Question
Mark and Jim have property sizes as shown in the table below:
What is the ratio of the land area of Mark's property to Jim's property.
Worked Solution
1 km2=1000 m×1000 m=1 000 000 m2
Ratio=1 000 000:5000=1000:5=200:1
U2FsdGVkX1/DPCBJTLpKwX89Ga3fBX62qRd8g7QPhhuqASp5md89CRBrbqaWY/1ZgGsBsysRqd5e0AV7MP6UxeCkcZhTsfk9ICdrPh7c1or8JkvmgazHY96iQomW7F976faYURbL9etzPgk7UVZDNt3PciZbvWveCb3T8EZy9TD22EsQazhnxyOZTWUnLEftd5YxXF8h/baTTGo1Cv5Q1Q+NRPgiimJv3wjmSTq9XnMwdPz270gCogEcyVBVAO0dD30ap4blXSVGF+fUBKWnmbz78fz2Lbz3kbIJeM6dZI/W7ss6WXXvqCDPpOphTluHWjlubMG3/mv6qPbFtlFNERZAWe7l845dVqKVhpjKW1m/jDWBvphVdcIoWpJnzNhvrjB36FVPudcAkMkO26K9F7hWk9CMELUG8fimuHJKwV0Bc++pa9bhjXKqtNv6F+2/u+NrS3KfZfRjdCvkGULfdgk7ifQZYRI7/GX9zsEIY47ngVQQddsbwRF5Ashz48R2FKH7EFS5gvBfYhnpiThCQUjiEJ0vW316iDMUpq38EWQdVScLWXR5lrgkqph1JAxntkUOVcDyoKJB/qEH2g5+ycI1+VvRejtg7onEPz5DseQHfsmh2Nv6KEK6EBYhaLrM73FY8eO9sjd6TC7mUQLrDlURdTFfawv+sAl24bbZhXoFAi/9I7ZtszA7DJZJgRA/ZKN/6jL+eY+L9pp19iPYLQ8nztVTMmk6VRyEOzYmXNsmF0ILy0RKTviC9/yHAJTidUfV/8gj/hSE9LW9hI8wb6DgIq4tqRLeewgUPSTk8UYjfOYgK/KLY0LjnY9cTQqIIM+QrE+rGN+ixqMb02iiksHnEBFJq2pbkwZfQdrqRZMtvFCJb2nTZREtD7qs1/Jyg7BFw8KjprAgM1xQJRNg/TkE4LkczH/nm7sDtkitilVAGzvHXxHi6oKw5dF9KVy7/c8vSyKCZO8Pj7Lsyy9wVMkR9dafNj0yYQjd3hzv1welgm9EarlyIRZXRQC5HDK7tPB9DOtng66ivLkH60uWvCy2yCssJvrF2sEsBW9YtLZ561R/YscEwzXij3q5ARQZAViOhKn+dgzWs9AdaeYN2UxV7NF+gRZa/IzC1j5kI5qF3sDOo5VHqQlwCBwT4qALcQzWcRBhN6WQKi3AertnFUJMxbr4/XMg9kkQ4q16gSBSzYfJNoKr0fMugVUep5sKpxSUA/6NXO3Gx7UQNLVHtBByIfPPjJdybbn+4rFUiFpMWp+TU1oJyFsK1JDPYaIdRKk5mN/SwbNgl1aaNdCyS95L7rdq1Ty6iknFcWPEpb69z+wvYf20dwi8txkERBXS7M0gePhiXjmyxz9CeUnxoIK7GtUIrE9pGQG4BBp55lmnQnkoyCGFnbC6HgpEVnDOsGN2yfgduQWFUVD+NqElZfklOakqYRzN3SOkbImJATKow/G9KYjWQdg61fjHLur8NwW6WLW39WJD8jbKZSWWUHwXME4ruKXwUHioWRD6mHhxlaj2QCDdFxT1XkI9bqmZmTW7rbQYaAuuxLa8M44d6c5e4TEmnVu1+OUlGMhxJ6ib37laNhYGrsPwiuO6o0mQFC6hwPzrC5CvVLh2PCWJVBmz9+PPId7w6bLmYJ+j05V4ZxyP/yG2oXQSV3wgt7gB7f473Kh45c1+DwZ0eOpY2S9TuWvrZTHlkXGfiYmcfhFf4kTvUHGtng8U5MRQZ5j5IcqW/KOuLDA8ji7DASghZgMcwooO6ZW7Z2VgH/k2eNrS36h6AtriNKNGx9EKdCaXxgNSd7bq/GXJ0Y5HhSgRctJl2qpo4cy+AKi8zije4ZkzlzDOPyWtZd+Wb/lbx9tyDBX3zJ5gX2qQeDM+Not1Us6SifUuSSRcYT3/TgNNgV+MjcndPwFE4OvK9T87aPw2NMTYS9QA3IwmMetotQ+QXJZ1fJwYpD1yj+8+etBri91f2ZfK1v/0ZTPrB5h7wNb1nMLXQ73oOp+cflNWj01SLlFCbhiI4Ve9roDGVEkwp8XvxOpy6NjQtMCfJ0fzsWIBtlwYLkv4gYG5iIkuFJ9P+E4KDPhSJFFsVAjP6MC4LJ3ZyH+Uvfyww/jnFOpCNPBvcwU1X8p4xRcnbowKGZD+cJaPJsbIz9CDEU8fHNATle2ceenjKHbhOZdIjtQv1xoyf6aGuhH4fRGsoSPDqHSqqqgk6Am4ThGs/487w6hcqHupubM4MNOF7tQjMgwTeCdLC/LISnKiCIvH+FiNx56ueSaHIrrK119H8icaicMQ64LQeh8qJBmXN/vLOIqWo1ROXNGSPFTMIlIt6+XLzKZBqEpzB/0YBMw9XJNUSHcdYJBJpGP3j7+C4HTLO+IXSLO7eRr8QHpWgpNZr7vPUDV9lTeIKrJc+WDeXp8Fv29vI4DJCm4pIw1mgTm0hX1RfBfNYdOXyaF/7GtNPEu7rIikiM0LfLi5p2I27ffJcePeejVHx4hZjyso+KHxuasQqs04LKhYcrxnGCj3nUYxQXXVE32J1xzEV3wwwNLTbB9ThdcVLTbY0fGUCdGZndFflezN1fqBP2spvtbdyu7UwoSkOXUlsotIPLtrixOEYjaJG+jiVkfqwuYfKQDnGqalFIg1kQKxt/67qoF+VGrt72E1xeeHTwVn1WqgpeeHCuRah0qLmWh0ARKHsFa5hWpH7G9qNV2AJqYYAnizrv6qNM/MENwipgEtxRIH2Q/hLH8xrskd94j/vP20Fxj2tohl40jjCd+s+sQU5KhslTgoJ3gI1v/LylnAgnjkUHqTM95ELCLXAhGTWBmDMgYZz5eJx8AzRdbJBKw8J4yzes5oc0xEonYy2DoVTcghrtjdhbxogRL0bC4fOO7n8AQaerTdGhnij+0o41Blw70eQ8JcRAKOuwUw1ZCHmkSEVcWu3ugSTQXLGjj7Q0BHBdQgbrz24MWt9+NSHYOZ3BrfQdoMd6OQZdqtcJGIWzDQ8GlVFMNEAE8W8aR9nsTAK1sjJfEzXUHebCMYLYh+30GtnEzL0TrgdtXH3d0911FvnVAuW98QOH0vT58Fk0n/4jQnb73Eh1E9ZL/5kRW3sIymiBQYF3X/FbxwlgotwetgcU6o3Zxiyexe4oRxR+oftLkGZW3mzvMX2a7wY4PN2F3qOnTdFGZ1Lb7ifVN09bwvT6Di/WuqqdeBn1GeJSvix3DTM6GLu2E30Vy1SPJJ/pkSsThcoeGy7fVWqnbfb3y8EMRgMBrrKMrrg6GBgx+wWpWXkrXYWNIlEWyawEV5paYlx27bz4jN68bopTlCDK8V+gv1Fik8XmpHZDgxLx4tCbt8Cvpz7TxPs8/hwjXPAmav6mdCYtI5105ikfXtl0pB+hl1BgPSom6tnccltiYUhvtnIt8+RzJEAwlOpBzwVnU2dgkQy9RQcyfeq6FS0Uxdoj8MHt/0CWrqKnzCQuQMPGVMBn9a88kW25oXQBWC6avEwAGx14Rj0xGfKi/EJC/gat/ubGB0UhDVrqm3T8Jndv2+q75cBRNwvdUYcT6fN4LvLcaj2/dmBvkc2gYSMqjbpwofu1W39xnbe1R42TRlxsY7EJKt1HWdfZiLg7qgde8sPt1X0vjenEgPHYaJfkClLf6y25s4EOm6i3UHh7Aft0eCy+pz7RN88yks0L2M3e7ARdMlpE+pqtmiHwvN6lsvBMVQg9Zdtt3LbO0xPKNHHqU3f9zzdhEcIRftqNjg8QkzPPyvZt00pjaIiTlrdF8fwyLnSq7hXfv8yAfXQbZTiEPhnAwHHbh3gvS9R1Fms75c2x/4YblNjUrzIyxPdYxH4hUQ9v9Z1nTpJLsnv5lo+Yz+q1/dwfRoxcm/6OokTpLORe9RIEevRdA75ibT6jZamujj+Cl440wZXuOYaulOBRFSmbD0CYSLMvtMTx4QC5alMS+9twYFInKmr4Dh0Noe8MWGflzxg1FRXh3i2yatds/UNvXBq/b43QA2d0t5QIUqunqY2bQdcPgIk0QWPCZomcfQcrxYmZ8Nqlfv5flglNIT4JxeFA+BHRLOejyvQb6AY8yvUH+KjFIgxZrkHpEhwVRTAyZY4IXrcwsTgd2wnIlFSRZ15YOufjZ1oO5gCnxLf8ikDPXbKNX0w2HPc4RmENo24IqjrnaI1KybFSnLX44fyt71Dq8XVQ/2fTWXPwScPf5xJEkqWYV95SqFhwKmVt3XC34s2nUs4ZOOXaHKZ73dn5bklZBhyRg4XYOkgMaSIRu7cCyuylwJfZPVwB+qhjE9w9mRa56Yc24+2zAk7Gntf//9yPNE5QOX2d4hQQi8/LaMWixP5k2QXNk4VxXnmK73jjaeWXnk+HUbxoyRGJJ79u42TNfAXU/VfhInRbOnp5NudqIIsJXuWRpyhRzhzmYB+OKd2nLPekFAZaBVArdW2NaFyenteDvPhiTrDS0kJrSZSQyBVIJ6JeynL6p/QGi0U4bF5Oz52fh+NvyjLrgaLP+tG3NVt0PGGb0QiAKmYosK/qFUUXqI7WC05VvsFayi3HIwv9iGp34ljMrQM19+F6VShgJ2BhjLcOy/Mdy6CXUGd3LGtS/ttbRIZUB65a2hhWBshCuoONNFYw2v/sjCV8gPowVlgNIFjGd/qELURFtb2s1yFDnkSSvfoQZUIm8cJsCqi6HhfyB4d31J6xeIAqzLy5+cw+LbsU+NovwKRKmjT+vuL2VfdNFfiuFWm/2kQ5Ku7CoFRZYcQ8xem4TFqucZC5U33ysmnPv48v5i7gigahw0q6sz7lRjbFQrfrQ9W44U2EWXfqLpsvdM2nXqJ6HVy9LXsuj+zKuGNnfp75/A0AMnR8+iS3XnEfIX1QjU3vEWvzHAaXI/gbSHJOk5DBgwlgBmDH70pt+McoSxA2MXJfWFKXt5pDdAQZVJN771deKQYZOxZe1alMZEMkkpS9TukBBf+9bwoKTB3fxw08YzekUirUFU5lq3tmiskAJJmP0q/Rfzd7Gdh9wWzGnsY4WcTdYm8ox6KYFUIQEl1+4EYfX2U729lOuBrozk5W51b/EX0eRUz71tfJwZUEVGjck0IUgftwM0omNFVFcAkKVmP3WyjlNf6rksD6uVzN8hdWJshhY9k4QwsFXbigiQ9wAbMliZFb++5UB23RyGlJXqL5oiD/zGeFl4EO7iWMmBIl4Mkc0anExArxP9rCcui2PkPlkINsLwWocX16Op1/gFbr6aiKWNaErWZhu2FZkfQEmwuUz1K1IkZMpxsF7/9zvJi5+MTByQTwKcYZmTae0mp3Xvk0tFjLxOAoTafz8XTw0hv9h4CuAyH4N6NoPoJfxNd+Hz4TKWdpfzwxjOagUm5JaideCJQmvDgAnDSrhV5IUp8BHKh/275Q8ejzMw0En6wo9oADTgThGeNHJMWN68pkhWvfVa+FLDCdockRn35wra7PsnZDWwmGtcWZqBTfllMq2vHmXp2BC93YWhvNdNunNMPghPlVVkvTqc5AicZ0zpCy8egVt4zu8PbEoJPp+IIZSMY0q0GbuGSa7jLOdlg69m+HnIPPDY0ERNiwyqNTq8oKZNCkmlyhWElx29ku2y+1hsnKnNMsIA8Je+u+PMZotkyWRmvkmkqTJ0YyfK/yf48fMNwMHJy+5XhkJkYGpx6x5cu6mDCKrfySyvDFKwFK0Wuo6Mpu8/Iq3tYrvKHbT1joYDecJRDyAq9aPxcLltH1HGjxrEcto5T0nilJ3MVAPIsyQyFB32aVqZCFmBHiOQ4gpaPLI/V5e6sizFxSoiP1hOqrQ/dr5Q2Mpm9BK6qW0vjWeJPR5prS/tcP9mhwvjyjdntbgrg0w5TX54DRd1PFBd7h+Rs24I08X3+6WD9AzXgyrI72zUySN2WjXOe+7iGxa8rHbz9dZHTXzmPAb24DTmgg5v+Q78KioGanXqE/by+df5ae0/2iPjwMMg75e5l9zFIOARG+NTXEgSl+UrAja3FRQrCRI0YC60XS6oPZKTclCANksET9fsVw1I7GFdjyS/jkNEYBZ5vnBd8fk34hxEkUZPUIZuh/S1xEt9c/WbkOOpgSBXPEP0DTgKgfw1UZ9ZkF6+PGtNA6pIzHLuUsggbgZpKQXT0HoiYykb71hsE5r5sO3H8oqgrNZYLG1KbjobDHvF5LRf7uOUviqHP4R6rB8RBBe4SdxCxlDdFWODDcxs6iVgOc+XiGqKG9/qfZa4e271yiHUqL6/quZ44jQbRgDH5aCWE7vu2j6j9/deow8WJStJVbbsPP/3X8F5M/b0kpwCOJBTqrtd3l65TMZgJEdzA3kbaaUgzEjeTMt3uIC5ImkzcS0/bP4z/EZP22b1mQ8rFFZVHkfqruCVDckmoND9FJYg4rxkiiqQWFm1fuSXRz5luFS0ZXu4vr0bUe0MNxzsA1t6UG7xdjZcgvF1s9nXByHhY48iilEx9OWhv/pMrj/AhFHWxfu67jfBpar5cRrbN6M3qtN+urfbgix6vSeOYQ/vuVuiHIU4BRyZf1H+RzY4C4oGJ3xSN4YeUXnmfy0/6VBH4s67q0WhF6OkUT+b/0i4or035iYGhpFOa0NYB0Xx8KmD2uUNu5iIiNd5RXS7+5HiIwKONvWH0l6lnv3Xhyiqraao2Z+emRcie8SfsQAFQWWOXnbGnSoJrDdkp7FBbPEIkJwgNbZM9aOeJBD8w6yAc3BBfZ1e5MIkDg7qtaFMmToAWwhQrEafNNYkaq4VHBH8h+dsUF6mB4pLliK+v7Z1BGrzswnGqQ5Por0pXt3en1310D3qiLKUBNxamFtAxu2aZ5mfE7PPDVfQUgO56UZDeNhfpcF3ApgBeNFDoVyFJRV3soYDiHQIA1s0yWqRmk0SD1qLQe7qHg+2bXTfaUQWiZMeg/Ww+cUIkYoLA8J0DDxiU/xT9+ERm2QIEhfbKNA47trt5lRQddfVVo9cNHGr12pUHaDeAUDOjobw9STqjk5TXMMYs58XAAOx9NZekDtjTkCM/c0d/jP8VN69PPdoh15lmeLuBnSHkeQcKAiCiiiHI3t8wfdlZpL2hdc2RCaj8mQ26ORRdlCdWuQ1WaFTtIc2JnlenkfTdS2V4jJZM6gSB8pjRvXPl78ve8QuWZVerr4Gp1SZMsvlW8wsMFvz+lc+s374zZj9odYE1LrHcCb9GJ7BeKI5KANcVhAWao1Qa3jabRpI9ulyF7oqJuu+z0UhvhEkRb+5XfEQ5ygIL12J1kOxtLv25k+caXD5PJsTmpqpSMRZdftm9GJtWRwsOmEubA+QK6JOYOYFYrvGq/nJjkZSciGCbGrbj7rq24u0wyVVzln1E4ZgYQI3FsTmAGxt/Bc4gA5HUjW4KU8f/Y/LU9DLCwR/IBIj9ihuv5r/4eaeeZbTy4FJbUnYs29F/qY0BWOuQCoEwUfkil1TdqFerYKXM9NnoREJwNu0LjMAmnjn7/FXBO7fghOf9gPTl5FyHgbsvJiAKLsemb6c3v60hem+Pz3xkIFmQN762CR/OCUzic49ftaJ3qHEeciy8XKZZF3/LARkSlOG95Wzr7OjkWwEkaBX7LhvS9YhQrxgJxesAr6P79qV4MIFDmlEF3fx2IZgqiLeu49GFvYMIr6laEXPdkCkHMsv8zFm18xN71e8dLbORcnAAVPjpLHJQbYolChNMRmt/hn2yrpPGQ/Fmz4Vf2/Q14o5cYMFvkgIzp9q/3UUrpiqMRxeLP1BtHvBqTk+DNtLS3VrHveiYjkWW7NOjZH6fz2uygkJCIK9Uqet94ixCzyRkIQ6koH29eZD+m8ZFif8+WfDuKLz8lcvhWqpjbGqEB39JG0ypKHeozVSE3juEpg/iOh/ygXVRbzeDxsQAEIk8RAI2XJgkgz+zpZUO4bJWepOu+nkiKrgRfvNbVquqZE2+4od9dsO+LasIl4GrhbsL7Rn0mMPzN2cLFDoUytssx8OiVqUUl+aqp+gG5wQV+IsPtPgR8hyyg4tGrZ4ZfUQ1yrjTKrt+yp8pkVdGNe7kZLU3oCvHXSDZ9PKBRWURQkfBAwowDdUGASS2yI4YPm4Lkaabk1ow3SeTzzkQisBK9V3b50jL5PizbzBnzColWJktpqxYtsHY7/B18GCzlhhWsA/yKrFo03s6SPKJuplJY727y5IPOyBDgVoC7NZ3XOBX7DXIXHDka6vs7rgbmBRpASF8C8/5YQLRwj5JuRUIwvHOZcySHNCXEV1/JSpOoLoBLRgItht/QIwKtq6CnAibQIUMGXQKBk77WJi8xFWWT52550HNDIkeWcfa9oYXVQr+GDLyu6FelJ5UlnSHcMZeXC29e+kF7tRPYVhRnIsf+YUz5B+gc2PSX6Hv+c5QY+jBewFoKRsrnJ2+U/IjD1KvOGStlqjJvrMNqo5BoRyJ3QOFUSmrHe+b9RxVFa2p5atdG9kYq3P2KU1HlJHvXYLedx13t8Lwl4MHHxQeDkbgrURi7ddHqlEo/lYkcWMEhkfIB1R+5QEvrUgKCuROD6mRINF343ca17vNwPzc5bxhF8/9M0NtjZqS9hVwE9VLROkx2zZpmm7qwbuKgUGRtoD3YNvgolIo6z3FNDBIsze1GupbxvxCjpruB+Qt5HodkQJbFERH29xQe6qyTgSCXpDzLMya8ywtYoCFNO5wwIwgvGVySiCBXHKjFwNdHG9vTfrMxVSXeUBPvKl73+r6qmBrarwJ4uZ2it5isG0WngTBiR/IJbItE6oVzFx9huevg+wfck07w/vyKL8deh05i03sS42gXPigo6ymjm/32Cv4wU1HeVJputej/Did91juqgN44Sz5qDpGt5WmDpwhFX+o+sDoyxaKCi2nrfBqD8ByWm/EKEiMWwdCmCKZVWVNZ3H4Oa0LOt9cCbdAImiq7gkb0KxJOBqN9BtHIpGm2J4pCOPkfiRLUPus4HuaECN/p0Dn1q8iPLTisoPtLw3g76H9HRsRqtvpkJ4J3XvElOBxamRjWa0oYpdm2xOY1LO8a9p6AudT4HKa5lBgq5ITCofC+unt5BK6xpyDK/G+s3lzQKdH2XpozfhGxhktHLQ7hBPnFqLoNM4HEH9QzqGiEfXLsZBxPd3vLauMEePgXogDUzG7GCSH3oj8BlEK+3iPXlqKHXeKcAgmJRvKRBOowDd4NwcntQXu4fFJeRWZW1iTIsMS6g4Il2bnBMucNI0OGsvd6Ae0hZ4TD8W6evPlOZTvo3+VfjHuxAicJ4THGVqScmTOU8kyB3ZaVjjSmhHfDcVCz3smXB2oSaIbQJGZCLfRrlDNY8df9Qr0FCBarDdJS+WwA1lMPulTky2hDEEYc4X3gl+oEGT1h67RKwOz4jQFKhw02W8zQ+/zQ5EfTgeUf+93VHIACqsxzOUYmao4JGe4XgKfqD2t4W4HI5/YG5uciOVE3E/ea1C6FyE+XEHJjvV9SKsKFPqnoBu6bR8lHYVk+5oKNA54DBCKauoMNzGd4jWGMuGY5zfFhlIwPNerQCeuOB6Ub4cuNwkt+RdlzHz7LxvzhXXgdvIeT2C5puH+/BSG4pl8Os0M0pKbrXvfERn9cJXL/ojnt22sxLfQgBY4F1fSoO9E1q6nHybFmTNFc6rxrs7zDWId7ElnYDIT/iWFCTEBOfJ7vazOqJmG8EAX+HcPsv2c0fYsJWIlz+0J+0oKwbgA73ppeYFOucWe7fqq/A0gDcla6PxYggYFyOJIcLjap7sx1aR5bQWv12qQdPXP0sRXCtgspvzDxASoALh8fy6Ayxn2BKsBP50r8gwjhGhPf7PmBu+pC2I8Ax/6bW2amJ3DHn4RlJKpzWGbW4/rH9iWr+2kBX9Qrh44TOTeMeItB8FBR9jXBAcEa42tdAgydiUC+VviqrhBBXe/lvyv7OehM3761sfSzfJe09Bd9AoU8PTxyJNVtsLLLfNPfkCdyEPdoD4CY2FWGJcQAeTMhHm5ZUKzhOWRgLaDxp8Af/n+r0FpDq4h9/JDtXWpuTny608qr43qpknuJSBXWmxH8Ax4Lv/X7GHS5ucAQWTZ/FTecZwEEl8yRcgbSrXJfg7e4DxZPtswStIgX/hGOsgSD8h5q3zAtNG0X6K+n28DErf/9hJ8fDzOID+/zvH2UciA9GE48pX2Wa3s+QSr19f0H2q832QGV4T48Mn2sxxV4uHSV1mupoNcba9WofTZNbZjHkncl98o2yb5ruxN46o42XWMymPJa/PckhhvebT4o1X0KIgB+lVaEImzIkpGzB4AgECrG6OMD8LzUq8WgCFws5kSPzowAzLhsryraAgISfcck2v7lWbzKelClmOlJRtyyu5pLgXYqiQfRnHIKKm16hqSC/nXYHFwMYVwLIYuCoCCn82dD+Gncl92axc0OnrrEfcplsZXxmECtoI+oxz/m+4j2E7TbJ59WQDz1Dh/4pKX17Co+4KGCjllOk56zGz2Mi0h2NPGZZ4Js0R5e4YAWklmmkXbJfU2ESc9i9k4KnCNJetmXZGzmRXFtWsPQlOM/Ay5xdwwW3qgJQh45S1W/jAjyl1OqXLIpwy4P/pMoglesizKsvGk2x/2wo67AhU9tZmUGFEyB2Gs49EtgF49vCLG8yor61qFdER4Nl5W1SFi0LF4lUo8O7LovA47PqDmMRuz2UYD1oaLayJJ4/KUwy40rnv+ojK4rhY/rMxdACxXkclm+20/upEyutme0iSUqhXvPmai5Si/LoYmFy5LNzN8BXiIqvkpinQYzkY6kS6LqMTjnGDfZ+lBOAPM/IyS9+AWAshTbowERwRpNHHmFtKM6kXlfxHwWTkIzdPOGdB65iiYWjbmaS5FqX3DCqu79xn9mhXoRFoisQpKCi+aNvZHJchTeaK4Y3BfS/rgK8BM+HCFo3ndnpcW+cLy38rwCOSOwAD8DFrAA5+OxmhTn1F2gkuJCtH8L6aIdufI2ryqwjIq0+G8eDrzBsSWOoJ2t0uSoS5UxYbE4l37xUFNbnMZz/+bBK258FpGuQjFoYjkDHtVmg9KzaRONLmITfS2TREvsPUmd8zS15KwwCC6Z3cSH7eEH5uIkQsH7cn635mA6WNYdqGp9aoPfKo3ktgcd+zPdKQxgP9nSQAWypxvcLfwu69+Z0Rt6SjqE3hfIs9U/rrYVKaC9s/IaQwoOND3kylhbyxhPMSFsK0xatXZfQVKBX/3yH+Fi3IAC5nKS9PDxhAsqqojsGpgVY4s7rCxDD6VjZ70f3e6TX5hVutPKwOx0C1BbtrkyeReb+HlM8eT5/nmmqHaKMjmTv50EdAJt0jUVFEeIrKdi6uA2xonf42iG8NCFC5ttvxBFULBJdNXTB19NZMgWw4UHXg2JyeYDXAQ2GrLQJzPdrE0/fhK8G56z/+fa3ousw4lKs3SaW2zXX6fekt1HdEbRflsQvnO7eY7/wuGu5ILZdCf6n2O1gFy3jmFGmJv9PDZNeKpN0bNsMrg4ZhV2agRaZuxpV+j+Mr+2pSyCML8MwCfCxU6TsZem6TNpE2Nbdc7nf5quQ6v8bRZSIoz1iglmvylTds72QyF21o0YRS+oTOJL/3iyIQzlYb7WFSrWNKKpPuhBY93nL7EznLttmJ7/p5s6cLAhsN6bhd2qpzR1AlJ+JwM1ReQlp+aosks4bEZ34zWL2aAAtiXKen6AvEnPKXMRBh166RnyMc43d5rKiLUyUljYxBEfHnJnLL+leiN2At/h4zznUIBdnSiQnMFRFDX8X7vZXl3g8D2YgPYXHvRs3OO1lirOR78MZCm8m9QgAc8F/VFyDZCrt2cCziL/Xwtb7TgRXjEVrhrHzlUCa9DAuyPjGavs/lExGF5WEaXt/wmanvr2Dotloi+63sNTnzBcoGQTbBka0YujU1nNIxEsDWJonhGIGeD0EQDQ78/QEuuF0LMukYrKTd248Eq388Y9P86xf0MFYz0V4HwnnpjQy5SQXgjp0laO2C+esZrDaUwXKeGgKxdDoUorGugOv9+0yVwNfF6NoxCPpmC72hZQxkHidCqKG2AEYYbZi/AJdRqowts/Wr/FmdsGdsKF7Ndtd7bDuwRBwYx1DFLCuXaL56q1SXNXM4/wBfS/j2gKiSYIcqfyapDxTRMgI77Ms3AFSKp1v1iUCwO9Nj0r7kCQu+J5YmvLg2boZtx6sPDvSLq9dxq9F33fpqRaqg3n7VNSnuCSnvxon8Mg2Bpmool4+vmPv4Fbxojp3uM7r86gFUK9hMr2ZM3HNhvCb2NBeX2a3cg7ZZiHzPD2tcfKl2tLK18dWuzHjbM0n8hC/LVbIZJugjXRfHl/Lhnik4ng1pBMkLc2hrzUCsP9gdYvGApBTvHhxO6s8RHu0/7fF/DDnr+tP8c10Dyh5ANw97PnplMhfYv3xsRylGf8QZNg509Tl3hnWeDV2cdSRcJygQFC6WkV6RnSbRGL8mlBFdp7t3ozhGjA2zREjPSCGtjKYQyrSwSRRifOi7usflOUAEXgHjbNeFplDejfoZjf6fJ1QYYQ80aHkrTM+gte3uvl9QajZ4D3qEIMgu2DTeDT0XPl6cUu2+aIp51kgou9qnt8F+LJHyArSdhnUfGRrNidCxtrC9nTaVndF1JNaMWVFtkXMLczsyAp82/FgUHwRbDBj69177WIglr31j+wsapQt2+VMT7tgj8k4AB23teD5YyTQGPwr1sBLDh9yU8KTmoSrMSdI4diS5ZIl87wphzHDeeqTjXmLRk9AT0e5UQ4DLVFD2j+wuroPK0dv8f9hrMvlbrUv9K/0BTqG+nSYCPSUUctZABrmZOXypKRl0MS9MXx/48Kdv+L2ev+iUTZ6vl0DQku0NxkWalRYOWK3csf2x/o0OodRccV7AfMGuMkOB4CoLlGGfmklXhlFkReX9zEDRwXn2kD8nCLdt5BmkdEVPrGHb+pLiOQA44trK24Di4BildePlCxEtrgjj38M19IDd36lffvW/BkTFtj+8MDzdIX3VtKDsyNbxA2rcRbEdkmMaDR3mXS+ZG4BDV6EJ80nva1ir9NwG+/uE9BBqt7jVGX4jHHV2lv4RtQZPKGs15BAxyl4Ha+AclWjpBBBfvjZD8a510w5VXaMmQO6FpW8Hrml8x/M84rxYefFx7O82cF+0w9oCR2HJzEjYuuuOky/KsmCDESxz91K59wkmhlH5duoKltmxJmxTtxn7yPX/VYdSkSSlrx2yKmsXDxBHUf1z2R9hGVLAofhUEnUx4biaVBaCWUs8FiR2Cp+FOF/av+5Ue8tQHlcFEfCAiQOs1Vnwk95iyhTczIlIR/8VGi/+WHO5jUzTVizvk/AtEeF8VjsZ4cSZsizzVfbJQVCI5vXQPeR2Ar9IzLfYsEh5v2fjE7oBqoCSbAuKRVo4hmJs00F69CUrZv0UF0q5BQR2kjpn7hhlLt2snw0h4wEt01MIXZ6WMHDu6f3KkZ8tOzfbjKtot8BuEfmD/qZo+CiB7U9iVH1XuT3cMLmIeq9UaYfNk4+87Yz14iQ59n6CY1FY7bO/xJrPm6kl7oylgzn1wt346chPdboT20GJz9n+jqivLcrAsXn2fhPQ2qdX8t4SyLzZvZXU8KSSBXIC2+wlH3ypvLZuBRVmdsPrdjbB1AsBd59f9Me8zVf0UzQFv0Qu3lRG8gEsrMTz71hRem6LDAlRlw==
Variant 0
DifficultyLevel
685
Question
Mark and Jim have property sizes as shown in the table below:
What is the ratio of the land area of Mark's property to Jim's property.
Worked Solution
1 km2=1000 m×1000 m=1 000 000 m2
Ratio=1 000 000:5000=1000:5=200:1
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers