IpNcpPL+GoasRBg125u6AEi8B1QGdO39SH3mrPbruiKW+7R829Gp128bNvbVGIXTAbQ/O0GqRqwjch/SkLPFQrWX4tdqzLZsYzLYlucOILHyMaBsv6d6XfjqiGT+xOqfCGqc8JMQHrrNihq49xTxYK1Hu9UdhGWkeF9btCA9wTMlS8ZtdOJcOAqEkyXIppqqJjfP15oBxh2XbEpDXYb0LWNeQrwZrN/CAXAofopnu1KePAJGIfHVsvctXCP6Jn0vfdhMhgZD407MPNj+AToU2WYeqX7GPzCn+18CYybGvvQjB3hvB44+HwGTAYsalCBnqFPXVEudkU4wUF0VC6pm8qoccyoiJSC4TaieYW3/t+NQAJg+TGFZcjk1qgEBfhvSbrrtPULUD6E8tTrZrKaSeP91h+AHNiefEVo2cuSvVG9C3/9T/X/M+nBMeSyY+RkngkkKr2oAGFRPuo739KVm3F0vCMpvnufrci8wnQbrKmfpCM+PkAup9OV3AxeIQELJNGxdHG9v2dmdL0YkweOjVkd11xWSPfU73+uFeNT2UeMluwYfeDZM/Ul3uYgHgTzYmREwUoMsk2J8xoq66w+pOjslFMLkzccssv2Qg/jFvBWPz31J5uBQvEnqjpWRbaAf6BzrDfV1uhKqHGiunlgafLAqpWOTDL2vOD5aM6sQucGyD2gf9QRGp7VjuBmETc7byQoYmKTew4yLxSb6kKXqYxnEAZDTkGM/Hgyo7nYptdAKuC7cHMFrdVc8Jwzkgw/SjeucW4jjCNRGoPM2gzkZbj2KpYbcFFwmHyh0OPN2gMSsHkiElYb+23EcIgw3/DoL/08CUkA/5vs0RSCPg27+JSrKkIwMHYs2aLXN/InJ8fc0t/zD5FwS8ejupsWPYynzETw7iCYTtkXZItTF55ozz4L+aunhg5Tn3ucRQqnj+9u6Nz0icv95t7SI/WqBLdEhbYqg+CFBdhFgtQIJEOknYebHTBTbEz7/IrMnYISIm09ysYpqYmb8m9iUevj0/Hzbkq3DR5rczyUbhdYC/IhPC1ly1nfrLPd8XcLaLz7pXkoBxfc/uiWFBMTumE7wt68RmEmLAsFRvSaz/Xq+KJxU/AUEQYAkj5Vn0UWuwRUKIxSmi3JV0P5m0pqFkHd2AWNkMzU5o0ydvMbHCkBAuBR483Cqh34XNAufi4YliqgBKBv47rciZqXha8Uf2U3zuQ/ooISyEfD1+G9zCIIcipQx7lkWZgY9egCpYR3Ian5ayQVZNOPyF1cjHSepBtSgkOmZYgfFQv19qUvPLzpGdG8LCjvQFfG8LNPJWD7GW4uFTXdIWBrBVsfDs/xCq5igOHkdwqin6s15IvTpBmy74AJfDHO/JRo6gV1eqfzfGuBlczsn+DEW0RMVtlMe0oC/lZ8hU6Lp3BYcFYxidcGqDJPV6Sntnk8eRPZm5DiSqC8d/sZJYHWMqobSwsKYzKlJWgRSMl2GTvU4ArfVpHAhJ6NOirL0l4Eik6SjJOEyFsohGHgZa7M93Roq7cLZUH5iRgM1CzcPtNSSdWMVoIu15zIASbaYXphgLm9/gcUGpiErMqyjFio8+Vo9oVgXHlOlnL06iOQWAPIEx0HAtoMsZplphZHc+4++3W3IOSpbqTw7O6stXSFTEGFKq5xulDCBULPMYaw88I5wx57tQdFBMyfn720u0ydFx3DDZu4ygp9BiWPxpg7NQmZ1ymLsioOLi89NMG7VtOITJ+4/bdMUF6smRObyix2Npb/cBejyoYlfJmA9GKc1Mzu0toCYjZ9j+L06ueAyLBNdgkRZzSPtmcSaUBDPStBgIA/DF4Z14YKuU5hvcWS9e//Qqp4r50/CjV2MwpOKdybBJS1xQEDGwgKiQo9ERQrsTeSqLxw+T1YkVtni4F9yf0QFQYlfgMy5g8KcBoqq/0U8Pw5FDEIwZabwGJoCD+90BA/Vdy7mLKFhrcwawbK92rTyYRXJNHf0mcNXi3+KAXWyLeq2SDcW3EoIM+3E7ChTbrNZUkq4b55lF0n33Y/lKIrUdzbqEjMHrSPduGDBDAchfoM6E3KFfXCyfo5YZg0rNa8tpELcIBiegPldRUWUBIAqdNL5tq5h4h9Sn2DTYexV1cat4pRwoHVT/Wjj4IOKb8oO6/M/y5XayCjAYqXxfAn9/RMzcThUU0NKVDbSFwnUPXl/IRzbjODC58By0aEg4zE0aCSr8RM8J/9MvtDclo1HTHcsec+itrJS4E7etXF9jH3FS1HKJzwH1dSLqcCxz2pj16jJLO2HEy48fGho1lWVPOFASghzQ3qplysv/xFulRFbkuxuQpSmzvfjtKCU8W3C4rmxuNKwotLHdbk6orUAm2CiVXqV7n20dpI90Og7znU6G338igbyy1Ac0lIAo918OzN7JokTnYT1pbnfwLtzh9b3VYoXimZOD63p8TPELp27lEODC3n8oxbbL5maItxloZdXbkH4edmt/wbcUVGs5uLbMS22eeZiHEOJbzT8Nv91YjEwqqCCX4H79NArSl+MCzshclmJHQMgIMHZyizJfcH5xE5dv68AMg6jnkWpz14HbluDeH1EhYgCleUTuFM0iwwBJb1/AnVchXwk1TQ0wMjag65aTxiMFy8kPLtTTQSt8IeuUawKtRvyq+Rq3OghbbdTTbBLRqMH1JqLUpDnQHcT9O+1H3GAeeX7gv9dnIhGLZQAwbuEPUmektlqaccPu409g3oM2qVFz73jb9PAbf9Jq0lH4pnvT9vjIIVldjBs+LWnC0bro19MoxD5JNXV9nxweREbsMHrs4ZRFmO04qphyMqfOHBi59AwMP3k6fw+SVr8u2C0P63m5GxzYmrLvmzMGf9mB/RRMYaDD8AXPBBprFy8g4uoEmTsvT1xGmUdbU49mCa2okt1uStJKjM+y5f6znpbqaFFpvfN2bKQWfwKxRhslByjIJbvLlDhOXkBzkah3BgFoew2HIVVvYw8ydaCK4deI2ea965sI/JMopVumCJ16A6zsgijXM4a+laFlVaSXQQMapH5+LcPmBV7Z696CdN80/j/KRS6ATkuRvlf5Ak9dmmBmQcDfnFo5OJdJmOWo8SH1ZT30V/v4mgfoVtpX0ylw+xswuco/gkOmiLA7xCpVGmw1oWQGRrZR1TSs5OhX+9Kqtdx2iImYXTwWALVgP2McZ0Z/RCsG1y6PMvQBAgTd+toNgGTUDpefap7MqwTxWerAjDbUYJBP3MDrt1gsRT6c0id6V5q2G7KPGXuf4DIfd8Jp+dGjIJfCXopFnXzMyk5L9rm6ctkh0aam27kgZm2eTiiyhs8O3FPMSQ+gBNAd1UretXZCG3UvGWnbyTzrGP7uwLmpr/otHInGieYxsPKnz7yJomsQOf+nbPv4JUwzJbSSESc66QdycB5FqjmwkNRtI///AELBx6GuBtJea4lDasg0zhDyPKOA+3i4/zWIbvBNhllHl9GEpxt5gUFjOZcpeqefPIkjfZL3RCF9ARYcyDLjZER8zoQ2opH/g5K8rc09qw7DkiC5PeuIxFIinftPPAe+jkbTX65tVh+ernjDK32K41rErfxD0ZAJubxjbd1hWu21qWMJhLdxTAASIWRsC1HphgcZIIDtjqOzV5yGTi5Z75ult6ssSbI8/Pg0as+HVjHu4Q6W/oeJQ4O9j/VGiGqTGUswl/QlRRmjdPMXOdZl4oUUFVu4yIYENjDI5FWtMN7XGaJq9aPiNITGV9i+AAC9WhYkqIGnGxRT8senn5wP7r6zP/lnhQ7/A5Rqp68t5x1UuvxeU66IIi9sHqxVr6k0bbC74wbLSfAIutBIcVUOSLa4Xw2U1H48DSDHkaSk/J2U3xYT153MxNINEhDwnzivc2Am6gf6tdwUt0nbkubSSkJMFfaafIHP8u9yzCLd2sHrRhc1sG2EJEf28kCrVjnOjbBMckXtb40xLwfUsyRoeixSTkbPBkUUNWRvet4u7yZuw5IjcrNdg79ohEp+ZNiA1S64+qKSdfyEvN0xlMESpspcI8NeQqyN727doAR3nVGjH4A8vpqWHKY/sOT7DJtJ9McUWns5Mdk+pYEU2CBHjaPiEjVvzfwMGDWvNalrbGuQ4/KyR8yap7jyQMBmZNE2Zy7t2e2m9eppZ+yH5oYJKr7E622OvmkOCxCRnaKmTph5Hrvrt7zjPaQl5NcvZzSTo8GEseR4C2Fkpz/K5cLBNI7wZtAcZvqQtFau3RzLcWP18NMJIAFt3Nnc23zjFg6uI8uWkBA84igzqHSsiN53r4oJyW+9H7q2/rce6RYB00QYSlGYkwac2HmZ4QL1HBgFuMeEGgkmWBkH1d+hbL0NpBSlDwT3EveCqS9uUHHa6LKAbiljEoeC/gdXBrHbT2cVXokxCLc9gPrzeOAqlri7muo+Cjtek+jEO2H3yxiPy/sU9qhtbCMgqSqTezZNnFydxggP2YRi7dTw5CpLhpXmTeVPt2i2FqT6ZxkzJdc7zqKIbwawe9UkU4JBt6kOD6W3j9ePbtJP0SSiQuFGLAr5QUlGzFlHi4Eg1aZbYF/EpRgAR37LteSkN/6rAgtsjvENdzIEnI18PRLMK1E9dPg2q8rGlZ87me0yLW/sBABPCb6O9nUE5JScqciB3rQhs5PM+TDwpIX34eM8kqMkX+oBS+kULY12rQKlPSpCQi8pY+ZXMViqUCX9f5jtY7rHMxq8X5XT2xbTHoeeC1rNZMHGxjd3t4DALVXfXu+Pn9cPqT+Yc86ypxOcV0V4MGzK7B9NTfuPRoYDPFhhtI720hVyDG7kjyCWiXErAIy1UQsunpEUGl+GOKeSgJVhJ5fC00/Y2ATkWz1NZnlbhMYtYBHcm26ZyFxjE4RWHVVGw/jk4LJS5RrohYbhtmngv7B1gqRY7JILjLh9Jwtdtn3DyLXcMZRaZKrZSJsnPNUYNN/DEzAdNWRpS4SCdyGGwDUpy6gm8Y9w3xQbftyQT2xqC+0x0Dqf0ZbM53AkSCWoqe8Jro2glpnyWIfSm2BRZuMtQG0zvjlit6kQVWHB4lY8TqRdpKxgqJV0Cbwq+a0JhkOKt+UWGuJapvjhUmmkSE/Ug0xuzEEx+9fWt4WY1Awa24MEfLtq4bp+4mWNfQGcKD337gyw1E1yTne7FWNBR8B6sIvUcKk10EEFVg9Pyl/ZGAIvYMK/V/jcVRA3s6n08kuipSq3cI/SXty44JSvI2izbRULZuIOwfSGdQzJ79hgbva3hvK7PEAnPAfQf0bNGW3s8NqSlTwv+nw2RcyXB5+49D4Y7++onYy3C25o8w2Jr9DNgdn1RQNm5U7NOD3rghotHbOXJRAIWIrHvEpXOwsXR7ZuaIDKdeXHCdSYBujtaPjaW5Q+mpnRqYoQm0eVQrwXZy8USu2opXquxosQFV/NnTrfFJgom50UTC+lomLxxlPZ17KB6vHAJNIgrXP2Y3Zydzwe4aP7rIGMqH7h+yL5Qgg79UOZIbOn9Sns5066WEeX2+8PghpOpWv12Z/hE4n5Ahn5zolJHr1T2qg58p3dfOkTxir0jeEvHR2sLQ21f4yyfcjZkWtLrY0SwsvojGvjrIUFCas2Oi2lDQCBX6hwzZzhh1zGpTuMLlsNNDPQTJCPWqEQB+5Z9uxQvDueg4prmZu1RICb21X+hDGiWoTOCJ6pt74g9/YXAkf0/wYh2SbfHMoWa7oXPqw8510pgQWzu1xiEr7bSB5bJMa/cYNZtgGCBCySb1bzlb3Ha6aOmX7rIqeZQ2euLffXdATMoDnXysVvaaGBD3bijkJxan6xvsjUzjz6n1FK0Ktqvwoe2I9SQx1xb36Hc4HIYfUhVMrRo5pikE6tuCxF/GTfpb0i5B/YuwdGhuxKZI1h9GqBYKcIoDL4EkE2Ip2eBbunlOsNxZZnKwJ8RTd3Ds2UtS38aFRkciR5TxAWkz0o1o3NKYV/hN1RQtO18diLwffOc6I3pLTZTGEstMstMKakcHNB63sObTupVIojppWyCRldnwoNjar1N4zZ0FJJWHmuiFm+33jueQ8+0pD3VxknOg0rZ13QEzZt0QXS2+hMai7+lROQ+3l3XyjXODX+D7tarBSTDBtBJvOn5Kv+B0RTHfxym6j2gDRU97/L6GER6zgD7V3mCVqTNA8VS0mIg3xCsRzaiF3fKM9pbt7fvA/h/yttQJPx2Mx+pShshuGsUD8SH0yp9AMj+WTOWUFU2DWgkFj0SGC8QsYueaeBlm9LZFYErqozjK8Yy/Yy/3j3yfdTTTlKt8Gxc4BtZL5VQ9dCmh7dxEkrxZIMlBU9oz+Th83dfcf+qO0jTPLUUEf1Bp156vt7OUmz1bx3B+WYKaGrnJob50/bHVXWdwYLLofO2i6Ej+587ve4ncBSTtYiqTavsnj1SBTwJbQTV0QtIYZiLyEOjCRLBF4vSID1/E2P0mnwFxZEV03HLiQCr5xmpIRCh8zYyAWeOTw9sXVifFh/oB+wxawvD5mb+93ns3Z0cV7LiONVuvkUlQvbR6crftphcr3m/JAeLFouEkijwMmv8wNw8W915P8aYTCUbc15rqkt40WPV93SdYcdfQnx67PH7QtMQt1XpwA0regVIc/S69GSb286+QBRLa8Zyl4p0vpJ30SPqDxLj/HU5M1YQQ9IDgkgpvWHnlSLu5SMjOrB9GFDUrbpkNMOuNJm8BtWBQDsKlRU27Eo2TXH+9WqfBd1CBQRBFGX0iJJ14RSBgVc0sHBByFRDyj8ArmdKFsISiLDvedLIyuhvfA8AENH5Hie2qafXJKVOwzVlcUVcKIWnRH2Afy1Ai0x8sLuzEQDFpZ5g7d3fRfPQFQNdHeOBXf2K2equYK9SZH1B3H+bea0J/AnB6l1WOOniB9FRN/cO6g6O53OEw2dZ+7jncKv68WjREM/xdqwcGdTEu1qIdsMnVN3jStFxEQ/FGFemYopV+eBjJKIByxaz6HCoJaqNbwigdEHctadiQD2dnL3Eet1T8DLAEIxvvSmEnLMLo7Fursvl/aCrOmwfZqfoImbmGfTvSlc1C0kIOSEobz3EtIH+v93U2DStinLXvPTcsOgoc3gKqf3XKKHIKBT5dsOloeDZdSDsGtg5tAki6WUcZ44QkGloVZIQ8EbGSkx9vxYrrPV/HD1igdXGrNdiW6JbDymg5vJm+nikkZyGa61NHy9V2M40ckuo3ffosDTlBWxS4p65M0RgWjodTjYWHQd/9L8jNjBc61iUamjpcfxv1KWCNy0WM99hRmY9dIIG0cLA3QudMCaPDHW/sib9wI4EqCk74ba3CgQ5WBCCkkOx2U4TA13AA0soBpk47G5BP4296/Ld6VyenAqHlQUQt570VzEBw4aYE0oy5fu2o8y9/BxfsXMegTmsg4QrXciS+zwcRnKhlRdpLYR7l+tJKrsOyQkmzC+s9bB6KlRCNHJv4j8RfhNF1MsCoV9r7wtqJa1SRw33APK9258g5SYid6LxCocpdtJYf93QrvtaIACtFS1FaZjy2wsVR/PDcjvezaAnbc20VAhzE84djuxiMxpRvfYbTrycXMHlaf4EG5sphmI8olKkL7aWOfHxCvexpqqd7ob01wv02CA04mY9gH0tUpdufEbcEdQ1CN3uKmLmn6SsslefvTK0HuuK+jpvGA9DjfdTsTumwIZUlTGTUU3u6sKGpWSpqfqBTnJ+rRtJ5RUrl8QN4uKIpWm19RTUXLMeC6UQVnQm6c0qYMO2Q/ytL/1NHfw4d1p3R9VNqhiTD8/T9O03Z7gxJ0XmaY4oY3rboHY6WQsoOFUuZjiGnVI1HM6EAR8WOYHOCeDGdkjufmFuYf1Qm8JqKGR7k/TZpxcp+ER+YaE3ZULjEwCzO4R5WbzyGe45ACmg/m0wPZOutw9Nn5RgFpvCBvKKTbXSS5vKQm/LEBw/Bg4ypt4ZrSxQY11Tni9db0Kd4dZgbvuqyus37z92hvkxkjIsRGYYgVpRFvWIXTAFa/3etgM7023s2pCnlIe1TeyYTvycvHejrgnURux7cyx0fu+tUD2NTiW67iu9LXHKgNUwjZDC5/qxsx7WMC7u/ggQlm2jNFv1B42RWdsWHNEeb0ZwZwB7aLmkfj78U7V6Ar5x+pryJvCry4Xy8+eCAdaTXq2F2aPKkfKMPck8Hcws/FzBWcAqRI03flgi4aB82SyFfZtTKOeWQldyfazBxoiErQEfZENPyScVh/Srh+ADWFfJ28h/9Wmr5CrTfa/uzhwZ8yHuZqpzQ/Q7+9pA3PESSgY7RXDoWibzephg7Ih9LxX7i9VfZLm0nV75JpzbiP8cGV6oR3FASDTBpQ/Pl8xg2dFakTvRiKYhJg5Q+dJnH23RYYnvCGSNfYe1SqfMEb7EZchlNtGE0vmkR7tiX4UryP/E0nqrCNkzfGwyJOXc54L+7Eul/myspa33678/UG+4V1OHxIouJ5hNIeVz8I1ObLWC7M59l5Snx7jjdCEZMI2mbI9HDukRr6FSH0EZ6IIPt1PJlpejCgo6xSvvyXrRfjuUZNnZV4evY5dUTp0k330+W7BkgUnow0uveZVAC7XTocHruAmiEQqmgc7Nz0YvcbDPCBfVb3uDs2pRoZfzVbk+4zZNjN5qo6JRU9Jh43N6QhXd+ePc0L7VeHPxoq5KmidsQg/SEpz6SPYqAwDhuk5UZQ+DdmKiBgEndXILp+IuG3xn1bFDwIffG5iendv2xso0K8W2ZQikJZ3LTeR3n1FI/WB81wVbcCoSzJjwSG6/sZbyngQMtVaHmbZZ6KljHrnqvWmyC4YbZW/6UZ/8RgkTYpMYYXhVYTX1pNqeR8W8InB6rWgjxjTDXoUXdRGqbUXOgXFxfCbfHjj9UY4vL0Yd7lHRldVbZqX8xQtYD+oYrygJ0zzw9ruIfZS/NtZ7oqFoCC95bRID/pD2FRs+/hvpgKslAaumNnJKaNPNCT+QrMJNhp9EnoYkZXRIFgErx7xQhie7wpRl3f6D0G49bk8n1q/r++au9tkYO7rDT1pmY53+IIhVJ2NfVc7i1yfl2bG30DpKox6tqyJ/pJvHRq0Ry2amiRm9earRNHe2wwcVGUQU6+VzfK1EqAo22J+/oIvyEyLrQRgEG9Cn2r7QMdraKxLcdZaGTQ71FOw6UXLtGEo7Sfbi2QuM5BESdKIJvGdFRUrAt7y5UOdfVMwSC7MM3HWukl84qipEDYSbvDtb/OtsVo0yqccUgXNoJpkBKVmu3RbbCcfSyFvX8gaXbHHUiKCQ3UvtQAc3CjXjsQDkXKAovBajvAXYQYhzh6z5LqUP04XvnSyXd3h9ci1NJ4zkr+IMwWe5S1q6VHmQwnN/yekXc053apl+VtwMeCFnqXzoSLAb/K0ssUISWEnO7DlXoqwVk3x7LnMyWnWYeq3kyxk4bXiX3knTKCf+HhhyosEbbOsNHe5pPMbOAiD3gv7hbdkLKxNdafL3dPpAHqKq5z/KESml/GDeyIBQYrK5r0g30IOfcVDfIcTfNcWboWdvHOL8GNU/S3xWcMW0sydysBYyA7EpeHgGpL5LZLXQKQYEejrXJTFsGf2pzEpHLeZsqfKhd6ymFDpiveDFMBQkuchFOn1FpgFKFHVR8iQ+fphB0g4efBm6GGpM7/r3Pe/T3hiVzTRwZlZVDgQEusBWEuIsYqU66gWjgfH1K19LonmFJ2airHA2+b+O8YlyJh/G/Y0OXQOrAf+1n+tVuQpBJqK0Ec/oEv23wGnwN5TnJKjd4b1tg0adLkngqicIm1yQz2UmxAiE+uImPGJClCHzNopSgTb0yUSJ1jpvWLUAJihw1v+G5Bvy9h/Bq1apK4MILUnOKTV/iLrbQbN7+hKsKiY656Jm+3B1psJwFZDcbI7PfDoyjeBYb7fi94UqK/eD96c2RERCNN51eA/RQhFc8Wlmaytm5WwYw31wkYaeUl2VB3znjPLJrbxxgPsTLbKQUHnG3+TX9BZY9sHqFh/T1zYl+GKreL8vhwVOFTsfLRa0R9NZrpsgj0P7pl9h6orELD7BO8RFwtJFy2fDu2cO9F8ortxmbQ6A6X31corWq1/cR+M16VABJrPWZ4VEMqi8ucxWShVW4ds0DZ2UNTMFCAmpsICCKwK38dbB/amPA20y0v+jSMgA7zNUFgoqH+q7yjxolWNSMk4vFBVAmorqYj4GxSTnxf50YDK0SiZ3rIHh6GVJlnH+3WPbVVBhXhYyPjE+d+QA1S/K3cFh0UhSedw+Pa2MVzldf2zFISkTVvXa6JG8Dz66w7imnMKjBoi489NXEz3Lqo8nwFZInXVhFfcxZuLmIFs7UJXAXdswJJlQHJf72uIdW4jwYlYHBbxga5+24ag8A==
Variant 3
DifficultyLevel
783
Question
Morris cuts a sector measuring 30 degrees from a full circle, as shown below.
If the circle's radius is 20 cm, what is the perimeter of the shape, to the nearest centimetre?
Worked Solution
|
|
Perimeter |
= arc + 2 × radii |
|
= (36030×2×π × r )+2r |
|
= (121×2×π × 20)+2×20 |
|
= 50.471... |
|
= 50 cm (nearest cm) |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Morris cuts a sector measuring 30 degrees from a full circle, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_J-NAPX-H4-CA32-SA_3.svg 240 indent vpad
If the circle's radius is 20 cm, what is the perimeter of the shape, to the nearest centimetre? |
workedSolution |
|||
|-|-|
|Perimeter|= arc + 2 × radii|
||= $\bigg( \dfrac{30}{360} \times 2 \times \large \pi$ $\times\ \large r$ $\bigg) + 2\large r$|
||= $\bigg(\dfrac{1}{12} \times 2 \times \large \pi$ $\times\ 20 \bigg) + 2 \times 20$|
||= 50.471...|
||= {{{correctAnswer0}}} {{{suffix0}}} (nearest cm)|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 50 | |
U2FsdGVkX18bcorF+7VsyzX0LF2xiyFaVXUA4n6UXxSsx5vXDur4DiQLg+s0l/LTpGu6f0aHCx741RiNT8xmyVQ8XfmGNZbLicv5/VQncwkdWeQkONNSf/7i0JI8ihXOl/9nnphpikxEtxVCMNDLze2aFS4/NX6jlsCdunhr11bPYLr4QuKEqci4i1ypcxU6t1xTMcYqs3cLi+CsyG7iKmzcwMX88DeWo2FVE7Z6ZqgblQ+9aeoudTJom7FZuy0Of5kxRe/OULLhbyL7XZEL9X7GLOX7YV2tNvlm1/PgzMJRvQ7Zba05J1o4/hrcPwm6XSI5raEFTnGQCU+CyLTK/8bg6lfVTVzPAQy0S9ReTp3ssA2IbtBG8OfX6ay4nLafR41hRWxV4kYszL1VKVQ00MdQuPNGEJQXsYVoLRCx9TOgkVXg12HcMQrvah6Rd/mMtYGeBIzS3N1/PkG5r3n4nkfkCZGjDpvxuHRl9wCiW7/axmeK0Coond+f4llAZ04XPw+IHQojhxxDUwpn86HHsyitmcRYlTHTgscdn1x33us71qpS2w54JL8WWMIawCDibZ4Z7SSb5baWIof7cIub0Y7MkuF2bCo8wWx2WFJI+qGy3zwCMCInYiO10dX3zbEo7xDMt177ODBQcAnUB0fPk+PsjBKW7WDLS1Vp0FkkHsvhr3vMmw9l1wM/EK4ZA62TeDp69ZCM9T0XpXAC/lsD05r7SEiDNMLyu42fNiSzi27kBUeC/IwHo7FaQNaEGaayPDq1pPutMxkk1gqtHuf0/b277x3QsOxUtbDyi/e2VXeRvp89gs67sxHrD7V5MbgoCBxgkl3iJZAXrIdB/1kbT/HmVuogKIi17g03sCcRh+bBAcjejj/41sj0wQIngbVgLCQbZkCrbWkNSo9GwmebutbwR+82fX6Zbrq8OviAd9KIUodAhMMxPaEqRUXgFRwcc81waFQnSCbfvuR6WQcsLXuyS1AXAkwZV7oCtR2hzZ2eh32bB+zKd0sxd98HTvcia5iaFboQEhMnqLM7vlWeQwsxH90fZ2vI6q8903HF/XS26rnPb2rWawVgmjynZifKUHnrxpBIg6ghOdAuRXeDSKNVwpaQqdXs29eqUyTL4N58nOeEBtF51m5jMhd36sqL+0LfyiNP4gC1yJaGGeItHZBWu/IrknUhZGFpMAstihCYBT0+cla6LT2LTlKR+V2LmH5aNFXEpxiawPWwH2zc/3pGZp3lstVRgNZFZ1l+35uCa5U6ONnPp4xnreXFmCd1SnesjbsRvqYBLqe8VXozNINZ262mvS6bXsvTs3jFf2YZkBtl7O6XmnTV3YtytQrdoRzZKPvJPLdQG7txdqA17tWUx6D20xFHhSVdPArSxlUAD7tDHHCEahwdZguKBHajIVJv/0Vq/4QS7TK4GEhZXJZC2/48qXcJBWH7jcHInc9rE4OopJtVxVktcZPhzFssJQx3frfXMiX+GQKiT8w8gsG8V/ltS+VS0XO/ZDU1BwFQ0/iV8HpPTK2s1o0EreTsKAqaT8ByzHdwchzXyiiGgtx50XUJ491i3buKnh/gz3weHfXWm7/xKHnd+oUPwxf6cPij1RsahBhT8HY7NL/VMKmIVDMGBm35zljxd93b/xzSweovptDf11i75p8218uEHf5rilVddaqswLtGU9M/+tbo+zo3XXbS4l/r0sDctC4n88BiTkyYi8jnF498JY8P8zuzFDF8FYpZq4+N8V9YQuPrxE3QcVCXyPNOpk70+ngFsLDwp7fo2wc/p+ApedlZZjs2jCGh5Khq+TnkKlyX4z5o1kq1kBj9ZZhi/zhfdp03yuCraN3c29/SUnfXXEWqomXwS8a/HwIE9kQgddSsMZhTAzY5ZQjrjmNYVfhfKYoAM8lIZrmZNPOL+gdXb7LZO7oaPu3RW89NIHRyWuOG/RToxxW7He5LoDyQxgV8pdjuIwWTX0afPzHBTpyiKPY0XyQ3E3JvI4D3d2xAxgLjpYT+UjKwVd7+RUc/1Ii3Eoc6jNOoKD1zsfFVzNxV1hsXzSc85AefmO2OmaCcJz/XsElV2VvCGaXpQVIS01AAMnW2PJDsOjlebmOtvG5OSfyasGfWIovsWXn1Wt0+3I5b6kOuB5q0x8vep7Y+WjJwxj49VOeAO+B/LvEVThlO++WrImGsjD05sj8RHNzPk74wcIFoQOKD8FpG7UhfIm7zaT5XoE+7hryoOKCNSZ3L9wPKJbT8197v+7EsPwqHL4gOntopeA8+xmcGsnEit2ugI0M4+nrNw1Gr4JJaBs7R5Zmlp9iriR/9TZcSZ5Y2R4AN8pFyD7rOnetTNIerrBPZj2w3tN8Z8bmSTkMTLScgmHbebTcM52mMYdbmgMvSOC2Aal8hdhqqtE0MjANCURZYZ/sJktvcHQIBKS0SAvBnvnKNhqKt3FGsOiwZu7WV3l9gkIRbt6YXbYGw5zItMnE0K9MLxyMw98l/topXEcn13DQfT5BVYiBxuleJFIJblcWN0DKiotytj8af216/C52Cn+eRjlZdnn5lsa3OXBlf9rxdpA9iUkmdqaDly0HWUPMJhbsYX/VAg2Edr8wI9AVzmMcPB8HgDhPEh0PBs7p3FXPFgoeChAikb09ofY8n/q08JzKQJ0QV3q/cF797thmpIgxSZUppr+OpuPyEdvJgRZfHxJu/G0iRZCi1MFTE59nT7M8x5GTf7aQoWwsFWm2B43quSACm+RtTXXhps8/WbJxlLdjAiEQ6j9I7jdc/+JBXDG/ElpQOFon5CPMHUmwXRgQgWtsi1OPROIZYfqR+p9sDayqGV4bx1ZMsGJRFQWv3OcwVQ7GJv2EH8TGWKIXby6LVp1RazMTXErDeay99AKuenS/nD+qi5Y4vJQcfOxVBouYTB+pb77UdLdNhpn0v4Sai50D5QRqtHOCTLlEHV79pjhXQRKearVYtJLYM8YpPJdsZTwOEIKbwoJ/szaRA2d9w7zycKDiXxm8e1NH2spvKI7qa05M55PFXV6e8RJlwFjMZkubOWnNSm1Lhiu6sXUu5KbjGnP0sVGG+bvjtKLkcg6hyeJS03PZ8WCH95ZKjdUviCLCEwRAIkhEUBC1NnaWQGC6lYYv/JUlyvh+GjFHOJwueMAKd9ljACe0vLEOjMSX9q+C43IwcA4wfBWVfk6Katbur0/Ts12aVzENXZQbavaYuL6vPuMblzwkeRW522Z4vGNgbShYkVakBsDSflPAAdfIhkUKTJJxUrkjt3TYKapP+XkI5PInydfa0PrwuD1sOfX/PbIjTdxUxArkCVXZ0ng7+gIQoyVlXv9wwMfN6Z6H5jL6IEzts6hsfvC9uRk6m+Mwc2QoKyX6L284vVVeFIYb3jCv0/HqhRjI7/LyQJc9oGRxEL6ChUfjjcAaBK8f2B8Hp1HZykwJX85p33o/VyL9bTk1MbIo58dt9010TU0mKBn6PPvP53sgl+iHVM90pZ73Aybsn8E33YBwML1xRN1sJQ4Pp289FIaqZm2kj5gP65hR4pIW8qINTA+HggTmmwM5HwhO7dqs3HHU5CJ/PTI2XlrEWJtyuZ21Os9WYOuavPYeG+v4iRNEG4Hozto+iEjDxuChSuJNfn3sfgMjQknjwfF1LIgq5SKVJYjD3GojnEFhkibB03B4+azqx1RmCyhDEGt+CH+tmq8kouKb2utXyhOXXxNV2iHspC3ZfSHfmPmT+2P4l2Z24b21FXumdvbGKkwjD+QN4cHFiw1ys0+/VXUXCy2sJdc+58rXUthl6/zk5ofvPq8ZRB36GrebnXdRtr9DqC5AME7ZADKSFiKbAGoSpM0U9hBIdAcl5lkFeG4HkfB9TWVg/IbHru/zmnJPZ04rjM6xR0Onr2siwIDMR4VdaASnGAOwcXE5InihgfBK226x6lOKVcFDDtWdQz8XUcjCk+KNWD4LRaz1hjX6WeU1dHqk2wyFcXYb9fHPlcEipZVfs8qVfvIBlIV4ecORVaAMBLfVm5N1YNuzcaAhT2Hm0hs8Hv4/SBTR/31nXyBK2vz9HFQPbr1lSaAICYsZ8TH1iTvonGD1nBZUrawgy8FCfzS4AmmcAFzwIijC7UjxcQ8ecbJQBn5iWS0Poj+yVy/D9ugWkbgnw5ZM/vaEo7HD3LIRS9QZD5D9uFJlfFJAm4SCWO6tAmO/LlZCuyzEo4sTGDeK/eCbgRsrMd5pJpljR4L/FAKQUCxH1iF/XKiNJzquS2NRSIzTTXGA2D1aTrsfWMgLVeMj27OOVAsYwe2WittMsJgaWCBc1dADNgQCb9DaMHc9wwGICtcuAf8A3H271epNZ57wZqg2OvxVNDT8wXMLHARB/r7vqO+OixJtxrMIk4apt+QyHJSxDjchw+3JVyeOfxM2lFEQ6/W4oMl9UdSHzyj9kwlLynIKgHNsZWq5TRTAmhUGIPj3Lgb37HM+OB1YQ09FRjfO2H9e3LsTJjdIrAg+MQjKT7Uvd6pMSzmSbfBEGQkjilpmQS0hkBrS5AKnvlATOpcNz1Uc7bznirJXnDkoj/7R+kaKm6zaBa92sc+Y2uD3P4l1rIyipseBG/if7LcTK+rAQRNVnRgztiEee99tpazei2QBNWriWacEcd3N/a0myHJUnTdX636P2pCNiGJVSCiLYtwuYsjF0PLqsHKjH+Lw6eRGxzZUBQl5ZlMYJJvZtPgYdblep64uMsq2eLwK3S+qTuF/vCGlmMWEdOrJuGubNejRrrkg+ydK1sJfAmZOi4lYF0k/xnV/DhSTlzOZa751AyH8wpeE85UZXfulARl9fXzTk+lePem2dGBrUwOStjfmrrMmWJfdHIVwYD8F4dvqHLJWzSSuf6Z1M2SByxKtCgydVQ9OSs7Vk0OYEmOvKWqH8pslvK0HBmKNzgZP3cOJt8LeKI5p4REvcG0Y3daq2rPWReBxkxjTAeWokTk2eksOPyOWLWFen+zlWyWA3F8uvbroPHLN9wlpJ1nle03+NJtdzJHujeGBQkHS6YwKUgxd7hvgetmkNCoW8gKHJhPMtuR/Hy8t/h9Hpg4X/nPaZUNgksBYWFj7hoGDV5ZmHkS/4voTfdNYBN+hTOCFEhvfqDEzpMpO0oBfaXAzvJouMjCX4Rn376OH/xO34+LGJb32ijj+8z+rLhwdVWwC3n/eyx7UwRvXZL4aRrBYhPXYO4ic2WFX24HLxi2ar/ildGCI2IPfd901vOK1PBCLKbn+PNl9vqqE/oLOIKsmlAKUnhOmwRC844zoh7nVuGt46YNCeLl+dWo69tfe+5jsEVZXtEGUnu2Dk0J1pivFlMcMgIDklLpe6B2HDg48YOrDHq8/D1Z8+E+dRL4BVJ3IkBC/eZzOSYUIpl3kUfgErVTUE/l1f2v2wVXwdVZIOhdwI6GV5yZOMx/4HTgwLfyonNMGkYUQosISN4F9VJcVVt19Dm+OHv+yFHPbPM3wA0AlgbFmfqzoIkaGA0Pts2ugYvzYzjmsKa3SCJqbZ0lNQUFsJ7lt+/9HId7bS5Cg20ukJLOXJyYDMTeRr75W8dGUHmNneOqBrUAnuPtqdtuH4/xSzvTb67/qQXGdSwxU6aGzkDZuhlDZBC5icPTatzmXpq2BYrVauCEHjVns0ZCKe1o9JM/F3h8YJMOUGSa0HPIWB9glRKtSm4dxFHMc4Y9C1xOmPlaNRWlM0UMQ8YPbfPcJXuuKRATwcsHBS/ECCugYN6thx88yllUj4lqCpl5QfE6nw0ObcNkqvVTVCUDATJCs+nCdWqDdeB+dK3NWs5Vpcp+fTgjxhEfaIfb2X1dl6QoAJaAEyuoLkP5EvcR1YmHV5On7JJh75ECQx/xw5aksa37+sU2MKTVRJodwUlp3oiFyXnEWMldSDH6uj00qduL0VqJK2aDohCrmh1VKN4Q3AGkpTJKRiV8J/BkpQmNDimpEztmrQ1MSwKLvUYH9JbUrA4PwjyPej+9ValDm9EacnQJHw1hYs+gSUEvq6dpX7LDmqeEN7RpwP/W7IUBbPmNCUAUerOab8j7sAy/1OMWDwMR6/vyiExGrotaBcnL19O1rn2qZun16zDD5jSu9ZB6IRbsQMvnZ7zoefSQl8v/cFxxPn18E3zX3JobvU7+HkKKM1cfB6lcVlvl1K7N8bqLIXkgKGbS3+vo+Fi3u3h0bjsrPXUXeZMf9DZgtGh7g6c6aCfNPY1spKpDCHh/NErWR0Ak+YYpvPqJSpH9zs/We8xriNqtWMc74IIwB7zKpTXYz9huANWPGA+XVA1LGI1KOXeLEc+OgQRe0Jyyre7twIKTsmXcV2sL1HgLbe6NIxMRfg/NrladmkxVfKEYraUvsOqulHff7p4rDjrK2mC10+YO5i3NE5oCIUj59LN5NFnU/f12PxnwueIxGhCMzVT4lAodPO5i2S7o+jLstiEFZbXcCW7vS5e+iYrvA8nmqxHa4dyveqmQGI8hLjBpJ+1vjVPMej8UztDeE6OezcWwsuZVFc5ew495J7rpIc27xka6o03G3UN/NchgNVptMT2Q4NqlhDCFAI/j1eBAof11IM2wK0a2dLkqvuGnGs6p98Dkxy+Mf+gU7ul9Y/e/s3ua1WHzgDj7eMFI3yoEsriuZMLwMa8gakNQ6zKnay8WQ53PqiGteeU/5gLOlOiaoKBoiwxHQnoDaVKqAYU2S16bHbqvp6qFHGRrCHMo9d/L13MLA5UECV2Vn3Dy43iSzDSESt6toNoec145lPROoLehp6w8LPAcZi7t6daLa25w1KTwR1ZekdicPJZZHvkTFsaC+aqx/lXKY513RdzRN987zUWEAiSiL8EsDegZIWHffgzsHAFImlF1IwBSsFvvcLzhgR6J3CkTuoenwpo/wBLPaaomXinLVQ9dpGWqf1CHKancDnGg6e/um7xloC67Q2cU3jq6RojcPQHRz2jPVjLEPC+yh6UdSm/KYf864F2EgY3e2aLPbZ5dYREw2kZnEw7JtfuTLeh8CoIWToxyv5DlFlsgKxKlq4K+WEYq2LB1OxqrG4xtEF737OwcFgmnSYqaLkLeFu3IKS3gC2zSAxk1J4P3n1fHTFPuYIyR2nAQ9KdRlPVM4HDpq3kCyTl8eqYTNjQgnRPStt3J0S4fcP4aNpRAlmTRcDRwr6ItCrCiqzSptmma2TOfy4U4iCfeBPpGZUuwWiyWdrBfbb8CZOxy53k/PD0yO4X9JaNr3XyFD1XWJfXkTaM/MwFtjqeOLYYQrwIlPj0dun1cL1D1yFXZJ1BIh+Cq6CPlIwa/z+0iknPaIByOS1kZGzR72AbAfIUcpfGJO9orrRxBhqbfHdDfOH49YXh4dcPbUKXUJhCO6ZloLdWGEQKx0En+dLd+kt1o5bG5Oc8azy1NN/fQhC39C1eOlVNRPhqcjp4bWFm1libgAlON+cCr+JUT1gNa84ne/g0Q/CrtEcgtTjH6S3CzHmLsD8/OIs2yKRxsCiM99XNi70BLNUJZ13uvlg4Zj/si7rNwwpmXMBJom3xDlzLScwP/0z2utLZbHVdABo6L1Kdpbfk/8spg1Ao5p+UKYJCSLVyfjWSPsYuxoR6hhd77adcxwT88gzJXOPHT25DEUl1ynrpJdMbZTN98bqjIa8GR1dIlMuxi3XHW5FVi+mmEsDU54XCZVnDqG1wHfshE6Hv4bbUAv2o0VOMGGVb3OjbX9IDQhSLxzpvDssy7c1KlNVl/gl2MAsU7BvhDxlZUFHmkjY/05GIcjUfQCcNUPJXrET3XfWRDC/iycjQB1NFJxJYZZe1YF6CTmgNfRY0QqLns6G+sdv/awA1W6r1WzfZh7FusR/i+ut2CpH8nqJuO38xADKmR6wbM+4EPhija6Fv8v8HuNKhXhmPgQ2ZIEpimIpF6DTc6ubZ61Pl3bO3P59fX4JvPrnXx8quc6EGaO494ZJYbamI67kTF7doFO/8vexzTIBgsMFpYD3UCdHdokXP2PZeJa5AzM6gwcDo/dWwkcxjS1Titx27P4klzKA50kI6awR31+zpv6IiA3Yr/dh+sO42Mo9oAU61SLXXwX+0W5QpozLRkwt9fjK/AVfU67ydLFQ3PkYaq2fRBUt6GKWV7KKE4DE/FE/nFKzrotralJHYgSi9OCClWYM0ffZ5uN3gpTIASs3fz+Jv/rhNY0EAGa3ovNmyPX3yF+P2g1bKOv1P2r1BSniugAFjZU8gD0jSCwEo14X95c+1MTq5yRZiHweR/feVLFxchQoXeReNxOcY+z1J1RXUTuxiXHy6rSTHANHujL5BiAzAU8z7mD2ri56MHyzSvJX0+V3qvUtlaCZ+Gco9BqETwOQc9ug95qP486qQ8oMMwJyo4RvHOMOLVpPbiC3jPVlS9H0dV5SSW4PjGjglL1cyKFCEXu5+mLqgHWooLCS4ubpGJSnVA4SnKfVR177O4iaX+BeHxFWyaEo3t6c+DH7Vzk/iJCyfg0OrPGAc9O4dJOUjceJte/xXkd4EOSYBgUX/pPmXQpI9lq7etl4v7vH0cVBI5bgAnnyZ6VycbfKnM6704tQtzXI5gCUGrekuby6eBXPjJPDsNLXCiRyBQO659HOrqgc3O90x4Te5PnOcCuWFCjEitY/9kSycoT8xC3h7au/2iNnun81PK3MPL2z6uxXT94CpVzArVwFu8VttWBO/9TsRFZBAGeUFT+4Q0Gy7Iuq2BsC51fbtVMvKYHO4EaJTTeSB5g/CCCC5dhTZ2gt3/6dqNGDXGXra5n0T83nHK+QuFaqGkt7SUGQCju4PjTbk6iIddZzHt1rOCSamLyHxJDe8nMPNBnLzwl+iBxyJLuburxMdCa/I8P5SzNfAS1WMClv1+K9VsagoolorAI3+9vttvKuVit1iTkptRX1bfQnEcPmcUMBei6PvMlGkyYaawz0AoKLoAyl65gy7giaCjGs0+k7d+mDlvIBmM6QJCwfV1optA5rEPAK1erqCfmklrPJu42XmVd7JQuBOxmF43PKnAdsf4CM7veKsV21vrcNgD0uiBHWNzhVHUdh1XQtEj2NWxt82+18tUimlg4iRL4ufGuDYd/xX8zpXcp/u9fF39kdM3Sm/Up+06L0DEXNiiLufUtvsNu94ObZXX9Zf9wJzQluhO8oN6uBqj7UdXqij3oUk/uQ/K987B8L1b+r1cgN36/3gC/rb9QeNOX642KYnXb9BnXvmFP6KceTJH2n0PsVC5vBlKnSwha+5ejnXA7vnU25CsFwnG7SyWC2MODRMFuei3bC8w/7qaj+TSduOr3C9CwlkReSWaLCD1ksa73w1ZCbJTU2GFcF/kBr4yAPzGJA9u9oFUU8lSPQw17/UI5MQ5kVBFEHea3ucr1VZTR/XPsxyVCA3sc/4hYycAtLFmGW3wJPoER/DvaZBIGX8tktT9nab65OVKejSU8k+4V/4+4FmToJszlVKkkabW/7iOXBT17R8zplcQ7ZxqBU6OPNg2fLO5K8kQAjvH1KyhZovwQtFoaFTOhKC4RdjDtgpsvQI4Zy98bxYvKYorz5W+Y609vGXoc21T3/0NAohcsH69D8KDrxnaY9CXemN/29MKZq6Yt/+y1P78SBrLRiZG5dxYkXXf8Yj2UWHZ4ieeigeyVXb2Fu19DAuinWVLswuF6g1FV7Sk8p/MoBJn5wb+WkrYkbLhPFZHt8SOPBZK0JoWdw2tbV/y0xFJEw1CIBkqQm1VYfqW+ar3RbmEeBoyJnox4suWgYp4irSqInzZ5wvhuXu2ES23MHx9oxCOn6xAQ2lAjlv+sRJJL+AB8xBLOSM+KypuXiRL5v4S3t8GM43o4qSnHyY2WOB26whi5zazyGJcXAH4Ek1BoL8UUYmFs5CRF/MYK+xQ8FUKxcnp1bQ913Lw9OwGgQ7JZCxmE2dBoh+2jBVcOK5xDolZWRCajCZk/Cy+Uu5XrFTsCksFlOeGVfSzxgtKm63LHONzmlYgW17DtOp66m5Wd6+Okdsy9aTHca3cJh6Jz0cinSmiqSEw6Inc2RJyjeYsKmfzNyYqp33vbGcw5PhuXqCObqNOXyV1z8kaIHib+DfapU8V66zzjMR2fp0cOmuiMm3GWuN5ApJ0IuwZM+d9+KjgxGELDYpjdSwUwK3VRbepRqNgt8itptfAB+NL2mI993SJBi5+7QeCLih/Y3hYnQhUVrAf378mKviBMsl3tsr5JMjs9VPWiLC1E2e+3rQaK3K4Tr7M7YQOP8OdLuwQ14Qw0MDqOvTVmO+obg422jHWtfXRm1vMAucLhl/BexKA+rWqNEb7XT4oSBU+mXT6Uxt1Gz/S8fi5IyFzIe3jADaDpDd8CoxeJWe6lvncoGHweG39EdaXt8fR7wZllYGW9vYo7wfoY/x2m9rcYzZjdAVkqx8AViKqlYvY5GLJB8gmBxu8A/ja1LYrUWZuGrJCxN1gRonPkaGpnXDxn/jPZT3OUFR6lPjJlq5qYllg3pOE1OXay95pnt6lvLWIfntgC1qCjE7o/8PK1bqYdr1EPma/RBBsuovc8etf/nymHMciZB0zO5fAFvOOUoSxIMgFT79S804k6xgntcHh5H5Jk1+3wBaEj+s1tGYX90HGOnVuh2OeZu5j6jvYqy+vjDeCJARoRTYiDOhPk+VzjIQns+iC8FhzCR4Dx+gSwwrMGLeTQ/YldqBwkDwC/zivQsbSjN2PTSdlzAJMPozvo7rdbY8BCH1ufdcVh4/9IdqP6+bIFMzE/v5xN4F9m0HLIpl7hWdzJdth11dmPHDpq6G7qbY8USnQMeBxZL3aysw7VNi3JrWZ9eSfBHnD5JssY0ItquUwXBGLzYlSuKqa7AJs3D+d57v+keIHbpvJqQM8vc1v12SsRsg81Dg7bTliaRNrJMDCpRdRpYb/cXQA3oCMiCSTUO4qIcZUc4Np5snK33O+xMJO2aY90qQ8QUhfDep+kQxWPH09o89Ihwm6wKZ/K0PFVa6bqKI9q8tptANApJm1lrrzFrW8BvDMAMx68dO0yiAIEc4yqnUcU65S1/mD+S1J96/wUkkZv2XmvhrV+ZFQpwW5uTMGTzhRqsAOe9BletHTZ/hDUJCkv5xapH8SBMfmNYW2ZzGyY+cefqmcO93Pw4bdZoshMOquDVVPuDwGvCT8K1T3UsiW9g5pHlHaBeZq9hzrHLsec8N9fC9BcAHZ/jqYTfXcPDkeOl2WEeO2HIf6M50vcUqGHV3VZ2orVvIkfp4S31y13SA9KorZGCoKC9pNOtXrupUyzUzgxzUmclPn+cOBm2DxTGJX2RaqcGDmEBo8gOL7oPpV+TnwCBY8P1JgkpZS5sxzxfNZ4JgNIC3SJ3YjNGvNaWm6gN1kNZ/Pi5tmBE6KeY1gcWwmctDCjYX0+U8OgHpfG3pS4byiHNeJDG/qbVOzf5CoIH6hy0wYvQzfMlTitR6ghBPgbhfgOI9AJN+wgf1haIPUTK46YeItEGAUioQQ+n8wykVw7Bb08KGVtRq530HE0Oyiz2oyRIv8bp63P4+KEsqwS9Hjqzw/EVqhS+eytt74L5u1PNo0RRJYiIPyhyzgKAikyrXzCESJJ++8lS/e1IWt5DL14bPikd57/9RNsxreFVl55/I9W9/nnDQ0rrWsqQD5wms41vCEzI4iaWOE0qtCJjaZFoBQnjsChjMmrTmTkfhSosd+IcK6ejs7t23qykQxGD8Kptp0kezNE3RjxqC7bKYZtKbXLa7detpV8rUc96k6GU0ysa5cW9H+OkHgbsCazew5Shk7Jbh/O0EAU86Q2wAQjnkAeEhvdOBOMGt5FICucXwvwAQsV4ZU/KDAFEi1nFRuhUK3dJ2gRJdZol2u/dku+KLwXqjdGPdvuv705XI1nfqkybZjJXhZ8DJxVE1i0hPLmaug+TQHjUofmSKiQND7kqDY5mxDqKcPmOxR08bwa/HRI/35Pgbp/S4lW86/WpLQ/3yDGpQvE/Ntt3RkI16vN4I8Y8f5ZLlEOnqAraY4hDR8Hom1n3sWTl
Variant 4
DifficultyLevel
784
Question
Morris cuts a sector measuring 60 degrees from a full circle, as shown below.
If the circle's radius is 36 cm, what is the perimeter of the shape, to the nearest centimetre?
Worked Solution
|
|
Perimeter |
= arc + 2 × radii |
|
= (36060×2×π × r )+2r |
|
= (61×2×π × 36)+2×36 |
|
= 109.699... |
|
= 110 cm (nearest cm) |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Morris cuts a sector measuring 60 degrees from a full circle, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_J-NAPX-H4-CA32-SA_5.svg 210 indent vpad
If the circle's radius is 36 cm, what is the perimeter of the shape, to the nearest centimetre? |
workedSolution |
|||
|-|-|
|Perimeter|= arc + 2 × radii|
||= $\bigg( \dfrac{60}{360} \times 2 \times \large \pi$ $\times\ \large r$ $\bigg) + 2\large r$|
||= $\bigg(\dfrac{1}{6} \times 2 \times \large \pi$ $\times\ 36 \bigg) + 2 \times 36$|
||= 109.699...|
||= {{{correctAnswer0}}} {{{suffix0}}} (nearest cm)|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 110 | |
U2FsdGVkX1+I9rYd8XLR4/xylDtNg3F71k61dY8yHtvssw/mhymk0L0VLndvVyGEnVWwbK+2D2nbVuWVLnK7RLrfNklRGTju842OH5JFl81uIlDZVzK3wW3J/HOmSqmq2dkjxujQxoWe1PANodr/ms7m3bu77OEDlxMNPcHnt33gc9v6YxnK3O/Brl+9sPQFhvuwDFDax/03f3pyT8dNrYFdmU1JhSh0ZftQvoe1y1a/e7Ypjtf1ySlaez4o44XVdb62qzsi1N1Pw91Jca76BxpAfNLEttxAqeERkenuj5h45GlWI1FgwVR23DEmdWW/9yj8MHleBgCpl62WKUvsJlZFePgCxcd4YACfzaWcfb37lIx4FE9qkMOKK22xhN5+HaIg0M321W8Leo4oM7sru8XN8M7sENRDO4mouOAqTrcjL+LyedTxcG/LBnGIVC9jXEmmxH2fyNu4oXjoAZTUfE9mX6uqyyVKvk5GzvORmkwr+oftMt5iYlK4xCeGq3q5mKDHlesN1mV4Mpyvyq/fWS/WAHE8uYad2qwNPUVfxVSr5jXQzEu16gicMvUeorLeT57sT25XPEkmeWi07raYCbKX0Bl84VN735S5pnGvm76XgsO29rDP8ob0Hl0Ba0SrlB7T8PgthkbBzFo6WbAee1ZLZ7ZXVo4qagj/M9NO/xW3/FWlWMiP4/bJtJLJNQYx5cqimDaa7764b1liu4zLtnUtFy1lGNsfLLsKjQt6aJ+GrZlAKM0ZASG7lPsBQqKaWBqsyjVmYG5uQ0yiq+abYzOVE98C35SiHQLpqJzvmma+c3UwZvfRFJBFfLATePN39LanNb/hvhc2G2WFFFl6BBdJ9/Joth3GKgRmBP1JAhBFuZ/fz6/c+5ed1qLHxiwFeC5OzU2X02wn5F72DcpS3zQWDA7Xzo8M1I6GmptHV4mRIw/rVsLVJZJHN/S8PHwhG01xukuLVPPteiuU3r0xnXT9l90l4AJdQPg+ysu9faI1gskTLl4tA5ZZxD6CJoj8822zNhowD9R9XItXwqvHVLjyXnT7Gujs9Be/39Ax6oCbIMqAoqBkQ9bT2g6aujLMxV7AbiEGtVZ6tgmSP6IGlV1kxy7ILM60SH0e979lWRZqvoj25EYaefcpQ1Q+WyFkCzuQSTNy4vdq1KHbt6ttWQLNHlVrLxDYyLOBsO7Yt2abR3PJmzG+lxENGK+3GQ3X9Qz71/rzrlDR/FsIt1Spxh9pjm3hgfUXD+G+fFUhoo+/nQvLsqfN8YMTHDbEwJtSi3bnYketUkPmVfIs25hMUQWM7nuxdPhcWQ9lcLaBupOQpseoVmqxb5JEZ0mOFwCzstbnXckPVTqJfrkkQBI8D24b5L5FqjZM4YNVrxmOGNHEmqTAUIyaR2pu/deXnmp4DbK+Q8c/8FK4tVwGYTzrTvkt1iPrYa1w8+47VzkKzSd04EulV/+/kDaEQ51GY/h2e1sMnLWIfM3TA97KbRgD20Sr9+OAoUHYYEKwBHNmcccEEyMXaLz1ebd4G6F3ejajv2jCd4miRljQn7cUX6AsPMvp3zgs8tkTwcGgWLF7U5p+KkSDnPr1xM7jaM8bI+hW3aO8w5mOW/O59mamYTGWOVme2PmPrzLVLB8p64QWbMsnVU1DBD49ob7BZAJC9Jpw10hcKFzhjlj1e1pZ4chPTbe/gfVHu5ZPMs9W9OwhItKnHdSBWTcuQ6hZ8uo603ifuQUw1D7Xpnd7JUQMb6Vi2FAA20uqOqvVq7oTjZsGYWmWig7GdTjUS/CglJ8TtGjdH27d420XRwA1TviWFi4R6F7WvMJb60YuK7jQlzEoo384WF/2Kv5SU8D0B1Ad4w3Wsm/0fMZM4Arx42Ktr37FQgZNb9/gTFHuTu5u0lfU0d/ajomQEcTUMyexkOuiSCSMue3bHMYa+pxrobCRhJVlLtdLnvW8EgR0vmAIKu7RYsllKo112w/yIGDUdmW3sqRB8lPC5qXAaJ49jXuift7xXCxRZhTS9I3A0YPKnKWquK34PUCt7cjp+TCTNiUvRxzwJLX6YyHn7bc63hHHIWqqD9NpKlrbu/ZFLCtyAZ2qwOJiT7ON/+5njgPgJSFvM0Z3PspvP0y6a16yWR6umgjbBT0dSdE+N3eDD2LF5mbxO6lVqiVjTRpaYDBDpG7Tt9QfQ4NKZPrWLfcXIiPLmtHl8s4/RtLnvxX9eGI6nHo8ygLPkW0/cXQH7CxE+x+48ocOhDtb5fGC42mpWEcmiV2li9W53kkTjF7utE9UymZFu6gLuFtuqruysYGiBwQD2QTS3VD+8lugyRy2BFkOyeeeZ2kLC9tFsx0f3Dz9ER2iVISXb+k5ZVJkVIhBn1SL4M2ru227PyPTQnjHGcJiciJt39+YWocqRLe3KUVzHl+Ga0ft7OY8kDzY6vSP2Knqc1EU8gycGSW4ulEyRbeO2YmRHZiYWTcgSXaq2FmjXI5b0YSzKtpDckObSDK/ppk6qNUQZ2gxB/Br/bGE6EvsTaYKE6a/8uQNV6Cy+KkSvTuH7itJa8QYWI43DkUy1jooOUngGrDUejcrcmN0QS13GPPJ8lXfcUYBO4D3uapL0IgMRN7oXKOuHu+x8zY2CHXRoLbNLdbWCQHqhpERAnFqJB8V31ABWJjAFhl4j4zaCfL47AonPq2KjgiredYPVsS8quLghEpsQ4ESxF9RXZFybt3fSpTuTWULeZ8rObrRkkhFi9lFomO2Cw5Uzr3nKYaXUHa7g31+gXEzswT16K9PqyW9u+3iJrFaVo1/8pCUxrk9Ca7RtG2CiPRKB4oNITggAVzpeDwPO+n/p5pNMdGWzXmYiDmGLEgMZfNPi2DnVYO0PtKXcZR7h2vIIxcxJISPmdCWp2abRNWRtY3juOMU85ToBGlCYcK6hr8HMkCEyI9mTaOSQFuZ3a57wXbncPQZZcE9hCqzr4SPtXMNryooThaJxS/XxVf1wJhAAjVw10ET1m//zMg+GhKXc/K4ETS4dUwi+0XXxrshgItFK1LEkFe7B9WMY2BsS1rYlNu+8pXF/r48hUcHiqpCTKZgnHVHeEkzF4crA5crxxOOTz3Tz9wOEgxJ47d60klQh1/1LbrfP+qMCXMwtD61qkJqDjoAWXUfxuTog2fzzVo/wN8p0rxp/69EAzI0S9p0bYd5IsdSP+9V9oiiU/vIzW4n0uD4QvC/Dq9xY/11LvWAG4jF4Sbeg7LmGqA0d/Xll0iwyQIRW2vxrbd5KLseaw0+ijKoMxNtVMpifWwM5Y5IgztiIDwCdo09BmVfLn3yAuLTIxKWE2CzOKO3Y3F6KVc8uxeojI8qycZaasVAwSPA71wnKaMzKDUm1zPSyymgWcA/i2XryaAThxyjEo5XJtan0Qk6YswqlptwuE3QcNmw+H7xmkIVmknK/Ps50zQW9M6Z5uTDBhDFee6kefeC2cQ+3cZ+Vkji59abOPilLXqopr3EC8ajWcJ49VSArBDimXycZgxdY4LD1AqhoNrdPzMPD7ssAwhOHJrEr/h/1fCEwZTNpAsuJNo5PSngFsSZYUyLRuyfshEgfk0A7kjXcVdJaps4o4/35ItEIYn/yASv0XA4hJ1A5LtVZuGpQHtsyHajs+PzXKwe329PNvH+CUHYltyHPi/ADFYLHg/1zyYZX2Tgc9HSOaNTj7+qT+8h5x5ifivfs/cMjkFAD9onPFyIvVQoBnkxzeN0Xffopq1nvnUR2r3L5Ll9izskea4V2fU+oJlQ3EgRhh6a+FmZPbVBxS8FDBSevtSGw77JEWbJqOwHKwf4U9iJDdr+SBQaH+Vtt3PlqlEQAp7NkfNj2twqafFl6RbcVdha0q2ox0CWM7mjDG48reG+2Vc08G1xxKDmTF3CMUo2921FB3mdb8ayAwyuGkm2mmo26GR7jpwdAhHKzYwb9ECs1+kiP7WAhWQe72kZMXM+RxfEdU7ffzmfeMHQobyguTPF3BLajpXc2fOUYQKtVR0dYkU6/aebiYW3N8/l9lCGf3YbbLXkonXtxkRG8q2ztO2xcvMcVHi4RevDKPzM9bE7pPgk08m4MZRmthKKsowqX8Hv0XZNUP3crCv9nRyqN0P8khRmzFNkfk0uKiDB0QfbrL8f+kKpDjk3nlNjgBk3SuDTE0c4XtPQWYqmFvKPS0m9NhuTgpHpkG3j4xkv6bLb0dJ9agWdtagEE/Ih9pX1HJ8naKK13y4U5q7dQKYUjsAdTkLuQcVIGY7IbCcG0hcjNp//6Pg0aALql5ztCJQFIvtE0hxZANfMnO3KjTDH01KMVYOm2CQBF6KUxMfqh0O84JH9VxaeR+LHqYhRBiYvucchds+MNVbs6dD0cdA0R6Id20WJDo77Oc6UFXCEoZoOd+6z9KO0Thj5boCoMVm8mr8vWL/bYFmdx8e6oxUpyQC4lbFqoglwltEH3NGLaxcnVEt1hERNqEt6iCgvdVAzgQ9UE0A6ADDg2QDFA1EvsfqwYP7c52FsfPSoMeKYC0M+AEBq021lah9Tctw7DRjEFwHAUjbr4E4nzOASld4I5MnHAf+gz9L7kR3uUpRHfqH7VrnFhOWhDosIyDHWoUnj0wYZ9bZ+4oBD3/bTKOjq4NLHOW78tOdhwbPM9+OgsVxGNbGW1BqeXfqW18UDESsQCKkH3bi6MZnu4dZXnIbiesl3WzBSyYuvx1DyJvzjJh9SBfe4o/qM/z8cxQqED5GhOfKF3dzD/xUjfL3adgSimbQzrC7tyWIRcbNak4TVCPrUNpj2QHBa+Af7BwGIIsDrAtnanesYy++lFBCO0BbShmCMxEu8cq5XsdfCInoVwi4bLZGuQZS6GgWJw0yZF42IczyL3A3KHauAJejhj7yPxD45IjVO/WlVXQHXCr3qfs6WEpR/PGMVIovqjAXajW69uUDE6ti0+3ZmaB/YyA5NnmLpcFnCpR4Td6JQtgpbkiblS1asF0WAIUXPVv40IF9jeJmGQKjd4zx/1onArhctYrtRLsEgFusvFm3YZrKulBKCstusxndzUTG39mibXBuexPCeBzzLt99QPY44BWQQ3Nbk0Re8/PGw4SbsXy6HHD2Qo14KYF2K5cmTwoneXyvWJBYLM0VYypb3MXrQb7+bT1JezR0uh8R12kMD3K71C8WmjutyRIyJwjbtgQ90IoHnO3+i87VZHt6LYR98LZ7xVC+hsKPcU8FZWMXtAPZyeg2t4u9+nS9K9zMkZ9n71jVp+Ma3kbtMNoopu9+306K0uytO8YgRz/ESFamzLiObqbkFjvBqJ1hnrH6w7MOl4e+rh5DifevE4JVcE91XiwVYFQofcjc8jJcWiv3c8UH1Vrys/dN/k8yS5JNhAE2Q6tBd3Vme8RZXvzM5Hsv0JfToCwpUsK5ZgRloqu8d1jW6ra78oACF1Fm2hwIR6H/GaqYpTje4NDcZg4lfr8e5FaEoBsV+8G9II/Fo1XfmbHSUFhVPivlccXj5VNK6Szv8+lCglys0pOdeKMaqwS4tgrrny9mxa9r1rdTlwm4iXsFjdrHh+9eoARGNRDWQacUSWn6rfrSNI8nnqYnHRHc2sLML6ZJUY8mUFJP+KyW4QQwMwAy2+5PPhVrXEsIF56oHXvEnLA9lCSCfg3kw5Oc1zddEBy2fivcbmvE9a7vrt0M+GMNJfNCDj3fZEdU4Kt0yiXPvfsNcsdCY6agefH8N0cd4lfysqREedOF62QQ3ejp8QtknZlAGRSG0Ay2S3H61t7FoW2RnBuKXPOXK9XLt6YA21jiVrt8+wevAUlwtWMA/Xl05CI55XwI3UJDvnNzmZQFsSHXYG1O6awYw1usOXVqiFjJK1LqEYqJ0lBbJRGVORLeUrr/1+8/UDVzLRuvZgC2Of6C+rjLeRPSjSfto0iBYJx5RkGfhUflbIx9edVkA0h/q81z7lAnbAP2A6d6eIe/x3smYf3+rZRkhAsJgg4iW1MXbBvCEkQmFs4f23/ow5m8qg0vsQ+BSbGRKD3WiLKc5DhhNHr01n1V3lI4ZW5iMWLJ4cvn9ACUG4JuGor2zxdu/P9GNwcLF/2UMm87ZIcm0QeQ+ie5N6abU/OYMfoSgJgHQCg+ucm9TWdP1mvrZshjBH8J0r/+BEgeuk2q+kUYWNNiB/h+TfiXyeM9yEplEgq/eWGP3FgIAB09c8YXxRZngKcioTsSPJBrSIZqwSfblXXvgboStTfKbkzJ+0p2Z3hlBGLHnEGPN7HJNqidQyW48wEPBgyA59TSOr8F/yzoLN0HKyNxFCY+EjcSyJqF/Ur8KNm+2k8kFwd6YBgMKV2kfEURM02xzXZZ473L1AVk3AbAJzhveH+cuDyHyWtgUKgYoEU1LEJdxbXRebR6Nf1wfGLrf7TiMBm+FxTkkFNNwraBqRte0OKenzBSe01ev5EO6gBgan1bUq/sgsD15wCKMUvbzcZbaV0rs8WGYO5M1BwXzwj6GncpX6C82X41xUKhLyA3A4C1XRqvfp+PaeRMBPSsMYi3bpePxM6/TsMtbPNS+gAiRhMIluePGrr7Yh5cgDFO6AFAG4i3Jld5UmNwyTegdqQnulwozR8lLUxqLG7eJi/sD5iU7SXVtCTV3a6C+yonJU+1WfTn5zN8PMq7gfcJ6aKRDjI/xtIqPuV60Nj0SytTWB5nzVwXYouwFZe2Hjr9HHPgmTx7zZvnW3YFGNB+OFxYnKHa3pj0ov3ndbeqIxppKub+8mnXQrX/eMvpJPsor6OgVdZzDhwC+Philb4HKUI+FpMbwmBngy2M0KbOoHKA1LYC6+Hg//lCxaGCICOY6ssqLJA7rSVE7CIM2vGwanqFle3ezEhiT0HkQnieP7vXkMCnD0TFnLLiFneDgFN3lSnXBuGUUBQepeVro4EAxZAo4vClJ3u+i4PNRZfNYATQ6y1e2umyH3ZuyjxpeL0yHGhuA82SwGRGtS5WXaEytPZkifddcZEuqpN8bYjLnT/eNwB9DAeGFVND2RkNJKZ+RVPGJ+TXjS0/Y5Kzad1/puxnW2wf4BTaMSAWuax7nAwoWoDtgT/1/YFNVw9Ne5irJ8hPsdMG9m9ltNR+DB/Hbj9NXWOLFtIsHLzRv4Vfoh2DRVKvf3KD090xbFK3iwZPC7ZBaDtqTXDhHGqa0dzC1gdXiJrVYNZfNy9TzrtcqdoHBL4kjiG1U6QJvg+jsyFfzHS5k0yXWKuEhLLdz1kC4hdO7b9cwoImS0zSx0KTMwJCwebtauYt9hYsB0TxWBupLwfdHR+MjoI6iaXGCwcvxqXtvPlByXWYB16IStp3b5C2qDfjI+M0iWM3x0KjOltcjWYqMZfldOJrgw74LYvMvgbaUbzREJIyaWZ0K+lIDfMCCYkdAmxoB7WZxJyMaNznDBsOfPAvQgWcYAK0y8uFleBUst6uujbEW1s5vGRe2Q9RoDcEi3SxXDwzFGiyoBScFZ4HwNNrVox9dhqoFlgdNfsNPeQcHx0w6jm70PUIaKYoN4Wx/cGaqY5MARu/sx/7mFYZ3Szw+mvK3IDMmSr4HASNvozbrmIsDPiM3FaNIGSBgsVBFjemyo9aN7qh6afkN2ouo6Iv5D4AVj14uXhBFdrMeXw7AUyeZQTD1ktr8AN8kaiKiQAs3C3YGg1ny+lSXZYQ10T3FtAXk8TDg1wkpvMV9J5H0msRVZwgcvl4du/pAL3lD2lsB4EyQ0HZQY01osp8T8tgy4UJIy9hF146PlPvU/2amb8x/LfYLYespybXZMH+Fne+4A/rcesZV3yLxnl3ZLOEJjczOavW23jQp1kMcLo2XZzvILqEXVWYeE7YSJDBGzNTZVzIlnJJOtksccXbyUA1VOvrnyafFeV+OWi6Jp41xLloXj0rnVZowi21GGfRDSEP1bYH3jMprqa8E68hVh+PwzVJW1Ct1h/ezUL8ulHM/mvdCsWPQ5Qqq0Gk4VSnS/f+c8xEmj0qzoQXjsubNqQH4ljWiVYIKRU02fYEm2W/5iTu+jpqM/ZFT88RUn9XqqF3tvyfpLuCFosKmtYA4ohDioOfmwyxtRyYlVbk6PGumvwHMYQyE28v7oc2q7Bh+GFmlHJetHKactATWgcus9UWNWd0MT4qvY1R3u0ZY0OfFUviWmLodwD9Ni4Ha8DKSoYjLvPMeuKXPtho7zszaemHdPzBl8FRprGfmmnOX0F+i04Dh17xu5zWBO+8L4kB5wg6D+ZstH9BUuOz23749YUjffXgAxozTkAelc4W2o4B83fqVt8xykjwOwrm3N+6nNXGxXtxNJwZ8cQRumoAZddOxeL8KA+WVQQTNJ++Zxgmo98s6FCSjDu1BIKz9yULFY1sJ+l1Bz419hoNhb9PLl2xlXsW6J5oCmSSpA1qDAwAObcXGzoqc32cN6g/x6Aga0c2cUWx88LQbl6qTJgT0RaGIR3nkEqJRY0wLFDnnyFB91mOXb32ZhX0Hs5zG1s5DqDe7ho1rciuwhY9v5djzJqaUs/nJM0HwRSWPg7tdoyOnVS7H7okB48kWEcDkFtiUQ3F9CLTI5slxKWPALgYfHljVmTHHmb2is1ynhFOOlHOtOukL6k8TCobbTMk5KCPzXNd4YzrhKCaINb4Ub9tXRO5gSG8gt2ivLUI+KquqZgNCpBi2rK22g7YjU336okLZRo973vNarcx1tW24UPX4pDSfmzu7XW5y6FTh7iKBps+EsbH4tWYVyvQf1EAvQJnovRMpoDyDS6mu/vYwDeioHpky2hExy84Cp8eB2gW8cNT1inCzzn9GXMfvVwoJOR4sTMvGH5s37QSqZg8UR41eIWoIGPl6gL/kvRCzdLEpqBTWBSgqKJnxHhA5Z8mSC8mQTWjQFY2gHzXK8XY0hT0giIj5Emm22sHk/aS/KV5TfY2axYJqK/bTK9zhSP4sZOWuskld7r+ect8CsIOoL1cTWdHFCG+DRIYqow3VeW/hNv6idSQCOM7R8oKpWLygKZQpeJ24pB93sFjqdM6rZ6f9EpDe4bqajqQ8+aglAPqIcyQyupJv2qxvePDk3V+jRC1QZdeFEAvAAdUHHGVNnBXUfM7RBfx6r23Owi1IOwOGIlBnbIwYriDeZHr2QOMMpsfjXOCGzNHsGGZTuAELVb5ojatReIUOxxKnUA79pokXBFzhiw8aGycemLZA7PerGFQGQF2HmioUDOJ9Y+ME7o8sMZH+hsuWQy84N1DLW/GOrsre9DwZ96urfF2BXGWcXPqB/9+f2Tb9gvAN5DWjFmUH0IlOVBkagU2+MyHcbbDiJ46PMcHRx52BuUUK7OjwOTQHxJiU7MgxqEr62BamP0ChDBG9WNcxo9+nNNr50hPsb5PJxdr9/d63L+Qy67dJK2/PlQy9HYzPs+Ydjy6pfXeJ0gxRj85QIkest7hnshfp/8AX3yDmaiVmZZURqFrYQeq+t1k+L+uTQcAt0aJiBF+CO0E7iFI37lDkxDQh1f//8Uqv/xVyEHG0cLB8UtmYnLKqdmvioL4JuCkWIU1cVbrHir6dTNuA41fzT9qPM/Vwg4bmernSM9jJdGJ9qJWx0ve/OFVLlDM0pe3HRCTREgFEvGAVM/Pc6niOPlXgL1DuDmoBTcfcaq0er7kN8rcUldNbMIcmnU/5S2LKdIbKsnO2iuX5sD7t/3T6zrRW4D9On/arlCNtruqqrtjIXVuG3Yz5FdoelOMWjnbY9PzFtX/Oio6V7rhQCMQsA9Ap3Ym9M+4zC/eAPJiqhLoWqqsq1TGBY3x67TEmdJGAtM+xsFqWj7YiH5SaBH8JFVEQ3dqdhorLYyWaJL6AMVy/Oy/nDDTEKfabD0DH6BHUpcfOItW1/BmAfYNpzTj4O3M+hJ06xDDFa+zRS+BNWJnkqhAEp6YN+924z28RH7VCGUIqauw5tMwGfLrvostmtN0LZqYZnX4xSejZ1GAIjsaM/3K4CaD1noic7AFs2zb0HjbslWHL64opfiymsucMGIwQkdI3uKtg7LpKVMePPj6Xu6ren439G9X1G1EYL+BBTBkLy5BjCuZyc65djxfRkWj69TW8nxAjg5CAXScCNpxwsxGWhb8wUT9IXRTMs3bGahgcxOkLkT5dlBdwL0LzQy46sYqv/F15QfB/TtEuFVUjT6KEyScDrzu65I3BuhbYchPLpHIrPT3RWZxEKnepxaaHDzPALqGR75BnMCPzCCeObRwoCtC95+vTQR0ky7fra+pF5eufI8C3xClUGmlh1HQOCEAKf3l3PmWQJSTD4vSeLZyhBv9qCytrSo4fISsfbUNIOLmy0YsRtuupwyLdJxbn00UYogxKoPSow2hz6+gFRc6KGrAIo7yKB2AXeEaDGDUQR1NRWUhqjC/fh9e6g56JLaEjdcwKk01ST8jNt9nl1OWAQAO8TnMQ0lu0ow0kMlmKo3Raw4AD+nT+xQq92Fp0YXzAlwk2b6IkljVvvTryAyu+luEzrsUcQ9RiHvBzSmpWNn8wqhGuLJaovev42E4lFxVUU2OriU0n6Z6wMAsT01QJqxyjVt0EZjrjLifwr9LTwzgFfTWN+nvDTPCZkhcEz5jebvA3VZ8+P6ZiYBmTFcJxSEME0RHQJPvBIMUhYviJzcCGZH5xQLgct48/xXhehYXJ+bP2xgZa6ao1KHJxbr2ODayECc+ZGWo8+DPcM/Wo8HA0REBP+1P8nTJJ/+a3MAyhfEpXa6kJs18PffB55VDCWpYtfSCCUy2VAvGHINUS0WkJ+CXdTg1iOpj8Kwjm3Di0uu2EfNLVVwXEfybzq9oBwxbTToWmiZx9CLJaAkxF26Rsk1eoBY4EDU89h3+BrkVzwde/nCXBD3G0FssD4tyERKZhaj32PSweQZ8CiPskZM3oZmfklViO/s8ow41g1d9xl+8GqSO9qqHaf7pIYixse14NAF1o72X5lNqwoDBZClKf7U+Pf6MOE/1X8EggBuRCshNkDAiDckfctfN/ZwnfvjoqnUQ4uNOoWmzK2bdOSbpXIJQLaoVvUIm+wHUNBmOvGInAeiB12BvhdrSirwP2KrggKYUVc5ohYEtAfA05zo0MayRcxrbjJMtygT21Soxw5eBj/OUvGVHOy/K+xBK+L6J/NLZvs3GRAOWoi2MVcS5/n3hgd7AAqFjMCf90X4xGYRQ9ySt6W2TNj0eLWZlQzWYlOR/FuHVwvVb4p1wvQmFZyF0SYdfXWD/AqLYFjtc0DHgU4iKuMdpznPRnD7wyRZA/fy1h1kxEq48aNFHaeCager5H/lnGFRLVF+/9OgmdYlUHMbfFxHbqff9UD8vl/b+xYJnMGWY7g+O3vjNcZeXQQG7tZEasA/ufU5Eesg8BmnyoOCahucGJYI8Ab4fRhGFRwiDjTy29jBrb1ZBVTUKKlbKNKahYfkjslHFyr9TmJvYBdMTHRNp4ewF3aUDZcHDGD+oqMLKcTWxsA831eiuSPv5+29bVj65BaP+1Q5R58LK/XiP8bzM82wMSj1sSweJuU+hOxb/jvPHSgeUWZdakj+AlUh4L9H+mxOvIJEtr9jVYz2NaqP1HU8sZCop89MGi3en4hUSllCnQ0VUB7YtEvTUe6zqEhGlbsZJzLGNtsRYnoWDivTHuXFe527EjzEwmy/q+4xttZ5Vcwn0UnG39wsTt/4Zw8Z2UFMekmYnOYAHdeQWz/EkAAAQwRkRfPrAa93QEJwyCq19mMUu8s0n3n9YKklzBP1CXqHhOqqtlDZvbt2Y9yCcHToPYFKiZ8JBYGlLKyQtn9hySHE2dqJQg2cHfy0zYY1GRTsvqvDaZo+oaEGmQwTZ1DvhG8B9UV+QHjjp0WPjKmGq3nOK1wsMfyx9jA5KtIQ8w2IbtMldwH6icBUxBG24=
Variant 5
DifficultyLevel
777
Question
Monica cuts a right-angled sector from a full circle, as shown below.
If the circle's radius is 25 cm, what is the perimeter of the shape, to the nearest centimetre?
Worked Solution
|
|
Perimeter |
= arc + 2 × radii |
|
= (41×2×π × r )+2r |
|
= (41×2×π × 25)+2×25 |
|
= 89.2699... |
|
= 89 cm (nearest cm) |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Monica cuts a right-angled sector from a full circle, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_J-NAPX-H4-CA32-SA_4.svg 170 indent vpad
If the circle's radius is 25 cm, what is the perimeter of the shape, to the nearest centimetre? |
workedSolution |
|||
|-|-|
|Perimeter|= arc + 2 × radii|
||= $\bigg( \dfrac{1}{4} \times 2 \times \large \pi$ $\times\ \large r$ $\bigg) + 2\large r$|
||= $\bigg(\dfrac{1}{4} \times 2 \times \large \pi$ $\times\ 25 \bigg) + 2 \times 25$|
||= 89.2699...|
||= {{{correctAnswer0}}} {{{suffix0}}} (nearest cm)|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 89 | |