Measurement, NAP_70037
Question
In the figure below, square ABCD has area 25 cm2 square CEFG has area 49 cm2 and square GHDI has area 16 cm2. What is the area triangle DCI?
Worked Solution
|
|
Area DCI |
= 21 × DI × CI |
|
= 21 × DI × (CG - GI) |
CG = 49=7 cm
IG = 16=4 cm
DI = 16=4 cm
|
|
∴ Area DCI |
= 21 × 4 × (7 - 4) |
|
= 21 × 4 × 3 |
|
= {{{correctAnswer}}} |
U2FsdGVkX19Ub0GVZu3u1IbGpXDlsfuos2rkZ5In780aqFXvLETvxgWYVIbGrDB3CeLCFXACNnNZCDNIL4R5Lq6+LBRWMIou+EypIC6VQo2vxSa2kZRgM/OxmINu2Doi4xUbPSWXeGx2dmhPMJmZTu0rBE3FRqytVT9l5Exrs86urfACDlKEWrFdwbcv2S/03SaH6dYR/OovUJQ36DdgAEONcEAUmE/3iSwpex3R7F9SVe8r/a+GhkiRtwZ4UUTMZZ0a2VcR1iqtPLJEbRDmVb0Gnyf0an670SnDfLghhXSZc0yOnHGgiiTl71E26bc2Fcs5pYS8FKAtwtyKeNAXDTNXBfT/EjXFoamFfNEiVGkuWrXZdm9ZcLRWnj1HQuCMtQ1NeYWtA4I1+rbup0W6sGzpU5vDF+Rm521dH/KsCuTmkQHKhsi19IZJKT3iGoCZOCKmPr2j8Bb6pJLlOAyjKECfp7Og7A3DQF/eFKYCTy0oKANy5+OWu2KoFJFPMh5yfJwS2P9z3eI4t6pTsSk7MIUxWHk0kyZpZ7Qf8rvr8rMJNVvhe0wiWA+EaaT7RJ5m2RV3uai997HFhS0PjUkZ907q2TjLch0OragVrtyd3MBIooE/t61zYCjNPTQCHaElotL8u5nvN6YGeiS9UAx1Ke07ginXyi0k7qCgYreUdpdv61m+dzhBlxSc9lYTCKbkFMiv1JLj51uX8EBP3BqkQEd4Xrq4X/snoqw4Y6OWbLYIbjpI2yTDgsTJ+HM8agR7HKr4Fe1CWaYmos7ibBpAQVPCBBuV5qWz+QnmHGJyE/jz8Q7K9cx7L8vkRjHdUwUdQpowsSVFMXl8QxyuF6vjZ6nPpiX0o3Gr+7GDKYSX7lXCR3x0CCIcxS2cr2o8G6Mq6C6m15XKVt3vkrjoCevRjpIQ6VQRHzSp3mQ0Gi8wurrSLOfkuV4WCHVNjo6vM3SDjK4gw+BNdDR6q8toyFvcT67l98tgcvt6eA3fAUowFwv2wD3UfCcgqhjdt2sMo0l687wrKV5f5S0fGXK8mLV5uFuPRcEyQcztivKtROsBMoJuQTYBrZvYWIPgIQmNWkUyq7y2+j7+nVW0ZZFH+TB+K5t12+/fmyg7+ezFjCKQa9iq9KTuXaftwh/+Cn7Nf9XF9WiD66v8DPWeR3JFSwqCjY9rxaerIP/LvKdB9gTwwclt1uUYk0reC+MvA0m+DGalMh29JK2UON0AReYtHBgdkebyTzaqOC4ZudYiPV04+hbS1l1A+cmaYrJ3sZ7tJbYk9AFh7QWbFAwdtx5ERRih/30t+tVUr6SYTxr6pXub45go6An1mnBTwlZipsBm3V5xE5oHPV4BfgBEE02ST0Nq6TS5w8LTuHVk2HkRhDwjskg7BGAjJSivUh5qN3weFIotxJSKCAXKLiA4stfod40hTD0zf2q34kSirC0jxb5lsVhdWqQpvfhVt4VrTbJ2J5gHW7uSTC0d9gfTbw5Qhu1hBiZPdenaKCu+KArcb9Xp51JfjaHvVwOc70f8I52N+avbWMwhRnDcg+zhvlxmzNWaNoaiWrMfPVIFtC7QUntG7QUCiiJ5IhxxEbC2rQ1du3ejVBAdGuRRLbwq5aXZfDY85Ir/rkvq6EribOMl5l1s5lXJgQ+WsrxxIun+srnZKaCm0HVyMSmBoW/q2Lj4DqHFJMJJrtRAjq1ACkuYyXHHOcsHO3WUmWT2RAiXWNEeoWWEdNP3iO/saq/mjDkRowhRBj2NmO1UO2yf3tYa1nORDjOVpEQ52ZWycuJrbdP00j/99SI4/PIrc0sRRRlZ3Tzl4fPyts5kz7DGEdx+VSXjjdHicpFLfhihv2L6MfOaoTNt+5upCnlmYVmFX9UEF9CsaVxI/q2GrhHIbzfR9h5FxeRD4zTBzTD4xJgfzNX0Aog88mV4w/s2dyYeZ+e8n054rTdCP7gRFPxydNnMYlhEYOIyO341lxi//4aInt1E/QG4NTtIRw0pDqRbY931AYv1HkxqM4HE3yltXcVMY2pfSRhWulUak9zgebrWR+r4KKiNA00aYXwTUlxqTgJMsEKCHEIkrcoEzuay5dCIODT6mZ9am6l3nUWGin1bpDxnOcz5XUG/0luTI0c47aFoWHjSHjMCUcuG4+Tq440+scxfrc0Q/9STBuMF3Rr0naArIRsjWiW5bn0fI1IaJMmj4VF29CseeHQGET0vCtAkmrOVe5ShyTLiE91y2wmZokp0/kpXK4cu70eM7aF0UNxsqgNdTgKszA5FhqU5ySkUIfsEtTUvmC9dtnBC/pPsaiDNhqej4gGGcGVhYKXZ3GREAbpblmrNb41akAG9tuKGNIDY5fb+G20yYQKexk/PfEYIEvIkM3Zvm6gLsGq7fETUx5jK8dlgR4IZ9IBUvDJuVIZpp8U1wOgSXFbrF9xKJhIozuDK9TnSj44SgA8qclkWhUo6X1kGNSsMt6HJhZAurulUOrjL78CRB7htoRQCwVvvrnjVfRLgvJH4+E5m92v8SUI8MAdbZAIfPGrtj+kUqx/yN2zK+IrkA3idmk3IoF7YNLIDfR2typ+OBYr49WlpWinMEZo25vs3P5u3VORpFPF+jMMlI/b7D+/RYJqBLQ5uf/IL6b+o4TyNouI8nlXf4XqAGYls0W5/bXuZ/1+BU33v3Jxn31tuaGNswiPp6RSLN/FmZhmRrlRUGPpGqlSUYf0h7mmZ+loj0FfkUZIWR1t3te933NZCAgKoWpMlTDJOo6BIAD0jjNsJ9a+YHG3chWLJbSOwKs+BDAlIgj4putCrHqpVb4SNyTuiJ0BFQaNivGFdPfvrvK70Nu4JUaasIKaoAa8cCUZJOftRXbDa5X0cTpJhNIpgmS7WXvnR2fdNLXL9Gd6Shzi6Btd4H9WFye/rgaSOm+zCVUIFarlWrkkh+v0CpOCE1HrWxBxZ8DYdzrHOILqrdVOr/qUBD8Jr6EDMUZjbIAsjyuF6FX1T2ZthJqJezxGD5v3XUo9xW/fTw+GRebZxJ4HyuE/dZgYGqRq2rFiwBFkKwu/Ovm9aCLG2pMDZaHPK5tYNiClRRmtzKF3R/UV4GP5WQijpqjJd2aA0Dp5maq0iYW+9RKpvgwrCFUXz785XmdVYn40+BBSJ7cnULQ0Il/m5o6jJYtbRzUSWwhoVure+fsq9qErPhqC78lCh5ZI5YIKJ+3PmcahGCDQuRTjID5uKWck7yLrTcXBie3k8jQsHML5hAWD3/n6k6fGEtYQGOUaO3qAs4hQmumoPGl69drOpsZlbWqj5p7gAKCCNLq8Ig1nE90/HTKnTeoy1WDfbLt6wu4MQo/A5PdziCTNGczEd2lNhwFc7KvKzEWSoIW9luE+m9R7Salhf2briuVtJwo/wdUSaMsryPN7yviX4a6u9JvNOqU7AZheHZY1S0wE+g28CthMQj2gcEoBJwRqPbow57DmpB7AbUPBF1NUD0xiCIZp0Qr6AaHrp6xn8MXqkyv/7CQOD4gTRmmsWynVi3Z0TNPC0ojTn5g9HiULswyM2FTV2pF7D+qDBIdyvtIakSjQqisqABII2AaHOvocLnA0AjoEOMz9sifhoKr09Pwti2xsiDBz1nrROb/IV0lcAIAJYiwwiLvWoPMO+SOggzhDF/YT6qsc9XfPr60y10EzjZfNae8+X/mRJE3EetEvs/SBPmUWIHUol1xW6nJ4NvIrISnVTer7LDKnTDB5x4LCKnjYOXyu1arrmWyWV5nINNTe8sgzXAdONgDHUxcNqTpM5kKh2MRJnF0xgR8XxMxAA/ranelkNl8XJlyDgRrkGddWoeDjgGYBmKUJ0+VsE86yTu/4JGeLVJHJ+cnmvlALWTAfK8BJT9IAd9G39UGx/PRJZX9K5ezwTvOoDjpRlaCM2G/gTWPdN0jbMdLOk+plbAvoTIdhvyf3UK0BC0uhfgz5/2CMBt4RlRW3QzLEARhEK/8ggBKxnlhX4q+qr82ZXiiv8zQgiGeWNSyxLPuY0bWZZxKL1/1ss1aHo5qhBt2yf/sESxkpsRp5dmylyN5LrnF1T/1mOlxIEEzx91ZcOTebe9AIKlpRNUgHelEx6DTRc0mZ7AUCjvG7johD2Fg8Wd/U2KNsRFycy8OImKoge8E6MyIj3GagOvOip+XYXn3zbTpv8U1mDAkDwxHc5C/7dX3m/jnbf+F9Ox4VB+HSpjJX0CJhS0b1/vwOQdi812y4JcwlvM9V2KouMh3bNSMHix+N7aXvYxblfs/wRpefSBCh70Qq5nCQ0ICuRiAzaLuFIujZtQPXMRljwVbTh50OFpqByG/gEDzq+bfQx1ZId5JKn3t6+EPcTyFgkoQjnuLRU1YfBKiAuVFoim4Q0QmBPNbbuKv+mcKWs/25Mu0J6RM7qOm2cTQbblpGpAxHPg8DoV5hpAp/a0u4Z/UYnkudiynaTBO24uNf340U7H7jXSWFDyiLwJDvW6EV776A0m3eQlwdEpilClQgS3KOuUeIVqaANCR859c59zYYHMJSO/xMI36Sgtk5JbeH3oWPC+mOlLKZfMj98V8VxpLklQkEyfcJAoukxqy2EmGo7ugznhue/7H55YJUlO7Mh0i18AtwhMQXE+qnycTP5o0brBVfutEaobIQghNOZRy0IcIa1mcnNg4uk8T0R+s/HtrQ+/UUtxwcGOZwTDnnP+kiLKStiy88V3JA5Pd0/dX1RN+LWt9YxNU9/ogQitOls6Suy08Xtz6T6GgxTRvB8BXyPNWzXBbjmiZN5R2gekwqoEvv6AjUyNNRkh3/WhU2CpNllIMQmenQNg7h5kh/gXIAunGkBNtanI+YFl0PkBcEsGD5m0sUH2fUCGLHqcKtqODpNo/zDIK8Bdps5k2pop+zsKBKhL5aCK9YD4l3klCAEhNLxVQ39oAJkUoRqkMwQ7ju6giTkCs2qLv4cf66Qub0lv/TYrCFwtj/9dZ6+H2lIwzW+Yof7kaK4QkdjsIHSH3dll9OZDAxOKHN/4e8ioqAL+0K7uIRteBGnrGRGFFL3q8rj3prFdjn3PGfY0JnOb0fhv43ruyNytwqb3WSmMULGgVLZZKAc9GJFc+2Go3gECH2Tl2VOL6kd9bHmut+FpR9imgiOVtqenrnIraa80W+fs4/dyUPo6R8GHCyQ6MOhYRaSEXISOzCedMGKAEbQKNcZl6Sbep4IphcDQxsVhtHIt7VvmOrFa57DPgnKxFHiHemXmN4A1ifq61lqNvxFxIaO++ZEVDfvgMwHNuRvi0V7X4sUqVtfQW8IOPdNbn/cMvcCQywf2lhWn5bf9llh6mbF6iIR8sXQNlbx6EpYKWh/aPXPa2iOlFmnUxEc16Xg4wRSqpGwWeTLf0s1hUBxeCAf2TWzEqI0qiqmW7Rl9g0h9pqqsa31Z6O5jVjq4o8GjPYUQ6+MeKQEsrCz1/nDAUbVSyT73ixspEBBTfo4YJqjeT0+Z1SG+ciGyks1J7EI1i4wq8toYCIDNgcsIH5F5IzAmRmVfJDf+rSLzlDdg1eyKWYweuewwN/B7QQRpTF3qYdeUbici3Ie/+emsp8j2jRPIrzvgPZNKw76dbX66v+71TwD5fUW0ldUjWjKLVvAMSPeXKhKBAZfRjCxsywSub8kIr2bCs6uSCFcj6eoz8UL7hBH4uIsBDSYtSOYST3zr//I+baBxHms7L57TZ9MiGSWUargMMaImwiCf/yABV+UphglH4WZbBe5k2Jz08Bl2KLH5UhiRe7ftuImuztsGx1dpFcfVU4Q/SRWWxd+ZgqolSGLB6ExVYul6Uk+q/ZigpGrEpqrtpfo/4KlZQnKvW/obvrgsmZ/ayFKNadGZZyjIrrpoWXm4IIOpugQijeMKsSV2v5v7iWxXNb6WNEdHBiqtvppd7jrgEDdhN2TQ/++Ct4gFfNNmYYroVkAFiBGVoFU6FYst5xVmDMvahSBQIx7w9uxoMk3G10/1gYsJ4fBGdFbH7yAQWB6LjUYBOuwbyWLcEpZgrjKr9cTiAK0pUd9uUedofDNP8wcigLUSu2NDPs7iPxzsJTiUGO+c3DgllXXTNBmS+gKgyYub64lb3xTSiYfKAq1ElXvJd3L2c0RZwslOGZwAfQaRE2taX64BhtUE/o9m/MP8o8KjiknYioLmntuAXE0Z95bigDakjK13Ktq8xjI87SkpIimnlzEXo2jW0iYIAYGoevrG6Xx5zMRLlqysaPm1pwGHI3B39isy+lbUZ0WOP+gSIaEWuUPwl5BmcanbrUv2BQ5nQMATiZE0SKgQYiN1880dL+viu2dFblL0rNUGMkXLnYPqEChp9k9LYhMU+8pzFkMXc7xrm2PH1yvybSIXAVYp2IkmjPsDOru/mwSi8MJOc+B+U0zeMqLqKNB3MrQYXEggAlZhcZiqd0QaCoHxaTsaseolge04YWSBhmne/D4NTH6n3cQTr9knieDmn7epr3M+mZ0HMmbK6vr50kBBJfkAd2re48tFpk9dWpkZ7DsV8RglMKSFf7A2YX+2m7Xewli4wOTjYSqrJMfg4iYHBNy6AFCyjK1sWwLtALsBBTwk8o7I7IZsKIXIFMKWig1cSd2GPz/dqgAFpoV6A5UHfapbbXsKDa3Jm2uCp+wJ+LY4yWysI3IL09xO0NTLb4Ms+BPUsJCe6tp9OekWVNMfE7R04e30+ot5yR7kN9li5zniUIEiX64Ae/CVNLOhRb7SWrYCXHkcnvyUHmLhkSGhGt95lK0Bg6Fo6SajGbK/5pYlFgeTIq2QGCrxHJzr3Y/L1TjwVFiAxYRmuzbWmGpt5AGZS0gL2BNt6RoHJgBggq1bbtvtFCCgMOmzuIEr39KdJs6sC7Eaj9kHLNTpboBzye1aGMZr6b6Fw/CsFj6E9MhL7C8PzzACkZO3GeKfO2motGA5Lkk9ExbqgNebQQrUmEszUJMAmusoY8Gfqg2jfoBfY+btTIYC2xC/OfpEI+16pGK7+wuwsogLY5pzrkpJvJrPXdO89ptmUF3iuscgc3MsHPjdB7M6hUNFjk/gH3H9RNQptIWuwisJnxivwkUAro6LqTpow111C4c1XIlMUwUXy1ZC7ulzAYlP+g80hAIAcPYqG1rsASej7bR2gYX3Y/rxS4+KOR86NvM+PtcqrtgCMueeexBKP5DfrrJCB9cD0s4dRZDmRIwV5fxD3sQBp55nktWmgdOopZ89+myQgqxCUJwHskJdHBsp85pTfMkdGm2bnRV2SnUUlkkRBND4pQX7xfB92uBpv0JuMkvJQrA8UXzhvi9Ir5+/UjkgGVEz5KdpZBXavD6R6OYlIRrOWBkTsJmqiV8a8T4TKcMvtPvZWyxo7dDLiBJVMSGKgHpx7oItVAdBv/UYk9lch2i+bbqIWJjm3ZDfDow8ZHIUsNIitX8K4jROFPtPYkMs8lFxFYYB+Y4DZc1WwxFw6MVngHg3WfqBC+9Ww7sEgiNtzzox3d0YwXIy6ZnGYCDSVuNvNHz9l2BKuA0WBQkUnAkwat2eHzpNDMi/Ger0lXYHL/KxgNDhzhWEIH/u2fpoFKC5gQ4qrfq463f8Sl+7AE4M2XuoD1WF0pnkUUR+9SWrT4hUwVDG3m5VWHQ6XDwsOYI2gbDec7p4u39B4XToVvoKXQxQBXvJgO6GwOqFXZR+cScVncu7Vr9p75qo/hHWQxTV4DwBzgn3tVfiLk8YlUETcEEMQL1phHMe0R+cdwsG7BOvTKVHwS4u3HFmwQeApNCTnKu65P42QUxtS9kUcDTUZAw+Qk7d6zE7SOMOK38rAG2iEwYBSKMB8ONKI3KHqHF78/kyWNUoToWnCbZYn1+uBIya2EAcL9rctKhdp4IH/BbQP5sTjh/89uEXPpro3VUgRbyb0eW+48uAkMjWG8BaHi5SEoRAdXegRmJ5xAusN8XUD3uJ8F1+3+I50GYyRG7jNWt6n0Oa9wFM3LBu8EDaDvvqVXW5FicifhyPIRIdpzzjNrNn8TSJOuTRH0Y2nhQcGabRT/lYbTx2V42Zh+yB1LQu9SlpOi+nvZCWCK1EMdC6ugteI0ICOH/AvFh0Axh3mXJErDwHv2ZFsE3J+V/+qGTv21oTFmRXldXDsGg1RrNZjSiPa+LketTlRTU+ElOJ+g0MArkWVVT4kyRwq7AbXsgFElqD+bGJDRvrpxx0jriFshxMRuaX0kfKkr9ERa36yuv/624/ahTiz1LezqS6Ybn8ZqAeP13H/4Cf/dv9b6Mznlp5kvJMMaCRSTiddEh+XTmZgLv95pHyl3356jGZNYooDKFXmxBVN3j4VXj9B6JErNFbltC7Zv3w+RB6ODT1Jde7YdeDl2JaabA7A7ZKZ/vxpg9z8oah6nV8dRyxr+8HXJqRAzuVVaUiMoencM4CZ8AnPMiiRKTxvFT86S00JnfS6+1DmkUWSFOg4Ai1fVPD05H+UvwJzzktkWL/0keQrr1meJDVjBOMr+HP1A7ZuIM6mOBqvfF2E0/0QkpGCZcH8m8F4kWTjx7aPBc+rVfwHV9Ctw+Sdzzwy9sio0DOP+iXG7xWEcL7JH0C7OdW0qWk/VydUXIMm8ZqkGnpSjI8ga3YRnIJyhLo7Lv5o0nG7uyBrfPe6myYBsRohlH/cppL0idlDcAejQkCJiOSHycQnZuI2u9rY4VROuv4y83a/PpuL8eZNsNx1JAf2BCCPHSvSEb2cVp7RNdp/OYkr9ztrhvjoc/9uT2be+ppcBy5C3tZxz+c5Uk6FyW4rZs84VdEbzBlvuq98Kqw1Ubvkw+b8zksbqmMzuKfN7MCKrhQmOEO+2EG6/Crt3fbYSN99fwsMQ8UI71HQ+XJ8OuKiAffRFG7nyZDXtAB7FpYOgR0v20u+ak9vF0pl/MQ+GAbUdIjXJbj6U1v0c3sSUJzsvGxqVPPIHvvc7lERg17F6no0pH/Dbpv8br7bhF2FqQbvfwGk6fH2msZpECJ16ZhjSoY6KYQu8mNte8H0ehEFODGKGj4Kzvumf/7O2qsPJ3LKFlzjsnqxy8GL5KjZ1lp5QXO6QVwOJ95phQIxJF1UW/YP3eFHsAmi9BpwjM0Odqxx8FPm1ptGEg2o52nUqF1lt4tZp8KK3NSrPCQZSW+RPAqW1Jd1KykcEj/q/V6BvVduQbz9iYe9kzSpJdhNa+BYJOkNIu9QJHjYJfXkIrqUWYnKfaErFe0d6CUZaTKBe+VtS4lLs7h9kwl2UXb/lMiCkC5t36/OjYkBr01fbXoUMQlj2QppHxhHazi/JaD43MJUb9nIaDOog7ktIrERoxJNd5hONxriK8su+46ynwQpfMjQaXZ7B7OqXec4mIYrmTRuBGiYGgW7tCiiTe4QMxB7EImf2MKYl3qhVHKuMf8p8nh40O0TNdIOvLpH/XdqW50XYcx9JvpAAeiKSFY43Nd8VQfx9+BCGxB5RECyXTI5vxt9gT+xMGFg5RBIZ1V2eQAHf1AEsDKXNYUnFg5YcdDyE45HxtFIsn1ZiCGo9Vrj9cPNoZxaBQ+o/2uZ16YITa59TQnYWk7ygJ2ervdt1wgav1vPKQF1Ltb4LQEj4qpeaJV8z+SCyy6wB8sPBaERQQ6J7Ndkw1S6r9m/J+RRWZ+UsjZyisoNfUQlRSKtVxr3nojWrmi4bXgdvhf0zxtqniPgFiKv5ZteFPMsqbRVXYuNxWFb3vjm4i9jesVJxJpBGV41MX8VKY88dCQ8etGh900iWJjxfePf2vMm2NkP2mbB4eYp9e1qiV/vXK5zfk2kEme0N5XjcKwKjTHMIdaVj6of3Rxyd/Z1RmeKa3pfe+3otG/+ydyxf38/SrPElh7xbIOiiUTNJgjLc5rvWWtY85PxXoLFnBhVygg2bCwEVlo6IYU3nddF5NrElJqPpzVBEMRlX4zbN8KfSFXlO5Cf1kWB4fsvnXYwfBLtxyZ0+SRLp/y9L9K+ul9uSNnu4M7fPEqrOcXEk2iHkJ7UCoLFE2ffJiGdAuQY4URDKfLav6egyAOdC/q8Vq3WQ1TCEfhk+9ZRVlofcRdbfZ6rXE4u93PUwN76TUkmtdf0+5Huw/Ki+Zn29Y15lOR6PmxdkFsRFjYKNe0ASWdfkT0KXJlgdX6CYq3Tdc2Av2svSX9ZRW+1qGsOkikEdZqSCuetRSieZqxNYK6PWoAYj63kyuS7Iau9nEAiEC2hHUKnzpou5NXgouUKLl+jXF1tXpbyuyDHuxTgZPRHeT/VeLr5cgMDect8Mhym23oKYTCcKo18LMU+rSxzTMCsCuSrTnGxAifM9tNh+acxOXtytWaJZNkm2kXr8Txw9jkt+85INTuKSzA9A48QxwPJXeYfS1djae6nXVwKW/B3IWkQoINM9+GM8vLRmWZyhon94A41Dby4StHMNWbvKRKef0oVMv/vpNONVftBnq4FvrG43fk23JZlnlNmiPjBD3QHEPue7KOfQwxeEeNdKhFD2ml5uAN415ZHYVpur2gJvEq0wrkI2yldV+JWB4YX1Fi2r3Ry4wyZINluRsyhvukzgwHU/vXt+7nsbNzazWrD1fHDr3hnBJ20lXyM/eacqjXF5Z9gyllyND1DCVFI9aloKNb0Hi73tXtwkHMqMNnufE1IE2aEQ1PpnQG/AKKI9kjUVcH/1RkQGGEi387C3Op54GjMeI7Er6FM0N97TdcdLu4s40Ai9nx5DDmHRFLZynpB1fc8PovQ0rnXkxTaPhiNFFsCKVvU4+RKdVRbMWgo2DUwG3Uu4rLKBgrgrztAeZQL01Elggc4wLl3kpdKCocd7H8IZBmVOnJZLXOTnsSzAzs1XRSddKGHKVDsPI7IVeVJa9AxjDUQXFYXM/cLs1o0TkaaS1XCHdP7nAZtpxGVU9oTAlYw0E6IQegnpU4fQ4QNqdvDjwd1MUpmOXRePcKVJ31WWj0wyHaySl5uzCHD9VfBMQ6ty5tY7xGwPNcx7KOp6iuWfcu4R7+OtBvmu5299kOlshj4ViqJmucHD5BtX04rWzICpk0GG80k/albb+B0WG6LEakNbtk1OoobcxV1bdUP/yChcZlx0HFU4ZOUCkJpzHDaSZ4K/WG+wtEXVrKqKHWH+Lrh7MoV3GuTcoHJmcSO44giNRJwUPxlfI+RemLdDC+rNMkB5zDcFlIZQLYhrtXP41d5vcmtx4k78laQe3TR1ShKzefqF9kFMoAQ3wslY/ZhrPXMUAk175HQnm3zYvUXn7T+lVWAbhGP06iDIVq0NVVm1UuE6sJXEFwueRYHM6o1g5gRdZQq0CcPWirwmxSAvBH8i3SkoSGa36ATK6xWOkC7NUUVIVeRs3WNQ4KzLGfe9zQkdit7vi7uZ1ds4CjhmjGRiIaAwyL8FdQ71zoP2kLCwZYtpePP7WzD1S2j6z3QhZUn8sJ2Y9Vk8uTj53vWzAgW9Vf5AZZvfNcu7NFNneS5yzvcnknsj5hWki/Zr7B1xVh6/EzZCrQt5kwqMNc/+xvJThq4DOn+kATiazpYcJx588jHLJ+96Nuqyo4XvdaCsQCnfm3EsmE9q1heRjYwqkRdAXEJvrgjmpA5aulu/VPxyju88a+wzTp/KRLSkQwjqWC84p4SbCu78qbGy+4rcsvu1iv936QUhKcsZI74xI9BFcjhpA5zacw731Xtp4EoIYP8AKCQrpk8zd7pR5/KDwP2/0uZzRb1PtHIFUkIqeibvfuSb1j4p0pfLySMAAtQ6zGu69a2qUn5xayqtEPUYsj+pyJvd/ksb5+xe/bzAhOS+Rf8vyXhOh8sA54fQgMkFpIS0rXeubYqvgO5xNLgceFsL9kzvMsf+xMFw4D6ZvXI0PK8LHNw08OAzeKBulyUYKKGH5ZLcTSzdmtSQ1Kr1IdOEAe4zGh8OgflNM6afq3VKdp43dvHUumFRqgfxZSscwK02sua/J8B1lnK5L1db53Y4YoVGKR9l37M1tmAm+yEvt4XNX4juhzGdp9CLhcQso4C4CP07Tt6TdQIgTLRUeM8XFqHgZuMfWllYccKRk07BYBUXaA6IlHkrNxij27xPNH9loz8ACEGdRBbeyfHZ8vl0jpdiDsHF5sKjZMnoP5RmY0JcPjZv6dC+F8a1d+ADpHawt87SQ6K0ugSHcgDevRRUSMpTOcB6fHCO2sDe5Mk4g2lDsyRYN3ehyo0V1S32UVpoGMKIumvZJNBr/BQcfHw81Ko0Qz0ZcDItKEkuMP1n9FoJWt46O6iPNBWc9V2u74L4LIlKsNnq6mCat31xtWG/OKc+Ple3S9jGUZAJ7kHQ2V4KnYSI5NrpupsvKeMPRLHxfYwIA6CZis76NgFzBhgXsCd7arH+hN7PkGItBkZgkOnmh+nUi99YLnu/JCt0k5zAoRJG2u22kBQwhtF0b4SkVQc1qbNucbnU2rvS++C9xiIYI2D36+ROhcaYcf+51H9MpUeQSu968n7E7BL5mo6A+SU/8K/nKzXlMpv2kpGnzq7fEtMF9qQTIuQa/8um/XWfcLEhwrc8ODdEZeDNowfw3jlxRqzdCEyswts9uLl0Uwa8nTLh+ih8e7NTTDWFvo+BXiUfzxefSio/RuwThRVTNX9sREwWRmWUOnz2MxNSJ6AWjXlf48rWOphE/mzio62G6nnP7cZquo7NdwyAp8+1cZqDDbs3KoPdYPHXSl4j/8OTLeAy4pA81b4AJAxbkHk8oV3ELfQqhX+ZP0waMk7M/NYS7cwSXmHtslX36AQWqkBobXorRlqj/VNx25p2c66ZI6rkq0IvUDzbbi65jVMbmSWifz2h9Z9KSFEwDAOSnwqu1J/2ukO1cKry3b53edEN/mNUPPO75diWTYzUAvtPO7tFYtvNTQlM1u4+dhSwzSihjkwSfAHzftoshgptjFciGqpTxh2w5TcJI1kt1+BdQpna5xuo8WMDDymfMhsw0PdHb6SXcLYLwXUtI/jWQz6QKaH0nHiGaB/Y35rbGzdHXCudlSMJg1WPeLQV6yq4Ldga65dSoOAbAgnl+EZ2wR3Ql2ebSRQOuxIAszbVRj/1oCWjl2i/jUWPov+iDY3sQzyxT1pnQa7/FHhO8gwaLgEWy2euU1zQ54eHSa3G9hlRmLw0dyR1Hp3FRgf9AR+z1WnfeMuywlVO2TJhKhMiJj8eNJPaprOINe0q2mgEXpm5vwzYksfIGSDjnT3kRyV/bbzoKQCLw7p7wOT8sKa/m0JdSsqgDhi/LMaRMVBor8aZWUWJdMmtixD27ZkwUl/ZYgQXhmWPUEKzDPC3QWjQGCHfI24sAJIPJL2FmV/0lH3Y0OV0+DX3IuyXsMlwJUTkkN8HQWIkdpuCMGKYBvwqflAa1thMvO8N1Z9BJIZ8nsniSsGCXwAAda8BvAHe5FtUug+NVVDJamyUeqQEjev3KVl7L4aC75jefOWxOHqgJaL5lTshbwUpe3jZ8x+KLWGG5XsLcAhiXMh/qBQQb5iwBUL+j3go26X/b9h8ay6NrsoAOP8diItNg+EL30/OMKhuXHyuD9zf+QopMXa+fE61sL1fiHLcdK2c7J9ENeixlY1IHqUpHgnmPeN5LmX3ROl236IRZ6bR20ZAp1GikRa1bGat2h07npRmB3e+NmbsrMabrx2qiR68AJuEqe2XjQ4ZVZMqVXQXINIWD402pgeE1qv4rSGpwThvXcGBgchEOU7rWaXtC/XcspBGLctV/WMYVUub36S7Mp/9Z6tzHsQpkqep9mQjgdPa3pDyUn+nBZyErNNq9WqUub4/LOSJlTnGpy4QI2BcnDdD+A+Bzb5ThDvsUbsyL2IFIpzvqWKOPgKtdv7Yp2piRDVcZ1ZoeQFuKFfuhYapsGNfx7FwaQSIyy074h/kVi7VDfgR20JhwB6HHkYdw4yZUDkSxAP6/2BVLop+V/sc6988HZ1y1KR8SVNi2ISxpo6OiTtnJ+7neKb9jdWDPpz3r3BK8mIx0kcPYQal6bGhDlfnZCN07nFi+XsbuIZbxCeVdOukDmBbW8YhhAIlISz+Ufns0O8DMPg4uIHCr2fvyA1ITy/pWxbVGkjGJTbJtdZL6836JBzE4w4mWMRhjYMYdnXPWDG9MmLjTkSPCfBlMv1hPsxEPIRPlrs2BHFf0DDiFuUbklhpH8jxcOg0XqdDMsFSKb3XO6puhMC6XmZDysNjKh8viY9EePeJ3zmKBYfROlMwHjdBxELKAjQ07Dpc4o5X3HSQo6p6R8y+3+a5jV9edxy7Z8CgI/wm1np3vrJgd6Gyw26n0u++GIAC4TQchbAp3yyn9lrEKeqaR2D1u0AgbdZlbIegcttmIbmWRSuWYKzFlboXdgfD0xSslfuzLdtArmSbIkaoZY/P43G1l1nzEkJradbgtrj12CiuJeuV6kaCtm4QnT4FP65bVi5IsyD0Op4MW8nLVusT8c6q99Bb0pUjmu84nBCYmtrrX6XHfB26wRZzx9o+RW1h19lj8++GVNiWi3hCftuorGrlXqUmBOASXOy5uziyw4POzvvqOi3tP1cbHRFqGjUosKlHdC6ch//mkpIYbWulQJHjNdSY0w7R55lSeWXM8OQi9phVUKFpO6ZDAz7qy8P1UAItdpqp5td9lOkM6XuVUWkACy6mo599aI/PNU83xllanCrNWD7y0mf/nSRWWtAgL5glGDgYkwxSypvG78f2/a17anN7Uv+5mWVWsO0ASDtmoYdT6Yr43PNewI0lTmMS427A4WRY9hYr4OpPnlmrkM9O5hM3MrqxUDXGl+0uR9+yhaNK4KpQc/cOLqA6b+KErVa9EG4/BUxOi2ApaAc+qrNSFSklMzDYXehkYlnnAshrGnik2DUKghoJJ26LZzBl3yrCKjqpX6sKxh+B1k7kMUCjYgIZbjMUIVEKTmlMrhViVmWG12DkjKniNXGz7DyLzejOk71kY/0lFN7BsqhpNSNwimKUxjl2bMm5ib+KnPNvdkNuSn8AT9r1m+rK5FeIppTfAOgcqc9ANxkH66BkfunxEvOBr2Eyh3p264lkYOzLHjwyAZSsOWCU7v5dsQxwMuXCldmPjWbCLJH07+rASVWbHLOJ4SQRZWLqFd1dcek4qywlPgVP2hWDUWlWtqxjcmN1NvLyQZ0EqgK023sV+EgyVcr0UtcXpVNx6xEIDNuwmRroO4AhRKEgLTglOWSo1kX3zbzrGmX/cWKOEQb7xhIi7+k13YeqiObAA2Z73WlPfi287gOY1nYx8NkDTAka4zGZLUWQxBwKBcGSGhUvV0e3BcGM7+CgynDXGTCu1DtaW1PZ3zU137U+fFXcz7cNETQGtL+WyU6glu0eNvjemHcvT+TGztZFmcY3TD+17+oTIZYO9Tb8Upm4FHeDzbdejTo68SyX697ZpqJGUnW1NRZm5nr71McpNPzpyrrAXys1CBTBmEn4Dy6B0KQXJm+99J1xsMUG+aYhSDT6+J6sb6qNviSvkadpJglWtvp99I/Ap1MSyxgEP0Qm5gtmGEWiv44O9atJonbNvUB77xHb/DSri0aYYCayMNatcZ+hvDx2RF3y2DsZV87gqcKtrKkmf+I4mheSXwztJaG/1K7cfQMODeDAUo8yoY5B8W8rnF6P7JVMfPxXsYvTQmG/1ExhJ1ZYI6WEvh7xMBWM/SiaphxgeMYH27YOc0ul6/ZYE6u5R2rxX45Xa7Vki7ojYRTnNgj6NlNG6D6m6tfcvxHlLy6Gz8hg5o5fjNmmID36Zg8lQWLgb5mr/BzQ0QTmbEg1hpTYYNTE6jugkR2p3l0Wshsty3uC462j+MgghEPQ5zoaG3MkAqZxrATCdzThlkMUgB3bQG2LhskYS0z4Chj2tyh65R0U8fAVpDo/6lt27SRgdCiVIZGgQm8sFox6KSLB+aivfTfIL3Ie5bK2vq85Ir6ydroTR8hoRW8wjjpI4MCTG0O/oI5PKBPKdrEFdFN9H4gpl7EhezAVhEnX7u2oNJrgQ7kn01hLVu4yRoq5WAsH+2M0+qI2JtMTMFZcko80gUsWiPj8icizuAx8Xsm96JkXR/O6S+IdSaArOKX/9RxByEo6c3xJaJ5I3P9SIWhocI2fXit4Aj3Y05X2+2+9CuchqrPwgWyDaVjM+LCtqMpK7kKXf9/1aUf/dbkBXjbFVKatH7GwD7oi36MPFvsQUzGxixWgIsBJWujGuwfwfexYM3HtCIeTCpWEzJQUXSY8Xh4sTLpQxZEcAmmAchEhVoPHEFucc6ReJqaTpeLArVas28iI6XaG0aSkIrlVrH54RjwUMQ5rkfDy1JHOYNePDAz2sFKg7id22rle0PYzggFuef3Rnma9JmybYzYBklUf06NiSIN8E23G7n/dlwIWAbl6dA0aZY4OPDj6tt743sr6HtSLKXdnEl2NhPCErWhA670qASvDVHirGmkqYcdAgPAfBAHiAkmp4iJUfmLy91tKbG1SJ9ey/oiv/Ee5e2u9wE5InIEOPv8oh5mLCO/l/oU+Pt5DQ1APYl+4yrGGlrwN7DLE85b3EJU+Th+sgbUi6PQFKwbyPq7byt7csfPUULz1UxLyZsQ3KNtwbI5EJxD5ONf5ALWdjt3hDIynatWmVFbsCFgLBMK8fw1DGfeaQg2TpRkEknFwvDae6wL/z/VFsk22YqBG7pPv2d7FnOdwaf42aojcxD9oCrEXJzNOZTYrovKIB2zFWtGw1OFSY47e/g433wwUlin2fY71wVNDezxvSZjyJzH+C2LTjXmvzWrw3zjK+yLhYucKmNktxO7UU8EHw4ugIhIIobrXSd38QKcLT5dTI6xgXcQzo557CrXoEvrUoWLf3qYSLM4bKlsHKV+Bw7aNVEES56MalDubkWCPSf5K2Ps2PA7jTfgSV1J3D4Sgg1vY/sU8iDvzVTUQ0VR6FF3ckspAbR7NUgdzI1pUW6BSeezcaYE6z98pwaxs4fxq0mVlq4MHsjbka87YNYjUMioxnbfdeoM6sjMkhbdSdmHwbvxmj/fMiE56ja1yEz4BSJSOYtunbBNb6Adn8DVvuXrCfyMhCd6IheoNEDKqlsEPkxZBe4MWiGOypvYomI0gutlXZE6P4sJE4ldItkUUilhuRAfkBkCEBOjA+0nqmd+yCQtkFndamPRSxM9loa5fO9NaGaZEcjy7GPFTDn9r0+zE+GTqqL4N1XJYUfdIvyJP+vgr/SIKkb2yqFQ3j/7D2fCkebR5rtbdBK2Axm5lCULY5sOJ3skOXPYkbJLJI0+av/esXIT4f/eE1KHFx+ZRNxRKF8ZDyja/YV18xEe+4Zf5TG8DUwX2L/G2Yoh4lv0HGmVYWAJW1fFkWgRHSMC5BvlJyvVv9UyMS8DToPlmSEqCAN4m++KiuRyMFdsXuEiUvlEhopOKufoM0t4nvvLrsVXsbxJzWCIZVKF8RYuGNOQXIU8Zj3JpFx2zeC4mBjIGD1J+/zC2zhP1yplx2KuRf4ar8X0mJBgUCWFx3TCwIV49HZgksXwrBm/f2g2l1gMivuy9xdGXWj8ZQ474vwAGYmO10ikrBzat04nH/2zKgyVVfu6ww5fwnXQ48QouOtZxCWFYemd+oeqfAfSFCd/0DfmIsOTzcEau4q4pCKheVbmf5M3eBifa5hcrCbjwpP9Hl/lkJLGaxg0OabsxbQYA/I+NmrprTl2dph9tx1TdVu9kwbC3PqDxmSW0KsMlzFUARGJQjw8O0COdpukU/2A/8stJ3ela/10Ri5pFB4+h9DHc/PlkW/6J6Vxfj2NgvcBb3JX9irS3f8VVJn/MtfAatyPrLEIVd61P7Oj3vJzR6y4i4ZjLOwkdndh84PD10LTaU6CDsNSkeQgNUJVXxhAGNQZ1geaJTUKuD4G9/s+Ljsg3BywDy3PKqsRnz7H1JcNWtnEsscPTkrujb6UTh+chKLLalXlQXfhApSAzBWjACcJczh5vYCDbnY4fIFxfYFfwyQBzZc0MSsVreXEHfJh4nsjKnn9PHcaK5X0BZXv2hLugUTEjpEHzz1TfmEkjl8ve5Qg0UG4M4MIgTIIlZXUAnBUtD1nB8RMBrM5PEHg7Ltxl3ZbfUrqALCjXWqcCrR9B7CtQl2q8nzF2q0+N8Cbuuy9/8fNDSFNSU9P49zQJZg7GdAK/g7GpVwhc3b5Wkh/k2S57AsuFie6S7upoJpp9ly53BxVDGtMfRLuGMsiMOpTmGKRYBrYVicsPxWZALYngugFEq2FiE8FfqzgUJ3UQ/+/nrMoCM4Ud22GlQgEwmJ8gM/WHAL1equEQlbNQjWf9NqrcuUQ2ZQjZPV4o0MiWe9r9ei90cZ8aivleAZ62fVr9cX5ztthPZvmNHRbRocDg54KMT+p9j7WUyucCgHixN8SghqdacOL3RcsMjW/gj68tIRI4Bjsj9et2C6E41EZFGyaogj+7gZhCGaQ6OTBRCCboF5TthVJeejJdtriPZM0+VxBjpWF4uM/gQ5ACQN1HjbzMY+LX9X4KFUZMUvX6bvlZVmXyZ9BEyvOQNG/hxH3R2fsRir1p8sMqFTngmG53Cdd0Rp7/HE4htKZaxAgrAzAEB7Nou/AmUjUzyr9mibQey42Y32hw4chx+S0d2cFYXtpLo1LLfIcw4rEZ7NOIbtS7pHHBmE3MJ+0PLXfk12x1k5NftFSniw9Cl7fO6ZoAGhg9nu0aETb+ftbrZKzSM9tahGlA8qKE2ntKlskg/wJtmDdIlgPSJSfmy/DqfwIIBvz+U5ucqmRGbcltIggCxQnxOsEpKJMeXBp81TSFt79hpNdkeiPiOOt/sL9wC+0gfB1uI007o6hWbfu+4jebCFURvvF1VQPiq8YSVATatYKq6qSei38rBtmalGZGsE73TirD0puVGcPgcSJkThT6xFwIOKoa2Cet2qmF7gRL0BY8VDAXLfsmHNtny6OdYuLR7JwXrH/KxdJKp4/IoK9jYxJidEvKgXLRd8hWaiJUP/R0VKpCyWcMH19isZkz/TlbnmxCcKj6UEF/ewgIr3WAxV6BWJg0cP2Vwpxae7/GZeSEVmVziMdirSLPr12XzJyG1Z/Ftk3iTfEDq5fuMQM4XvtCn+5aS6O79FUJVudy3MQrCayYh1yVTIu3la0MA2jvTHXHKAYS9X1bDJfK1xHC9HoDdVPtfadtz7pfpYbRy4MxZQDi0sCiYd6VubVVVZ47BWVVqB8+Xce6MtGoI730Ls+JLw62/HnXyI5gWLeQuIflxwGhsgXPwp+YiCqt7Xe6rysauYkNxKQq3+7ZotlTnjYwXLdGzMkmCnRRKu4/efbkD6YBufO1MicW+WGAjdQ3WGO5PzCOCfisl75CWEqDg3hfoxY9t9pzDdo48b7Z5uClGPSg+DfrSKkUOmqbYbujHI3+dEjWOgVdUTUaCvARCt+Bl9+xWhQWDFRtzW/6NF7Y3/fjfwRMxrjcQFOuMBCqcz9LRcnR61tlNc3uHibumgCyhiyVbWXPl8hQ1GyJ5M2CKjqHJ5q+FJyaipdXv5z0QRoR9BzsesV46rR1a5EYBf1Q6KaRuSUf4MhYAvTKNE2KbSDcessNMFNxUfDWE+Mq9W9/lhlJJNIeyH70qFQNEsbeqnVfXHMnk/BuGEYR2iONjahyfoUzIGRVestIamvSfD+N3Z+xPvIAsPVlAxzhnitRSYdoJe13woqNtZszA8FVaoUAlQR/Dj2GPj4iOorAPGbLGvsOnpqd0Og4ZeYp7pjUEtPI9U8vq4b5/aQUjg49U14f9CUNV1RY5WylytZMJsdvhGU/Ms1m+W3jZyzL4Tj6TJZ4arcixhivsVoFh8tQn15o9agEP4Fa3bOdGqRLe71quhphs8Gi6rNXztXmH+/sUhlzWxrMkYRUwQ9eGPcsdm5O7w92frKOoqp/0SV2PtqqBwn0NkScwR2k8fEVpst2dQsnE8xjlT8QndvyhXOv6acvWmx9toVC0v2L9X5LqfpXBx8CY22ZvhRAaYmOW3k1HmScoHusUxwLF0WlTDVTHLbad/FiF6VV3Vw67j7mxgIujLVEWBjLkU9UJPxiq+1FGoZ+t7harIpqnk4BB1lBeVtBjU57w3bcBhjo5wP+Wfenfz9leaktehDtSf1dIDe6dhOAjUUVgJuddM9iA6kajls6/MaSfl3c+YZpUopwPwAsm2N5jSEvNlLM+yTCTZKw2by5hXgKRuFnlBMU9r6Q2idqmjnATwpT0Ejxz+eqXAAV5vtoiLGWuNISlKg22gDrTBbTnexyFS+XXqImMo84ygGD8HZEq+tOl3osPU/tSJoc/lRqIYee0kgwTFTigpygAwIkGWgWbE+dmD12IDPNuAG/AUB4hj1763vagvoAPY3+2N66E3TU7iqsurvfq/MqmFRu6zBxrjHevb5j12HhrAijDAQyh9BnLajgUuqv16GijnEPQK0vDk/URzcaSygggEROwhV8oRz73U5EuRzE9i8k1HtrWDOGTQY9nrEiBoXIjJqQ3YHIW4cqiMUOTqF28gak/O73MQMMmynJIepE2fyGF22xYOEUZSCq6u2X++z+pFnBCLbso9s5CXFCvbw2IeRHWXGxp71bZNK6BhJAmRfNv11IALMAg1EVCmBXwzjWezUnsQCjBBfhV0SWEvSy3HhpOnI4Jj2ra8t2yNotnLrOP0/yGGTVoqg0hNjrlZHDuHs6mqrHsDUZwnQYTOECVU0WHORXRMhp7sfGWEPsWe+nP7H28PrOH7azBQbXpRm0kADVsXpWNRJoHTzjmhOTll3l5wQE8xtzCe38OAuIPztMYiQ9n6FUHGAjEHFwV/o6YFGmSH/vSib7xy/NclCbg8zHLtt5S9D3FKibm7Lma7X+Lkj12YRWdcKiHa13TijkQSQpWQ49juAchedbLr4t/yd5DjfdOvmAfnn3RgMRW+hIMjZh/KJzJ2LrB+oeCQPOM1SgvnQoEFp8WEPYJBFuCBM7ifOAShN+dnmD4t/h/k7NNgzhy7gR4+5T6q8qnKw0mJ8b9/wvdRUFcjfnEUObCXzn7+DuVTne6C2BmGRH0EFlFg3mDYcDxndHH5loqmysRHe31uJuEGgU/t+jdACDS89oFQ+auuWSebQnrVx6ZM2JYuNzOgzCqUx/k6akK6r31XqokgVwo8G2OkO+8GfsirbfEJWcjFtfjSEam0Ufeenk9xczBsqZZ3NsAuk97oXHFegUpZ6KJq03wUyczvF6bJYYtg+HqPPYBxB+/T5D0rqsRwIK2g8QuukRn0JJNmrdwE/b3HElc9jCMRUSeg/IjEkc3PT5cEZ+E5bEXHbwDIStOfqlR57jBVAaUxPI0Vk7fDUmLTEw5xNU5JfaEpxdQbrNKaFqooprKRjCE3h2wz31yqnmey8WxiyU/iS10l8AuaX8SQO4OIUpQ2q8l/9Xqi8VbNZzUmofq33Ia6x0OluHlLh3gCz9a3x0MnBQqijrcfYcUi4DuT5JFTRYVx26l2ycebM6HnXJ2Qp/WKv/tDroUsQZ0AUZfhpFmyj2z2YrIHeUxklIj6XOycnvvLbYIZTn0CEDCzWJGRGcoCN8pjhhLIlI/fRqU/CRLOFy9ZpAZFAv/QMe4ZaK0SM9xdTD74Uxk5cbeDR1FQHZl+x5U5Lh7pieHHa8MpI6xicK8K1a/Kbsmg8mf/pvI6PoTizxYfjpEvKMZAQRubqN7385JqHXXbQGOid7DnLi4hS3hkDs/EanvXlHfaTZ5SN42wffYDwSmtyVPRsz2h3BkjlOpko6ZNUuqfbh3Zi2A4LzZGJffpbgxtcTLKxO1Mjb9lqGRcsnOSRgRUoRzP2qYKJXgAKThJVxFvWLLjbWeXYrqTAuRu67qf4UYR8HVYFKdczBe28tVdFYM2idUFs2lX8DbZeybDNDY6nogWP3ZBpMfWsKSVo1qYmvt2eEY7ptvvZziOVJAegcdu2SESYeqPT+fWNJR2BOyTW6aFowUENnhsZsvBKu0Bso/I2Aj4VbQwtgXZq8eEDh02xEB5bqpRw4EFQ3wskpxaeLJ18QnFUIEx37Q/pv5pG3HDgXZEJKLBh4N0Md0fKq+ILE+vjn65smWn0guhF1mCb02/Y1s/TY71HWtf8NwPufBvjUV3dYEiNIJoSUbXMuf6iOq4aa9Uw9f1dg3RVIphXsFqi1qFZpHmrGPuKbrAUxCZQXUhdrEHBOiKGlb9s2WZ8EjiBkLDNEQpcTGdt+ct7Sk35hOwNZiWPrCXOQuo1TU+/j/D+xr+GOdsZh/KR9taxAv2pIo8pJnR4rjyqB+ybBH6++7FJPOTux3QZamn8YdtY9QeU13jTjr8HlXNgW6V5pmungGIp+dirmUVX7ut8+MBS9WcrRIHU8vcu5yifKy/WydgKq2m6zC89/uDPfNjXH2X6l6kwALfBoD9YHY9rr7AudveXLR53u9Jxodv+tnJ9zKlEzdUxIb7dvZs60xhUks+SQFnse0u/cUiYbwCbt82kfxQLFkEYxI5TuXoC4y0Q2lCYShfkLJzBLd+9QEjjWVkGyZUvxHFGIwpJoBugZA4poJyv2SzNRnHzRyUSvafg73DwYSd0NJhiwVlV2ItxFmHmIKB4aRuIMtMDO6UDzgksCTfxRtlWNIQCt3nNoDWV4+kJKxERUAQAKas8CzIEZi4MzkFqfm6+DqqK7acU/zsQKpmNaArAadzC8WdqwPl4jBUY6+1YCOtyJDGNpQBJnRrVFuNvNMuH3uJjLJNH0P6dZBRStHFotFQv/8JyEnHaUSjDuDUpHfQzgYq2Mopha0We7kq9o6U7lolPuIIxq+MZxVkFYS/SkhdriZdguyhgG/PJNhKJ+JauNZUbpeKw+RdsA+li/jQfTn+B/SGFZ3Yp/+X84AWyc71bgbuVPKz1iUGN31cUQV20zmq3ImNdk2ylzBpWiROo2LWrZM9pw1xzPjOI4Cvb4NZLMsSOCb2OZ/3o1g8hy1C4rlUHMQxVWSrftL0RPmld5lfqEETgRRRUH1pJ/s7FLrkdNtlVzx6cNLne4gXhs5F9B/VHnug7guU8HD3P0XqtDhTWKqHCw74iMpoOeTuOKWlbrOSmnRzoznXF5PDVQ9iQxZ254t9q4mvqt0Hx8uziWx7zQbsdEscn93nRNnj+9WxpIiIt1yX3RY+YT4U8rU1gFxkmgqSxlcFWY9olsvLT2HI53XMP38GJTkYZ3XCn73O/SR/GkvlyWHSe08Wbdzz1gKEHidIseasB+f7MhGWTkMiWhvEpnF7eVP2G/jrA+bJt24G6d/4O9EfmWaSsXH3qpgogjQXxODbgN8dd4dbvxOvOBPZx1jKiNns+t3Z9Y4U3O5D5LHPq1jmgvvqJBGv4CmBFY/gvEf4OzYef2+ZW12b/McD3IF6VAPujNYeIeXm359PSVSY7LTwSKPSFTB3APASQ0ukV/GEXbMXuYhtS2d8na+x5piGNjyLLE/QywLTmhwJrBTavxhOCywDgze5q4Msiatt5CWaZecAqqTDcBXQvuczFHdqFtW1YT1IKp7EfLsqoLyN8ky0IF+yTsO9LpiIqWfXRd2yBYbNo2uG0i84BoN85gBwLV0EfvBLf7pYNUPSZuZNRLBhWlWefAEUHowbWA2S9463/NBokGsfJS7RTUn1s4Ju/iaOdx3O3zA8l/ETPKe73TvKk6IgzhVmZmHW2yyYVgyrnBDBNoQF64jj7seEefbr/u9zDO4xGH9WRJA0c/lzt2eZsN/STnqPbEuM3EmpVz1Qo6a1GhkxA9YDUzaKmHkk3fQ3eJ7W/Zips15J6py5Lt9/0hvYlIMg5hKHdIzyLjA//kSg3qHqP5xTZDrKSo4w219eZXUl5TPr0ii7GbhcAYsE5L9pCUyq2SlCCPBM0BtJN1V1cTnX1cI4IuDVYmsQGBaE12tMgw3xVXTmVebf8ykANiVjQQgeIfSykdI4KykVmYNAOZbAbKrz5Bk1RNgbrVvpMnULZVhZ6mIIzIyfQTXHDVsvr7Vevvr40QiWsPCDNMpwvLm8iN6FvxQSnl3I5AJuxR5NjntX7RRqFnYwTMDk7IU1Fw5a+Sw3cRrBEq3qB54Az60l1RS1TynE3rPMM6uIoqMKL2w43eqzP1VcSL7vEMYDDr8OFE6CthJxxw3PZp6Q4wi1r8fA6kpPG8VA7NdbP5gdDgNgFA2Y+v8X4r+WIajjiVXmJzcEEmK7ZJbe5q9ie8JhMmdOsoXPHmkkfm3Pqhtn3eRXg5JrjSsQFJoei/5fw+stRajUbMs6sLmN9aRO0d3l3TrSQ4TjBSFslawPHn83wi9MWHTOaHMBhVOh/GscTzBxJ+cUW2wf3m9mzJhE3b4foys1QpyNnNQ7GZnJEx8d5JQoJO5XqFQY6uDqxwFMok4terUlcqZESyctvyoDJoqofa4bYT+RFTekJMqZW8yioI8oGDXiSsOg/IYKn69F5l0qx6jmMa/oi7wHy4y6DZXDzSPnJb2dk8EHYHZUQ8wLMd5kBEUcmWSDEWuqP0SUZ5NBFD60g+ewjramtcCG7ACEsLjviCWCFB2dlfmWXs4/2UWAh38uOjSsf0kPlJ8bCW9w+fG8Dp2dKdUZ2dXy+J+GMicdY0SmmT8vY0wVcS9ueTTaHvlOUbOMkgHfG5qAyTabkNXbNx+F+fJtvgWlPYLTUQ8malVev1Nm9EgWt6os67FtQn6zGJu3id7EZPyloZZ2XkpAmZlpiPGm3a3jvT7XrcqsEXZq6YpJDz8HRu9ClyX9p71KiCccN2XM6rJe6tJ4HwQycim/Lxjr+mFNsRcj3DEbzkdMFrT5NZ68c8t0i2LHjNhuVvjfVDl7Cqr5dh1FuwQ5jPRE/fa0cbehUV+WvsWJ9UNX5FLeHcchjo7oNuWMv/A0W/Ru7Zzjz4LdAnG+A2w7fNOCm2t4OKUz+WZdLSq99NTfDELIPGjFEUui8kCL9tVkSEXO4oJvM7sXDe9s43wxK9IUKMev+50ZcLNZ0YZDL6dNXZrWIJzT2tZooTsZcnHEpzZnlheCoIHTAp8ZOv7uWyDWPSppAGUakzs3Hq5yHAzvLjpkN+tsaEWYCXl7KnwlX2X3EtpZhKi03P1735HzUSQsFBpUwq42p3IqQtpKH6O6/Uz7aEv78hTOcZc46YJVZgqcJvj5nuXevg9j+wiriNc72lFMqVxR4haakCMgknztJeSzo7ILZOk2JOjsCZmEk+u1d4IuDM1vyqKRi200gkdmPD/kkWup66j2hERoEjfSSuzqBb0bjW54jfDlnHKs//kiiq0zuJLFnyZHnaWS7xPUkd7aK++8jUqO1QxWmDt43X0UM513BZ9ows/mDJJBi0VkNVBEb4JfUn9Nr5wmAoPe846ajvZ1Zwx76fOy6u4sGryvwgjNJcCIpYWJg5/oXAVwlrjJwRRcd2XhciDi71kdWpcyAHZ+IuoezuGUNNrUQG4vVaOtofU0fyAgmdOoapzQTx/ouj4k0XZ9XOQIapwGKANPmPUCvvKwUJUBc+5YvXz+ICSPnJCYQ/5Hg3dA5NtmNj2AHhUmgJNgiunAwgdJtqxG7yGvFBoo5SADX3/Lzd3r9UL8cIfgKN64Nk6uIs6e1CzcR0pWUYKYRpPBJkiKl1HuB77AajCZfMEgCamgWJ8KrqJdzJaBnVXeLfSqhJKNz7Tt5xNlwI56MHeIa2xuNKWpvt/JhiVoeWebNhMdPa+/z8KHEUL3zy5hem0CIXlX5JQ5VJPTq3IeuYC+6Akp20Zx9XHdBggaI1f22TmUsNeVpdpqSjwHKr0fIw8PyKGrYiYAkuBTNwoolBsuHM9CbsSNJV7M/XL21OZGTwm2V4GJetOGzS/e+/zkPBkeibpDBMfWW/CbjGFZSc8noxsKTVHVAn6n6RBhdNdRzy/giG/vtdfK+LvUqmg17LSiNvEVXF/QXy4SQXnozTIVI1uKqnBnu2+UDrYRmR3FrGnCEcuApNS+Nsp7mZqkmnElIlXpG0HywemlW1EcVgE1C3HCKBjZDWvrZi530EieUA2qUFw84PzTbk99ayPpDz9gzXSoUzMt2qwGGZLoWdxLnO2G1gJYrJ3FIdGsfs1eLD3FI7zrGc/2eRcimEVxYQmzNFHxXqFNQShzNo7XORMzsMDmHtysTlv2GKcjXoXS3x68yPh99dblB+GPjuLOqFyvgdF4VQZecdIUzR790KRnGkRQggiCSM7uOS5XV1B7uGVE+itIPx76U8kDcT0FJb0Odn4XClR2iesVlOcWYgn5a5iqkHkF6Lz3utZMOU2pKZmijjiY+6WykWTz/dgdWPyD/84hG9eJ6X8raReQzNnCc1bytb5YH+716Nma4SD5N7SZroTqJZeJa1PThey0AhsAIIFgpffvUk/ZSScKrfDjKebOCVdFonxSdLM5cu7wR649wTzIKG5LGCMyJlnpNl+01xTaIBC1TxQKBycSbt5N7OeBPRuyMLMtJT2tWHAj8aKtweNe3BV7r84/DsAW1s+k9K6KdgjJfaLqjnN2TggetANJUirJ6d/2i2P4CyCsNtumrUg9AMW/2bPYb4gGXOCMRLuwvPSpX50Ke6BP7RK3eoC3roQbqfa9gOxELyr002S/AawO8I6QPLZrWqO0gMy44kVgON6KbqsKkaHND7GJMPWnBvYtygSPDg/s/IDBDDtYdWisufjCgcYCGK1zDm8gUtadvHrXi6IAalzr3N8/XRrW2xT3OGWKs4QA+ahr7O175jshPK7tJcS5KpK6kyh6kcVpdnvDPrw+0IPklIMCPDnSmuz0hWrhCD8kUHOq+DWTPSXW1L6Dn4UHBemmEssZn/dm2O2Ar2zw9cgVYqpv7AXvQ9AcOMPEi2STrzhhNr5uPlMJ3H+sbT5Y1AxiBiHNhWVvpKV6m+rSO33Ahxq0XwWg53Hz9eZ1dccDbCGe7nXN7NvVNI5Xa5BC0nuoSUIxaHuVmb35BypQmcrHi8Dvmc9Sx+jvDsW0SiIa2LsaJW2oDxVS210DokEpM1esBBdaliYJj05bCnRNc7NgJCrJz7oq0fTJVfTKCrguY4rMzg4kUxG8n5ntS1AlPlIJEdEm/ISmeAvM0PxSlRPs02qjZyfqxlHuH7AD1xJrqLaQx5RnLt1wYis4vdGIjY1hMHmmJY+vY4/okKAVh9dNuj7YlRlHCi3icsrM6XBApquJbz7Yv1sNvVZYJKpJ7yBW04EJHsrH7Xdh4nEDGGxA1ew8lSZyPc761InCwo78TKSiGlgOoSH4G0mriEPa8SM7Ct95GqkkWrP7AzU8RWyAMgxdmHHUn3xjvjWp/GVWfoQjKVWrWIUN4ZbIW5Oys+yAcZfX1NACDJfMA2GOLxs16Tw9sKdh4mhpQ6DCofT12NvImdGe5B/PQLFf/TcWRgv3xwEVYdb1ehJcpMELxbwWBmsmCCfC2Cbu2mEkIbKb9pOga09NqyEmujF8OJMbdWFRHQvgsJp0NLpFKGBXIr9XphYA4EBvle7+FXeyTU85o8JgHBBDLV8TFeEyFALOezsjsUCFtyqm34sGh6LAmlqq3cX4j9yKtszC+X0lCMtUCgii75b9EPs+yVUACLzM/tOBwI4qMYLKaDqRDJ5v+dPTcdrxQAZvWYsESyFm5J7lhftQTwY6IJJAS9QFc98c/+umXz4iA2rwDN/zHluLh4cmi6aWLCtVw7na35fI8wuwdfMTyhG99NkXGTrE2/hovbHgATMdd+XRIliWbpP0bwq8JJbjplJ2CRTeFXkOTwEfsA6tRg5QAIj6Xcr2IqOE5juLac0I+m+zoh3YuA8pMeZwM+H+IbqPAr3B/EZC1vwmad5OQ+VAXnjM6dXt89tDeLYTjuN1Mbq0giWkAiyfYScwMI4O/XweX2orRpIyFxx8ImevuOQEUmt7tr1nD/pSqkJTARLt7gR0Gaw8xQ5jU0FZ3lXuFUEiTgrVnCeclGjl8upnAiY6McqW7ZHfn9t4cOSLyrPyQ//Yzv5it7UkCZ4HnC1iNRuKTok9BGeSxZ8FM6c1rT8UF0vEbppjIshIr6l9gCg2ZvB8W6w1tiR3V9xEAnltPADIoX6pgNroRfSMK8aRsJQAoUAenCZa7vLtlkskSCBB99lIH7B9cZ17WybNSrLs1fY8I2LN5gzSy9SEJN1tVGfA48ny6BNagoOW0kpizxC3YZaZdc+73V0UPGyPaQw8dEL5SSfPG5hft6J2rH2EWZtFSDXn8TBd1h1Q2baF01CQcdr3J/kDgKeS061s4+DX3zpFe4KwLFNaV9VGNGs1dzVImrFOjCn2vO1sxCgAqYmVxNmQm9Bt+xCUwhghjiks9XH2H1XPNaSkWy841bsyA8BMa9njaU2M6gTJ/9O1444o3fcKR+Ofa346zHhz+1HGrll8y9BcW+6eG0Yp9IhdKYjAS8HQ7euYD3k5oWYsaLStwY81vagHFPwYDlYsZAdqjOcOMOtRVG+xQL/B9DmgxDIO5nj/pgAM7GEPtoIYDztGUA6zdui+wWfZk1IwsAQi3iJGrKVpREOr/EjuPSs75+JgQtU+KFLIkhU1WnOGcRQK3kUvTyPsmG0uWfHiVwGlS31CF+rjyFZwC1QL/GPL/kDcN/tH+0qstz3APA1BA9US29idxtsn7wyj+FJrZAtAhphR5RyknYb+MiXMDkf7l73c8I0zYzPXEKcT2oMokVwo8txE54e9ncn/5uFaIfQLK8GYPP0KDNRd4EuIvzLY0jAFoGmjN6sZWzvs1Q9joyqfOyv0V8qTzjRIkx6JtcOpmCNXGlRew8jjdBvCG6IPHdCVlEhwxVAXiZWd5lM46lVsV4iu9mjOvPvuDz8M3PTxafY5n1AKxg5VvjKzZkwDXRl4Q2d2T4fza6xaMhgdjiahdytu/quth70MJpEwUhBRAucI3qKzJ2uIfdfr6xN+y+p11OBuChCvutNek4eFSUJb7h70ceWqMgzhlncUH74G6lPlY/Losrcu3GPM8sLnv+GhKTVNZt/JwmO/CtYG/CaValurHvguAYZ76oFp5qxaaf+lNKRYb90NTFENtIbZTlGFd6yT2X+BFgT/RHBr+R29ZSSbt4LgUY3mspFb2xbLe7S2HoFsSnMghXFKVY4beNnVepQVZZ04UUHcpUxAsZnRlquRmmv2iZif5kuCBUWzSpT8zUP1U1IwNuDSxHLMnnQm8z8r1STqfIxaSXNUfLWn1pgkEkqqz0Y+Oz8sqWwX6UNJFssRVQ85MWtQ379EtWbBBTeEROUbiDqBh5VVqW3k2zHovLTdGxooU+ItaGXPEz0TjVJgKkM0rBpj1MwXbge+QL/YQxR+rDRQ6Pf1fTU845tBRUWW6ul+810gWNWU4BdrQCdNHLI6YnOZ+vPvRJAMlEGEYaDCWClUqQrdQ7Zv88UzC3kDujNPP6CjC4JVaG2PWelDdtYk8nJ5bx89KbNRsJHbwm2YMLKWbuwp79Hu8QR2LgI4iox4oaICcm5m4FjQjruujJcCZsDSg3HbbXLYQjTWtb82f+xDHHZwPebek82/hb0MwxM1us8OdseyYHZOHh2l2TksG7ieJM9OKO2/nq+CdzVyycljYFuZiP3FxsIGPKh0MwZrfBB1mW3Pn0YCfl74MqsIT8vy1HMU6PHi2dk3cyRG0y0G64y6Z3zNR7IVB9onA7u/NI9p+TuySHV//klXToetUmbo0968UqD/tYpZTe05YeiqYzIdXQxFkZYjoTAt8fFJUXf1tql0Lz0GXE1YZsgEMjlGxrr7W0SPuAubrFjO1pRdPA4b5iG1AobgxG+V+9VA4+ddUxuVsI6J+iH24ufL0lMvqY2Kz4pd5jxBQ3e3vZ0r/71+oDVDoJJ2pA4WRNWQsMARHCr+5LteSZV9dCIuYeQpFJJdUrET2qd3Me/GG4s1Rt7OVEtJ1pgtX0KCa2bJElapG89kvLQ8DHxci32fbMIXn/wWd/aZhqanc2YcS2K0uxTe6of9tLF9gV5SC9IbjhAEo4EVrx9ho0Ur5DpbWnfpDZASFZjlP0tvpgD8pkNIOe399rqZtoJ520sDWxtbG1Df2KkAYBhM/hh42JYEW1YnmS0y4yBK/mOEDlJw9pnVVvHh09z/wYH9qLjVnpiPZtyR47X4s8O9j2yR3Jx5NJIIYMwx62Sgz4bEcSNnXZTb9dc68CjRwJ5mGu6dFHbrug51dUKk5ze8PgAjpXsX11ZD2mCcluNpFjmEjrtopdUX4oYIKboKWDIYV+0W5IgfXzC0V2e4ePLiViAcWWVZIkY4XDKWM9EDx0hvAoGqBCusbLUW/0w2Y73imZme78Er5BA0myUzda8umMwoLRguW0VMvLPEsjyzF8PtfFAFCR8L3wOFfsjxKNxzod4i8Lh1hlRFRFeheBHXZpfwxZordLgS9CIbAlW5rH2Uc2gDlFBrHYRGFJR5ISL/Mc1061KktRkwLoFR4aR3CKGWf3IPrJB2il3wT8BvATzfk2V7CKV9oZVRXX5EPV8uABeF6pHN4PsZvKk9T6lrg3tU1ExfdeUivkPo8ah+D/6w9VwGF0g6gJWvMEkmPxoqwAd/Oop753a/0k8s6daJ5/l14H+MCnJTsCJiqUUQE0SlH87qiGWg+LT+aPUKKrKdoOnmO/Tr737g/1baNIqjg49lkn5xUcBWI0p8zYQ+YjNYhODGpUbay53TufzVfjx4Lkwt7l4BDJybBGvzKQrzkuqA1/7xAsHsRT+UiAmKdHUZfSwpbSAISK/z1HieP4uxiU7iUfDcjeatxVRIr2ekRjqKlxS3s1tTiBrNnZiVkArTqB49CsJDo7C4Zq1J6tkSPRl1yXcx4385bJbEdiCagqm4sRanhE0Pn2lBATHaYuG8WwpwgITdg/Ynw+2vJclV85+X3WgTRla/N7HO4hfln9l9r+X19y+ohI+zn1xYSG0wCCJXTMAoegLJvcy9WVi0SZFOwIZFzlmiWkMuLApHoTS7ybHQjEQ6Eke2ofyJHpdWCG3O76K0STJsUn4dP7rln8Z58fi53g9azP0rGUR4+Cuuyq4sDLF6ei+pvbAziYv7q0YGcI=
Variant 0
DifficultyLevel
694
Question
In the figure below, square ABCD has area 25 cm2 square CEFG has area 49 cm2 and square GHDI has area 16 cm2. What is the area triangle DCI?
Worked Solution
|
|
Area DCI |
= 21 × DI × CI |
|
= 21 × DI × (CG - GI) |
CG = 49=7 cm
IG = 16=4 cm
DI = 16=4 cm
|
|
∴ Area DCI |
= 21 × 4 × (7 - 4) |
|
= 21 × 4 × 3 |
|
= 6 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers