20317
U2FsdGVkX19CHSexkj8mNWevt67CzWvfN2f54Of/R7kzid0XD2Oewqvs+HhyJlqVZo4u0r2o7R6+RxcLIxn/bKlpOyHziFtGQ//WxRbx1npDAvGvMgyjrUvOoluPnSg6GInGoTo0L4orGygDMVd+QNWTk4MIbYTaNvQln902dAO0H05TMfBYXAwrDf4Dt84GbZk2HHBEXlnxROU1SoKaxq3nZPgeMYWsug1HZW8V1IWhh0pjmqNmgBUzkhvGwOhP/nbHwNs/b0F0DWerlR3YMSWlqVte1uWzh6gfU6j0u6SQvL4nrQ/Z+P8Row0elCl1+Sw4BYauMyfuQ44S844SJSLHxO4HPTzRY6uYEjFpTjGqx6q8cIpyVCFr4yP99nMNC1DSFYV2WzBCrzev2RZW3tkn4uCktCT/mGwn3iykZQQXOlazEahbRkFN7E77SoMs/8Ud7bdHebGnaMWI9sO9u5zr/kSsnfq7NQVKwgpa649LH71TqFu6RMzh/VzPCnHcdOXEeTwlxb3iasp33IPsyJX/2muYCIeZQE2FVEOEkRXnUV9M3R8r/HKHo+gm3qNM8ilWOUrqSb5fkJqCHYy2cHFTb/7D6C38ekJwMwyQMCU7iTpkMrlIN0W+8+CVDskEL5zA48UtrVurUN/Q7ILYZgXo4CrUqhXz4+0llA22dgc4kwZx3+toCVdg8l0JlsSDqd5WVuEhvUDOG34YlVvFYXgzanNogdu2336mpOzGnBVryjFHDEAQmTJI8SYOZ+uNaPuOY+tnR2v9j7LwkZP+K41l+HNY2Qhj109uxM4u2mlPAiQcFJ9mevokZZvg3rVFYg4WcxtHzJsJXmV2FnMl7mmC2E7yRluk74F45VGj+muvg8nyIErIZP2t8/pJOI68XwZO/Isx4l5/5JNEBwCkR/z1XY9zqQDNe81RfzuSzy4mjKtIqFH6TLN204GUtTxHA9ubKoPj426JHpK5ykTgm/NjKOSmxifYKcfOw0CIwWLTU1r3wwvIKFC+x427xJccJbh7UNw77unIEJLqH3PlWvapjobZrOfIHnlprcxBt0pdkCyEmvS7YWuXPhN5k9+2kPN5ceLSBA2z/Odq39S9X5W4EAcB22FNr8qg/cgN1Hm5sL7MJrvNSnaEy95uLy29UC27nWWvr2Atupsk2IPJ5kO1q7kRbRYs8fwFrgsN/0Zsxi+V/F09/ei5KRHCUndu/VAZZbBEnDiT+HZPNIe6Z0bc21XssNGtjvmSuwci9nhEOtdw22btULN87uiL46rWWzoDh7tRgg3MmIFnzxKWuRas/Gy8Dvafsfg5PznZMbwnOQnJLJjun0i6vDVqr4v6h2use1X6UrZJdI/r40n58rNUZ01qe2/Un2liGWk8joSTzLVbXAStU3KWTdWLWs77D2sb+FOhBdku94V6DocTqCPAI/J8eUsMH5pdYXUinTA4XeGkJLDnJMGQvKu4SVarc5b6C7tG4hQjSWQEDKE6PeCMN9TxKelIoYjSZ2uHqHEUdEff6G51SZ5ztlfMtTXRHT/BiF/an4WC9rFbE/24bxXz6jsxsfwB1la735d5/dbG2xIwxf93wUtiEJIVfri4Bz+zhiXPQ3+6iz78KmIYBXGbrDEf0lJNTJDXBegvujFJtovhM9LYDbOPSYWTSkLlPL9hYAOfQA3wGkiOBdgPiEdnTCKhDuC+5MSzURhF1xnILTR7d0zNMrv18aOXFcxs5ayJ2c5F5pitVuzXYrBjBvb23Quo79v4Pd+f8B17KvVoVn8uAg5rLPvbOVbFnFaR5UXS/2may/ZGvV3N65W4hhtogpIGO+qQkdTU6vO0P14KwKVWoui3HijcL5o3rUHEvKi/xIy5cgXo9qxCgcMy0oNFuAjdTmcW16UstX642YSvTQ3zBCL2Cm3azR/v1WxQzfyXAy5OdfAnaSKRxAI93kblpqs5mfo7W5MGYFa2jHVfIuY0t8Fkrru+6V3OduNurpZ+/TjmLi5q9YUDqoZqUcDoN+349Rc+xGQI4pY12WsAHquyupaSATC2TKRG7La8JT150JdbAsyf3moH2hWF4GcCqCw1svLzEm3LlVtOffBHbO4OffjJS49VmFORsAm9sChjbMDFRwoZACSbzDJQI6sXnoCh43bcOyZc+mhDf5bPElm8rWzdN9U3f2S/9VzsmcYJ+iOdyDlXFd2HhNdsnpnI3ercTk0iOxgebWcoRqNhFTuBqekrt0RLDcAWnKWIfLwHgRN60eQXPwZHJ8blUFNVOUNldWXgVavgbcS+paS+PNjbS6Bxyz8Ep40FaONLJb81r5aGLxk8hogwByP4ynjC9T6UfUAkqTmLNPGpMsBaRh6hxbKef45ZaV1dwBX3PhAk4o4+BU1msFGUMtzh5kDxMTyUR0XYzhNQEJizseFsuoHqGLAJUcnFSQvBk0CdImSqRy/bOhQdVZBtAn632Eym0BvkWmjyvD/EOWSVgh5xhDqXYYp2RmtdIT6zkrj3Z7nEcC/WR9fpkNTewqsI4NyxHw4h799B4QuQQ5PP+NtJdm42+250DXOf2UqSJxdQcXBPJfrFskqtPKCcp370r756T+68DJVRfO4uUVdLbZQRf/OafsRzzmnd34LGlJ1A/mXXHyzY/rOz/ZHc3H8ImvZ+ogqJL51sV0FJCe5VpY9EQLOHGafEM/SKjCdhNGXvy2QTJum4q/vjZZtdzXDAF2zLVR3meaH1SC6dSVc3ICzZCsCRa9CFUszS6HafNpbe18AqG0JPo22cykSh5fwq4qVfqnhpXdB5qUqpEk2LNBkwOjtstV4q4jCXWRsnqfhFiDTdV2lKQySg93X0mxHxP2XBV5rQ7nPiPUian16/+0rN/5Fsm5jjQHy+lx+njNnT7oRu/Q53MnRbxWImW6TlKhuZFCXOnmpwjMYtwX7rKfePu8PE/RMsnzOrUcjGBA8QFFsiOlqAFltAyM5y5Zk0G4jp2fczVZoTw2JX8oSZfIESwzx2GgkSStD3LOiZQoI5zRKrpN/KTuOYPI+w71oaXcVO5JTv1cxDvUZ7WdCCRbRFuLNVNtrEGFCe0CiXy+3nUZMoGIF66pKPa6EjUiDZjMUtyn15ETT6mRSKcCQ8mnb3OmVND3OA4DTAV7DqdFy/j9R3gAv1Yv94WAS6INnLvBUhuAsfSI5uvkjH5R9mPIXVu5Wgdi8jTXiQ5g9eeittbuqdJnwK+DqR+dh7t51FNgDiJI9HKYixndMKci2VB5AMB6nWV1TjXCcaRW+dCZenc87G2wJi0Y/t+Kn1pDSji5wxiRwwzYkzl1hYKRDVIBiqsnwMBT/cbXE/tqdvU7c43nYhx2Og3SHMwATpY2HoDG3V9Pd9v/+TmQedLWSSV6cCQcGk8pbVbC5dBE1cdXIc8q9GHOrWtEQzITPZxoeHLtXcV5g3/ci4FBhx4itLK2IWEP/nnEer8eRTQdwJoL1qHPLXoRYhhbiuf3sG6P3T2xwC8kkmQYgmJe2wex8QjoqSPjQ3qr8/IPSkHRRbflb8Q/pVJ2s21FU3/sYmzLqvBEr8FZI0G6IBS75qxFq9xINeLnYS4e+zAE4RjJAzEiXFEIPUx4GhBKTWhzZdvR1lORFyKNhvALxvyQBrwA8EOzv9Df6SFP6iGDazS8ktdhc9xbWrnJvkXYLJ9RUrxcOUDmpOdGiZkP+mN43IwDwGyD6IrSJJhpVZL71Vz8LLPi7R2hqL98B0hyHAyKN6BTo2P0IA/ceRyStppKaUFmeY5ADPua+EJ0L0nsbaedIqERzqPfrgwbwuWxm+4UffvLfTCkBYI9c5g8VWaeR9iNuqy4TKav/uWdF1TEuCXJ93mq0hiiik2Ir/BEYMjKMjaPdv033Gjt3xzzVeSEn2JltXuVE5y/MnX7Q77PWYQFZV0GoOMrLVeW/iExCodUKX4uk8Px0sCIsj/jqJdxa9aPJQacT34TDg+MbVO3EiDBUPosfCkl3TeFLymclh6owXCJqn/lEz9VKpko4vreoKS/FqppPw1DBmJOslSKl14wZT9Ak5xaldS56wjGxKgqK62G7PuVMH3fWch4xccARldfvHMmspogiXV5MrhEqcvalc733XLZHUG6HHuDrD2JfRZRRyvvbgNzc9Vhq/344dZQpjjmqMtPbuATSXr1T/sfdfKyHTpsz9uj0Zv+qZOi0jIXDXyNfSY54in3X8q/wR4K1gn8CQal739uhM3qlvBMkE+oAjjN5uJjFi/UKaxLuucOK1f03IrxRhMGCnwnSLmLy0s9XHMt6gNcD+lXbURvaK4cmgwPHQid+DYNr5zSKA+enL7HXgnB4jyMw194gsYIgW+qcyX7xCu3b777ir4xQAZl4ABkLgMoeusH/EyuSLQre9tbuT4veNaD3WmBXTH7/JLDjfgJ011ZA1JMUwiykZeKtKn8NMZTO1Bcb/qTA93WDcdzVlRoRl6e5bz/15LIp1DIOHeBoBqbPQroRTuMdJV370doOdFOoRIMGbzOU6N8TGcNdd14uy+/QSYEGVfhkMFXwUVQt8ACFGPgId5rIIC+GHoHX4mTIPfgSkumvtwM5mgnZHM/MvbUXWGzzSPPmXk2jZeWYgGZh28rRwyXewnTMAutOvD7Da0KDDTV3pZq0NNjUuAymVT7BE/LXffj7HDM8o82eTP+CM1yLyVF9QEL4+8c450l/WHu2apnhvfqtit4wI/ijnW4lR18Bbpw+lNPQSKvVmc4772TQSSPhPVEZRiUbxMdDW/ciectMn4wH60b4TjeURhHIFIbbFjmMDfp3CG/SAXizbV20Znlj+A+1SWX/BTJFpNyhXN5c28hEjEqcGWlpmuOqqDxfTB3Ve94kh00DdM7TYbhUXySj/qU2ZA5JfBMGfDQ4WTCRBFT40NKYzFNR9vEScA+agHiodPIVYY7Dpdpu7W4IheyFqjnyPlV594M7nEG4Bg7eTJKxSEbYYT9/AlMirUuYSA4+FoqTZr7Fii2Ctry5RVUsQtv1BwRxoilGfk9WvIL7JyUn1TTKD8xWCK9k9wOKz+M6lyOaXqNOjJFGKQ+MIRoFCHjI3kt8J8NiV7EzdtDPVM6Khlg0RilM1DtaApMP9Sp6pQL3HiocOV5qyVvVBGNzQ/sqnjOsIAAkFzQ+apJobA9PKYdVjolW/Cmp/KlyQ4UmauLAQ8TF4/bGoppnT9s3NbECrN+w5Jl0U1yUPgWa0iOwRi3OWYJx1xi1rlh4qxJvuAf/NP+J3etQReDh3+A5dUtgJPA4AMJkrDRh3z+ytqeII4XBbTmjDoPs/pZ/L31zF9GavFsPySeML1lNhHSx+l4uKhvCMrKzdz2hfmLiJ/2RqaH4SGTXwheZ/RsYYrY6qtUy8pKbpiWgBJk+vi9Tj4bHfLdXxyiD3Sn3pu5NqMZsvwBOTBY6JrikF5q1R9lMmYRFcbqvbkHR/1WAkLGRf1NJqTmuAi7X5/IRMMmESIyos29xVYPQa7vrr3CXyrdHDBToAKB4v4J4SE4+vfeEe9R8BdgDGDB+WJfiLiHxR8Y5YiZd+lzjwMrYnx2vO09S9FigBFdkpgRb0d54SyRs4Ty0M36jrniRqvHWoJiWAWan+a5edzbV4TT3EfigTfth+ZbadKHoA0LOsaQM6zF8Wa/KyO1UuvsTvzcumXDx9MSqLQWjfrsP8WvkCQFWisLQo8gmiJ9pXPUFVBbTs6gezbv/ILYYpMrexievpfdkEalSUvw+BCyDEEKOh3Igv4XiskcAtONmV+lNeTufvRcRB/qeAauRnjyRB68NT0sZdIIIoWotk8elN3j5EgrHkSHx3zSwaxFOdrbsirxjXPbbaFUHWgYcxhms66ASQXhiHle7jr3NlQMSfTdytx0vnKau2FZ8roTz3ly6Dk/O3r+5s7nA3GApBKTN9VFdlsdEjKH8bRGC3Jly42ELJSD7ec/Ib+tFudom9w4LcdGhD/VVnF/9S2C9sFfyLkEaPA+H7r812DkIvR3fXdwiai6npEyxhpb6OMJa4YatUdX8xMZHj40DaNPchLz/FWweSGgYwYA5eOAj/qIz65e0mHhNlDupQnDOFJa3VI/k2FCZpDLNY/HCIN+vP5bnUcinwzTlJK750kauC1AITNQB2LmvONvqagYiXlGHvpWZfqQWIUJgpDSViotUeML30Pgke3GKlwOghY47sZBPLAjxV4FczXjt7XccMrmC+1xueTFT9cRJ4WV8e23655rvji+9eCRgJ966bw075u71PKUk9x8nAWnyv9zJeQH+dkPLk0RGw00zzzEHxRG7Cbk/tQtjVxSO+KFksvk24KhgVNcaXBAQ9dkQ2DA8bemtCSap7tFgTesi0YYu1d87fhzgwbL6Utgow16/UAY4MleKfLX5wBH0ofohR4oAzCXLi7Fu4wwyt/tPKFYGj50VUQ0QjIFt30PkIvNVytUTGwHuKENcrkqHTZjU+1awTUnMp0tMafRgr1LD8jS3BBGAj0z1DA8oryvPBlt2HxWpV9zJ5WmhPVKZeYMbIqU2Nl09AKtNA4HnRUR94tx/IEjw30pykNn91qwfDVMlnZkw154l81HOSLy7JicuJAimbMBt7YgDbPVmHPFLlL+XPsz9rqZGNiCiSDgg9qbePNf61VOmEF26Tf8mj1W6vl5nLmPv+JmUfgFJ3OXyItPHAPZ5FRu63xA3K6tLRlD6bbQoXraKar2/I/qoUN9f50dkNr+knfEpP4pmp/6mQHebhANbFXTET+CZU0TbJK5YVNbLvCziDwNiyWDvvRJZcKe5eh/noUdoYmqdRc5yTYPRQrX5GZ5LBdjDW8UqtbI4H9nDcIfcVocuHRZGsPuuwBoML0JtEDK1UrR1YSuyXWIGOngU/MSi3XJNhvXmA8KvafZIfGvUoU3To7i0DYYI8YtdMMDyrnFHNlTMN252pppj/KHwf/2kWsQSz84J/AzzVU1EYWtysDewWGcQzWLJcDTxQhfmg4c69pbYGBjdYSPwGTUvTpN6A5kxJ92hNeCLiy3Tgl7k4k0f9s8a+dwcLXVoXRO3HLuWSmn+HBRzI35QADEI0jM6J4RxyFHShfAeEeKCwqy2g0TC8/smXVI4WCGnN5hoX+aN+vaFMUtp3xH1y/7QJ19PJ/5kbQsSZg2oVjd5Rnaa38Rcv91H8TAcS+tK5MlEWeONVqi4AbadT/xI/rzMRLEay+XC7v72QKi6I5gp7aELfxILS0yRqE15n57dSN1E+MFwtg8oqPnqGbW1ilvdJ41cyvmZbDtlTGA5QpwlViVrAg7rnL51MJu9WBDm67jy9/WagyWkpXJoWx00BAjGqmtEFWzRBnwro19FR8/BL2l0w8yXG4djNErlI/UpGEXN+V4hSdmZdReGf+6dzs8X7nuUQKVobnqmmzXasZp9vVSEUjI4qWcEJRuo9q7mlHjwpE+bh465RUDYriYAWURJ6yw7h+7yiwRHZjH13J//naoJwqDG6xpjxDaDCmk8p9g6/STBVDv0Zd22Mop97/SXUFr9NjJkuJOpsWHjtEzh59RoyMT6H6boxDvq9s2rbUicteAd0+5svWOaiuFWb438WWICU48wTTVdNBwSWxspeY9764EhW7IjLM/gtDEpZI+WQHZl6JrY+HXK0K/Cu/oWUyTZnMuhYOm5E6GoASG/v38VSEE/Cgzk/H5Q4WpC7obkwehs2/r+WpXp7CBm4Gb4dR4SqSsD/sTG3U7Zs65Tu/WOiLCY75h2CIurbZXPBvb//puVQZgsk6ct8pej5T+2BU9P+qrAvWZGZ80Pefw4K52JrEhpNn83UaoCoyn2ABPizF8GjLrjcY53AJoGUDJbZe5gJ6EZBYqSl1XZ24UYQGuN2EmrT5DGw5BT002aKKU2AkYc/brfuQc5Xb2/75GaGpyc3D2IM/JA1GpEpWulfcEmfnYhXdACll3rQgL/kmZxrwqrAwVIrwbjorDktBjOgrGBa1gbHtzlohUprCHY98Z2oeHUst1tv1UZyjrye2IURh1KJ1HbPtn0xrB2JAj/LBwxbkVqv5mBemVWMerlKdyclHTXj9nzuhx3RKn0Z/sFwwTBXWXUlnP5gm/AnfGgdAdhyh9yxYEvwZ6ENlSQuwxK/3HiYbhkOrW02THDDS2N6/EeVk5Aof9rxoNliW3iI7eQiLKMor1KO/ox6UBj74/o+4qsX2TLe9PIkQrl8F0ItAK1xXp9UcVcdE7Tgrr7sokazdlLp26Xsuek4J2RxsiduGhT7z/eZ+u8Hy0Av6nxez8ztgA0OsIwPOUUlUp8ShSitcn5iSbFX7hrHg6VsbQ8c1covY3ay1q+C6WTwgRYDtn8TxOw20tpFWL4yk2aFFOKNgT66PWIja01DTYNAjZN3mQRN9ynawWWZlrcsJdqy8awNHJfCjWMucARZfnMC19lsIfH8g72XeeWXKYEpKdM1+eDXk1TnoJGNg3afjPU/ONeWnHR6NlA9FHFrqvPFJWKTV4SxthN/2zLBH3T015Y7SBlpK4CX/j1wg5IKHeLaD3LAyzlnkY1OkV/qZHMk3ygEIyUqoQ6q9mUTzT1wpMdYTRcErh6T2EV5nYJ6+m1n3f1aPXZ+tc/PLV9E9Gm3UAvh9bzmyhI/nojDUQMILxe958WAUfOcS0YYW+Wph7uCKuK9R+jfRkc1aR5QHouJ8IIMEr90b32J6J05qI+PdVNwSYcwKrSd9aCIN6IR3d9+fmFEeMwGLAwr4t/YOQx43NlaZGTSB9SM7Sq7gZdJI0PEM5+WZqHVdRmC1yvJdIfIek2QHgfdsTUcSd0iJmQCjD7oUMLnDjLHlFgXYGYTGx3CF3tV/EdILertflU9bbrZzPT9EQXS/1mJSITO8oBg9LjnwBvaIp26ybPhQo6FqkPtIg7dFKVsBTE0AOeJz4r6U0nnWN/UZJPSYU7ldHL2DZDb/xSKfQUaR59ZVK1KQ3vA/HwaWMGLMJZ99bgZio4LpMEz7V1rE6eAY+ZOuxZfE+nrsyh6Z1Qx4F3Ri6dJCnneuyF3SCYvcMoM6QZHdSMXTOzmfvrRyWtF6yvfGMOiAfRVjslWetekOfo0HujXmvYcLNrxi4WNBxoJ/viBevr9xMri3I9Sh7kNeJ5E5S3wy904jY9D7JT6xAXpR95jVl75LH+fRZEoq+FwhOxcBCRyc8S5hdov9C9/43YFjFlpGQ/sasNEvx/8/JrraV+MsEEGL+OLSE1aBZEoN+C4Xctzm37MNJrbPJetjbKCO7acQH4qAv0Y1Lv9N2h8efSOAXWslEilFxt5OyGHoEFL7F7L9QUREqxRJQQb77Mgxnl398D80lr5xqTa6FJVx5NlI4fSL6Zef323ibrcg9vND8e1g8d9XiMOisFcrroLsssQwJdf68y14OiVjcPd+sMUSx8d3TPJtY6ud1cxWAQy9UcEb9ZVBNueZ2+V0IgiXA1ppz+w8HFJE/ySS6cxJ1tCPWt0y1CujQE1zdaeBPCpNqsz4K0W5J6LG0tlDorJ2eHCrhHm0gicsYhMR23vCIV5qhspwDHHgN7i/EL61PakowtLCCzsfq+gpuWZMiect9NJzwiCuANU2UjsPzXMP3a52sMksIVtSIJb1lIXpMDIhardECC4UTZLgLEjIExVGn2Zg1z7C83Jya7tvJ3rZEqkVj2tnQ2oebPNJSPoMbcuPRnf13duuhqN6b+zIHvOIZR1mnUCDyBN790WAmuC94rZ/NJhaifyf1VdSGBB+COFpbi1JbytYWI2yGN6e0yA
Variant 0
DifficultyLevel
623
Question
Which of these could be used to calculate the area of the shape in square centimetres?
Worked Solution
|
|
Area |
= Area of large rectangle − Area of cut-out rectangle |
|
= (10 × 6) − (8 × 2) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2017/01/NAP-H3-CA23.png 240 indent vpad
Which of these could be used to calculate the area of the shape in square centimetres?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Area | = Area of large rectangle $-$ Area of cut-out rectangle |
| | = {{{correctAnswer}}} |
|
correctAnswer | (10 $\times$ 6) $-$ (8 $\times$ 2) |
Answers
Is Correct? | Answer |
x | (10 × 4) + (6 × 2) |
x | (10 × 6) − (8 × 4) |
x | (10 × 8) + (2 × 4) |
✓ | (10 × 6) − (8 × 2) |
U2FsdGVkX180tvpgfxwKi/OWKiNtsyTnV841FqdNp7vxdUsAY1KFOva2I/IB7DEyBvCt4LrlKQnR2v5riAtYZnOU6y8Sl/301AA+I2A147QExEcVVDNic0zkxk8h02+gc1kgcqnFbP5TKuNCJtMslZT8tqzaeYPRrBUzGxj0b6s9tc4QvX1eBasCQUB3xON5NTauPILS2W5ojsO2eZI/DQQ6bbkKfyVBNCRf/eHNKzMSiQm3Xf+AM39kmXs5h7yaq5O/MXzvidSfA6xXzgy2D1npeGN2QgGEGYmwYtwIybeFUPJ5Ay7VYehRgWzxxE39q8/RucRa7TZuPqEaSgfGz+OKNAOodXngLRZmKy0SmYe/VM6s095tCuPga9/fc+Za/+zBJ50RtD1wDV0z2S39r1V2nnX5q7He5+YXKQdG3P9ELJXzVCpibiOD1TQ80eccy7gSfqJ0cDvCPq56HKVfVHrAKz68UCiQzjWKpOov/TAJO74mldUqGWLVENmVvqnRpBBIx9qwUaB7roOqC46Nom/MgKHlQ+/pMbc2+R4LxDHLwffcnmxNByWH4wnvIu7uOo9Mw9bp8WG4aIEtCxzWf8UEjcfjvbL+H2PWgWL9LCbigNXF1s9QV5hl6o0EiDKsnYLi3Ua2dhvFqNHmgGU/gJCsyb+upR0y00tBO9DijDBn1wbPkrh80b1jWE3JFu5eTdVSPswikuj2GPSb1yC4MClPiwkmsdH6/8XMgekog7fpCdFWqBTd7EEnVWvHZlw07BqK62xZdZkCBruoPsDpQ0hEZdvDfKNoYz7oG/F+4RzYNBSpbyWb3wQtLfrqZgaLK8Nn7eprIUAarsFNgraX/bDiCzoLG4tP890bqOsVs3Pe54odd8W0lU0pD+/jC3BFGiBBL7oitcqdg9+C3tXgLqnPwLcqseKQq9B1RRplIv2c5GyUpmsjcUhyVAoJY8taUDbP6t7hV/+0/YGPwc3Zk7lwI+Fun9MHhgs5HwVraxn6KHXxKnqxM5qmax+Z+jAGlpyR5ZBxHt+v5Nx0I4+a/AnZHzIfInGpcM8zG3nmnTUp/iMLMXEULJN6vz9tZ3wxLnXCWA+Z8JRwh5kOv92QKcecL5wY+RuFPVAETsdZfzRjAXoB8qoTdZdaG0b/jy4kFzmbMP/1caXRI5ve+LC+f5E9o94vfWmV9DvlAowRrfILJqhyALlUXkjTRJjYpu9afQycs20ADWD/NR6Cv/zmR6ckEMvuOh8lE9JwqtvCVlFLd969hUHecWgoGbIgbxZrtWIklGzJWnKs05BX70hTX2UEUjgJITGM3+0hNoqr8Lreq2JdgJ58W10StKCf+/TU4iODTzUiSM+EVAeiictAljR7r2EeJsG0vUPUR2WAN6RVjAyDVX8zc8uDUr6iDx0v4SAAhG3hfYzndOgHTLhBYbdvam7F1xQByu51+nvPgIfaPuF6qweoCiaGsVe3PMllMe5Pc0yBYBHJq8GJWjGIWI4Wn+TXvm/tc4xQlBS8B/t35DIOyiGXill2ayF0sQB9kMiG02eHhfH4eizCDUeV7QEKpYZxvQXqGVsV7+uA//Y5I5Bf1xyCCV7OXUlHqf/MPdifpYu6Fl00cwgmoK5hqT73VZg/CBTzFL3rN2SuvgxrdiQiWGi259vcFY9ZgFPthVk4n38R94DKzPLp49E2sJ2tJ4HSfp1XKXx/gj8pRgrrJPthEYD6fi1/d+tMpz32jUY172mxmMBO/IbuCLatTuyvBg34rXBcaHok2fZtH7Px5EwogUpsShr6kZnNdqRnv+awCWOQr5uPvTVNgbP+9yGz5RNevJCfcucwpbjnW5Ol9CMjdMWGrIBwKGWAcB7UnaBoHzTY+qntQgc/xtLGaiRGFsMxIB2VrVvH+iUxyY+tGrekqr8vdYejtCWufq4CsGve/WaEph4Qu3+UCMLMemjOEBvo5P9lDTFwskwiKdbfK81FYlpPWpnwFiU8vLldfYiD4QIh4Q9tMbQQ53zs4AXEt14pyE7iBli/Kz87QpqajqOW1qrCJYXcmIK1Y+ELV6dJR3f+eEzwJMn5ZynPw4Un6rrIJKcT/9ov7U0QWf2MqQO23Wq9b7KlTX12fk6yhhzigJqRRCWr6Flxtcz+jEumPx/+RuvhGDq6rZ6JPR3uN7rXp4BbTCqzz13mnh6YjbKgdvfZ8vXYYnT3PL6edv0jWHysU6GNe2dWOEXjEBi8Ya0YSHr5ukZT85qOr2zh+NKUqfhzxVftTXl3YpLtwOuSeB+IJleScSi0L7BCAVC4jcR+7U1EYNqGhJQw0VQx12Q+xsCPuBTV1btRfCHRMX8qTF0nFpCY0oLA/+RjFTE8FDux+usjjIXKBxSZzPrHNK8A/IYpHzm+PDjnkln4JvIgN11ePc/0XYMA9g5OGgUEZIsnqrC8Py6dxZj/m8ABiV2wDHXdmzZlHxZxqvPyrpkqqRxi3MR7kDhTDBgFGxQDo0e1DHJnEaJqOURlQqqB0N06olM+VRd4GU9JbqYu+N69xXMmgUIDw8gM/c1iBzTg3DqZBnv1gD/Xz3uafVdzi2WJGLM86ZpNMnE1QbLw+J5pNgbxk8UdFNXEKUBn1PLwhC2/LTSXJCDeRTXPfZJeQs/PnSM5MII5SbyLNUA3Zl48CSflqGYy26BojhZHypgZtjHp4aOQcGXALwlp6MOglR67aG6mWZcUXkyHRDnfgqpjhAhRqjG204CpEElz2hfbcsqZiGexA+rg3zqIbH8108AukcLmyXtzRAsU6Lu0IPZaAUjlQLZLYnkYWo1Yq1VpJzJOxP+FOxKgvzyI5MyQi/3yfcUZhirCwZ2adKL/LXrGYE00mnPw3XnXevPnNExv/gQ8Kai1OFslRRFUPN9kunmoRHNNPD5TtacfDBnu+FGrX+MzmE1h1Mc3Gc114hqxTdFGpFCl262rz/PA7hMi//RA8D26j9x7tm4GUgUSyUiDSwDGC7J+RJB+JWTrVL2ooyPMYnRW17j1zNuCCIXugS4nwIU06zDhTMl+Wl8rEmTn0C49qhn2mc8XirPm1Sm6c0LzhmqojC21qkNrNLUd3t8biJecRBpLGvwB6/EgdU8vsw8FTzDNWNiDzGiDrMzfyeYv0S6c/YZYPwWOOGZgozeR4kKk4YoSAc8M9mZK3ttczBYPClkWYjfZM3Xx572XAeMG3KMOakDdspG10vMxCC6/1tafWs5M13JI7U3HZ26Z4nzjpFP2EFhPmRY8zDto793UGxKClBPo9AkMUE9rTQ94jPNcPv9AVrqT19luer9R7w9+UMJJrdBWnnpMcG/nUeCtOznwki39Ir6LNZuBRBQH7m5YLBNrbIpISulXLmRzNRf4GihXNPQ4JrR6FfIeQufXiszQMmRczB7mZFmGO4L3Jbtj4yJrIrRJkrZ5fbcZcwKG3eqyc1IH8OIgL7oUZyoHzcoc97+cpWaHjTdk7cT05pSq2y3uljwtwAJK5xs1Fva0fNBMoJ8JsL3CSKW5QSG83Q9qk7m4Xy57ynaCF6GQugKXa4QTRhv4dJGKv1TD2bFL7EPFCrDTI9v/rN3MCH8aHS4+wDJ/uf9qxEkoDmo0chOVTKHLXfo1gYbsCPsaGQ85UN/ICIXiTMr3C9c6355eDdS1RimwaYziLUG4KgmDaZvOeYxa4nQCHciWMQrzR7bbeBMFy3utlNxONFwkdA5T/RLcOQp7oR++MEj7cb1++XUqlUH16WQxuwH1acEq3ly21gAnbGNWZHHl6KifyGgDjp8Dkk/2t7EM9d3K+lDVt51pEUuaf7jAscOSM6SRFoZ0S0sqmob7gXezocuA9JfNDJ1mN0PYqllBKfQaG10cRr/l7B+aWNwvVjLjREYoKpRRqhyz4rK6vPoQekoZl+U5B5IcmOKGB9P/wwpcMKWrDfiwfKx48I7SCMk5+XyBqNR4rb7GyEcMCX+NlD3MbnsispC5fWn5eD3u13e/d1bLJCQu/IHrDaxaYS7/CiK35FTHZNI6tIalbzNrjV0jcs1U9QgPHxvn0lPWOiicH4x/f5a0KrRkihG/MXwEMKGlPXkUh2iu/jHvmT3vM+IW5yt8o+/pYdF9QmBBrdc/eJsenDtigBEz1DHLiLtRrpFtkartYMpxf0QhmUWEM87WYyXNWn++js6WXSKfiUONlRJN6GS5gvIUo93+CKtuiFq/nI1qQirIp/qvmT6u8sK9mrFwh1rqeSJ1UpbBEBscbqlKMypFhyfrLwNYcT4TYW/RUUxzURQlw9HW2RrxSoguf2N3k4+UAIGKXzSGKKAbmMklj9MHNvreLamt5VuN9XCsWwKg1EQf/gi44WDTHKs94IIu/bvB5o9P7bYLsW5FJG74/ZKvkjnyPOuQNXxoNy4WGvJCZO2aMH6QaGE4dHXxGlLa5OOPL2pnYBmvDb2AUb9w3c8cGZ5YBqUXDCn1fPeaCgG4+Z/fA2ShpfPvV01YMInM/9n4/ik8Vbo8OyOtI/ac5H9yF9EDrhryDnxxcN380xNJinmwpx/jU0/VPPrsmbIqzVhYOvYoCkS96xT44nHeCIg98zQdxaJhyjGljm/Yr4+pSKlGykjIL6Gq24guarznSpLgtTOBQepljBX/P0CgTF1ldaGOAuyZYPZhIdkYreAVbBOXrUG9pngW7m3m/DZvbIsq98zQ4AjatczpyIufX7DkA5xTp9K3bOWPe19ra9ywv4PgTzgZF7MfQFKSGm6Ap/WYdTMPkDBHQDReGuf1tT/RVtrvrrWt8IZnVfL71CKzlQGLgGMUwjbL8vDJiP5YzWyw5OL9r6VJ+KsA4kYZ0njG6TB9LJAsM4wAhp57tZ5iR1BUsyy6HT+DYmrtEZefd9OCFQlHdNj2SIxvytkM6ZC/LR7sPAtobplZbRIvcLyLtJGJ1NCWwcIzm/mTfoggEJ0ckuU+IE3a/mETRmGkwz+f2ysdJY2O389XmM0mZsJVyXDSGlMVnFQTvQr9rwiiHhHTWW31+YIJv2Ukj6RQTcPH9TSMGk4MIrC18v+w2a2rdjkewb0WqIPajAg5UxJY0aLLMvsGPyr/7dy6JoWarKsHPKqeDekxdygLJ3kaN0STvNeaj3dIe/CU33rkkeoG+r4L1zu8gpLcmpSX+oi7OjrQiL1Qee9o4fWe8YxwL35gqUDpfR4I/U8JvXgEHzLI6EgLiuaobUCPar/S+ZGREuLGN+v2kfn5TncTnl/B+z8Dozc0DPV9E4fvCZEHUc3U0hgTB2ToqLHiB0z3o2zNIn1z23sZ3JyqYyE5wn4/vd7S1+WGKqYItiAlw9LtqpjAgVmfLcJ1o2DVCweXgB3ATJLfNa8GA+2M3yUQ4VX6ljTPnpukcHFGwnZnciL5Idn5M+7HyI5JZLtb5CG/aJIQ2Cx1XKukALc+vqiGmHm4hr2hnLFUmMZF2sefIK3rNJ8zBQj540IcfIGOZaB8qN4mqUYQclDUMlU5K+Cr9FzktHsTNnXETsx0wmS63dvoIYvmAqjOs0qBCI+8sIf3Kh+xaT5ou8ts8N+yFdZPPpFKw2y2xp31t+tTuKzdxY98msCXAPf991irhWHrlecSYFPLX5SLwsTigrtLyvk7A4rZ+6kRkONFwJkvx+teMQljaIhfj1C0vYUTS/9CtD5jVtsFEPSMAK0tnvOLEouuElaPHnlZuCGrj095KFV3RAgN8yf3dZSmQD9ZMiq+o7E+QBKT/4vuW5Qfnru7ENs94cpgs+7sr2yQ+aRegcFzCyhcCQragXmDtNt/9jROS/3f/dcdKd+INIwXCij9J/6l8WQgESRLK0yazmStlU40vev97DYUF7cdQmWBKGfsv91T+jqHTcJzTs7eTnGnjb+U1IJvz71FpxPRhhok2uNgKRygYqNFmE/Qi1EFSBCs/bXSKG/uJyuJN5qoKjbN83WfRuSHTFU9fa097Emf3pMrKNoZOzUrfdQKhtdx5l0OKWQPkfgfFjoR6hkUZb+3jTUWogy55hRjDAYiJ1w82FLfbLEBN5HnBxkK/zyBvQ7IelDfy6xFUu9LGhd5FsZjvuB7n30j/1ifk0Kcpc/8sAkcNchxvZmGue98iSQItUej3belFaLbKIYoKTOtZXQJph5fp2ev4NRyeVbM6kD0H81GAzcoP++B/W0nC4Cd0AozdXE95P89IWy3XzIKPgdfgnbnsOIWkGnKU+XFpyTLs9SjrEjuzmHOUamcoIcnJ+T0APLWCMkpy5ByzC6mN+cIPpjpEJSU262GXsg+2zxWVrntPyXOloAFJIDZ7G74ZX8lSJDIKd2fBz6oWNQsHp7K93DLkYRjGmIjCdM4rUJTdr/tmieeEVSoTCWYMgx81TprQ9o9rgMnZ3HUVPJdJ4MybifKVZv+yKcHJ4i5FSJohg1tUytzPEhPTPAE6BrbHWCU9Vf0Sxbl1f+WImCzacVa6QuFK/xlddOm1NuXpVlxd3Nd8wIIRGj/0f78ssC8MzPK8D/ZE7yCcQiQJ4XMXJ/MzCtz0Lpa6St7efk1MXMOwIcYe0ITwHJLWHWWvGO7XTZhSkYCWPJuODYjPl68KhL3Zv2jIFT4nmrdqFFvqZg8hI68R+fMbMWU9YB0np6UgyALtiR2vPIRsmcaMwbCarIXtJe5SvSfW4DhXlz9MnWyzPNMRt+anABZKSrmr0q1661yBPHnYc713+ixCO2Fallj5d5G+BpWhVymcdfAemLxuaQ1YL6meH3IZ2gUiQ/1GfMiyorDAxDgRGFwGJVzx4/QF/ooKWgxtfjSNXPZWA63ff21xUUqKqa0DVuXZOFE4Y0Cn6VAm4qVC+5eXTksgwZUSTnkovF/M704sHonAoSDpDHPX5RFmWlCiwrsswYWd3dsDRHZiPbCgDd/BK/K+45XCbY/m9fOTDnwI6rCSbVMDEmF5cMBvRiRqig2eWpyqXpEO8Wo24XkyFx3KCHhmJmnGdBNkfTCrxQKoZMC5jbfgMeeGn7hgLJbsrEQExEZgHfn+A5HUZh7ItFwbBfLxQflj8z3ZA2dGVDVsIYH/eIibSpm4ohS20DEVcA0RqpM/i87+OQpmoxnCTZI26aS2Xr1LcpXLXrdsJBxr5fZGCZAecKiZWp23o/ApRMr1lYLQKBoynUiSj9MiCoHTwrTjCBW1Ja3Oaev6kzSi+Wj8Dxbu1iuarJlKY2OqM8U7iZJnLZzQ58zUTYOOELR86ery/lsBUvutuLVBQ3gIOiGMXLT3oCwrOfqVDihg7R44RmmF3FMwZun2zYlDoGm6EMNRgDltbMan+3Ok3Dfc8sHZ0cJwULpF7wKZHDfnVH5Ol+CqoY0ceGVYUADQ967EBnTrBo9RHNhlKP9XZkyuzf2QtFGLD8ZseYdTudOaN9fgThbaRC4ZAkeAZgqJSEuTG8uBi2MKSlXCzQote6/MnR55iZMx5Riurvr8u6t8MoNDeHroz1LevMVg3b1WxkaPAQOkolROmfM6HHKUoN1J9YtOuTxaoKhtPWkIQnUpOoumc7YjT0rNktf1UbqclX0+6OcgXBvky8g6wWVyIx7EPvYz8FAsRBeWMMiqG9bRh/kRLkQlfR2QKCHZPLZ8ISj4Kueocp/IRB6CbvY/g+HOS4DgyGRW4QEfsBghj4DfuciSuWgbkQqkag6JZq3l5Fithzs6LhvxMnqxsKE0o04fEzW4PRSnI5PZccvXX27h8Fnl0rzMkcmhefeop/+QlRWpnEjEhIb6IQgMlInPoE0T19BL6X0ojESL/OrGKpPj2B4Fgd1D71ykBjlF/iFa/m9DYIOvzYM5WThPbGa3H9gZ92zeXz6eEtOuO0wvZxr7Ji3ixcQnhmy2Oc+aVIy3Zg94izVuEtT9GhOfYgpFFoLVHp870drk18MSzsIIE1UuktBJYy9en1njO4MEqcitzTj5Ki3vi/HQsh8iZ6Vbb96pvFzJ8wO7NCs43Btms+enHU9qz086ar/zVlUvYRXS5bz4IjGJKV1V+mpiw5qbKeoh56R2odf8YASd3NIgtmlovsvmfuRMss/ysoXQgYmdEkU9PeAWBnW8Slv+XrZXgnjtIw/YHkk2gZm8ioRsx4PXH7dsEm/obaviesyjrYO350Viyf9jus+djGqU8422E+/ggK3bcP9tZx7oisz/V3MBrXz+DDZyrFRVDmoKfTcy7ZD9DvFFLuYcLxRAGItoCw1kaGcS7eDxryIr85FRP6+z5+BXh/ZY54ZbrvuitjJK06E7Cru8kUCwxoFEIbDcORqTypsWnZ5/Ke6vAaEY9y0qao3WSihBdcf78uISuLXn7lnFsIT4JENvmN+EaqBglaWNJg2OSek26ds9Puj9mE2vS900vXgM8Vj64RjASyaWDevR7UqPXuBXWBMmt9OIxcuCOAzNSOFj8xvlO/ngVfsJyIP0xw/BmsSTAGky4Hiqf4H6pgb+AyZb9jpcPMh2DnrNB2UhAC0UeX5ILtWRvTvLswB60QXPldUygiAp1E0/EGpczNFGZ0/4aPYGw5BADnlpjROqb5aSghs6YNpW/qIczUzzHx8A9DVp6zxsLP8X+GBK+frtPnSO6uZEb/pBzJsCKUBmXV3lZPpHf7TgrW7YuwFsi+kMT6oYYVtsN9A+SlmppVSRHGig4OuL+6YMgczyZFCp4XD27W6SxZqftn9gcYnrRzQz7Wiw4YtkoLlMtYeCFkBwQ3CImWLk5mflvI+ucFi6iaRE+FvfXEu8alJMER/3z7hi2C2WdZhG7gnINrqu+tDEw1wt1fpto6liupMHFOpU3zJAMDiTASDM4Kf5xy5LdMwflv2E+T/zuBSzAMl1HBb2G3nFq2a02vNUU8sprM9oR+PE5pglZ5BYLhTim+dhuMeRLi3CnI26qm0ouoyXkupWEdWfUr4liIGtTZPVJ4eFLVSx14ql2v1D4agKtGxSYvkzoFweiTWG0Y+VUZYnvs4SlzVXKMyAzOzlsudC74ctrCnB+iOn+lm1QgGyYw4QH3zV3ehEySG+gX13099LiwYmSDMR4gzsPf4u/IRSg0BnEB3krwtckcUJesux7NhV0eFJdgmBGVScEvsHejAWIG8L54tzbb9tuZjWLOAXbkD7PBpXnozoE/H3tNryjQcFIxW1AMxEoXT4l+JZPN56P/pm1R/+9PnfXIvlJ3oJdF8BrCk9bkO3Aw=
Variant 1
DifficultyLevel
623
Question
Which of these could be used to calculate the area of the shape in square centimetres?
Worked Solution
|
|
Area |
= Area of large rectangle − Area of cut-out rectangle |
|
= (13 × 18) − (3 × 13) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20317_v1.svg 350 indent vpad
Which of these could be used to calculate the area of the shape in square centimetres?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Area | = Area of large rectangle $-$ Area of cut-out rectangle |
| | = {{{correctAnswer}}} |
|
correctAnswer | (13 $\times$ 18) − (3 $\times$ 13) |
Answers
Is Correct? | Answer |
x | (10 × 18) + (13 × 5) |
x | (13 × 18) + (10 × 3) |
x | (10 × 18) − (5 × 3) |
✓ | (13 × 18) − (3 × 13) |
U2FsdGVkX19pA8iFBNiygcq5vcxBMcqJipYiZaVC6ZCziEHS1+0Dj5hV6yjlWovLGlyNEaftjO+PdJZ4uHDn15994Cs204TNssBS67hRc5kHRzZ2YX9NqFXswUjMpJMAUrje6khUxMVA6JK3AKu/UOsELvTj04QUuVvqy38HS+gX27FSocgTMmDjuyiWv1TEXCbr37QGZsEMxeV6gORk8Ttnqlhj+FE6oJxQyyKJe5prGjTWdwalkKfRMkuMfvHbm7yGxQxgMSdZYJW1LHUT27iCKBwOC7+9s/B3I9NK3q0BKJOWyh6MzVdiBogwig7NV4Qd1xJtPRR/lHykx83ICZgZPJtK3xeeQ7TLH7A7NF1CTY6NORHMwT0+IgxVtEhBkE+mfbTgUVIEzb8ozh7qErJN4uBw9chp5LJfSgePY3ABk9uObE2d8HMFhRVn6HIOlIuYt+appIZY7JarY1r0OWp63J3Re3xrKJGL/Xkvbk8K5XjozXKaAzTGFmIDvPgJ8PqIANY4G2iHhgYYdeDV8ggIYd7MKP0D6nVsMWBSvwBILzPzjQ8KbHYYBa0QuOaSP0RTUk3xUTk2ZS4v9bLaIyy1O5aJJ7j2iOgVuzun6P0tay3lEXb980C5OYCOewRI2jEVKLXrwvvBpG8HhKxLLgeBAczV7eFmtjTkjachpXoY3qEkQl0qJGVbzBkgpeNEXLADoSaZIewBLLthQP9LyVLfxOo+SWyYIN1/WQMuModA7oEgFpQ8ALVqI3OukekIu7apWm4eif1ReMeRkWXAB715wYjKT0ug55w3vJjo0m998r560u/5uYGuuxWRB1bhIuT4GS4zigUpx6Xd+Tf0osQzLro/o27mx+vmGAMkwLOEfWX0yzB2o5209f0w1EkYOXehESiurZbw5A0GA56drziyN8JcOLyZW/iCTV4zNEjOnbRBMKhrwPNQxeSEPpRXHO4o/jvEUxdacQQ+9jE3LUIqP2vEa4QQKOk1iIo2ghOuIqp1MbF5PR58IdLJZHOO1/udww0oyPIIVSAajKlMEkh7EQnghH2Do0ijGj5zQ7KTGH9JK7o/g4lIkuedcr0TNYiTg94cP//KO7lxQ95++hSzbFJwZxZQ5XUva/hYzD5YnovTNqRM4jBEHKSCMA61GzoOLIzGH0L82u3PNr2TY+4EBKVTrfhbikmMNEemZIzyy51rZ2ufZT4E3Fj9QtjlZId9AEo1qGOBiegyIYNSzrR91oaLcWmSTE9Pik0my4PozVK5o4NhNESM+BA0dfQK9AkJk/zFpZaV2Mq8+aKHj6xjSj/l0+G0kZHcWb2sHc9C7K9yA6rd/Mukqu5jLfSsTAcPDgY++vRjKqrz409+DXe8fBcZLXkSA6AwiDZnRqYdZPExg0VFH/4sqe465fpxlhwhsMXEs+/+7e5BMI5/4MR9oXflbAi1YNzI3RrVrevoNnhp55AYHVyl2C8LnWKe2Wdv4KSHmejwaIEFqzyyp2usNnwOj8rwohuwUVvoyy6+SOc0jBoQeCvolYIhG/b3CFWmK3ITYejDBtjKjtS68esU1l6WvWUcArSOAUrn2vnn3jknAJjYOhhKIPZmn98rzr5LdnqlV4ewQS6eZFF0TlUMDNLN1eDR/EiY/sn7o6kil4luz+z5lnI2L1kZiBOA9dS9c6gwjYxOi4Ppxdig9TIS7l87KBbBuISfl5PAZa75aH61lQUnJylat7tYUUrvuL8s5LS4v37L0zyEm74Oj2LUCjJMeagt4pYU8XWWJ3FRRkXTmty2ljI1uf4lr6GAy3SxfS7xGri8tg0nrdrbQyNXXUILxzu61v34fVfOtnYZNJeFpYxWm2sxmIaumoROuF7WCY/ZbxhiIBatwm+reQCR1MnKkl9Kq6KSibaBfHFD4U29RIFQZAqDvISA/+Fy4ryyCHBLL10ss3vo6fT3MAQMJ+l3UH0JceolUPsUafFOJjMqEIDFTxVjan48x3N8NKdHigHHsoq6kysv4JcZsuq4oyiSMlrJm/iFUQHbLPjcblHcttq/XafbQ/mPtyBsNbnEHBkGxROwCibgC+TxnAXuKPoQZFf4HeqMpUZ9H8OMdNcc6cn7CsGmNAiCz7hzatsty+SPiX5LEbdWBkg2L2cMZW7Gaq1rnw576vLp8qeKIcZEZFN06YQZOSsIVOvU99D53vT/K2rIe9tVLxQCA1WrvxgkpqP14wozyo7aGV++JzxoEA6VhVlCPVjTVkYr6mtHeRcU37UY+Ee6cM6nleF2i7yVIBnti4VtpOPLmi7RwNX3K4x0U7Xv99w0fXCbfXgjEImHsBsHEjpOpM3EQWgOYlyMcUphspbUN7KxCcnHHa2j7lM29H0Hk3M8mWvYctrcWkHRMh2OxcJhK+e2DOhjOpdFUkLe4dyzMK5O4fp7n7lkX0o0hhQsi14Y6PfYQpcLkxvysefg8MRqYa5nVeBglm2Jc2b0IOTjODenz1BN9W2yqVmACxp0hfqncd1w0LsmCHxdNyxXgUyI0+7lnnhGxMbIPOFTgBREJzuLwThNyHZcwV+t8dysXet9nF0g/5SouasCfsNI9UkmR9obqZHRB9TaG47Mybsi7ZpdBfkwRdCg3skv/Q5ZosydzI/4zySH/X3H3/vdnlOFuaXUuuxRYl5Ghd8+Yyh6grwpq9Ll07z/CESoWUJOA1mOHwL/aMxJDbr7Ff+Y6MitSQvGQB5BdrgyQJiBPnZlhftbaKb4VWfmHb+M2iLRutFp3d63CZCoEdp8k/xCt/oAhV1uXzzu3CNZbLkO6jjbkL+U/aIGAH49HmHwP8Y7RbpRZSyFdD0HnTt3fsu1kAcJH5GWoZHajg1jN089Gi5Ub2nkltUQJLda5b/uqLGUZ5trADIt7p4Iv2kWUIYBfZ193+qZ+jgMJZKL/RIHXddyYx7aNy77lclMfsnoacMZaBO0MZkGPOFXIvKRYEgDOI5qFJlZKkWAbmg4/S64p/UMMEIZhdQ+w3nNipn6Qi7Kxbt3cXbP3lSYPlKxCMRbr/pzrRDwMinM+LjBZx1w+1RKMPJp84eJ4kUBDuUxxqlFIr1F0H0MYBzRLur9HF40y2yyNz6+G60DTv2/71Rft3Ttax9uQSqDtWv2+JTDpS/c3huSLQa0uzdLaXbUp6zBFvwoMhX9Ucqt3cBcQeAskqmx2n4wqttMsdMYKPo0zI/4QONyjdNCo2k8WZaMHE1lxP+u0RASOLMcbydidj+/ds5UJDRjNzxzxcMb7oiP9Fiagxa7cDaohHbC5oQyw0XuLTm4zq/R7Px+BAsW8v5nEElZH8Z2tWKtDOTcC+H6LVqlrOsIRSdWvgxNmKh2n4949Qt+nd4UQlFnG+K1BbEXEOul1xXU//aRokXPM6Rm71CQRXSV0+/e5Z+1vMsuoGhl0pmEwAh5dQMQtlh+bB5UPRAoIELhsorOGRLWL9xMS/nX95qBFTeUsw7esvxrhrU7NDc/TgLNGcKd6F0ogykV5+y4mvdLcaEPup3igLFCSSP0IIbjuHgQ238XLfyMPtHhdft0XTE4gA4M2923eCVcr5BOm5img1ixE+WwNUeFbExheMySR2ke4abVJrlYq0WwMgy4K4bMrdXdFf8BPKGPbQPrNz/HgsU2g9jwbdry74GfupPrKUc2IhK1Hir4A2npqUihCfWypR/Yz6CNnkgzDwi4ps7xeiqkhfGgfS7eQXb3TVOpGGDgAWP9e7WOD3wmDcypqg3zoJQqHl40IuzOHcqbnKhkzqfOf+neRDu2loQ2FkZS6r3Avwx7+hvfo2q6r2HyQhnswyVpF12IVdvxVtHYCAkGSjS7G9PMsLlxtmHIVxJJZu66+ZSPXwE3uGRk9FhT/mGnLR5oOYDuThvRW4yIAZYimnNOsMoP6Q1sW0711A1YNwsd2vOZ0YtOINTnulEmjuMaESGFP3ws5gmLQvWIX+z3itMjrgil2FVGn9mZx8kXGSsTa/XXd+409PxgIIbLAs+hOlhBrQluk3n8lJQsFwQ5OsczAuULh1z4aEf/8ZvFjJ4VjjWMHzQhVEmWE29VTplKB5Fp88b8SaomcS3XEl9RKMbkcGYd616Pe4Ng9uSYDnK3jNtRUDoYXE/wYyq6Two2caxdGV1fZhobcF9Zf+IHeduoMX0cTaXwT4G2mw74o0rlfTbsb18ieI/cCZrnVbczIFacnicsvYnQ5k1FjwlMGpI71f0WraoPkOHvtFxbOc1XCyOZadAiFlzgIcLGin8B2xKLMyQjyPuW4Q0suEiazX3WgFvLsd1rmverVZb8/5L9SsKOmr7o2bnObYWi+MddYuu2DTKXBGJoNSDIUzHpYAR7M3U6SbzYA+3SAtXQIvtIrgtKHyMtCzbjqJt4ke26hJHy2pwnFjIbUNh2shGO7bGIuvBzDcpW3H2oQL4W0nGnPrS82/ApkiFVZjqH0pGdv0vMVfMwpUD2oSuTNWc7RxJz9VfG1r02awPvN2s7luLudkNq9L0hz6qjlIl72W33CWZwFy3dImeAvGWuKzIYJsEPdHQz8HrrMolYxnaDW77zg5D0K82WAgTCB6nTIaQ0MRxnCJk72TZ7uDgXXhRmvFXdhSnaL1lM5EX9T/3M70+OdlEWg1DCWTKA3HxIPXYG/mn277niR3xo66bC2SKFOlwrp/LoANE+2kefpClhI+qs6teqUqnPcWfsTEWBQxOtGSG6W020ZFWQOJtb3BEgDReruPuUQ9mUeyFUehWQ8I9e4TwwrZALBvb9/YgZjDhkERwZ+p9mNJPeacY8EyeVUcJLlH9LoKfUPOrVNZZgvPRPvkZbIVePnekB+epR10QFnIz2tN1ZWnyUGtfW6nyUUdxeyOWNdX77fZG2iJDDvQJGaaZaFCQx8/Jrhuv7qL67XGYWHBDKSbzaMUuaLU30Duus3xndPEK8GfwpfKuZi8LR72c13ef+UVU6Chw4aKBEV4pvos0G+ErG+SD3+/y1A8QZLUIIAauNxbh6BnuiC10HYkm5hJ4vfZCSJ03JI95BdTOx2Rl6gpnSt5pB18GYPm76iLcCKm2j3Ek41o9h6KMTgS2SvMVURkknP5Umb6X7YNBVCSSRxA4zBZADOKG0HVZH9GOCRLW3Gq9r/15HFwD0JSSptolmCpz4ff8wdFgaCJDnUVou3rC/NXN3PxOWeQkqEyPt20XT5QxuVCZeWq/Y3kPCz2bmPvzDmohMxYOnzURU6qYuZTaJ3clB7BB5w4m+xoHwI1moQyakuwgj0X3uTDVd5N9opr6DmNCzHc5XlpcnIOAKgJ+9LRXs9cz3wJE6Y+mXpki86B2wpectrzhP053ZumDIAT7jXJf20qmMeEaayz6rrCuuUk4ComTap7F1vCdjCNd/4pV5X5lyqH1IVhOkhqQXZN6lD4sqhMnjx4jvqpkH5dACnO05QKXg66OF4CzBEM6FTZNzWGOCbbVpSmURgZ2Ga+1e4H1gIIpPgZQhxNGVhjDc59YIaaF/52ViJQxjVOiRCmOGVOuSGte+be8FqHIV34t43mtar3ehcW6jQRNADTqBb+Zuuo1uv02ikJbBpp2dkJElQNV67lxDo9rJdkp+WrkDquPrismy9fr7WGI/dTxzqDFhGEbaPmVXG0uKCfcwbU/CbR6wVV/XmVyJvjbaMIfOhhAjUmvOjSi6JVPc4vRMV3iZAOMIVi5acKyotT55hPl8jPkf8mNX18FOI8G7WcZBnLFd6p8Z0GSMZitr9uW4WeYpGSA4lbtW/y7QVWLdRqT6trJN93wTftnOzF9Bxab5tQG7A9QIbc9jEufdE3W8t4e9Ejxu/bqCICEYHLT1HeeSvmVvW762ODJerh0NlKF3d4mdoSi5pcZDikaoQcc+E4Iw5evgR0siSPcb7zYG0lFRpUwPbP+87uctLJSfiZUDeIlv9BRDAKm/P+E3G7005CjVUqfhgwnjDm3kHHvdxeHS2a23KdnawzGPb3IH8N3ldPsz51RiIAww0MdSUb9wBtFnGmxpjb+I0zWVF/NLYD/EBgDPjQeqe67Jc/jwBxuGL0WQiHCWeJU3LpxZjo3KS6DfRUnCNsN7ERGq9lnQYUqBRCZ4OdvBvFYc+zbqoiX0RX0fq/RpZLJ5E7a6EON7iQtqsc1KDJuWQ3zWQbU9bbx26yf91Y7TcVLH6K6d4YsdSWTD2TLzziD/z6kWsVq0SbVYJ7H7ndpRq++KIRQV9rO9n960dOHxQRxhu0CG4Z570Ov3k2Gjd+bywzv3j22qBuus6Vur/0aeHWP63WrkJbNGe0WaEn+d7QHcUyfUJXWQWPy0Ts0+ZvkR9DQ2EqIl3BuQ/ynLvSUTkNvafyK9Vz8vPeSVPqqOLK6Me1VwOOs0RRGQid2+2VAkrlv5lu+FFN7rv1Enklc2Qdi4+/M1FOGnGwBR2KHWMZ0GP/dn2mf0NX2QJ8yQr2GIWP/N/ZW4iJD9rNCdFaUcHWEdLqYi6Z6SzFR0ssCeOfQ4vM4HKld3J00yFwjAJJNZ/6/odiiUvIouK6fo/5+bbfdzJBaQb9Kz9Le0eZ7C3WTVJnTGFMLbjxqLDqifwJbB+71YSyxUu3fiWVBYanQ9F4fP6Ae1/+q1qTEmcCwQRWwzDOPyY37I7KOu13SblzVPAkBAvxMdg44EW6suwM/AN5Pxv+yrGnFslGeZsYEYlm9bnfotg6UAjyv8MZEHPWXNuR15bO8iITUOJF71vJACZNxKS+TzKGMicw2qrdKAGCehXJfr5FQ3Vz/1Y4t6445Q+zL+f6OP/gr77I70LSrs6HOW32ele40sWNwEuPXQZrTa6A0SNEctE34vZu/q+QxwinA+cnxDDfz9qxdIZShjbZpm0KYdYVCWFIvJbjc7dQOhcsD3A6wVAL0cWf8NR628k/6009h6BN+yAiAUPEjjL6DBiE7/dlpZnItRm0p8mpCn36XOswycsRM7pLsIsECNKF15yoIg0X40fHRLAm5CEpjBLQ5k5uxPaZgP+k/jAYL+TNO85Gg6XXF1YkXSlFeVZDNUiG65o/XRZCJYBL+ErdQaSR+8gfpI+IGnYiFjxh+eGGv82fUKYV5Qo/C6sIut1T3eDUGo+NNzGE+3Wc041iNQ+AqEF8L5bqy5cwZjBpSFfP+xBfUa5Q5OOtUGBhU3k7Uv1I8nWiYbwp57TF1YXPy+AOH8hlNTDVe2cErwP+FI6EjxddH0KMM1mYalefgineBozKnghJQI19wT+1DEx9SZFYf3OcXSkyUfj8sxvrtSS1LlTbQ/FpKHNjrTlrVN92dtr92/yP8Lek4T+KoHDpEm3XR+w6OwpNNobHRECYAjB2j0hFIECPl25VLHGSgdLA+popUhT09AFrBCuSt4Ov5HP/MOdNKMDHw/dfzYyAB4jKvg4exacKgKwh4RcCv1EYLrxNHtb8h3VadtEbJxFuLo7TMAHWNI+8dF7hYCC5ut3KWjM6Sm4/mYnKgSBwnWn14xrBwce2bKh/LuT0MweKQxwA96x5ka63uY/4V6Rc6Mntre8MLa2dUw9s6fB3/tEK4yErL1cLhBG39QkwW8mduB0JKBzuMtG9507LYAzyx7CrEAOMiKamt8ZNysp8crzFqb/TqoA/v6/5BfHWbhVLzEW5n5Ub7UEQG3FSwpbARzHbo5g7h6/LKPFm0QdZMr14zG0nBrPEgAWNoylb3hBT/WULxthkF/ZTnmp9EkKtOqZ1ibSG1N6nK6k9K/b0k1ZEczN/C57pXuCtxQst9M+hpITmXRwWQwd0v5VHcqKBSjosabgI/0JiuX1p/dD3P8xVl5RlJWhncSdIwTQ+bZp6iMP1ZhzWjAvyq0ER156cnbcx6+BDkxO1HoUrJEw8HFzs3MbvppVcQxmzVSxq4/kvKz1vhP6KDvS3e+e1isqw/PiuF/jwM/MTpaZ4ax6n+UVjd2FFPHYWEJKQ11r439W3IYMs4mjsdAVBY9rIx7LKGUMQChSfJDgXijqLJ+GCJ/SQegkcZabjmO3EwwcOeCX03H8SeyNyIdxvuB9kwlXXTvZco2oewd3bDGkXsi1Vv+JOvpts9J9lwZ3kdlPE7MP4J1/sdhjKQ1v45+2w3P33rgk0itT9G4ACLTVQS863v2pB1DsEZZaDqMkAPeB7omtDWKM0KAbj92if4p+zBc5W7JyxzW6wetm11ga60zlgJgXhBbrl5cCu2kNrowxM4Xa4Ronk/t19VQLvQI3wv4gytoPd/K3lh7/kVCKQuDlSMnOTs5GDeK2JvCuWHqmt4a10kyDENa2Tsf0g6al+Wk8UpzmAaH3F1ih1yHaPsY4ZAmag1Y3IIaTYLTMwlpvJbmlVvVj5li2puispw3u2D3F58CQvL8TJFNJBRkjtHK/TyhuPjwCxJhybSrUQxsVvq8pk18wyKuazZAic3+avMasPodIKNqyigIbrXAf15QzSyU1xqyriFGRvLw/Mt9xtjoJDh4914tA27dq/aez+xN2MGCdVOBJcusSV/M/k4k+hrFq+haez7h9l26DLpvnmbnTPhBhpiot+Cqf+PWShZ8sFoZFBlC44+ZxgZp66aat6GHAbwt1+dFw+Rbrl0vSc+4YbY86iZDt+EF9WYcYyNcpMRjCBPe3wM0eBcNvLWUSCPqXPLqBzLdr3EHMUs9M5Wd4DESao+9LY9CUDBgUsxo84ILMozBQbdy3h+y2V9MLYBjb0Uh3mVP8+50MsvBz8eUxBHrn8k6WXcszjWVU7VLAHdIjmN8l9jQZXzt12Ji7YfeSe57SCsgCUmq7146x39uhIH3IeUIhe/Ynpcj7jg1597V8SyissCKhUpCdRJt8KAm2289lFc4E7ahd9RuOt6pcraViHpMt3ps4WUd3ihewvporVjmNG66/hmMtFv+oWHv523SQUuerVgIfdXvMPmDmVZW1ROxUVmn/IF68XY3XzI87gpwRylToGZnAXRnclTExUZZRmhX2WLeuLSpUZwhc3JhJwLtQSdvI85wj388n2JOKjuTTf6RRy2Qga2WfhWBDY239Lq4XguxqRPkOwG08NcgSWqrweR7sIPs6pbKZehDyG91uNZgtcUhDqt32erTK+GOguupdOYGI0KugnKDMAdbwscYbQOBHoDPMas7l/Ey8EsW+167UPyjONjnhqjjA+GNg8FEpCaat0fT8L8=
Variant 2
DifficultyLevel
623
Question
Which of these could be used to calculate the area of the shape in square millimetres?
Worked Solution
|
|
Area |
= Area of large rectangle − Area of cut-out rectangle |
|
= (21 × 18) − (17 × 15) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20317_v2.svg 300 indent vpad
Which of these could be used to calculate the area of the shape in square millimetres?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Area | = Area of large rectangle $-$ Area of cut-out rectangle |
| | = {{{correctAnswer}}} |
|
correctAnswer | (21 $\times$ 18) − (17 $\times$ 15) |
Answers
Is Correct? | Answer |
✓ | (21 × 18) − (17 × 15) |
x | (4 × 18) − (21 × 3) |
x | (21 × 4) + (18 × 17) |
x | (4 × 18) + (21 × 3) |
U2FsdGVkX1+77F6I5hJDgnPsA7/mDzhpZS9NTo7UGTJeyz3JguzuntzN+kbJ+wrVNgz5jWKBcGG7+SyV5FKik9yJinMe8pobLu/xhdPYcng7oz/wTYc5IMRNU0Pe2G2S+zbNEuEwXgfz0aoPu+xf8SGgG5AD+rtbdnDi0yqEyRio2AKOhYF8RfzlrWp/GTBIxYhQnrKqH08RmDO53J39WfAjI/rxF4aqtPfL74s4n2gzkrlHUZk0WWI3gwJJAVRU+Iu1opGoH3eP4VFEnBgR/vTpD6EZVD+cP0E8JRtJbZaCPK1A4ii2Suh3o1TnHAkNcoHv/ySf9QYuNikUahc7n4Fp6XbAEvbmeuEsDOZg66ypRMJCSXV05tCKPKBAEt7TZ+79huQlCyFgJ64XcjOBD2O6Oqpjxdo9zq9AwvksqllCCsrTCcNkq4obhHr7h361bfQzGYzwdoKW5Q7pcschN330m0l2K7PhPSUd0QEJxlbeU7P/UF9trQwQtqycA4toR3SqYX48uAQE0DGzgJ21G+DgF3dwHfzUwGqa0Vq2OFjdgVEiPDdVIm0T6ic73z+i7eBRRO2/bpmuA5xuAz6KSvUcuIcrz1OEgN9EByJoVwHl+S3RkHlL60AEufok4EJPh+G9gh3OqYo7QC6N/sqwgwJJoZv1R5ILA66Du+p5jBv27BP3V5ows89bk/+RQ7szAchdSK9intolUiNuOUrhkCUAaR1VO5aH+6ZbrpuTsqdvOm2udAAM7jWrJ+ssi1KyQB8Tekx26ilSgU2eK83m9p0NUwv7iI4TBrOOQiGQUnLX5Qx7cuqlJwT2IJidQP8EfFdSYmUc0OvqXrHcIDIGwOhUnZ0qOuJJmGV35C1duJbQokFwklatKW5SS+isHFOtIb9WI67DyC8/TTxIO6R6MfK+WTUPtDKZXyKjDwY97O/+TYanDpuuecPdz/bm9bUpnGcr9WUzpuRgI+EwUcLPjcd6Z11UdcBViq4a/jgfm1Davfi14TvZlMTz80dDYhgcw+gdiBmpS7lqj1KdNFMHOHIu7e2f3HILvDXgfXqxobkGk+3hlD8gB/QjxzD79hJOckU4OCSlSFGgo0nOj0IyFE96K9hgS4pCRLhhWMO2LeKtsXKxlq8Fi4Vl163ONt0NFM+3lNh3iHriqrrqFSv0H+TvQTuAOox+EdkF+lTeVtYLr7sb6vs5k+xiQjWM095YFWzkcGf06pvsFeDLdehjuISJuIYRuVyxVZwX0dP3BfH5gScPAN4MML6YbyWjDr7mtWhLznyYxeGmV8bBIzzoM2htsiwPGdiF1FZDEc+JjtmwG/ENEl27j3rpKSghsaqn888N4m3TgQtrSQ8C7FphDs6CSd16aJ7i38yT3bQXsAqkRdDMWUdxRnYt/O+v2mpL9hTc19qk6y5tUqUHbJ9fsPUPvbRRJ+jQqbKhaxWuDP5bU9djMyE2mRruimhiz+jNe4Z6W6I1todzcKnm7vnsuJlpGgeYVUKf1SXNv/6Ml5DbAXnOnIh+ymoa5zVTWlZJsQMJgEXK+Mk4ka6jT3gCt9+h7xXIoFbJhOA11l64kYV538TEaLiLAyUZqjFh4rJvphEQvZnCQl1wzwjBmbiYCXjl6aQLV/Rwy56GKAeBhoB6VOX0WJkEboDYX+AjPkf6YV6Djm22S/ceXgSAVkCzyw0Yr6MeKKueGFjXwmrN+wcgxDHFle5ai1MrKsghU2QAbYaxQ8Z+D0jEoq64FLyeK1efizpqLgAmeDoV/ZqZp0LLZlONtUI/Q1UfQ8vVXl2+SSOEioQWf8VG1wVL6ytYbcDQFkUDkjrqk/HSraJglk4Tq9qKjBarUe7DEBFY7kpDBqKS80grjbT1Tgvpx8fjYV3QPbmT+++ExTnukO934epXKiP6o5Ei1ktuEQJLQJ433hlpMqHOP6G6Up+9MWfVyQhXI+U6q3wrNleG6nOlvUWw1SlJrJEhOgIRN0mSyup8u7DuDwzxNEUdTs553lKQJcE7YP5m95eI2OXT1JFNnRnGcAYqj6aK3HqBxfiE7FWT4s8gpQkGHo5ir5JkXVWa9om6mfF65GvC5q9MgAf0BS1TKmg21GJgIjAH7Y38nbUw/kKmGTxALGpj+gW68x/zSPHUwsY6FSx3U0BOUr3G5k4UrCBcz8/rvuTYklNocMCu8H4s4z4ER4SlhnP8qIJrZ9kUURx6MnsZ/1GfakpUNlXYYSPyd4GgQPZKAzIPLtii4H3rrtOJDDbYEArEM98bYZrd7RVfS6foQPf2ElYyXoUnb6U4u5bZ3fNk10MZLIeY5M6VhLiPZ/mWy4YstTR+BrpNt0bZ9iR1rplotFVumYW3nnyQ698pt+X7v8XLL73mSrS9Mk9u7MfZfwoNGkLPMb1ay0eqlKGMk2gybJofpy671Xh70jvkRdNpFLe94YrbdHp7VUbFCXsfISBBXJqibOJp32Q4PssDdcnuE/z8Q/XuuA6ptFvMDl+3hbOnICQFqZzjKzBZ1PiphxlzzZ09gcmcfdYAq3Bopy+/zqBV79SIOwCU5P1iqBaSRh9fTuPQVRcrX72bkc/zQt4KzHwCwCyfKM58+66lLPAPoPlBxQJlnHnZkcYZOjDmzy01ZQIwNczYc66r3EXyUpxVwQ+VgnW1KDTYTUHyp/0ATkzWevzjZXYep1jzHWK9wB8LMSxKxnt5dUbEnjNjgQ6WMfNb84PHg+qz4YJJhJO1fIMzty7v1vwToE6kqobTf7xFWcMDadstPjdlCkUFNzlRqvZ9FlKQH8TjdqnfmNJZZlH+Rtzef7mDeelKJ+JhDkE+n+eT6K5P2bgtTHvAXsXaqhp8m2roQ3f8Tj+D8C5av6BRtZggcfy0wiJbBj0Avj+22Ki7qxkFapQqEn3NpmRQSFJOAxdJeLltkOoN6uLupENHiaSNFyBVIEo7FPmSlzlnBQm65VwY05KkWMbvzZ5D5YXOwvLJ8zMMbNmiYgkWe/rOSsT+hGNW4emh+IW6zBmsKC5hVvWOPwSYDv2II5/ix9lOEIrmpSs+VPHUDLK7/EuslBa0EjXrBlowXQ8TiSmOnOslhOy8hLLG4XvFlYYFOS71SiDtlWtLddSMfMsID0PvUD58uAdKQ2ECHqlR1+j6xrNwW4OlfKtVsZXwVHY6ECgtTIMHvFpeRy4Zj6F7KEau4o5HH37xnOpqlPzx0Ms1yTgliJ3Tpv/HRYy1TJEYxdskjYdKoAPRHEspe+I0Nh6hh0KKmtHfZRevcJ/iZZS7JF2WPaxST+1qjJWCwXBbfU+bNu7Q/1A+IrJUgyJOj5Bj+2rPSO91eJooDXscg7XbIqHhupIpFzbmCa0YiBeE6IhSx0FSBdHTrzCbT2uCoPoCUR9f/Xx8FZOrLyphlbhU9TQql1N2LKVeyVASLG2bUvp5PKl4I7pq2zRDDmqs0SvXGHDyLJJ9gHeTgEhBPVzea7I7vgtWtVmEkVktreMMWdvyq0zu9AIEK2pKmUALDWGAGjVrScWVczFb4lJofGSGN7a4m34n5Frm76Fk/dGgqLzMKU/KaC1yymGL7Q6tLBEKCausoXF/4WynArID+GQsp9RdWVcfpeHN8Cy3KZUE4+3+HvOWvD823E52Ctwr09mLEQ7xYmqArir8ulALAoh/jK1ZCTpcg3UiJAw+fWewz1aDI3n4/gx36sk76A48WUeG0gp0iG9Y1Z36VsAthzcrRoD6xQbTe7Zn4VkxHeroLwbOP/nnvBSIfl29ySdrwL+muTDS5fzDeuDfotfW0vu63eJsWZDfZq1Dhe49tic3yZJj0Q9xZBWkYLS5PiVn1zjm4DTnFcplSS4xML+VJuxVhESLA972QlPqV6qlMbyfT49LxA9mnVRDBE6JXS1hxqKSw4hvpC7le4+YX3HVeQvPJ/4rn0dfmJvFdoIxsSSVMdjh9uge4jK8sMygk/YyWKzlrv5pncvyOu1brMo9sixzvFqCRTXpmouTPm2e/kysVjYcfplG79PhxrHqz3PK+QxhCMki20e9CECpHJsD04H8ZaZ0JaPGGGYqw4ieK/miZL+W9KOck3iLKw7E8kkD/JLUNr3soZFOUX0BfbntohCLsm/LZI50zdQ3KK4pVCqfb6Hvv6w8k6nbWJOx9Jk0+C4OkbsWt11AqZKOPTTH4akPqQc+FRtN48/cU7JdPvQhxTX3RZgQzAJMew5Toxc5F/xK7/fQBCtI4fN6LKQw0uVn6fvBuYd/Glfns0e3+KOOIwV71ouv3omkO6faiKRuHPiWJ0Y809plFv2lbBn5WY5cREymR9AUDldqFfrqzqad6LI8X4TzDzRhPT1EsWKaSMA0hBiUziE6CYo0CV6wuYEZcPDPTgcaL9/O05zekPdopIHgtP4goTmR15bEUhTKOrPLiCQWNtREqh7I17J+TTS8al2+XYTZdTUTssuNJDc39Kvv4pRRirdGg3Tfmx7dfL2PzBcuwfSuRhnIIlPciceALZCiygmJlRDR2+2NnRAIBgo5t3ZuTzW+axBobeB3W8zCHjnuNjSYkPQ7P1mKr/IU062T60hMDNb5wv3FItcLeRNwtTO4SfDmbsrHhx+8pi19CQpeFbXibzcJ/O82EHbNyuDSRyZYBgsWyoSme96VdxHpGQ8Ymz45nGihnOnzzwiAOevHouRt/IHn/HnfIDnR8OUmQnJVYKfWMc2chbnoF9eTANgzYwosr1k7YhFXF/Hp0G6PyEgxzmqrj9KkeDZCL5uDVOCvgS3JNDepNZiv/mLFo9W86z+6F5QGT2Ia4sSkzRtOJu5SVEGV4A0sz52v3vEAvHkORRr2lKt7rwoY1rVBiJFw7UfTt/y4NlU1mIkYpbDYNaF46Z4xI2R/SmHthLMDLIiooNcYMf5CBtMGRoyPcMC03uySkg/aEHisXbiA4TTrQQ3SsmrlDAl4DPYNuY29MlvIts8gSqaVc5PjR8tOUJKEAdFMRi89C01ybLetvLnkUAsHlNgOvLwt/pbG9npQY9at71D7bE6VzBT2Ht/TIzExIorUB4OrwkLMnaC3wUP+/fGr4a2s/oFdwv/l+Af/7wkGbYsN/DSil9yZbukOHi+wSSqNZEpxKXQ4yYH9ja1qHslxvbLuHqHQ93w/gAxYaQixaSREzLGlg45b6i97BUo9pX/B8DsV9SrxCfy/BMCgwAxA61Ki85TxpElooYh5BCBTh7S9M4WPslK9JGMMHoP+v2zwKlG88JE8J5oMm331NFehcq2xk0wTGJXERgp6uE+zGBM9IUKQmTqkg/QLl5hlgjBB9hGTsyebSNAwafzBkE4XSMQF57PWZCEC0CrFWrWFkbjqBT45lvggbdQdbc5i6Uaxk9ajEFc7phdAuy8J08WioQctXsq20PDAmwUnzMEUH1ZxYuEH+kek3FyuoTBaMI/1YENbs5oNdZQfBCBjh1Sq5yIlbr/CkCW+16RGVGRA+HAbgfUfv1+0GtxvztdW6eBEs/E8k5rTlftbZrG3R4u65yycDh9ZE7xyQenEU95rw87pRm8oYHupU88/BAeoALRWoljvBBDdjdJ6MIw+7C0U5Ldxsvd26kvXW9mbRTlGQcT/2HH5ZsSm0KRl02HCP3ltS84NPavNisC/AvUqNOoX+jBswof7PzvKaD2YqHaTjDH2QvN1jv+bKEw1BuxTfYEhjhB/y/feOnSIkcnEXlkRbNka15cVAVMGRrAclni60GLl8IqNlG6cLQvWyDOQed6pvRiiDIGHMpr3HBb9uwBSuZm5DkNbAoBfns7XO4/6IiZfBNuerjMe0+9zozz7Of4JuYJ8DfLsX3mrb+mew+JnGnS+C9ACbhaBefSn73Lnm/Vo86E57usKtrj0J3E8ua9JuY42IqZK9yWNy6jtW8JIDkC8+Ibf/A4JeXF17lVrVUovacJBjvP5NXu2rFd4aHaL9r64/BqRUn93xlcgczYVrgLkVVt5N1kgbdEyzo6z1JdnaC54L9+IZ9IXIsGfg8nxvoZ4hXW2rmGdX4OtfvYdTC5WlbHBp8HxmTfyML1snoe/z5PmMo2Y4N9AUk5dYaDbLp6SvcNgRNm6c2Fmu7hiQpZMPq6mlVlUzLRlo2UYswJIVj4iskhpNu0BC4K0ZsI61NDyCuTacO8vt7hpS+ZC/RXEcFJfodf3PEzVRg69R26GixMsgP+Nm9Ds8iJe6CeNlfCe/4IMInW/ejAx+YpqbMBYMZc+jE3aiQZoMtRoYGbHN6ERbZRXMAA9I6U4J7CrP/hU6yu1Q6cgdSECbg2FyvK+WBk4mrGbe2BAPf0oSi+zSMXeZGaj5DrToXpfQWXQn+Aqbh/39plkneINwK0HYDWBnY5tINSAqM0butGJczBucrp/zdsboGVi9Noz7zdUZdrVyY5RBGGUMr8sNaDKstOF8lUnxP0/DsZwBX5u6UCeqEQJW6AjOTspz3lECfK/rv2MrxpG4RGWByaCcYuUvA0rWJQKN5uSB/IziSrXv8KXWgxJC295V+gvfhpNn3SzdABjAZT2yyBT19cl8d8ra8eCjdx2cR4+7qjj4Yd6CZoJd4tHDGSN+1NkmUeNCPV3xcszVrIyy30ACResBxXxWJryNcQoBjVX0aCqpbVyZoLfDBSmVJvlAIu4k8/h5JNbEbsIJ6ZNvFX+BZ/AS+Wr0oOLjLTRCY9nbjW4V0yFQDnoH04Y3THpUbhcQ5rzq+Q9FMoPMszWhBFrDctilDIMZlBAhg+s/8EK8eA8l8QImjG9bHIRbFGyMtccHplT56OCHfX/WnXboBatkHfK3anvv3hHe9LngV1lSt+gOcHMoodo4FvLqIxdrrSibZ2MsS1ZQZD5N22ntqKFpprByY8aYsBQbCGZJKIAMx0L2cOBTsTXvTaU0zfqhl2AeDfaR5Tf3uFdSMvZVQgQtVzqb5EAq70IN0gUf8VbLTCt1+X91s1jiIDabpw6x5f1Y1i0kW1qKYFcaKDA30xgxH4C6c4Q6C1xSHamSHV1UbSALi1TeyOK7NQpANAH7KNl1wziu79ZMebxlBKwmfsJfKV+qh22iFMRfn5LiqgexD5DVVWeGoRQqKO+iJvA7I28aDqAWJOAaHCbnOkhnfJBiMuJBqrLLHkmkVuXS4t1uLN/Ay0m0bvsppPsuLN4WHJw75SfCvWu8S++lF0XUpry45eezT5WmY3YsAVyv+IZksd9+Hz6Uw25xMzTKC8OCDWUhKMUh8k23PP44i2wq4nBNwNqH/XvC0XotALPvfINCpHwr+HAS7vdPIuW6IoxoWDrmh5NvBTZiKdTXRrMWG/S+ktndT1PD1O3+kS29TuIn0Ji27JyH9ioNCpTfjRAmQDDre7h8eKjJOR1rRzS1pBv329zQiGwAi/845ld8AB6DDzo472UE2ldOcKauBCyCcHgLJ4wD4bXhHYDwJQ/d7CQVbhxQOxsRz/alwEAWalZBBE+o7SVEy5INnsVt4q/w6n0mPNcG+qJlM4evrSWUEYoRvvnuitXJtK1k6JiOArbvpERZKuP2Hdzn++OHusN0gheMLnRmKSiD5SmQllz9dcZFo0p8W68DtjBg4R+eF/ba4hWn+auen3a9v7RAGv6C/jBkmOWygD7KcVBt921d3H0T378Y7Qag7o0jlH5xrmGBAlIjZz9teDFW3oybOtd2D9fdV+XoSWaXJTKLZVC0iGA3Wx2jOu4P8WthfyxAA9SldNXO+LdsJbvJkOi2fo10ISBBPqLn4Qmp/f7pxd+mIEd4didaaJXKQG+sBrRwN4Ar0lBlKkoSyj0A+edCplt/TEHvKgJwNI2twL4Hst98PKf06CsFk+wPN6HscSYaA0DUQNU2PoMGcPT9ZmbKACBP/qqjwDZZramAuFW6AFHM0y+4CflL4avDiOlyzway5Pb+kS4i+EzeLQnzFQvpUZAWqeOk94WkS1Go8CXaAF5TRG64D07IhkrJcJaZx9INuOe7rGQnrMDiVRNOGp25M9taKlKBWy8a6+gjs51Xe114aac78RMQjBd7ql82yS2kieldd8aETXFEfgvCZKQM2G6+66gLQjbdpVv+s5NtPBBOTbkGscyEZjjcE386EL5aLFxPNG76vjkpk806jfqPnc5FB3dupbjRP/WFd6jwfsTsvaFBJxOVKjy6bqTcYS9iuoAOdoytX64PGw4w+cicLq6QR/SSSsZ22uaH4RWWIU04xnYTd9Y+DsGHGrlj/6FKY8HxrLhFyR19jZAf6hHm3oXi9UYSV3EnPSMw1oVyYCgt8MLqi09lyJwn5jN7lIFiWA0OSQHemziMonqDF+8aGts6Wm9pqklS2yLVsBl3o+6yNf1MU/tppbm7ovjsxzHPitIfCMrSz/P5uoGHkzjd/CG52gdIq2IxptULe9leiG8vIpkrrKTBb/aJIv9k3V3pkaI93f7qAsZBg6f3hMwFbhBNhe8BdLmncgSAXFm3uUGypsBOLRABtQmOctBCrQruKwebmZtSdGxaZxMYV5V+8JLv7SmGx9KUyczhCy2vwr+C8jiWOovX68OLd7ddzQ65Gm71XuqATHPYFojpqpYD+LFOUX7hepxhTFUF6MlXVUF8cXRyTm3frBsBoJBF0MnGJzbNZeLWF6SVkrCXq8DBk/3oXXiUtiRyp1JBqqac+eOtmYWZOx5wYU+Bl4tIGdHGYHO1Mijs2lxgpmzmv1g+hqIo9+oHsY/Ii+hJsNLclSavQc35Z8s/BhIkl/U8M7ysBRD5prQcEBh9pDTgju7zXwCVjAb0oKRVes19koGhO1ccx/d8JHveRuMkxJcDGKodc7d9ISjxgr3WSpVsk77k402fzlmwtbImUViihFxSU88LvlvRDnVwcdX40wDPriuyHb1y7Lo1fM1nlSs9bcP0kuo0acgVzF3RWotpCbdeupWXS9AKHPQbWw8TJWgMJiw2VeQ+GLIukU6nLtKuNHSNIV4cTRvh9WArzg/HHGTvN16E8sZb0Utqs1ZI74Edy+P/3kAbiaBekRjQFYIUJJoMNZ1v1BWvapBqhqd+JjtypqY7yQFTr/tGp1604il7UwprsdVfydUl5Ss7uSGLjcpT6jKdzBw0Tt0V+MNcLgEEb9gUokiiCKSmSnarPzkO9TWuyg8KpRo4cux9DW4P06lWf1/M3xlAjgSWRPp9evf5RIHTpQqgBV4iQPUwQpofGvPdtC1UPW+089GmJ5DWKgil6jwq8ju6q3Q1SJQ4NVooyVeQcki6U4S9eFcvw0szvsCY8bn1pE5OIOBOKRt/a13d8YlqQYjYH+gx3wub2HlSUQgycx0SKNogREuQYCGMENGufW+V07mwapYTg/FJ/qVzMyWsR1qbhUFZu6DWHkiT9wIWooAynwEWxJ2ijd6nbh57OZCPmxhmQt4t+f2yKazi6cYN5Oe5qLGrNTHZ1EGehd3/75NAXZiGdeugrQo7GsOvtQ9NmdkBjnAoQxL3bY0IVPiMDuOJaMC6WaiSWtzDuJJk3OBlyJs/LNQ/FUhg2iqhHejx90ziDO+dzEPh+2Cbgk2oq6bhJ3mgmw80hZih6aoE/RxtScP3of4VGW260tTyE7U9JElYk0YsD6H8ifA88pqUNGyiwEW3mr0QGo4Ub7Nk45XEOAUve9DTmpAb8LEWg50EDAkIY39I9oK+B3TYE2k96QWDvxTOrEgoAS+6qb9LGbnvfZtiLe8n1GQhjOQuqd+w4jk3f6Eom4YRMwt4IdBGw2W/Evczso/mxKE3DNndaeFsmL4uxXs2dF1Kzyhhzc5I9a3aRnJeCnZk35/jBfHa3hMpfV6BVaCeyJ8R5nGXe4rdzbM1rYzvDYqtCohkPJgvQ7/QVOP9ZYjRomhNxQJdAgHEZS/dw9eRkr7RdE9zfa/i4vlW641OC3tInGUQUotZiE7L/CQacNNanNQK/Gus470yfyrB20G98GwHzz8q8Gkfv21aYvNFUx2CwHoRTSBEeO38llUL6DVsf0CucetUIi6o5tfYA115PlRMKnxPFki6cAQ0WNMzfRVYQl2Cjp9Z1waV5w/HBLfewuGGlLxzdWYezx2T7AieCvYaI9wTJEV1CivRVSniCv8JNgFqjocFqmiCANgw39//249Ryn1pYd2Y2w8NbVeoQnIlznPttmzinnDwU1XRnWJzTuJMr5JNtvnDPfalFlFQtpc1Lbku2wSNNI5CC6ekByIOBbu0vRrcNQmb0xyNDWW4KTGisNyKgKgqA9LpdDIw3i3VRQDVq9E+M0pQhjtpyKxBedlOVmcpttb3pSo2kvg+L7Lk98CRszmY8MpldSiMYuU5eJDt75gaItlWKGLeep3ACeXW/qLwzJxPQ4i3bvM/x9K/Bi/NWG4nqTWwdkL6obAG4c5eQ3m8OGeOIqMiratdvOzECPLEEQ=
Variant 3
DifficultyLevel
624
Question
Which of these could be used to calculate the area of the shape in square centimetres?
Worked Solution
|
|
Area |
= Area of large rectangle − Area of cut-out square |
|
= (16 × 11) − (9 × 9) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20317_v3.svg 390 indent vpad
Which of these could be used to calculate the area of the shape in square centimetres?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Area | = Area of large rectangle $-$ Area of cut-out square |
| | = {{{correctAnswer}}} |
|
correctAnswer | (16 $\times$ 11) $-$ (9 $\times$ 9) |
Answers
Is Correct? | Answer |
x | (3 × 11) + (14 × 11) |
✓ | (16 × 11) − (9 × 9) |
x | (11 × 16) − (9 × 5) |
x | (11 × 8) + (16 × 2) |
U2FsdGVkX185yEdyCI6M0pQd0jHZA9eaMRXqaesHYRHsRrVXhv8F2pgVlaLLKU80kHMe65cCw9D4K2Kf6/t0mnG7tFvdLMSrJ7SgZs1okzcOh1AsCJualmCK5GhD1ar9LL3sSO4GB6oSNzvvLDW4QMNDUBEWE4LhEZESY9YEOD2ebLUohTk8Mp7v4KHNru3kykKG/1kXBXXXIld3da+oQoOOIP1p9i5py/Oq8qC1UCTUFPRDZ+uE2LGmINbEUa4ZnKw0sdqUP9jXk7Yp7oup5ZuAOIYnbRyJVTy0SV0YLaNTm0zqGVpNIZ6CCT/J2mmU5Q2cQivrJWjCL7F78Q5rNJU6u5afbzq4GrBGETUMmsLw+I6bxxClEiFwQtd2a3cq/ASHL8tTS+xiuKmuDmgkHHmM0JpXRPwAW+TZACC08DGYspfB/YdRrSKJd2mJGNIYfhcaq5xeGfodq+osEGnScHQ/Pv013bsUyeSkRd2quDrhgrXGzhSAIbTsBLTHDpRWgHHrOOaEG/qgODRTCg4fV5FhXQ3WBLprlLtUMVp8LhIlGAs4MzRF/djTSHsQdNjfVwsmgm54U5lJWyWYcnMZcNhsOzYfj1JgEQOCILKqVeI3lwxi3jb0lfmVOeGmM3dPYLxPgaC7AiWvFp0opFqIsJ4p+cSeLsSIlAd93nF0vU44MC0HQEtbZdDV0WywBeg8xTQBp7kX+rV6U0D7B5HAxoDL+BgmxriiVqoDsXe5IBHR9BcNBVhSz0tB2Js1tUwQACCVWsqfJR/OV9FbWxNMQBQnsaOBE5qLfnTRRfp9O66fgtfOaM1HnwJWpMLmc/ASLxr8D0LyrBqNuYrtVDUdL/q9FrR8RCtdTHcSegWIhF05h0PJtqr/pXYITEpvU4nwgX5o8l8CEPdroJT/jtD96Mqfjxf4C/u+fCBGgxbzJugRyMVTyZ7syfMtRrU+DknwmUgX3tBa53R+lcdiLm0hH2NxYqzvzugcUuwtrSEELCs0Ol6EOSobXmU2GmUg7POcJRPLgLP+Sq2WT/15bn+yg9nE+BxN1yE7qwbp38BefAr6tgD+FO2Kon7ZzVcS+Ktu44eeydqLEHYXxe+wJg9rHSZrwIdoju0T+/7Qr0DLUelmLL5a9VMyOzbkRXOUwMQ1Y1XpUmzp48OblqWrHLgczpEf/U5AoqMaJ2xX9njcYvfInSNPoyUnpOH7kONWbXA5FbQlttLhdW8vBtOb3IvxRmZ/kUURdQ1JK0T8P7na/up1/tyEREi9yntF25lgsVTPXEcfDnRPkJO06LvZZCtGWRCFrTAgToqpXPUTW7GemSnOoCodm074qzpupHjCx5FkfrZ5yZLw+3gmOMWsOsRNPEvc3lJDYhaaBYKMgLERvFxPoYtk3N4XqjQyZ6vHKH8394Woty8jRJUyVdU1l8IPeDjyAmuBIZBB5+GygLVoLOGGsyLEtMyGsF5BMAzwxCUqg0S+gn7CeQJfq9Su5ETDz8aEV0w9K9q4Z/n088CqDD1e8CP6O+/IFwdw/Wha2/NOXOu4UKRIyWwhR9AlwrHNesJtcuCbAJn5x0+OHr4RlMj1i/tr0EIQVB/k9+dgvvJX2i0+muCiVg0xq3xCZ4RPwgrfV7Cl51sOkL9qygTrPjFmRccLzweh0RqYfo46k4l691zb65U1qzJfYF2eKI5Xz7tA5JR/rMeiyg20W+61Cq7FYMSgDxtIfftPkVxHNLD2tXl66QDK/YIIax7eZpj5XLGOPAJfpDlQsZEpKbwHxKb6UikwpbT5QSFKClK7KtIJxq2LALpoyWW7J9zFWZMYUXT98cw4miQ3ppnY3BxtueFaHQ1U+d13FuK7AeTA71CsQCyHud5pPyMz2XHqQQUCvhv6WNTmTfLT/K3iRwuxY2vbpRqetLZ+CJmBtxyCUiN8vcHJwni7AXIuRI+On8hQM2sCmqErY4bMYfKZMGEMaEcNOBsPogm3sxPQGNoIqcdufY/9sOkNi5LaryvZDnT4kY+EWHj2LRysvyl5DFpgVPx/TxlcgYWbselIj4ESZbcgrEQcW5NYXuQXXKqKIKmDlPoxdyVD+2XhSX5yLcBUtjsKB1sh+DLoSIEQFGGYywjPqTdDfbHcetEzx3GIicxQq3/ZOqvkLn/B0nw1T1Ojc3gU40BHI7QPTvEevP3VClUM7WDM3tUDRSByndpuA1BBM+qb1DAkZFWekoWWIFsa2dycKHKBYp/qVFPAO18uNdNM1XtzltsuTX1rT9/6t/YkHP+Ne/isDWpHmkBjDEqrbUWK9Szi+vwpIb68sfwiPv6kAKRoYGa1KqemZNBg2q/RuC20cyi/axuHmT1bgG/XZaruAJztdUPUSYkZYPow1GqqAX2THaNNk4mRVeb9LL4Djutt8/RrHLS1ERJxut6Ikx3UgDQR31sry+oZ9W8NVNI+PUuIuxKokk/WT7AzA6SvdbumBcGuW6AL50kOLD06NYB/1xDfhNb/d6DvtABt17qu0p9t2lZLQ4Xw5dOsI+ho9tFuO2nQ8bu/jvAZJVMlKKuWrmSYpyFFk9LhzoB+ObNJaeyzZkBNvOR0eDJ9b4SLT/W0Ba2hCkrvezVHkBsRN8bD35/rbpNTQMm4KMeDzZEd1NcE9JP/brvKQses7OSSk9jF7uiTMYl5VPHmCZkSXlj+aFjEA9aQYH3D3P06xqFme2T4JfUvnnOROczD076ViIeoomgXhPbYEirMFyD6tfdjsDcxBV3T9OwkHPYfB7J9fCL+EHhtRwpmGQwdnyARWpZIdIVLOUcLllYvIUojr1BJB6TH8IcCFCZcQCJ43aIWfmLtC9hoMOL4WKlM8O1851h7hsTfPW9QMyOtCRsyFz0sT6uG9jCWtCL8Xqx5IWyUzAsLzhJtf7C3ccsL7x06rHJEBHzOA78NNMpGU5kjps00J9SsozFTR0zR5Pql7CVmh+0elH/OwSOx+D1uwRpDHySr/lyaMBrbBfMBraU3pPgTT5uI4rBYjZLjG/1bzp7isTxnosjEdX19kuHGTcuV9qpK/AIUFyx6Ly49eLICcTgnFdHYoQdNUyN/txgx411AxR/QTELYKnglJFXuymzz1klZN9GvZ6xN/V+HcESWNErdfEJiixMxJNzQl3m7nbdcxJVBlTLsAD7NUeS3H71R+pdLjp2WOWCcGQAiwPMIwAo8FQpJWfJFTds7wYf+7Ml2CM0hp4SUc4DoNkQkK4Qlcp4HhQNpaWx7DF6qJFvQeRKT1IYORviJwm6xQxyxinKEWPERVsroJn9uc+Cp9EYoFQy/Ge3IMvDH7/0l8T09TgkusgqgxSK2ZLmtTmUNx/vnv3v++PeRkA9c2mH38c5gRw9Y8NxpwtMrYuinKQYR1Dd/EMhOtGjj/7WHHwI+oBxNfPxrYntwC2F0oKFumhYTYmSvDPLWk1USokpn5YlYDPXHjYDdY+30HQlxoVDnQ/YfYN8e1Nw8xGSUFovGKiQWTvuE2/mKSG34YhHfzIU3aNrB+UyY3+m8YnbBZpIzqruTbvNdd3bdKmrdMyuuTL+JBWOoYpemy+sW5WCVI4sF126KxzuycCsdw7PNk7GATCiPMuwirBc3FFo8g0hVtIDnAB2+WFTGQ7rTRhJLp1zNfJQ6q4PWojlrgSEKSCLrfvwaIRa7X5cVYakmZZGgcs8xK/3OAEgcdPN5HDpl/XBcgAHtFpY+WKRSqvEqGY9nGsStbrPyqi3nVmOs7KQaH5ATDGWD/bHdDdJt/xn8KYZY9tinQ5XG9WdpXyrgIMEk4WBqcH/aPSbBSCCIC5XTYp+boK75IY3EqPm7AO47E+U/vIMpuGLbRXA81eHjJoFGxg9KcXDl6Na9JY/Oy9CCu9pMPh1qoh1UccfZXGmu/EyN1KnCP9pHZc/OqNndDg1L7IMSGiHWswnRRiV861b9XzG3oyvi8S//gqDeEGB21B+V3eKJorKbcjtvCYrvzaUd8CQMer3KiYHzfq4zmGjnQS5QVq5t6u9Cy8OIkJczpR4JVbQE++YzD1wZnI0yVIOxLout0HRV3NkJOIkE8Pk5YrfMnIrj3Le3kyrtAghZFNrwJJM2/q+rBeCqGb/kmdMel4haLASJUCtIVupUOslegciu2CW54bVa5N9rz0hbBWe7bNFRBUhMvVZXA8OXAD8DyDGhc2Fbo8/VbnArBBns2GCwGpaNOlT1bI8r53+U+8uT1CKatii9VQWr3b6j2tt3fUyatxgh2XHpH5XfzMEsfv4/E863vRvVbf0j1AQCjgPU+k548w+LVhI6tmczIMOqq9Au6TygwogdOTE0NFPHx3WXb/AvHm8DoGdDm7ERu+pzGFQtlTg2eb+p5lS5UBej5qf8Rej/jCbTN1dfxCU/WHCd8ksluv89GEqjL2/IEFquz/RzccUXzWvtNrVfmo4rQAIGFkuJuOyTXA6TiGBwOobTLomiatwybycuwZv1leaiGvQY6hkz3/MSjEYKgVxCda5sk+4P/h3YqV7ucPmS+AmOzTLRknm7DOWbzFT+qG7v8XN01XACZ2i92oJ1RKdoHCGV8I0hChV78jcs0ee05TR9qz+XPVGaIo5QZm2x2GixE5y7mMPQaQS7o4pzYjE4hWm/VhNHywmBTyVVyVplaeRApMoVFyoAJyWVDi4JKXbdIjd25xbKKPIunJZcW4ug77Xg11Av5mExWefI2ulCRMOXH2EaoZeW1kU2nZuDXDPE5xUFwMGV11jhowv9P8Mo9IzGxVQJf3DLzXZ6SfLYq4xtas7ZejX/gm/36028Qvcv0y4tFvJX5IL6m0eK2l7TSCB585sjk0x7u4uhpsYP3qRgo4xYU04fPeg04uSFzV5X7fL+AWAKDW8JW7iTzOD1tpb6QIO5f3W2hxC/iOtknPi//09ePzcfDZYvgz5eelVtyKniAKLqysXzoILTOtMxsIhRCD2KNuuoy4wbISu6gGzKQ8trwsMmmcEIs8BGl9WdTwIheUkm/AuKEmZGyJmNIigjHM2i4ueKuSbVbVtJoI/ezY6Ltkpc9AJ9eCMUyHPElewEftLXFcN1pLZj7JZeowtbxgJ70XVCPfUFD6ZsSZ667Nz/E8W/n1nRhEM2/CJb85EdniMBIV745cQ0fv5uydxkqwfG/3Fxp8R4oJtTwvS5t8C/0iCeM9K5ecj3qaVPcopTg7+n0e2Q6/rZaz/e0+oRyDFGtTXiQQg28xHIhgwPyrIEr557Zk/fWuoSKz49DeqqybX3g3eRUZMUES9h0hUpm+yXBwwrBGXofTKDGLie2WsUJvmoUL5pMWBPMyyyvFN2zXFz17BkfYHc5xsI04xmp0zcfyFdEVO+9E/VbLDAAp26R+2aChC19mGyABcWiUSSNycq53PgOd2lrYdg+TdBMO+o6xbyiGUAk0pTpXDC74kypSH+Zybb8e0aGlVftFJNeXcjsAGT2j+oEqoNXGEKqavWucMplF/vNgKwgl+9BpVRSsX0G/fKfto1G3k8rYwC4WX/5xZHJ76iFkD87NTHDIhf2PbgZlDxSZ48HSeEnSpdBHROhlHg1fyg5k+j6ePye4H+0MoQxcxI3znjcekyzjrwy9i2kfO6MP7fQ3gvZg4fk5J/31prGx8s3m0KArSPV/DPVBo9HKJkfGJPRDi4MDRqOxs9tsF/V4eD0ohe39B6zKaXdH440P4v4WdVEZErFUAXilZoSqHbcxs+40ZLrHH76MLGb26KZ5FhL33iqb0KT/8mloJM7tUn2NVxlU9hQlSnOdtS+/FALkmcBw6XLAAewRZHrqOkYAWOYRzPVXOq/Z8xH7V42ecy/WGBvzH9CEXLn35j8LwG0taPt0dgIGK7hN/lla3tOMwtolJZbdtHI1MmSWurWUKlAgAwGKi44if0ZV2F54wFLXZzyQ+m+yJuIt86hm86Fqnobf5B4dPkimo6ABTbJIbPX6XhR/jfVhMAmdZ1oWbPqQ+Nb/7PXRdIkguhq7Ma/wrjiF4kDhuQmWFYuu6arK02KJTh97eFA0tXUFdG4WxQdHMVaBTFVgEn++RNCNGS4PHpt6EXU9CJEeLUj2R+Kt44WnI8dBcNF37wi043PlJA/CZp+yBIA4ZWgjER2juIIUe2HP7ybVpfrl7NhpO243LGzkBiWmnmba0xKaLWhiOKJeQpoDXAbO6n3EcjTygfxC8gFoRYHgitIHnOiGycoSYGF8dzD6aAmIhEDid37nPn3/fDSZN6GUt/yfZPdd2cj7DZlt0pRq4kgx85WbBEF0I0CslbSeryJj+KEd6EKepk4OO0zJLHeNXVkM7pSipxhUGojIMDMjsXkysYgmsTz9nSKL4UPFW+Fec25m/0yy+c9PqZMlpfNjRoiLGot9I+7lR1AShbVatnu6a8mObkp3oAOiVR3urx/kWhoqQyy0MYUwBsI1Mcca2tagMZRR1jG7GlpslDLFoWH6+dIhw3XbX+tYZEsyJRnxEU3RCS5h4V0tczX2MOGSlFXKZTnc/RB0a7fNpy8qpUy6p6OubMbW11FvBG2LT0EOMQ66uNpQ73ny0TECPMyqPlfIGNhC4Uqf8Kxzxqnx2cuJ12EuTRHEDUmdGJihlRbeMj2CnXaAp8WbLpgAmcrl4p5NIUeKMbNvGqzBHrNo9VsXjsJo1gvnQqr0kEGslRmAsKQeyBDSdLqPsxQfkMRGci2exiCR5Urg5xB9EN2HPql1E+ZlMlSQdC2zbNKbTOmc8VNQubZc1P+1Cn1YnRVIqVSG12SVQXrAe0nhq1eUbaxIsFI2yEcX4hoQcBQvKMUOc0nSCVZnUjB8fzhvkl67puvVV+cV6TmEhqGWZyRV0nUdmaWUzxqy1zlK2ixO3sHdB6JXwcmlQ3lZvfixUwxXxW1YNW7aev8B/nInLr9u1lvYHOsq7uaqso7Xh5uy0OpDDu2PQxKfyu2hv+RqA187bswuc90i/9LeydEFebc6goz8ncMgI9PCLC8NU7VUyPuys9vfwe5r0+SEVdJdF9OAmkLFtHkJ/vTLUJYepq7tnbxMQahHUFkBCtu0BvXLdgVKl7W0vLdYdELsabtuMyHInafwHJPXwJGiYwLBoj2H1gC7Hwaor5vVUF6kw1o9THwUT3UXZIlexVT/K3pIMY9v2FgzEd7cg9HvZ2m/Di5wsG21VJ9Z3jVq1oAgP1H4fvTMh1+p1Fhg2gMKe7s0jDUdccHmKz8BJuu3xx19I65vVNJl3MjVlBMHWNlGkQQ6/xgXJD3tJ6oIwTBJHgKKO/Rd3V5Px+fWKjW7WB17QxtGh3g2V0AmQ16MzTfRIMdf5kGm0FKNHmX2TQOYBj5JmPAqsbCN3u57yGCjUeIpD/HGrbxYeYi8gTO2gSz+hfZ6FZe9w6yPGq9Q/q3wsZ30q6pUmQGXikaU3DTTbmxBzvNplu4kARm5pj5m96mDdIEaUM1bxTbxeDrAkvFjXh4RkcBoyWVfX/Ge/AUNofbC2F8e79eyJlZFGxTspxMRLxt5uXH8GH+N+Iouu2fkNFUfjSAoz0HdJA8XUiPPGOT/CttasmZ0lp6hUqS9WhdgcTGH/muV18lgm8IXPQxb0FIfsIsdc133SjFErW7OqxBEMHLyjftBsPHhTk85sOwPHB0kmXgjwb3BGTkoIyzwjnK+M9wCbMa7JxVhhs+L1S8H+EHimSedAHvZGsLeRYlkYU78sD5Y8KiFByppcF5ZNn88tkiXq310eLiymusoS0aneWebYceMFRrnQPymWFNJ72elXaU6PDNESx705NVOeH0b/VAhCLtM0SFVP8/FBOaEtuaO1RCWhsRRHaQuW5msBTfVSOscJM4J6RPCU60PWcLvyC4x9EtdiWdAtyo6YC8K2FhedAXl+g0NE9s+ANflJKhalwGSkRVh+F/2VxESN9qxV1lYiFlIScUNZ2kqZxY75TSKOdjMIVHQLfeEjW63NQGErg5ZHJ35iWa5TWvX+9PAJHnFXSPhUM5zODvL+4OQ/TskPEXnIoR1M3l2R6n+YNao2/W3IHg8Evi0pt2MBFLzHxsnXXCiNDpnYogyiyRfUuCC1lU+V+e19UVFX7wAlI6CcIxEYpAV50xVcH+8dHkANcBKYj+uP22/rU2MHnRFjaGhvMJCmkl9rEqcYxHqaIJmXP7nsVr6+7HhDDoKG53725xMfzfLHenypaN1bmw8ai7CZpeTEN2A4Kuv6wegJxUAYE65z+1irvOuHooVyWj1yEO3/pipTOLPyBrJad8sZjBWAIbJLXYQIaMAnu3MFp5EvZRig3F+R4772VnR2B5hYylNN1HLEsXiemYCpK8ffp7sIddneEYHERfICcLsbCPW2NAgGOqezaph10qTZ4ghV40q7tZfmBPqCphE94X+puxmKH5zagVs2xyCjpC7fuN6pczEsCk0g0JemGx8h6I7zSB62QU5H/SoaVagdDhgrJsmmEiRKeuVGTxnj86auIN2mBeAkgDWDhsroYxs3V+4DDviOJ5f4po2NSBlholB96C2paFAFsauYDwv2FGZ5FKExPoqrrRGnnIWeJEeLlSK6oPPC6JJOv/rCKG7748zcyxf4a4ajGjFOS0L04DSY5TZEgZsr/V4/QCaCg2xgmrm/M3L8S2COyuYxvPsDoh+B1i1RKgii8T6n+M5gChlInGpmTW/XAHC0XCy2xJg4csDDj9fx3hj0lVoyQkzOyj2xRUhCLmZXTNfxyTFYPOyvFygA4HEzHgLiS+Wk70OOFPFB4CqglFg5USTntC+/nnUTJhNiu0+oECZXa9g5t3+WrKSPdxjTHaLwvA16XtQJjzGJvcV40pZAEBdyp40yA3n+PfwNwjDYmWp66+9K5O8ZzF8+DEAHZ69pjyHIMIa50PB12H4GYRV/hP60jXqM3sCjf6pCjnpTX3OHEulBHFnggUREQYabhEHSygLVXU/piO50kW28WAwqQBHt04MYgrro3iSHhemFIVXPSL15VawCs/ln2EaC/ItHUfHQ/qFkEI9BS1IYm/TlJr2b23cHRbfoDnjD/7nW37Z3ujXC+bdtgC5fyT02o9QZYXECvtaCJLCQ3J1UC1H2Cbg/xrnVrBr50gCUl8qlx4GMxuN+UzGFZOl5Jjfg/vVTrXb5Av6Vo7D/finCPvYr7GebIUVQZO+abVY3j+4G2Q7xG1dDn8icslviJa5f44dQDBuqj6rqjnEtn3gAzUaHvyCT4rX8xbbYNMi+8cWIEyQJ/lFNuGX5aFlQZdtka24wXSiuEVJF24ITV+5G3bmzeaWWbxpB+bwYZexXg2TnOCAGiI58UcRhZYHfSM1GCBxQR+RVeDxsdRLvKuv8lm1KQi+5M9zgp5kupP8lHvD9KHN8YsguJNQefyLAtjsmbExM/IZUvRCrG73kv2iIAz8nlYqO2f12hN6dKMDAjZFPoAh5/guJxOJA8fmv5v6MFzRmsGZVQ82QCTt8SAF3bLylAsAITz9yxHO3prjm2lIyVOfvPDqhd7tERz+OsI4QM/SeyrH9BayXDHV8OvgqEBzJa6j0/zgfa/1Zs1ZAn5DY2rV4qjaKR7Se1HVmvd75Ck4rGoNa0+wKhSY9G7VUIeXXJOygQPo8z61zv9Uw//grDglovUazltIeE6mCrop0D+gjTmKSbF0tKTDjmpncpGHRN4QOcOdgz9w9Hg06b9/BdvK1ciX4ZZmLndQ13RsLdgZCzXOP5xRfg4692dIvR/sOLqYPKtfWw1IfyIfQ0PEvYqhZxnWSBU1M+MHmZRr54XFh4zd0l7w1bbf6CQwBDXzKHm1i0dFrB2h9Oa/lm+wcye1MChtaXcvXuRzv0oLv52Cd7fUkh/RIn9cNX+6wGouMG0Hc9TovtrVnrJA/4b8NBVksISmB0oKyMKKE/fghofT8Zn8x7oxvb40SZQMQVHZSDVeVyj1vs6ztxd+2SfLI7iTIDxkX9y+4gzhnpvw/3xshLuZAeKtnoGQ8bBvF7lqB475iX6IZFKwRdFzzBTn/unphm/p58tzbr+zhM4DYfn9doFKfkVwGtO9fy75xEeJEFnCiUQG4/HolmxMBdVzVvQ1IU0ZUd9je+1WM6IjJuD2yVOwnpJn0+tGHFslBGi3ImWiOjaQWuPiu1qSaw5tTOYfQiSgVEs7VsiCKd5KRt1uv3cGWDjtFiAiwp/bKfrwFmiUvcWPiymXs+qyp45TU71n3oZp5BTHZir9LLi+ir6j4FEpj1wSLPG8SRvfC9MiQXqeDlQDwjWBEkBnkSLgatRD+kv3gbrQzS5AFNRI4hZ2L7q5r1cnW+vSoHLzyUyHGabTN59dLMzr/6zxgNSVXoySDRZwPYEVv3GZqmnLIZiQDGpyYP+58w3zP55Dvnfmp4PUjgVE81eDitc0etz/E/rqt7PBckvOYo6Wc/n/re47AHdfEnp5183tfG
Variant 4
DifficultyLevel
624
Question
Which of these could be used to calculate the area of the shape in square centimetres?
Worked Solution
|
|
Area |
= Area of large rectangle − Area of cut-out smaller rectangle |
|
= (17 × 20) − (16 × 7) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20317_v5.svg 400 indent vpad
Which of these could be used to calculate the area of the shape in square centimetres?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Area | = Area of large rectangle $-$ Area of cut-out smaller rectangle |
| | = {{{correctAnswer}}} |
|
correctAnswer | (17 $\times$ 20) $-$ (16 $\times$ 7) |
Answers
Is Correct? | Answer |
x | (20 × 17) + (7 × 3) |
✓ | (17 × 20) − (16 × 7) |
x | (20 × 10) − (7 × 16) |
x | (7 × 20) + (20 × 3) |
U2FsdGVkX1/76AqOE0Eabqf5KEfJBIxf+n7TO7O0pCWymw86dxbW2+2BTEPYBE9KfaIRTWqDl/H0pyr36COyaLIlg+1RVX1IkjG+bffd0QxvDXiqZPyqU81b/gm8nzfY/YyHUY/kyHYxf+36jlDBoFX3aUrNEBxa60Nhjh7rWYoCQFs4yZQjZZzsPNtJxDyx9bKnFXTLlPO9rHiAsORH5y7+DNOfIIhbmghw6FjIh4ZELzkm4VSsLzhIeFaxC0Vuy4dxkmhVefVqqNqRNRvJh04Hmklq4e7egVzDtP5t10vSLVUnwmBtlEuOq2V7a4rsTHp4jf6bgo1H3mR/wo5uY5+m0ICtrPpZbVOdWLGo/xY2wdYj9gu3WRf4yIxU3t/TdLs4xrJUAF+g41h/w2bAh4zDFB7PpKWei3Qb8HqxwPdaCz+scAPLZLVWZxRnqQSLnKBYuffd8gPu0FH4Sq4ToNSNEYDPC7pWMQxbtzSnCR0bi5q4yxpZ/B6lSNwcpWFBlGMbo9YzNykUPqZsMwtZJiX8tHDs0zU2PqbPnUY5DFwQ5GoiW58TLbXfBFTXhPgrtWrvQ0Q78xZCNa68Q15bYUuHTUCbWdhbPE9MTy3JyEbnlcv3sLLvKS1rh1unRLcU5naw8aZ89z/DRxclTtpBcBCgY9m6VViFTDOGZx6GpiDQ4yaefkjN3l2xXszRkv6S6m+deGX7Y8ISmxd/6aUBxWRyJR1OHQQUTPWMtL9diY2CA4wz/3JONlKrhqXJm0jZ/fUQvTDNuGoIkmOXsBhJn8uxgF3mTZRXlJlskmJEqO4QbGrj6mJoH9PAUWuAjYTnA+InSIZRgyZRZ3wCaKYld7DY5mlleeei+aVm74nAM6p588gxbnVyZ6GzHHso+czxcY7K0zW8YXTIlisTet2UE1I4ReDOkoQ4KE5e9c3fmPTlBnFlbuUpMGmWqdXAd0ynhmpWZaZpa4QoNQl1cN30hmmrR3AxUtJ3cBi3HvVYh5nwAEvCly9WG02OtpSuR27/RlnOcJxfhMKLV8fr97Y770+0GN3RP2b8zEL8Gfs1PmYUy1l0Dk4dhGkyug8POlpLbUjLGQPTX+BQ0IVOHACGJ4StvQTfutR+I5nR2fiuvWMCK2oornxiYWzFsT0/B6Vr4hG7+iby827IqkJw2PhEatFikvNszJAiqn1sc0aas2/l2dOk6NIV4pYwTbKXi9aC9exKtEwUOu66SwHvrY6iZ+3CkuUuDv1B348XsZzbfcyIL4GI5ZIHRk+h1juqYDO+HJADyrouk5Mtqb/5aIsk9zr7NKeutFNW+k2j289sOoHHQJ2XXDx6IKMXqkRSjrfzxyF5lNINvZ1HlpN6l0Oj1PP7OKporYrMwLljZu+eJVo6WU2DoW8nvtpSs0vtCFtLqz3pph7alUYyafrPDvViWiCcODZyabinL8ByA26NXPnexsX+H7zbtlQZQPYozzxRVV55osjsROLlFZ/doWzB38iEtU3qAEtEosFCmpXQYrfCpnAfmpFIDIW7kS5PBO/Vq3a6WAn4EBAwEK6GVbaK6n+Ssirlef4Y1PI6zpaB0GDQ2C9dJCahluQ4k5lB+D06LV8GxQgr+CpsuuNn6oWEXVs6nG30ljN+qUNJOsJNHaM/vAdOKHVd143YHO/SbBEaMT+YJ9UYJjFFZDUKQgMOuNB1M75c6GnbpttoHrIaMq9dOf2pIHbFRZKbl6kHhzHbIVYjI5oE0kPtekv1P24xE+MvTpRPLJuupNyCAserTbaD0W0VNzgEI2ov13VwlZfMRgml5iUZOf4S59NfSbmhUWe1Fx9l3ORywsMnFfHLES3PPCy7vLQOhhipSB3WtBN2O33TO2VuOiI2RrT7ZTMSfEqeJIOMxJVpZq0yOD7R0C2JB6i0tYnYLm8bD7C9Uma22i+Nc9JgdteU3KYRiR1vh0cDkS5w4S7reFUaiTkcPqu7QTeQh7X3XWHszSLCbJ34a4+eozIdZh410cZKK5s4rmSxqlmpGO36apjJi5w+qk07+I4YRuC/OZWoVscwMHcNIix8NeVhn2ZrQG0PSPEcWbYZ7eDRGVmMFa2BoyYHpc6V1xeaMSvnx/IsgwATAw2BIxNjGIFFOEArFJLUcoAlzkFRwNipZeOfuFkEs3ZItMiO9Yusc4ZRcImeBTBCTT814A4IQIlUwajptfi9R1mq0Bgej4TDtEWmbgGivI2V5yAW5bhfxQilyvIe0uy03GYl0dWG7nUSGXDaZxtBljesfwFDpMbGoPFls/qvqeXJDi2q/M5WC4gOWejmc8FZ1El9jLtTs2+ZMqA/Q0KNKxFT8jC0LCUGYf5YoksefUoqVE4e23BdGBhAK7vxYl6/qbcB2WeeEkpT38XRH33W1+loo7enkHehJP0b4kOo1KDkFMwC8pnmxTcrLEMoH9xARi4ON9UrpzNnf8mM4yFUyij4ltFgg14gbHlZsp8a1VPTG91/1Vj02JLRQlzurBTi+saWSw9xqk13TfMFAMZbm+7aEX8Rxg8wSysOkq4VqIz+xqxFHX99mx4MF5KAGY/NXRJyTtdSDtwV5ZJbzCZU72Pj6Glrfji5Eikp4T2IpSYu7uWkcefyLFMlQAMbsL1Hq+bvgR108orQxBh1KvBwvKB09SjwYziRpLLRYG43jJ1Sxj0U5KwWpKA5ma45Hky/CqhBeu6kG68nwfTASQSXnNM1QXc1HGOAn3bLTBSF0mJ9izSUSpLJh5o0FJNrpjy+bRe5NxEnK1E66nv4jCPoeaTDn45Ne7Q5KUxhlSxbIKOopAY0fCvJo2aS90Ggvteg/bJwh8nHuwR4EfCsKqGGqA4JCy81TTgoQcTSkAdGyxzYAGn2vYCjrLhNS+hc3vp7mz3if2aAIbbRldl+xrTS5P3eHMr5i3mzIIB0INCqpcD31SQlYNTW6zJrhp9gYbH4wfXEtICVGlwg1b8wqGdOjpqMQJCEVsOzL2ihZCWlHyKW3I4x3bgo8nVSFojfY9bnMYNe/rFvrPsD5kTCM6SA10IhqQMtvVtZ4pRsTOtjeULUwEHG3pwwx7fRLgw5lhErGDQQw/wxd92T1RzyWOUy8H1h5v+jTuvXs9y+/o9IPtrxXeAsOTzRrtFs6CGFFrsK1I8BGax8K6fMjG2cbj1frkgWhLHyxW5ufM3owJdkt5AwPuXXdq//oy0agMrCyF7C6APuxz/rBlBRE8xRJoP2zFqsx7qMLIcCalZXYEwC8ebXOBNbMtAW1Gt804QovjDYXIV+R+pYgDKYqyd66xXM92nsTLr6q2MHicVx5T01hn8rwKd+LT8AMvk8jl5Wh0QPX6cbGUKhreY5DWBSsK4CnBsMBYlri21gYqJqRgnM9QOlRRNK77ssqvPP79dOvs4mlwGByu+BkwMAgSFIRV75Ijmg29p76/QDOb6eq7p0X/hl1U5LFCd60Mvqnta4uw2M9Ij7ZwHK8pG3kLgdsGPx+bVymBrzQDMWXza3lvCayXPo1454uAngjgSIVAaxBYNI/kGSXb6vc9QKIgawmQPNcdSvfOiIs5TaLzEKwaLjH8MlWWn7F4ujbz5BK+rEPBS1yq58EHGz0Pc+bEnQQW8FoME7IO4iIBX30neS4A4HIVgBtR8xiDqdFSGPNeu/WROFMbfuTTVIZgW/zLeJRy8gAgSvyrwvqD6TVd0GjE+KJdRzXA8dnpDG5/0P29+/oWCo4Y8/dBbUoFWa7/x8cVDZO6O/yWjP5HgB2qXZZRRBa+T3d7BiHWWU3zQ8yPIgkiT0oOYNiKE3nEMEpTE49MhAznrX0i1Abd99PcXFbiPeowJ2zAx/f9Whx1ik2NE+sSNDR3GK8p61BHVSQ2I1tk0Fx8jLLq9iBQvwAcQ+OcguBr8R/gxOZICLw85ILBSn1oLfExd6zXzHBdYSQWQ1QTb90NKJKfSAbnU+Ss4pAA3HXCAOEEkCYBU4HjeHJfzizYpNjL64SCWeJExU2sAi+pT3T+MMAfHriF3TV4veTN5zlUXvhallZ3q+TgMq5Bs0/lBXjL6/t6P8FhfPCp9pdi1vn58gNQ2hTy7nqD4Fgz/tOdM6z2Nuv7xxJARyEZPTniCpgTtP2i28Swl9/PcwlCVmiThk661DBx1XejKUfKTSednzTqwOytcVgNBGZpJLu2JFc6cBCxqKjg7i9hfSeDQexKiT074ZKGSUtN6e3kXA8bIGdOBtTd7MhjXRkBdovt3v0ZGafSnrmb5ffz6XJZ2fqWyEWVwidyfNd9jcOQTbl9iX8QeZ+sX4uFJbFlryIVYIZPA0fvxU7Q1qlIRH6A/I0oWunU9FyJYI4qO/HFMKyXAlPNfjKKcGlZlSZyKpkhJyF5Nu7WfBaOt7w09gxrVt/FvPEH5nXU/2u1OBSFDX55rWz0M8nDGW1TbfOomaJRd5vwVfugAVxoEEWMzFkfIH9GzDU2NNKz3EIXoia7IynL01MaEnLTcQbMndXKJx3v7VWeey+lgMwopOxoci9RqDReORT0fqn7lRA1po07980aQtVi3M0tPYKgzBz7zd1YHUazgvUXLHdAVIo/c2L8RPaxEoieGS39B7CCbZgJF6/ODggV/qg+4wUA9/GQLRDHBla+qAwexeO0rqew3H3hmyhWB/6ls+I9bs6kBgU9rqRD4SMosLcKBG/tpgy60z+EfDVWAETpyto5cuXMeKCM+WpoAE01GLZ/SBj9QU8EBJmyoYi+ek0tIbtk7kjao6VxHDq/eAZ8sh4m0Um2vOi6HKLfh4Io5ASUzCFOUWY1jasyPFizEOTyqqv3ibrBLaw9Fv1zvMh74NF3OA4kpSH3HBs13MKhm9pYkkm/uzXS5VU6GRfnwbzc937XX4w8EytHnJG57EnDfd2lVxwpeJPuFdrMY8WbLz+DN8p2dTsdCB71GutRMXEckEsO4W89NqobymHewW3+usXY0box+RYxYIAstNjF3gq4AQhxPOL28IvsMgS0nuZpEm4H27l0FVkQl0t0QfeEF6Gzpzh7iOZqXYhzKbPCroIidiUFpH2jJda/nWIjSSFHJfeOQ7MNSPMEeSqWUmJ5CU3tLc4KeuAravWc+5qPrpeyyjxMTw0ONa9es7+PBHCA8ip0IIKgsUBg8sRT3ra9X2xC54/+W9KHNaY+0HU6mANvYAPv0m2NEXs0+zhWwEGVCqQ9mOIySHztlqCihtOg4MNap9vkPQUnz8EOuSSSV6LE+0VXnF4doUJTlRN3WDVgADpNajT2UByoPQZwfyyzTSj7dUnspRSv4i0Wyy/3TXSzpI+94BosmKEIRvARBRH1Hz9YPh8fw4vVDIaQU2FBIgz7UZGRI4gjuXqZgbfpopE7yCBvQu8MG1WcdxQkfNjvIuRpDDjtsbhissae65sp6Xr6Igdh9O6Sx0WG01iI8v07FnFLj0jv0wEOVUnIhhtPXvxDP+uTkoAsGPn7j1y1UrZMPmtNeB9w8A9088/mYHkboY4kzhyVcZRdJynY+2Ojt8btKyMvrswAJee3PyisE9oLLHs70CrEJf1eLnKX2exx/y8IujGtdlnzV6QL91/xv+R4ihxcYR7vBzEF+C5R4mynodlcmipLas5SYNi8e7AQKYZofWrYugm9ot5CL0eAhp3c/VMW/vWi6dGHZpp3W9tfDFkqntOz3kZINiOAiWmO46WojREZkml5GpNxbUN5eH5rUdIr/nioHwYBO0c4n31iUa72gTr2ZolbXRL7VMp51+zWOAcn3XhfxAMlXXJUt+rgidY370ak4DOmVFMGIkG+6fiHU+8leG0IaMNPIc18iiiZ1FVi1w/7YFKD4rcJkbi6gZEpvJR1A3R+F/Nk0YOtOyuSUUG7GlC4KRgeTra5p887n/qyz3vKeXVpYE1gPJ4Yi++U0X6z5W/cXIVA5cyah/C74U/pJ8dSWQ1mMTBC8itKimByYycIqLnj2zrP7JnlvZldle0db6JtJdiA512E3ZMbaZbmEMJv/SyP/O4F4SOsmdH1rpYoIEPn374ajl93lMkBEWChzudHG0M//JNhCTadFRcrbcCqzwp0GB0N1IvJ9a8xNS3z+aVvE7qaCt9rGJMDUmUpFsIfuu9rwwEJKVR6XiDX+caRKyGPE3Xll9yckeHyPvJbGtny7K7b6f+NRrOn1kWil8XtSmIlSbn/PX1+rI5UaVGsWwtefo/r5YssLdOW01keQfozTEtEajP2ThlQSkC85og5agZC5Ke/fKKMfYb3RriUA463T2Of3Y4yOk8oZ/WnXMtjZFffbqCLQYFCOPi/H3cqUen6U7rDCZNJacNq5zE+1ti+aVQ4UMQUgcfSZ16dBCFiV95ZRTuz9h7Ge/lS8nd+zYSNsR7Ai4eDPkhKmWD3MAYNRq7OzJo3sMgRwiO14f3bIRLLiFnlRzTmHTcxdeHICU88Yb8FxSrgPnONK+zdnuU5Ta4uqky+ZGMrafj8G/G4cy/VHhyVtPiYFtcsrLnq38JjaEBlgOmnMHpojMqFLCrJI1Ixeq7U/yuYHspyginIi49KKFMnMSiW6rE9d8quiUFo22Zs8dY6gH7ao0SWmnfs3ElwVHXwszA3ok8bd46XgwpTlArdAIj/tuUrxI6bwL/8sw4flakphplpQwdOoHBNh/239tW3ffoPEB2GVKfgH2XzR561ssDDQotadUEtp/O0w4QyN6nasUh9KEtLZqm4ImsjRnZ9wC6qiahyDKO5yh6tQzj7/du0Vb1hACGxrNxuFOlKx+/c3IapILWekrkDV7IcjGwmpSksoJtkwSwAe+GKSh/e9l3SgJ47gikCZykrREGzdq8+oPVwrhuPbtwBPEPXZ54ObXUDqRUqOLaNW3U91Zs+rBt0zAh1JlJzh9L+9BKPmZUFcis67+kQ16MOGr+S1Lc80AnejTTDlbF7DqO6pYekfrCazymRU9NPYrTG2x6joyvga7cJ7zyXqEIcj3ZvWtPgNgWDpwBqAy+3FLfdrzvFdQiepeUf5wjmh1215lxQ2RoIb5ofS1l+M1yb2wr2TaXG5piewEmWjNVhMrCWZRNjBBsU66Fco0Dqqa96jUkih44OT0AUI08narGCKPWKOqUNCyB5DmGSqB4i+Dg9CMLaxgDe6+ihwyLEd432sgGZKWEViJ4nPTz9LmF+1AbPbkrqT6naXk3ycWQ493XeomMhMeAn+BzAqz9Abgf+scT5GsXkNEYkltvsgBZ6UqvbWOzqpYffz4BaJBKhtbZG1VIvIZEyp6JZvhUizFsJ34q5bDnblAJ4o7dJ70WlhlIOw8RhEuCPp/FdynbO3ldWoR9g+J5F6+7YAtAOJILgKpZCzlcviJrQ76op6uA0YnrDfR3VkkbXIaNoESQOmj72OGhW1df8242qqkU5BK3pVsPN2PmyOQleJLm+ByHEopc8JkeEbFmHBLwAkMjyMNag5le/Z4xaeGhfV/3kdCX1VkOZFjCtqSVQZtRQnxeYOnNc58tCkeWqp9xvt9PgyXYw/BEoIbU4iPwZurSPG5oCm4zBCPC7Rn+oxrGQHJnW6W2tn5npyMdl68Me69m76mSM05FY/iRbB3IbrDVW55MlV6UzUug6ppML++eIJIMz5uxj7r02vdc87JywM9xt3hku/OuwRZDL0zJaWkuGZ6RLrIQ+9/x8BkXOaC+eL5sljpsp1oe4E7D1vD1ucqpKw3ZWRKO7SysVOkc57WngYS/20ZoxQEtyoZ9VQwEpXyY+FlVahFHtnZIyoQ47cseR8il192cs7QtpjqOhGZlO7QAK5svrD4gKJFrL+krTFQ+pu7r7oBlZ4lGUeyklte4TDiA++5QR5y3E7UINYV6jVuY2ueG7eTARui4Gr4q4RVHFOzfQSAGauMzFNiprGXh5eesWkxOPQ0qyRH897thYwzhQTlAVpBUGzvI1MeWzj6D8sOoIjGGG4sc6R+IBUg+V03BeRtVR8CdvBWss95HYTSFO539wAmCnuC9trW7dkvrqRsNAHbSLeI5t/WBlvZY6oTgzQCtT0clOjSZ6M9tp7vyVM5JYMeBRf1J4BPh/gr/i3afyfSJ/tmUM4GN4XJItEkfuuAMARuQg+YoEe70Y0+7os7FcwQ4NAo12xrRsCjDaCWTAXowcOXA/TFX4zNXTu00TzkNfWzg//GV6OUgzHDPVE99AwxNp3so+cbJHTnOD4yjOEuhDXQuGEHWplcZShwuECUB6Zh4IkO7IQzdnBHbmCCq+sRJypGE4v5LrCKQX0I55Ieuz2E3a2hGB90TvpC8zMXnXv9xDjGYCOFrU/IlxcOQMAW9IbtDtvut7celEAYBmsBPkAXxhFq6d6aJbbnsHd9U9VBHJzxVujd10+JPbprFJHHQwLkkOcKb8kYmwsPOhENGMVgeuHbtOGunrBgZN5Cc6kzZzXyzsB0zotAW8GjGsGcVTLb2ykoU7kvyrjZ76SBk8LFm43tKWdFTHANFdcI+OsZGIGAE/Xw3woCxwKywZDvLunpuM9d+MnTfaUXxRYv4hbKqCp+7xrK+IYXVBkgXeKX7CmlSvKyzcGlr1E1woKtm1rC7bZCcNDY7vdHX53xL6mj0mzXgPFaLkmB0brOFSeq0Xu0wnd+ggRGPOjLwEHoKOb93GnpPFfaz281kO9pdc1FThJmqrBaMURKhftEXP7BQhmsCCSK28wc3pDmPilSwSvECcRajcgmE2dQ/G+9zkAZbFlM5P1INWwoTLj2j33q0rS/koFSSNwAZg6tbaP9IhQ+dal+XlOXfOjWhj02sjf2kkndFwc0eP/N1t5+IGlERb3zuPe6bsMpv2GBVjvnDMYB15+3W2oScQA5BxmmwdBBdvYljy6VrWBjq2atSAdvmA6FV4WnF9pjpuul6oH9RiigG1+566y1++Mk17NcEBHB+2lC5bxMI0NxswY0IqMZp7awSCphBzDDlH6dy6QcL3azm1EmRpO/NQ9oZ1ZtBCEhLBkQkXUczMtr/psZ8PJaOQHo3/RVty7ogWzj5qmUJ+pna+lX7qIixH+vZkJpJ9FAXIP/7dKXTOGDI3o/+34M9p2gtp47I6rZCfRB2Tj4IGKSroB2l/b9E/pYt6eZFSb5ibsWzEODf+4Z43Uv5thcC7LaYujieDKwo2uTyJk7/0sToCdvF4vPAMSRNCLsHqnbhZwF7M+55WSD07qSU+2r2KJEmUxRqKQa95AYrArBlf4o7McuPVLP1KjnvF4+z/hURpMNjCUxwO5sFVaeZpCDiqa8g+eGSTiwF0Rc3ZuYDWW+3+i3ZAXMy3fJt6znifQ5G8URtXCAeHsZ0QW8NdWYprC78zfV2mLkxnTiaTOcxUwL0ZlqVwiII882v8M4zPh2WTdmGw/VUGXpWYiqq8czJ05LT5mKmBrym2N0OsQ2bIFwZhyz/ftpKRN2/2vbVUIZf5FGeG2/lh6B3QrTuACJEmhAoZ1dktcvuRoi68hrGO4zDdKB1IqGyybg1kJ7pspSYzCAv/7aTKSB7sYOwnePMcVYEMRT+s2RoM4mhf69GtAwJGQbxJ9uSTeZKWsRLcBPUUjr54bI0Zj5mwa9py0Q4ffX7FWhyO3be2J6xT40Lbjhk9Hz9BK18nE+WYWllMD+hutOnXOkGd+y/0hCSSdb5ZQV+/DoMlRpWucWOiOhUfY0UQ0zbBIEVUFoGrIQ3auPfjdSEIqlf/cqTnGJIItGNaMuojq3atKZFkekd08j6i6svq22CMPY6pPsd2Trg44rng8MY2en4r7NT9Pf1+NaETE8E3x+vqynnRLAC1IGFyFbyHj45VNeWw==
Variant 5
DifficultyLevel
602
Question
Which of these could be used to calculate the area of the shape in square centimetres?
Worked Solution
|
|
Area |
= Area of large horizontal rectangle + Area of small vertical rectangle |
|
= (9 × 3) + (5 × 2) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20317_v4.svg 350 indent vpad
Which of these could be used to calculate the area of the shape in square centimetres?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Area | = Area of large horizontal rectangle + Area of small vertical rectangle |
| | = {{{correctAnswer}}} |
|
correctAnswer | (9 $\times$ 3) + (5 $\times$ 2) |
Answers
Is Correct? | Answer |
x | (9 × 8) − (3 × 5) |
✓ | (9 × 3) + (5 × 2) |
x | (8 × 9) − (4 × 5) |
x | (3 × 9) − (2 × 8) |