Statistics and Probability, NAPX-J4-CA04 v1, NAPX-J3-CA08 v1
Question
Bethany works in the city on weekdays and has weekends off.
She catches a bus to work 4 days each week and walks one day.
If today is a weekday, what is the probability that Bethany catches a bus to work?
Worked Solution
|
|
P |
= total possible eventsfavourable events |
|
= {{{correctAnswer}}} |
U2FsdGVkX1/IHhpsJ3Ic00ILNmc2bhHb1r6FhvcwXavGB26ra2dRN3VcxHI4cxsSjs6poN5o2YXCmkK5yZYdrB3676grglcOzx3W28OwyV58ROt8r/a4OHFddhpvqiZuA/6OMeKykYvwcv0RmTgX3P8rV7NVpkrWgPkBq4ux0Lp32BTudLNX4C+wcvxY6kfF+n6JW3nVyD0Tc7V+ydG2dm1fpeJniFuhEqQuSPTkzfYm70VxOWNmlZo6GKBCMLxge4l3HJ2Md0RxJoU7yp24uYlaUSGmxlqTAiilO1F/ykmC7FvU1Nj5Z4EfsjkAalUPGtfPgnoOAp+LfbslQ+SsikyjTGiDtVh91c5UTI328Qisg33PkFtSJUGnJqyxFRMdmaSncwf6hHOgl3E76ndidNdbp+mAMovuKFP2saTUkY6d/HPbIcyKSbtjXFxXH9cMR69KsAzO+8Y88cqjxjRwmx7jkIt0eMK4Cql+50uRS8Ze7O6NpL86ItLkVc003eGxjzO+PfQfi+Ji6+Ref6Bvl4IGBiUYDM0M0hnB+LvChsDdyHZIGEUtyZS5b86hSUEjr30H1CMSYDI5wiEfxWtuLOQvnKcbj7y9H6F/vat8Ebs6RkBNg5unZQW2+T9IixPGrKJMRtrBFHOnYqKA6yx9YWiHEGQWzAamNPvM2ZTHZuiaufmMCJTjMOYesBGthuWrL4GW9FedO7FenNY32CSkkaq1Fu3xme7f2N3wlwTkQIk2hTR7+sTnQKAV/15NNXTuNIIaMYItuy0sRLmiB+oXLWW9D7/kTL/KhSD//BPS2AWZ4jajB2eXzgos9O+XAcE2rgsnWYY6SbkDK5obnLtfjlrgzo3dfYLg23jO2LqWk00jhvJGlN77KI3PDC0t9L2i3mQFcjUkKjg5Da6jzozveFuEONZpoIKe3OVhvpm52RGuGNDRZPByONSugfpsrfEZkhLYPE9I6PhdyRbkpMKQrfaBwr4r4vSm6c1QY3NwEx2Ai0AZ/1tJDCnx/v1B+Z7ZzFA0TAuqSh4C1d6jVq8c41Sa4Wz1fGj8a4aVqgwmDBBx0AZgAxZsA43iNvsjmiVasDVXkWixd9IgiGWCheNe9FoJgZkoFjkeDJhnzMKqauvbr3fNuMNInrBsLsV52KHfLI6glY/VszxTI5kUSIUlv01pzgSN3TlsfSfVwe2xV1wctlphfxLxc3a9UezvI28/G9dheeO0eWNQjB0i/4Xn1+vN519oCHpnUVQwfh6NeWJ41V2AgynrQ/52iCYIDLOuB2u4KBkofd2j/HaK/3HPhnSH6VUUPaV8z7Cm+QaZaBLSQ4oIUQrx+Vy8A+Ug5BnxpS0EOhcDqQpwDd88TFabb0v1z8H+MtF+ogfYV6rhu7jpXtdsxMHQLKQtw4fw2ZCMIlitgEr4JzWS1UehZraZMsmn1Bp+l5KzUp36rFbmrmLUqmo3lNtK262HYV97x79ZisR8WyCycuNyOetBCIjGcdNyVa/eTaQjiLHg/PsB/4/bYOh5xQ+YjbU1K7idmeyJQRQWntGW5lwsiE/UojCcPypifKBlstFWD1lFUFGP30wHTMJIEqIZSDGnBS+3AyicyPlFRMqSr9xhtAgpVFhVfMwPA594+yfZL8kI/kolrTMbi//dNj4w0Pl+QGGDFd/OapRkz7DVzlGE7zzRJZ/06eVtH6k+vf+1Hn3M1HUOUpGM7qYkO6YL3X+grKVK8X2aJ1LI8G1CfQnIll3OWE8SnSoc068Mmo/crdbkAYR5Cswzi4kbpZMrocxKfusmJOW9bfs/3akX+X+x9A+vemFsuU/QOsscR2A0Sk6zMjxmRrVOw1eo9Bubu/wPlbuNdg61OJh6XiUQANUXB8wxxZlIHS70QivHpvS9NJDKHPxKSpg7S5nWMOsrJkGiBMOxCCn9qqWkh5n8GI+nYje5BBgEIBLfFV1Lgc5omqp+SwnLnT8nefUC+S8RLlHnSyFBNPjnlxyf3KrG1dBrAc5LlEoFsy84whHHX61qtMy686HTCvQ8ptDAEK2iUMFxRzJ2z3ectxoe95myC3GFweySyjYFpGkx/kEssgSc6g9yLt8QPEwNVSCFjtiljfgS10AlVD3Trj/+IGlaDw4QA+/MO7CRMB0bY2Cf2CwRZy1mFgd2CRe9XGWrt3nUqfbwDvfDvP9zohjzAKvOHdHFKpWhCqPU2qgy4TV3XnO4inmszWW77EBZP9anI9aP4jKejcGlgIY0A9xNbEBd3nTAOaRV284zVWeHav8GIWUpVq/7jWSfvYJsWxsLhE+ABIIrKchnjdMZn94jMsWpqV5y8YNZA/qfm10lBH99rJyxxTuRl9ryWpx8u1R1cXEO7caBOHZk0EGI7lGjoh/DbHb9w56Ys9s4pOhC+rICMYPoCaLusw3i/2g1fgebAq0mR+esjDeYfM4otAlpPJH7SuHE/t70sXByh08nKpCcPMWKczv0y6CWNshzvVzQ6vkyrmT5WiKdisGK5HUHV91X6p0YH6jk51If49kpijtqQE7UqEY20HV+6UPejo8OdRKeQs6PbELmJpTDtFNI8pGD1nx3+xJliMq0Fy2Vi+7Vm9Ow138VbZuKA9FR9NTc12Ly2OBIy1MAC616Swf4EZ+vFG2eJVyUAnG3J863dmYTGB3Euub/04XwUohV/QIqeu9xbzlQ9wg07lW/yjaQ0RCu4giE+Z5Dj50v4HCUB1C4tshhK96OgvNjrAiRekQ06NWtzpa7YFaEdhYF8YVeoYeBT81c0cdVMrF42scUR/DoZaTbsbk9X0ir5soW4kYDe0EvdT3faITBMRDwnwJ98FHvlA2guMKRlbNPGLn7BxXN8DkizQAMYPq5/MPDS0vXYb54v4J7QOrDQwF55PTWC40SzYnFq82BWCYlcxOun6Cr7GmUWEo+x4RGp4LS79XU7SZDH7HAEvxajazO26APJGiTbGK485j6FuavMrVhmF0WxC81Lf7c8CRpu9sVMtVSftg1bQmseHW1iS+VX5k93DSo1TQA6PijZfsiAhNkkAvf77/aznRlTsi9sObzZBe3mB0HLyc9NpxI7XujJotLxzigiSBM4z9MhFQFxmIfGcb4FXHpXpRFdBrWieR3z2SOBZ6BCl1T7hDPHGpnTELQuUaupebTwjPhWte+erOBrJMWbzNTzQo2Lu01DQtYadwURcNXprOAqWys1/qTGNboJvLZNTW+2OPCNfbJOSMOhARGTRNvn54deYNUZppy63GjeeAWXhiyb/8RpD0v+S7+tX7R1JUqlJbAbwez9p59eo7tLLFTOGQfMAzVS3A2RW5l6ElnuKIta2Q74tEKOEyY6yryZ8BESzFeA0F5XjdcdvLZweFw19V/RvxHVVUSvLvpe0EseEeCewvTVSNSRspoWbty8t2Hq9EJWbJi95PFrtmmHHGmo/dwy36xfw3dIGfMEQbwU2Zyo6G0nBv2kzPMvEotTPnBo8EMMtyBiVvrAFxV+5SVWmRSyDo4qGlstyvY1drHfzZuR+1Iq9nhZAS23GuipRSTf/7+mIvRYBHzmAyNy83szNsEL+9iUspRQCLTqwk2ydFZtCT4NJqVQYMtBZ8tJd9kK8R5Ap2q6nV8dZRaWP147cG9EaRxoBxePjdbW8PEANaCwvBuWHCW0dbuMFsGOwYO1aMRMcYUGGPF1BXDKIO+lGtTtFD/YXkhNSqjNaEfrw7S8gRiE+RkOCo7Di6xYrP6QGFGFHJDSoLQbXsCkfT09wKZJlPqeyBXZFoI/sSWQqMBJPFVfKaTEDi+FrHswpv1bTk12nXAl1s65VmwDBTISes0G4S6OsRsEq3Zl8dibvARXcl84lnEpFaNDiullfXmFZD8Rc4qNvkA/YmFu/zANR54rPq+ArQ3XQFao81jRHuz5ngT8UBLDXOnROfoz8UwQyBQr3TYIqkbQMLDfqIZDtqvryrSkDAzUa0guOc8ofQb4mT4F0xq/VCDzg2R5OX+5NMTfskzrxsSgoUPZY8918xxvoJ/00uRlwSnYGL5olgW3UVwAJ3otonvt2HrWGCso3vocU8fKULuNRWgw3s9+c7KxTjMfvu+gouwRTyI2lIaSmg9A9OwYhdnt778eo3F7EICjDJzHoSWhZe7FxBTf49tW9HoNGu6FSjXzp4lJ4ACYCwiJBe1ULeKDpzLu2j3fQJz8ydRaXtlVxKNVN6RczM5U0RLss955WbUZJeHi6RCZNEhm520CG9hEPenpUdNuH1YYlLbEH5RLQU4e381AAIWmLEYcSfU/SA1bHKL4sbPAHLkt+4YqsGxPmXFNrvv2vNqXwZWFAHu+Lz8EIKt9lkk8H/AZT1Ras1jLH85to50eVCy2SmwLKi0jH3RSPFWjoZSVlicignPVkOt0Jv2KHs92tFIgai8Zy1KSEcAy4sKABBzithiw/5fh5ydklKsT3e/3n0YYULJvBKwWf38WHeiVWBDi+6q9ixA5PO9K/pjTKHowoPF8rMgf05UH1n9/Kjh1aCkWMlUM84fwvXXReu9wdLiCNK9OjxMxJlprihgqjfR85kqs5ThsTKWHOXGP+qGXYbkayF6TwRL2e/ToX1AX2SSJEAmdv6mIERTSh23HLdeJf12umQg+7O5Ph0H16XYZMQ6+tv2EQTjXhRarFsMZk/hxHG8hkDx8nfyyGHbmHQZpRik4T+WFUAJRdEaC52I4FyMluJsvHixoILsNQyiQ+qfwuJ73F2e2r/9812ynB++nzwh21YdozGdsRtFZZK+qcfAmvB/3fbwx8sEan5qSxlT7xMuXS2hBZv1rynYVVnpN1uQ01TVDLf5eUr/C83jl4nbBM/Hc+iZBSAtCYu4WnhbIr/zrOVgdGOe2dmLX2aqifph96GmxSLNXwscK3gdY3Yz4VjPI+UDPxAwEC1jgRqX6ZqciTj8LJpzNYBqqIs9EGxp63l/JJjvyOS0wztgwBarKG1v+LRubfumcCnTy8QX2FIXsnFBy0Jkb8tJpo1oYFsY18a0K8s6eEuP1z8WANGiUVRB/Qn2A3B42DHCVe8aFzSqOnCd03CLB2X0CCyKk1uxsF9/ydNA3w4WbfgYia3YeLlVrf2OO9tR6PzKronf11XtPb2AEjX5B01Lf3prJ5aHAYVtolilRoIkMGapk1qHpJ1hhmFgVzrFMai4iksFct6j7nR9+OEdcrWY6YVktzEZcgZWQOt7Hfx/eN+ueGOaDkTXA/0/oaItPs/XCwE71A2D6aLvd0M3WMvMEfz082413iuZUMXykXBCJ99r9hg9776wqiG530qX2G+bV32N0nQvvpdOQ/7kqPBIrxB3re/y6BXAj8mwwu7EpCQPQhFKZGhoRuN0v6ff0mLEp63sDUWgQDoubchZghDXlYMAild/5RJ1xcpgVJxfP37yGJ+j/H31TkMBL4mWEZEODXYGabLv+Aa2kPPHw48myqStDQpXGsoyGKOzetL5vu47k6rOe9YMPYCTZqXyUOMDlbxQ5P6EAuNCk8wHE/oqfBgCsUBPyhmjfV2aiUDNT7voOZCIaj+V7ol/Mj7tUmmr5P1AiLIoQ1ER84aMxeFp+4yHMEsyYCnmDKYI5F7U8ws9k4WnRQ4oGawBY+m6/DfmH9u7zw9k6cM+vps79QKcYaVNN3piD+wlaiharOoh3fJIivoTnOxuduOI68v3Y6NejTvosoqvU0rUMsEKLQLkanfJ8oey++f3xvqOBSS0SNCmfjBDs19EYV1oN4xybCP/qpBJKVkGj1s9Rfb4gui2exNCHIeiAeBO6doQuw0ZJsNx5qk4KNh588vQOyS92PdXh3DPiYuao1Tc92L1fDA8dCFVS9ZBnsQvU2EHdKSbF0rgYEBQHSqdMTgu0NKXW7O5hSlV5FgMPKlwL2j0d7Kn8CE/gj1UXhs4QSV4G0u5RzwGcZpiDG6613756HGi8VxDBdH+amg8EkB2AtejnnJ1/jGis/QtTvjEx90UZk7GSMyEzKey8GKpH/v8+osCjF1WURRUVqdtWzm+tQ0mkF35gwCUMFKmgirl+nG8bTonK1b1SKGWU+Xy/69rcWJYjxR8/wKEg8PY4dch/JbDGR6Tugst4jGCIlYbCaEvg0/ZKcUxOtPrZCZO+UbPTu/xfV1k5yzzaSQIm6Ip59aPUodXZOGY7PvfHKPmmu8nwN8oySJL1+QuF3Tb/OGpWAZ8jwx/rfWoecWrV256aJK6T/a3cWmhaAzhkLZ3vuGGLXX+ta4Ch1wji7KDRywgFouyCfS3kj6f+hbzmXk2oOs+pteNfBMCNwNmGlxvMcXXbjF3+Fw20pHy8wpcdBGDkRu7yd/1r10SiWIjJ+kicD9VnozmnG+lgEquNW94TQQOjU1DmUfGYL/0aFKVEa7DY29MxvXhvfAjtzfofcwuYC7Ko5MBjjXCfaf5J1e8r+FbjkFgIObz638K1IZeqVnH1HqSUzhJUEjZhTq51PeCeIZINLBGj62VRcP+V38J8hL58tdWUNeqvQWYi2CvKJhm9e/6xqqil6wDO79NwSW+tK//SYwyQFy5pYog26NKeZLshD/efMCEVJwXFhK7+SSmfffce1pHTNnokAjWx0LH7UfgwVrZ3s8Iv9JUCjtgqtMY2FwG3ThMZGj/P8Lrewdo/FggLasW5WLKWz3WE1PY731OQ4fsopU1+Rh8d+t7dNgPvh9KfbQ2HdbbxB1xDeDT+R6BFndz6G6sljGvIZm1Rv8KWNgbTU58kj67sASy/47OyAZG0bhauOToSnAK3cJLYQaax34SZgVDRTIEv9fB+BH7UVr124e97DWNZUk1wVkn6HIPIxdEDRCqdqQrmX/rQP+lryq/YM3WR5BE0Pd8UXAAFGCMw/Yo1G2q9bp9EtNVMj+imXAplzPEZ7x2O4nhN0RlTGVLOLtwxDYKhp2zAx4cd56KmDDawMDw6uWB9i4CPpTbKn51goVcagcS6TElyptza8EJLjKmLNGBHEzTx1jEwmWIRkyKb1KmHVfqGOhvo3jxe33/vgA7isPCw9f5QYE16hk9gE2keiqqNhDQtPyIoS3/zBDPLjVP6svfmV37NeYf0QXAW9qmAi9MdplDZSJvY0xy66y6jpxnqxhMYS5jz4d7C88oDJW07SmaRTDLjvIjuf3oHs6ilPeMrI6An5yScx3f+3fZhmLnui0v3U+Q+aI2WEdo3rCQytMTPL2bxONcIiPApSGgMpnVmIalqs2LumzzEtULI3zMbk96/cAksPAiDVhFWDSWbMvaZDy4c4O/CGvgrimDHKywl8Rcsq7AuGGi1V/6ah2cpPfzxaMgyNAS8V5tR0RU1jllk2h5HpOli3FhsC3RPz06CwI4nZf960tI/py4ZsWwAajTq4uQ63bmfAiVGYgOOpkev5i3PnR7T/yPktvAyN8Mh+Lyyuz6Si/HKA4fKZA8NfBiusG4sy3XLpVenNjV42IoclUXR43u50x9YZ7vu7ixlnHCd7LAzoRJsMzMYRx+bFXLk2OSLxzRgHsbPaS49ze/LOZ3i7TdMfliMXxE+ZEl3DScl9S8Zeiv3nL8fmzw3z1bWYdzDOCQGK6fj8oCL/jI0/4/Mw4r/VYPnOiCgvebE6SK2y2v4QmQ9eZjISfwGeA4mFBFhUyPRpJzov2060vQbSlRJ6Sl/qgc+RwRxViUMzkUp5J3XlMburCRS2Qz/G9I7PlaVb0F1R/tl8IosVeOOmIGj/0XAhtKzKw3mUWeh1wUChUuRaX8xkyxNZsf2ED7ntSc9NsVNs75/j+fwFsPOaqiiJkwBXAIh9H9Xqnpoojp6+sKljH0plKHrKzIdiFAX9kqQWkD/V5oLI1hca6lmlH24YB8qUZZZXrOJft4xOHGlOiVdyqrg8xjGbznDVWToi6v5by46lQaY4PyTSChX9J6b6k858ANhvbTSdEiPnDJCMDbZ/Mr/v2p0td7+IfWHIw2SIa0d7971/2iFom+5g7/VNS35XIgntZ233EehnnCVwUepSoPsobmwseKcPY8b6sYlpYG3UuzxxrFsEcP8y5m7DRFeD3y18nafw2Wt8KeIrwVQIF9eVt5PeWoYui4msK3wwDmtlgWIYySfEtcc5RsNHUuRp87Kc9WO7HvTaB3nU7nEjKKb1jfok52dzCuA7mc3qDdaci4tBHEEXUNWSmb5X8RVBXci/l9cSh9RNTBKlciOVEK9UiqQGWDYA931ulYBEuXr/sWEUAGnNXzX+GxpPCayqgJUyrxumRAoBtSzBsztYz+IaPdE/Ci3PFcoDlhagshFraiuw2he9arZqpa872l5izDQ2cjgUAU/4lNr9XgXwxxGYVmAIod0WL+2cqKRhpnHRhSoHzu6L9KhAocJsUUxjBje0CQkcSKDCrNc7DvUpez/sf3YLyldtuirQjpYgquBiuaOrnl7R73aVpA7KFN+zZde79HL4ozSKxtmfM7UM12LPUuqMaYwQLZzx4UUOCpocfrg9u+Q4XdCaJlPnhDzkXh5FgVLcKyuueFFHRV9HzoZkPJLxwgT2uZwJZkBSkAhuAeATsk0uYalCmiwHuxaa3+PCsu3cxUDhCKyldtnWRfXUp0KtJ7mlgHTeu0/ZAmTPNxHskmYCKmj6wW4exOZYzP4ya54QE1bVMhxNZxpfFO0gJwAdZhnNN7XkvMulvYD9YtvOuDUo2ISRvk/pk5zaEenp4YuF88mb3rORsd60cbj7/tghfHnLXtj24oWoAJS/78w6orqzGUIomh8MB0fx9tOUnAhwgabDvXGTUj527NDX6aNFm5Ph91e+FKS933kCgOKgrKMZ+OEWBDcAD2rU8xr2ifksS8UG+tRgratk2mjBAzsZPwP7BqFSzl5ar0aPoCkjVwD/L0WwJQzdd1oYI3qIQNpKl1cNgJL+YYzd21t6EZyrJTfQ40vUG1M2X9+rMYrrznDn1CuUohia9RAFoJ+d8s3+M6o6QSKlc0XydsxVqdI3m0mBLxDwm6qil9tpotH1KWnElN5CxXa3hCRTAbCRR099aV88TAkUR4bA/44aGn/WL7QJZpyznjKsTahm+0pa/wpNFes6PVEsQjYDrraE+eW2Mllk05cTNJTmHxohBUv+K3YVyhajkHovndYX38F7x1SAWseS7LV7beXWuvtHBdNZyJjoBCSG3lyE8C9Iyd/QdWV1cUAHYfo2Us5axTawuz6ivLAeNOwZnOSVdDCPg71RX+nXQTJFkhBsoDxDAb8QwcLjTyubb8Y5SC/u+isGRzli/X4wxv6SI1nZjgMO7uXmiYQ7COFsyQiLpBKe0emK2XNpt/x+AB10GToizV80iUAOMOzzU2jhPdFOO5zwk5Ib1/76VBIVrhtdCAYOSKsyekwyMZRFsB4YZOUeci0+C3QuszKUEtaKpQsTJn5RUFgTBCk7v//zSRQBJHxs43o3DsuZdEYMFgOuWFtM/mA9JPDSP19+k/39FB+AJshCiQJOerTEfY8xGZzWI20HtY2YWzIp8GOc8zAbQGtiwYARZwGtmlYn0DvLYraBu1m5aVXyT/eZWwNJhQrktdW/IS16ptp0okucgukoZ9Y6kCHolE2YtVJgxF6RKNmp9DMTSYcOl9HiBBW9wNjQwBiwwkJTJrsx5oZCf+p0Ke6N5iDYj2rX63ViTHtK965wld3yQQR5FbeF4Mld+FJS0zcedHnxOFLX8nScF3AWmgb9VMfgTfu649IHGxkvbm8n3UgxffroxFT5PTP51WpPMkYC8yeVqaAcgepzlaQk2DxcL9CxI7+I/XMB6rcGgxay6C2uvgUGmi6hRyonsqjvvB7+D5VvT8gBlDyqze3oOl7EWfViwZcrH/Oo8MQNl//87YqHP88pvhplv45zld59D/80/R0dA=
Variant 0
DifficultyLevel
482
Question
Bethany works in the city on weekdays and has weekends off.
She catches a bus to work 4 days each week and walks one day.
If today is a weekday, what is the probability that Bethany catches a bus to work?
Worked Solution
|
|
P |
= total possible eventsfavourable events |
|
= 54 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers