30140
Question
A group of students were given a list of five {{element}} and each student chose their favourite.
The results were recorded and graphed below.
{{image}}
What is the angle at the centre of the pie chart that represents the students that chose {{type}} as their favourite?
Worked Solution
360° about a point.
|
|
"{{type}}" angle |
= 360 − ( {{number}} ) |
|
= 360 − {{total}} |
|
= {{{correctAnswer}}} |
U2FsdGVkX19l+r7Ax2+RaNNUcy3YLDVW5A1XNnxoOA3R4RmFhL+pyaj7z/dGRr0hOSTRISLEvUfVkHtWz8SMho6fSavaMRQdQgcZ2ToET1IrnKeq5hg8kwWL2hG7EGHdcddP7uj89xhw9BkORnOSHvov9lGO6oMMmHUG3OvuTODOnGSGVVdoLlk5t4LoeBVQqOcFykOp2Eg1OyIu25LHtEVKsMuEQpQnsSH2hgojxPZOS2qhjX/n9M3L1YwMFlu0fBZC4OaNH0K6+biKCNgVtoSToLiQ+VzfLjtTighXrCKmzuMtugkNTPT4YQDlI29GK7iOoLVd2d5hLyXy44r8kwYJyK7a0Fwubgw7c/WYaWlFQuLwSsn+cxCjCUfRUpOkGW7m13mLx0ckmRCtrZ/XzCi3hoN4ZRjYPBzN8wbnQeSfh2uh4msh7JCCOCrjrTYy9u8u78UgsxWA8AIOg/4J7A162W23epbK4aRBGM8JAgiPpP61bu+aMKEzsh4owzJxHxr892WbvLm9upo9r/kNK2T3bKL3VowTHt0K4swWAP2fr3cjk25hiYIu4c+mef1z/75iMV18oFnB0BPPUTEZmbam8a5iYNgAeYCMuGZ+3bi9teXWYn+yHzt3z85dyvKkdzuXciseQYOOdY+J5jBwifN4nRxv4TpZJNP/dgROZShnEGcmUIGLGzakfZs8A/UwzkXCZqmosfp4+CQ6UgupFbkWQxoPPFHubIs5onC7WgHDv2PaDjk14iH1jsjCTIZlZDcFfLekm6XdGPFvAm3UrZtwVCgaI1MOH38GnjQaGvCuIziKnokybadxxoUXdmArmrHslx+6251J6C0+L6DBzolUwF6gS35lKMbvAIJbN2OZVDakCEUJ3LAAu7smDdUcOZz5O9E0Kcq/EXDoiKUBbhHlw2rvlqNiq0xzC6BuhrGpXzcJ2j6MKTnLFD0msUB3GmRo8zQ4MoP995ApMjkfcFKiQJbBJAlfXBR4IKP9eT5DP+QfFnBhmsyRsUZb4rYmfddgkwbrNMK/CRYs1cjm6MsuGl6saOkML3mPvagLuaXCqrldUALO5IZEfipMK8oHPWMakUFxeOyVfdQVL6eCil1e9u+uXJrGCwPtbZnivkzRmwa3Sy/yI1IBASdZB6QO131Qv1G/PpEp37OILjKbWDkyOkbgzC0+gOENMz4okOeKLMLj0hqIG8NoZLkKuMfaOdqVep3Ab+zS5uH3+eu+7VroIw8MEjEWhLI42CKHBWf9HEXEnhqqKUXNxXq1PSLfYz/IvC18ijV92uhMYSyUnWPxxhS/vlIsFPodO32L2GAgKz24UwECUkUTD/x3tLmibmcJLhbzigMn6QwmFJqz9SXpMRMXcdksJ7KTM4BmZIYesVhRgAHcgTu3VU9OrhX3LoE2AGBLfHWzfFykou+mPJFBj/NpIzsfjUcL0xz8ED0lhwcZAz9v4grDkhwHhqYury1Lj0vRJkpGOa3hYfaiVd6lcdVzBhyzQgMUmXlTqxErUQAIaMli59j93PIwW34v+XL8HsCY0RHNQABpJTi25n8BZY/z3ZPP6K1SwrXIC66jsd2zJgPnU0XjaLyNRdhoFUF8XQ3C5rCCNEqZDQVhj5fQSqm5Bj+++Hl8nlXoUL6rFJ0SAFcM8NZKD041OlO/5ohmn9DoHuIvtfSAQgA2Ww0dGdJJWB4hGbHxCGS2atTKfZarvaTsRqTramtWaWtdgT3EulyoKHIis1fcI0EQj0wCTxb5/7dbSd1nKCgtqbUKbezqufD4gpkXTGmsqsSpn9soberXs5WUwuba24D9yzwuhSCzo8YsEsXD60MdKH2c3Z+fXcAxdymdTAxxzXTWcWVBTel4tNKzy28vsaXyF0evJ8G9wC0hlMM+dFjr9fHb1LV+2JjcFqo3bIBjMSS/+pA3Xd8amvVxfWsoohBngcF+rrGRcet9zFUvV7aMbCZaICrRDGm4cqzf+vQ+tbPE7ubHdgLoh+cVey6vI/i/fgMt+HhchK+uzt060rz9H14nccZ3oGUIJmyvvDWNVzU3SkF/RGDirXPFJyVO76FjOEek/LI65oUpuOt+TuElH6g7FssSTBYL4BvyEuecOch1adKjkVOY3F1+cVIO+MuDP5X7r612B2EH126OQxKTLhAzQY8VavIt9I9S3GPMf/1tV93VVbMeD9iWyrEbuIooSIZPMVDTP2n5+L1s4kPxGQQl1lyGDDuN0ZXIK0fPGeHwwkSsMdJkanwKUzik08FHHvvD/Sii05wK4tk/4wVLdwZ6LHCeAI+hyAfs6Bk4zQQwjmit8xam7hV6mRDcdrAU/wcNI6raol11oJ4Q0DU9KkwIpHZCzalKHCGhMzwgbbEM304rac3CbyYxF7IuE/tRQBGvHMR5o7cn1EozGm8TI++76MQzwHpIEE+ajrxgevt56wpBiyd5FjB0iQy7BFUYIRhYLIT/WCfQ1MBv3IyANzO6NMU3M1pTxov3dPLLIzsoT17BhQXtQG2Lfld+M3vT6lUpEkMuIQufU5TdKYEJLVmpEp2ataYgwI7wh3F2w2BVaB2d8s3bweppjFOO0kykL/k673E4ZlxiJj2MNPc+PH+wzp6RQDuylsKMAHMKkKu3Eqhpr9HBrEg42d+LCN+4Y+z3iYBp7CoqIidxOswL2SraiAhLC4TrO2/WmYBhuUjzWXcfYG2GgqI0Kq+qFFhOpRfMdU08rB1z0b4bRL0kVjEquylkyW9jOhWvY50jSg36ZNXujEI5MWnu8MKMLFst+GCVH2ToOo/7g+dS2hp+NLWWKbiMygP/qYuCsQbWSJUVZSlc5wZa17gF84j+gKmGOTGe9PNuOIY/LmDur6Bz8J0M4bvvdxjcVMDLoqPljA2tKUEftZHTI3voK3Nk6LlFTeVo4Aqn4sOta1GLjl3+kBpyC0ROJQCgDGfAWX8Y1Qco76uFB+E/wj3SY6kY7kk9l4xB5ItQCgBG1qwhkEtozuSBd9MjQlC1fWFfpPOOHK/mFmN1wcpNWRMO+zt/hr6dpKW77dWZp1qTXqG8krSZ9MDUZECDWC6UTUeg8sCmdgFCCQydnQLQZCmcQ9HuOsSLeOAKvYKXXbciEjkDYig0gfUBEnu2Jlk+HW3MGZbra0zMtZc252DM+dgM+Pt/uas1bY/vwtezBCyXHJmQXjVdbIO+FEn6cSSXI4IvPwtVaPMSljIjxmqH+CcM4wDiDIjkhkSGlc6rQIT/h2sQ+3iZmg2xAhAhcIWksvxmPkZnf9Oz373ROQD/heqrgpgOQEiVD9Znudgr4kLC0HvYSk2YJf/YEhLGqLPP60GQgC9YagIzpc+FhksiW5Vnj3gMpOuxM4rLigcOUT62vKKq9Mom3Ai0xgOh9tFRMVTD2NGAKyjHHf0gtu1NY7zRGh6S/2C2uCeA8iCdtAUSHOV7dNQsbl31T4YWy52hiWjOJHx+T5DxjtcE0neIZuzr4o7aoM/DWwucQuOny3PutN7Sp5mlfhUWzA9liqMNiYXXm34C0eW07B7WVXmwdC8yvHJ5SLduJxjAYaC6mgfHQkNsBeFPVb+fVsXnRkBp/42xWz0xwGrGsTO8k4JVaCF3ljgkNKCv+aOil8N4Bp99NjLksDDVJDz+/+zi4ROpCqKfEoechzBsrKTbUYgUHHxwx+xRIyAGc/TBAuB0eHdb2zDMIzHKt4H2Ab0vojw1BkShDea7m4FdNYzMiGJrjHBQ3SZWdH26Hy5/yRy6W01Ql9ZmBVkKSBEWtVi8WzFgVkWDCBj3Lccgne4ZiZjyYGcOY+vk7NxsjgsU1UDmDU/MkTRoVfPqLvuVBKZ8ikjKCyHxwvDG+DmSCpErPbv23ZDo989xYUEJKCITfusABZC/JEs/OUOkih59wEopJ3JHXl5cEup9C75nUwCiKf4Oxtj0ISAAr+jiMx+D/m1/Wx1jVRQDj1iHjFwPjlc2/bPBALC5G/gSxstQyQBr5hWr30mEQMaAKCFZ6RLKmSsJ8010e/omQePkdVJ342HxgXlSVimlpMR4GrEub2mRwuvr610dvNnQ2yBOSS4oPhLjHDuo7Tv/Vlcwe3zicp/PcfAMX/puyiginaih0WXt8Vr1LT/ltkvaz9Mhj/4P2G1CY5vCMxb3t4JuMKkkTh5yuYgG1ImDOJvfu7kX1gZRY93UOyVv2yLyicsp6WRCpW+XiMdkanH1QntipviHZTFh4fxANdJbKPm/xYhiE4hOBk2JFVQ2rJ5bGOFDK3uE6JYH4GTr9OXJjeSEliFdCE5XfstiWMlhjoQFYhYPSSkvDllwKBHYu1QmD9skyOP+7D/VNKVhA+xh2VCU7oLHZeKz1qSrYgdikqeUd6aNZq9AG9MMuI9PJ64W9Gxn/ebrlVARURfbOUcBHannAzoCY/wGK3BwKl6ik7qw4kiSZarrS/z8xoXkbILCl9ZQfmPTkcABDcVqAKmU/nmxKPBt5DJFxaEAvcYm/ne/rpOpp4YUIl1TRnZ1EsaOhAdTSbSGq89sKlanjVnP3bbFaUcwaVdKXeam0Im1GZ5W3xvWDuNYneEYmbNXaVilS7an183oKvDklAW9jqGb7mfGOoHjrXcL5BKo/g1pNIBwH8q61Jr3vgVMf1hff8vQYVv+gyo0L/HsK5MpgycYlhT/ytb8jRvIr1zvL8eIJkvU2cNsx6rLd888qwhs9ZUS23YdZNHzjkt/xe6bw5QYQhz3myddM07cgEuG+cccU9Ne9DYMQlgA29mHCPjYN31Uq0o0dQvb0k6lIOtWswPkV94mHa5THX/nglxihN2YOzhclSovfQVaC5VmNiUaS/h045QZZ+rppIfYgHJ2MkDdvCckphKVBRjGy6V1RScWys1K73invMljDySKxlOhc8h6/I5FWxZI/XRbF5MOxG7wE8xqHwhbANdrZFA38oeugQW1u6DkJg3/w254Jc2IEgt5p5yUeEOJ3d8ITZVgRumZeW5VY8aYb6d6gQ2ZEWlU5Fz8N88HtO+RuCposjuLJoylOo8+crZVnUUAGTGEMndXJUbNaXOh4WcxX8z0BA5ck87VeNjnPXQyQJXEShtiZ/LkqQh6aHVYRFOM4KAarNtV0IIR0OXLpuPMYxvGqAF3znDhylb+9fISVRYy2WLWEhtrDmxPe3oas2GkMxnAJ5xADS5F1DOl6ShJeyngoUwMO/goU1T42H+ZWGFsnb5S4udfUfRwbb1p9ZnIvtbq/deQF2Ti8uvOJwmbN/YHihOblQFcPbbCYYgQTG8iWjVstNyJPip3fxDqHObD++pNpyYCNo10xHafDVSl8lyXSr1qm52QafFVjJ+OC97lzyWANnQuMfvmmsThEdgDmrEQ0vD6KiL+V0fUxC5jIbGniReyKalbx86N/+Hc9tV6iKdfpAz8yfqoUYNwr6JalQCXk+NyHnkrjzazkfxG7x8X+SHVJ7V4DCddOq79XdZyfqFbK7jJMnvbjXMpgOHQT4VMfYF+gm+lIM9zepcdvWlO04WKuRECUTJxb1Y31rfQFmoXwVmNY75lsCqMkguvnghNoDoaU2xK+szOyaew0UIe8D0rNph2T7V3ppzYP+nEPLMCI0uP0ehlCUhCbQu/2Wga1XC71AK9xSEsvOV14UzEZxZFvnFMPlLM8RmSAq5E8sV86HuYAXixK9zBQJSG09ToWkacv+9muxbzAq0F9YaQu10nsUGbitRMhyrd/X88aEbMNFrJFFCAp2cMRRsA2zDkipcPq1lCzpCVUIBfe3GS+dmFSEDP/H1zurNiXPvFRmoXXIfPWxfJ7RC0o7ol98s2VKSj0zYKjlq1t6+pzQlA22jvCUKkZMfm1A+UB4eNsOdHnSCGjgr1C8+mVs5VfCSez4p8e0JpFEz0Qv2blxsbLAEAKNCTYOgmFOhleXfIkfIh2yoEb+6VmJTljF+/U4Sqn+rDAYJMvlcVAOJ1PITWcszO45humCZYZp6A9/xlncddqstBWKk7xuxYmDocdIN8d0fzeIvSXnmYb7jmaZxcr1hdMnS/RmND22/Tm8NHlZs5BNKwpW7bOyhCTRir2aAb14o4yGZvZInl5leplQQ4TBGmcK0UstMCWx3jywIH8WKQTIP/g8i2LbOw1WyfpvZb6X0FGpdORrgdfpD++N1dYoO022OjdZhyNXqS5c0ntprbazu5k5xfcZXrJ5Yn1KGoBjUwFiIlaLKyt7jeC1jRnk9B/wuuzCMRdElmPRgTr2JqLVaFPJE0YTv4ztRnhjFg++tSou6okrSDqe8y1oefWl0yxIoqMgEtOu8rw4JSMYiazsrgnIcSfzNVavZpDM5Dfss08wEQAf6S99SeQnA6XgvOBKfq7VEn1jlhuugLw9mbencJfnukQEYHuZFm2m0obXfvdzW6Y3nLB2ySc+owNx5qQtjsY5KRxVVDjwF0+3qlEGcSYXBEmje2svu10B2SPJIpac0OUrP0lM48bgFdDS0N02IH2G+fywfNfx8dwjDGxMy4X6x/w7DbDcB0QhbTC6x/gZmzqWNANLsjC81UirlAzH4GGDp35Rk+g3EeZhm0SNG961eJbYb+GjR6nSoPT7rfTzwGVDCzN/4/dlXOXSK1dDmSLvWqH8dNU2p4Y+Lwzp6h/RG3ZWS4iNAdJV4lylFzwv2GLubRb/VLlamcLyQ8yXywGkwUktEnvSGbVHAyGCqwLdv5yTMTzOcj4t2wFmauR/oHwpJhCzs6nfps/TUakVcLv5CBCpym9wTpmh8mAcGJckn4bTeW5y42puO2eeWWuTXH/gPZHD+8Til9Jsmg2S00mfcYs0eyoJalXFZhKeG0HY0fodRbTChivEKbZUAJGmELWZhbIibfoodCvwn7axGtuBmfqGOhpnDhDsVE4E+o+T153P7KIny4Az9vx6oyt/o70f7rMOaqAN+feLZpwlNPVzTXuAIOUN8R+mWewig7Jeyk3IWlSxr+BLJYx48GmyJf9vrJ3qSmWtxJjI/t3MSQW8YE
Variant 0
DifficultyLevel
543
Question
A group of students were given a list of five animals and each student chose their favourite.
The results were recorded and graphed below.
What is the angle at the centre of the pie chart that represents the students that chose Dog as their favourite?
Worked Solution
360° about a point.
|
|
"Dog" angle |
= 360 − ( 51 + 89 + 75 + 33 ) |
|
= 360 − 248 |
|
= 112° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
element | |
type | |
number | |
total | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/var1.svg 300 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX18w3eFqB2OOorjGN4T7vFkbtgFaTPHfkffOocKK3EEUFGFpHVr6BKb4B15nSPz5agyBqv9pz5VZ5HE6yUCTL4nrFpEuN1wzPYd5WoLzLnCmQhDaqKyQl5sBhXFHWXFrN/AhZNfIOqJttJ9rIDrCc8hx6vh5nCP2xhNSwA23CJ85Y8vVzBSeFl48e9Bq1Z4bqHnifLTQ8pVf2RA4dYBxt+e2W6RztYiyPd5cd9f8fZQ97E8UqC9+hPGJP5AemwP60fpIF0w9qczBCZF7hVrrGGCzhcIEyFYKOXkgE0Efy8zTlyU7TgZciuF86X0sNUexH6ehMV2U2ESfrn5cwg80JapnW68GGrZQPJCtd3pvfgjNQMk5ObLyn/1B6MRFCn4CK8Q8nN1VFxpfw8BlS7ZmtmOpXybKCuo6w2iyOs4xBO5lcfnptQFU78O60vo5B0EZt2r86A6aXl9SFwtV2yZeihomZTVxiOXeh41oKA3Azxe5uAfHT3akmZgnDG0ext61n1x7aZXkEr3fiOtjjWXfQASTXSal5BviLmYVVeHcLrIJ0BlGRLAaMwOmDvukfHEU2TpCkZE+EiYo0WwuPp9N77MZ/ZZeNSmY0sZG1//NAZamS6yBUfOWrAM2vmcJVVMAZ6Tl7brDgNj0R58AhSgiCZ56CID8Hx60unnrbbkoi3IH9JuKAVqtu+6EM1/5TXV7N7I2opSsq8ILPJ4a3da2L2F7vX5zZmqWDlXJWepd2Uln6hOkrhsr7oHObS2dgXyGvp4RYVA8jX+0MoSrrp6F3o7z1m/f+bINQ7L3YOrtUHCgeKYI4yUd5le65u/5ttGnmwH2D/0uqhtBiszzrLcZMe2cYgKxoT2FUwIXkxL277fpztZJWeEPgl+gOFLiYcYKY5GzD/uDwJ2VWSq6QP9xpBm6DAGebK2njmHig7nKZ1MFJvs5iASDZ+GMjAO8WxJmuX1QUb88wcjbp/VX4a0mBhZofD46U4HNPzQh1+YXgfrQ8m01LEFKObGoMPLPx3oQrRSJkKXAjBDWJczyouJo6jf/ENWckTHAnNAyfQSpqwUnOAjj5m2hVoU5BcHaSuXtOPbOZ+fu+7K+Z+pSipPnbnoSSGzMif71Eha92yMHq99KXKrS0sWxa7u5Ps+OAR8NfwIEtLOmYHrdtZt+bzsYLC+RFHniowJA2e1mHAI+kxqgtzV9/zobupcd5XdXWXOBtrg6jRKA2x2U//dgQCLVf1Yn9xwntluOonTTEQTG+lRXQHbM2SpscLfl8SaNkcL8SVPJ4CPHnx0+zheYqEQQSy2u+UcdjRGpis4GZkgwz85TsWT3WCgnSGTQ3hB191HADgrPqGW7LtNwvC7/2k3rnvCFko49TGNh7YqbxCQIsD4KItPl8YWu3PjghEinESnEgVN/GaFc75YvpV6IG2nHsgIs5+qosHvdfdSuqkrdQsc75Y8fvhtZ/E/TR0D/f5Erfko/oIN31nod7HgONj3L2xfjT19CzDNSFOBl22BQ1XBbCvvD4MuWPsCODK/QG5uJD29siI0mSYC8UogYRC9X6BRKeIaJRahazNXH/34GTXPE0VYzEk80xogM4QOD52sXPdWE2wKGUVZ86aeKYhiMVroJF/XpuIk2bTOJd49yl8CZplxdAtzJNXpGDK+gTUdhCZD3qKunu/fr/XFTUIJZevt3bghuPAwUdSJvrs021AF53Q4G1kZnoBNTO5DbmYO9+9EODB6p1a0X3HzGqQ7xkHeiL+Uzw78eOWu1x987yei0PWcOAgtC56QieZJgqIopSjAyxK7gTcwIAlcmHS7UdFhkN3qQUhAaQcV4lb6ntl7DX7vi1tDfb3BUM4EYqIufjjFpDBQf+qI+x+KBFx2Pcbh3L0XLr+QTJcRIgmyYi1suax1pW171zMSSIxZSzQ8geAAefZ1erSkZoSenTnmiMWzLdkW+XlHpMt8Feo7SYGrIX6ejK6dSjsWWdIiCpeXaNn5KDcyRFTAoT7u7cSOo7TAQdeA7Pvu/nsPDC8fNYmQCjZ0ALOE9E4DTN0CevAb7kqfa+vwpFAdeXUPzwTMCsWvmmbtCOgzXtPg4wDVxdlH9XOmNCYHoa4OqOtZ3ZUAofp7hvWTwuNWJeISH5rfnt18K8C10Qqbuf0dd4y/W6HL3ug1JrBzPRZ+sUZCqD4y78WkAGqU+s5KjhRZrEapFhISbFfO9Xrj3PsRB1p4W0sQbWtTXQ45Evzkvc4OStkobWamOzSlI2cLKF2TaJ6ocwhuEig3eI0j70NVpqu5csKjq4xnv9PRtMchG9Jzg4m76V1Rf/OYB16XYZz2WSYnmGVeLaYjhPNtl1TosJIhOhErrzdEAqv+Bb+Bx5ONiv6FuqW4Avu+iF/45wx/sUujAEMy/0EoGtRkZbhllMks7T6cDBc3hUmMRZZfV0SwefP8b/JrEsMPqSZ40ysX9smdKfqfq3rKQ7w7tiQdQHFMXcF19vjmoxvathIPTBmcVs+QF9VyYcOdASIMnR9e8OEvgMYlfrJ6JTSgOk3cA8SxjlzbbP4HTsDMbUJZSG3mDZuxiYXptDn/wSrjJHXH57z5KLa0fJxfQWjmZ2hneEGzXulTA2TrADK7UWtIkAtiLEWgarH0kBsrp1d/bMg48+63VxDlpgRmacPZf3Ks5MbVE434iOJiZB3G9ik+3SVwPvCeslZOott9utXvguKR7iImt9/V4UWuAV4QTsqthm1xUBVuxCohaZYSKxyS4tavq9YmAlhhZGf5exGoyP8MCpnLO/snTX34TTcqjZtFlkRtY11Wiw/KFVM+O5LM8VofjML+7ilgYbrup2eIC7ZL3i2znEgzMVwxQ5HER/HVcBUHmx/v3wCL43+9a9Gdh6e+C64Dto9DOskkpUUrWALfCUIior7HpdNl1h4W1rfGgcZqi4ITeJ0YU/RAnXFdCo906dJdNidws7G03V95KJHdgudkk9BCP8XMrNpPWv0OI8xLJCBsnu2BM4NoQOkIctE/qW0lJUtrDYdMUAWXWkRIsUaVsY4U/VOK7rp3b/K3NggI5D1gl3yWEW86kkL8jxVC6SwlfB/ppHyFQZPJleTUuohQIOL6AP3Q4TcunvIQkWmN2xw45nLpTAxe8PioDh8nlWTPh9bM5u/4/r8h2SPV7GtlYhchG04Ou/srBhm80XeDong+i9yAfnWK8+ZHQCjHLj1dse5h1mZD4MJQPa6orLSpwIuoBOZqL8VgaXyCCtYWimsXKPXL/6DRCpG7P4l9HWjdmP3mK6AycOV0NRscDWQ4Y/TIfzP2hsvOloqi/NnD/ZalOm8F3/RRJNEd5YyFn8BYzIS1wwvb6x2Bb54Uwzm4VGcQJzpyNbtYEjhI/mD4WjvvILzjBcO2xD0qgQsWHl8+nbtuTNt0dLN+pinkiJ8SyPD62u1ccM7v+10NmXik5OZU6sHGqNzlzUNRanNlyMKEQK1rdUuAPDMFxbRSdnMB7Bnkp0Lbbf0QMmblFPUDLeuYyCWgcy4lHtJ04c1zMmxM7/xIFp9GWaT+00rpIXYcU3uaZd6/WBUvMf3sttLN+z+w5EzXoR9VuKUlucl2v8Ciq0SWaNGX4q04rxNul5qib1RZvmUjsEA/bTIrAqo4BPyVyammbup4y82zUQXt15T2Lwin0j7Xn06owm3IpWOtSt37A+nD/DMgHWRaDV9e6uljTDK1N+aVJMn88LLFhu1jmwX7TmarnXmUgvS/AkJBurYt9ZHmrRC3QxcSEnyCO66ndzNyLG4PnbVf0u3P79bQlp4f3eCOLnHBPSAyZZFSCz2hx7mnoXE91g2FOHwZd6NWOpSURyKdq/IO0nkTxOyMIsJk1C8rN14lqUbFSkudYEk3VqF10wCqrDDm5eg0PtyY7LZBeRYtZRVD5z6awy7uJtsoaLllDrR6PB+q+iG0z33cb3T+IBP9uvJeDlYUq/DbWM8efDjGSJjoL3ZISrLc9Dwv/qo53b20g+CMJ+gpkNwuCocQonoZaKovcLsXXjzpmEzeSQa3yZk2NDHF+0UFG2TpZta69Smkw4T/QR44Ji/obiiv/vq5jbu7NgAlt0sdtuO2tRYkAihdRXVuw9jgNObVg2JRg5QDTc4AQ2pp+2BEpHUMvq3foKSNKp7yTMf3O+IT8VadhtuaIo5WFu1XA2o43LZEMwETqLtcTnd5tfgcb0mCo5P8MNwag6RbSMs5KUTqtzCDObJ5MNbiX6WaQnl37AYWos7WuGF8FI2PLGyPREhVPLqq6JIeomRpr4IeXX78lUMWyUZk5Po0PaFLNTrcbMO4OybtCpVpimDU0d231oZjMZMLWPopXCWRmkczseECwqLgw2DjRkvGjwuTj1lQR1XztvRGPbrQ3w4y/qeMKc4Amn9Q0nNPas/wmrUxzEfXTF/ZKhTUHwrRmgzqA3yPNwILcn8M/jNnf/HYYeN/zca2GhUapgnNqRNLt8tHaPBM6vLiwKASA9xW8mlwdEfqCw+9EAeArS6AkImVYQBaW9kKYEhY9ktXQyvqdnqZz+KEyDbDHBCtAkSs+cLh7Bdy6jCndGJJ0wS8FFVTyCNApcviYv8YH4QvFdHdV4MLdnW7n5CXqXfqaA3NnKnxm4lfC905NGjFdF9H478hpRmBImDdpFkcYHz5t+WWzJS29sNBdWeENwXFhSexliCSrYRRJ+zZgpt10lqHdTpFXF46SUYu5r05TxumbAb7LSjbY1E4Lv0LyWiBp9yiTlBdI6Ll+S2cBSK5a78Oj02WRKupRmbNYdIXPEgEW1Co35NrhoKhzdtoJPVNbHPRoiRwOKsFvv7/lAN/l5toiu4C9xDkTTsOE862sJDk1LM/JE5hrXiZuWvs7OqpvelP8fWYO5LAnONsYghz/15iFmZHe4F1psNje77m/DKxrAYYDW8RatFdbkKfF2xXwAJCiDE/ICNVJ1zh0y4FYNZ6TGovh+M8GCuRFEA0Nyt18plP4mASIlVGNdNZs5NvVc2yfVVZlGg2tGSIkq+hSWutmCpYazA8xSfi2K6F3J9h0U/hM7LKNtou9378QsZybKmHJmzUbpPE/+5pUvWfrBIBOlgTwv8UjL715B1HYnOks1KE1wfUUmSBDASk8EUtZgyfZPxNoqvoMBIRt9z/DSgG8S8NkThwUGLlxcrZXWPVXiRufk0eJuGfYeBUZRhBdJeTOiQXhg068VoO4hOtilJs9lz0HBRPSWDo4xSELZQi757fAnoD0CAqJBcD0YKh1LMRz/mKQj3wPUrV+lAmMS4nh2GrSyCuJ2UI+TbDoT2ob3KgOomCjSghAkjLI5lqX8tD9a0uBLBAWBnoWeZKvl0m7GZg18qUWiXWKVUeErcpIrYwBS+c2Vjt1mzI8KYEPneZuEJX/j9WEckiv9TlFFmM/3K/+NVcyYjeX9zk+pn/PrnMzK7MytXJv9t0cIWNi27NWOZzYWKFzPtJ5MPtf5lP5FVzwiAvXZcDiflaj1IqZiLXLsEWsDdUfopk7J4oymACMXrJsLXQinCbK/GT1AL3cW51uypUZj7mR2m6FhY+PIbbL+V0pG+G1l8jCfB1vqFvPdw8q5NPL37+Ku6GtzGF/fVgkv3L1KPwTLVP3doz/eZm6Xa96xSpQu3tGZfMY3fg1ClpvWnNXeCa+bMd2gfxvJR/M/Wdzp15VRMWd5j2rFUmv/Ng/yoSdYTSHrfmM5ZHsbXXQj4NVIB941h4ms0zON8GNVG/PF4J9jfaI9Si3OrxEkIO4xtOudmyOKnuZqLoFRt2NePyhuPgC1rQTqUloU3mPVUHVu35R3hYOoRVF0jlyAPl6wB/VO83m8hu5cddYub3tbB16+OCzPpdv8YyCzFYtCzFg8483PcJ6w5uSxOXpfcu4p0POSSdR78k7YFxT/ZUdPM0p82Ho3rGO3o/Du6RWL21aVn3L2BQU6MlA8QBkZealf3uaQVvCyYRfzLoKGVjm4ftFN1zcMvDVKZPTgO3Ugg4526udi9RkIwQZRLBdvXh2Oiyw9P7FtThExwroJ85f+KyeAgfmCENoBw8AUNbi6q9ta0/8oOmprDOAWbB4GZMjaA+KnfFSwwWnnMHhBoHIIjR087IJ4RETEU8sO4TW4EbhwbnU9Zcv0WPgiJ0f08ujYapvPMChKfi8/0GB+Sj5gqeUUUgcOmIeqGz+/c51ECYPgMhju5cEhK9NIxi+QcNVLRnQKz7L6/ubuUSlWI6H82aagayYixgjAesiTDNNcwrbBkxF2lIBI+y3wG2bcRGeAYeJRj4iFPE/7P0+QmZNRWWUtyjfjqGMECAjr03DQKIyC6tMSrkpsE0r7GTI9G2Ziy3okFlApYAvqbF1X+BGrdr3D2ObPu47FvSBQnNxUCMRMF2zcNFqKFw/LT73JgQUcjuOCa1zQg7zKpNCNQdGLFtEyhFUGXY9UhvoA+bvcbDA9NmE/ceo0qgrPCfCALZIlG1G9VqnFtdVLJPnthE4zVEeuEKf7xSsI7pRcU0leUCE4GVvZ0y7dOS8NZDdsiZ7gq/R9iLNS7CO3TViO40hIug4OhP4bkVeilttICVOEsR1kCs9tTj5uvHmnlzCdCgnhVhn/tVqPHq4yQVVjabwPMVXqcrDWec1JmKp6q+/Ybcc3n41xeskJhxYuvTf1ZolPXUUqLnCNgGLpQAgjcnxawpuPkDRJXXR7abb3nxikqnbvF9XBJPW8fQ/BqOPnoL4ROoKni7Fj+EldH838NWll3KDFl5soF9OVOjRQJcE659MFXJbTHc2CB9FIqSwXp9j586avPKrsHuoMzwAK+1mbu5U30o/m5E45PdLYAgVXvdveIjUysTk7d1zi4Deivrytr5jIPK0+GIJweSbdx2jBrLzZYdHS/uQz385vpk6ScPIN8T33f3NUWluYKNr2zSPpRkVdm0HfGdWXPfpi2KiB3pMNjptXNnfkRPzqs92FNwBqQyEaT36bFD/W7OVUP6XA8zpAD8lZUXe
Variant 1
DifficultyLevel
543
Question
A group of students were given a list of five instruments and each student chose their favourite.
The results were recorded and graphed below.
What is the angle at the centre of the pie chart that represents the students that chose Bass as their favourite?
Worked Solution
360° about a point.
|
|
"Bass" angle |
= 360 − ( 30 + 41 + 90 + 123 ) |
|
= 360 − 284 |
|
= 76° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
element | |
type | |
number | |
total | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/var2.svg 300 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX1/ZCSj2jR5qNq7Up5d8myl6TlgjjUvIJTPGfn/f/NGwZ1lqFaZQzCpgSELaGAunSkWY7AEBFZjRdvR1Annn2/VuZQ1c/wJDtTwbkylzqiUcbupJv6pQHoW5rsB4xcpSGUJVB9GOb5zMYam88kAFJ3iNCOolcXJv5PI6VblOaJVk0AjcA1ivkwjDTnGS8ijqxuLYfsoT8BfviAyYD2xGX8ftFmpZ63r95uLAqDlzSNnXOwBleSj8BMo7uoTSGMq0+0cbPwp0P3k23fj/IX+71qwkb0RM4M9Bj/eSFvJ+7i2oN/xBzb5HAVHsMhRRgFYZUDZUqKueVaq1xsh3yhoKEIpVcX4yQ1b0dQWhFRwe5D7yqsclchZ8SzOvpTrwJ5c5TXVHwZoogxaqo/ekPC6eoXYg6Un0l3Bk7LGaO6a1vmSoWw7J1/BbIFvTRQArr/JCKoOpDGjsqMiv/b8uIiygWNhXapwjEhwoJLbi/swheal0RrAlig5sjVU63VQdJWMVMgfXv3lJ0ZVYwtJv9JFSFeRYMOexOlq+fJHjroaqhKq4ZrYdMG7bm8F1Ivvhcn5cUaCojzT6DTjauOm8gK26CoLkZ4D8DxyYNKBxul/K1Id9a4v8g9/WJ9a/V3RpVNO1j8v3gGBkdOe+jL/D0uIEEiaxPxawlxLzMK36S+fl8SjvlZeWlD0tJEuY9qbToc86tNgUgTKO1vy7JkMsAaiNq8F9ApPO5NGZVGJceqPIDhd0sqEg5bVWaPvc/TJEU4aGIKMF+dZbJX1fMPAzs7FgzJP42Gly+J2xv3EbFyzsLI96Qr3axNQ9paZaKAFb7aUAIx2rcAJpMWRMUgOkDzx0B0ri3TCIHnY0/ewre8YIBi6auwrKhNFQutOMvQBOeoN1ciCahn7WVj7qxIFyOb+7oCNhAQN8LHbNmhP/kmlrs2+ALvvRVqukqjXwI/x0GEhLBbbAOYdCqHDTmUKcpSsXipLzWMhADGlBjVHYIe2CBfFW03dqpfbliDR6RX8Gq+E8REk1/QybGDH8DLZ/KQQBw/jN2hr8Ohrm1NyyAAVek5nn5DPm666s/MZnhU9apgxsSVjg0xfXMU7DrKkTiZd9as4blY4hX4jiTNQLN+ejOf/0/QaJVl9tfRhu0EOgqQQpHJDYVb+htLLe3i6RV5+HdySvvYU0KlHN+5mLcrbMetISKcZv9Er2BP4vLzz2oQUWNHQh91FAJdJ7/v5vEfjAKfhpwAY3kGMwv3RzqzGtuUMyhqsAsWHXMpFN6/Lx4setytrWlgWPrQtUtaRX9R8452gHq1HUxwJk8Qt5Ccc4jwglkDUSvkOD6+LHrKKVEywcjqfIS9DHTfLREkJzcX/4yqQOi8mfi9fRgRNK7doXQa7aspSAb6KEUoyw2KHGBackkLHqCB6/E9ztKu4IlLftdAE/sVasyd2/DBIAAEO9KJ3/eqzaA3/H+3E9GibQhaGfto1uc52hJpyOx22RCfp+w0CTkteLrsk2efirRh0Vv8JJH8DZwFpJlqK1s7lWmFwCC/Ug+7t/5NHLCfrmyb6DX/1nG4QfdwpqAO+/+/r14PuT02TWdJHSSC/mxCbO2i9kvclwdLstoJcGQI4+tAoiKTMonNzMVoWlTjPH9R4YDwT8DYlUWqUDmFqTnZX0B6nRANWmEKBKQXhitNoxrvk0yJCUGr8bn4FuUN1TkP0429zC8F8gDN658TYXZiVXblwz+WX1wEhCTXJ37sUO64aVvH+cai2U/rhJT0EkscDeCuDcRrwrmF3VnB9bXtVh6d7iVM/fKXwi/tCQIkLxyTF+5pflPvNbu8XK3UV+0TRsnLqxeXBDIQ6NTz7CEvr8ygiIhld5thDOKFpJAqPLuFE4cMiX+2a3uzx89kOdH3X92WOYgInndlApDxXgdlm/SqbF6qeyNz8WtOhRR4sFdE6K4syEy2Lts9+JpIi5dQ7gcYJdY0D/44WzYqh8CmQ7an6X+HQepcYHk7eXJ6UBZYP8fKrXrqGlBNftQifX69NghfM82Sf+Jfqu1Joy2wdfL3k2+eMSGo1Oy56XLLMu93isA/MJNpqPS8921dleOQ1oPafOMOu1/xY1wsnzLEFiLjFsW0EsyCym8xY1OIyWYDYUtg7/syufKVQDEVP+VHTS8jKmoSc/HjEZMUecxlhjao73RGHQrm7uQ/8G3vXgZ9tXw9l994xq1LJdRoNShaWt+xchPL0Tx8pz3bKpn8C9SnuExqhWf2uC1+N+aScwYhpBfxSyIqKKyY9OrzFDLGbtuKqJU72TZNlePpF9K/Xqv8Op9KMALEQx8wOacAQlgYxWMOAbgxd+9xtRMqMXOyYW/fpvGybE4JDq3HVwnm3mfU4FcAq4J6yyqUnHz76BuDWvLIKFl4rJbZy0dww//FHYO0clqJ3IJxBjcKCt6EYYLgguBqgjU1QJoBz6qsIlauwxLjZ3n/KOKZZcuBEwB+0+EBURSPl/5tfSMxkGRP+HLnlTp/g1n/4CJaTnrT0X0UDc6pi2k5iRxTSTDplyOc9fbIxilk4jOJhdM2Ytgmzo7Eigyph/oCZUA5zPdbahcCuvJs1AzFreLTDGOi2hyYXHsC6LySCbACxHsHEFy6u2DE8fGzEN5mHUE/T2bp9rYJnFTQvOLmWCZ8pEFyrAsnXziTeT9eqgtOq5qYG4IrprCMyPJ/Jl3T1rUeoJeG9aJfziAKwpBzQ+1S6MbSI9K0GT9nTJmc8XdQb0y+iKN53rWYt76NxMyEOfTaSW1oe9nFbBRmezqzUDLcLJMalPG4i53R94/udncgvXqj9KCExTjwe93toI64OWm3wHbzycZWdPOUzvoUh612KWkUWrQt3zYM2tcLQqJ/YtCAQkOWKGGXt5pBxDVCJOlgzlgvmPI1q6e/wDqLtpVamH6HbL46sCV8ESOCGT6LPqEVhWLKmIabmrW1yYLHuesCtQUtlCVH5bVzKfiWNYIJvMfg9sJbuMUqcSu63tXXnV1QtnWU79Cpfjr332Htte4vixPa03ZjpGF2+mY0iA9IHCbsfFzbxlxzX8PEpdPAnARm5cZu2eiYM0+9ubECE881AdTtL9NcvWZT/v1C8XMKzOfJi+oH0SIgM0w8GdFKboQR/iLY05sxmtGIOT3oAHGkRVNaceAB9Hl8PxdPTFAHdZ1rQ9kDDjfli0O5lv19fDieqDrSmcmwOoGi+Ce8RNEdp+DIE2+0S1pcDOj5vUE0DngQZ2HQSqfZJcWixF+uLRlxV1Pd8Nmdiv4hF4PLJ/FKOKFS1rBHFU5AUzkS16A6NLhLiAIWu5zmMpJaiS5SDnLZewfeyauHzJuynqnjD7PoPWGJC4Oya1iwqq4T58MscbHSC2nH0cjekXmFy5eKTocf54LlztXtkC5+ttieU4my4Eptr4I6nN7UAYBZhOU9x4xk7p9pUBqBRJ/Au77EBQNSWQz+z94g4eao3pjKHlxjmAmjmgtx1xVLsjMRH4Wp8FJ+kGx5BrY3eHZRopIKCPaaM+KKlnDwW+ItHKR6gh/VAlSXVR3E6ZL2wScRotCH747DGXEfH586oEjKF9TAP/U2kyaBVFJJQMyGmDX1a4WqIoly0BhI6Drklwylmjjxk282j4ipR1QonBVlw5uKV4u8EwrDV2uN8VTSKgBLwFKZi6WfHLQzGy4c7MSoahFRBIZAzCSf9F4vwu+QLHIIKpNvQgVs/IcvYy+HgZX8AEVdEI9EHKbzfyjO5Ccz1mS8uhX2AVKmyNZFQCIlT8pJTLWH+hMyzjPR2hHuB3HHRUBIvozyEdQuLRrpGN2+ihADdts66qwzPwpnLYFer/5Jg/Ga41UThMBCz5ota/lSi1/ru/zOvDGzDkqRnZ/xVaxD4jqJi8uCD0MuQvwahK2gk+w2TFk8dzr1g0woiWVBIl2KZf//Dfab25LLoCfjBpne9/uptUnbvh+q9jm/pEiEoB01sWPbeODRer4s3e6cYKSJoljY3J25YM3e+0LLVRApTwwsA6LvV6xzu22iwlDaPQOeB7bqaw3sm3zkynJ1ToGlXolPcP8ej4LzDkFhjZwyMqtQMUV066PY/fHKfb/jginqjKiC9H/1KAk87pYAhR22WMd71bo3vTg4yLmvbMUk8eeYOmTtxMWQwOzB9OUOQj21mtYbjHMxvIyXldAMgCaGRseVvYSe+DtJ50JozWOdBOrvyoF/c/1ysdXRLDg9+nj59eWCSv33C6fKzL9hHuoVhX/L3NydwFek4+YH3gTBRZ3g6sFH3+zAsSGnkyYJgN9eSMWzge0EBJzbPImiDcwUrkYbc/frI0GOgIFNqIntG29BN44gAUqsv56WHsd5eS7VxFgKreger3BVg2LaR/CWQaFXcKh5p9IXYgl6otH7Mk0u6VFGKyudpSwtaeNWRZt8QhoyKiyj2QCJx1unAniEi1nCYLA2cYJ944GrWWjH+rMNU7Ni0Z7T1QPUPHtyIvKjQRxwqHDe5Fx8tSDKWufXVYDRHaTxxnJARFdidfmFcpNuRDsRmHUiBBaolAprGaRtfMNVTnU3dTt8nQYU4pt4YF+mSiyaipkHj1hWcScDyUYexgJwg185yBGRivDmwW0jz0kyz+8tVuZe6EpolL9br+ugY0cSrd8kXjSVaBTvYDjDOhhgAkUElnSyvPVxntlscOMFLGCryqBjxRvseiRlF86pNvnm4Y3e5bl6COzSRbHtqoWYe9BGi8q7HCxps+46WLLbB17u4/sTVmW8h1rV+DndQxXNm0y0FPU10+WaoX/yWyQ08OqV3NN3pQuszn6xoYtD4JuEpxquBzd1Ljrl4Gj7d8BXF58hHDZmnOUgISE7em1KOSZrLW1b6pBb3jkZ4Q//sV6oLKwC/LYbuIDuJnNUgv13JDx86AZKVuMAG/8J6/yyrw+EEn+U0MWkHMa7cab+ko4hHbBaDmhkx5dHhs6SoqU8Qg0fEg89VCBMSQIqHdm0rwuA+jMJ7EfhR+kXPFEf1M0rdHGeCmHI6lI0FA1Wjy7wEEp1hmo+Ll/g4nctc6U/7tZeew7+4Un3E15l+TBjeLGikv0jWeCK108VyAbHfVBxVndDlwTyCxfd2lMqPYP663R1dW3o30kj2Xs3Ecpe9Wlyi1EGWETQBT6HImP2t4jR+ialQufvxkBgSewhqfe8tYJk0C6zdH5IxhxzICUY//8DZf9TRlV/g2ooDmUgChx8ckjBVJ6wh4Sc5+MzlfnQ2OOEdjneHLmDBgVsBdeg1eQQxdpzMdW/kAnTf8hnYE/nfTUJkmOjzGqqFCcHXJDAgukXJMHMuMm0+IzW98wKYLkH+icuP5muCouV6Re2rBHwly9Z2YjXhI/3m2LJBBYtp2HFO+gLZjetjM0EASnfwa42ZG9XZsjb6jd8eYifeT/UZd9Lv0AabJ/zU1I0D1BR9bgGln/cvffptp1Fthbmf+sSo+62668ZXUF85nYiyHLGUzFSQCkXpk3FsfG0XAC/xDOJBeP3xTCzF9+RCkvw152WwwSgWZ2jjwOoQcQzSdi9qUf9bOqQ20r54JMs3QH7ywOL2dk5f4v27So/7/fOBs6wSZvdyq5oAb2tWNaRO1tC8H8tF/rxtGwl98Wx/O49aJiMuqjD7irkwVlR1hYUWZxHEGGj30AZQFwoSdevKqxjbj/SnhquszwMci1oDaJwuTtPsfwR/UUjbGAkEDc4hGMRB4/P+CZC0PPtmWvciwbNQoJaoEnpLWw3k58rynKGQ1BFHGlvIU7ZW3ieXyQaCOQBWQw1/bjpD6/z8mIOZBAKWDEqzqcxujqgqJLrFE3vE6jwJjgGNrxnyPq6s0cQCNewJavcbVl58cGrrijCWdnMS8mkljS8uR0DFPQHgTt5qMLhBG6xb8z2L7QNDEc0bHqX4rCUTMH31kIKIlmHSBIqIxZl5JkI9nxYTuCA+s+kmKCldzHwiXmsELq5Pm/QvyZ6yFn4zTJpFqLyX6VYFlCKoAFOaaXjEdxUGE+5hrzG1ClbQJ+KkznERblewWxs9EMGgMGnPV022hsTpzmrv2peMHgpm/ndLxXbnC8FaylvJMNQRB9T8aRsI6A0Ej7RQ87qFgWLvApqXGk6vdwLwDPtOIGohQEQZ/KxdERDSQrnxhumS0YisrH7Hl6eA55qJJqBEflg5P97Sp+1jLkPlHi7fB7aWlsPM0DF5kUbD+2FNtzVsmGrhVGbJC1Vfxw5ErlF7sMfPZFcLUoBA9OQLiXy8fEJD5mQebzFFUZmSNevi7j9cz+0xOjh5f+Z9gWjNKEazYHthpYieYLviJcfmCSlI831xh0xD2bECTYr1wETuHpWHxkjmM9R3Cro+fWuo0hVpk+M0f7PfL4mILulKuN1xtsOg/9ME6AhixPsUMFrXFb/CPaHYPvfBCtWSwh13vFahPysJOT+UBWYvvIDK4UdPhIY9EHRlV0vlMpw6SC7Exwhiu2s4lbY3mKWul+yoeLDY1r4ne8fBPfMjQTIUoTqgmIK2B82mnFFwzMBXMfBYL9Zhr897S8rylZ5kscsuKwMznef4KWnnG2O7f0Tc+4/sWxx/locJ0PAO8Y9ZDdnjQDW0qDHppUCbxdXgjAmnT3j96A8JNqPCHN9fsNHk8+wI7j58AePZ17QGvf9Lh/eaMJ6Hxbvkmtgt2Pxrp4hoTZYMRB4ZJpSDwfqM3R9WIpLLMhdQxB76Ws2PFaV+O7M3buqrb5QaUodNxVcvfy9IztvP8ARy6LrpLapI7bZzifklw+mGkfqWMP3VMiPnY7IlKHJbepGWHQY9WGuPtBixf+GW1AKBQogFxCOsJUgvI4tBJTOsuUSQXfZyvozInpMck/Dd7lxonK9/kQvEpsL0VuRkd3Lkax/qr8KTTQh0Nvl0bOmfCT6MgJbBUPwtQdAY3AY13s5SGIwcTgeTVKshA41+J6mvgzrvptGFv5JXgfsJBdGrCwUtPG8io6/9ndFKjTngum5g41AQo3bBXvm5EsZ6B0cvlsUHd76Gf/A==
Variant 2
DifficultyLevel
543
Question
A group of students were given a list of five marsupials and each student chose their favourite.
The results were recorded and graphed below.
What is the angle at the centre of the pie chart that represents the students that chose Opossum as their favourite?
Worked Solution
360° about a point.
|
|
"Opossum" angle |
= 360 − ( 85 + 91 + 49 + 87 ) |
|
= 360 − 312 |
|
= 48° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
element | |
type | |
number | |
total | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/var3.svg 300 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX1+ojZVbHsxGAMtM4rnaYgQDEVgqlL9Q3nmViEYE4+mjHd0fFoSQeRGpx4NV8NHGy/D8rV0U5t1NNlwcMTS8hTLAx4O3MmMF8H+ccEPeqV4r1gfLl1bg0/L2jZ5SxVStlDNy4w/vEUxSZVutnoLL/22Jrs9P01eD48FEFHFhKIc5EbtgMG7iHY9Hw9iC92IVyJYmN7NkhmZ1rg8xMNTqYHzvdsFeLu/wKIJmBgaXzM7whb37sdUUbZK287W+h1uB606KtPzrDiXw9X8FuU2NOTmuWvbD28sOvgreD+nZ6wQiubmLOlREqgOhpWDPNvz3XNTAl6umFldCOeJtinkKPAgegig3b4fZy6VePQv1yDOnvi8DlYFJgd5Uq/3WqSfYF19qps1OgWRQxLitTR6enMIlVh3msM1NfzbQzr4Bsn4FPI/3zt4sn2uGKqcYqNBHT0k3YPMOWUCo2crPnKjzPxkq2KA9PsEezW3uBG0Yad+kK7QY4MJxS/PoL5SQxBpW0m3++nRtT3atS1PeaYW4Gy4i/ga97HOIMIzG+SUC1ZIL2PSiG207d3Fkwb+y2sXbU8NXILL7wrWLFGaTNPw+BgiszI6RqIyQ4gL22TV9uBNjwgY6SElZPAUf1cvilpBZ32qHSzjJDZEird1JsNNXGYr0LoL6AynqNp4MPAwbQH36Fs+bR4z93ZERH+r5TvG0LYReWi8sO5j5T9O144NZCHQa44HTludgQHkIwpKtZZay1svHwe6bMkvrTME0JLmlND59MB1t0OaLFo1bRvQNSa8IrdQkHvhCvf0BXRi+hx+bAAMQaq60CrRPaDKSpmdA31qNpuZ00WPNbOxCNv2yQJIIAwiogkGgDHLR4ThSrcCHJKxyElvf1ByCNT9LJ7lvjVHmwRC1G6rtefg12bCor7qTmAxRyhPBpOLpYUSiu5a6ONMFtuBjjvjO2nyz0VARDBYsAuRwGnoCrRjRxV+YQygcy4JMj5wkw8BjzEWMSVw+CHLZhDP55VKqIGQBgfdWOfv15//3WobCRytk2WuB4ZN7QBpGCn8+ZQieDLvq8yC8lrevqf/SMHNx0IWfJH+H1pg5VdxVhVEdnViYKoYMQIhi+sOXjInCkUU2y+ylPbmc917LjzofrdGP8QjE2zJtOZBloR/cdonrAq3LEzJN7vx4xDSukzS/yERrBs7/BgtCgwUGWvM2Nv/QOdByYyBPTIdXfftfHOEsPFrYa92JN5mT3yhmRE9RfQsj/Fse4EPNT+qwJr4aMtnptN2Y4XlBn/jFzy1MWkzMDAVroUmsnM3gQY5efz2LVPWC1emcVIon4FN1twSzAoE+jlQZI/gViJ98BKPH+XO9DKr1QzPeJCz1p9YJSkshx4bj+noMufK3mnLEM9L58h0LbUSCBMZtxBBlejoqbt/6CzePwtlHoePndMoyr/gdEBXkmXqLfIq40M8f6w+CxDHEOFGPgdiu4GdpmSNqxNHPUUbDVzxl1rbns4bmhPnPu94U1siiGLRjBsp07E9sbI7twZSDlju8qrpi+M/7lKZXvDmT/aAmQvxJp8WuKtWRSFZIlR8WqNf4lBbJgMiaZsWA0efg5nE92VP4Qv1zG6RHwlF4336s+wkgt3Qpzn+1QcYjBhQyjw8ET7C3iqOfmiaCSq+Sa1wPqasc106kQCbWJ6beVk6bKolJUf2ctUIDaCtkKWdXOPwg/293BBoBipKaDj5i3S37hdv3dmI5LPL1ndzHo25tGeYFeHDUDRXHl1ORSQAnJ7l6T87+aU1VhzxcbAHpG/RsrmjCjIKOG2//2Eqax6yeKg8xNMR4Umu0hI2vtLFVujvGFmtUIfIORUrOSww49Jawyl77q/+FAa0ZWEZaD5/tyMw9Dl7r1BSb/N4m7G5n1PVPx3avzDYGLyiC2OYCn3gdYFEb3JpuerTJ8VDKaP4JmzmCCU6REI/m6K906wieVvCdA062yyPtM0o9eyFO/CxHAbm2au0unc+6otDNbhF5Jk3Z9vfpZujFE9+EcW1MxUmvQVc4N1qoTeeevgIdbr2VD9YJ+kVcMQbNtWZsgnPloL/JRjaPutyc0eEr6pHBppWqSul3zsz+8xzYj6rb456HETB7YOtSokTDuOmoq4rfYvTHvGkJ2ULwtTTUVTEfPptGtKAKjstsAS0igmkZ5ViNYIN8maTio40MeuR9CqOzNx+kWNi4HY0/+CTQSWLuvtHR58Jyw1kGfZkwCrE2aN6S9qPQraGXTL+z+N6yGiOZYr7Zah8h8gVK/34UP6W5LdKbYprw33UesNXsbwpDqGGUz/b6HzTbJ6+aYHrOOJgRUKJxwGr5Onko3KA8BgnePj/aE9XcWuBeUAWjdsPJHvZy/F+anWOdmR6rklewvtGMA3b+Htr1efkJNHW6vSbPkiBlU9xXlIRYDHqM5U2Y3HbW37lwIdw3KUIiiFPJRClKoyrm3cDGobbPIrOxnzwCY2+BWvNEoO7hdpUB9vG9eLfuhjo9OI/KuzwcLHveN1V52btRpwsbtnZfvhG8ag3rJySDA6fLccU++XC+ahPSpNpPbGk8sVL7YIEPX2fqJkn5LL4RPWhUln+wDLg3aJaQt0q28oHXSBiWiu9/sealoUh7De50e9Yue4yD/O8Bfxbg0XzTB/YXGR+XGLPQ+LM7ZZQ7IvcA32hXm1wFMWkMZpuK3PLxjraGjwe8qBIcKbhgfUrylfeH5hLl0FoyMn26P7Vxp6PcJ/BauI0sVd12Lz4rAaW5Z49e2HcWN669k05iz3aprIjyEscy0D7pMebeEQXYQmCW3am4Bphw/PxiEm2XyGwJQqOMGM2gQGLqtJKWXfXE1XF8a2jBzW1rvcjkoFe2JlI/IKaqHiMR11U5N5q2Cd9UCP3APG8QvS34f+AYAwD4vdy8dT2vB7IzdXNYLXHGa/q06P9UsGh8RvQRAyHfHVNcC4qyTjJWWRwMKM09pdvr1odBf4flA937QmXwbdY/LAbWk8GRx2UKB8d164tAFRf2Z4ikqaTCDhUKtE2H2EES38IOOlLekwWlD7hJZWDraKoyMRcAemKta2Og+DZton65/AcObIsxXWTi9jLSnetpDW4HiLNwTLoQKzKjppOeQi1Np3+mighQvTnl3wOGzCh9JK8BUa4ZxB6+SwjgDIi0bRGJQCl776YQrE3tN0V0B/kXnl0Sm6jKIAZFCK+ARSdL+P4hdGEftb2GTIJ6YtAeIrZgg1sGIVa7auC7BEfBuET/Y1oB2ULONLgh9ZqaxxEhhKYS+AU23Q8rrwlfQrs1v+q95pPTLxA3/C8B0dRa94jDdIMkeEloK/w+g2ApVbiRV9O799h5mxJJtLcGgttgufwnwAXoFUkNtM/Mfv+I9grCQVQJ2QXVXIGb3bXRxNSXk2qI4Xck+uIanGKzXdZujGWRQTq5o8GR9Vz1nNQ/14kPWH0crWvyRC2+1MAGzJaoljJ1asxw6y8yNgYVw0DEomx0as7BJpnVkaUKVvfgQpJpnhP7L4ThT8vGroyD20aqUej9ZKtCe1+NoInbGjzkAY+MgIxtyxF731YlqxSOqBjYP7UGu2meNbHw+rRYuBdQZSzN9TrdCI5BWP6KewmWxSd9cDABUfySQwqU0ETDeIDwjBgOFkJggPThYc8H5c0mGzBH/Ky7cSMSKjB4OMBz4nMr+dyS0+jFegnP6aQYM1ezZOd4vZuHY/Bad248jXXjEDPcSeirdKfchpQ2nP2nz/NJ97Qk9g5LHRpGzgzxEBxou2CFRvVFs2zr5q4PlRdhbsEPts52qwLShXnCoqK4Wk/hi8NBtBApjPc8G69KgV+cefRJjEegOHAuP2aJ2fATsRrNl26eFMrQJVFxZ5F2UTB6j4tBCJYiO0brVQd1GtRDJLYh66p+qNubTDdi27862iHSp5Hp1K4kzSyTleHia0xOx8dqD3S6/XLOnOuJ0f0FEdObQfSpVAxmKxF5xjxzuJZs5iaynEIflaM/tYjjk7ifjEsq9GD3H0up+iUuYeL6wJOy7AREcm1wcj34E7GdiC+lPU0k013CoozktsGcdXdwXP1FWAldNeyD7TxPQXtZyZ4fOsgTY9qtN3oDqlbwNxyvPfn9taSfwBEbsk2I0fpilu1Pyxbqrh4hR9UnBP15++C59dA/rcshuzgCcqfd/3mno80StWTTwdp3X7+Kcxf6AeHooRWCUj0aZoUy+TDSKRJGhEp1SmDBgagdI0YrRDpM8ViDQKHmJmibj6Jey0trsAcpFgBVt57BaFHIQW30UestAP7Ct1CCT1R0r/WZOOaYwYPVGpLKjnNtX89dByNA2dUuDh0MHeV75fVnRkjnqEiHzkHoG+5iPTlSL1VyVsZvdmTEe/2p+XMFm5hhZF0qtR7FNzWEUtttnLs5OY+BJ7C3in47lLYYal6lt4Ty9RczBFMZ1QeevC867w1cA0T8aZ8ewPJIBe2Sja/jwH/6tqfrhBG5XRJ6nvSEuvxw7uyKC3l9IpUFI5bVXHuc8vHnfDP67l3095DFhTHJLiKG/D81OG32JIIguKK84XXW3dFX7pT4ppgdII4xUw5788kitjz01SVbqu5QOwEKgDpkpFh4aCyK0yUn6Lf5CneWbYuCYwqspxtNgPOT+S0gn2lMCXidVlP3g3pgAAy2UzlqyoXhshSALfNUYToprqA8vc3hCraULAL52KIb9s52eBs6gPSfTDjoI3kI95BFdSlHOVYULaKqvFGLVmTQ7KjFPkD9yuenFAzNvRgl8On1tRjz4CMXLWnTCqrP5JB3Wyzev+EKVpn7aQLAROauuMsoz30P0En9P34qGmkiuZgCJIvS013TFzMg3FdgOaroEEbaOiz54Q3HSEXJe7+0NtPB1IHxIypz3titF9UlMqd8vU6W7e88Td2u7lEyHMEZES+Pe9HbNEguo0SkRFi56uYnMxm1a5+c0heRZIFI3BXJJWMW4vPK+iKPq3NAePl3RuAqp6hJY41zDpXiqn4PmeFJdgw6L2BZEsRtUOuikNXDdQ5ZVp89X2lunRDJ7OjY+X12n9dUPPySy2NKaKAhSx6GUMqb6RVId0tHGyBmDaHTvM+WkaND/kR8ZNg5WTptTzIgpQ0+nsX9gQ7YUpJN54QUCPFX+tvBkvzl8Z7/TJNw2zkKqJw86ugkGaoMRYGeHkZMym+hb0TRs6fP1MjcAdJ8ThrvczUQtKO5eekv1nv4JBr+a5TsGLDZ8/mC+9nSjuq8rBz/QdPIXqlcrJof/mPqLzJ+KSDS3kv8D98U8Zrh2VJFEt9j7KSXi5wGSM7FudYuSJRD3lw+OEx8f+pYyIDlhNF4mlXZ8YnmL2NJGBXEwQW2P6WsAAFdkNyySWOqTSAg0M2Ye1NwHBbQfCsJeTxcEVmgjLu4FcjJsohwxN4nHRT1IJjHRHuwXRp3H0zDDJ3Z41MNI4N8vvhukO5apnzZgnGZUcT2jFitaTQQ7hYVrDkMw95LalOhpxkYX7s+PbBAzqNm9O/L0U2HZv15FIDF2ZiYetJVxbGwGY1HNm9i/t/To3qr/NDetA17z5dQcLBW07dNvFsUA1y+Ns+tRNixLMG5+wTjZKCzIQSQ24fwvkw0NF8CaAllIlDw6p0yT8rlqU+K8h4IBUoUEK9wHFhth4GYMigwVrPOFMO93+aSpTqhGNY/AVsgKM6HYkc0UelP6VxfnpIXmS72kmrXSnP4niVxm0Lr+avHK13y4MlwC7kVmiwMwCAH5jn8eBrFg3wgZp+EclVRVSyJAtTMMexltoKiXN1m9VFaa1gLnJSXb4kh1OVQJsYxCx5HDi6lTIhWwYIuI+lld3+KWLX93WqTDxXTOwzBpw8jEEW2ikrQScwP7I8D3ANEAIkgBFX/TFixgCQH1SMmg9TxZrK1tSEylEi3OoOOnBF5/yvxAjRnj9cqOF1Ly/Hkhv2gpnfSEB2akVswbvMYm7hH4JryktHoQgSu4kVMQ+2sgn/4OXvpSu7U+MjIxGNDoKjjBC4KZhQ+hGk3DPbqQPMxpUGFEqwXU1zuFNvu9xKmOcElrC4meyxjb+9dR5tRgNnihdlionlHQ0Ruxp3WdwwHNzNTP8InEv4+GDqXLKT6u5os+aopzVl4K9Q4OW5+N3AaIYgZ8NIJJGrRV4Lde37k5CxAA4PBhjrj3xLyAh4zJtvfVtLj3pxXpDKI0aeJWfwhiJ90QVNy2x+Yk5Jj3v770B+iscSkrQHUTdeaCW55WrUun6UPeWRRsD+vMIhfwI9u4TvD0EJS/n4oLl7EYII5Ou+zhIsD0KqDLpNMtTJQXFSb61ZYkH+K2Raa4Bg5CxLN/GOI7faMd4y4Cw2pbl+GTTHlI+SaQ2fYbc1FBc3dzbDG0UHrLcu2/KqHuOyZQd3hiqAV9iIFXrIPQOri2cT4TGWCqX2FlVn2a+e0hBMDQofUhP+lfkPz95S/yYSsLBjQu/ze1ldg7EDTMOaL77tRPe9A4ZgPw1ANRaEYPUqS5pj5p8kt/t3mINBANW7chHpF9ORZ48R3QWewexZ8CY2BkZZyc6fW4j4b159E0R15KXyY4ORGLYV3ZpNmnUi9SDnYolERfpM3UMmBpy/vlFyjVBwbveQrf/2OBRvPM18I2ez2qsZLx92X6OdLcWBbiZ6xhWv532qxsCCTdD6AMHT8/0Bbbylbk223TyEdBRTyXCF5kKntsjV1R1oPU4/4wkmCQ7N3NEFT/NuUYJh56MwzXR8f2ZcI4rcswSUVU5WhYhpWJFqm9KsqWnJRY8Yrrjywoxn7cj/mVgi+DsC2bMuASlo66KnhLpHIVfYBcU6oi/XZ6FlOJt6Vhmuc+h1gpwK+ispayyeSjGG/19sSn8moxfmlUrTmP81LbOYxVpH/HwK97mGMe/7MXQPucrxtiyj+phtAotZ7eziTPJVZzVSv6KBZIi8MvbM/nJrjotzzdjG5cKrWdhiXPw7xYLKQyo7gfGD/OAy6H+Y0CelBHiAeH4ikolAbD3M2e+ojUA==
Variant 3
DifficultyLevel
543
Question
A group of students were given a list of five African animals and each student chose their favourite.
The results were recorded and graphed below.
What is the angle at the centre of the pie chart that represents the students that chose Giraffe as their favourite?
Worked Solution
360° about a point.
|
|
"Giraffe" angle |
= 360 − ( 88 + 72 + 29 + 90 ) |
|
= 360 − 279 |
|
= 81° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
element | |
type | |
number | |
total | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/var4.svg 300 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX19/As8lAR54YU8d+KEdrkZXRcvArkGqNFsfv6RmD6k2YUSpZZZtqxSl2RAZC2R7DmiTBbl428EWkpcBvlu06JTrd59JD/WcglmatUjZ0B7vF/CoXR5SlAelvVARejFkQ9LZAM5rv5HMK3EtSId5blQb4geQCT6g9z9GTJ4AtCKEBqeANXa/JZ5LJGWJbWi9hMBXosUhDiJkfjYRuFqzEBz+uZZtsz4UuF2Y0sg7uizwb2dEiUDZ83WjADkG80BdOftKi/Kg93gwHhlmyW4gV1z+4g/VxCsc7uhTadS0z9azOa16DyWYXUQyNn/bql9cveWQVKy9VG2FvTGZZZ8aFLGe/vowLQH0t56NUD+80UGGLytuP+q0ubDqy7NR+qza+4vwRSvjP1EM6ionyUCRnczDHHOvDEWxeKxX5N4YG5B+kyebmqM3LZ3oJQqTH7qFyt3yuwx8mWs3x0mAJykO8gpSja+7CpZrznAWfSqpgWhdGGF510ramFwkh8VXzPcGyjhbmHXj2RZgNWXGWXmyb/Ec4j8cvbcP6JidTtNXvEqXfPJyuq80eqPOafDyrlvyv0ulbpj18c0qnsu1iRTKHVlZFPeXO23Iz7b3NBbAKGMNcTwc21P9Uh8StGJc26/RhxcydaGEA6QXHA85H+1caxZI+04j1k8nSPASAVyvKSRjqH5UfeNoQpP6YQYoIG9sKi2EWvrxK/zTJSDfiu4UjuRt9AXpGtFdW0rANIU2KdaPz49ksA9/9zEM77J2jTIGCRLoHRtDT3VG3QL0zNPEKttPaEP6pYLZXGP1TmBau2vOxlGpYJTKKl9xHO3WuRJZ1vZiNXp1707wr1SQbvrNJzvHEWlcu7xp9q+/iVeV+WD0jco68O3I1JKgTsma/Is/CGPosBL+KiLzd7a3VFoMVttCuWYv3J7ih1qJxOaXVAKisZ3bqbcCuaT4BHfR6cEX2LdowbypgMX93+xq3hs41AuXNqAEyC44lSv63TK8CuGYp2q7giGOse5NHQJRH2oH2TGzuhFsUezHrz1W6AglaRFZMu/VTn5BdF4PVCre5RfTL072vlGGhLgQGW/d30jADzUwjfDyH4exCC2t169f8bJA83QfItOjjXRsOIBjUzbjABQiP++rgAHU1SbCFZUjqfw0WrJm1+qvf8jh5HrMg2N9F36MmYfvhiWur6lk8grSCAqKm9js5glbv8BGmq9aBYiIEVGhrxSuA/tuoJ95a/kW0il9pnqDV3Dz3DEl9RLwAARnN+rvqEhb/NDD6zUG40HPh2koRSn9aW+r4OFLVqIKkXIKAGh5UXRx86cYEhRyS/QjlpEpqvbnRQiM5adorz9vYmpHh4lZhdromRSYogBW+Iouotn8teO34Pr2sffHrC+t4UXmGr43syZIuJhoy2spETsjkQDtOtasQBCcS0U0577fw+b/VR2SmulYuixuh+MsBKHcD1VQxQ+4KcmVj3iCVaiRlr1K6PGOSrWNoI0s3bsLXyBL4AGZGNzze5FaEFcUB78Kr7PcQWyKttk2DWCazWXeWJKpQGhldK1rADr1esZtHLe8mlnLf6TtIoTOHhO/IyRQWhOSEKmQumnctcqHQm0mwSLX1ohAHzl00vl/uj+XRTFq9/Yte15hMnENLLalJ3j7s+sAMf8UAuqRqvL852J8wIFs/nEGcneioRoy3La1XaS47Em5/bE9DNO1ZgLAL/ABBvmLKv7ocs9uYxC1V1ois934xb1Hd0402+E+CDEWAiXwk9euKhX2v8A0/dhTpX7JNUahpx5JJSKDiOGF4dq5dqxcwer2KJOtn6nPMiYOeQP1xNi2JjZ9rNU2EFrZM24D48D0l5sfDcBXVdGoMiPX5LesWQPXsgzVercVS1pXX4H5TkZgkCDtKD+E0QUiBNYrDjOw79t4Xc1CrstuRw/MLnepHapRj5ic3FDhPqsPUGhMVSui+yIZncrW1X9NkWJutKkP4wunxE6np3DjiO9a/Xxw/t+3a2jKEcRhT8q0jjn/jK5DBa+UCWksfcuFhgYT5d+n0CLjD/TFL2fDKe8dUOYf7rZRzQ3sb4pRSQEtJNVXra0H92OolB6EIOMEmNkmoIUKWCX/ZBCzfzK31byvkd9MKigxdGZf4I+woRgs2fkQ1spueB4hwdwHfUF/pby9JfTQYbm86ZJfKG1JgTu0qKWWKz3tL3MH80ZMX/mDoAQ6t7awSBBniwuCO6gZMR+szGlrV8kjGj7OvMv5v7IWX110XGcz07CeZ5NeKbKAlQnX0vrBlgQ5k0mpQN4a46HpR8BOV+yf73QznfegPAwQA1z1agO2P66AXGE35YYi6tFGbKM/G8FHxOxTKlsEez+UmbAjrVvnGL+ErgMZV3Tc+QWEOwtquQqHokuKxu/Cduj33m8OpxRv5NH40qUujjITfOys8fYccd9N58/X+YHOakCF+tR7/PKmeLcskEoKQBgcZmDrapQeXsqP58CeVDtaUX+Y54k24GdAjClSn9SiIJ0xXnIn710S/c+vDOp/KOcBFsW33F7rF6SK/4vF4xYXWq01drQSAX0jeuWA8V5TbKX4tuK/V/E5M12ASQOQgXA6mUc/sGhCVqkJO2ca7TUdWyOm+AjQwrcxQ3rV/szcml4+epnDgGmc8kt6zpJZ3s8wUVRGTxes5M6DKcYAsoKAhYW2sMg+3pIHfxEeFgnvlvLmCTi5wdnhVwXNTXbfYtJvDgvkreigM8G/dwPQHS6/EU/RUEDVK+GsjIqq9zRL0K26nNXW2/Xn2p051YO5+NvoTf844Dt2n61VhwuJLNTU88zndVklAlsQJDQsYQOLvZl+h9Le1Yyz8k16O5sq+yEIn9P+maeBNRYFZCiHroZsLxh1va0dBQ2wC2mBRe/7SGLHLGwq68Aso7cMmzNMk7Ndqap51KcRd9S3b9qRFVdcojdepCQlrAsakd2aBJjDWY7B1eHx05hJ9k1Ce8kBMvQVEFjnylWY9+yJV2dHxWugMy+eP5W563o1bnJShAyWIpxE0odOyoemx5wv3/rwyi9TkzxO6kvAUM/MaKQx76n/0ZC1VOvwWf+BNIk31qaDzZwrMF7s/XobUQk/eH5/EtrpKZ6JS1GVsHOmKN/qOLhwxv8rgIZfGIitIz1R8mmRmw9tYs0Kam///zIv18i++1Kfzooyb4MM0xVp0IsH87lCqm2PzMnG6Xz8zFABfkxVbHD6y4xr86e43eO5Tkn0b3zMptFvLigrEoW07NxVKTULeh1WUTs65f8tCesPkXCUiF/ywmLkkKWBlzsWXhXI4mPuBHKHnmSJedhsmedcQUcOz/qfaM3wueHOdcAt9Wu3lab0Cwqq5MToPpVHHB8PhIav4wGdRSvbjavpl8k6lI2GGRK2zCWxI9+foLcdQqSzZ4taG2Mk1ojpQ8N0JTYY8zO0tzCFaNAnf/ACYB3o3NUMSAqepD05e4y3ZLEhG/SjSgqNVwqeggBkmADsmbkNqMG1usfOk39kcnEJzEEfPH5vj9h7wcz10I8hUPS3T897TqNmB/pCD4LeBLCRzkD9/2RMOP9o4jH3ZsmP/xCvuubCTkTtT67OtT0UviniorPfSIQBbNjuQh64m0I7pp5gZICVz+vJ//DKe/NLSp8W/h9VDEktNcbxQUjmAL12HWqzo1nhlc7scRNGQTviAAdr0AgQVz31hcfk/gdZeWiRwqbkjXiWFmRj++3CLi6XKLnhc+Bbk2INcfuHJqQqkPAAoJp7vKt/ku46uORUeQSnop+974ggfA2fqdMaA442n1k8mIuV2zyTAPIOzv6jXxNRYcT2io5t1v/dST8bQeclQdYnz70Xzz1F2kVgicGGIMWxTlUHy/GgjnRU6r5P4hUQmxqWWHbzWSTxGeNeIK7aYaAKy/j0q6QWIPjoGtgBcLVjJO3hZzCCw1fg2UPUcR8Ep6u+BQkpQ4utVaH5ekpj5AC2SA57u1SzRTPf2CqDNvIFMbs/4ICHlT5iegu706+7ksbpgeHHk9BgxI8LL3N7s1Ueb9Y2mAi6PyrzfWMAE7cvZnkeBVYl7c7U6graM4TTPOxC5ExeJMacM5bUP1ma0rJA3USST7fH0uTCmYYd8At1Gn3Mw8J8i82Q782DyPhHQFdljl+p5kzdkbfDyCDj3NmRGJYUgvruFQSaVTUtxSSJ/sWFsHYqh7GFMZbQymhyO7g/HrVdkBVaGnsBL/IPdfvLYjnz4jr35nDQ76OM8OHdZOYe7IeOzQyosBaVKhCDdTsZdXssqpIsU+dB4UX4F557pUCGZPg69QYNsbhf8oOG2neSkrftm6qn1GafS1h1NkKDpzem/tehZFm7qd1Kn/AnVtyTml5xcK0xJeBBRt1GYoSGrdNpCXcF5ihL5MksaNQSPhhbkAiqztJYf4XoxeOSndgsI97QprborzVEG6z6IEJgOlk8EtjtgPTGFZaHw703YMo3zP/wmeQ/Z42TcLpx1Y6z1ojqY+TIxb0FEd16xyu7nKhxVcA7CJsZclq6DkDO4VuJPszX3eTlKwk0aLWLBTVefvQ20+yQ9ZRsf9dd5k3gFGp9TbwqtR+2aCtu+VU+N4QJJILy6enfy942lTcFEYP34UHDWkjSLKoJdmI8bRApwT3CjBwZPOBKJWFV6/nEk2/+wpmbNCL8KnbyWrwnjrLDKAIxzvdfAdPHkE07Gpil/W8+/K6O0Wmjr7JPCZ8qwrhJzc54GwJKtxFn1MZnTzgnf6TRpBLaOiMCKXEDH1Dd5LcLvk7P9uxsiXUfWledznAUCZfMmCjnB8tz/SiPRIwcTCnz5RRwvTOurdEe2+8UWTlJpyElkG17n45ISoX1YJX0DP4O0x1xK5u9MsLp5v2D1vQPfpDW7u3U1eh+Q3PTmYnWI3Q41KOif0pM+AUBoxzmNnvKiof0+X6d1OMub7ZNIsjWnANWyz4fpyNlAyE0SZg7KatPfSEz15i7ohK46OOywlQ0Op7vxAy0kSCApEDqbUUtaPgC2sc9e9K5Q3XMG3HarCHO6kgeb+BEx1O98A8cfakPte/m13+cySMSw/WmnC3TNTqJINNlHgkZvYSkHM6JQJBS4/QFt1ptEmUjgbrTnwkKYMzhsoNLN5vaWhbI0oGq8L/Xjd8aYz6r5OLgt6rWGoV5023S2CpzWQG9OX2pXaUWT//St4VlyRaLia0MIHz55eXJhvJT7cOM1Ma3lxqLKrif6BSxNrQjL1JxSjtGpu0HacR8WniF0LRGF+pkUB3ExYT6vwxkjbQXsGiAWIDDTXxlxDU0SIx36NiG4NIQvK2yld5h1aLWh+/a89V/5CHwd3LDH9HIUs59V9qmhJhDMrPGfGQ0ny+axrTXS1ExFLgKXdubwDKfOqyJR02msRi/GLZM2FjsFLPoJTlVPRhc3XR2AbAq9w/GxAiOojhMaS9WaoL/RSm5aEfMED3JFTbCYikOuwGFaovlEKHiR7+l0EDb03NajAqp90NX4Dctdi6rr8sZkB+aqtn6neYjhX+KdTK0qZYuPICOdlM6wrzyDkoCJt7D/8EpXkxJWQ8dgQF5dTx4F1/YKmqQmFVf62lAmef0oKzptzTLS9lU/Vn8BjtePzFevsqvgrv6vbgDisq65H34eu02QK1TyeAuaiclYdy6VzSSruSkd1e7Sx5SD1Py3URJAMw1ZLGaOx6ubNVmoa41H98E5fQFomyuuDlOSYVIiP6p96HP2Jpj8gyn+xXbbqJqGxnoB595G1P8aFwRB1yhQXplypj3L8u7Yj3arq0qdNopLEqibBkKBLCyRaGAHVSZqkQEBKzUC5Avz6He9h3cNSe7c2muUbPQcYVG7TKygwfkhOk18A1ee2mbmEPPJQWVNamtDc0Pjdb0xOn3+iI5FvFg4Z/yRXvdk5CtrAOjIECQPG8JSd3u2c64R48gbPKwb7oLM2PXy/vGpvpysCURr1/DU0PGRH9JLjMMGmXQk10vlskFWsAooM78073UJPZNIpM0oT6ikhy6jEFvEb2fe32Eeulkk3vJqpTwoOBCXO6KPm9EKAdqi53+yI4W2XF9atbepGtF/ZEF4YF64MB219ug081ZJ642/UGstWF5L5ssGRJCQPqMeALEj64mFrPyGxetGA1fATRjaG4/6P9BCHYvR90z7RJRf9mNuj1meQL2E5fBSdXMnqj2Trx9z0ysdMnCHzx2ZJA4Djg8lZ4HL9a6dJGArylVIzmptHLQQzYHuyaNUdwR857T62vXefYFqk9U2IzeALPQ5SZ1aZP6ONRrBiMkTltuvwLEw7OMUmhC/1rXmdQUbYoHXFKprOOORaTfLxr3+7kX07cbjkZbu0/IIFOaSh58orgBIclrWfQd7N7d6fmbIXe3DX8jLRcpOzMZHEC41dA5mGgdNV0BmaoKxJ6SWlqgEC2R3FSccs5WsscTeO5LJy6A0db2LvzHz2mRVE4UohfTLCCwGk083yahFHBw7e6Rua9BM3JSTfY7noDbuMkaZiqV1ktBl64hx7AjZh8pLghU+CXOJa78IfNeiBDmBQX/6WIGW8ivN7WnPt8+ENl5pK6oCXEieltPqSrhOr0AosSzZVpXHSns9rhrkq/K0dVxY3VHWo8r7cIYblCkpQAyJY7EDpYJx39cppAAPbTVRyvDI3geHf/Xg9kQc5He9OwmklIOmaJTBQV++wKVLmkdXiaS/TAbhj2ssHyY3x0Td/0nrfTKzlxoiKZ2pxsly5wMpAD76/ug/VuL12R35cZhxaGSdi3t8KMR+pAXKr4M1z2V1+NdRa/PjMx97a9L7JrpXJO+pzHDV1xKsBcTDH9TtJT1sDqgG1N33gYfYPZ9vF0Ua6yRaj1e3dlFWe6kQq0BQpcIFJIxF9mX1ehoIfVAYsOgIt3vggmYUihUBbu3kQfy1s/TvR0DOWeRu/EfwQhYR4O9pV2l7lL6i/4hF49nNQY/eE+0wuy1bWtz3jRhKgajiwZsQj4CGH3V4fkL7nHM
Variant 4
DifficultyLevel
543
Question
A group of students were given a list of five animals and each student chose their favourite.
The results were recorded and graphed below.
What is the angle at the centre of the pie chart that represents the students that chose Emu as their favourite?
Worked Solution
360° about a point.
|
|
"Emu" angle |
= 360 − ( 93 + 77 + 72 + 90 ) |
|
= 360 − 332 |
|
= 28° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
element | |
type | |
number | |
total | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/var5.svg 300 indent3 vpad |
correctAnswer | |
Answers