20120
Question
A walking path near the beach is paved for half the length, cobbled stone for 103 of the length and then grass for the rest of the path.
For what fraction of the path is it grass?
Worked Solution
Percentage of the path that is grass
|
|
|
= 1−(21+103) |
|
= 1−108 |
|
= {{{correctAnswer}}} |
U2FsdGVkX19tW3NFJv5I/hEJ+FCsSmXOJVWumtZr0wdtNKFtBKRmLr15WWTMnHBzwd7x46Gm5I/842a2cX4Rg1GibLbsqNbqz4JvOR/jmFtkguJRUhrdJU1WtXMbwHLNjP5Asq1sID1xL42nQ3x/NvVwx8Iv5vmdN3AqbnAlRRsnAfpneCU/PbkOoteqE/t33ImRLOdPlxXwhhqKjJjPvzs+n1iDsNH4SCV+MRxKsFaSTFFMwfwvFMNqMUYH6EQCPnLQvsUcrhTj/2l2Vf1ul0WYUMpJR1UAHj64ugbLT1tMQ0oUBiQzs80t4xsuSj7x4fsD29pXu+XlWQRiCPq/XEnJWBb8yK09EkahZ3AAGf1zCi7IGuJmZfkMrNNPtP2AyeRyhECIkq+c9vJTFM0ZOuV25+x4l7gppFtMelw2+GDABxqxdmm+csfiwnqcBJILq+etPbvb/Yguwmctsoa1+EQ1pWqMeL2Kt/qFDzTmGD0Y0FMbzzki3f/XLyhvWY0fn/xYA2QAB77G9AGwRN8Z21/IQbJzS5BYTGfOUENGV+JCIxJSMeJZ1fRKePx5jg9iJnHAZ/biHxyj6YSLuazJEakLhesZ8Bo4LXdHZ64uVgIg7IPqUS6kfOQ7RqTfiAvMzw7BYSXt/zuprVU6Qj48/7gUJyE3cc6PUW/ApyQR640HoVLoDSVMStycjnfeLBdUzHoBOKy14aSOpIOBiPnFowzKUt7z9wIvOa4nu0hkfRXsZEzzNb4bYpg1p2sXr5CQpBMYvvXISbEiJiD5OiVG7Tkrp6f+zy3xdVMiGlGnTffKpDt66TIpCr/rHExA9ph0/9nGQ7cESRGMU+R+Xdrulx+q2cxxnWU4hu7R9V1o+AwEyGUbiYcVDXUmYY9M8T5N6cusFcw/uyP+oTAnR7P25lWhZvq2XCLNuCoq5UqD/5E3c0DL9+oSfiO6L0Api1N9mV7O3Htr8bv0nmK7CaXsdIO2go053D3PSiT8zmqramONCbjoKT7ZPi2zEQV2tuF5q2cggYnWsHo0WckFGBHINDDwdRY3q1OYnUVQMQ3QGWywh9uRzIdNQyLDxgyG9O+w87x7HB0y31kYrOrY+xyZD1MhUnFahCjx49w6CzwjpKxGXYGc0wi922iV3pWERM317vO4m/GDd6KaM0mYRgu9p2ZJ617XToaX0dP1MGWse1jPGdEpfOPlFxNohv59Ua9wFYOE8Ho6+cG/u5oNvsdU/Lqx6N+qnaOEyFT6XOE1dJ44bR2Ixr4l36MzoR50Cr+fw6LuxWaWiEjOUyTzOXv48FltFYIQWGPAaMb1sYsHg9M6y0ph+1vny8Uw7aJn+NDiwdiN24hcVNtTdoIl2kE0r0xwNtQ6P0cZ1FfXBKG+PHHo6vvMww8gxg+xNY6jsR7gj7pAB0+8mQOPAI4NihR0jVUXFnWxNCgudaTgaqOUg8k4G9hAkbc1s6RqWjBCFjxkiT7dICQiKMGwUhcJe/Ng3oH3NsbuiZYbKnDfxinyQYuw+GhZa0//M9lD+WQkb5Hinmn2Mlgel+qoR4GFD8N4KYFWB5gvlYmUnkCYoBWw0oZOmIdlZLjkOKJRxmoXhQ9XUphh/iQJwSrbsvh5dEc9/CSjMzhk7dUsN4INgfJUAi47WlJRZLY17+SvBV/r1OrejGpiykW4mTBvo6qRIQZAJPK7pAbTEJkBn6IHT+NKjdfiu4XEvncfcSx8gDa5a4HyVYPc570rLSp625dXNQQZZOTeCP1telkpK2O97Q3lAcC2pj4h0Kdh+r4D9hMEaFmWk1bs8N9/tmN2x8H19phGVmiNVMwkwACOTysAK04qRw7D7Brfsq/tHa0ptvCai7jVggtKh49f7220yAc0DrDvVCoQivFq7BEewzB3h1CRZFqBUD3cHiYIhRkWKDTgTCM2VUwwDw5viMfxXiah+/ZBAi6YUiR3ZiGdaxvsw1pUl61copJ/zl1NrWFuwPppw6Pw+S8GarEdN5tzai7/3HO43qDRFKrMoW+oCMRCda6vyHJXACOVBFdQV39M6OI27RRg35ykjmr3rW2qqKVdZUl3zziWK5Q2v6p51WjE7d9Cnmu3zHCZC91L9Ba/T5fDMCPrgdqVFuYNVZSyuU9BpRo4VdB13nU+vVPYQ3P91JAbHubyn1EyieUqpnGKGUkC4L+xE4XIPxy3jvRxYJJU16rvcBxB8YXI7djrdez0q6N9Zr48bcrv0RiuLAieoVgUv4msaDN6pVxbDH9RGavBRYGQEaZcZfKTS9iuAiJxy6HAEhBXW0lbY/CloyCNDaqaOKj/rcfOoY8kti1N7ZWHJadvYJfwSojmaTAPSofondxW8+5bsO0LBqHt574SMwwj+ICOvtBr6StzMfRwHHrPvQCxrpv1LqK4W3M/iYoMOSiaUf48P++Qsv/T7j5q80hMpbIC5PgMnAhDy61IznACDOTggD453Rr/2VlBg76b+rXf9SN5J0jtffGvOoInNuCc0gtzNaAEk8pgTaWEIv60WUtj1opghL3ZO//ADiItWlVTxIEdX84oqKy4vVe2zDx+Mq3HNteZ0x0jli/ZLUI0wllEMkWyhxWfpX7Ip4svy9iafku2yw3vKQcPiqTPA+RS0YV0A0liUkBp34UXriv1/6e9jZaL0ghm0t7aolGa4dcv/phn2we+dLYZFm24pTJDmDS62qW5q6yKXy7EED+zA8VhbI4YL8fd/Kcjnmgbz/WRX71ka3oIL4ZWHWMXbSkCoaHp7IIL8Of4ebDGTvJiSIXZdCpKcmZZ5ab66cysvSHLpLvlONSYM2SfDxnQ/kDaEld8ZlVnnny9FTyQV/f4ZinXNDmht9KIZstPxOAHyH0/k83vrcnC46rMKz22WlBTRoiGxq1B4l4Y90/LvgAuFoZSX/h3axHagnKZIxqNpzWa047vwa9lvIDjP3Jb2+eUukbA2uAg/TLVW0xaOy6T4N6H2rjmFs3KWZLHYynJT6ES6Xv5PYtc861fS/dyWQ2zxcV1g/EBi4RAJ9sW6DYiPiXofPZbFamzcu9mOyvuYlk6xYcYmVs0ZHCC3u0AKXOYcFcAAE0zmbXWd6+f/DDqdx2mNYX/k0NkHIIUp7O/VG6gRukXRgq+JmgpMnMKd5Q2HZVSasfqMMh8GyvrynCHEb7Z+EsTzpjq3jxClTyf28Ny1lbR8d/p8WRkMkfJU/nLkfBopIDaC5F2dmNoX3e8Q57PIe5euXoTO7kl2v0cNDu+ePWP4uzdvqj21VJRErx6XeE5tgXuGPNAOH9piR1smNEbPAQk+gOKRlOrLKMMKX58hE58mW/KlFnxv/yIZqkUnpOHuxk367urYl+1zmziEuHcV+vCoNGxiVsJbaSNnIvz8Ax+rYNa3rVTSff6c1Y7Fusqm8Dt/WRgpr+nvVavdJlnQVwYo6PexaT19GHo/bgrU47V9Cret/q12YgOHxb6BWfDSgvyjDZ/L+HHo7OV4UX6AEkrmV2JF317surVWry3DN4ZmcZpiAe+mY56aE5FNAvnY52qYwMPGq3CAYQT/bI0+KgkuI6TrtpuW1z94nOkw8ckqeUPHSNVWaB0QRsi//7vSp0qqKqrjNqUy54xrlV890sSojqEk30vqkiUcWbmfIK7jPVXbMnRGU3rLJr5k6kwVhuXzNUqZ2wOQsaNhftRsEwwFS9RQrPT4ep2OTa9ge51WWRVLpdgDzugn76/Fr9pk87QJJXCNTqF01/Fm6X4JEEG0/mMZaTwm0QfM2hAmiaVaLnOlEzoIjO3ROnYtPJYZXaFCxdaqlrRxJVCWYaNH6Dk1XO0xKUrXtpkZCIMfOj4kF+AHYNklFlIkMRErYPsqNF/7NM6HtTm7dJklcE7JEA28SBzAZCbTQgS4NOQE8ubcm2rUHndsA57Br9urXIQkMOE/421463UUEDLo+ACYkY3OSLrt5ibYefgbcXwYRyYVOKhI/SqMb2P5rUUbQnHWbVWDdEnR6UICywY5bB+QObkthNdB2rzLI/R7Qe+R81zyFedrCwv45vIi9GMityy/D6p8gC6HRYMgvqJsWC8T9zFJFoHAlXgXgTSJFZzAF4qfy5li6D0retYZVYBIEhyDgXRSlgeOl37JJYCspsYfXpxZWtlY8KWboZgR9VUzUnvlbASvl4ciwTaSztZlVv88Fdd0g3rk4UeNkIAJRZKTSyMYzKoA6iDir4zo/voKBBpil3L6Ea+mdR3JcKfDsrQ9pOb68Q7EK3osWvIPXJpqRt8+arD5VFDe8w8fs+ze3zREir8h7LfCpIpch5dUclQEw004VVAWZOGDYhPkPmuV5ykYUQo7HAPyisNu6w5L9QD0N90O/toBSgKmd65hzp0h5mmyqyGRvKfqcO+t0iV4fQF/LVZDIKb8uOBOu78NSV6TfeOvtEqAkgdz2AntiV+8yFb/LjiY6xiT44kTD0/dDt9QEjzGjWQmO13GZFCRqYMkegb3BUlZV7D5bncox0Duz57a2x6jP7eAJxyK4YUlxL3NAxDS7xnMyzyJHiweU5yf7X7Z6Y25kerixE4xR49qs7k/6U14fD7yZTHLzPUwd1d7UVkOpM3PiPWP1Fwd/WmXN6hy+fj9nzyvRYVgxUE2EO5lI2F8dQofM+zB+NeAdBLAthpTIZXkgssXVvPlzaljSHVP+wXMn1glqeROKB+dmag6Gdbz9TqsAXQJN1vf5Fp4iH4cls06LNIcgECdEklGTIbv6wyuTjSK4Qb5Udu3ZQxv41220vJp+lKCDVhql2Ci5v8KRaG3IfprPMxfI0fMfYRdHGOKhW4ZWCdHcbKIRnZttEexmvLsQSj+Z0k94JsSQIq6pDpks5tN2jYjfMPJZNZFSYqMaGevwSriWN6TmPboFtza+wnECQh31EejvM6orgZsJJVuOlCdDbWyDXmndbyoy1Qg341m+wZwe8b70iFM3XWwHkBJb5C2Q0UhCn/yTJF/1v+ZqOjMm7EBLn+x6F08jRiCxZMbHPtCA+ijOuWd+CWhzJ2U0p6YUhZ8U9wNoAhiN3OGQQL16JNP4XSPZk3FU3E+ldaVRCREXZOS2XVEkjQNoXYqmvt9bD4COtyuCbJFaOGXrHskCgcUM5LbfTOBtMRaTZQqRNVQdICRM+zOgnS9ullLEXwk5e0uXfEdT7SFPush2MicUDdxFOh32UTlBGuZEVvCmDWGpUY2RN1AM/wYMXYv5r+KHuzqN7rkKCazUbLi6BrDgbaIjwtzuQBz7mnaMi+i+nsee91gDwP/krd17ocJRh/7egj1erXXo77a0NMuC1aijJ1t1yTterGug5UhS6CJ0b440SjYdFaYVNIzlRS1GKFwq/XDXRDrdnIPWARNa69tzr27P+ZjNacctwH8xJZXVamFi+uynfh9KdvRpv5/Jp7l916teO+7iP6ywIDpYz+vTwbOzb1276U19diiWPYdKDIU0zYs+H+qGebjSSbjIxnKrmuEK71Sk9EDY//qCV1bJamnJcLFxT8Ub0J8wL6iSrNbcYMYKXwHazo+8SK5L1V3fAS2+HpF9ZLR0pgRujA7uh8CprQ0qhvPfh6BiWh88RgPlzttZIfPzlHEc4YEvboL8igD4anV4P/9hSei0fAQTGv4GRdImkX/85sh2Me4Bh4KxRAdsnqaL4XfwhF9MuHNXTf5lj8/5tRY4V76/cC5Db70uVIfBbT2tpBHD5z5KACfdqqPyEyxQxNWJOMlyx5bTyvsaxcB82ILeIwVgc3ztg4FQHlk9kDjky3oobRT4nSmSHuLRMypXeL96c+eb3SKMrU2aNf0aSkf9QPK/aSr0Aug+DHV9NL0SiD16pcCnRJgLwO8rgOc+ia0+zlRu77y5kRCNx7pG0x4VYxPIkL9pX8UT4SAmuZlsQKJh5kXLsWz8QfIy0LPpCKcVjCqdWo2WvJXKU+CBO/5sw7bqiitDvSEWUZqm7SPze8BQQB/jQoHoFZQ3ao5mmspScuraDTVoKyrzUKkk2tRDg7lMXAUzVylh8c0BNn8gyVavXkZ++G3A+zE2Vrac02XgQ4rv1jdVKynmNaqrGtBLLyDl0wbO5TbMMuiYjRcGuXlaVPMpaxlFP3zgGj9ef2rYcdkjPH1WUPoMdmFKdf8e3vtgXj2eXjnNfmuUNtSPKKkOSPkZGTOEEomoacO4zmu2DgiOl8YhiWSyLtaHTQQHWNMMxQGTfuxAvY0eUWRzM7oEKr0ZUBTFm0SqmAppvDDiWsaqrgLxyzfzzvbv57W9qzilVbR2LdwF/3yZD6mQC07Bzp6RCmixARPRynCOnMYxUn0Lhd0R6igOS1XW87Ci1h8p8epWG02IsjZepvpAtsNXjWCL9uYV4C+aJu1eaFxjytqcG3GAlXKXqRaDp84XO0ZrqXnx0Uhlz3we8RgohF9HnEhynSsa9LS+YUxBBt/umOPZT5khMFbUYRCuDtS700YjCoW8RnOQh/Z3w8py1zSNaHKDkR8jxlIIQSYMoawjMzlwTIsbCtEHjfRSaQfS2B2QoLkMwORdFtmK4TgFOR5Fo/0iRWW/1DjqZf3lLkL8ZkM/QI8F6DhDC/p5cDXLT8ouYs51kZjEMR4YGGzkqj+19DTmr/gKTLsgoFx/WIvfx79KUiXM9A4F3XYlYpmQ50wBLFwitj+g0lE3HvtPZUuIzr3cjh7pC8l4ZnVJiPFQ6w2epM5wtHteAn4wW+5Z+lTE+i6wD85bTY6fWohPM6A5n43QftroVdAnUziIv+XiBbMitSp+jVKE+NPZzSSOLRmDuSd2IlvE0LjTg6yOPqh3sxfcFh46JLUdpI9KIrL/iarp6PTVJ9j42o9pzK42WalomPSQA7KtzBMrYsmLK9AbKdDwzcASL07hV1EucJCv7p6a86KKw5sa3hVCCVkqWsm5oTspYkGy6gSVHxtpDdrkp5LP+QOkiQVXKGLE+rC8yVjlDOd6M8b+b15bSeNEymKtUEryZdMTYQlf9+tAFakNrzHTKlN9lNopN1pwLWwx9d4/96xNKAEfPEj24OUEqxm/vDdRC7fa4isQqFD6SD3FBzxoRWOg568QH8kFG4c74+U8OkyMw5tB7oZjnsAZsG6KaEC/VgXlCQtk5jdDb/iL16nG2l94sqI3xVZZtPn964iP88ERofPouEmMjKI+jdslfEhRLDXr4S2Tuw1sYFiNgI0S79OHAvqZqX9Q6co1wDYaf3pMUcgRkGHVklYuudKaZo0cKyM3q056zo+hAqfuylIN9tsEwnoMZ8UTvPGJTm/u/gkfCSCyG7VxU0Vt2u04RzkAtLLOt1uyUfQRlsFCruto+KkJ7GbaOE9nGVyoNJ6F6Qb+jVosQENIig810gc8tDCFmMJrfSaCOpPrOgBIBRYH8vUc/YakXXiw/EVAuSdAilz0GAle2yc/uQ8sNPWgUxGdnkEA0jxIn2022OtZnbvNje/er6FLX4qh6ITuTCt1W6pUyj7Q2mLpvAMCV1ZkZX6DOz1JJCa1le5rx0txzsKM2wjn+1ACJmtw5xZzamRop6mDUDD/454gcBGFNPKps+/5RM1etPshdw89vg06Pez9VzV9CJL5R7zWTenSqyHHtbG/92ekDuldDlJTU2LaQ0AczBlOl0p72cnAhH1L5Uk1tuxJtwPbyYwClJUeAWVD9oyjPqo2TccbS/9aYuNTKe8QGrlSwc3zErgu2f5AvNW00NuBZDfE3mYVhOTb4SbHBx/zEQ9jIBzzfQcS8KSsi+WW8HlCWeLP6KTHhdZJeRwUWiTskPgS1e3+t0r7JxI8PwiVjIXQzN/PB4OZbDN1WHmP4AH3cR7nxduCdZKu8tVU80aDyMOzwxLA5269xR2xE8lzO+fwbdiuViPQ32o4F3U3L/aqJvsy5o3EC95DuqJfxl4CP3xNqK33A45SWQ0i0QgSehCTqXGUz0PVtP2S9qnerUmzNTWWtcBIvVYPvT28VW07h+jntFgmRygEVdog86oKOpzytbZiUcSj7bKzA4WpHNKrxXkN6n4MI14KiwDFPVVnhR6TToZf07VtQL0uFI+DBw+M4f5ferl8n/FavMGegUcyp2riCHrZUHWavjt+rGKnywoGOdo3GRW7xfnBSfdLqjNG9Y7FejJCJJ3TPBssGcYsDnoL40N2Of9aUzsi90hPZdtiM6Q27szblHCMNIRjW1LOuPks4PCKnIcw1m8BO0Wm8C5fExRs53qptwcc9HalW5xXnDtKmQhyLFM/z9ch5UAZMuiTrKQGh3yjTBH4OWCrVSUzT0maxhoYcmW93y5mGHMq2OGvyHNrKl9s1C7DAPG+EErHr3HON1G0qTId0v21Irs7gL6s5M0hFT4Ot31WLiYpdLizZZNyEQa9CfarYF7JOzOz9+nVBhChLpX9GwbZ+ub6DmQ3lkhzKP+P64/qeu7alTJ/u7/Bn9JxeJc9L3dBMQHLN8lzPDTehfYvgInDl3FSwtleTLGsG2iprTKubakp0FWTKOFP2jcu3Sr+7wrD4ls9Xhi2xSo19zWebxw4/d1R2dVkD5mWrNUQF7W4eM8lWIyf1nBn2bUWyTYYqkUvc3Wma/+P8aNqN06/BmN3bz7u4l/HttqXuT6jkO5iLyXWz96CxNJ78w4wu2bAsC5SMpCwhQ5OTPISHI2Qv2Nl4P7amENMYw16jymjovJE2hxr/5vopzH2N6pGKWTqOTYThCWLKJV4C59NU1fo1eaTJEhQVWguym14JH9ThKBvI8o79Gy8KVPbQzVhyqdcxJMywAG/lydxxqwRak3qXtgMItbrO76SrUfYMO6bb3CJVoWNDmgKGVosJptEVNW65uQXmdDsfp0Ou5Tjo4Qqr9JbnOEevRXwpyUvklLSYufX85BJMdxGJcXXWdVq4i2uclw1SOTICFP+QM6nt1TfH6SyGrqVu7o3388e4QCzD1c5wrkFnIOHueeZas2ONy2kk7bmSeqYD17lVOAUEhKCg+vIqWb/OZSISqqi8l6yinAs+KyfVAjfcbOLmVAtMd9BSVDE3igf8NxFq1eerFjRJCzXIbZ1+l8edg/bV/m6LOJ5spJzgT3Bn6xEyY8+f3C4uIkt1+JN/I3a/+gIxQuNf6R1rREgUDPet6zQQ9fLzC9ceCpu2wH4frPp8bg2s3VpIhXgx2PHxW1SGpIR8FyvNNQJCE/PUQA3QQW6eboIART1xHXgKOv5Tdh5Tyn/q4nuaQdfuzAZxgyxGPvgE07JZBa2hOVpvw2pkksNDd0CZo2jo82pRl3NPgwafTNDB4pj1clEUADAFSc1lz36GyG8ZuB0Qbwoq9LPh8NETJIxO9QF7hGSFftTzxh3oLJb9uTRPe5xu/vLPdXYOeBSfDa/lPUVmRNJ7T8FfdwV4bBJWIws6268ZV6eDmVjcShM4TMRRYi+VKnmN+ymq5omMSWBYFA0dfJDmYgUMP/mJsAZk9pZ6Eai5bbf9Cxqd7/39l82b3+RvwJwDMKs9N97lSGEwKTyJx1jFINdVJMYsbp1BxRxmMO9wr//3LDGKx90v/if/q/cYhMoX+p8ffbWUYiDqivWv9yJ7rUoVO/dGVQAtfnkCh9FTilyhcqQSmJvhLAwSTzGPyboEifWTGx8FFsXLwS2OJTzxXFwB8XUpfIROAdbdT7rGdTuk9EW2Hkq0c0NckGtq2yU/miv6xyadWa4N8snjmxqx1moCD79EhGnCrZ0ebha66WrnH14mYEoV8MSNyRkHc/3/XbkStah1hmtsSxpTPn01HrhmceW7hWsRSFyhx95ITkOzCOIdJ9OxIFtPnQiMG6u23CGWulesP2iSoIADAem4gxFVFuii92Jb4w8IN29m4oAla0qs4bZOtHxroUvSq0PnU/d2GoKg4AAjjJQLpwdbIUMSi5Aa5ND8dktLMNj8F//Mv+KtJDZoKW32rbOXTLD5Vwfp9t614bhYijxktQZvWzN2j78NPrS2tbn7USvMDj4kaPPuWysZkZWbc7ry19Wayc0BPcd4Oer2mZevS91uzof5/iaGXkRIDkQZYVejkHVjTh6oZUW8bFqe4ITMy/n4tlt4bvt10yxoOtUYXpFbhvk0NutVcjM0oibw1nQmQKxmxiZHNtc+YayGjOChOrrUGquJc9F7b8hGpgOm7fkreBP1qsvbFwWSkdgZc2osQP5tFUwDrogYiUKa+czavrqjYxqDeRLZAN25mndPqodHvGElZRNIu2XCiRF8OAsjRDGHf2LuvnOv14IOF0QqxSzE/3QUiCDypsatic2xeSoi754tr0jPZiPLzBicawtA+hyGACcA0XA5i5ly1Lw3wPTGbMbXl2xryQp4gDYwl7KoTDCeOx+TQ7Kl1hsmK0NGZEVq851/gXjxxmXcAoEWNaVQnoRI4uGgUTEthPPpOM2bqhB+nZE9E1bckuofCIK/e4AxZjwX3+IDwT0pLZ1ktivXlLd3U1LYcf+1O5AIh7b0ApARwh83Q7Vt1w3gIlaARgsA9s2uh1raXv/eatWHB34mjPk8gq9Ml4zJ3EQdAqSnX+4SRnVfI45ROrXqQ9ltw3mBuR40troQLpGu3qxSjXKceN4oItj3dWiqoirm/T4hOTuVo8rJa1ejQMTwe6QrUzLYzDHoiptqf2Ptizhxff5ziL/W2HYAqgVFGZYSnQue8dCpEtdNFsO/CzTWhe+XHMfBm1yU4qiIMGRTf/3UdphcyJQHg3HR0s1B7nls/qee59rsUjc8T8iqKXe/WeIX2fXa5hm1S0jzOBBcuWt8xCvJGROJgbCzLjgEjFRaikBZV2i6iGvNA/V3raiA2QoH7RDpn8Etqm0qQPUq286dXEWdQwbb9VGn0TfL4OIs/5T4cNaUzcKmsZrqtXI8ZQN+9jZJLASnvTAWl2hfNy3abcqfkJVQ/BwndjNpa5kEVU+pwLB5ruHtS1Zy1XfzycrK5tUsdCJYhynRNcHFo0rC9DidOaYHhHjOFwQCmWf1kWKS0GJF/JM2HNq0Wd2rIlcls+SGESCzuxGCnKq5H5+V2IvLPobDKKd/AF6PTFSxF+ZbAdEXEadW3XkkaDAt1ObSy/nm84s1b3l//+RxDBnw/pZ7fppsth2QZ0SuVvzDJ/VCtFy6RUR2hFTyQju39o8PDxAJzAOPXmlBsoGuMahJ7RV1GMdKAHssgAdTRk8moolnsOmu2MDV46JubIg65Bw/pcLdG2+5bzH6PYCP9e+CRuLgGxNc3tNbgT8oYUbheI/G7Tuaiisyck7G/2LSxoZsV/mWg9Jn6vNXc5XMbHXyKlX11OQZQ9XSvBxRkKfVNqba8S9RL2+1J5w6fExswprwYQHjyr9Vb8bhOO4fZcCplCbVZLgufq/Y23HSXgpKHUWcufcZ1jNgevTtljc0Dmvq+hOLM2bE+vjVyn1lsIjtum8jpVfzZmsQSREXftfdWBxLoT0IQwIytk8pjLe/7tMOEykr5oxB+RXRYRBaQ2uZ8l34m+bUO3Vatzdy2n7fEcQzaUs7PCwonoeOgiWrYRPMJ8+JWUaxFbv5AkDS1hNONSgKvstkSeJqK3t05jcuwvCLFnT123YrrjGWnxOKWhpOGAHD0u66XrnFbu58kxeWyg2Pmunw23m6SLox4yC4CDsdAycegrMWqdinX3Qb29UzySVAws8OC4YM3XJq2rSBOLLGKUxdAeKSx0H2xpFJT4hfKAQfP7rZquf6ktD+LAKKgcR4FjdjC93znwjAI7F5eejYAlO8hf6UQCBMtLmjjUGo9lYdJwuCODLoG2mI9z/9uG8ZqQQDz3AVoflX4k1FP7CTolMP46pH4RGKCwA1qXxKAon9fLEIG+pGwl/CEDc6L5KubIKLq5JGLwcAXvkHr4ZeTT2PAJuQVhtvgfX3knoB/VnyYfL/X6CQxTkfZ+RhbVBGMW2HUaoYZ4a+AQvPUtmaala6rRPzGvZIYVyivQXUwXMpkRqMb5s8iyuKxy9uvDAzLCz9DWv/9YvFCKpuIui+DYPTH45PbnaOyxT8d39VQywrq02LsGbI4KCD56e3iqZ1k+xOWGBnFs0K+Ut3tnlZK183Vr3DDfizqqKBnKjHdvvjmm2i8buaO2Y7/D0n+wbN2YoMHQGd5BnS++KYwcDf59K3+1f8O2LCVQVUukq8RNikSWpzAvGggNSI2+qyj/+CYuFcPCWrlMQOswajGYa0Bq+qpo65npyB6e5HDoGJnHZjpRFa/OY/QGYEFYfCIlHO5ijLVmJYhJkM7co5ewJ84OMgF2ptZD+8y0bLTQPkmXq9NSOGlmQKcCYDgXS9wxOVjkl2Uxh8duq8CrSEl8XMZiDS5DljNhilMe7IxQy5lzSMnIzvLW7/zJjJzaoLj4xvY2xb4k93hUMih65sioSA+/mMXKI6zoqqKSTzm+KWuhG29e79bl7wzRUnJxWTTWcI8WmtWkk6+WXb+JkFtctOznCVfcNCQTasyx2uVhKB0pEMut8bQadE8H1qqP6geQzLqoOVGwf5SjjX+Ko8u3U3dK1vZJni6Xr/p3x6j7iHsqsEyA1lnkLmw9R/SClqNATe1WAY6oZa4Pu16/nH/69IqEXtKthjBc2qWHXgfyjl4YmwS5mACh/V94IUgntHBZ2BMtI7kWL7NNQQk9S5DuFEcsmz2l4Yezv/2PB8RzYZiuHfTPaSEVoTE8gWasEO60SemrWUQLzfv0u9P5EAkLAF5PBG2K3nWEnqWQPAloc4ZZIgL/vECjCGa6YL1ScAD4pFIfL81Vpnummfw7V/fLRWvU9GbdKb8tbD47s1JGgECg0f2J95klqE0jLobPJvmFHJ/pK/t4pqZfH5yL8BnGyZM82+Fc65spEhiTr8i6v8sE0KHeoVusJDK7iBKpgVoAwGjZuu9dFn4xlSOGMjolPNyZfQjOEm+RV4WmtBXmvfY6Pb7BZeFY/caqDZfstemkBtjGaHdBBrXAd8tp4oQmMzYlq2pP8q2MM1PiJbWpSoehej5aJU2Av4s+VYXo/tx1vNeigYivGJLMspzhF56weE0/zkrWfSReWgSmt4r1H68y6p3cO7SbuGX5X3C8Q+14cCh/rG59aNBHBXKf99u2tDCR0xzsrZZsqVYezkNRdLAmpgrxcwDArro9yA1RtORXPc1g+lZnBJuYbP/6WmUNVuqhNT3Dl1fczvGZiDJXjdLTSjfIJn/0R9IUDUK9n3h1Lyho9SDAbH6QeMoL6wcuQZqG5lTYPKarguZftYmK7hvmIQTevk1dEYz9c5xhMbdEp4m9mlJEkoZ2l0rQnC0CRZxUWJSDg8xQ/+rXcIkOLzHNrPVTyKRYa0w28E10sWDCswzagBw62gA9861uTgCT8ZvSBoq3iJt6153Sd5UDbkcgxBR43S5kAeAUlpocQtrNSUC+CUTyYpPpkWoBuG7PxAAlgdiFrPoxdU3Lf1olLmhHO/NwQTBs1bl9f+pN2HpxVNEdAcF4PeLI1mDhnpjIb1trkbdJYKThlF2m6TIdibjvIPRjzwa2sklCWioLKE+aKaBIBt1QT736fU9uk2ycZ3fxkdTNyLgipQiAb6IP6WdbQUW88506a5UfJxVKzbzxouGQyUfagCkp0HqJKsodKTvru5vf7XvEJBGviaIvXygQr4s5zaA9VQYdK0rZCH2rkvbc49scGjarNSE8tEZ9fQTTfmds6oLXFT0tzIUQ9c4nBNikTuhf+afCjyBO8QLfXKMmeQYcrHYgKgkrAKAAhtaWpEtzlF5tTlapjSnwsP59uOd9KcX1AEh5VCG235G0FzQw4gj3JC4DnrrUpXBkslB6d88sEH9UMH7+gAmNHJqyFsrkpnP0gvNCCWPTLKX61qlA1hUSdXwaPcrLKFLqT62DKCqRYHE4q9kIECpYYp2R9Kz9dGhjIqoadVUNiNeKzRlRwGwrcmFaeyqSM9LP9kVtff8Tko2TCG9iPwuY40EWGcQrR0sjAeFL/cjflXxb2lP7elQiLs43pBl0Ov6MWvnOajHOe19aFZWEhZAYfaGc4VoVk5qKw5e+8RT6gSRwqw9gMBXgntCGr4pKBEbfquaPbOIa7k61b442wwjCmjAHKag2L/OiNvdr8u2xGNWh5SOPvFG15zAoVgrJLDC8qJ1x83XUYH0Io5MeUJmh/Gx2Zz5NoaCROzf4DS4TZ09AyZ+et9Bcmpf1cDMUTznSMlawg61qxbJ2tdWCKLfYwf/pkzJfFb7lZFQFXpYorqRtHc/BE6VYxgMSHuN+UkxPYkxBfm4IK/jD0bbJz5uvc+oE2sWR4zC5Pz7lkSQxdRskzIi/cP0V8LXVL9J31Hkx3pmPPaXZEoQ1Q+lnPg5D7ocx978lLGjaIdum2T8jCJpBQGetJCRBl2+x3C/TDgXgVcWF/D2QyDFItmG2gti4P/qK0NUTBtThKwJ/6XNM6cH9vgwx/+A5Jwji7+vnRwFUMTxzfBxzNe5QDNlg+G3GywWK/9s9OunOXxvfUvR4xjCxjFO1l5c2y7+SuXdFhbIoLgKRiE+dva576cFwcDeL+M4cj3pVq2KK94LR88vWXiOVifQuhUrp8V0EUlGUipf7SM/q+yqQLqk/hIXVrDDG/52Bshr3i7CNmr6OlekVhokxcxmUuMcWHemJ5s32t5IDb9v87ktaQ1ZY91SjegES/iC9C8uBNrvFCZxPAZzldixOZa8uWnz5VVFFuMdCT28xUjTiHOLgyeTK2itAao6BLe9Kz27s1kDhJYthwui6MlI7QRaqeyg0lYc9olakoZrdnSzFqoOo/j7FbaquxC8uNmhRJp2lypwICna0rTudoQK7hDW/SQ6TRWioV5/rKAd/iLA81XFbkZ63APW8UpwMtwD0FmLw4CQresvsSjo4md19dmG38AX+UzuxneMyJqMf1zX+nGcVIYHOPLpMOTAW/XLmfkChGOecGJkBj1V8SANlmlm38GmNs+k/wAuP5cJprPLm9j+WWNNrMomrl/jjiw+MfUopGz8Gs9sP0ScBQum9EZAEV3guaaGynTlVYz+e8XeQ6RFINN6BHFFdvO21zQyY9Uw7kUQp7cE1MydYDgFBuXTkAH3bPAYeMllk4mw/A6bkQo3Drj4ARRlALV9wuOPQioMk7ysK6VZe2WuWmpV/uRvslqcNIydCT1B4PYhh+ytVa6PvHuFVjyp22MZfB6HI6SuKCFgJbjSNsJ1kk0dW+7D0ojMr7BDnlDpd3S60/srHGZQNncuePXLUbkc6rJHGNVf434t3wyifzlvix9b6wCDrQWoEHn/lxO0LDYeiGVV+Y+Yb2wgzwKnQF3wqBRSAf/Z/frxRgHydjjSqaaCUMpjdryk3lVok4i8pGywAxKOqe/JEn6U3timxaJI4CNcs/ugoNJEsOeCd2ME5nhBunT+RUk8m8RuwW6Vd/A7k/DqAwkq61RyH+iqWPhfCusRQKKhqSe6mCndQoHJszq4FowgeFB15ZclaBawPn2PmfozRnwgXkWATlwZWJISI+59k+EBuBV+vAnsCyezY3IQnQJmTXa7Ek3aPwA8989kmaocniN7FrJ6Cx3PGJCQUvmc2DzDbhzlJcvWnGbeOUWSIc9mntlR8He9+bRUuM0xkX+0aA3GGsSOkiUglNb3UXKy4yvDAJk27nzSBx8qFPoPohtXmTLrJuebeDkN4nMIYRSYPRrd6xpMik1/VEGrNwyhmUEITzBCEiehdIAHZeiumP2DSGY0hJ7xSZ9it2WhikL4UAs7ZUbIUJJUq/IS7f1jU8rgAan8+ZCsHO0hY+LPPWfvOvsbPm319O4Txd1zTMOWP0dhJqNBLJKNV4c3BuK9xQBtBM76ftKkabEqqEH7wzf2AfGEscQsNiR8kVODX3AtaU7GaH0V+sq4DHz1gNGsW4VKBZcgZlMYr3ICYQEj7WwQrbR45SHH/te3zS6Qtvo9WiUp6xNlRRua+gPldUIHINweZg1iINXFzF42n5UhGWTVG56kGqy7vn6EejU0vFThR1cBUaFLxDXd2KuekRAcDnFdWLbJfitiPxvAJb8hp/WpQYjAmhRnOMywIKQw1ROTZgGqK8pNi3cLQLz0k2yora03vnA3t3ohWBZ1PdBgJDmKGbfN/dKouNCoLrpfpoPzmrAQbEESwPjaOvMsq+cLIvzTsyBO6ZMciqfV6GwcxEbCp2KKEBWfVLleqyTgkISZ869v4lsY/rGe8WRLrKlAO4Us116l0yFFXAb6YNj9dByjftGbBPDwFzZpOWWr3XtZvkzx4krBuXYQDKarpgC4MA+O57KQU/AWIzvcOTtwNoRKHcfDWriIWjxDgBR5L3vjlAbGTjIASoOrz43akclTXS/S3BXSTI6DDY7c5w1w8FWB6OqFwVjMFkxgdfaFOQSW1EIV8Z+FvnFR/DSgBQz19VgJk3cErPWDDxRUIXL99K9vQvc3Pzp9EJf76qElEPaC8l5rh2DtdKV5wM7qqdj88TRVc0j010WLUrBYWqoG93udLfMfakJW6KNh3+bfOZP8wpzddxrW8T4jH+aLWNXLOkvg2XGZobLtXRiP1yd6cgX2Qmgz07nvXdCoWrvQcPG/kqDZe6s/xEWAZfuc+/K902KLKtHO/TR7Oei1av28ByKeavUcEMEQt9JY9AaqynbV6onk5tLijKlBmfbvKPKq8TsJKCCoQc5hoJp8zi8yhf6fj1FZM/+ioAgZnS9L3y4MGt1qdSTuEePa6yUpwAe4iOkty+5oYCkgZOpBOS6Eak4rfps4kUMwDExCAZ3tUbFo4neJzP6gmXLQ6SPvMyLOVaJSHZZbxLxL2j3iXzNtIdX35DP5Vzlhr7Dl/d/0CnmT2XDdE+9BC76PROyaaKXshJnjK2D7+qrvspsOJD5RE7/YE04fBBk8GCL28CCxODGm8Qd0U1tIulsNMqaF/d6xxT+yWwnJE6O3vMB6KXcIzpBAU1eVyJjqi+iMhkFiAiA2IVZaiZKg9hw9RG5TYKTvVX8oz/3f+Rwkmb7jbBLah8sqwo83ZHXHwi0Cg+vHTZYZ93Q1mXSihjK5BT0wYzzVOELUGovT22mC3oYXlWRu2O10nU62A/orzU7kTYC3Q87jqKDYcNMtRsZI/2ywc4zv+edXFbYGIVUxE92oxCRC5VNu6RX8FA/RqJkjslwqHE+5d3eomKBvUv2ZPJEdRi79sTW+mmEAPTV/S4YKc76UG+ttcT4pvmLH229/18+yTNSpS9kI6ucmrbZkxjh34N7IC6AcJwXYWkLDXjPde8yQ+tOa3aIt9JbNC7NBZ/MnQfVxGHGd3Xz4E1/6VcBP20WzdBbOpeFkZ5wKH1z29q9+KOy9Fd3UQ1+bCkqA3eGbLsN0Oy6mMQo3AIbMethtHWbUkOZW/p6nTHZRaoy85RweDjxJH1UMVnaYIkt34scRXLK+TqwwdKszBwT6zjcXi8Zjl8y/cXghSst4/1xxdAVRnfg3uSNOawbAcIeLklp/S5um6ZngNFgxSQGRAPNwsWBvVFLtYoAv41bvbA+CZj2Fz3m4X4z1zigo/iCybzvdnUIo2go5mY9ZawbK/FWaqawKlleccfs/inG2fjEIZesUcWb6T9I391rwUc+HXDIN651/3vok+Y4sIk0C07CnEH6Be4tC60IpBpgw/ZsY0+Sb82eISIYREHNRZEfcsPtxP8DEKKwfqPUoDCFi2fIAcYZJSQv8nEFCIsdQru5CElSafy8VFs208OgiWfiR/q9gB16evD7TO6ZinGE5WNJ/ffpf1aSknNaWVMXrM/DWjxEIQiseBpjr5yURUcUIxVkXeIMl0cs83+npYJW+30sOolXJvB60XaIyUcRO1U0tNFNdeGMIIPd5ep7JVBQ+LJRG7JUsaMgt+rksIquhc5pqb6KDuHZBjn2dSPCyvXs3KUy7dZjY0VLGSyf13JNYW3GUKDkul1eRscvLjLHPfI1HciEOSSpNIh0vAcd481bWPO4E5J+N3TyCCZJSeo8o5lgepfeKSqN25+fuwaSvzXIs7xzVOU/+CyGEdPPUSr/P7TZfuyoqxIYbx72TI6JipIhELWUfSkIiWk9qdb4KsfYtB3xNPhzYMaKthJmmBy1hj3jMmZpbpZzb4/WYmb/teI0uHX/aF38KvoYXHJ6/Je7obyDFxJ+1/HOvAKR/6Ej2bNvWaVSA95LhNvGqUPAjfnTEymRCq4/eJpryWvuW91OKBSCWrSsWfQJ+gAdGYM28DwuBPvE+v+j/IEfeE3/ltW6+NugR7WS4XWkgqyVJF+axymTHoRWFhZ56zh5cAEXK1PUEmTvRWSjXS3aqjSfkzN+x8lrLHZoPwZBZKsgU0pAHsB9AHidEuc2asQec6yg+lV2gxp4IHVREG3xXXFRNaBgIyeRI2HeWNvlQOF8xorI8eBmDFEBw/DLlrKMHlJIG2WrV+Tshvs5nbQ44Nmf+vH5vTLI6xBOXeC04jAHytAxA0faSEx14vPxXYvplz8m5hTD7dsLU3ggEgUkWg6y1Lt7K2OLzwFl/ao6PQpctgxihHkdrYxFZrabEjF99jjnh/txVICR9MC8xSRYQBMzggJAgp16bIVGsO9T5Bry66pbLl+gt7ZDwBnrs5Hdx4rnXohplqUfisZo5mZ8WnBjF1TtykITt2nGubBjmOEzj7oL2tbfPyvyjnX3vzJ+wByiSwFm73RQaN0fSiqnMeMKlHqsUeJ1KL72uQHVWBZXjOgkkCMfr82QnzaM2Vj4G1yrGbFDi0dEbQ366afNs720X7Cu7GJBfVNSqh0gRZ1zFJFi+Dh5gQKlGStV1kN46XQao1J/IHwUxQtqCI1jHPC/sQK5slnXKqV4nm++/Se6EZGAdbbI6aSgNOtPP1RJbGeznXiEmVj3ZBQjqqmbqKtin8c26OldJIenjeXVHlzIPeRroZmSXexildwOplsUyY1yxu0S40aZfIzRncFDK0JtPRChbNpEM/lVKwr9y/i+YhuPUlHv/ViUwAnoTL0iIPWBNLXzR189AIsc12BjczMJ/PK3+VbcjmqqsNzYJVpSjDYUergKwNfk4fCQfnAE+SP2IbWNvfhEicIVZT2fSlDq8esAMk7ipzLP4B1FOcC6mDzD+SQ8WLUD7RrJH+B/R9haNKZ1VjGgsfYA3UkxunabxdsovXSy1TxFJz3ScRqVqyvXd2qkNHRKsUnZrTc+HBGGtDjFqBP66JsR3VBs6WV+lGSlnVz7Za71MMxJVUVxEtv9wEkOTwRcvMkzQeLdxjEFTwMXHoZ4c9JOlp6PAbQcXnLSzu9WOuyyDxrpJU7lHpa/C7ebGmlBvc4Sf74+EZBPBG5B7YEPDypVc9UEQ359QW4djNIxRRwPED45KksOCN3deiRTUMYJaMpsQo19F+cp6L0rnuQrsQfUT0JT0tsYM2Ln81KlRBuImyQ0Hp6qpRyb2QPoi4/4MOsen8B4r8/yZa+jmPKWbFDuLK+ym3rMcWuiks8mIn9YVUjVHKRd1E/GDl/kEwnqsv4l4qJkK7U8UrF7Pk93lZuM8o7zjo7k7uPFDPF01Xa+0vbbhd0FJhFeI4v1JEkz/RqagZit6pv/x
Variant 0
DifficultyLevel
558
Question
A walking path near the beach is paved for half the length, cobbled stone for 103 of the length and then grass for the rest of the path.
For what fraction of the path is it grass?
Worked Solution
Percentage of the path that is grass
|
|
|
= 1−(21+103) |
|
= 1−108 |
|
= 51 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers