Algebra, NAPX-H4-CA04 v1
U2FsdGVkX1/nFsJXx88bBuOIn4qONs5UApu9+tgMULoLcASdHGgFz/6spT9qe8adnR4mE9VypWF+N4w5G1DYWNcPxeGPfhKKBFQaFOfDbcomwGzvoBJYilwkgvxhZueDf/pC1zHlO3jRsLdTaZUyTsyIOAjHVHBhbQfwmkChKpXcVC8MNNCh9+OwuekqngwK2mOoPswJqy70U0QCpcZVqunW7hoWcXMnUI2x98bzjClVTKvGq8WVMZ/oYpmezQaBewlWMC2yFr05nPITBPggSehWSpVQ8FDujDZ/xNrQPVyDZkHftZTByRKQh/MC0LYUCTQjpvwfF7QS8RhqK/42jSOeol1+NwLHK+VC1YTjmNML7mli5JsE3pI/VfICBM8OpyYMGdTS1fEUTpgiUVqxWgYZVk+UXOrBQi+aJI78HEyxdCMg6jl5kp4y1pf7Q6lfVGTteP29ZIBqOi2aTJhK9/JkFnIX1V432JdKrTkRdd5XupIFuNCqs3rknfoopwwFV5/MPM1/HxujQ1M5eJgdBFKWuswzQnZshE6QaHNCklAo6Wwt0+u3mcClVe3ujQbd2RgoJAzdXblmCq8gOtyivAPMm9gJ9pq59AyN9XP5ADXkd+x6QqyO+6R5B78vDH39ALqE/tIC/98ZQg5uX384aM78ptmUUyD+q1rHWrubok/pSrCzhP/R89kBztodRQFJgiMWNO5ZtIDaqr96OpHFRts6Q3dpEIJx/CSwQGb6R/KPXSUm5bEHwC7V6gCCyTSjFErpdclEEMXUJhlbUMVB+QQbAsqsokRTIQKObTK+w99A9tISqiREJKtcT01LHFQoSPLo7HSGl2cCk80ISHs+q3Ym/GfY+QWxf0JoU8cnnbYt0+bhYPHR9c9fmh1qMrU2tSDcalvLoMkQKUwbYEh24ZXEscTb1gbobAeF4Uvx9U8pYZO24u53DzZh6CkpHsBBALhY/bTwgb43i0ekm6JVa0U8ybY0naID/LxaZBQU4Vj6Fs0H+sgD2qT4MninuT6KcGOyoAYoBOWGYmDachlaIt0uS5tP5LgimsB9sGH9XBwoKzdwRQGdMaxb2czZfUqjlv5ETDZOl9ET7eIUI3jkCntjSL9/46ZTf1iXBMsxqxP1pv79J+hiFbLndexz/ZTOsEKkLJFDvLFpMV8rleM00JMhkwFm1zYo3sjxElkOwH3Sikk6dKL7vJ2M+ARsvpbZ9Hv7Fv0T6ZLeoyFz+aT3icOhOpfTGa7TrYxzjAm2r19lub6Zw5ZCuVENOocy8PQPtD3rEDCsOqwg+cwMM4/GoeGlghGKnit4nc8QzrbUjADoTk2j8eOw0leX+eu3gV/h6WuuX2xzehBsP6cNLV7ICSwkJ8syHusbkqL1yjoivLacSAmBMJEEaqsFXwFtgLNf1yjX8N+DsAhDsjQxqQ2vxOpm/I7X+nHGILueTeShjWdLF47v/4+JrXH8SVEts1JjtVqWIw2ApbqopwAat/pBxP2URpqxlPPa68VccRsaHuE5FvAhfUTVxGlOSBv3RVoBhWC+r3C0pbC5jXz5ZuSObxNHSOH+Ly9Ft63saNqcgh5VpiiNs+rYTmQY8cIbNLHrgdcAGgj1AZEWMMrPG7mSIHCoilRs19tLadH7RfIBurSeeA4k1lTQHxPUzj8q2Wv+ih4NncQ3kNXaM3bLIZLwfHHQF33rRZoQeEzKVBZdAzY9Deoq2ZfXoBQAoschnWakCjlDWavGzouA4h6SJM1FliqX0y3+vWabFCitbavrcZ9P4GQfwJ2iWa8OrAErZgIPmNse1YXCRmLq6VpAk0KkfA1APi8yoiKmr89pdRCfKUuW8zxPztNgEC8vthbQlro9PsrfAgf6k8ZAsK0F9Y+19bKp/GcTIfhk5kvFSjGhhQuRxFTPS/2ekScGfofVrekZjlJ8pKjygfoP5Qzoz6YA1DVje0Na7Cd5R33qSP6Q9h1AVqNC8PSpsrLxmHezQDJPu/XyhiqPhku54y9wc8T1ZFOzvLSYg2T5LRo0Wxt+8BYoPq2b6/TADuLdXwH92MsapKZpWLroXlDG/NKwSjJzuYPsPvb4o8PehtUUvlfEqzDZVtEYP8yxPzrR7QMCWNI5G2Af3FYrFCCeSW8ZyDt135B8MeBhE814Abs5M5xJzIpQTXOagtkMiY2SxqIe4t0o1FQWPRW7wQeOlnKT4n2SwCW3rjgTTNqH1t8k9+KnHauiu0aTuOrVNCXCwpCMSZzkGw4yd9G8agdWpArUfyfRQTPRVisyNQWDN5s4k7+HczRMwnn+HTSFCiknfUNXHoprxFhdhcgZxpSJOWrq+0DcFKk51Zvzr0P90xi7SShq2aF6Xv9z1XfsmfdaxQgRVe6nLbBimWGhaC8lXDQ729pzIb1Xmyk7YPBvkLkV1wXGWodEnVJv7oYoudp3TOD3XotfecNJxGAXqnOZTEmKjQWOxabqxD6qIP9eZqjqQ0S5/JtGbXTytTsEMwr1xQ+xoQeWKyZ6+A9dHVD+tSXfVMUB12YiR4tSPvbn38jQWrWhWJmzmTITBpsXn8zHA8ubyi4wvfFUnftQiyG6tZmWejxHq9tWpHntkMHg8hF7VTf4nsYJdvLgIgbG5FfcLMnD2cESgWJOu52bEjE3Z+EFixaWeU9xOEaZsRT88HeY2B5uVXcWnZtqeZnMZypyVhstru94+5m/w9/e5DH/PjzqOPSK0FmbQ2aQU8Y0qbg+9jvBS5IRfA80NNMT4Uq5dceTnUz2DkNHwo82J3HR7UaV9gkSKSp9m7pMe1Mo943QgOM54dqBAoZQTzSWTy/A1C3Ew0H5M02/lk++g6byx3aEKH5oNOWz5u5KoyozCvlSFolA8vDYybRwe2ow0467UC6TJMBZlHTYOgFQqcTwH+HmlqPLPjsqU0RawCe/J7vF3rZQf/I20RKT/o6n/RqRS4/ubNIActqo5bCRHSB8hV9DMG97M8EptQsc50XzxvnXdCvcCwxUVziMWya9lAJVsmYF41NuK92JqNV2pjMt1lf5CUMS7FLdj3KTgUY02EuCkWmgSYM3SF+UJN7LQ71UEKv5BEv1lDt+k670ZSgXQRjb7FMAsfHgNatx/+R8KUU91KPH0v8C0AZW0U0z/4+XZS47SpTt0zA0x6W0R2PzOh4mf58EiTRpkCJNWWmCQ3hyUGQEIcas2bkhD21OYKXhk7/UbOd89Cllbm2lR4rHEG6lIYJui3KB96Yfp3g7u6Kt1vq/HXUn1rqJKxM0nLqHBwRXIJ1/Jp5612DXYyXQxTyUmrr9iPcEgM0vs/xvMjh35qjeRt84XtWjqo9rMubcOz0703F6Dy+D/yvfvQoPm3Eu0XoJSuVTdJ4ZsSx9RpDmMaB92Oz/SeOEjyjR+l6pbmWvmnyVp+DQjZqcDJIPZY/FB1u6m6B4z7J9Z3agHHRd7pi0PVLZrc76J0kHPCmxED9aNch3S5DyQrJQompYii43fS1kNd3M/WweVkPURnUujRd62e8QfkhHk9YDU0Jh5IjzjKIhQU0iPZ2ayGv1JJyIEo80QkiFvbjZYeQpkyT+0xgtCJdu1fyCxabLoCqXDOSDvsuIU9wBlhpARiKSoD7aHgR6+tekNVJP3uBcG5tqeX9rWWYv2MMAsoYORSIO/+ED7cU9DEKw5tOk/Y9xzpQX3/RTrWJsh7d2V/TR6y/zaB7zhXasAJtnH+ENx4sSBC0JVxQBh8bTgsvx8V0P1fQoUKnli+eXNsshrfEeLltvdzxm6P3riYzSglevHsfkkLC12GeAUd7RKGCSsC3giRtPhrKx4T2hMjXWhuiJDyBRFtReKBaHKffTw7uyIDu/+G6SKMSi9eUac9I8CucUfsuRprw2sMRRv3bm2Psf5MBzGtO0KrjB0xl+j1JQ/IyAKQcjrWQIpaBvcBbj62Z8cTnkcMTKLBKE5jTZifXtbPcGZgDMumms66GEwh76tBYwtwOUtmWR3o3nnEPgHRGjbUzwyx7GY0AgGlzclGOUTgW7Y0VCaITproMg6+94POAtEPiDdGQKWI8+ise3NWFv8tyRzgfzB5LP3ksndUzkQaBGeo7clTh8aDOk3OBDVP1te25xvRzo8/ubljmlzP2u9i5PP0bXdYwp50pWfF1irqBoKUwW8aXtY8s7jT6OHQUStwJvo27B+E0EeqtG2ULyPEXmEwz63kCOtXPuk1Sx4m41GQRvgUQARJqRQ8Pv4ZjZWYovSl8g8Wr0QQBfLqMcRCB4Q3BJRKg1YX0hYEOqr3np6/77YGdf1waHsWgXc/DHBNmU3XGjB+sDXPNj6jVN94DG+bcUxe53TLr+mimbH/8Cm3auijNrM+6bPmKKAOlX51Zi1TfIt6LBH+Q9SuJ0tMDQg/EG8H9sWqWzfca9qBAxJi8XQHcRgb0vvE4kQaplKyTwiROV18kPhX4WfvyEzRP2zRPBh6yMDvq+q4E9Yx1mqDGqz29eRetXitLboZYkqcviOMx5UPpJBpM88BZ41JXXAgcl0TFQT8SccyqT2uzOIrc2lTFKLxWDC/mojW6LfBD1aXGhgI0aVl0Sdt6+A91wU5ugM7oUJSt8CIRqf70N9CC3uSjFGpz7tm/tgKi/JZIB5Bhtl7y63dFpeoM0H/qDBehG/Wx/w4XLnUdNMVR6++l3OWX+e/QCTqmIVa47aum1AQEf+f4/frxknRSSFp2ukJu29Pup8ObvtzC/eCyDVxnCoeNEFsVlfqFQAlXOLNrDycz+kBEKW3sGqEQBulb8onGJhobFznPvzaOEmxnSgCTRKZT6Ezy7ldXfCL0o7gQ2FngfYQSfekEEM5wXBh5TAeJuR4QVaeozafV60KTBT3b80peO4UYqCx6r+TwFmJA90vVIP8JnUB/CqqjQF2nBTcyZaYWlFzkHwRU/6/yHZF99n/gRMBldaUxGgnkFsvXM3titkdEAenVN3aq6Js8uPViqccsOcYqq77Dar+Qe8dML56Fz1Nz20yJjx5wTVRUXx/zodzJEA480DG15hYNzUkdgS3bwAgLq1fvNgNToM69op8sijC5YI2Sp70oarzfO11CqONo+t5bSORxZdXI4rVi3xiJezJPhxcGnrr5aCuZcU2aQaxCLLM+F3pOhpNxjwRm1P5Mm7vdRwV0lD63DYLe8AWLQU2QnxIP6RdfKks4XvG5hYrib5hTHeY16k4ZpNZj1ferS0QWTi3KhqJ4PXpeFNEl8vMS2tBOlnbzOw5Sd9iHMFCJZUXT+a8yGIEL/B6Eu1dzWBt/TsNW01el9ILUC6bvvux61F9TbEuyVHhWIDZKtuFoEPQaj2GS7UEAwol9oiyDpYnHV1/U1+ln5bnTdSHQRfCoZpxdervfL92+vnYuHRliaPzWBcQJuzoF2O5k+kusNPCAofUNr4f0XoY1nqUm5HjIvCGy7xeGCF+SpDOr2xOnV2RV5AFK42r+jctSHKFHzMWLzU1fgT4dCHESpdaWdzT/Hvb8TgLF+ntaXLkTn6eHboBjqnK+nbY63hdHtksLsYSKm01YUZowPFmmCPek6wN+rHPq4RdvdwtCYZDOV19vOROU0BZJmTm6ogjR6+w68q2REtAW+odio6BuhL+vThdw34D9gnsPqkrrwUylaOpf1hkuTETGTiKTx/tj3+K/oGoRtgHbcaiQJqLa5h+j8czaexWw5JTso9mZNHTFL2wlh9Vja8IA3WY+QPtt6l5ngUAku3kJKP4pIEqR4uJ6PumWNd0ClqK2Kr5+vRNAOqjgB/Sw9QxxwgySwIm3R6h5yuTCKzlpKFNSXj1qJ6Z4VplD7rmimL4oHhdtL+e8SBHJUdYyTWbsONRs1P7SWIWqDeFYXbU3BxSRc4/TbYUp3wwYrTcuF8YnQBtxfkELW4MVeOUoiYtVFWDJfrvQ22xmfPzMkDk0ikYzlxWdn86+VmUoKWT1oabOAyKB2UJRqu+vNXMO/ssoXQo9aeBNQ7VzvFNaEZ6XMnrJ+14SgAETCIPwsLrwKoALoe+++ChZ9LfFyxnrxt9Py+78GIq4bJpjykADcVJc2JmWvuFF6ZE9AQR4s5qmFdIfE5/X6ageMfxj7xHRP4kFHWVOSbOsx0E32gYnor/QQdzAmn9G5pFSS1BvsMkfSSauOrTbAlrzaz+9uQrlxSSGzKOArYqcnjljXppzDg6Ijt2Nhv4/S6nrIMgCV4F/+t1vU3ii+0zleJu/fm+4032jWFFjOP7scFXEjWNU6ypQIolJ8kQRMu6xQPQgUAHC/sN+Zyv3I/umwFLPkbXnNeewDeNr1mDVzthTRUrIFDH2X/BWiNkKHzkfEGikQc071Xs5Hu3jKZrQO6b4Prl/U/Ua1lfWPN8laawQXvWgqyrHw5lueO9RA9Mw2+DEDjVn2YEvTIWVi2MG8otwQ+C3z+8lFn/j6h5rGskRWMSkGsJ0ILTW4w9wxfT358uKtiexKXvLaTMDuBBUXpbCumBC7vsH0YBB4nEvdzV4n+V3ZPrHxmfUk5Xahuj0YtZZ8SXLPYeqA8peEP4tlQ33FjOOAt/j9HW2lw/1eSZthtQZSQ3/1lf2QKlQPYp3CSOWcdsEflAHorQM9srbn9YIyg1h5BTBmnr7MF1gEUlUCkK9Yd6ay9EUTrxEx5mIEkfBq8kIL4WCdDhgYJ68FxOfBU3X1m2EhDWAYQyGnRb2jxsimLGEXbcYu92rwz6VLHsVIk6R7Uw4zWbTbQmclI4Ym8myDCLLiuq3SXu9/JWDlcLMsxWPdM9kuASF4NNVBn+Chrm8EaEp4SZtwf37GKCcgTO8I6rnAP2YrtBcErwmTR5pLd3VGVSbtwN2IpbhcITvc5yoYvdL6vebqVwSXqAkDX/pm/h/zFMihPhWSPsIk77nloCSxYGBEOWlCF0BGiF0MSh1Dbk38J9d6SODwVW7tkmoEzuryFrElIxug7iX1qDsxyClr3pR1s0NpsUNPTIgoBvAYLsZfbOX02HUlBBAyZUz6HK6Ijz+wFQ0a3crke7eqU7bkBbHPJCGTwV8eD29V6gHiAh+ZQd2e/h3eBlWw69GmP7jClHTgq+6JAY3MSwrmtdn9eHhs0p8xYAAgHd+3S1FBnR3yd6LbQZckaQFaSTuoPmIXgFyNZw54tbjKMZzbVV4SkQuuwrJX89oWN4r1iIoNGvMg0tXTPxppt4GKqpeVfy3U5msT8aJeORbci+bOUiuABE9/J+DyJcRqU29hwZYgstQVlt1dVFx9opBcwVwZp18mKuto/8P8DqWPsp3AI5SIvbV4eL97M63LWjXDbZ9D2w70anpIJX+BCIg9UeHlIxJ5Uhp28sQ3NOsBM8+DKLr+Jn6hLgo4fXpamKsxHExKFgolnxcBno+eW4ASQXbV5kgBku0crdWvR1P+F09QJTtrLLoe1q0vwuYps6TNIJhBBg+nnJufg0b0VrEZeoPmjNDVAb1I4kWqJha5g2lBYPnIRHORHklMVS+dvq4OMJNaZqbpJeJRgazhoZVt7TDNcqIMuAmevZuIOuk7i7JMck4f6/3/5F+WNmV9bfumCAZGqao7VAVo8LNiZCmr/PGoK+EuTSoPNq7N/pY3xzfs1H4Qjgg1JushQT0hyaxSIMB0SRof7aW4XMAdVxwFSZ5vuObANZTfos+32qnJURyEqqKroToIJRZFkPBHLYIKRC/QLPbg6GcUA2xQNiaC53LzQCGQYOcCkJBJSyZXFXwfR8qLE3Q9Zzb0Q03pjnuSGO31Scms7uRnp7mkUobBRlt3OvlMBur+By8+gU/4Dy525RCqbx4e/a1Oft5Lb2mWWy4qlSCALfmj2TZOQZUILC4QLSUucwxgrrHhypinSyBwtHOy3xcnWXx3X5eWn3uBKM3Ladoa1kqVPjonFhTsomUsfwH4CULtmG4IHOS1qEhMuU2xPgnY1p+Y9c56tbFAR/3M265LyHNmn/vPPBk2ucbDMtKOJpHlxw0ZnXud2yBSZs+N1Y7itlSFNbF8OqWnNULRDoWZCoE/lQyCw1cCM5Vr4Wt3FYhushYcOJkK4Za40//JMZOgKdYgCblMYoO0HbFqkSDugVKrtQayRBRi5mQ1mtgx6vHI5jXcO0Q0ln3ulXTZ23y+/qKdU0dhUDUCjEFd/pVEIntY+RNVrbXstwkj89iD73UwReY65vKe9BpSw5K4wXfmb+3oywuopNFrs5XSCLTlcaxzb52Ckgb1T0ESLBINBPfK0oMQwr0opxn2Ck1fl+mfsFEWx1J/kj0Pz77wiEmZy/an+4rjcl2MYLuBEMbKP1RrBZioat9k7P+2EqaVDNiJWwbOqmWj5LcbAizSpS4b/XmOUXTm18ZmITgJG/nA8qrl4El7bLh1va97S5PWis0Fj42bkscpYuJnacVhdIp26M/viAsSU/jIGUOdaVS55C4hEPDj41mBeR/AVskVkxVrwteg0LKnF9VspOHwhdT6roopMCzb5rKMs8CmCfteizQ6bpd1yZWESa+N5HWHRMGynCseFOaC0qcpU548DZw8DEoLNWPQnNeVtco+0lEX6DA1Rx9k9vWvXXxKY7tHLa0yL5WCF0sj8cWmqygd5q8lalQW/+L361+2lzwxZDbv8HlY2UTxpwUfyWOKigGg648/Fw1FVORFsKQCxNof2Mw3bSkkTtOLjZVPE+ODee59YLC+zvz/U4/TYm7i3aNqwRocRswFtAK1DuPN5Sc0YDZuYR5Rii+Bx70ybuMTpRMGn+ZW3741riI1wdLTvcASVHJuijpzpSLHlj+ru9jWlTMiaBYR6ADc2UA8YKPDEyjzKiGgp1cQKyFL/4AndisEXQMeayQLSDWqCW4KqO/sIdxZbpqwoAY1mu626qm4v6Jm0F+ZeuaKLSOu9NdVALqFD0i4vlRkawMYOiUWsT2Yhg+E0xMrtx8EgfVNQceLs7yzh/X1dBWlWFNwNfyZQk67yU9IQiT3ktKqcR11/k3azjTovm2kObsxVvXAjgTDY571Gj60Gpb0gfn0SWX137o8jfvM1eZAk7csYXZi14EZboEJUsOW9slzIVILptMeexISwVg5zi/jmZWv/ejHfuJgawr8LjiHqw8spDj+6qirSOQvx/egmpLrJKI59jZIjpQoWvxtbKubdB2L3phhorRQCfeFEW2lzrbWpXP8o4EfyEYvJyZZ2UCMGnqZ8xsLElnj4l2ejPxhr1m/Ai2TOLL54TUgL/FpHXM5AqzvyJUEs/vOLz9lnPJtUdwXiqvd3W7fT2/TP6pbaASQwFS9o1D4W+lMclSmu3pY6E/F87hmgWs+lp4qlgPx3FTqwAKkjbrT35DiSDQy8xRJ9lffJKt6FXB5bbnGE8IUvdy8YF7s6ECi6etgoOwf+LmUrU7cFsQpoWJ63elnpnL2DnCw1n5QumEeV/HNs7aFilXyJ3MV4JHx9um9GXhEV0ncakES+2niNyB4ELl/tjl1Ec13G40k9PExOto9aPoCA9OByNPfv6BIcvAMVDOQovizK3wOqEps7X/rwF9BujDQfSzXYb9fea/1JE+siMpJmp/DKXULtmz6irYYzDoYZHXuL1BQOUCmrfAHlDgc13nzihq+rl25Yeg3Q8z0gt97LvOo4YwcJQ4ftUnc69qDnW6HHjeHDbFaZLtGybNzWbdQ2aNfLOcnfLseJtDXlt2hTmiA1fBw035Hj8VgAugQPUEs/oGttMPZ1Q/uB6uGBZWh5YswH5lnZYkHQl3CxiU77QsGcP6tuJRnE1re4kP2x2ovaLnkLZFscI7Omlr+4FahC7cXopr5ItpQ9EJttqXTjqnj5j5WQ6bXmSlX8G8nylQg2k7UfSM3kmR3jbT96dGiFz5fDKqGjWKtyXB+hBHsTtZd3dEonIVWEoonD6QY7re4czZmK4kwE8sXZBzrR9MzyuQFOS/EzqRKEWCh2LhnWBnz+ZAhy81dhG3gCV3KHMMppRs5QH5rbk9jyOP83Iq9TXu7B3n7YlgskdLpIDPY3+GHBER2/s1zHkRvvkdR8gCfF1YNmoo2V+yaDhkhsks5Fc/lw8KWLKGNX+EyxPqBDqZLujsxKtrSiaV21R/gRn8HDk9+IDmhsObc10nEaZj0t923EBwbm2bUr7Oh8Kg2YJ16AjZmRbDfrxMGmW4y7AYylGgVxaMCxcpSr4x1P8+sXHQh6C1CU6Nyhj0i5z2eFFA7l/0N5Ljbz1R4ToXLn0GPHlltjErGTUDE0OVXkQC+8GWQvxjgib4UR2hey+46jBzsLb7GCoNoQK17/Pv+Ei8+5i0qAQJc8iWYKMbDjlO3yY0qy1cokPZTviUvO2WJyVLrPdsJ1O6RKx54G+pRf2MWS7pFT5JIhlLcI5WIx04sd0lc6/MlOKVDPdnaLDZ3xda7n6zNPhyma4iVvt4f0HzOsWypXus6DkndY+80OuKeM3bEP4iaOtYskT5/mhENITufiiRS8ok0M1IAb+6HNJBLr8DzcuzF9Mgije68+xmA5faEuGEsqtQAeZzikUZcxp002zBkuHv+WNPI2MQ=
Variant 0
DifficultyLevel
554
Question
y = 2x2 − 1.5
What is the value of y when x = 3.5
Worked Solution
|
|
y |
= 2x2 − 1.5 |
|
= 2(3.5)2 − 1.5 |
|
= 23 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\large y$ = $2\large x$$^2\ −\ 1.5$
What is the value of $\large y$ when $\large x$ = 3.5
|
workedSolution |
| | |
| ------------: | ---------- |
| $\large y$| \= 2$\large x$$^2\ −\ 1.5$ |
| | \= $2(3.5)^2\ −\ 1.5$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+gne3dnGKBHMr/cxbUq1xpe7lfY42vyFenvHmEpGm+bupGUSdcX0dRnvg+MKwfPuHcymnwZ4KNnoqX0VkH9bdNquzoBiJNXuLy41t58TEH/oQnUsxK8/bvvL9UL9DNsd4txo2sIRbIV9UwTtUGa5DWdhOUhCVPnsOvyobhEBMc+GLDemHUfH2z/GK6XZYZWSSRbmuNHH5eCfmleuf/iNMomDMgTrhJhlpmaXM3YG+QpNnluUdX1eVA1XaFh3h8c2w7ladc+CA+/T4fpxoGm2fDonfLfNJ0xNTTZurJRElEuFrtidBKcJIOwH3c3tj8eiG1uBMVC4T7GdRzSv83JSV1yISIKvOB6GN1W6HnycjEi9ZqmNvvIBrjJDFXMAb1BNl8yTGOYYPdzsETbs7hzSrxkIEf47rE6lNq7NN6NDmhlBgT7vZHlBNnDQ4Unh3PmnFpi6APtr/o/T2wEUF20g4mgH9OzKKWhY9VTBImMtZp9EqLu2yC/6kO0Lk2qhcM0lovymTFiMktsboU+R6NQKOdV7zr2DgUg+xYAiIf78KyIyTJMXWqJTbQ5t7L6RVnpmZQNfFL3rFtJmElQep9BYHzTv0d3qHbdVNFBOABeB79M6HyMzZXD5Pt2Xh5xi1I4Ct8aL211cVv99OVO94V5aif7Lz6shq02dg65VXmahRpGkY0/DNOQ9j5/MJRftevuRxoDsS3bwAX84bnsmMCIxujhn+IqS3cRmzlVJ41GjxYVYVIeM2hc1dgDg5tFQ43Qtq6hQ5p8aRZ03/pouevfZfTjhD4gedTr9BhWk0oI3zbDVG/oBWY+MBgz1j7iVQQ8krHRjLSqyy9vDlpqUdnYm/JD9xQQ4pg0g/BkvlvAhAaVwiHuF7L0LIMcMOMnAeYGu4+15FeJ1kTjhBbBV+K6AnqUskd38bGir44ARN7BX/ONKB4xjQwqhKLPQ/V8aZY0C92W19I0g3bzNLGdQ7SzzMgRjv8ATglRZu7aM3/0Okqat1EhgsXGrNJm29uCKCqU+vTvvlgXOV+2oYtxc4GUZkWiMaa6Vd8dMBvekkmyk4Ry2pMZ3eN+EtzlzvIA797ocLGCYzcQva5HQYnzwZ7pBTdHOe6xkMo/QXl/cLGaXitBEqAY5ifqNam7t7c5MOXJltKjfYgvYDgSxm3JYJuH+BueN8wiRCvIP+YIp1MbStqEvoU9vjgMWUfikHoO8c90NBT19uim4tLQZ/lTWFg7q17mphob9i9wZXzaMSkD0kBWt9X6F/JPJR2j5l0WjbA3lEc5rpzQwCtwQv8s80UlILaubAe39EbmV0YbQE8P7GuC82uU5cAYg/LjVq2415bFvnSa2euma0FqieLGHr0Divq70/XB2hUFNrwWeP0whDiZV8htcvnwAb0TYGVKOyYaltpjcTxdb+zYIRTmZ6l+IyEHLMJ5LtFv587QscUkRvIM+JPX63q4zb8pQd31hCHBB/NPni7GP5a69Sj2BK8ZU7hak60uJ9zhFt4s5LFJ/BFT246m3w/HPoJ8sQgHP72x6pyggSF/qAI1PaFbutEpLTVwZoegNFJHrx4pev0dgsbcTo99EKST3KDxeDCajW9COAc/S8M/WvryqL7P9NSvLVQbndO7zS6L8JZuehMZ2Al1ZxAbimD6s/eJi7QRRyI0XRPZkN0fEo/NYT1WAofDM3cVJtcuaQKK5aDxvidvpiyEFKgP5z0ssSkODB04Wv6Lrx28XIB3wpnuiPNm1jf8kcZz/c+3R2IygbF8yTuBEml5rm0Z4FaFw7Q3clHVRpg4nyS7bVfR+esHOb/YqPIvyGLz+Wh3GLQxCIweabj/geWm6f75POwGXXkLfW/hVs3B72gKAcTWSzFWAzsspPog/fHeb1AN6MyVVbwgCjDt/A16JOCrzWveNd91hPfQiqNFVbVjmcXOhKX4j6jW5o109YpdFEpXfHNvA3jgKjojCaZVjasggqu3YQcuwlxv6qs/KRuBBQwHCPgWuipv0pLJnkbYCUf5tdr0zzHrcgEhr4VF0u5IxKQLrVgpMDI33A3MP6UZFEAEOM/GkJvmbuKxY13dsa4lqBmpfMNItMdqDOt+lHIC/WNfOpW4v2fCVj3O0OQm5rvgVx/Y4fa8UzA3/XnUfzwlKOzlid0b/7ggRhi7nLv+g/wOsmauplE3oVTtD6cVtBZmqcsOxpN9C35jBveqDEW4KFpEnAwnTExwTuaDD/k6j982HkL7yTTw8LltXiuJFTId0kwKKjMfZqIFMSlJHnOdq6r/FcMm+pn+6wijmdG6ZiVUY6vTY5k15T6L7LpFqDA/54GO1I7hFetkDVOYB9ADZ4zhrL/Yeu2m3r00lWdieqAEqsAK2bOlz2Q92it6seTW/fkL9hm2C5VIJgBFFpVLXkyFRb5XP69KxkocuxGXtbX3+zc18ALFF1kdc04Y1l+5S6JAach3x7lhmd+24i+1oUJlA/HoQ4XfbEHfG7FlNuEnqyeN7l1gridwNbCEStGerFsv569gwjyzC0ACXdMktNR+uPEa3sneAuGVJQ/bcCYexs6mdZNnwZWUFVfPrKUyQw67XUVcablTo3X4CXj6JPOH9a7isUMazDcwwEmIRSUuvAsT3E9DSD7AgEKckLHJ1SyKwkFpcFO7QTdn/L3zULth32q8qJoGQcCk0yamGtZszUWKqnQgOkpRlLP7nv14XwT9VLa6OfITBwjTQ4T7Sjoa0lpyDuAkA6YqcSQOZ6/vNpVaoSlSuYXX9jsPOv5AVKjfhUQD/vfsWDpRQvF8MzStNW2797G9noyWDJyH8gYRFI7o1QjNpMi+1gukhPIN/eC+Fi7bzOG9jAEm2EZrsrfe36jfbwcgtILtz9bQP/qE5tbHiLcOoiUr+N0LzShYW4V1n5fFGPk59Gj9tOcT1T4KodwXBLM4EEGBSefpxTeMnrBKfNLNT1oOJqYHz8Pmy1h7EJIahxCzR+UYbojIRr1bnu7P1FvJhMCvxYIhNv2VtD+9ueY3qxHWGfsm51Hot7NmRNAysXHKGpj8dIDw+buiqpaQEqpIK1J2bI56dUbLxsh3gU8kb13GW1JpqNqpwF49plA3jyzGva9ZEm/PKZWG+9gT3AlxceDH42YfedULwgczRmOiFXW462jwRnb5uZAC7rjSQqmx+b0UXOC9Ze1rNkBMyv8PiKS3ktXOKnNXsP6PDeVc0Uyslk6qyyXFvV/UA0jJ6WMKnQhJQ0eKqcxtOAHE/WcKB3d0083TZ7fKO9L9eGBlqR7zQhZ53AspsYZTFIaML6gHoQX/4pqHC0qh4xSfoWSHPDafNjt5hX38kuESaBjWo+JQXdUHTPDdujIQp/H+JtAur6Fuvrda+svOghcvRJSehNoPvRJ9zETSaGn0+hUtCGRGpGfB05McVOkGoOaPOzklCzc6PhhUmVmn33+rDDQMKK3y5ZkEyr7PPpmKMi3jtmerH77s/FX9MoFNNV1i9Kyv0yMaeaDqqBLjzOSaIrq8BbnnlFHLArqlRacy/FUHQJDiWOOrJDS4GhbvOa3C9ccNUEI/Y4WtvYJByxbmhCeZ1AYzqEjfCeiA1tw/XdJQIesYygCq81I7BY2L20tjCsSZuQ4wpvKEkh0h9ewkXmfSw7OZUQ/jSHaQsK898SmFBt70JGLzOU8WwrZuEzl5GecNS5fJQ80rld8eDoE48tqmGvFoQo8ZfDBLWljurV0WMUHZqZSGeE4+zAOpYaBrlwvqqsqHaKYhQtuCcvSM8Duhz61GwgPRRCp2+dY+7JzHFawhhF6dyHroPL0zCGtoihx0a5yNqkJ4dOZQteT/eOs+2QUD2o6fSYRWssfEGri+XnySZWtdLDymoJHICCj8r0y5lkwvamguCwb5ZvAoaF625Si+gy1vusiJQyFvcPXNjMavxWvn6u43oVVU1bNnL2e4P94XkBBcO6OLS9HOTgDbxqE0NHMsmmbxpeCHIDbuQI6gmWeEJJYWREFxcAMsQ2RYvO/GQYs3o0JI8iYwnypqfItxJR0aZaBs3lh5/OfjGhj6ij1r691aW1Lu+PNY4OhPDfu4OoPDud6zeXA1avGaeDYEeRKYdZBLyjSIuIceWx4PcTisTFKjbYMWwJPJxNdlVGo5q6fIMpcWs+Vjx/zTgOZJcZiWwLSmm0wkUwPRUtCL71eG0fg1Zd6JdKf8aLymjGfyeaaTunt1kHxIYYHx5JxJ6ZKBPqlonIFnI8rqQrIqWHTF7h1ZOMh2OzxnAav7L7mXLocoroGK3xW2pnNW5tf0cYw6HIgGPJAR0L0E5a4fP+43vdGATgV/fCKStQW0Fp8/pJpW9vfb0O5A0yJNWuPaGFON1lQVkEqfQReDx7ekyKv3gaL+svlDPOizUQpl8glcgwwppDrwO7p8ne9KGji94VRWl2WuEMQQzog8VakLIgzkFSxkp8kC2ht4Lz+ZTo2zOFkAWEwHQI/bF4LGW0QKfvb3ebA/vEN49+z5N6wJtThHzDaXgJiVVYBaoNUmGQDJILVGRJz+Qg4PNb/eJZ3mHNzf7M36DM5Ba5znJg1SqMKE+/voHpHGDSpayvq/Q5jbRq8brYNXpUMfwb6XA7QscomYjEh1tHpnmikO2kgfAp90Q/Wp+nhVkOTy0D3VQd/E2l/WxgOV4E8/icsqjMHUcpjZRLFKbsc/8rf9E4RHtQReliq8sDp+rs8rOd7mTyXRpD/Q0xAWrhaO9NeCPBy2WwPJepCJGWOYxUiU4h9CoYunHCkR/xMPQfFLeZoNPzdr+JgxI31TlnPLbcHpruV8Ne9TUkiQ+nEFa89uTzbg3a2XTXiiUhrqe4rgBEmCXPEtMNF46cIs6reOxDH8pEJID4gBZL3aF8OHlvYe56tbH4mnAqN9SB12HC12JfZovRPKm4p7LV/ZffOEgrLKroEwh8fdI0maizodKalHSQi3kTA9/N8dLwkR78TMntrWCZWGzuI2ZZP4MoX3/RcHhqm628XD1T82+/h+vpzz49SOiHrNZb4rM4ZVH7GzQObdfDGTnFA4tDNcjqLHyF5LEpiPAKG2p8FlbGIlg9xM9/hDRwFE4YmcoVpSg7BPG2IhSCq88OKqPwqIuRNlvxWUiIOQdau+vDdM329bKSlIgrmU/iqlxFt9UlZ46JIQmhCI0Nj7smqpuUIkcGAVyPnoRKqvCodSEaYc2vfapmGSMAoQggucPiCXakVKvE8ragxzypUOj0Czrr2mW/5sL/rBuHMc+E92kXo4iTqTc4wC+7cdjh5rr/eTCKIeno5deyhLFL93x7b5O8N8Rr9o3kKYsz4DsaWCofuB+rxhmnMvuSi/+uxrKP/7LPuRBgdvGAJ9W1VxXvJGeKEviEtA64vHOTwUq6eHeV77On4zrjnojVk/w76PiO0HiEncju0hf8d/JTsdNP2DLQq5o9cy781qKn0w9Ur5u0JrSgtG2X43z8xjCnlT96CcS/db311JHVt/ISgf76SQxdD0Npg/1YJqbCzijmrQDSScTSg52X1wHF1tQtaq3dg8rFLPB/X9Io5DTs6JNDhU+9pOv79tAZkz+QmkD84d6NzaLEVIpVE0NNm5bgUsHxTp4nIGIir7OZ3rBZ7UxaPzrkgjzuBS3gEIQI5UnBn2mb9d1CZ8CgKV57JwOOxul0KHErCj7mcnhA9RQczAkI1ifsBseqcaktlO9cPEp3TfyRLLG+VBBHly0qbzMJG3mJ9wvDm4KZDSl3wFN8itp+HRr4eapXfoDDQaLcGTtpVkZml85whiFmk/Q0iRsP9r/eES0UZ8bbaEQSLAtEql+jUidfZbDy0Z915dPEUkwl2bnZSX9UKQkLJ+Q+Q7Q4HcTmzOEgVv2hPOWgK/eFa5+UJjXLFrkT9rShwsh3MbRkU2qoUIYxD5T6BFc/47ejVgKrl8v082SBKmzkAu7OTOhN5W+juKRmboE3KK1MiZ5jJKwV0UGWbfrVNNIVwtRr817Iu4XxcVk309HcwcYrygJypuuPe+njleFmWRYj4ROgIvWagIBAy+sDrJ3KzMLQkpZ6KPx2Zv7TGBsZUlNaPDiz/WyxlPkqIAZqPf2OyX0ajMd7cIu+DqwvPAdHQcwk59uZq0A5p0H52fLUQzem7UaHO1zUuPn8vUlKcpzyictZYq6hQ1IKml14NW8DhpqAMZhTcg/kpxZsbaujzNFHua19Bv6ijHufEyVfiYJlSVA5gTgKNgoEFc9FIcC3Bz+BIzBUkELL+amFwJuMMJOHER36gJHl7CfSm9IMMjqtN6vaR6YeuInXs4Ug6kpVNBSr1MJXTe7N5uKxxDSg/6vF8ynyPfN4n8m8ayLg4qx9kSQEN8KVlS4AF3/7bS/s5SC+eq6XvF8lU7xL7YAXEosVDBV7vA4WUvo9i7kYKcdGzJRVMlyJFsONwnnrIfwa0GTgFVHzMbT+t393CkWR4nuZSacE4k1eiwMEAzkxarjViBZIIQSzjkEO5Gfj/QTrl4m1aLrl7x7EcoJnOb0E9zaFwBS3IAZsPgmh5DbIrat4523dJvXBJuGQDVzKTtnGweyQb3Uz8kMXwedj7ki6g8/JemfZolAckrdyhDSBjGhkHpImnjEQlsmG7A1331B5McqpGhUjX6SfauFqBFRaDqstQfU76UNd84LAum6ad/Qk8RvJ9t2H8tJoI3PKxDGtHnw29GBiPlfwCs/qiF+YkZC+saHmu2FyfG6iLsKNjQlbADRsAHCb0l4GmADhcns+3cf7EX6wUDFM3UnmwwyRWb3MaW0PeZFTQzaPzO6m0fkzT3uLhx1USNgmjVo9Lpx+Zhcg3jxcq4saJUcGCe4FrDv1zQaenIcXELel1lzEiNbgeibO86W1QDelSx/DzH3hqzMe0avRCX113zxXVzlacF9m6BVzRPtqHPDZABxdl9Z1/DfzWiygFmDMEkZkj6MNbro23q02Pv63WxfZZ5cRZdqycflqQFVL1DbSJbzklEx0RcLhofoWXITSpEeO58Tyzs6WZkG4t6SB0kNx+liQXfvZDJWnlJHxZs4MAut4fNisON8PwYbXm1IpbyezUWY5Q1UETt7DfwYYM2owgvxbDzrwV7EjBctoqua1K6YN79uUen/BuFSX7ETQQJq1t2PIsBgVZ2dDUFS2WTZVf4mYxUFKes+GpX1eFFAQRelKuo0CR8njaE3yWJP/vD/ZVv/zT+rLHUDcJNwdxNxIUyDpLlS2yPSfWmL9ZWsELgMOSuw4gXvCE7p9SUZFZthlFepO+SLM0dCSNX++8HuxIb5xKMatSG7aNObWfLYahfZHQeavl1zqoZtQkjQ7sOt9JsU+aNZ0xA05Di3BnG4R7KGLaPPQkiUpN69g6zrrssEpQdgsTrHzzXcLZhq+ieusAz3N5HYBsPEZVcEOX4Skgk0PpVbGI1X5bu/nyM0B9KwsNojglwcJoQCLk0h3DHCVD5SOrMqgrjqU93wM8FtOi8H0OesZ0/9rTemO0KAUmrfmB8d/KbtQpY4XrnGmGsNpf07JWwnjEyB/Y8SYJrbcowhOmdcb96GIRfBNkZcZUfZ/SIjDpUlOXlyuDQB9x9/BnfRM9WXklCQNtCzTj4LItoc6wZx336Obux8gwbKDkGXvt1nt5rk7R/3sHf2C6Q7AqIagO6PbyuN0cgJJJ74JuefOaiL4Vi6mwWFS9pnRsaKeXXoUjQYig0OYA6vLrWUqN/W5LgkbdlUOBU50akUvPSM+c5dQUIIkl+hlc6Esqt21C5KpAEJUXlJlgq6z+iT2DSdB2Kz6fBkuPl+HeUqAeqhLL7ex5Y9P93AaQm4CUOEes4fJvhI+Is7eO8pmLxiaTy8nBDkUlTG4/2vKPsnHyiFvszMGTJtzjAUpZcF9m/Rez57Zk9AozvGoGJB70sSuFdKmAHyJBrGmEUL2TpEjdn5SPi7/HceD+xp6zL3iE8+lARWeqDdv68RIHdBUEI4NY68sSucBLNfLIglai/tTy7AMswC+GRLv+5yAlEv/SIVhfWoajAW2IUWTo3YigFymKlaeshdP+OcPgfhUzRHRMcrhKq5UjZwmHeK5JIzN4Z/75hFBdMnYhSM+GqIPNRfapv+7uZ8hRtYbNDhNY8kwn4vFUdgkCNhsS8MGDjD3y2XKc+MBUbeZHZpcI+YY5JCYX5YWaPzzF2i8N7t8pXQnEerugfZm9APMUmuh0EvCxqx+JNhAIEkzOUzH7CEqJNwL2G852TSOsSWqny6BHE/ElRGFQV/4yfDdoxKMDPfYrOp+reo8XkUmR2+Gj0VwH12EVtVyncXkR23LvjNaIPkKZNJe9isEK+eR7TdmetGE8bPBtwr5sy8Y4Gn4Vq7jDvMuAesZ4Fu1DP5GFzTnPYjkFQCbIrlSJoVB3SNHSgI2nC9PyPv1rqrqjOuu9WYMEjHQ30wi0cVhBT+3xw6+5WcFrPhn5YLJayn9KZlQpR/Zd3mjC705+Gavho9nbV1gdOUq7rlF3M02rR1vHQTKAnc0D9CmfQPxtsVgztKnU0FJD3GsfpdQwNI0RJs0vMXqIoyHc2pmfa6uha/Fgk4BFHAgrSNbrPWSQmSviQc6esZ7wiwKGOFDZL5IVOW5JE7MkstQT1JUfZcsT9BA+O5MQUZhErhd0vCSyYMLBMF0RWLxPo7myZfdYpvg58+wOOY2j51mHQEfTDaLILAj7Fz731r8PZeKS/zgw+EoHaGmmyw0L9ga3ORW6ETQQ//NQn0ELcglxGvaPUPoE42zjaZ8jxhbYsRWyxN3va0Gza36V1pHz+2HLY7MDv2BZtsE2IL5UWN8W+HjeeeppW63tp8vHOC+y0Hvj9Xk4wUCd+YER2UvjrwGxGifdjs/9Fp1RwuA8XCN6BIz8SW9CCYzWVkqIieNh5NlxGdPzhTdHbohtf2dbpnc8boD3/7L/j5klbhhJp+VMJeWv+kcjjuNrv4m3ySU5ywcH5sFjrS636ytW2AWrk55K86As5LEGSzfAEeDwVIrZboqyNxgsSxzYkuBmcscIKWNTMG3q5nmJPkjU4TvPqy6BPOrjONdm7+gNcQ9MKspRwPd5GRQUjhHEK0t11dR0PDXKLfSjgiOV1GIkYz6mK2A3aiYLLKube0Ij4vG9BmrS+pdQXNk80PJKOJeYHn7Sv5oaa6YwK8fBP1C2PgAmJLzzT96VzmBYwhoLTQeMfWuRDoxVrXDj6XsVKqjkQa6r+FapF3vG5APyShbFPyCOs7jhvum5nZCNIiDXirBri89TD/lubuqweCDgPyEajjYwd4woF0yuLovuYTLX+6DSpBUKiUcuMqBW7DFY5CbIYj/fu1hkZ86BqPw19D+ZIPFcg/uyBtw5ZYMb+z92drvQ9q2rEgWS+5HE+8o+6WEuGoNPn0t/mgxVscxAPcrbhPLf82UB8K7hY71o5lby5YdE+Wi79JvvZ+JrZyjjuuZfsrijybHS1rrJzB9dvEWKPe1riiTEGTYWIZuJm3RskTF6RnHapRBVT7pZZn4fm5zyu3VZAGOtMqjG1Ync6r2qwz+GdKX1+R72kv1TV/87QF7QbWuWiK83JUm3yr2XuMeqL/2k+xxMo47TLQdHRtAsneroPiarJN6xSf711YNA7fkEhfV6WKs9+UMJs241cl/CONTxajc36s4rxmGYb+zahWMBLAtSwusYe7fyoU8iL/uAzYBqL4x2eBboIG+fHCcm2meBsDDCdNYKE++UTdn+c+1TsZetQMQ7DGmMtUazQxf2XJoziVKf1FIFNghKqWBzzthHlPQkiUAUeeh0yz1hU1X/z4kPeKeOT6KBaQA9kKTG6amtbsj7h/eBDaseT3/puMA88oBz70+QHwKIFIVbcK1RQDuVtPsfkk5U9B5lQazfQiYYQJRElbNi11yqxtaGcGpW8uRWkqNHnmYCCRFG5qMjJm8SZCyBwWGkEua83LZ2wByRL7rSh2hA/XUgWg953LcL5Yc1v09GwZG5iAU+xsr9nOtA8+c4gCMOThpygKRlhemzRKBWt/imgPuOHGpVNOV1OS9UEzeBP7ursgz7zEOLfO2mBOXPQMSi7pNWCQafb2rjYo2nudf29XijCfOJVvjXdKH4LAC9f+LYzTuNkdNaXpza8KYlv01kD8RpdiLlKX0YaQFQOI7Nk+qsHFs6e96EDR396f+PV0ZODQ4O2jdphKS0joriGbmlQx0ew6yd4MdH1SRrHZaR2tiJ8PPAtrYTHxWwa2as6J1oNWVgSRDQFT3Ho8dydh9jH0GyltYBrme1IvXLpi4fZUPkprNuniaeOOsBieqBHVGk/7yQc/csTiUI/yFf8hikrKIugzUzr846oMOsWyKy8wWTP4GGh4OfZEsN+t5hX+DaP1P6WKZaRSxMFrHl5nb7JyUI3c5dV/y7Oxa8GVvUYnGVQbyv1FV8Dp5+Jr6tzCO3f3hXvVnG03Tc0o7Ob+wkKbPvUIxKf8h1qnaG7EahFVBLqRbvaLKAxECCIa0PmWtU9CWub7ANngaHtNOGi4GdidWBEKIh0Z2QFTV2YXFdPzHjOpRprPAocc1wEAcxF6nP1b1UsjVSlcgnGtGgniJfpjLlyxGFKAPVeNWHUbIEnZPdIJEEpYqvlUz0uBYJHqGFoMlgMQ8jvUhFFCOAFbhx9n+rP8rBcYq2wpth5BQ1OC8V7qOozDrDi99d/L9JniYHu8HTMNsqrwFasuy8QTMH+L2zq4O1+wUvMSSsMZHTW1v5KnpUZ32J1/+kAZDCOMjrosHCShDcQwyczonKwNPvQOlsgqVyEsVaZsOtjqe9pIQIUOKDtKv9sDJATrDoN6gHp+iNworpI9JoGPYzzT3hF/MvwStrRlgQH7CXmNz3tEty58vnbAx8/RuRvLPQZk9Cwk2ebGJMqIJ97xuufj5CpbZT/4d6uzFFNWYJyXDlXFBl5M7XoMzHauOcbYmsAWqa87WU1aAmG7CvZIeFuuToUTq2bvpiSEi19w1jFLjjpeIKnhDVoAiO00LGnc5iKEshUO71kfN1j0WYyWjq+rGom+xKkHxIvvnFkXWbdSWQ4BqvamuispkwAPD2IQbTVGKoCg6DWweLWWmapCbNHDKHHprKC5MSdtmlDmX8s8fuWCAdiXQG5zVirtosi/AX2jR4jXS0FuijfDRJJ9ZpEjQebLnfwdcpZYLraQGRa98MuWpEKlkif7V/dUolRP6JYgiwdvqc55VF+qBgEz9oQWfLXfISkNj/kXadU/E+j7zOcmylLhjxBEEXEeS/zbrdgtaG4vvtKdSJwFz+WqE5Bcm/VsK30GZRLOonfQu1WKaKkjFrYfW4qgjHPqbRWYk9+bvpWmX0BKaK/Rb4Bjt2o/0Bzo8c/ikDDw+kXptyFTawJ66Xhhsx4PiaE8Mj3sWfimx1bXu865hJwijq3hqRk7p4Rc17eHsr6RNf6UTqOrqqB37OeDAwTKdxCB2Qs0iEm1sKkZBc2aN9w4pRezD8F9uZ7g+eu8+GIFss4qxSFd0V49N6T9iWJUrL8293+7gR64o+JRMyaW9jKEs+R40q/aot2Fy7WUQlWsCvRZ2+4LA6tRwIJAXF19HfXWuKVqmQKd06rM4aH8khYF/8JUH1Aqk0Hz5WhKhXtLDH8aqqTgtW+sEBP+03rKNGRSSBGygIeAo5B4Qy6m1AYY/M8MUxPnPKFBipKrIP2LyB+ozP4TjIgVYdylhPJB32Yi7m0YapzJWo5d95UJLnP5mN1JD5JxRipDtVts1spqkfwV5I0xfPS1GKuQzq8JC9UcOp+mYPWtuULUeG9HxoSzClPMWzyYqLdpuP/ZM=
Variant 1
DifficultyLevel
552
Question
y =3x2 − 2.5
What is the value of y when x =3.5
Worked Solution
|
|
y |
= 3x2 − 2.5 |
|
= 3(3.5)2 − 2.5 |
|
= 34.25 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\large y$ $=3\large x$$^2\ −\ 2.5$
What is the value of $\large y$ when $\large x$ $=3.5$
|
workedSolution |
| | |
| ------------: | ---------- |
| $\large y$ | \= 3$\large x$$^2\ −\ 2.5$ |
| | \= $3(3.5)^2\ −\ 2.5$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+SNKk3OOSyhc32wORxhdAiHs3QuYkPX9pq7LCYeOwDfQvm59qdoKFiC9nGYHVQG5Ql+EqcYp88C0KnRvRnPKX0afpI2kNhITg2yFEfta40y1v5jxrr8sF30b7+6qZSiANRUFrI4jZsK9hO6gfpWSjlSCjHZ7f61b5E9RpUppE7Fu0LFFe4g8V2D/3H18wOhVAUbxGvf60CXpjLoomNVfenudv2L80nFbsqsKuwGkA8k2O07gqFYxg0wide4MmY8ZZPQdiZr6T/myboT73clm4GkYNtLlJOhIK3qXnwK2dba0l1LNbWQHw+ikte0GN6K1SpzSqDKc4moWe7WK2BArRQXekRHW5H9zL0OQp6razMSKVNAeDCrRb4J31fcIJWtK4G6u9jQ2kpy2PLGxI6BtqKpWwFJh7j9nv5/RDZUHksD7Cpf2v3pxBU+NxlVba2np205A3pj39EV6zxd7GgPMRWSI+lwlxSBEwuWzu3gWfNt551wTFwx0MgTMSxLe9EFvSVmn3norAhqcLC2wYMZiTM+yiR2C5Uy0SGBwaRP9E44P1XkT3VlqbNDgy5h7diJM3pg6yntqJKOAIIIp9JjksM7/QJAxeZjamYrJhEq15VQp3CvU1/al+f9ea7ByPM4wFFcICQxxKJszbD1nOs2BOZ8Cefzj5ZIkPb74mh5DJI4dNSWpk9hSD4keDUsr07+iVgkfcF+Sl3cs+DXcbt3RGKoGZ0NTTcN/7DJ+eKFh6f8F+YrMlfS1Re8OgZ6Fj7JzAT1uVEGjFsWqtyiTOFBPKLiTFOxqKeu2twsjidAFZoDtENJp1J4s5uY3CWaXLTTQq3z9OLyUUnSbtyOI8grgxWofzXDhQd2y7rncW8ZKbJFZujYFof3hMYgqHy+qHb4byvaozM2mQHPUz8Ms68bm+Mm0Ib5T7yTpkelHt/oMZLjILuAASRGd5iTVRUM3toH6ETpFQX5h04f4w2e5sCTbO6cXV+nRXhzEDpJLSuvpoVlJiOpNPLQADYbd6PXt5qp8Xu5VoQn+S1B0u13oynpLtVpE7cgG6NfpRz20jMNVvHK9XySOgk1U4C5uYGdSLXpC4m2xidH4yIe89pi1+cFCZGgBzjl2cT2mkCrvOKZJTrBhY4PltPlUtP44/MCTaJIG55DSIMr5aEvJD4OZIbmqEJoiga8jCEsKa3N7OWzKokJZOC1ez5R+KJukBpnxkbTFw9jd2oyvE6YX+AdWRz3Ypu+TlFlb+gojAVK2umtc751cW3q65l9OwfKFoUoqbUqTCaHKPnFIW5c2kjHdl+8XHLh9kgTTtulEfmNbPgvIjiEc4MeX7ras9k/Y0Dd1aHBvWQOp27DXQsnSthz8YXDR6314GxXgl9gEWLP+DCgDRZCJxHAPqAQ27F9W/pnOo6US6WUib2j5lv+6WoIAuMGXX2/BEP3R94ykcpNRLYaqzjWYQa16IcGiYumIAnWz9Lq2PcN1Rs67WAfAzQE14FCs0Y0Cjx6lD4H4pmA2R5l6Zl3w06V1kzVQEAAJ6E3uy8+9D09DH4ik1RWoc+r7MXu+RDiBWpinXXFMVdVNSCSo/EEG2dpfsSVIUKqMGS0lxphLiquLS+4ggzVleU7sYEL0bjhFtVcUcKaMrPDB/lliAWVPWvixJqoo8QAL6AY6gAS8XUvqxuA3b8UmgFSo96htda2kxh4iIJKAD8Jyb/p/zOFojIKmoubP2NwwiWwGetad+t/lTeGeJiMSX1xAsbiSe3taruzvLPxfvsBQHYFaIinHNqsXgnBSz9q6h5Hj139Ne+5Kae7NksDcENjvOeJBjzJfXAN7Yboy+ET4rqMC11VXiictXaMv+ks1UJT27huKd4tSoC00O1B5YvObsh68eNJwSxrEAfcyPY5j9vu8LISspZpGzX6QvEI2uDi+cYVqf4Nixa3G7inDO+1pxeG59b2i3WP8EjjunNO0AT3we6m5zaniK8Psv/CS5K4a6Aeqd42eEM8tkFI0Zt1qNNx70v22zcOUeLgqrn87rQm/jK74Kq3kzUZZuUt01c9+rxNGvaUJ7UJ/MP3LB5DiVQNJ/4Sc3xMTkZlYrx5LaqTAeXZYNYk688DtK233728LYHYQkTiH4TOXWtA8t5zr8+zTvn9vW9OXGBn5hc345Js/ryt9BvLlVPdexunyqGePox2WL55VpGKjJiRp3ub6rO8tEuk2hOyh9MKcatG/jJBJrWWv58hBsuyugva0WE7Viu7M7/OWkX4CvoXEuBMlnHey6i9XwcpaiRBHGCL+G9EfFzok75rxtKsyEvJ+nZ3vcah/1E+901iYd9lxnCVFgxxijrMV5KCX1LmgF8SzCR7Qr3xgN4ht6qyNVUWxoEzfNqpuEgfVuHRXqMThaN2dPe9LkjxnDwG9RReeMPQR61aNG2xUT3Z1IaPUQBPCQZJjdF+Z4eXPMCqTxugkHA+0liQ5DMpaJOvW7vU1mgKnB0y6BI5Yp1UqdSs+wZN4AQvOhiah12CpVmkbVzhHcfvZe37KfxRsK7SxlgPKKa7NftjrF131XBu0bN/uhafA9+KIDfAw/aZ/cu9VbPIxA0NDkeBLQxGTUlJhEhwOqmPbI5CDD45vlVGlX5FIoIo+lGbqNLeAzBdLp0DQ9FcOtRumVtaL+z6iNL8RTKzvUb/HT5arIizOf/BWS6fSNCbGFxqzg3MeJ77WPCsQ8MI/gdVn9161w0Zwyi9g70EqqtHCEQqQliUd9EDyv7+Kg/HJ+zXNqWxTAtAL9pRF7vfAZD9lAVP4Ho12HTko0U/RqevPhga+WuYPjS6SXFIK5wPkooCI54LLXShVQL1HWZL1YzdJtSVvp3ljgyj4AvOBxJOUBEtFnu7JInO8hjIRbq81CyPGdZH1UjTj/MNqZtYM1YQqWma4thZ/14qZfWML4f74b3NQ1Q8d1+Uzr6biXjSy4LVG2uCutCgwMmKujYT/0dmYS2TRpuItDJvs/w6VUTAt0BQGW4W+nbvuHn+1yyO74L/6g5SyRc8VStLAnb70yp7kIyETQjP+aLd1xrKn5Pp7WqEHMrg1a2bmchQj39WPxUD+nhG/43yhz9YTn2FX1d0kO2iWGRq6H3FaV/fVFRlgZlXDAJh1GP9uh1050NfCUpYuEfT4Mus+3xNG0u4p7ou/OdT/mK7M9iy83S4C5eq3jN/Rrv4Dl2UeMG5JfxJw11M9cj5ypGz6shDqPgZqMWDdN8sPwc3/wb4XYWOosUSo7XmbglE/E8OEO5tmyu9IFtPegpKVJa2S4O15qT0OCm47DrVgnI0HAueuEZaRCuyf0weOIGitz79A+r0ZIA85708pqHYNL2QBAWdzT5z/NmTd31U5xARqI9qNCiPj8jP6rsGWp9/H23jXl1MgThehzhTpfrUsm+WQ0q2cTo7IBr76o5oypj/M7UW7xfKUHFXsExLMsnV4DRmJ7RbB2HtZeW6NtIip2cXq/RIsxjm+1tdBbjyPXkykwN8HeS8YCluz4LP+v8BIuvwEJDORKuQ3OqFBN6rG1F87XI7be6+ITNl68ExRRyJztABoScJQtBqPavcdAgA8/LCUy12TN9nfY7uHLbCanUBmYo623nSbE7qsq4T27uRTb1xmrxi0D1dmka/cvy/20JhnDaHVV/OaBZL8i5pGL5/YodNNgTJISQOp/OCmnRxnTuO7J0f5DIAk2ktH7jgIK3xAfI2JXSvDYF5X3D8fquZD1ZMsLir4kK6Hs5Ps/rhL8weVXc9e3ylwLyBKBU6NTq9yIvgfykht8XLzzy0Vw+mNFHXFc6QPH/kPUO9lyPtrFF1lDyJbD0UVoIEsqCpFnfIS6j0c8zJW7+nfkmNmeXqWGwMyieNL8KJhyXquzDgv4Vy082mYYfjMCgst/IuoS7XI3ECMxxibagrFt1tQdJh/8MPBXyWKvaCTf0V4vJMHrhdk7bX+ePxsPnrqxw3AbpYixqESCMiIGgvvl5B+s+VJTOXDo5QJIwCstP/jiCjP8q+IvyBQTYRBf/YEMRhEBrCWfxadJa1UQ96gj8QyQzoJQQZ3zY34GWZJItEE2T9o1bYjlVo2x68impyL6n5Yh56jhh9xH+EMBasEDZHjJcwOFgjUqlNVpe4oCtDiTkOVpirs6v7Rf2rEOmjgKhP3ZZr5+cOgluwjI3AOSWFnzdOHu+nF08VuoSnnREOZQZBR+Fg6k6rEmBjgH1JmNo4FzMCHuF1HiWo69GZVfniS4z32fnL0DZ9P4cupyHtAMQtKivG6NW0IbSazltrvbmL/iWQsE0D5+/KkqiIjDTaSNcCVD9jt7FvoAPlgVkYkZYKBEjOHf4E3IlfsMj0nlCFg5Ho5iKU7tP7+1S0/t16j4uqSUT0WESP8zkcP6k5JkqYgXllj20OcLuzwnrx26l+sgV/xIzTXcIEQucLM/atNAeGWTB6RcmVt3rR8L1Aq8ejMCMElRpc+Jq2ygYy5ypAh5Zu6C/nCQ/LZzhZcVopXcZqaeHCjxWz6FfAwJUwUGLEcarMLy2wVnx9bQWI8mxzk+4TUeIaWC7Es2Vov230IKL9MTKyWX52phxddXiHWgUFfBiQTMjwf/V4WIIWR45CYBHKnL+G1a6B5xMD8Ts+xJK771opFDy5HeRegYj1md3jnpsuq7SI2IpRQ5KDaJohVrLN5GLOKvZzIA2BZC81v2c5p+VH8bAJy8UVoG3s/lphqc8u3cHRe3MNDHEKSDCdS+OK/Q/nXeWGW/5cKslwLr0721e1clvZdVT0xz/9V5A5rghfbyhITqnk2TNsuNMrhZH681dcLEAM+UvatnPvptV5c547onJHxsghRa5LBjgiNJK5tELGqMk6olj5XtHTZzPK/dfAQi/v1g2ZhaIcJhKdkFf9+vKvxIOCTveQnEw+S76btvC1eG6d2TillYl+15Z3xtH+6kmI8sQppyz5RMjqZcwB5+7fSVGKtt+0I7Wczl5EnCjG0T7jr3xc1NLNly7hsxfvh62h9pIl6xaQ6Q3yiXAzEqHGx6MHT2R4CIKeyQ7uYkY/gHynNtfZ7ROWisGSmvCFfC+kpdxLiwMKPs/RAtfvXo6vHzywpDaXdJb7imxlYXmMsuYCNFxV8q2rYHR2qYtDuPRYpX+CLFxxNBr0/Qd8Gs2kXUNvSJ+pkzLE1ztlnaywekc9oHPqzc0PgTEHVERuiPng6GQ/9+9zLO2fv0WLzDnV0Nwcuy1VAAaN8Pxd2942rJKKUmGRqErdcTlKE13cjhJTbjZvAdwu03h4PrECUaBD7ApQze+/OH5nM572GnrrqM+/HG34y3gVnC2yzzPwmhzBSgbewMNaM+burROAzxRssW1OVNu11TXYf5URLwO+DzAquzjdRljGmU6AjL7L5xEGYTjV58He8PYctk+/iFTP4c1p1gGsgMfDMS9jkO60a4c0bOfpgGKDTeSZxf5Lq0UJ56WZ7fE3f/MjGgJxGN9u6jfPSaMar61Q2moOdIpbJ74G11Ag/OsCNh5ijAWE48aGivdwEIbY8qVY7b5TjsNox4kXVzD3H74qnYXY988JX0DAhi3Zh0RO0YLs5EnJVApQhE1nlHBBTaDVj1y1LBlyEuqcE0dGUwbR0OUgxZ5vEU5gGp+yWhp8jGwwn0pFZsR0EW24RZna9b7gB8Yfa5eT3J2gZa9lH/NVCabmlVcTIvJ51c14SK1fNuA0OlqSOBngz9fvNWgMqasQLympZzdwDqPUZVINzmyIPodcNwb+64FtKobiuZaMf1vFotoUAw3iTzs7nyY0303VzHwuesw6b1FQZLimi9MkCjcgn/bZ3JOFXnu0XqQzj7TK5cDyAfRhEsgO9u9mTXg0ou6dCD84FZYenSF/P7DFSnefZPhpMwkXLfMZmagjRCkm4h1EaWVf5BbWSSfP0uPJtQGd9o+00fuxPisIpB0w+/aCNYdnghg7Oi0azun+bkbi1n9YG7ZPuTRwy+4cMQHvgPF99O8qPxIdcpAGIkPVmhNvxU6tbmTNZbHWLo3rVRmynA5guD3/aW3DuL2vVg8zbGuBgVdIgg7cHB46NJ0+dpRq+RontasOmsCRyhSSNIm0FmheddHuUBF0FW4M3eGbomZoRoFSVDmoKBucQlDJHRUMnMJQC2eon5d8mLW3gM3+K/H2FQm4nl89HACd2dmrwH+3CX5CsIEJTB7MiVAEOwycxdoFFy0sy8txT6R7VCqFr4e3G8LH5o2UF+rEkJmeC1ZqkW0nGpqcP7fGmdq5KlIxJCjSkRfi32vO+zCdf1X4LzTuNpaPIN5Ku7H+jg59swEKgP9GPkhqS22qyF7+wNwUkwHnD7je7UbNPl7AFmILDu3YQ1B/8ubyayP0EFeSmov5h6dNQ2Iv7B7Io6OAu+kuvF0xuDfrAVr9/OOFtP1ETFRyEmlWqoc9ht2nXmJGkwX8nOOMMq6Y1p/DEUXCcS1wrQEqVxqWU3vqcqTxmwXXQLhDeooVOlgKfmtqBySWE/r1I+dZUiI1Uvp3Ky+jzn/mrYcyDTtUZuJz5738i35IYjMW1oVbq4hgviOVl7XrKkoRl6Zzb+NUfmZpM/UZx6kGKBLdoO6Dkgm3VZzsk1wo2mvbBy48YOowVsDJ59M9EZUEJaRiZozFAeJlvzgDr/NxZ+ZrU9agaJuBuKuELFkK1H5ZNJtHTi5kZBha9z1Fs75RhS5YxCuNLdmUBo/rSGWKYad3pdSewZb1LW2G5ZsTGr9ZKq3RWrMJuYweMhEnFX4JRHL8P1bTz/uYwyYR2F7+XE6JwFf7win/ppS5PtWti7po+Yg3ayJSz6a7XtaHvNQq1SW8tbxgB6mmQFGj4qPMc5bPygUEa27V2mzApqdMmrrXQVGBRnQtHqeYP37L6xCfzN3U/O3rejWZwTC8w/jr1K/MUOzpYVa89WuuP4dO42c/aPFPU1ouKQypYloXG95DOzweGfQgAbAzgJbqRQVOgup/0GbUpSGfzB6Hfq1jQtCy5S4YhG4lod+F9ZCGnFrjeRchgmcT78xtDWWBmz9pZMbjfRmdMmshAdn+6WIaS6QjoF2PWBecWM+VmUoGg1bD4Gxy/sh9Rx3tepcWR1SSDqlZiBpzzR4ybbQZUEQwVhmdRt6rSZCaDzDe8yiBu5tuKkh5IaOB+fkWjshDr51GNDnh1CH0rj6U/iU3ikYvUBQUkv3n17tU+ekJgxXOMcoa8Cmj71PDpSppzh+vGRmohSji+qJZ6cPapLiDTZPM4D7Kj17Op7MWvpGxmyfuTAI1rMRBvvg1Gbu+1gPtcxD5Fpyt6c23kjavsKIsiBEsQQZybeJtbNHMxiXHK5fFWHDw5hBh45mUxKn/z2h7w490YkzaktambBkzKKZSC8maSHxaGzP8z4qxhklYgvA92+X7AYenVzaCm7kkTiEWZ6mvR0EByModp/nLP27zEbNO5pAbyao+H3JtKwAdzCq+Cl45sMeD/+e1r9r3QbKP1FkcX1ezg8QNBCTfHPurV+kqfN0Cmn4byEX0jmgA0f2E8WYygPf3pBkV4AiBVXNZ9LvsgshH8qb5TtzoV7517xe5d7FHHxlnnLeHJ/VcBxs4/XrPIerIj25qGN5KlkOmj8avf5F2XlLE5u64mL2FoewshW5zjSfHj0N17GVipVKWZ96hzN+cgHX/wdNuOaPE8VDF30yvuqNvFiFp1z9ZdcFWnRlPRxGTxkaJ4yLjZaLRrY8u/11CxFriiH9/CO3M8WvxV4ld+gQ1V64ZfApLW3InODx9o2WVg0LRQuF8MJIhqfb3GNYh30kLZpoACYa8dpl+HOP+D+zVXdoQgDJylrkmQIH6bfAAuayHmKjJGnxTVSObxC0R7YyCngH6SYLPQeFkrAopmeJV0Wg+3EB7I3StlPWH1mi8JU1s46Fmc1iPtbmX0alyzSPCQlWqsEjE613EJU30lcWb56qKI9YiSJKhNpj6bk95dKEVB0UaRGN5pm7JQ062b55h+cGWmqXx056+L8QwGpt7XtURpIqomRkWtCqSIFYHynkepAkHXJdazbJ1DgTAC2CiydHZUi7/tzpMUbH4vOVtPNut67NBeni7bcPKsdSxWpxivJNAirQ1z0olxOiPOzzT4Yb3ABXcdVEZKypvVMgrg44/r4EJvgCZWGrzvjpfXGRJGTYjd3AtoJQxpFe4iNV6r/Ivw+5S+zWvcawpQ5ljExbBA686bgOMjXD64G2xO4TIiQfu8Kk2vAc6RE7guWQTeVuLjr1dW/EjLmL6OQfSM+VFaVxEDU7hneuxOW+fzjGbMlp3x42YYam/y2gSF2f30LU4PIADSiDdGMVTwSq0nqLVr1quRU6ARSbBYEwg9KHFR1sBL/TCRm0uejnkGpDURCDznt/lEDgzU4lVfYmXPNwLZysL4P/wE9KHltPwK3yka9XLzZgHA3iB7+j7+7E6aBu2Noue0idX8ejxJ1uoQ2lSw4Wl2rmvxvrolQSBvpX0sdPX6Rdu7VH4QBH+fbCkR2H1ed4k3/9M2UvBlIRfeP9NU275cZHDpHfkKkSmBy6osY64qd+IlrCnz4MAPwVPKcxVrsvzUTtFt1pPFGsn3lVQnN5jhO2Vz7WNR7OuuAZNqyXIcjsr8SoKjo4vdjGS0Y3tMtV9z7W5L+JJgf6XcnfnQ+Bug8/j1809mUuu8tjzlS6G9sYZPV+cYj5EgLA+fp7zWkovVRKa6UqHy8LH1GTwgbn7SfMsh7F4Uu5Rg4LL1ZuXqHMxEoohC1h0D2uxEOz2OAb+XzpSExn4+TBDdHuO4fR2+vqIoMYxpqQKcL/5O2LM1jDyrYy+DyyoHNZ0vkP/lsSYyleXMOWrDHfZUraa2pAvxoNcZ7Y5K2qu5MrSsIG1cCRwIsOMZZPi6AfH6hQDplXFNpDYpcciW6GAgekaJ6gE6d40r+XCGdg5khY1j6B8Ct8ibWVpb0PbmZpAimgMV8XdElyqQE1/anhXp3XgqX98IPgZohP/lY5r69U0EZPFdr1SHslCcI+HcRFBZUqeyNTCKqmaLYhiuC3HttwUJopYtTa8p3FrBp3tF7LMFt8xg9uhL41Qs4tKoHSza6gNa819l/LTbGD+mFH+xCRAbVnh9347pCsRqbMtFvN8N3z4gyYwL6rx9IQR2AIxi9+U1jLFfbxrM59kAD6goxi/7wKrYqbisjU3XiS15Fb/0snEECXS/+ZJvFeovut3KMxNk6BhizF7DrRRzc+4Mnt0whk+GhxOOoNniL9nhVl1j1MfxJZ1kqRCvIWp5rB3mnrxhhnOgM6O4ETSd8m+//dBUxqVhMp4zV3BiOzryVl9mSHGLDf3ODbB/1OpLl+zMY25aBQJabxYx9Fgr5frh5/4U6X78Fb3UR3QeQ83Fa/uHkX/MxD12yXqhhMT3Uwuyi+cq83VHxSz6hHbQEOAsZE1bJrnIQ0Rd4duXyNkTr2DmWoAPOlEut1R03lVAkEYcnynKD9MEl3oWuHsTsZI1jqXAmQ7JTbgrc7y1yN8x6HU6/+jgfPyFxonoLSRa20X134c/9blImtU/MZ7M0TVZAXi4YS9GAdAG8am1mN7i0DDauxsZVGpbbXRutscF7Yoe4suv7gZVT204N8P6dubrRwH8U3nSCizwqNgafzNyEHrQmcpVSUbl1OmuW0sfA61nqOib4pjbv9OZ/TZf8EUvDVhqte1NpP+oncc1fHk9KnFzNzId5ygX+dD3G4qXa50IW/7rwEgJZrQuV/xJr+1s9slS1cGvtk+i0lIn6nLJX1OF2sFSAamAzhOylQGTwtc1Zso/FIx1wE/xHVSp3C9YSpMcVwhkP4GTvL6Z79+F4NA5UW/iyQtleSZonbQSNP/XaBsTSxGavcDsUfCZxdlM0PTQAAqzWM6988PmnyPjTZkWCBDWMD5YhMI1jOxljoJxpJSbfYwV9FADual3oo6LaTETW2LBFOajHqO2vMiGsCm2PVyzdAMN+3VW2uwdIbN/1aBTug6Xj+6bWVYwRF0ybjSgMKf1nRtzGmiArCeV1NIwQZ9ssGHF8v0eN3GvZfsGRIWjJvm0RUzGMpf1Cq+HhIL4E4e0Vl0kOWtjWz52Rg1TRovtQ7HtJ2bVijkDu5M1/lgXlZHp/isNcf4kgL/t+DzjEHXVF6BCF/hx/EFu7j+nXKiiqCXZU4v57/muCmTkPbXbFs3lOHaAHMB/5Fps7LuZwVKDgHoXhPSR8ajhYLvZg8SC5bofSqGxDeVmyS06ONbqJmQI3HZ6+4HpLH1g5k1AhkcdmptZ3D5mUxNS/lH9aUJQKesef24kBToFF/bHfQIp/vTzqHEpf3Q9G62BI/ZCgS3G1Sm7a0s4ea5ASwQmsUzNECEY0Es7cUmwJSKrhj8sHXw5piie2aBV8xU74EBxHDnxx0iMLGu14zbjClnlL3HeXzTLRjhHvY2LRIy+EAmY4ZN02Xi9CFLjs9Xt030eETXWaN8yJTmsFP0vo34juhFuqjap9YPH5oRHueRrSCF5WfhPdM647FPR6OJUHLcS1cMD6d+xxNPmn2mGrWnQxXMdbp+F2Zll+qnYZJAfHNdwWzaBezOp68MEtQ04xBrEqAt1QxphkMpB8fMdo8F4vK6CoqikxVmv8JFZ75EY5FUcrYwsDoB/GM3eVl71shiunk8kK5DFT7TX8LV+GAIvSTgjnmMSYW4Xam9uPtmcAzy1eKOa1QCILs1uEOp+KHhMPfhBFgZVFFRjZRg8YAoErzIeEoBqBuUmuZfjAHSM61ptKo6A3z1rzpQhxesygjUKYv2M9hzHxxMTXIX74SB4eYcoZSWoA4burrqb80YCkfjNr4eZrU1PPgbdfhDNR3HEYg1Z30XZqavGD37/6DCPVkEkXTp8bD0vWB3LlGO/zx0dFinxdAzSEEOn7GCONStmDhD0HNawDgWgvgr99HAIQJ9t/N+xaUK5O+HKJVZCD4GrdaFAYWnUQwhmDwMxZNJRYmkSf2fjFrHYXxwJry/fHm47PCNEUkTbyosTjj+jXOCM5r86rrAzBN35WV3mShnYqAohMVlAwiWI6HUqG5f7JYDk909RBgPx+gQtxCc3WpxZEiytKCn3N0rkKfKY3FDQDfOjPd9TxbEnCo8jS0Z2FeW9CON99G2FyzP53TPYRTuH8K7LEQMHOyb1fyVb6D/mdjnfl2S0l9/pZeX0wyJTc+sFwBNo0zZ+Nmjz8/1GGUtnw56VCPIyBNMXCylHtiv185wgGHeZ2My351gCcwnwaE/VkoGn805ePozMM+tMoY7XdGzF7xc4HC88g22wZ7l1cMDj2PDv03FEUl3arEcQPdtjV/d/RBRRDpuYgtMaeBWx6ynxUDPBw/pRIUnSxufoa6jlbI45KCUiWK6e8xBy0BZI/MsFwo4HSLfflZvoB4LqzlSRfRz/0YxQ+KDTBWKsx2+HroYaxjnFtJJT88+OibBy3sQpFGYS/M6jEapZcIqgsrjKPWFK4VqLpjOj5LPpr9mQvMw/ELN3JGnTkJBSxbnm6dw02q9I6zy/avVNhcJyTZghKQ6WaUB1IM1F8FF2SdnhSb42ItN69phpFgEjG8wqLTryVSeaMzOwoaH9SOib/BZGnvkNmasqvEPZ8SkOuI2RUP24NxCPpDrzWrUczscOwh5qdR3CJrY7pc/lasnm4BQzLJhAUR9ZKcXEcU/X90ptPi7wQ2WwGZ7AUPXDJ7obGcGdW2EQwudURNfhXQQVHE25dNryWRsXKKMQctuRhONAhX14dJMM39AYyiZHpNqzKCC+y1zWPGrR2JFaCAp63bOnZjq9/q4jPEvj27d3veFVDf/XNdaiBsdJrzpYmmy66vbepG1vEmVrOq59G0KwmKvqMEffUNVVyE4Az9UwkAf/oJPUVfWhff3Bu5DD6xnKiPP2rOkKtQPD7ljy0/xbg8J3AEJBc+QGIhPYhAkjzaQBz51NEVHDi9fdtu+ztZDQcTJ7brH3jTeNfRjlM91L1R72ciBmBsya26XcCu8vAIzKP5omkRiX/0V2r2oJIyLX0D1fIecwrk6c4EnkHPATGonIkHn4OshncJkHEG0BXew4h/8jffeGQiSYGiJW7czbDIQmCHq/lc8CyeICdIlSw/lM3DwmRDCvysum3U7BJI1rY4UwlOa8SsjSwrk2df/l40IvSFAYvW+RrHRVsKH161ys97R7AaGHPhU0Ntvu7l9b0mupw6/r0xiyWF2GrlL1QW5unkgt2N4amOTSOTT+Rb80qWaBgnaAWq1cb4DW+EHLSwEYHMpkeYLc7dE/3JDUjxaSAdpnZC7Td44FaaiSgsCrEulM28Xs7a6x4+Q8jtL4ldDTS71PuZY8pidVTwDoegx3Pv/K5XlF3kbXcPEGUqhVWXwdxRA3nCW2LTgNge/nEBh1ohi9pB2gN4R7ADwXmVrS6eQk0Sn+TK+QVMRVQeBRsLdn5qbCJtHn5SZXVurnLtqN50veOUFAK9mIzkOV8MsRUGhJ7JqMuev3mlZ0oqghM+gdg9oipH9fhyWfW7zD++xlxKX18T1qB70FHdCPkthv1xF5YVzMUgycUJJFplfxHzruGH69H0ZvtonFcZ1zr4I2UIVmbfjcagl/fCyN+YH927Zmlvf3FNVZTfrNXY0sf9lmJZz7+YPs/OhEu9rcsDsztzp1gkVKIyuwmF1uvq9+fsuwGSRsD04iFTZEo7n+vry8CGXmg1c9MHWU9BA0UgWoFuqvtsWFVcKuoNcxO5DmsJWNJsrJrKuKHT/1ZsZXSLeKTAGF9c8AQJHCCqbWVhKXujsKnn0Fm8BjpHSTLqP/S+ijbuplgdTT2UTMXe5DvK5qtvU0uKv0x3wlBcDSasgVJ5eRzhaJOxn5C+HDrGngZIFKMopeF+PaG/dV7rZLuz0VI/75PgXm+JnrzqvnQGPI2eDMLFSVIG7i/KgvBAOM1HNpyKeYTwLbmI96BlW3ve/G5v8EoyeLGot39mWiitkyXjUyoTiV7lbAOPUfe6KeR8a9DIC1rjqYGTkjYl2W/X8weWK5l9V1KshzJxFFYp87TVF+pQ
Variant 2
DifficultyLevel
557
Question
y =5x2 − 4.5
What is the value of y when x =0.5
Worked Solution
|
|
y |
= 5x2 − 4.5 |
|
= 5(0.5)2 − 4.5 |
|
= − 3.25 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\large y$ $=5\large x$$^2\ −\ 4.5$
What is the value of $\large y$ when $\large x$ $=0.5$
|
workedSolution |
| | |
| ------------: | ---------- |
| $\large y$ | \= 5$\large x$$^2\ −\ 4.5$ |
| | \= $5(0.5)^2\ −\ 4.5$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19fALjdOWDe0PGvTHq95mOvg0S/VQT3hul0NbiEEBY7y6ffc3UN+jsumPtRFj87Kji+tpN/l58o+IPxAoXcGiAgLaKGFN2bRijPnjSAdrApYsYKjgLIoa5ui4l3SVv3TOhE19Z98t6/yHrZJ22LxBaWx5E7IAWf4pyEXiPLpJSO6x91K5ZpkDMLRSslgmmsMzS5BuBHckCO7OG4IzioPDGDfLMHdC1+uUBn1G2z/ZOd7c3WO2x6zJK4bTWT2fjgIRzdLkKwSw/NW/V7sPpo1D55vi/9m2E4VE3019HIJpHJN8G1ak0RoftanMwHeem3FX1daMYeeofo2Qt8VJmtZ2Cb4qabQ5En0WcAoLIWOb44go3C9BTju8dpTkhh0xPQ9ssuHEKJj2vjJurIMuUMI1DXaYIz0N6vS+njqFHp3lFfTbk2Tu0xnhV7l84TiFfXhnODEcZfzaBe8V3fvNDdyAsmabpKZj3ZGXYPE6cDy7ICQquRjDpPsxQOaCe3TjW714AuRj7OYfoX5NMoUVxx5OtoGEBoafYQdZtIqwhujS+5g2jKPGheuQAj1Jv3mZmSoQPyQ8CMfWIL6EPoOFucmzmmoct1T/eLaRa2iaRWuE4QkyvTx8U7UI3o6YHgjspawpdJREbIibNZjFn4YlzdQYIbliSBmcLIwq+U2vlEVTOFTyOV60KBKZXoUsPQOJkRpnqnW1ijlfaYOo9tFQaEnax3skW95xzKaXgBHrA1kCq/pTys34vFNlJkJCEElYtB8MtnrI75GrFdMxvowq/p6GPN25mbzVxRWRtCc1eEEicR1KIiC7YxGP0B6OWg+YJyAFd79MPFYXAjNIdkTtQtiN68l+yYZQ4HK1LGr4+ZS+h6Mh58YfVoMKZqW37aG4pnQ6Q+gRZ1XxQmv1OYYK316vMPHhaQ6nydp8IOoVjuE96uJbuTxRNa7+KSCwdxQytQ7ERqGcsiyOU2hSrKyjln5NTfe6QSJB8ntug/HvdqxgPJVnINQcqVV6mN7FAUE9QbROZGzaxanrMXd4btO5mUDO1OPjEPjv8sKv1FFmCGlpFXPeYq7RWl96nzhptpo7m+wGG7x8uB8CrOOnv7fbeeXsdk3rTm3y5uEVBU0mKYadrjLG4O2RvZHmVmlj4/IDZB0CWVTwe/OALPNJSPN7+U2RgnWZLirqzsQtvYdRA5Ts530fMfIYVfPWqj2+G/AGrAPAPg0WhJmiixRhKOE1qIQBcc8s+EzBPu4hWosI9iCoIdAljZdJ9uIXWmCPadrMmcuv/eYPJZ52gLDSI94yxKkBvobFU5rP9WGerdxifTQ4iO3P+rdf4D9P//nqGsYZGtv8v4chvjkbZx8CBHov0ppt2TRhOK+IFyfERTDTBJnx7VVTeYdfwu7EhdOzXUQGpCn7dV8pO0ff5vHGRsRmLCB6Ka92gdP7kyUDmcfC6ZGYJ9y3JIthJwQulhDX3Ncjmh9Ge79bSedLAu66KNRRuUFVlMlji2KxNJpSMaPyOGCr6VWmCT8/d+YzSbUapNoQ11rIY3MXWoZvRdha5cI6fY+404FFjpZ06RUpWNHH0kAZ21zKrX+9Xfsm7lVnxc/oXqNybouSJ/vAIRcmJFWvh0d9nuB468zl3Zfc3QMz1Nk00fM6OGbLQzkF1ibu9iL/BoFLuyIoIpR3Sd5AVW5GG1VXcfElxDo1Se27WS74BxGPdFgbkcic+H/wZPDgru5QmiLGvImEBhTPeA1mwa1ndGBt2T1EUvfwmHc+svG23C4yLGJJzEBdHadodDNXddHAc4hf5NrJw+YVxg6ngmXjoDKs5fZp18/f2YG8Eb8XInH8migiB7ugV9sEaeJV5kWdKbDqZpSiK3yeytkY9R/67gNSstIF5JEGNaBOaLS/SyBg9+smJf43kUAccEDzfWwJYNK+LAvH9qBFNt5PeTVYfiiaZK3jilGqcQtI7GS/2dXPptSbwmmznV86SlshDmIIHnoDtVUU1dcN7as2sM3o7skEQe9TYdk080gWVT7zQlyYr1q/upriQ3gknxkmNZP4i1/F0d1ziI5tYK87G+v0U/xXyRLp1JzXQKbHF6HfEyzi7XA/SBFjcVx1qwF6Yvf9B+uKdRxXEno2FeZtxi6DUqoYrPdKiqr9sOf0bQZLsngxrJmg5ZPm6vjhN+Z6ftPsBkAyQxp212bTYbbPROnQGZmk/PwCb34/CnHD3Egz35xHO8JLYihG0BeC94dz3dBlIh+LK1oezmUavtfdOA0FchvNjq9kMIiyZZixIAHaF4IbxuFM/Gim1KHRPLvYVmVEhVYn4VY4MC3ZuNejP1U+R/XgAUpt+4g/nKcZx0L0nQqKUXZulpZQnvjkSL2w0Xo063z+Zq8cPHkJD5cA6ifOZoEMET701iFdscbAgQr9LXHCHgK/3ydiMOWHPlk4O6mi/BU75CocOJGQiyU1y3xw1bYumHcedHt5BqT2XFN4wGwbDDDpQrD88mls5j5h5JuA7O4cQAX16KIT2ZShhTDukVfDbofhms4jxk/NwKxIJTOP9UwcRoVz4m9pIu1hc+D8Q3bQJWS7o/i6TOqNrxzDaI2u5Odp1Jx4iIPRPqcOnX1IJQS7rd/7LzA6tHhtdFMlXV21JrRX0mpdN2iKEqXUpbe+mDGZxVsXQz8CByjFcjrNJBi6l4qTphJyEEXpvvhbns2IrRnE2xoXF/fHhjKG3aCzDAEWJQUysrw7V/0btDM2V2USkzy375Ddq0uWcqJPs5bAFg2x5TYkZHXbaO4OWInq3cJ2OsvISoLHcwW1i31ugVNac/MoGNTMQzeTcklAMPNGV2qWMo+o/NO3A4aIx7ioAhB2uI99cZTe0Y6hhjA7DC/ESPB35ytbzseK4sMsepM/FptLvMYvD9n92tep1LOLnXdBkjXdA9UXXcfPmJY8wX2R9cXlBD8lsd22Qhn7BzTH7t4kvjrCzITLP7q6Vru1bqeMphsVTWXsj9W7KExSVoiieVEIuT0IJ2LxPm03cPCij2JFUgXcHHE3mRz57h5bLROUY/D9kn0F9OecSEDtQnTJM9B1KlNEploV7wRK5afRYnqHU/52LCYX88YGpA9w7hdOId/3nL71L6gCYbW5nr80lhJoS8HAC11JxFlmMERBnweIIMHguQUwEpUtFu4aPMXppEkpkqtW6wrSXzzvJxiBIT+ozouLxgopO1qUkVkzCiFREzu3ha+XAYRg3KPRJkWXYSGHqaz7Ms55itVvszdliMn9MVXfRK/evR9KmhVWgu0kTkeAFT4oVL7maFQ4O0lWP3m7RoMnCXZdsmIY1XhPBhwLwh+5Tgo09HsHnc4I7A8Mcu0Z/yHzV6MtmGA5Dc2s2wr4tsOdopcMQOoq//l/zvAhm5zph1gfvxUGAzYpj309rBTu17IvDdSP7X5I2dqSj/kKkTb24Gmr5TpGE75OOMk9GWhR/eQ6Nd5FHeeucNxCoUyYPGS8Vpmg+esc089nRnRVycMEaG7FKL7slAR3iWyMqivGD5BZGeDoZf77aCBNPS5AFdxawIPBIHNvajXOTX80fo3WHnJbrmiuqnZuirb/jQ05Bz3hmNhcdiWjpv5ILx73OGjGubUsVbv8uPvqlfpJuFAU1XeNpPn9x+P1lFsV8WfN3o0irZGtAbRxlJFYJdCEtFDbkFpsgXUQhDx0dufI86NjCm9d2C8chb6KcSazM0jsvt7Q1HskfgBBUXNkHB111GfzXQ7aNfLhFpXQKQYPQs6ta+oAFF3gQ9tWW5yvTapHwu+emiSjjVWq8g66tIDzT16E/OsQcID124eL5BPRNUGqIlitCBoyW53n1SFDUmxw0ZQvEZ/NHdu2mY9vSoflikw3oAnI19E3Ssl7fqNR1V94TA4rgQl10IPi+brzDY1+WCJ+HaAP7no8KN+tL1qk3lfrC2GrL00hWdY5QDvWmiYrmXfde2xbHTFsaw8KAq0Eao1qfSyCYaxN5rYJ9BBSPa/pW396F5bTE4NVdOvC8IN7K+E+56MXEj6RRRcRdJrjzAwo/zJ77eJbNcESquoPLxkOunw2VfMDDFik7m26zj+7LpJdZa2j7QBVj/oAOPEavz9dKTGQsN8hgP87m6qpT4jMLxmvsmj1KHEAylB+Wk87TNsIhVoWbksB7mm5feGgG9rLS5O9D5wqmRJ8P8J7HNtKtvv8m6VT9fuH8waOMspqMG8KNLDfmMgDUGwVlBqpDCYvp0P6ySrvDmJv6Y4dPHUZq2SuSTAQ27cFGHzehLtkWMWv3xZhzYSnM5emdW0UdJmMp04iAXJhPvrTts1O7vhgj0dCXNt1T2xuJ1x2OZDCThtbtF8iX8lGFbccT554GKji/0ea7WeWwXHFptSMPqoBkZWqr/lFl1DpfQBheFT6fcRvwj8iKzm588iBt64pOYKs2Ws2NOzfsmIGv7reqrX05ir6UlvniouAP9u7iYrl6UkkKyv2wuoQraeLAxeIif6ydrRI+hEAd9eG8S7gGHHLaWLgmmkwds9Sxt95xqDMhPmlnxkLgwEyMysOt7tbeNKtTQuVgikLPPMiJHyIXTSuB5oD8QsxQqvFg2fEgdjKD1p0VRv0RLCq5RTQQAh3djEzl9LqyZw8y44+dIFqJ+zVsgxymxEG68FyaCu/+iOjN54GjXybP7Du/ZW1K8TVGzN2Vm2fF46SjtGE5znW9JXooTL5KRkitkmvjwR/9mJkEl9euoWBg4CV9zoo2qbZHiTClLe2blB6Wyl3XiYgKo4aYjaL3UYjClm/3FaVqZ5A27zusUD/lQlEFfCVHchjX9MPmI3f+K/AiCkjamQIzhzpu+Fkn/2gmbysDchy/6WwToq4g183ZWce11dy3v2NkCN+gzM1uqV0wO56OdJX/Kf2EnVXEb2JX1AZiQKTyL9X8ky4OKjqpzl+AKEPFq0JiXE8HQFcqzWC3Z/hLe87BgQUKxZEE9u6iWulAUXEuqbJ8URKaFkMpFPF7WGjj1WyvLkVhMvGueYe13OYKx4VeE8vS2NlpSAn1k8CIKRT0Edx0955UmnA7CkP8NHWuaviPbmiQS8k7iSh62BYKqLcHjI4RpwxSwgeiPLnkhiFHvOpCRZ3Bw/mUwR/SlOLNpl4MSrHnwUsfn9mpIp26ZW1lOtIzlfkMvbwepVc48hWdcYnIyk/MUYihebG+n02x6vLgRTizJ9TRHSfl5b9KJWwLCYS4enNMNuf07nT1cwKrGea1HAk9y80rdHXYHZAg3enoVhWVugsiiAnDRQ7iWGF35pJmM/Mx6VZiTLnYTRLacN8n75OdDp6a3gxcEDKKoAOTTkwbiCXMEBCXg9ogCGpVgbu8xu93QVf39Of3DX/yTIYBKfTafkJISDe+pfdyEZovRnwVyRy+GSWjfp+M70VYTDE+tMkf9uuOQGSc1opNJZ6tSd96/qcCzxNA10tWCrALcSDtTanOoq6RgwmfA5oGVGgygGTbZLxHKm2jDZE5kn2vo9RXkQ5MVzH3j2WrJKfYPIUeIEd8sCw8R7mg7bGC9CK1Bw3Fw5b3f+kZSn5kArXO3QHEvugYIb2L3jEEMbCf8w+TbhetsudujUmf+Hv97xglafgUmcmh2DpEfeO1uFLaOA9f+FPtfSO0mkL4l+klQVwAHyQd8Id8qr9b6G29w/u72Ctj62Pl7oHmlxpuXCwkBnjxFusoIzKZ1aqhLn6yTN1DZ0Q2TWCMPKgAsdUDECz4V+/CZ84mRIPst+m1wpAvrdBKXGYHc0sWVCRBJStN7emIL36Juu6tXN7rc+wA26l86hgUkYpPfIeLdFWFL1rO47I9XWJfdJiO+HDh6VTBDKW1OqZ+ba0dZKFzcAxYzfkGIGodksHugMQbUkmbHBKsMwSHxVkuKCxPCAT3ywGV2rPMfOlN1XLYvVhaIPlwRmd03Ha6O/MBKilVaTAX5DFok9raiAqF/AOO1uKRzfQBJUjL2aJ7XpnLSxj3dDPItSX/NOz5vnfaKZItUGaAk3/ySSAJWdfxjhxocwgeiTrcAa6cr0jkxqPQ65GriGsEDT51c1kNOTVq06sGpjuRnoPJid/7mMAsz6n/AhTdWb39xc/WZBegeYX9O9a/GtaBbPxWGTS06SACSVxkChmARzZ1NR9U3v6tfBRC1kwtjd+tRz6XhBNX/+FXg9jRwreLalxQVE7G1KOk/fEWy91GMXyRsvXh3QYVKsZX57wK0kEAGEErs/u96zAuVqeYX5W/pzgd17TOiXAvEokFJuTMzlqBsltkOAYDHhY1WN9Phgi6CX+Jxbyl/pE9wGwBXeVQ7DOFQTt9b46cHc0Kx/3BmOKlgkyVmpjojS31EG/VBKAegwcqZNXfpi9uVLQMb/WciIgdqlccS0hXJQo5oi1yacI+09pcMx3BxYopFFdEHY/Mx1y2iwLh0ePhnzYWK7wYuPz1K6BQxwjclsYrgQse23nSrEP4Pv8kfZfoSwAgnjM9JtR4oLwDhgICHAT4utxUHjdC0W3v1q2JKgSDGiTPkgMh+gGtxJDQVzSICMLualMBPQYFs5HI5zL9OWJ5RpR1gLaNmVV1KTInAZqFGSJCvwkSUi9+idJ3ftZfbI3kYQBteN72o2o/K24LkLdZ8v1htNU3T19hg2zOH8zPmHdDxXCfc/RkwFPK33QH4jCyM9Lou0A6JJgpmd407mO5HKHxk4xunaor0IRGTAi1Ge8F18EEpo5nHBwd+AUTcQrhr968pQlDSHhIiTOzisPkI0aevUhTIu43xProoojluPzNK2fAO1LfThk3mDXKQX34MKvEOri9R0+kBZo3bM6VZEv5UdIIFluOkc21CJiJ3mIr9aeGpdbhB47bkiNpyXnOtnXvsWwNWinzpmaOzgsaGjDrHG7wbVrTipL8/bG0NY/j0k2D2q9kaDkLWPB8QC4Bzzz2srRaaZ4eEqCv9rL21qKsBLiCcLHOUFStQgzPeCQE/p8oCLylR9VBzmDt0iXb0vlkrApIWjSs/0NDSY+wlrPhLWzBuYSuZZiiN9cpTb4lRe/6hbwk7mX6qeKvm7G+46x5TdYBKScBlXNj22rJHz7ZwBaVfAkghTXXtV7Ddhu74XJcTsySIGg+VeSsgKuKUAu8niOfL1bNgF4wXrMURRzXzkMAcSzt/cCcdH7oJ9L3orq9LO3z4t42OXYknW2OjHr5rKkUSZJFOP+KmZUV9JjQrEpn6xsZa64DA80mdResNRw8a7iF7J9ZGPItL+VPN2zc06OH1Y0/V42Pgk/UixL2DVX2wbZl4aKlqbabc+viMz8NjzD82r04o17KBKquCwoB2UdWidtnfoDgAdh4RPSTPePT9/jeQzFAD88YMCbGNP0BxuDJG8uiXRq8SYc6TKIGJIi9NAFytP7c9QmuU2H982jU95ojDH66IVRNMTxR1UOOaE0Gx/cAmr6h1Xk5e37jEjpCuJHNjU/BwAb8p5mCSTWJL7kRsge7itkA2SoEBPQMd0xOX6cgyWCeFluq4nvmckRF5NbjUuLhtEA+9nFpPnctp/f/w+CBio9vnBFcCbhS1cS92C99dqvaT2MrxyOJ3cJlNUjticlWXy3Z8COpTOKmLqi0mgrlA1fdd///6tnRhyIXCWy8t9aG0X7+LVdDVybopqzDfvBxcH7L0JzxCIULr/F9NF32J/bFm67X/DHyrkdu4U+sTl0IR4r/Y2M8s/LFlRwgEooVQlkUcHeyWH/ZBgGpuvChikGtYusPGytzD0NcLYh0BqsA/KSpXtgCbVL+YHlCXfa2ZzDDWBGDXyjHFu41C3XUN7jUlWd6LVRcERk//+O3A+wgRGydL8VvVelave9AJnSyVOSaitzMQIeuwi6CGnDHD639M06Fe4HXku57FxLsZCxBhngUT7ZIrTLZKmGyGsSQkdZg7MNfjwbamDRsH8Be7jKT2cBoz/MWzejCBQ1vXe/qXJhJ2Jbcv3seAglz0iwVZzfDxDsYbHlyfcxp2Akz7/WFpBBiPXOPtfBdfyoGIx+mI0OTVdHNA9RaV+JMMBB9ZQNh4sX6FNWVj34SEwqfjwVuKF5Jf3X4lVd9gjIpZhuZ56KMl7Q5rIVl1hx+qeVPGprliZqQxg+D4chc5MB1YYj+5Hrm9mBaiFWyJT2MSGOImHtM+QYkL0rpI4tq+VNZ6zaoBQymZbEQMuZnTjKf3EZUcCP5xCMmz+SXoAYCWbkqubI5bd+M9GCnHHzViuUewPoN51zvLOu0wQ3YMEboJZdAn5ENUD55S53EmvDoNqQdWxU9MxMfuKQ8BvsyBb8BfbUYbGl4otr0PZDmvz0bkrlpOqPG7WzSjp7izIXiXkRJvi4h2cK9SA/8FdeBLmIxnH/cWtbZtihs6Wjj44YQ7a63+xc5QaVl4/RnDdHwAWcbW2J7P2kQQhnuQrYsSWgrvKfTsU2uQsRT4Mh3wzhIBj9AYEkoSey4Zzf6ai+RepVlt3V2Clrvc9C5uOuREynXLJAKWaqW+39/4Vc9mpcYNxunmqvT9rKqhzGKMGK8Nzf3CPRazkj4FHE+Oz34QrRq7t4nmaCMfvYKLlRHgC05uIJGVhXku3kMQPBM4fJ4FaxxAK3lRZOy/3ORr1izfLdmdA2buB9JLoPG6NVAAY6nbFqpD4X80acisNCi5K4Ib0W5zYTF6jJGr2tEaPKhOem5TAur45l5IUaxXtkWO4LJ4p2xMPONa5cGVMjyLgsWDsIT9XU6wxF/nDHiLqCys/hsnFlFqH+6EVGqRmniuwl/MbXnOunbeIm/ZfBibpgfn9XKHmo6WeDbTDQYHUfEu36EKABwq46SdVMvt1HJaJoQSjNCt4YamMPTYFfTf/CvTigDpQ1IiJXLnn5q5gyZQYsMrwRJKEKncIPewDd3mWsTW2RQrOqnzlcpFRRTIwhX4Tg43CCpUqxZQbaY2vcBTMHvsQa4IUXSrtHqSzjTrme2mxGwUtu677RLTzbbmWCoQEZXx76AcLfnUPyUVKBKhzyw5h4pQXnKow7QvJCCNvgo7u1wt71i6a9T50jOTU6wed3LZ1ITyMCnhRFptAb5ISPhU/Mo3lU6v+WXzfxpeJo+1f9apxMXuGoFgRUjLqUCUfLz6Zi7gzrKTunDzoPJ8zoFu60U3l/onVY/rYWs3EuEh1cL7DnbjJHS2lLdvt5cykEjtDWMY6a/n3ijEHE6Fz0RvTUFTd6dnw5iDY06gSosJLAszmZJma+xZkk2CaLk/U1DZzyHAVQhjeB+yyFvrlY04axE27e5knKrT+8GRSiMVpQ4dOo6usVluBATnQu8pIXCmEHQeqV+zv5iOWVMgTzokbfr9ArGd04Dq+1SPNeJZLkBGpe/16witX3oDbl+h5WhH/QJRJjBnEYDf7i9WREBQJJ8UK9pwoV3TJIYijfBBsQmLucoEUug/WrISYHs3vXuI1GQ4v0cHTUOAT62RXe6Be4DsEMTbchuTWBDIaulNOyw7G4tv8UkuMP8fhNnhUXovS0rtlIDqiv8w2HkagpaPnDdTHJ2AvxBrt6FZk4wo/hIrEaLJr0WPOeZv27u8gQqamZ7QpeRwJFDC76Xxusjy9qPXKx9m7QbuoSRurJrztoEjYIidJE3u6JRizyiBzXDD4QBj1UXcNNAiwtZvPuwaReK6J9BsM6zm+LECAY6PKxWCVYNKayRuMTM0d7DSqUQwTKqUcc4KJntZm40Ot1eggOuyVRK6sNZzjeKD1AuT/nBM21H946VfDaXYQJOZbHrP9wrP+ClT6t30pHwhNiA/dFiU8Kw4DsMkawnu7WtQ1233XgwIRZlCFmCDhQEMqTwf7ifxsZL5tbazJDz+hPdGi3bOPuOUKj+OgK5G0oLDeOdFYBqZe2mRou3H6SBR2bjXeVoI2/BsQp1bq8ya409ahlmkGYzuj+7MFJ7Z1qd6CfXCF6lBjbfxeR173tPEnWyaEyV8FGkJn095IW8KuMIsxRKPniXRgoSgZcCfVva+NCiUSYSudM82e3OpBeF9lXILaBe7Er85gXWOcmtuCNskkzvsTaA1Sz2b42dPsDxsZumXut8C8wHCHmWLR6dYCDV4rEyAuofdez/uZs8W2iCekAZok2EeAVWL5BQbhSA+dZiHchMBAa4KhnjGTRFIHGUpt2h7rMSDWGztJgoQI/QY7LaG3Tfh6Tv597FUsdz4LbMrdAg3vQi7spzBJHzIaZNOW1Jkz3B1nbonExdyGaHuzP6vgGojyl9qrMWzolqbTrT1V743au1rIhjXl/nrPaAAcFRKRV08XT3wG60G6uwdH9YKVztOh//wySD0YVI5fbGW+tSS7IBqmSwKZ2/fJ68mR1xHMTiDoUGRZB143MxTcm13d6HeG+3d0FdBkiGClAhySi9SwAfdnJijdz2Xfy7kad9yicUw0Aj8h7blZkTMX+RkkPA1Z7GY8jdEiI+aKQea6AXAY1LXo9X0qC/eZHjeXIXzMoFSE1Kj9ADLyJGrbtPd8qn5OA8H3j6i8XmjdWKDCXiKcz3rzz36yN9g3KwSH52RMQgK4h4wo23QGd04owC01jwVZcUxkdMwAadEM7sgJQgQCy1JcSwzBleUQlyduhpn/9NmW4N7kxANoNgIdlqvcVW/XyFBfw+gVX3FW5sQRdL9RO47w9Jus8BDuPD11kirLZnmrtzcAPlDA8pi/bvI+EjOJjBRsNM02C8JEzzd9XHxJkG1Jyqa4rndULlXJyaCny+wASh7OPI1n84Vmt3bpSGghIdygl7EODHlPQ9sLDJItXbpWoEA1Szmg3SlHj/P9NkbEqVNk6rjhUaAJdqOQhwW0GB/0iab9L5SlxAJxj0z8SMCUhtD22WCWVRnz+ZPAtXs3eXMXSNAaI3P7DhOQ8eZgTJ0tOoio0WHgC4Gv9BFs/oaTsyCuiSMH9gzjRyETMKaSNWWs4jusy1En93u9amayadsEh0FBh6Egl06AcJGJcPzV9kqCKc2jbxNYizYKFLXfB7QirPjtR6fA4QzFi/uyY/6dVNnhotBs1HpI0h/W/6F4WyzKDCVRrLGD6Xo0SoOSfjdcK69wZ54BRm+OEyDxxNGGO9yTZ8rT2/NReVlc/LuEqEcaGBLd3MiYB07pK1Eec0UuzYCCBhPk76sGLucB8v/clBFpuowcYDrzvIy3F4vIVd676vuouXKSZXnWQy49sLFpciPR4x2tPp+H4rHIfbsUZbaF/0bHuHJCTNBWi43WDMk84Xukr+9F1Oa0ZA5jzZ0J683ifG30xQoCkWL1cSwZUuhkOMkvUDnY8RG2dG0ygjsncAQNGvdTd7Lxuq9ufe4Wohk5Ub4Ak+5LuvmW0FKpEJ/Nj40Q9Shob5yerHNiPuMtNlCBvxk9yi3kS4ie/M9JbCyTCrKkHmFZgxEGHq5SwOrT+PmlFIb1AlRyQgoYqVcEcYFqA56WMDoNkPId6E9MFFTVVd0JmSF0RRCf37uy8UU6d2VqvFkQUaZNqzslb3SDmeNuOvAPRQzWzOb+zQlbkLz4ueCHDLqFnT4VHHzWrlVBJUJR7kmYS41WCoo4h01alcn9arnHanp4AbAhqamlN/rGB2jKi45S8InaIi2pEsSk1rvYJiudCG6NN+vb9oVKyT6ZwikP7Qm0gK1Xtcs9D7YnuIvLTe1mnJErzx73/IZk29KsSndXmaWUgfRduviyBDzkdFG+cbWGB87+En9Ygrv6SSeP9s9GCQU9DwrKqntn6e5TB+D31VlvdTNfTKQ/P200hFUQFv4nfTUi3ZwIV40ccxi1KTLyf4SHm6jwNJGEbGly6pYiXGtu6HMa54ekZAUrPjJ4cnreaEEBRqIqzeUd5FXQyHbnUYXpAhtW8ddCIyrzC/8j1zayjRQsT06+Z+Dt/XKdtD+Xt5Fg85um5u3NV/KqTpOVE8jjdFiu/44LdGchg0EWf5TxCnnELjHV+UOLMvWZlnjDa1hWWnx2nfuOFxMDk8JzgbMrD4Mu+81bsq1rW1+NN9Qu4RQGF+bBwEDaUDobtY3PfL/D1BcafTnwW2Zoe1Y5nqb58ya+FEoz6Im987qwSKjYk8Fxw5lr2Zmd6VY9tjqBAGI1hZSEeXamH6nuDHkmvesUFVngNsYEfZVnLic5NI6CB73/TSEJE7mMMcnElLSnTJi2z/kYQK5OKuexwCgNpA2itWHGRpX4vwma0Z9Qwrj/lmbldHcHT5Be4eBTNnWWAhELEYeMT00AOrYkcdndonR7loQha6DVLQV9uoV58d3FTwgxp8+iVzdcfxm6Gf6fjzxZHcupNTnsnFXrnvAcxtY5JMiKUx+LBAOI6Q3sjMn+P2SYtszLvRPWn1u3CoLAvg/wOGRyV4vpK5MMEwtxdjbjTlml1O3i6xuRr9RE3BM8LVsrTaJXc7mBUTmYH0oumxCUDdz4H314PMDr15d1hC0FW1NI6Jc0qKcmTG7xRoyWyqnJpXUcEU17wd+UXnro30gLVFli45BLbTltUbfUY26k4WqxwnYnpiXP421UQN5cBzekGgXbx4yYgghV7HXWEgW1AGzKLOjnjYi1Kn0FNdiV6/trfKrNRu1KdbY65fXOxuYRi8LS2pqln6lOEDC6/8xxoHcR3UJKDZe2afvQc5Edpxg2ELIAown1hfVl4lUXJsn4iZCbI4cdjLUIxzu3SJ+z1gz4e2toFQmVxWdlnIoKWsJH8gzSxMoN5T6cKNm7u8c6kVlmTpsLXc4ht0ldv/OP4W9qNP5/CP3rE6Rwo+KliY7sULjwt0XZIG709Z1OPv9W9y/SMEsNMixBY886mewWA9oEPjvUjpwUhULsL15HTys9Qr53k2OkeKooBLcAJTbiDA9HgBIPenNxMSyq6Wow3U5+3clLr3GsjE/jUUAMwustCzdlEl/nK5xH2i3mD5TEy/NetKIuSjZ+01JDN7QfF7TWxSXn5AjoR93Q9/0MBwJSLoakqC5LNOPCVq5VGTjBDswjnTIAbmwu7DMbvl08hzyzwcfEixwdzHuZE96tkLRL+WMyeKI/GlMJOVkBGywo9WkCkM+gaOOmfEutyoknUht4HRjZG3s3OeErKBpkZQRME08/GkpAJlItLMpoMJA5fiZCSa14MarCalCCGtO/f44wYqVvM6oTd938WfJshdjIhxxXg+To1zbTdKh45E34EAOsDngOwOHsNnkMBaLR1poAVXq7I2F0hUiydbT75FMEhTna3hM6SAjSo8/OJHxxc0kKFu4h/yGGt7hjBiTNPL3DDcxFxkII1bSzMXb7yIYtiQXAgagvFPl0RELkylUz/b7TPeozqfmtvzxSpgF+fl1sP4bRNjT8nZlCdWFeFc5QrjODayQaglQMtT3D3V10XRcjKI/+CMvcNEMSCnWkqdk0OWVFMe9Z1e30l1rsoy8B4AaxV9c+EMnmOsG3HaT8HjNAcMuuPv3tM8eC+DyPRS7S4utXNBQvpkafuMp3jx4a57+qyO5LlDjy1ISdy9cdM7m1i3WTFRM2hHEWH8THcZWBkzwek8zWdgsm0/Udw0jySI7xeGnhJhPkzrP3skPvwu1xsu4L5U3ec3JZ2s6hPEgcUIsq7B1GL66JQjhQlWfk2t/1C0y+CKn5vEU+K9x8CJU11rOh40p9jdGKz3oqK8iZcrdkoQQ8jRP+4XMkGuQ1D7TLkd5Vh6KdA8hdbrMXjiCv5d0Oj2esPcsciinI77oSSJhYPe3ygNw7xRaWrYhCvxuNceMUuJhI5N27OOVxpppM8G+A6bNuSdzW6idW30cfvXt9x65s1vKsGqmy5g0f3P63VOe23zuHSveneJXLxlyljfIJMDIlyHwJhOwxvcwMVSJUOrHhuEghbQL55/uUlmPY6vk4E+b6aYnCgHLJhyGQ16M8Mrjpu2YrfiCyRJ/u4rVoHCF70KF5AjIZXpVoo+IyscxBCqO+qBMdUseNynxBfPiFRG9bTiaWxQeAojVNCGXnzg0iVWgpS7MKdXUGuembci4ggiM6uZ9SoaC3BhF3Xi5yPtuxoFh4cXVJmzcOMzJJejsgX+rLqLPXsqB9NP1/TywAwJdVM0GAAgzxjjkLyjlEYv2KCFdjFroNt5dtP9NBHRYymdtUg7NOaiNnK7PbQy+zPiQKmBgT4t2AhOZCw+RrDGwbjx2znscZNFEyRn8MsI1StQuJuRTFQ573q+tw2+fy6/0z0L3LsXYKSdVJ49uldgPYURuJK9zwZ6538rXie2LwWO8joW+AedZUEXBSm/KdPKCLJ9TjDw0R95OSMBk3bxmdvXaWr7eGN66BQM1yW65BM8UpAZzg7Np7bHpaLNyp/Rs6vLLxwSArwAfJAR6SERWhFf7m4+w7u2p2Bu2BHUaHSw8Jr7MoUfe/To9M73BUU0HJzapnAJGKDSn0Z7HPnnzhQM6MItGceFnHxJQAmYEGAsZceypnbHN7dK8a/ldjY/yBMcrCOvL4Zb7H8bjrOhVvXY6HSzboL9ADwe3xccYQcCFO3Orpb4qKXdrVAlAYH4uHLz704m7SvZuD5BmkYgP/Y7O1+H3EP/y/Aqm/ZuAdPwLwqv5WThItPH2DByFB75JLyNj+IEX2sLHw8bzQNTR5ug5QBsmXkiFIjwt4c4oO1Lhmfub9bdQCrRtHKRjz0FcFLwCZfc91YSlMEevnO+IN6uuABD5iImzDf4QNU97XqxfyzxenQ==
Variant 3
DifficultyLevel
558
Question
y=x2 − x − 1.5
What is the value of y when x =1.5
Worked Solution
|
|
y |
= x2 − x − 1.5 |
|
|
|
= (1.5)2 − 1.5 − 1.5 |
|
= − 0.75 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $y=\large x$$^2\ − \ \large x$ $-$ 1.5
What is the value of $\large y$ when $\large x$ $=1.5$
|
workedSolution |
| | |
| ------------: | ---------- |
| $\large y$ | \= $\large x$$^2 \ − \ \large x$ $-$ 1.5
|
| | \= $(1.5)^2\ −\ 1.5\ −\ 1.5$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX189EZEPABGX3wqprrFLaLE1tYNy5XAeP/uwF15uK2F4Pvrp8xhohLKNlHJmYCL2fjGX0VsJ1JliZoPNhCss2m+0VXPaJ1pF8KYWlaezALslX7DWGM+Y1D6dWbcHiaw6lHHvcIBNeHiZFd2ZhAc0nK20fWv0k2WL6XgEnpJOnvQYXUtcnSh2ttcCYz/uwqLPTJ+LZXYthRxnWyOJI4CnygTMDktJZ6wJJPXqPf990c4+pVbEcq0yaqUGwWTwy5is1Yd225M++FrYagWqI/h0n9hLsU2W61pEVvx8CjIvn4Mqrxx9l+X662CNzMYE686SJYDWPj0f+4ZHporGOGDXcprJNvhn3ah/y9vguN4OIaWwbxTIkK8xQcoqFijvqLu7biP9e26FXxJkAbLpupYXqytX9Mqi90N+CYS0drDaHZ7qqjxgeVZ2oDY2pdFAlYNs/izYG6TeT0bPm4aULJploh9BD6NLjxncW91qK7+MUyTcNEMDP9k1kAMJ0ovaPL1T8Bycylp7QY3s3kaaCHhC1dUiMxWEsWIhGxEqcZJr6UyQW0t8wTaqUMUIePHOw0uZlxdTU99BCynJfETY2CU/mo3osKxaN6ugxIIZjXdr8HL/IGegA+ZZM8WeSjHmOrwTvMSEzJTkpDcQWMxQXhXfNMPMxHQmFdsFhwAVFcf8mj0TthQnBdyCzWp8FP8HUfT+Gojun21DY0g6feI+rs21AGskagJ9bmJJLFscElHv2fNGmCgcrgBEVlH0flvF0DrKmau0wE0jZw2nhgfzL7/p4TBmpwQti/WQ9GtM+Zl48phHGv6UVRZog21KmhMYgVLVFyYUP71EsqQnWohPN17k+vkVWuVQp/62jwrSQsCDrsu1dAWZaNq3NITa690Ii6gUcddo0VYEiMvF5tGjfjfjmMnwCk+nF8BjyUg2y54Kf7qZFrKisrJFlWm2tNr1t++h+CDbY2BsXmIlyUal4yyebziWj8fJ2nlhZ0RtYi5gwM5jEJWVV+ZKcTni0OlBSx7G9zhUyyjNDTxwxY3nvzK8IZdLJ/DbtzaW7nQY42JLYHNEYyEHCArU89iaQvhbX90TYprHBMt3qxaW1NhpoveYNH5ajy7yt0s7UnYG62j5LDPycbQ8d8ElboeoxkLJaHoUPuff/rMpqUnOjMOE8FfFsup8ft2WtCRwBLket0Qo1SqGodulIjuGDmQV9n3B1+CKx07/Ogw7yJqvcEg6+GX4+4FsQD3/RMMlvkwaPD3LYjILLjvCUzoyMnMBH5g90AW2pdWUDUfpTp82dPKGhv4FTz3Q1UdMQxOS+zchEOmjLaSO690J4DoG5t9SdFYrUfGNK9N7KlC0wuCAXJLSfsHl+dc4eHZTPo79dR2Yloae53/2/cSwNk2hXFkuFaMCG3vorK9AsLrqPlHrKOBsWsn5AaV0wRYxQv7hy3+9OCdHldnwJVTKSiNDFNrChgdibXauE5j/hAMaosbPdgGh1QGSxBzDapEkgYvjDvhyGALTVYMTuPsFYXfpH+2VC/Poob5AvecZcO1im9sFn7kVRMWSCtaLnSkFDRbEZDXDD+QEbQouinsnaGgtx3A6RThuK39cG26BtXmL5HrBpuTKcJMvQrc3EkaID6y2BFHLJxqAIoOBECc25kqb5sEo0Twr7mihNvBxjthEbbkcYnwGgADIZ2MTDuSUrm1CgcsgR2ccFA3m4u0eRurt1UPN4jT4DZyNH75eTBnx/8QUMW2mXRTjzj2w13LVk8ZC16nCXrm8wn6eobNx17d+ezFtLWlmde5pmUx5sD7Zn7mJsqavSohrrElg91C6FqNOTaneEg0VS6MIv6sW0kzmxo48W/tYdkSi0qFFsEnEd3D6aNz0NiAqpxXRM7mBZVXpR8EJzq2QE6ahle8H7hwrz8vrU1PgHavsbEV6jFzMhGPaolOlmjY5VtWZj0BruaeGf8flIgF8H4x4l9ZCMFY0919JCmIik7ztP4Nqg4Wk19K2YbPJk01/f5Uxh1ZAxSx4ijBV9RyVIUCenrqjcSCzLKKar0qLwCf22lIR5JMNjh6hvLWU7YwSS8pfjpWc5f/8HXVNOYgY54I1kGF0WlII/iAdF1eOLRroSct6pc+trXjjeYrRqlQ2VNjYFlAr977oqBptM7ALsXiZNVkQsD44CqcJM4hsoPEsFowweciqzREHF3vWr3TjoLoUQK7yn3v3ZesXNMRdUBMBhms1TiYm5RSz5D5kuFravaTRBMQ4dsvFdV1AaRz1NH65W9qqPepTBitC+yrfsk4bVhKVSZOs0I3eN110qdZhla21s1GzwLZ8H9a55O955xUFsXClEN0sAds0ODEnkA3fsY0yo/9IygXj41KsacoWuxY+GajsDzohmpowObw3B8U9u80PZ51EsX+cZx7CPm0t2VyS3A40zTA3fx9ibSrRj+3gL2sNpz49+uyX5No/13lNV3/U69rPALkZqC3OjpV4sKpR5mua/LWM7j4oZDKxJaHRAaxsQCj6zs14Mypwwd90ELhKr2UmVHuqLLNwlekJ12CcTjRgGzKJDBfjSsKsZUKeeoLL30RHz6b9BFe17H9DJt4LevznjYSjOSASYdBO3+SFELXm8TgiHGWQ1wLySVGdIf0NSX9IZpmfvz4soJg28ywJriMaW/g3M2snSh4FExKH1nBF/fQlRkfkbW+DFbVNdzytMjaalJLFwARRLaZ+gtujPm8gdqc+cIH9ynZRu2W/j4I1pBhMYUuWO0li7n0R6p46NCpCCabcIyphsi5RnzFk0uQKU5tnx4IiQ7p4Vdcs+yodMLcl3kwZ+jB6LREiaAv1FcZoovEjqEs08PDCdag5mbUDtHfVxN2A3DxTarKialkbI8c4aU6faN1965TMuO0FdWb/gEYrId1t4WwZ7Vd/yI546g5bY4nlrKy57wAg8TFq3js9PruXFhj7qeOoSeYhpE8/qWpDiC2Il4lBQDZcVxwvcL8UsEC3bObJy241XyXJw7camNmhLUicd9V6BGR6hUeISv1i++LZO55IOJr1jlZiY6qp5WoOeV5ho2XBkFvTend/fRXZVwBg+yxKJiCqI6i0blZY0aHT10vBg0pJdMHLa87btAbDlakqsAq1JS05/EINAw4JxAKqGIxis8ASn0iEx8G7b479KouKbvLTr/d+hKHQEWJu5uRy1F9oQ0kjSH7pclK87FhPTCnkc6FMq1B4PqONkkwC8Lh/sw995Drwh6ACt7W3bqGyHXxmLcVitaJWQ6aM2+tx7OV5vyNpRIvQaVn4eTJld0k67s5djUE0ekq2NQ5bNIrYq5Y6mLhoBGHO8IryYMV8SXsnBEpSUTQk0v293UU+GcYMazSNQN7T6HfPRcpTOB/1afMihd+fc9dV5WD1a+cGurQznVi14Xam2sboQMFRlkn9TB8R5e7vlmCMQ5MQo1ZezVRhIu+M3+lvfZRSe03PlVAxhjOwQpM3LUM8PYss+tiqDI6xjHnKGinjeGDaElBIqI3fQ6zS2IMgIzJnt5Ede0stS0Mls1JJw6ZsMVA1iJ8zHYnxqWUP2XItizIha/a4Pdyb9e8rQvY/xAoYMIXZfWyYkI+/sfMwYQO/CjATb/JOvAIBUcjxEJ7upk0AAIoCc8aPHPcdKoMO72TUsQXkDYIhUP540wRkdccNp1qnmGaFohffdplG4RxJGe4/oZZ6Jyw1idBO2bqMIWRxu9Jd5UK6RZEPIY5hMjfy2dNmT7p5M4rrUnmxcPDqxQcYvatDdgw3DwlFGCWRqoZjaURiweLY4g9/Qxf7hi7Id05A1SfnupWdmVbhV+GqRt3myrhzopZwAuwg9Q++qPSMbiJxK55lYmzevEHtW9cup7/dgnS7vsZP8o9pUrxamD3MPTq679u0vwsimj0QOXnRVvXc5qZ9K1eFg90pV//e0Q6eNRS9DLYcpwyUCqPoJn29Dywa5uuY51Hn8+sF5CR7OvtPDzUSlhgGmn7EqW58w+zG96owURSdos7TWESrkYuVRiPI8W6B/0Ss5To1Vn7VkdX5zS7pNaVQFzRYdmfuZXPuZ4KJ4gUe0wrn75TXZlS+AfSieEhGe8h80n8qn1yjOkmD50oyTZyCrdbH0FnmaO62XNArutzpJmCPpYJ/vKYsYx3dp1OdgnhXF90E7oMEFZjqWIhWALRCnsASTPgy/WuF9r8tgbuNV16SOD/bgF2QQCOYd/2yNqaGLbtcxB85E2R6T+6SJqgKU91DrXbSbrk31ViCKyWQ9bgtogR+Brd23wDk4sT5JEiHz1Pn5DIm65UtG3NZJvVvsJRc3cahigptFVdTYg9oyDRmHGMzsqalWdsAEhScoGnTHsNQluG+rkauJ/kvD/ZvUFRawoiRMa8H8QuIcTGCTqxGQ/VsCsia3195eJWXXbaaKAXHHddRWstBtX9VKNwYlwUQdpV+AWhg1u/34hKeP59YqdUM4awlwrEQTdPSEtIGhVqvwX/5QETtpHo73PcMn8Eo6wwl6ROuWOdqVMX4fYpnkBJhrNh3xAkyrMGITtuasGsYwjAg6Z0c4ycp0bZfENnMNeYCOAIebLSIHSTOdODk1kTL22pmVZOlk2r+yGKH+jkVHclOwZy1pm2fA7h7Xae0J4fKx1MBcMhVu62YECtrym9RVr3PvtoO8Abgop5vN+lyvK7YqbU3SuJrZMGJd/zU6D6BWCBg1vFmFyhln6A2oFeXlYQG++ycea1bemK0TpIQqz2pbYPzU6PO0PUhc584RK5mcccRw98YERztg204/tYpmQcV5NzGoB9MMVoT8lljAVeuTZUNlhwmdw95ZDCFajXnHqDpFRJJTwkYmB+CW9/1PZ0Ep5Sf3HYaiJuFPc28b6h8YAEOB4/Z3kaxMQ2I56dbbDLUPMZNJsVZUkIaCE87OzxrK36mZpmqKrjb7+eCwE6hKTc3enFAuVPHunqmevR8sXalcjTfxxqq/wpVagaXEm1fYDPP0FwgHXRpxOMnI0H4623pigvsOJ3vBteOZMBGkBQ6Kq+xVXfM/OALqpnhqKLg+KdZ1Ns/v0MD5mgD6JGV8Cm2dRsDX1UAK5MSo+MIwjS7EDZUfB4fy5y5NJS8YIJPEhuNjJdHW/DX7f56PJBoQtJMEoiDOgTKsSb8tsCriRXl50WQw9tOhNlACMV4GwCfrD7jrhVe0Hfb+zktcJGV0xDrWoeGQ5Bmn3u5o97CI73Au1Wiy/n5YSMPUEZc0ulQ/f/ftsqW+o1kn14Ob5DSGOENygSe0kBXx+/qFZvNTk5pYgnrG/kUxPki0EQbu2u7+A6wLhaLDJVKnsPiyXN+pPbxEgyoJR01WlJLebuG/1sxm+Tf0ssQe6i5LlQ3TDOUdpdVmMU8nD7bTIz2ovr/2ujmmLHOxWoHbue5A2Kz4FnMEcyRW2v0mAB+vLkwmne0Ttajdv0AE5S5H5peef9A1morT6sbJzRbUWSH1vGnxpn+WIKxmR5v5LRA+YkvOd9E6EH43DED1lTzwRA8qABuatd9uNi9WLfBtLr+298s1vX99gM1VhdajomXHSmweeaqH1JwK3jN00RL/6AtV4q2jXwqtHFLncaSSMUe+pjuh6LwVr8JsrPytbxybMzMaYhsttU1D1PS47100HOsU/rc9pBkaX0zR75dzZUXgyozr5nBU4FmBcQ9laYhVlNvLhC+00opJNL4jkk5BbobKRltm8Lc0ZneG73S4YlhiHysyiERYX8hy3b26GgTde4SmuV9oaurGNDfY6vwg4EsvWPNj9CQ6pe0TIY+q/tOx/QWeppCt+FW2QAo2Oj/PX0WsxR4btNhbBWYsP3zGJYwKFDCSi/6CZmsODK0wKnTavvIU6nbWqTGVM1QiqiA0Ub1NbmnjDdN93YT9E7o6l8Vo0rYjLId1GI+axAmKTddfjFzZzjcm4Rk+6eAFXctMdWR/iHkgWJi7piU5pK653n/IpqD5T4NG/nQxVCro8n8YEAvZpxEE2mlG2g6u6YIMSZcPa0/Y5RUQA0Pzp0mzrFVf5aDnvqhaPLpW1AXO03NZjp9BqF/PRM4NiceRRi71ckifhdIHrQMe+LKAG1R56Xzr8WW9ECXGMYsg1soQX5Ul2GPx4Abg4oHDex1oylO4vx1IzptavTKt5fBZdE7gAA5PF0gP4PI5eyieedv05rC9EAYWnXvOaeUzZpmr+btwbX+kWnyVOYUxOVibcbB0y0YYN9STqbA7vzTcMWZCt+RWsOwanyUsP4NWDr7dlgXQPNEEXajz/mEVKWdMXJZG0CUHg/MOt99cJ4WVN4rsSyek1/DReSaiSnPsWujSkxFnXqfdq/TmGkYMgeWvOt+L8fF55dKzyCPY04QUiJNmUp42qQgC4OS7y6DJegjP4uOrvKE5irpijSBS8BzSAPepS32nNY8N4O5wmml5/Ht4/HtI90DxE9gNw6xamTZckg14QwrXQBuEV42WdoAs1D/+RGuDLoU/DVAV1dg/44SZK3RG+JLvYx2WCoK+4/gvm86DZfvyMUVXaZ6DNWNtcXk5YOG948LYB7vrUxMexAJZXctlkTNPU4vNVJE9g6tq3uyzuPSvQR9+/iWZdEb8HdQI22cUehKZMgPJN3MPGqFVujaidtBqKqMvnMjJozPgTRCr+GA2iX/R2Q1ClJ0DPylLdR0tg+9aya1fCyS0h5EH/Q2RFHoG4SgcyMvIUiYArFohccU5npeuClhgDtQ9ZZ8y5TQcZ+23sF1D95XIPayeZZ4l4fprXL5dAbgR97zGcQv6yhy7xRGT85AP6/G8/VY2Twtfh+XkhHpDUOckwcjsrL0BC2LADjzjCfrbc23odSXbCOXW0Ni3kA4gJ0tHk4+PWZ67EBqZFGfzNlqFZWcrxLnp2jMIfg9NtKwzYBy8RjRcH7Jq1sFdWiQuw5GRqaWOloeZPrjkE//MHEYC+MxcRc05VFJnk3HVPKZtppCHfbVxHPA/Hnskd+v0dZtOnpmM9ZxHG4vV32IoLi/Crjj8Jd8ged+uEuIJlt4tm87aMFpyebUReHs4jiSdHnzNgs99HUAyzpXrltyS4Zg5lVEUxf+tPxfA5im5v8SgiV/WPXpzlLDGZdMfbx1eoG4K/YdfC+2QlzM9+L6h+naW5feJLeRSyDj45mlS5km0hLbevkipOh38kh1a+0YQVd0bg+jcOpOM5kli3/sAUquiwKdeURl2eBpbldYIWEh9qPY+TvG1X7O9hG24a7yXEDyuJqUCTrdQwMF5vdnIeOvpE7bpDFCVjwCwF8BYhv4xGFhNVbRJ6D3eSaaKQbXN2wGhtjnh8GFDncFTbGZ3EHPmsypiOQV4pHtwCUUEHeRBsTq12DfXDKD3yZ3r+ySEJn87mrjsA1IzzWmRsf7ITwaqAzhNRcbh4U6D4GRSFowY8E5v0tHB0QhNKNq/7cqPGqZxSwMd+CQI2XV58HjYTeJqzua9hHXvGGB5bNLA+xboZeWxU58YLJzrO+7ULnXfjOvUYC0ap+jpPCs3Uclqn+123n5mYYZGrN4ybDflIWOmjeQU9wAeop9VDuAlR5TTSA3BJPBxyD86CVvicfSkyNYcyQxQO3INPAre5x3R3VhO832UfJrOzBHhVN9UsCM1IQDHMKhvafBnn8HR6KBReRM97HUOB15jnPRpslOD25U8W7BgcFdTLCwfikXN8QhMUSniW0aE9AEHBvMt1czpsHon0xz9+1BoixmLNZgDaxs7itKHJn9/fH2EoM/k2zcD50UMSm86+YKAsRHtYY4TnTwC7sbH/zaSPJd3CbbfPe2ZMrPFdF+PkkwR2D15rPRt2tI8TKbk+5Of1in5AqpyPUbpvDFQh8ubtWGGCRvAsx7NESaLOpOp/NjO4G2x7nL1rR3L129CzfpBOFE1YeTFMvIDfziFzWirYS11KddlHBq/ldH513L3+tLi5Lhv6zYJALNvIMtv6iaaJMHOiIzX113AUvHdwIlnbC8o8IsgUWeQVa/D/UTPFN1F1xBFZrk+O/h/yCbDO/9i3q8QKO4oCsnGUqjw75HGGJes724F+HM28vpRSIYALQkUMRao4/PiurlDhqn50PQf511Hyrv8ayEtQsZOjxvBG/qOVTMN7OxA4xM0qX3B67nt7y1C52nRwz+t/bF9lHYjtkram+/j0bjiwgsRNAy+Gg0ITTaXKWbsJ649soL1GlFZH1Hgv1uzf5FhmCGpenXUC80IcDnvVNkGJnpQbvMJ9MmJA8oBsKtpo2xHIjHgl/XR80z0Hd572/cH+Ye4U/Lsm6XAM4Bz32QO8uBl1Pp9RDp1qzYnBkaNzBSnZWv7eXRlQss3jkcznn6KCUi752QS5MU4rmosN6VSz4/t5gkCbElkvKa9vx10iQYc4VEd1Ju3kZDJ6RK+b392fWrpIhiZacCm5JI1kWdfSqweS3duFJn7s+HkQNyR9sfYlTxJoyqB8Up9kJ3zqsR0As2z7NmYDWM6KZzDH6FruZ+2cB2JfgIZHMKFpAjBiYBaLYI8p4yqFE8s4yCHPXLWHbAX5ranDj7tF8eOjL4XxDGZ+79JLEjihW5C+d8F7auXmoGzzN9C8zBn8v7HOFCJc/TsG57I6frvtYPAUd5dvbJWnHOPzlqBoakrbQafQgMBcAZfiPmTtDludQR6PwwHMlFSG4piRK/gEk4mz+KO2OSx5BUCRKLKPT2mGEYWnA2lnwLQtv4JXIPm2MfqeGnAQPZvYLqyLUKemwitdVbHM2vbGlII+vAETRyV9vD9CHKhn1r+BKNaai5laWaT/+N4Lj2FJv6jDZqJOsDRxsEJzIBac5zqLgEklLacnOMcO45khfNuDaRYR+XqKm/Cuv6KNJmKRMoO6d0fgDVame7yt64dhIiK4YU9bLxc79nXsSc8lysS2e8CeocdL6GW70HygT2/u0pv9Q3C4vXfLgseR+cmnLHXlkDsSWKBgydxxCbZtaQPTKoAGJVKutXhteOJCZHEVz2blrftMIMnC+qILkBkE9zqYl1WRn0YxRlZwuPZoyLjEh4AtvKxfGWysorbcigY/mYGOcnv+avV29K1+CitqKsdWAVprAP6XHYZsV8I9Mkz1v586IqaG9D7Q0yXAi6qwv33si/bhPZkuPTzIlfCSkQDp5SIpXHDZJWfuTXz2gtenF00EaUC22mB+nyhqDIzA8g/dNxVAYClavfGpim3wtmGjv+CP7I4WfZrrLCeaWV70WuxLBbyEHi03tNRNSS0Ssh6MWUNB2WqLT1+OAzHrrk5XKC6wlhgi1K75nWKJSqL9yltpjqZylUyO+hFn+6FHyMFB5LJfNiGFyfdW6huIL1AEDKq7OLjy+ZAiV5xUJP/LMo4GvSg1veAvfwRiGSwMQpj4FfniFgEAd680X2RJH5ktz+WizfjNwtDwgmfcnUTL5XW5f0cc067u3MF6nC+jKZ0rVxD/vbtRiWUDTwzUMuxqghKgi2Yn421yoFXhURV99T8AJzbGg3l91AiJ//+PT+m03eOq4qTRtrfFHX3dG5KKq56ZS205MQ+NZ9oOBYR1UkJoEeAykX0Xawb+ACauF7DKHRluuOa9xXt1DNAltdq62t+sk4dTlz544mG0l0NQO4t7DPWi/K1o8Vw8A+OK8PlY9JjQX39lrDieYSlhKoQuIQdf3oHr8X7xmJDp2BaBD94n5o9vc16eXRcsa3o5T/gF+DRQ5U0wNfC4i+54Slua5ulk62uutD3U+gB1v2XxsSMwCIkqAUJdeBRh5hAcoxpI798l5GriFHpBa03LP+wT5OELTMMGM8i1Er2xEb7KEajoRpeDCYuJzxOoWizJBvB6FPanuw44eYc/esvYrmCyLz4TY+UuyajflxHlNuq1FJYdCG9vIU9bLwgUtbN+QNlUSqau26ff8bvNhTLPb3mQWlXrnm1xUkZHxdoMXkV/38nEMkxZAc+OJ3e/wn4Inre+9vO1s6C0vlTJvJTgKI+j1W/0q1BU0qjl2VmbfldKaCnfDGu4y8LU9j/GDOvRy2ujWE7beV88UyBkAZ3u7TbybOSmLrdC8wtd1bjywwp0BuHQr5xq2SyQfaC7gIbsM24bEs/u7CpIN717n8JLQBrf7nAAUGc7Hyw3IhGLcxyPNWa2SoL7ewIDTM65RpT2h1r0nBFmnXTNYkiWpKSCWMWJayRbqfxphXsY7a/RmI7xxjlqJ8PkDvGmwkxAo3MG5ism20k3OrJrDetBPn4AJlBi/fBbm6tNHc+VrSLGhy+9gbk6wts+TYBrT68zX0UfY1OKmmcouBKf6JGLlQBU4NWgZbFMjJzggzlowl0hcpPb/qInR63v/NepXJP+z8kOQvPR7Z2X5luD+EyWIJRdXD/wn5GywjniHcyA/QZEkAFuEj3LJn8yFB/PnuB/sLFoA8uzleNx9o1+4z90EUrIehI1nqH0KvF7ly6CD6HdcItDCboeOlzFS3v/Hx1FZDfA5W3y7ut9+dODy9ZOtLg2J8V/LDw26hxXRohv6H4OaAL3C98yhA6ALn2OpMi8C4yLAyiASGjLSNQl1Vf+jpLhqolPTU3rvv4COPN520/h/iGTb/QaPdvlDTIDg0ilSHO/f8JuSaivWB7oOfamhWoaTgL3AcIddDChnV5X7SkjUdP71JoncbflQVLwUAbwvERnKHJlqIfQ+1O7KH9OfT7xZpgXvm4S40K7A1KGWQ0EHzkPQG7N3pxK/eMOIJyCcDG1PKmrVYe5yD8p5cYNaOty+pDE8Fl+BY7HS4vSucQWqyM1oKEGbBLOUbQmzWlPDxb744dIX4382wQe9jA1D1EJT4qI/aBT/d+ySm5MHO7uzUnJSwhYX2QcBmTscAyL5lF50sozxmWmue+nOAWF3ozT+Zs8//QTd26sj9f1/zw7bBlme3E7KZ61ptFsUjBWnlDvEWlKE3t1Ye5e+5t2kNGxsxc1ZQUBxbM5f1rwdkXV/fXHTnUeGg2ROIOJtGdilGHb+CBlkGzI/r50g3XHPzmUKaUY/zRc1lb5m/NKBO2pS63SD6dFlR5zVITEKWoz33myYHNgso2Hcqs68m/9MN60nupLO/1QSF1dbtY4Fa7rc5um4TFlM6PnZaW3jc85DK23diS6nIgsJX+ZeedgI9hggmHuK0rvEQdV2bxZ7manhGma0uUqjKOnBe8eoDplO1FN6ATMX3xdAZlDXFLrSycPkTyVq5NjuW5lds/cUclhb7tj201A0w9lk3SPHRS1U+BjcUzoeIexe9oy6rGTg0/MtS4x+Lv/hiXTUJiBX0JXll6xfgz1tdn+UIC4NNLoyPwG0tzyfMdLlSQYZjRWTRLY2ycMMcEpHGBraMJgr/k8/BGKBXC6E+MWcBOpz28J1vGjne4yjVgLC7zVI89FrxFfw0C17i6UwXn9xMyHH3U6+v/uOAMq/19ekrFQ+PmH5+9/4DnPnwsofHgEPMn5TxWUIAyU9FFjDe+nZ10AGvs7leDKRWWbXEhurj53H8XYRW1sMwtH0RGexYc9sSdDKBJLbb5c6e/RgJTpFiXdlWTI1wUo4J139naRfpqBV188Sqf73BldgMffhRvVQjmPwYgAODZfEeO/OIf3FpI2JwascV7uoIRGOA9AsoRzYKF9bfUUUOBlnhxuFb8QFZDqjk74XJHDnKGI+TF8ANUls8Xd5KU5ENSm+qkfDMycbd5z+cbkHzAuhrHTuTGzdsdgiKF7gdfetIDblcCB+j8IbReyRTRxvhHlFGjec4cf1KCizV01LScAWreIrCJ80JvpJ+vCIQ2Hqs5s3PRA6hv5l3l00gEbbGjRxxhUHg/dmvDgGRE+1CXZBD8xwRjfuT84n8XxIRgGC7NT2NaJB7L+RpMkLyby7pO1ji9wlD6nhoYo26D5skAVHflrEqRYwRYE7Big86cigA73gIPxuZm5Gw0ztyJsvIqYfujSGNcckyqq3N3veW+3VxpZbQRpo7DL3Uxk4KOwXzmcc025LAAtY0gTHjG6/GVYPby9cyAGVeBSn7aXBCXEFEHL8kD9Fy2tFH2KxFDzh1SiRCdOoJ+GOxo3v6TNU1xs4VE7wisfGlqdzr29/Yu4Bk76KdTsV2bTQMChOpJa/ii5MXBOGZDBvC2fEAi/mylVfQ5yYWDu/LMRnVSpZLvqcdnUkaqxKmdz0NiymLcfJw/inxn7aeKlY5UOLAadtneLltWd9Eq5GNsGVhXjL11RF51ZSpdMgsrgydVpLZT7APrKl9UhNpgevpbSujnT4mF6m98LjgCuCa1JPoFjHPEZeBBQHwtrz6Ai4+A/MJ+/FrHNFsoUgCtDiHfOC4DZYknH3Binb3QdA9XeSvt+6zJ0kWWC+LUSCrtF+c+8i3JSbUzVPIAMtMKfcvPjRZJK4QAM+0R8QnRYfAcbSf0NWqEBZXOyYOtD0/OPz+RoRT6q/XbBbaXDZexiOIENo1++wBQIrhuxryQSFJxmMss/OqUnKGe3Og/ZAAyTyFFZQfIja0OvZxP/tEffh2PAXqkxt/4tRjMVDn7shBBz4WZpZwntx7rUmghoNv7s3df6CKK0rbN/FpQKDBJJ9HqhxW0RpTXMuYAeThGFuxHeQFRhKD2JsAsZAJr+c91oYSL3vJIhKsjdKRSLKCPefYBGmw+XvXtrmBj7UICzIfaloEfOb5eJ05RSSwBog5LNZhmEujKl3JD12dvEL0/0pi7Jk/vnHM+Z56hwUpsRlTXnFLAAxhy+qITBGSIkMR1FWAN9Au2YizK5eVI9mjkfG4hFBbzi0IU55i8Nae/VfYwdEF0M/Ibus6SRrCwItQwx3mfPiT0Fu53Sl9utxisBMW0zTSQ36Pd1gm7/BYttXTf+sA3QpcIPnWMsgCB5KPnj6YqKyjfw8FPa70tLGmgn9C7ONwjkAsOKfJIeLkXjDZx2tYEjUR8VkporhKGu0Konxjdyelg3ZT3yVlQ+3Nqs1NtxPUtTjxUY4N+B4GyNQ1tdK3qTKBDp2RwG5dc56aYWoFM9taQV80KKT5Z86IckOiw2YRBG7k/rLN0vdmIKmSwPEDZACAVHzHWVNnyjRBzAmXRoHuJ3fEZ/zNOwI6UWmUWue1f7NpVnWzXME4QVJiQSlfHyyACxRviwkEYWbGhVEKZ2MDluSGFj6Di2EUN8P/p0MvIO0D7A5NZnxng8hdW9gaiMTteTWBojDOBdAgG840BHPRgmlcRoEIdUatyVa2tkh2G5axif9kL+UUsdr6A/lZP/h71wVuKVKJCgmRD82ZB+OHVMdlMmbv22WlSEiDhOvgbos55PUzaWxGoSOoaZ/h4hGX0RkX9tBeQcClPL6QjuuWGdmIWQWIzpa9bpE1T2zIbvlxNQ9JBwAYeoVwuJX6VfiYr4IhH1qczprYVHrS9+zHCy88JxcmNgT3etRrEbyiHDrsedRq/A527XCp78CykeAddf4VXgOz52aRAAHVMnHBHFbgDaQrXnnP9Nl2KYB5cU4eTHZn4HK8pt9NN1FuIqdsKiICFFTzShMm5jLBEdX6kNtlAwhKK4XOy/bDj+/307k01+JdabQbIVB6zT1DVUdWoKYLgNFh7EQZStuhzyXvw9SuacT4aeMrKHpROUqyS2b94pPeyimULU0rg+K0b2FDUJxv6hN0FpY4eoQiQ4z2e2nCUiA8pXSIb7WCYBis0nfufPoarcdtyYNPs9bcDY6ELy3rdWhD8/8jlf7kOhhG2cjirLUXzxS7aKw+g1Iol87TQFokZ7YihEiDcLi/fK26jNyEe3j7b6bDc9xzKENmDnJPm1ZIAG5Wgr7axSfHpJduoZKDYtG8Ql8GnkNQ52rvsvumDCaOBR/ylsHZg46Yqxmjm43iPgDX+22dASF4CCG3SUZ/H3gWhbl93EebZx9U5OxM+/WPA8vSXxsgEa8IpD1Nlip2mDEngtMvgyf5637ioFO+cnFyjplK87pZ21AoIz9IsAp0DuGwAEXToVe9p9/qM1XzPnai91JkYj3bVL3qkXBByqedtprCoXoyJDL3ca13L76yUcfybjkcGuWQtkIxa3flxTxsHjeTKX27l0C7RiJYwbGkTTWPiXhJzqPyZIQHTeuPCAi7E0MLemwR3Osa1sdWq+mLDB2PpPGaHcOABRURcb4LxxFkN8/LuHTkVNuGMrvFYqpSmxj0vBcvV5MQpn54fm59u5dhK74WgJamsO9XqF9ra+5XtcFJU/eefTDME5i4cAaJN9aEplCRygQETnegPItQXp52E6fNJT2eNfU7mInY1FG2sgKxMSyHNkZDTEILO0zJCXBMGjBimi2KACEPLdheX1Ed4FlsTiadmnY2bysMt7iN7ApVDGEuw8jl8rJD4mW0El/VTAnNN3h2cZ7jaKxIlmuWdtHuaCD8P3R1eksLB9pTuXS+A+GSIIns/V7dNF+Z08Mp31wxF2slC1ASMCo4zQzVySO7fhkhQQV7aN1coarL8spsoBAPkJLjpUp4BxaLBM0OOdV5SQCvuPVp5g3OCukR8l3N3mPUzeceQdiLpyuEaa+BA+Nc5cCCihy+3tlUzNdB3/2M3L/Q3XeLCzmehyVvlvBAr4Fw7ag2bAj6ifYYNo3ni0ODGO2VSI48nttPQ+eUQ32jQq+9xTHhMTRCF/eCbntsXTbuX2ZK7fIS3J5SdCWb3Fwb+0LEKL8R+zGGu+Zb3OAdtGYLrFtYeNorYMrD7IMwGk4RyGwqcwvysnOvLxmR1N+Xoi8nF2RXoiVG/4X0LiB6eGySPVx3I84SnGcLx8MFEeGptMyT0SSMMOXlovKY2OwyJ5hWffyfoiNNWrzgWbbJ3gTXgHMY2XIGX7bPfMBo2JAJUwZLSEXupYJuayM3MudCgZDL+P3WVzwZKwESzj4K+GjB18L1d8H1/w7bwCKQeahl40uKd6DV3dl+bi1bMt5WQcZpdwZIJLnZi6yuHmdeTzSgcWIMnIZRWOA3Iq44PqAyK5fjlTyY8LE4DOfaFQzF1nREXtb0hFYFkXvlmuBs7UsiVr9PNx5QkKMOrRg+aYpcRd/dCQ20WCkDuNeJr7xRSjbWqBZR+QwzqJDqz/lIOvO6JlUjoS9xFF3z7jPW47kXmecjwSRUGiw10JJ5xspCVxbjUpxe7IKX3BmdsgulLjM8Kd83jZATwlgyG9ihISbGAl2Y0EOJu0XTtdL3q0RlB55Qr3ICL4bo7f5L5R21nuKaq8ENkiQfpQ81ATOYQ/+V4Tjuy9NWUyPTx0cVDEgSxGwKAgu9mCHb9F9ydOlfEW73aPL1ZBqqZR3f3MCFQsKLrqM5Fpc3lQJzCP4ams93zLuIVIhYmUQTsebFGIQEPw8MuGn+G2wYgpaN3oqgj82nsRafVgmAKe7U5N2WllR05kXXteB/ZUdkRCCQeOYnewvITp7vpVWbP4DJSmERSz2hfGvAbQzPfQqzoy+W8AgRjqbx6V7xn+1Oxd/oL8N+XWUyizp7e+iqIWbBxnYr+lSPqaOlqQw7UyxdUOeWdCw9ula7Mh1ErnYNQDBC1eU3Ej7/BptdC3EjBpCfQkRm/Z2lxTMOZunMHBobRlwnqP841UDEOhfNEk83Ie8iPX6Tk1tulb8bEmdqvk0rLqm+ejb+IIAxuJ3wCWmeqON97kjqf+gHvMnatrk7CZz3r4SYffNTaBVZKojI4ihPYAdbhQoowPZg67IhIYksVdaoWdIK2QiugGTQWHBs4JvTm4+7xzDEimYt6N4UH2GpIqDuBl/5ZZYEZlSM2NhfR039VRWgWxficVgabwaNAT3YJl6dRUE9g2OXuOnW8vOkgwDfxBpyLHzoFAV9KviKZ7LSBLud7k/m5kkQw1/dlc30GthcIY6UbWPSy2Cqth+rNPShW2+tYgmd/acKcM0pxqbveImnpJ/b1efhL+KNeR86aV1KjIT5tSL26KxOW1DYClhVKdpjvSZFaHTUK4240mZm89uRtcFZp28rZUSS5DC10rPWsyECtUrN3opfwlf2gTLgrAMly3zMjmQMkm/2g4JjJq2TBR64Rn1HJe/HpGKlj7sofYpHJqCCAlymGFECZQIN9RCXFbfF+bH/DgY3pgyTDz5nX/Hj9OUVzM4cjZS6wJ914+GEZ13sOtUkoxsVjANhMuFBPNlqcqo1czHwozfxWKG9LVhVuYeXZOIrfkKlMvkOvQfkowdfnTDfafykJ4qoiNf7d4Xz3Z6+uAgWZXQIemR9EEFvGvMTcEErNwmXXWs2aYNlKinVZPXqhV2zml4sMXbvcLpmOz8XizwwUSz7E96X17VyJHYh538LNN29BY0E28qfmYEFqF51U9vucBOs6pXriOBm4RU4Z98EebxheV+Fz5lRabFB207+WwAtNd7eIKLLYPBxDVpsD99QtJPFh8HIHbtcUHt9EY+t13+v21hHRV4Ypvcv2LWEfZvhcP5Jhisym+Mtki/p3TdwYUdIpIR0QinzTAAuplueWm2TrcPAEc6+hzds6zyajQa432rlrjDcme3xZgXHrcfyecCr8yacr/CvAQTaAQ+gSLTzxWdUI4Jargz+FWobWtdRu0xi17xUh6NQU5bBfnvZcj9a3uIOLrLQ9WogwmWHIPsuMsjt
Variant 4
DifficultyLevel
560
Question
y =x2 − x − 4
What is the value of y when x = − 1
Worked Solution
|
|
y |
= x2 − x − 4 |
|
|
|
= (− 1)2 − (−1) − 4 |
|
= − 2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\large y$ $=\large x$$^2\ − \ \large x$ $-$ 4
What is the value of $\large y$ when $\large x$ = $-$ 1
|
workedSolution |
| | |
| ------------: | ---------- |
| $\large y$ | \= $\large x$$^2 \ − \ \large x$ $-$ 4
|
| | \= ($-$ 1)$^2 \ \ −\ (-1 )\ − \ 4$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19fLgGKPEVMdNKAf8K1gCPN7hnp+MCTUvqjvzEeG7+iGhBMoUx9vCny0zn5BFRBbGzIcokVry76K1rqwkAljPhKMMiBFwnQAxjNDux47s/XKPVlokbI6z+xRE19EXDdYbdu3b6J0zeVrLcBuymusbtahw81Jze06KXfPonIu/VyF/0Kq85D0wood/3j5NwHmy+UxaTb88eiPTu8pLoE+7c59kEbdreb+3YvI44tt3zUHFEynpARWRIzfBKRR2y5pH5M4xDSDzTiHL7EBRvALdxg6lrqhKtVjO2o4mDTJsRIgYmOx3eD3q1b17Zt90VE2RfpA0O7LyTjKKKl2jX60EH9Y6cjkxXyXiF8O7tU7vMgqVzbncEZiAYQT9E2/nXKXCFfm8tiyHRx2Xd0fapmEwuQ3g+kQKIxhzHUNxLbXsWhg9STbHtDPS6Hp5849NMTmldXrgvTiKA9qBnO0Y9cbkRrpMtudXK71KJwD9SiZA16nGnzly9gWmZR/iKPvzQo0dudCrsQdO1tmiWqkpHq021cs6mFDwGppaRTatoxuQ9UevPpPoDmSDk+mrX/dVc994Rzs5VWEjx36zTtVy9gi+jRfBJqkr3cbXmkpugHHN5XTOmyiansAmcRTqw0tWM9nItWplsasWGl0J5W9cnnuqJ/5GYyOaaErmRO8EErmqft2GuL/9TcLBkmcuGoHkzRfqjVXWdv19HniSXJXvEpLdHrLnBW7NgRu59LbkWCGRSDnQIFL5cJrnkFcanrYicqTtmThH/kgZHWg/tx3w5KYEcEaXKLX+lnpGmowB2XfpJfKIqNrOVLD6hxzeXH1JKNByrjl1ITue68L3jraiimV0QwPeRwyH+P3qmwXci99DoqqH7aTKMGYALop59ZR8BhY1gmtli2LDmpFH/YVPtLvwbSgncO6+A0I6r5dXTAix3IszROIeShykgzAfnJCYqHn9J8ZKJvPEqG7dimynodxZ6h6MgYwWaD8hefE7kpsvC3HA3qZbNrcM3Ygk2NPecbn8q2h9KhBSnVOsLydGv94CQMnoHyG+MeHDLiwfAvDoLQaiPAxlevsY3RVHVInsDQ3kyRJiPx1cTSYY4NBAq+48eFDV1HMGDxYPd73hwOnS6g0AVDUHcRGrUkrWs9GM+xc0FES6+6yr86zvhtU5zyVETfInUVEGNDpgNgEAl7wNikpnrf1Kq2P0Od3wdxsUTbX5UIzvfB9c3Qv8nZR66rMiWaCVpFbwatpvtJ25gmUbMYTV64VWSKe5OcHRo8V47XmMNA2/ZH0e9QcZTReAuSwPiySSTiwYy0M9cIF2LOS6z3zq8WiMvbB58WWBsz+L9tFKTCg6kbx820G55tJiqfoN/C/dqw0jsPOB5ZnnYSn002WqIoIovlvx9z+6tdvZG58FXaAdf/0goHafSA6+qSY2yVRw4nBdYCpoApv3oLtc5xiGkdDfHgqvrxqnyTPwVYnSQojHhPZ5YrAdhZGDpaiqXACHhBxfupw9R5dm0X8N5lwPB2hObGDq4I6XzVjPk0gc2MZG3li5gVca0hH6SMH4WrMDMG+uZLvple9uWN0OCGuK48JcyNFNgNwIVk9QegMzVdZ5FEG75g9j4D3N/+WmatvIVik6Qql4bj0UwhS5V72h+WC5H7fV36Yv4EYusqs1VsPCN+dGZ1BOqXH/wIopEJVPjc3CCQiNDeB6Bi4guKQ/6vdr1lp6Hq2IV0d7sbj/NCGVNK/CfkybZp/l4lURScfvbKK+Qw0J2GzVOdBTCSGY/LyI31+cTCQSavsrX+b7F9Adzr067r3YxPuMZvPU7VZpDqXZQ12JlvvcLvZdfUi76c3VFXiCD7V2byf5HJMm/N6J6KFdxjfs2zx8hV7O58HftDJ0hgZZ19+0yZYXDrymQlBdwsCimNZk2FAIiPSpEPKVnzFooWuIOl0K+t8Ybol4MHNjve2BU7C4/YrP11Bl/FoahD3ZEdPzfRvNDtlVri0hUT+CsK610cLW3MwvaVkTB5Z8fnzn3vMHVCUJdi/ngQUeOgwbNnPahetBY1CA/SUgF16ErGudTR34tGXmR+z6CZaC8duci6Oj+RCMnHOXuokXjXs9K5gaVHEL/zTdxU8fctRp1fKDX6Ds2+G7SAFMwgYcsZoLd9eUdKVfDuEKKGjXHrKrs1r9WxUJnb2v45bfO7dEL/5zB9KnKqVF6G/UAg8fWA9oqO/hxcA6koqJx2jNue4xl2Gg4QWIXQeEPWmt4VrHWBWv3KDNdrlAZZrwm/ftmP8DsvNq+rkB1OyXQiVYEIfR76KdIsv77ABxvc0RfCaQpQ5KgX2CYoIWEfXhjdUHIwzAB29ghZXRqvt4hXkyhAmk4XnzcWECyefws9fOBwszrRNktxHK4f4Mr7bozG/id5V9SFUQvfnzauk48FpcFioNAS2DCOogV3wtCiZ/eN6Mhw9MxfQ3Nkfdc6XgT1D6JpxI1q6/iFZVWNBNiUZUtAX/CDZjNPXmLYevCGP2H/7YSCQM7Aj/tmjdMxubgEobG+GE5PnmtL1Ww5D5Xsno/WLDjkasbhH1aWFIKHAfsH5MTbuxS467XUf9mzMWGT2GYJvVE+drQEMw9zd8LpUko5bEvLy+IVCenOSK4KFf8qVASS7p4CxePBopoPCV2riFBUithbwgqFpFzWJjCc4SbBwWaQVjhccPowZXFiebR26u3TyIolAP+SJ6S0IkbE/6G2xfxGLcXGtFbii3NeUfOrvpYP+mHNd6NPfzYwa2edvL0bNbOVEVsDxfpUkCiRIH24ek6yLVQk6Qx2ADjb3FqO0XK51raUN5foHVlWZiNHsLQWaodIGl0sg70y5zvaqE3GCkZfu4w8KJ6KsVAxIWKkigzJecD4ZTBE2CPcKBStlGdvByQ0xkjrpvckeh6YlCYcZ5TI58u9w4ya4ulvzuz+CF6CStByEpOzDUgPgalrRw8vJ32OMQjT0ezwwueSVZxs3bxhTCwTfntN/9Ncl1iOs0k4ksVRYpaMz81+TsLLvpwoXI5EEFES1Lprbjfc4BMgCW2XkYU8Dsu5Gvvx5YSfccXGdBH5pxlITcn7wY0MJJtdpg5MBMB6JnVcPtsOU0ndn6gS32xOKUKr3tToF7fJT4xR6W6fkzcthtIo4KZ5vE7MGmuXDboOSbUF5wAuSmmsZloBlcanElMnxsXVLg6DEncnL0byLeom9b6VzsxxsmBiZ9WUf/TcNt7t+DCLWksgdQ9CM3CDzp7KNLCDJwi0J5cBdXhorC8P1HWahhKl0UqhXap5s9Qw7ZInjC4TrUyrr2YFbrTNGE5x8fdoEninLVcVITH12/TS2tzXJHncNGmHOkaJX0+shyZIYK/CUKf8Fk9Fl6ugy/QTX06RRzEzZtUEIjtg6uNpxBSxf/CP3q2aaOhIrZGWbW6X3EywVsjwVIhchnLJhqnwOqtelaofDLkyncUvVN6VlL/ksQvNGSP39hsgzRLAKM5MFWk/pKLLQ/G6BA4oXqrBxiXn0R+joiqGFoYksS9z1dIjADRlwTUMmkTmY3To/U3Vk0uu7lBZL5fn+0GvVJCIsM4R+ErzItdkxnjZEx1nps8fWIXMktoxImCgMJVpqr3YYi3CuJbY/IA/ULKtiOlS+Lz1P3Yr8s9izEGj8uB34U2YFuWVh5Y0PmPjwhE5nQzYUpJkhSfRMoAYdp83TROmFAwoSb83DigvuQEDIq2TNa7u4QXcMzsBy9CL7B29oN7QygJpalZElO75nJePLR6464qobEO4LMTPv38qjI0pPimxQqin0Lo2H2G0Pit+ZnljR9/I+mkc5vj9TrIj8KRpqiD84PXsmZuPHjGRSMllGDWd12icOcXHjWDVqG24I724zWZvxVhfRt2J72L9sOQprvusA+56KcrlaO+MbJZKiSrZUQ01WZ68sqppcKf6/HqFM06YBPtrMz54Aqshwq5MI+7P1JTIf39/sLZLE1DeWFYQMesJ3Y6IxJpa9ptANna1tfhPaYukEOrLSiJFNRaez1elDsVLZKAcKu40/p/0RGboMHoZwOMyf1V/Ho3T3h5j8n+jvX+skrngC6REZquAHckUqHcNP8BQtZVub4W5Lwq9HW5oTi9Frw9hgXlFjM0nnNLn/qELXm0+rbkJjHT7BLQEt6vHX/UT3pSP7WK6i5XXRn0VOEQI138erRENeg/HsMHbx5Q7BE/U9gmSSgNutZ8G0HuakNsA5G0EtVYH27uuhCioYNSOaXh9K61HOhEFXdnYbwGpXXAFTQPE96aZF3Qk2blevUP12AT2yG6hrhpPERC1uHoC8B157Gt1vEimr6QZ1IBaJjLuELq6p6RnOfo3NFgxmYhYYMvJCloI9aGH43u6IKU3YUtYckeUzYGFOmqFKJYKnsCr715CzE4Q1jpbvT+T8hP9R6yz5Uu/zdT1N29gdgA2AWIyC0D2gxiUOQOiLPmrrHURI7wAwiex00PHf3kCuF9E27dEpq3EEt1BslzJyXBe+RAmviWMeJaCS6X2LXbHCyamFN3C/fiJ1dres7+ToWD1fyO5P1BhNGS+u0c4oBuRC+3xTvag3E7ZHZ/9ZbBK2jj4N7i/U6i2JhFh+8UqHOfxhXKEhvucsUPocRpgjFHNKQMYOKZmVSWrb4jZn3AwJAl0rHm572XA8c5wUrnlwKQRM5EBttvmPTF0Pl/eyNwuea0QuPt8spA3nnkUDk+NRfvJr3LWw5hUEA3Cg/vKNNWgtP33DtTBQFdXTYZgyhj01+1FH5z1tBi2SYeamW3JUho5o9O/PcnqStcWjpu/QcnNv+faUgUK72MScSn7XbHTH+ICv8fyRxJlYbMC8JWAxj4aKYSV2hzTB4sjcBwT1RxxgbVuA5UHCWdOSuTgE+JnqR0q87sTGIeejbtdtvHDtmUd7/EnLkvNOpziXVy9E1VVGsOVyp2ywrHtqVnC14tU1+bnurntdkvZprXVFLz0BSqTPXn4IyPFrHeNcXajuHfIWR5WA49tPymcheuDpuOxKEGR1jYQ9IvsIPnywHgclnjiyIUte1ZPgmhNoIF0J+0k6V5RfycaZ/IdUsHXxbMBy65YYKD7z2+Q4FBzSPXftCBcPFMwR3lvrJK1IeSYTDWRuN8oJ3zbzY2r3haWXP87PlhO7nzWfeL5POdvmrfprAIyFbxJpQ/Fp5fExbmocicZthho1F558roPsBzDpvfObUbFLfPvngUHRod/nu6yBX7baRjA7pSYxIO4WH6+l1fe+izqHMS1jLhOtrV2JGZx4Zo2Y3YJESimqUmwNQUd+eLPBwChnoM3vwdBjtOH5XkaZvvHha90Awe2YDpTMZj/sbIa8fZ5WVpCdciRXHCcvkHAz5Hy8v9mIwFraI2nm42xbpMRUkOafStr9Usm+feN71aO2jhQ4aosLTPcXxGDeqLF+ScN7lXBvRhvMwOmMt+vkifLHSCxAbRIIdAujKchazbV7ReIclFxWb/u7ATfWSoMHJtwg32mGK0oWvPgfMQB/Sz0ozb8c4W5xmFy/q9AATsmXRjx6IDzvzjC+ecIQf/tgXv7JFytW5nWH7ODROG1Eve4U5pB+DqoCGui+fJ7UaQVdf2evYwvIO0DAnFogmANqhyM2tQw0HQLT5yeKAcFq8KXxV1UwMDousc2Yfb4YonisO7gG+IjbIk2FHJRb6+ks6lNfDrFPT9GGlkXo8LnVHsYvsYKb9Sb5fsJ9+5aWpxwrJw8znCqnnjq2y/ID0/NbdOF8+DDpAkIzY6+KqDFOUBXtf5ZvuIAwusZ96QslAgyhcmx7QStTtwAC/Qv1/R4CcUtRe6+OXQq9zr7MVPhiQspxd6XAJcwkGSn56kZc9FUI9+f2/AyB4WYcf9os8UCG2t+FH303iB23cE/WuPF1QXDszbkq1ThwqPULMICi1mzuijiB6twZ1eUIOkuisB3BrcnG3SlamnxUiBNU8RJhjsZSOGOfy6p7kHt+ISsBVDXeFSblN/aHY72KcBWnoTFWSY08wQ3ON/txwtaT/5Xp2TmV481SjUjm72EtBzI4yyXnRtBL8l4ZI0YDlinv9/kG3IHpYZDX4pPCyfHIaZW1QAWGlBBZJ06HEbIe8/7p299Uv+sEd4Y+/i9kJTHuafVlopI5PAlSWfBE+54aeC3vf7pZLTOPjUDn0wgX0Iedp49nMeOWvjsJVaWJJD5dxeelzl2PaHssFSbX6Iv6OqlohI2+B6KDhkqO87lI9HGmqTChmP4kfgh/CwNO/zr+jvCCc2SYglesUema8HPqLHw72tNmpDUZT5bnuiGHgJfitKZ6ag8Sw5PiQovGwhAaYA0hL4h/8ufhht9rYdAmt1Qe4EYf8aexU5tEGyq+xNRHntU9z99tqL1GmPRYmOSoJ0Lh8VQVIfetpcjJcPwyMkqj84EYv2tC0VN+gqKLR3n8vCyywoyOR2Uu+0cQB2mcFbvuifXdxyjm0it3b82oLgxPx+UrfaZd1SpJaDMu4YzDDxYIAnLOqCCXGL47Z14VLj2yTzpUxB+cCRwsTcrn5MD0ll9jVlJIBc0vTlySgP2PjpbGKYdqO4PPdz8T1/2KV9NNgxfmMi9pZHc1pBRgBzPUKihqmjWtgwmHqq4b1XenOimWUdzXb/ogt+h/CDo3DA5ZC25t21uj37kxERx3pKWkGYoEJIWSCdooe3yYLwVLR1YH1VDSjjlqgi2znNyHscyxBjGqb7jpmjXgtBlB54tbBmCCT7RlGE/wSqTqBHzDDdNLNspqxSFZ1E+Z8GzVU51pvgXpN8mAcQ32pTnyz5sAhAy2A9RUdf7hYzbMl2dZEJpZ2ca+A6iPjCPTkdLPWCFor8PQzwr4H3UQchs374/ZNJ9+VSNkuHgEcdZT+24Knvc/a30a+lU7gklKxDeDrxxkyiq2qsH8nmhuAGb+kW71+K0tIcQMcch1vPpWYfQfC8y9C0onV5W8ZHu0p735bfRdwVE79/WNILNQQxjvadTDd1XsVUPlonf3aG4j5yO2ZBzJTjEao6698H2ZhTvqxTixjFFiCbak33uZkd+0080lQBio4bz+kf6Zx4z3S7y/AmBgFhOpNDkx8AJ14FgFgIdVoa/FC674r2Anbrxc5BQ2H4dxElH4qaKSKPiGyHXOzwx7n5KJbzI6zl4bXFKdC1aCdZrZ7ifyH/G4A+D/1nR7HfrVxGcp38O21z6IkG6fLDFuPg8GlbuBQiMFTfvnxMhTXLGyd4Plu8HIBjLbDse7Dqfl+WTDlNAg8NuiKZwHX7aqZpVRtouQ00uVK1+IDsOFGQlPtLnSfIr3NDHf3pSu84fN0/MjgkyT+jr9lmpoogAzT0C/KTZtI95HnAE3M297/RFO9hRwA4XjzsZoFt+XUD/pLAcBnag5c2P1uAstDf7jrWMja2m9JwusLkXwMOD3J6q/0fRGhUmj8UIub2tEpnpu7KyYI4/7J4NmKrIgBBoOQu5IkRp8F86zKShhK+o0crNuxTYL83UgWGR83yw5/K26SV5dfwyW7q3+RNdZOeTfw/Imp83Sq11QHabh26kLfA5NgFZmMjE4LQHcRy3em3VcUT1uA3bi2ppM0D1M3WUuJDm0Lq/Hcod/iSobEEviXGXq4eBQmXrd8/a877bEsxF7913mk47Dk5TmuBxDf7a/YBsMbfAyAwxNEMTFZ3MLE6fNmZ4VEurrdcNmvqpu83/op1DeVYuZbNK5SA5rML0ChqEETOtCmwPqRjwR5NMTfs/DbjcfxvjuzmAYzK+99nXdd5X8BJ+YQ11Qg8fg4wbWjlZKs9D9lLjdeBSo/uAOPh7zHbl/m4N/L1+kYjSAjr65DZWJl79ZmJrrvcDcBa8tCcbLEiqyI0PzI9Ga/qMBvwuZ/yxzVRLPhSgzAkKCjduamlZASmVhkqpcZZfgbH07cSdFliNP7svx9dOp19xoJ6vpaZLP/KpMpls3QSJvLwg+5EWKIo+ydrdMJ0ReIlOMbhJKcs0ACmOiWxVP2OjO6Pc2tKsUliWZu025jRGPxUhcYAK4DviujKjQXyiMgGxg94QQFOS8jCXIxyKQ6Iilmcre/X9fpKkUnbLu9KCTvyN2osUjDoZO489U7Yc8183SrZSEVBQfwvdvqRK5CnZgO3a2oRoru+7u7YhqMlfkVjxYp0ImL+uWZaAJsyTLZjidSpApeno4wPQCRRgHSvKImRodIP1gxqYBgI040ukNXNqJH2un9xoCKRzbEipbPCmJuHqxkH+WS7xQzJsyYtffEyuuF26fy52l37NGx8Xs6v/82afFHkiym0/Heq91jXNM0ltBzsoh0Phq9uM2ewCIOJOLPx7XfnsC4NkDAIjyhchvzhWlTp6cinrEoSLa8y34kVpfw3YNcEW0kZfMBaeK042Mz5c3LJogvS+sMi4p/V6smOYoqWi/iewvp/egFjHjOcBeSeoHyQ0gfq68KUAe81eakh1ldqNCrNqAXsCJMxZodQkMSm8ot3JO3dIXpgphNLI+DknIuiLO3Gob0BibQsOOE+2fDrqMLcxdLSg+5UAAWcy6JPXNVOHKvYis5q19JKOm66QmLB3Oi4y93yrUb0P6hBmscV9G7msBR/F8vPh7fL5BeQza4l7CAbpsK2fgbSOUEpyDQaTVS2ZKwWsBXwRiFXZvNvY786ECM7mqWwp2SyjmT017GF/PWB81Ml8rA9GTmqkiIvTt8aoFbFwxztS7fih0pL22/vO8smXOBnxZHSEN9wcjlLCaFU+hNmpoYydKyo0PGUqaPwOXwnAIMiBpHA1T4AW+NomMLB7xT0qFgb+UsrSHKF70tS8l371/+t+5N7Z9XYXnS0Ae3idhhhK7IDVZiGcoUlM36HOTK8EPT5GecghFYEW4/FdyWqZYRT1hlx0wJ/+0wIOEaeke2aVFmoGdY2mLr5jwkL3K/VU76p6EAIVa59sXB9pmHIxlCymxoUgA7ftFqmFyGLooFDeuzcrAl7+r84VswNhamxxLA/S43Esk3EUSUNnpDz0MJH6DFM8PYGIaC6jr8nZ7xHFCFXp90Nje2odF7cWzWLhyAm387V2MXr46Gu6rWEMOJnFjCNjYgWQtshNoDzTDe0yj3AH2CsNCzaDKK4sFpoxBUSRVsgWx3gHnH2M7hTeTQBfCuBG0PHUK3PI4CAs2YBx9yKXaK1MIlPxqjtlvjoWgDiGzF7qYF0YFphN+QKWkXJrfdoMiy1NBWnWwD5/bxbBr18oWt1vTt8MJUPmmSQ6i5FWgBRvlOTsV6Gi82oAXfAoph2ex8ITNG23FYBgGVmXdgAFN8HGB44cIjFfeZynoAKqwjaREBoV5xTC60Yex2BDUvRa8bJorcOaAgZhNbiQ8vE78tPGVDJOE0Oe5YhQEH8zpYoYCJ9hsuf1/TOhPlJBv7o4Kr0Dcr0Y3MvmsL6oEUh44zrnhTDCvf1GRk/LlN8GisEO8Dd1TGvBA7VU0Dz86zEGzOenlwS8XRShuQ4Zesl07NO4bORD9oTeHEMNj+xEYfzIfGqZK9mjXLm2FvvWPpW97xaP102NbEfCzzS1GjjKdxj+ZpKW5hdC9A6gnKoF5FWmbR/8W6CRh1isXo+44UKpJ7lwnvrLX+JMR9nN1Pf01ka+vq72UJQSRsp7zWC8AJRkCNXTX6JBlVuOJ+8hT2oQt4rHzFOGs1yLth7/bLOMgycKlTdLMjA97XcVY5NHIR00Xcih6xfk+ZK6YnuEmzte1Q9yOAB4HJGXi0/RjTY/E2QBRcOXh+u82ZBuEmiy0BbeDoR6SzBW322Yat4OR+6HBMo1aIh6crM/jBoLj4HSBfFgFyKEsJESxOxtA6h6IkkUt3E/JqXr516KG68qyUiS35kUIJVHMQ1sA0iuSWsCHHAsNZrMUXfxhAcLkobZef65lNp7tHsII4usiqbBafxPQLD7m2n2cDNOiDC00pgZpwrlhYCfqgKsBd2RW7aEnZWa5lzEP/eMO2xESvlnONplJ1Efpn/5CFWuxr+kmv+b1Dep1DmQAUVasJOxj0PbgBZ6E/ReJn+wkD31PRf4XnQ3JerUin9Q5gblU7fMSI0anT2wgEWXti2Gtp+Ik1+UCaflE6LNvOXEDChDqBthiQ7DAK9G7ZlxzZEoHTCbA9lJf5fsUPSlqR42/M/7TugJ3lnvuoZSZs7YNxYfIG9VuBgaMBzV09HQOWjFUI65NwKb8RDoXNuoHrj+8iRkoCzJmZGsv20xvO8e8gS+9qx4DXtZvIiIRWjwkkn8CtJjegNgjKSra0q2QagPIUDkZHqihirauph/GXU+NPfyQLr1Rr9Zky40ivEjHx6HRZeqq2j8n1kSnmYbX9Fb4TtAiojHByzKOC99OZIv9w7513coQPo9weoLRvsYyLomf7pZRYIop7zaMBEw1DzluuG4MdkUQpji/4C6sIvFu1ivXgQ3477CnpJ7QpRR2uzUxmqL5ZbWmGz4l9vqrYCg9y+nf9UehtngsyNUfYXGa7xhu78PWU/t9wA8+DdPa9tBEokFICbFYzN+HkPGzssdXYgbCLkARnpfms3LofX5tu6qOT465zP4xXheZBjXd7uOzKJZwFxLCxPyEcrcGEdfpWOGWdjPcShFcAUvkp1vNq2njgXln7f7rP85URVbC37RG1rPUihuLXG/eHt0eyz3ECBcONLAT7ZzXR44NkjL1iJZ92K4yx/bROCMPVV4KKyy49fKGuXSZVniptkdDcuflywhnWZu7upPfs+aCMy8hvOltJGkq9Kg5gwW73I33WaI3lNmwd39A0hk/qLWz8hw8+NzZU8LU0v/bcFJS7tX8eWvFLRwJ3LZk5xULaQbXsUK2Qx3I+zR06tPKBPlS+Kr28GFriUeLTmFZz/0Z+ptQzkvwDlXEOJHdpwI+QxefyEHPnSCq5BmwdNV69aIonNiY8qIe++OK8k5gTnEKBFnjmIIBYokDKYP9qrUvayNQomEwcWQ/nCgT6r+L0PTEURVG89T7w7+NkKwxDsrVCnSjGIyTAD5h2114Q3AB3VGR02/wJ/sexXShBLeL7yuOHfl0d8WG0N2jCzM8DeEkP4bn433qCdNXNJQ/5pxb6zU42SWbg7LVQC1iIMYGmF/8+MuwGcX6YEs6Qfkze0G1uLKtE76RDZQ3VVBnMKnNOyoyvBn/OaCGcc7CUHW168AxZB8stLcS20lgXGcoqrLFpBLbnZI10IZqZRhbXaEZBS5bjmJghGdVsK61XyEQRYm3Hq/bMaaQ5XVrMK0ZR2wCyL6ATa4Ha6hazZeOxDYT5l/DZkLzAoWokk7lNWQ4OJYshXpJThDfQiQx9B3zDuvMWOrnN7+IQ+AOU3dnKi06OpF4wypkcCP+n5L0vqk3R1F/Kpss2rfKHWj8MUj+PMwwA6E8QmbhP+ANmqplcucfrpMDg/+TaVT/OLVkt9LtTPHorweyl+1R173pkxH8v2aXw+y9j0XATjb44N7ZRHOsKmg6yZQsj00DqybQKLFsKtkY/RK4XKfP6wqGOHyH7TjFNUklmezkdSQoSYA1r7fj6nThUrEAu3TlgxSVXsE/jF3qSgrqBHlLbu7kaT2CmxIPt9AfaEOfk7G52f2IA3PRnkzII2eK3DwHj49pJ/mTu7m4WZp9xkzs+LjiSfTUredeBEZKzp+zTvyeKyReZ2elN3cY6XfpD8CVeFoRhJpF48J1i3/GBlvg24lot8AjZpoy8NOpy+NRSlpTvO/Yv1CxCBaKqgzTFJnJQD5MON/yiXzZspk1u1HKsCbiSP0DB0jCfizZnxhdQEZyt3RfpyBGTsLiF4ojd81jeAXvrtTiyLTIqIPJoHT6u2GKvmXdyKogqf3kPviutCkm6XL1AdVHpEb0Gd/QDTArXJusbyC1e3CNWt73TYVRMLCxt7LI9syQNvSb/eL5T5C2HGsrJzEAo9ghA9ZtNz+1DFpHfOQ/UB4TOZgPZW1Bef8WmcP/XkpPBA7wdr9KnNYR3s9ZVWM0NDz530sNOk/vLI+6922Rpl3JK1eO0VsuEmEcNztIf4E+aAfyeU3eNiELf4QCgfC0mUVn4HpTez1R5ABIP+irZX2HwCQdUPbWQr6jFZ73O5UxxFMl60ECxV/pMEx3wjFXYqe19KxfrGEFVaK7U7JZZJuIpzDKVfUyr40FcnklucXDR0Oqx4oJooCmg+7HVw33+mr2ILdDTn0fiYZfSfxXqNLNPnTXmagWZG3MHlTVitjjXfdmNtU+JHYRTJra5bCeYhsfWDdPRU4ycO/IrfmuVUU31dO+96PRgd24ZaGw1I+tbUtkN/0pxMYXdUwBtN5G3fjbjqbZZ3sTPpLTot085+NrGka/u4f2rO2oY1JqSITdlHoRTGSjlkzDyS7ws9htlxpxUqxo06jTM8DXLWPm7PtBaXuqtSyrJoV61dJ/djbjy7DuATvE7f1uaQnzBzLDH4wULeIuiI2w9GbTurKGJ7jv20L9VTJPDXS4QJ2NLLDk0y5siqyTX/mKqUTOyu7XG6nBFeHkq7lUHtsMWMkftW1dvoWKL5dx7Mqqsu3y7sWA4b5M56BT6bapTCOzR1cy5l0UwKjce2lM+k0yxSyiFuYmKtvIQkOqYmCveAvVK5KUfEYVF7UpIvPJDYgS9Ckr4r2sVkBgImyYUi/CBcqb+TMj8asjXMGHDCvungMiPDSGpusvEYKW1augCiQ13hL1TiS3Gz90x1S1HRxTlayZEEFnkotqGVlBD+50cLkC6K0SRnmkVUzBfkQAj9QdW88YXDOB5cv7dmn0KblLzvzjE73Y1/L5UoyO6qjwpzcbItFSrMtaM3vJBv/GTwDffWc1jGtd4gp1Rusu688hOQJkyDQ7e0gn8uepyZEWHDE0dAhpDUS6Xoffq2YC6v/N1rucTca8P6ZeNudk1IW0oRQjz4ewn/l0HpCRUgsV8s+W/GGUSFw4l+iT9l0eRhepUbEUXBsXGRev790UHDJ8H3h6K3GVSLy2uJN+0gIfME/sSsipOFGiozNsalJ15d3Ya5zDAMTZ4Z3/IUQAqyI/8891D6S+Irw7TJLoxzUAZ8aTpKIDNtjvwUldsPaAqtFFoKDjf1qd6RVKr2Pf0kEOnl7rLhFU/9E3+/TTYVvuMfpUEVP8BUOFUz3F705PYTG40DhTMpr3vxWbUeCVyP1KwwZbRwUOQMkriRDc9+cjOhV4rTBalr664crHv2/2AgOGZvUQ0abdAFliCqj4hAhJho0vlwWyekr9caG8QCQSE0sMVAdnF6IsDycsXNu+jNHAAiGyqPZUXQFLccb/FcQmC+OkyR5tfKWf9kfHvMqZv7kcMJCoXkZD15GZjWmx/f4hG/uhBbkK3ivDtFEJUVjDVHjZsllEzvHkcIcD+HKc3ELTwcKgWU2uXL1p0HbIQbJxFibcRQPv/oSKSRBGH6l/knkV8kqM19wD3lVtWl72x+TPt4pG19UBn16D5fzrwqKRenzZ3kLqmfpMjHM2vQKScX4rupvFbrRJ6LBkKcsETsSIewK7jrwIhsRirmnw47CGHC5S4MmA8ZvzOpNsvbivPU7oRFfBi69+nos0gfRfse0HA0724tGXvl+aFkSMtPKp+YXG1S8tc/RrsgS2PCUeRqgZi6bZr4CQL8lATphiolzJcOrfoyRLHpxc7192IH0CzxbDrgWD5dj0U9NiO0oYI2NrG0x2GPQWefExA3KGc+osvWIFFWvGji4MJtrk2niO7HsPlCMVlNfuHKFDdfJN5ZV58NWmWRo2T7V7z3qxGrP2xxvXUOtZIy6NQAz6MV4CpzGVql/XlchqnRVJRLhqiWrqtKfJ676DIxCALQCsyA0ga0vXBUp/0F3N+MV7ATI9KvK9M4L9/domIuF2VkBxuUe+MO4anK8zN9YS16I1netC2nbDj1OQ9P/zxhvuRMoX9XnshdLrL/JdtfWiINdrNE9OsFMuIuQwceBBaUkGm6aqWwkw6zNx7IRa0g0Q8C5NuYL/ZYM00swvxNSDaia9QsAoXTtqlA8qx6IOP3PjZWS1W/0436Av8FVw0HindjqzBOZgbacLB34LUO5Y/H2QL4JWGQK+T42+KuGBjG8cBD0q53mLcjx9MJYuZZNnZk/exD9QanP87C9eH717jNo1yye5wsSc+HQXjGQXBLi5KqLBfc3wJDPRX5j0DKwvoZf0Rq24sEVK1B4yBx0RJ5d4adO/imH+oI8Ktzh1w6wjNrzB85LsaK9kEMwIUPubNeegi7zVrbHGnW0WjSMFGorfvbFNBMAVpe8QbF22vs2JFLVWMDXgwT0k4RaRe2hMtJij6N9ayTDekm+HIWyZyPSB2hoXM775S8cGtFoAAXJYV1BkBRm2hY+a0IkD9DM8SOvrK/O/UrDfS6T+p0OhrCHuAmQqpC2fFJPuMK8RQt3lCFemceDSm1ImCnvBbTvjzFiZlschLbVGivvdhLxE8WuBql6d/Cl5j5HVCWHFd17QB6iIYFGfP/kJsq/0dQ1dvLaTrrlTh7PnufdOkUbauYHvrkcyHVtwe3Yx9f6UcAf5/N1jSr33VAD7nnbYKi0Lj/k3pOY/OSwAmFtOEFB5D7wrt87/vn1buIcUVff7Zvr/rT6ZxdlBKtQj2PaiavbnmzXXlZ9FRfM9XauSQj4k7XFb8hSCb+GteHwPBBn69FShd9BMbjZR1Y6tepX7MN6Dy91IsPpyxIl35wVll1VmCU82rTdQPB3BZAMg8peWduVpJo2NspD0pGIh3JbuB5aTA7W0PIKX+ZfjZQULHYopX5pc6TdmWzZMPsozwD/6WmSTSPxl27Nb9a9KiY66feZKq9xUxYplwwCYVDTvYPrfVxPeunMjyELggxK3frUhcJYwp/P6gJUKz/QDkPxxO+i0vGx4bXfgzVHxgotIlGwQ8vuLtTZ7obqgMWVdWMq3XK6QFQI5HuKKmZQ46cgOwhsJNQaRdxeNJqMGka10fWKH5Z+tHKrvBCJDYuBgXz/al5KTGi78LI+lKIWp1IbCi6OrS9y1AC3jc3YPaIKEJX1wHI4fjBhf9CrMxiCd0kXWZ9VXSK6NKlimNQSZumdXdkzSGI/OP01rjfkqSnkwe6IOOhSi6wfpK32yAFBttYN7lUmniLFXoPViJEsol/6gMq8yJLCUG79j8UeevwP/2L9+Q2ypc6nAsq4g0OcPvb0bTuU7OY03JCtuRnUTjHWzlLF3qup+BE0jUlnl6JJjUzKmlNfxwxezhRT5ihIUL5gzhXTyCNxPzO5ByAQHCf9HOzYAHAR8x2LqABrcBgAyQoSCWGxqTftkxoZq7P45ebkuDgxN3kczq2txpLOM5shNWvcOofAwoAIfkMof3hA7MRTdj4BS+E1CKEuPws6vAGcSqpGYesZNbRpzNJ+/20BoirOxL5BDDm1d7aqAjCjPQBhbZoOEEvOzQq3HrkTU2Wiu6drHp80/BCaIsWT6zmwXDh4c9TMnTWLpO5tWi8wwjgTycsjqsH/goHSXVFm
Variant 5
DifficultyLevel
563
Question
y =x2 + 2x + 3
What is the value of y when x = − 1
Worked Solution
|
|
y |
= x2 + 2x + 3 |
|
|
|
= (− 1)2 +2× (−1) + 3 |
|
= 2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\large y$ $=\large x$$^2\ + \ 2\large x$ + 3
What is the value of $\large y$ when $\large x$ = $-$ 1
|
workedSolution |
| | |
| ------------: | ---------- |
| $\large y$ | \= $\large x$$^2 \ + \ 2\large x$ $+$ 3
|
| | \= ($-$ 1)$^2 \ \ +2\times\ (-1 )\ + \ 3$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers