Number, NAP_70022
Question
Which of the following would result in the largest number?
Worked Solution
Checking all options
|
|
103 - 120 |
= 880 |
12 + 860 |
= 861 |
650 + 220 |
= 870 |
102 + 770 |
= 870 |
∴ {{{correctAnswer}}} would result in the largest number.
U2FsdGVkX19EcrXM5EvUoFiXyDTs7Fsxmqt5gv6YbS/9y2Mjgg4+hff7FMPncqCKv3+yAMVyAokBjd24X3Llwh1/Ld7SfDlRGU6rIMxNCN04tong+bl7ic0dGcrtq7BmxWd9eIRTS09AVIWPLWe910b76fPBZgXfcifm+DBK21Bqau1pWn303CyXhYEX4KDdeLV1YRMDhGVOdvRafWs4FmI5oENTqLmh/7bFaTOw1Kn0vWOU7SVxgj8qE0qBhl4DrMTHpCtH5M51pMjr8n2WCNNLewemO8+awZ03C75bEFldva3TdMTt9Oc9OPy+PSdVJYOOecBguhUD2wfaFI1dwb3/Q0RIOfNYiPJTtRrZ1ihQMgbnIM0c4oXUIgSX/91HY5Fwm1xgIKJ1b/bUKJzGM4rAK1fsUQwLsO7YudZbifuwVdONC2EVLmyIJf8zBxJimtKpui/rnXrP1cIOijv48dZ2JBdKyh4ZQxAdRU/LcG2tEx/ovRxuKKlS/6463q5CjIlVclueoML0ZDRH8iHDklBawOmvxdwQRJDDdYoetRC8fFgOZZnnM1dvaDorKpj1qc+uAISciI1b5qc6n4iDvtZ7ju6D0DiuAwQn+iDgRDKjMQtjyosMIC/vnmAqENtZ5ohysG8bax5oJNPnu1/G/J+i2tNzXPUGV+CHLA7x9AzoKegeFX2Cp3lvPhsyO6F4KuL5BEKVwdfPE5o6KI6lsKl8ktZqvjYuG6oNDAZm1MXlFNOQddEwkIrF0kxY0L45ZxJmT7rN7oDR7kRuDuf3gdAWlpUYdUPllmvmgQ6s9Ujyq3ggQZHhmIhxHSWKdcxrzT7Qpn0J1d9rkMDRvkt4X0ZfGTqYUw58WomIq9NBLP1ch+erYScvJ/xdMa+EpeBKRor+cUkXQsiSZbi+MWRLo0O6ZD2XwmsgwTANsabaPcYWgsjSF0QQMqXaSlnU/o+q/bvWeTEIezFssJSus8+3APJ+mNjmOKj5st1jh6iTIhWQWcxo/8zZKUCEFGxWzpOyj20JWMbVzW4mlyjYE8wjSwJP4uKBhPewh9MkspUEySibwBVY7kCazS3nTK5m93AnBAfpettqJvnpyfb1MJ7bWvacJZHeHOW+KJm1As3tCP6GW9ISZbm2LMbPZFrFNq9Wzuu1BsbYjQFrglvxeJG/fMTZbZDtXhBj2ZWdSpqb8InbyvQLgh3xvs3s60e2vIeB7QLRESOc7dnvcncgWCYpScfUCo3i15husd4VcVni3p1p1cH90y4s6kt9nGNUfDddFAVB/zTsmdHXoW42lAKqTi/gTLkpQHARn047Laas5MKWFlMos7sCB8qDRgUkvTYQqCBI94r4p2vMEmhVMBFcgHseQYAp05x7epmgvokYfxPW5VZS9FCCc5FKGj/V7RgSEMtgx68nRMGq0WTbwbzWWxn3RtcWbkmK4byTyIS2xA1MtXIP/9pBGZb3jTFLEdThn8UuNzGFz41Wkbdm1uBm7qGB63W/mz38W3Pj8zE/OkTfoZpgbMp5thhD9ymi4KdZDPYrK3OY5L2wsBnpgp1F9aandOcncmU07qHOBHSklEr8SkvZkT/aPDcdylIuCU3/jvJuB4NGNTvlB2XssOxlu8cm2FGJ5567yucbUl8kV4GeGR5xqnQUnt0woF0rGKKPuuHQdFeKOmgGZSBvbQCz+jXlwOevovOpERbTlPK7AaUe03ooUE3eFAtNQ/5nz2fBA7y3XVTHOBaVxpKp1NmEixp0B0RcZy8vjTIIH1VkE3eeyZjWFiwfIHbF4AkwlZ/J38Upd145hmUvmyHKjIjUXP/8TTNIv904O03uyearEk7KGGberKptl6sv50JtWbW2gFywCmcfCxMpJZ/SQAGcjQG5ELBd8c9KF3Ilx7vlu1tWr5QVqn+sEHuNnI6nttjVck6Mqnu1UEHfhCCmybhl56gkYqSkYU6AzjghCRj1Qkh8Gn9J89xurYsbkb1k3PNnOiVv2+xRszwlvtuKrMYQ+gGbD5zL6V46NTbv1avsEjaUmJFIMBkuA4F6SIHVbgPtHbzBFRi39CwNUocFVVdO0DOM91jNcpIxG4tmZfyLC7rC2/F2qtgljuOQVY/tw5OOJnn0EBq2u6KpwrvgojS7wSYtdEij8IuIL7J/M1Tk+CUOzFtYO9YGLZqsTpjqruV2h61YQmS/FyNOIDyiHWoyQrCRhZ69pmcnroBYXHOAKKYgMF7y+/NwjWbcqj/DVAi9S9nzL+Hv0VYl/wPAnHpv7Jrr8bjxhlPrkld1vhH23iYzlqPH0WTw6ZoWx0d92bxmnj/A4RIAXr3salcLW3J6lPy9K0vBI1sBJKDjlmIj9NrhDjV3LM5dAqRiNe7bFKlIQtwqUoEtOFaQegAblbeW53LZQ70Ys2WnYYp4a0BawDyq9Mm4JLKgM4A6S1RL5XvbcUmwe0NK4C8x33MQMYQItglf2Vrbq4e2lFi99sjyC0w7wUnO1zmVGON4hGoH8JEKVlz5PjrcfsdQdzZvSsXwBbpic7xrvzpWS169VWN8xqOXpunFesmW0HfeA4tvc3qTrkbGTQ+oQ8hVMUCNqhyjU20kp2Rq3fgU9kQ850R233CbKqIWNoh5jZZD75rrDlwoOVVahBdYPJgiAXyzctIcDBfHajKnHxO+K+YyYizWzCdV4+0pO4O9+LsV7Sx9beiSihcW72BIcypcnc1zVHjwxSZqXuSHvIrb37O5yhwwL5K1dqDqfWLJn6EqPACEG4gFNUBy9hEJOu7BE8j2cO4ZeWssr95j7VwHKwKHioND2iPAyvtkKEdDCKwW+T8wLEtzKpNu9zSOGLXd2kBBeMAlwRpgo0o/0X9G+TGv2SQ4uuDODrHamO3R6vh6vinMjAMkl1+tXARQSiDGApz5Dp4OM/KQovbWOqrPW1Ih1CfH5e0KQ1QFPOYlZ9iO2DcugVc6ylIxLjNubQ6ja3XZbKGke234CFk9PaaqAxhjRAc/+mqokN+ZELodBASuJqU+CuLVf6m/WW7IRg0lp7T34IxdDLEhI8AgPS2HZsAS1wL5gk5MBcyCz3IGxEZYDAFJ+0st7e1WhKAwaTbVtBbApRR0Q+NnoFshJ44HtcWj7uxHk7CsXD+o2copiXvE1RzTcXf/zlu9O+FWBhWp5uMMPeec1ZMIBimkFuy2apSVJh/llEaYFU2sbliDpnTMuNI8WM0JwU8aolRcT6ZbkDbSZeYkXLNTKBc+Y8gyFOhZr98O2Y6UDxCcPsPmySnKT5/AInakHLYewVLFaFftSbi4RJcT6dbA3g1Ax2vb63xMUmCuHHEcwMrGgcQDyy30iYorJM0tWrZ83ifoERBU4UjBieGlQX/RoNWiRkZy6hzYp1nn7ukKp6Vo5USJJBa5b3768IwoFGyEi/WYmLEOfcXOuLQSgVlIuoLEei16o/yFmVO6K0J98b2mcecUTP2PoAaA02Av63hXL9IV5oIsRmtgfXCfbzyEvHobKYLpn66mJwLTwughj8fwnwdmtT+9iTO572RBh72Vf9dzV5IhTp4RnGh7pNp7wV24b/OtYbO1PDQaK0vrLsOfOSgGwfvX6wz9FhYOnW5dHfI0+ueEfxIUXnkKdGY6peKMkgd33WPvUjmtSq5Hoprat+2G0Y0/LEv1kAHSmPJAStNF1rH4wJnAIim4ithuE87FBJd6S8RHBX0qGdjmLpmUObTu4Z4HTmkH57Hie4/Hiz8v1L5oCMSsbGbSI2ZaxnbU+zfXTZw87ro6LdMBrmWjvri7jevbuV7hutBiENNjKuI/5AX5xgqqv1biUSJbmv4PyqIeM0d3Hmst2h5YiGsKikE3SiLo/v7a0mMMVtK1HLt6gHbtTmngEqTYK56BN+orNU8RkCjF5j+6BCKoncUBBNYw7mw7IONNsRopjOmxlcaCUJqL03qkLyCDA5eRjbx+r9wplQ7M4EWc1O7ZEcaXQbQKtdiihw6n8xB8JbYbUN0INbCNmGeRUc1ezruCqZCV3CbmVlgLGNuzJZush3vekiwSbaJSHyeQ6rkroFJEjsvoyx/CrDOB07pse8CO8rxDfKdAXoix7yusVaEvvfmjMK74WWZkNVzhKUV4L2PhYveZeOswLqskBjc3on7ImRaNaXWNku/sQ7DxQXmnkj5AdlK5ulyz9lsnbnCMJkI46knObteQZbMuJFuyzMYwmdFFe8TP9VvTB/H7WnRsebpQ7gfYB1pTVx+HtNB8vbbyiHACyrapCTP02BHuTgEi2HN1UGr1aM7szI/MZ3IX2VLhCrkvUHyUwy7WOn7gcNHMJf4KxSJ0QPGyuigsDicybV53Ay2V5XtQl+OE+Oxu+l0e4pehX+9NxPGJgcIiIZzRjN2tlpiedMticPzsgHILrbZilU26lpYbI4BonqGoHsLcPtVV+3AWYkK24HSmJGYG3PA5sPVh0VhKta4ohT34SUTB5AVQu0NtlnpSOVt/3R1Ny9rVCVnWFucpIMOuESmhpS5R9QoTS3rSwjGE7hIUga3OtZUfEUMUYvoKeBrEmg8fEMtFgrZHbvV4ANDpVCn6C7abms3ySxO0gezSxkfKnvp3mgFnIqiCyonNI/NIMvGdf2QyswZNT8gRNfgnfH4AqFnVY8Bk2DRsMx69QVoqf5RQyYTNGGsHPWuff5tFJ12WFv8/lspzBDV5AvhGYHK24OLUhcEcDJkwJgDQ2qDPzrNYwGU4ROvx07Fz8V8bu0VmSIqZ4RlNIYHN5UhJNhEALcOJrmwEjx8VtI3TRuwWuf2/vKGvQTTu2YM+1XpMg+8ygnoWFmx6pnaUrAeu6SqR0UDYEmK92KEg4/v5umrw+IBrZy1Qw7PeIcBHsYXnfLxUCERnB6UXC43avaQS5Yk4Rv84ykcqLhwM6Fn+NXxfuZbRirBI1FGLEmq/0qMO0LT+ld5Zx+fUPafSsC8LDAwnnHbMYAtg5uaoFPbbI+5V+swyxmBR+k19DLJWNRl4FxEOoEq79W19/YuGbJqOit/Tz9wCGrTJp0TQ4Ei+uMcdARXj+BxmYksW0H2adW5g57raim5ANEVOE2QR38YTd7p1o3AYwuk8+krEQviRF0/l1Gq3Xyysae1QmO1yYQJz0fkfphW4wAM2fvv3vwuYKPIZU7/Q96XnIqwvFaVRNBt8jgm5B2osQJl0zILDCmjz5YiIbxKuZdfIU978F4pcBVhjOa1N8WwHvJ8UIpJYFb+z9RoGLiDEO3TvuapzRjyHI2U27VlFtGNJ/ySz7akbEGkTrv+s7RynjaU9os2RQ1gGy70RVqbnDgF5zmoRIEcbskm2h+5VL/LVspMCpPrcxRhOsDLQ+ecGrpduE9XEpCDv533qWnDkQrr3BfxtmOeQs4c5iDWmBrLrCC2HxG0VZEVhToH6rkjFBQaygLqQLpxKrHh5glt154cKiJFYyh4+pkH8EJa3cfCr9Ys260sp/8Zqm9BsSUbarAIonWVdYEj6o4YgyqNb/uRJe5JkQZzlRCcvXs91v0Po+F29THkbJyP0Fu83pynnYdct4dre+VXQRQGozR+bPs/F7ft8/x/nMLgWzC7d6hdngicSaPn3Yi+eWVV5D9ntUjYM3D3BeCT7yfQ0T4GbGihWcVDblEsMcMMo+x14+WXYIUoNB9AGmeJ44pM1FqIlh5DtQ8YMd2DUgPpVHiRsi8XR4wjrVAueP0Ne1pzsyxmYzVnWHSPw86q5yHSpCloCVXICMTkBKEWQkvXzyl/RohDmvAg7U31NW6emw+WJBaJBdM7K16DJtnNw1e3oHKdA0advp5jsy+i+zW3FDxY4/x3vsfxSCQx0zuDyKcY5EDgN+UIz89QkhY/KQrczcSSXfUHwGYVwhI1bXNEfXxgEmtKy/6Nf/jGTs97EOfx0TSG9vxQ4PTRlnmb3zULvBd6GhK9s8kigM/vrYEjqhO3aCMMvYQkPGjCBhTE/SEAMfQaR/y/17QtkMKCnIkpYFHEfp9pX3v4atZq5BW+GhBF22ia46LEQ02HsBq+go+Iu4KYBGOC4K9d350OEOjrO68g4r6MT0unxjAKB3c82rxtteFTh4nUfWPZXm3wyKTsxv5FGJ6F8l/ribRHjaZBinRftriMa8vhwDpMJpwImxulUU2AEtkxyfWAMlIdY6nnbZHgzJ7a8uZlUdFsipx9ycPEwXd5tNWgmX4e70DDlzkOeTiGmruf8VGcbSUerEZn5D7rZZOmokBE6VxknH1TJ6QgrDPbkEMI9qvIiFygx22VH990Ujmr91Xm4oejo+x9YO2dazBCTTA73tdg0phU0hQ46dH+lB4SA8GHSyhLZ9pDmJ3D5C5KJ4wkKAgzudXLW7eMEVSRAZy9gk8Ax9hQ7HPsDJ78SyQbrsoRYnhxWkfO+EVQix/4naPDbZiBy2yF5VxwldRoh9BDDxlGCliuqe8TTUrD0RT4QSDdOTXS7zaoG4X7AVRMwH3Yk+3a0CW27RLiiZqDnW7BOftElyfvXSXt4W7nfuX3Kb/AI9fI5E83MHwEahB6wI30eKSJVEJpPADR6bVG7z3KNTagmzR+UQzA7C18k+/L2ai2usMz798FsGOWvVejvDMpEp0fkKIBDVckh4+BIlrWIWkENU8jacadnNIBahHjv3jUrO9GjCdQA4IpJ/qoFuhGHGes3voADaTwm2qPxI9uUp6P1Wp918PeifG1FPMAKUXZBLRahD63TIP5TjOijhdrWO5XL19LeozodvKCD+YwuVynaNGzmzt4H73B6lRrlcbG3AmcsAyY2Va+wJbpoGYcI08ftK7szow8PvG4BcyZdx2gLuJGQkKQJ5Sn+Ajp/6eo09VEZZ5qgjfuw2AL3zf2jlh4CpyGaMBzy2dgoE4spqlPOwcvYYfXtSaASMXSdm6ZWZZzWpudPIr35WR0FksBVU6FE5M9mm6KvCALH0Y5imaXHz/oPO9FEb8QAw65Q8skH15MQU8YE+3l19zKHl996bxz06D52BMZ9uHFya6Hai9bXtJkE4pNuJ4yDX9N3fm5T3WO2AHRyqdIF6o1O5MetSkHIPUelU0NFLQ1UWorS1tOV8yjmQuketXz93Gtb4PPnAbzf8yA0f65khMhA/zKidc4aWv67ozuWMvM82Syt4/EDTQp4CrIElfc86E7ITsDXj5jC9/VuFfjKS2fXEybthD996PpeRTLhomt0x8zs++RFyj9P5fv2hzfNjtvix/VuqeHEJ/wjx8m4MMgpjl6pUQobumgXUgXvqD2wLUTSpwWIB9EB2UvmFg0A0gHYwOA8n67r0KOIKl+l4C4HWISac5f3CA/T632EMkZ6ENPqRQ0NN7qruqyBBdqFhW1qFD7TdbRP7CG57wBjUzr55VA2gYxQ56sM03m64r+DIugtfe597Bjh/RRe9IMy3aGbpejQi2RbtRJS/KV7t6hPv9n20jQ24nYm09x79YdHlrKouGArBoWn/cdYMvovU1bFyIxt6Lgzogc8reo8JEabRFVtHO+xuROe4FHC3kRFbPUVgQcRs26okbLA6ToyFdAUvH78JqALqITSXbcXobRwmYOJqF/RnoNAAj+ursX/zNq0I26E1Xjfup+gOiAmPIhpSmpGL7RmkwChh8YWPHz+shUyYGNqePV0X14FksIzaBVsVgqlpwu7Hc8bbFlVhnT47hrs7UkFsv12F7Dym5sed3wLnUX+0VCTHTeH5SC3gDJMOGTUjYBVhZGrDfr8wBUxD+CA9T9vBuvfJC582yGSvbvnl0LMqTdZDSCwnKs0HeWqcWwZKIxqQJ+o+IXQry7SR1Y88NDrMB59OzIrdQfuDz+h7/jY5SjtohqVerjnX6vyL4xBSqu6zjU9jb7jxjY/y1psxVtsWGHSsjO6M7SVyqQi7iHFgMTT1NnmsvIMPeGS9xisFHLnxPCgWpiKIRc9QvG0RhZayaeOfqg14b7u6xvBaR5dU93Am4SCpfc9LV+ikWfPo9lykbw6RCMHoRI47mAr8nREdgFIG/Nru6I6VUWCnvtty0mnGizVwGChe4QpwJrdobV3k5avKv79m2bVStkeWq1BC4m7ld98DIAn7zYxcHPO0vxj3UKp4Pn0t5v8wxhOcAgJDw0z5vXmiDTaPVY049TM+DLf/lGHCwfbHg6rK4Fjb+KuujNtaFSmAkmR7QAAM9TMWHoeoCfosW95z9aAIH+/BDPl2IS7/vbOxjyC6nFilInPTmdHsqZPbTY9eF2wGq7dtUQ5BbWfFVGRMPhEgreYd5sXXiUC6lEXYR7hNzZ8N/93rRkNNdKBwdi+O5Mx5gt1B/eOPKXJpOBWo5qhTACGdLUxdYEGyReriRpZMdivcgSXBSX9zNeUKSJYp0tOU1v5varYQcRUUnLRM+S6TIoOmTMuSVV8QpGtzdTXlahsdVHqoyKj1ZrEFW9kWkgsPXLNQiWu5Jk48AFRV6gNzB4vU8Z4mKwtO7et8aE2GCqKIRhWBzcCtp6EudRWqXjBYm436cyQm7+Z5IuCmc+b5fY+F6xejvxuQQCxUy3OKBclN29W8pj4vPOo+lE2NFRuia+FcylXi3rhvrxXucrgSqIZbf4bV04k+pVmhiPk+qvjeyltP7FgEjcfWBKdDgPETNkjR1AoxrAIutdfaNXWaS028tmt0MLxMbAqvt0AoZz2XkTf/44iSNWDr6hL+tlT7NNZEA9ntd+JIypKJt0dlmA5zkzvxUuZSU9UHan4/6wwLMzCNQMDZWfgt8a+xuaO6fQjprzpARGI06a0jB/wHxRa/FAO2nTZFK/R8F5EeqEHgfNx9Gb7Zgys0VDIrSjgnQXP0It2uIvKKlPjLrPFGrKMD3Qc8+sR0gmbCu4nU7q9THKOJlOhvIhBXU3iktw3cOAkY1vgxcxke+lgFiJn5MQe+EZdxh3z3Kwacgu0X4TcFcfi2R57TEcmiKRQmfobzwvGmnPGnPFNsQdrNQUeXcYRYNN1imqxEBOaD2DAOTP+hlY/UwBODcrHA5uD8iT4TKzyqp32PU3crjZui5ja+gMT+iS/qwLsHcaGn3jxNXqWR+mKXTfq2DYhfLgZDt1M+jseXrZ0kjI25KE+LSA/zlW1GfY1UaSYBnW80/t40QDvmmI9HGpD8XWgDd+SR5aUbvI/1bDOcqOXdj1AnFmhLyZ3oLkP256/xHCz+e0Fpn4OPs/9sJ00GnQXWciqupQUdcZkEtvH3GikmDUTUVGTMpoFrlpdBxzPrEa+Uwd2upjxwzEh2KUeYbr1v0mfD1rHqr+rltV/DRiC5XqMkWOBIwMmq/ZZiVkWpIHU96gZ5nt32nW0ef9lgDmSYoZ6Y++jJIizlzBrvMBM4QjR6j5xqUcpwbd8j+LAZtPcWJ+vkw4O5roMOi3xn3CkWHuUN+c2DJedpl/n/YAO7NvNB/pnhce/WVln7g4g86pVj0sh9lw2ceXkZvLzbZK2my8YCGOHenkgQM57m99LYautsq1FEGDyK7YQacPKD2eioIzCE9zfT+lGpVDYt2k0zvZUr7ZpUcaxVW3GFwNtJl0/xTDyInix9QuQowFROMTtgmxvCPKwhCSarRwru4lfQynRTGZAQ64X7mIFTqFWl9gorP/VWZmqtybYHOUzL0TWBvdKCTGIZZ+ewhfQFCni/9dnGm6c3G/j6phtpEnTpcq3EJ1JdroY5H8QQYpSRZwSgGcEBbkZYcyuXe4G6YwloHNr10AQdB9JpJ7TkMO3JIltPlkLjZXZSPlFFNgnVGQqlTqR+fkhDc9AeFUpkAkenlaw4EXuwFZ/UoEVqoZTkV+gj8q1eIReBg7T0wGQ10tuNfiMace27HxN0dh3OnyU0GsJYGoX5/fj8q0wpJSsP5Gb0cYwr6lNzDxc3WRjKNOIZ6CPA8zPZgv2GKl244zxysM7MSMBvtHrXkmHqknirEk3QPVB6CfcOIpX8dHXCSHlBBQEPG3frUbuAUWpU3Cew4w0GolrHtW9Scbsu7q6TlVKzsguAlA7rAJ+mpOo6BGSwaKP7B0yTHVzGSABa82wi6CrCr/NfFd2s72QuxcLgDfqKRjxHhAyJdIlBJFybs6JhKKaCUCfk5MJozOkuNcXUemFBjrS69RUnlsDtbs+dJ1M3+hJuS1Q5cLdgC6GcGrQOJqzOH+Yu+hQ/La35VgArnUeiSuUtzJVpTeO8sikpHJfZmDWZdrn0Shthl27fHSyrA/Ry5dJ0pvL3R67xZDpzKj+tIextBOjCFPvb175wWI9wg5cgHkNJaE190f0i1s6jwmzve9L2bjRHCKfHoLOTIC9
Variant 0
DifficultyLevel
550
Question
Which of the following would result in the largest number?
Worked Solution
Checking all options
|
|
103 - 120 |
= 880 |
12 + 860 |
= 861 |
650 + 220 |
= 870 |
102 + 770 |
= 870 |
∴ 103 - 120 would result in the largest number.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers