20220
U2FsdGVkX19mCJm3Aedb5xb2huWlKJt5PkRBazgNfiAnRiAJCulw2i36dwUv2zCM1u81lDYpn41Hwg/AIPeMBvwNIgFQI9FLvbkSCKgzoU7UQHzmgNo6sfL8VEDLa05O9Z2GT66a66/nYSkQJ6WrUdV3DxdsxeJADe54cHQtaUG1c1WYkqcDRxeMWu1kgGv6iHueGPDoZBhFvhTHrkfOnyz4E0EJBf9VxgFeix0q79twDLZQNoD7gCTXcIx68SRhS28GrMjfpCWg+SHspW/ZkRl8lVFDn5+zmXPITcdsSaqGoMFrMwMY0UDxsir2fY9ufmCwiHMSRYXb2jpMLDFY2baDc48tZUqBhI09qJusjfEcTHcoUTf5Q2PpseSSMWy/vcQEhU9JtRbm71sc3qST5zX/oB0hbFhXJiuWhhKhYHZxuanbr4rePpACIj37HzCtn+QAhbCUPdcgxhRoRUJEPstGG5SZP9U3Qzm6r03RK/Yhbu/0qzZBx9XvvVKzDAlEBAeDtpJW8yklUjNqthTIQVz67pHUF0wfej5PIPruhGTozSlwPfjD+O1NNdGNMO3BbQIphTXrEkze6vcKMyqr8mIZ/TSihEkezUT4gf09e6s7OcwRfK2Oy3Gp8+F4PggysY914EV/wR7s2fvR/qspMTdOjZzLBygx+/KxFicN8i2y3G1f9+eQ5MrnRF2+5OUTOBlG6ZKM++JByXPZP0UkgdAtPk8wTiX7cpb9kPIlFRL/oBT4+9au/11ODh9E/URGPJeuzxbyVBXOSEZqv0pCl00N8yvuPmlvtYRI8fICff/M3YKwVWV6w9uls23uMjTnSM/DKu0WjGpNtChlwYjwjJZm3QOvOvQYScNZXNi0poMwM3VChLbYCTwQR+wLYVGfeNnZ32AHiN0wMqh9SGcAdutDtj4gdHfV0m83cP5amcrpg1yD366z+UvuK6+mZGWCiPrcRW9bHiSbLS1RLNPVynjBTymqOOZfJyLEUYB10Q750qZiBM0SRDEfDKhZG1WUD3sNG3z5ybvAQdylAhPxpeCnl7n3N/HmD6eRJc4QbVk/PZWd2/JcH5M/R5Lpc272KUa4T8vLb3TdEWiJxJ6io7UoK8zXUcSmmaeXVYBQ0q9ersC0YA9xw8+zSTMsMsNTmcGwSfdYCDCBSuzq6i5gBy2olk9HEqbu7pN8kJEIMHQse5rNXC2282aXQBg1euCfEsXmwekVal03n3FyWVdD0eyVHlENNk4GdVd/FIi2/3wCOsg34Q7iuNNz6SPYTGbOGFVLzuxBB2SgQSMY+a+TRdjIwkj3XP8g55iwTavsMDITBok54sZqCAIQ5N7l4SSujkiL4CRxye0quGoE/8o42hRZ0Nms8w0tQnRRVAvl4dzoZ0Hz04J5IhMgo1Y0nyCOKO2Uu87ZYAmqq51B5BXaeU62MJiJjmou1jlgZKu5q4PMGjXsZEmSh1QFZiiVvXXG0EhwU8Xard21tNTIDeog56hXFoaQX3ilRCl0jR4W2Lu9/tJqPFvcqlEWNsYIKUhpiTb7rNnifg22QMkS4Uoth8e3Nww2IQNAPR/6iykg5cDUFv6qmajy8Vmx+4dD0iGmvvugvQgscFLyIuMTDaWj/eEJ1Js2wONBsG5Kk5lBinGgQajBVyiUWvwUq54aiK6DOp0MSCjZLGWgEA0//E/K9aOc15qva6zBP+cQhaQjU/OM4AuhHDKWV4RBYX/hjZuKMoUbVpcYTuR2Sn6QAm4E0NO/4Wqd+rm08zOxcEk3yDa6DWkUcK/59XqrljII9pfK9yTuRS3H6xodlTZjjGz1Bdx3hcqFSJ4h6oWzINQt0m59AcaqpbZWgMMT22lcTN7wp18rLxmSRRaLNRS/Ow14NuxPr/t2HPiDy6EH731I062NAmDgDiwpsGI6VE8AbeD8wet/1IttATfB8qdpVs0rCREq0QgRXhoTJN4gDI1CUVi9KzkIOwbMslf78knAOFczUPV9HBJZZwp7JWjPXDVUKHxTP2we9HURCeSa6Dgvdi3RTHXE5MSkRYr9TxWsA+MYA5vTdv7OFmFNTPKAaeVZcSYG5nUHnVB+c1nvCSi0604ZHuEwuPYUGJ2U9GVLzf6hvrP5Nu5PWwlKfjKMxL6vxI0gE5i0360RZaKOuZ+a5/sWsteHwrxbRe5Pg5BfB2AEW8+r4ibGyelQgR1NXEAbAw7Zf9T11gnlrRNG/qFdk+SJs6Y0+6rUAkos+T/PZRe4s7hm4PLjVsG/6FVhHSLukwxAn4ohm8VyazEJBTg2/rt/Ola3wg94rPf7x7ffSSkx/K/2LHIVzGDv39z5lwaehT/3A6kZl+KkZdTvwXbM6mfJc1bwZrFrSq8Aez6fmgdR1v8xW5CcHxVAtmLa7rhF8B85RZyUdfdCkeeCg2NRstcZ7JdyeFaool7NL7Nkf4K7h8K0Y5CKBU10bjrbES8Jsm0iSLRyL0q3nxV2xCXc0Dazm1wI8xHhXVP0NOB9khAZuoRFMD06L+r37tesKixwEHGRvva63J6vP/ESUg7kxRwbP+T3dmkLY7nFRGyV7awrUUaq/rXS/PWEI+JiwDzhzzAMMbHJMaaoGUvU1RkxTNSM6TO6st9IiNhVYYWvozvQpFWejApjjsk14vWFSFDqZmLQYsvP8sjfj8movpLeWgiypgPQrFxykZRWCNAO6MbV3QmXFNKz1wmtmT4GodJodnpLQlvLUbxDzjyL4hQxetZstTms+NyPn+/d6etywAdpkMY9yVsFPLBRTFvMzyrQMwHFJdtuoA4D5bGFi/bdYQr5yqJAFOB1CrryOWZub7t8aNWpUHz9/tsDOA1ua83B+SKZ7agvos1pfMCz8ddUTvmiCSvxAJVW0op2wrhvP19HLkTCmhLGqXpUW0IjdTSfscBsk1OhgHWcj5PvetkcjulbGmNvWyjpiOd/kDmNuLc+1b7DujGP3jMrJVlpOI6tSz2bxctDDMyv0Cn8ASADzLWuYwwqmuKxknOz3Fqk+GHRd/Svqgz9PRcTzSQlWDsfvZbdAdxFPl/k52c1M06vUqkfFyVU12Kfttzic21JRuGA7/JOKKeoLAMA084wEHehWZCDJlLfoVPpauSKxaFfzXu6QRjKqwSWPpqxD4B4zaPy6GJKuhdtTPOeLxWTSWNNEPXJoIoXBZdEuh9MccM8+MK4A+lTiFuncAeNZsbRsp/+lMqF7eUnVSn+RcTBZElwohinTsqJ4DLQruGBjHwm152HxjNX7ECaUs17Y3NGbyi8VMN5bGSpQcGcrdpo++l2V59qVk0Oin6eYq8T/S56vEd9VTi48mKpFtHn6nTnJ/CM6Gict2udTFmSEzWTXrv5HqnQD2Bvkx1lYQ1RnJMScxoGU04/x20BqWlUsRISBF47PT+Fzj3FCxTVcL2ia4ewDWJXc07c//Mo9h2lD3Pxb3dfLQcxxojn0Z/K7YFNWAD/k2Rgcw6KdxS4o8QEDxmFf9ucS1Qyqdxf94bTFnK0yZrBdsi0eNWAhmCuQcmyNKmN4teQpvrCpFacVDs8Bey/f4TsfTtvKwVzKVldZcBKgeVQAVcp/LqBKB5YU507eIeFb0zqcGhCny7vLZ+xVSUUFtG5UWkNctP55U3rGqFuOEEqH7EurH4PPv3itGe90zDobvEOt62jp3gcINEAfWOL7PzlvvZ8l3Hf1bRkhlayluIlaXyKXW35LDGAGswUIwUFYqu21Pc7Kjt1oGMvlNGqoeiTzO9wEGsvVS81UJuXRTkUXdZyr4Xk+iiJOGAH/EGpOmVtbKejdj2bKj1qTpiuHaZp9Yp8QVrulfIh+MOyfEMaK7ECGk9owHTjPu4PWNtKLXzOzjtO8cP2u3kjl7BwCpdJnlSKWe/DRosFQPd+hh02DNmKBLGEd7SUvx/sFRjEqsZq9/mlMmPDCSv4/sBsoKN+xpKzPo3839BkTr/a+sl+0J5voTDsJ9PZZkCt3ilxkrMDdg4Wj/yUFviktRwItXrXXE4fPM60cEAfqfrvaY6q4VwdOV6m+pcBD50o5V7IaQBBYxHy8TOZLJJORXATYF6G4d/bhAUYHKwUUZl/ywe6Kl46Ql+xer1R++Gm2GmSY1nwJ/DKpbOvrPW7Z2fk2dIkPNZgajox1e2EvzcMQ32Ex+JabhDO6gCPKGYiEvt6srmKKvnEbuWpP7m1q9EA+CNoiyRE6CTxBmlQJmz7GyyYPMPmvbHesN2UFRPDCz642HWhJkeaHo6DIB0o1fLpPEBZiqfYI2zi2BGV6UfngkXtC7tSBdqCHZ6dGsnyqzGIlAgnHnBSQxox0d8GofaNy6x2L63Dn4DZ6NaxiGCWtsMV4fZAeS4f+sSkKs47EEi/EDwNF1w2OqC+zrCy8exkRL4iQAoqZntZzgMN6tqzrkEUcHrK2HGNsv1yBzhieoLO7MPEnbLALQk1mITj8lL+NKXdG9J6QhwOCny9QByXQ5O/L2BorqLG9zuYmOdFCpyPoFCRdn5IBiKRkUzNdYWh5QqVo2XeQCYDynjET7W357YT9b7bUYyWSNn/SXs+8JuOhKWqxMn/n+UCVWQ2+HHw5QNVtUd52YPj10co0TbCVweTcqhjqogyUe6L+KOLix596qVzi/a2wpWCKWZCEx2X8hWp1JvN3EEFJimbJ/wMgcy+HIISyVpjS6pyuP703K7UU9NRWvLuW5T/qYCqZ+DlwXnutQennY5i0Tf2E04spZPqFnug/JaWjcQFmaC0u/8KBUxDUkxBc3bXWisIWQAAwyLX8jUh1A3gPD3KSoVqJgs0wTITq7zYnfZQI7yo+WPqB1W2tRlqFXvIX6944k0hu2ACzjefFLSVopWctr5dbhKMW5N5l9mmobjFnzaYHUzoWL4fRSLN0/Gu4hymCXPmRkFlqUd6N6r7gwbsVux9POmRNeJHjH0JFWr+YBVL4RtLDtslh4OfIpMmrsOBlp00KHIccy9GCG8jlkA8nL7po4OSk9W/2afGr+vj8gU815HOdWm5cJFqwxm98K+q9b0+MPywVeguGorj9fY3S9dBEixL6ycmqhmnZhM4IUhTSLTQiBQZKz7+4Nb5+hgESMNsFHpSLPNPSytxKFSEerONd27wYE2IrwwvdJ3ssQgpXWuUIPBvggZm4cxIgHsg5PdzSEOAi0ayKQ/wndPRV7bGzJPCHqJXkeauESrD/BirkP3HMwpK3JgIsEMpgK0ewmF0x1AnMtJEh9zs0+KCBBsV92tcssDOOkmtBux3co8hHBtCcOols9rQaeZ7HYp/j+pNc2S+DsYkuznbjylhuxT6mUL1buzagaeUGjgzvNNRog/jgZQ5PgxJbzqcPB54AI2jq9ohT9Jnp2NolQiy/+pgAEQ/JFP8jI66uAV/f+GeH+QKoMljVrBvfWhw/cSrycpRTKo0rAIV288F+9Gh3C8ADQtkMOWNr9eX+ZHoonw6qxYT5sAaU7wm7I0IitLzJ8Lac0uSTEWvjj0kPu6tC5JPsAdrfH6/HMG7KHjoc+3LhJCzhHVdrQ/8bCqzpscTBAjztOmQn+iGm/aIj+n2r/a/OTS8848j+SHaViVur1cr0D3fCr1btEsr5JHcBKhfQjUnv1neaObS6DEqNzCqerHV3BKTO9uS6C30NF/UczClk/9AYmjSjCmSDKR91EQDNMNH6k5bTOb25BQEbtHBB3MUktMFb3ueEWVe0XbLJ/xMSNLks4gmnFQn7xAJYSDP5oa6soiizn7IOccDs9Yrzkob5nMWqPgjQmLBrazOPMMQ+ViJEY2pO0STCejLsZUX0iPEmvMIDmXzEEqq1CFUPJIAuXgy1Upx1j8rX461POczn1SGo0qJjl1GrOmnPPLN9+RNrFz12oKxINW8cNwVIbPCqyYwDctyTj0zc7o8ylQstfW7zY5ayE2ku7DsRvIqNXxlFNagy7MMOOLEGveV6t7warNt71yDr4wzumclzguhihkBNKmHZJL/UTgJmojGN78NxZG8g6lzIAeUlxjeWRLkzrAzHZ5APGSltkh8bKje/6WxZnepdtZu5BNvKgegoeGmkOevbAatITV2hglY1Fzj9RVkzvPVvoLlggvDHNuiQoxZfftpCZqiE/cXs7HlSEpw2TX07EFI9YCUq8++HHWMU7bMuf73DbUsfU8+Bu443CQrOo2xEq07UU+05kWGU1qAE+FfZc48Ynhj4CUdsw1qbgCPNKz5eOlTOFOqq+fe6IEiFWjRMmv5NQvCQvQO75kzNqFV2DW5hvK5/Xmn1kh4QEjn06saUwCxcC4HcvcWrOE8iUb77aRZNWyC4YUXmegWa7nISwUMexpOSAB4IiDz5RDt3lLh5fZIiM9KP8JwkT0Upmlzq3cYEox87A/mMlavWlnF4BAssiy04RcdGoIhQ3NVDFXO1GFHp2ZQmurHVjLf7GuiiG47drg0KWFatbDLYWSmdxAXmd02j+jgTd7BBSulFLKc5OULpNL6GcudylD2nBzj0MDR+D37CzfEL7D9Eq8cBq1ie5+0ncVq5EHShw2bODvlti2Dj76U1/fJH0zoD1N8/sT1bO0XfYB3wgrjgTI8niFSwVMBr1ktn+4OJXp7r+3wrON0+XEqAxmnS9ZvLIfXo76pF8KKSnxjdMbeUkAVEuqh5ZBURcu5rriB5kJT+Lh+OdPCNHN4IZMaWvsxl1LwNTO3Q+PzDicEMBwujuAL/oExzAvRqGS8488jlq2fjWpOuRIEjWzIz6k0m3TOvy6DMmFH5/FMFiEqJ+9+z6XBSFMiOOr0elwTOy0w0V43+IqgdCuVw4iwpd0ObBFzK9adRA6iMl4cWZVyENTuMdKlXdo2XyuA0fyGe28EJJhGWv2MmypaNf+I//s0y2DyR1oC1x2NKuUTIFBn9aVJ8q3c6RDzPgIq0oxKpQoYkl0XlEmVhDXKgj/JXfc0kXew871FLsMlISWHqv5OGtH1h7+SPSBXzh//E2TKg9CqNFu2neY+7rDK2vpTKAKnrHVvwd8zsBwAtYK4qwt6RXD3TNceIaWk7vw+Y+yoA0Ng47oj9i0AbA75frL6SAxf2NXxaPBxN7iAC5m1TITW09IsDHE1RX6jQGcw34IqPWesyeTsa01aBXJCCtQpPLqvZIsRk6g62Pk+j2HofoQ0fESVJo58I/ZcvnR53eYornnVwMPA/ie2FO6stNDgqBB1Vl6hJulqdFUCjPupjgSOOMm5bnOvOg5Hnh5YksBVqb/3GBLcSHt021Dutv/Wa2LE+sMHqA/8IQVZs7kdwd1gB5qbMzAny+uwd+XN9Aaf7kKMUK+7A0bXdXkqQbR1uOSRL9yfhLaHqqpI8jPThRRPKA8mDPQmT7Q2dGWKnqG5jWyGCAJy6UL9/s2sVo6mx0fnYF/2+afl429MGj51QN5aMGHAE79yZIkZcEPym5z+f/LxMzqv1zHQFIZgorZZsF1e8DwFAa2z50NIerPUXWtW+k8BW0qf1tkZaMavCuDwHbKJw2zehu2oqBNp2PuJochpR1TFNKYchndOz1nCx1fNt7xvxWyflMRXlEMwdJEZHWFsTEeJGwQon4aQYrq34vk3DhQ9tB+peMD1ZYVQfzpp9EYFjTFB8gl5j+zyfr4rCeJYmaDiDyKoPuxeTs1BLOL9FYxMhfamaqSRkusobZpN+61P+lkYUFSX44wyRaD1o6GRokf91VR+00wxyBYIyzrWJdJ2TSjGxKMkPQ6JIlc2mbntWqgnxRqfjt9FdHypZ16sYAgjYgGtJ3J4/qPK2Z/WsVVTbT9NPAK1O3joyy6aPBMZtifOZKPcwTDnIMwEh6OZ9bjJf6WD8nzr/oyBPY5LXeyzR0JwIONtjcBgg+9ZoW/lX8ZxFrzGUT5D2Qj6Kt7yfFIX5Zfv31C9RYGJzfuPSXfGl74WN6jeOrjEysbzUph5c7PM57Fx6UwHs/PSR0bPwbi2uecsR3wKzuYm2qTJklSHKlIyLhzAnpUyEKIAW10yNjvwA4SyOs7voPhqdNMjdLXiJWLbrZAR8SnTGmS25//E7mzBsFi2AKsbjQiyJjVb0rBtPujfypRYVqEJAEwATqPdWs3VSSwYigomAlkNvLl7j+gYiHKLEOX1LTzcNuww7uL7AkhuwLFrvfb3GuL2C9/hMiA35aR3JNarEOpNhV8OTQDnbEOmsQ0YGVeSm8rTV7qLx+aeOky1MJwlBSQT8Oj4u3wC/CxOiO2O1WPKMr5ZGtOcSRd5+y46R1fRvMy9Y6+VfHcA8HbaVPRiO/Hu+p6OgWAfR+xIwd4aC4klb2/xRYoo7JXyFZCQAUJZUV5bmFPaDwcn1Bi0B5whXwAhYaKsOSlreR71pZDhBpuajdg6jNU8TQt3B9ld0qrmj9vHPSG3uf5LUrF9JHtRXp5RhCemLsOgFNjXlGDhO9d3xREwzsQkaIzhweMLpKgCxs2ZCDcfhYQum04qttH0dpgGl9TqZLIMq2we57IecPXS8Ew847cZ8P6LWjeZWKEhRoz07DVRHLyKTIqJjkYNO8vJurPUkFoIcaqnjYq1k0aba7wx
Variant 0
DifficultyLevel
580
Question
Jake bought a mobile phone at 25% off the original price.
The original price was $380.
How much did Jake pay for the mobile phone?
Worked Solution
|
|
Price of mobile |
= 380−(25%×380) |
|
= 380−95 |
|
= $285 |
|
|
Price of mobile |
= (100%−25%)×380 |
|
= 75%×380 |
|
= $285 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jake bought a mobile phone at 25\% off the original price.
The original price was \$380.
How much did Jake pay for the mobile phone?
|
workedSolution | sm_nogap Strategy 1:
| | |
| --------------- | ---------------------------- |
| Price of mobile | = $380 - (25\% \times 380)$ |
| | = $380 - 95$ |
| | = {{{correctAnswer}}} |
sm_nogap Strategy 2:
| | |
| --------------- | ---------------------------- |
| Price of mobile | = ($100\% - 25\% )\times 380$|
| | = $75\% \times 380$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX192aWBrQNzy/BSXksNRqH0Eu3M8LkP0T+DOr/J+SJQHU5cXadSrDWk8UyGK2vFuFL1bUeUha7c60fKi79CMubXajiMp82Ht3xugQG9cDD6L3HXySlVfd0aKz/PQU728QRwjBZsy5DQ9EkWGNcKI/i0D5Xv5A/0JmsJZpMRpq2jWF161sKcnwt4SDsf7X0ONNtwTe39ukdPoonphF7DW2aQtTlo0ARNIIO33hcUB3i1s+yFTZokzky3e0YbVi3wob7u8Kl74Jki/NATrBh0hgoUdztCPJVK3CVrNU9TPUeJnutdgv7ke2yHy0BQfBtVobyyYp8XfqjOwcNM0HgcKDgzVBmVbMX8cdK2ZlEHWmNae5uTQmToM+jpHcRcg6nt2WOgz9QXV/k1c+GYINtf2Mt1Ihh2xEzHbjfUf0mny+p9hlSvp9L1jiRvkmsE2TDzl7vgz+wb+8M9SkmRtgQupLv4h5aCclE7DXIJS+K65FdzV45A1t1NrQjBgqP4ItKZSfBjRyD1GIIKs656JGbj2HN3PmbxaZvvCUOK3Xae+sZDw+9fmuTWXZXMHCfL38P7gEf3fsRctaSlSyNLctvqEj8ueM9d/IpG9UAgRtHh5UP6Xa03NzOJKvRdAst5LsgCBSZhr+dvFZysJTMu1Jf+gzdx6wz0y5hAxkaTjM+j0UZ2u5VuVfIOqg9ZdUVp5C1WdWgrXu3OJnCLdXLvTSD4WBmZNTOKgwNZqo4btC8XnAp+5o91EWuClqBQQ/l50utkNe7wid9cykQyCeYuPs3OBUv0xTwTv4piF4X6IFtk0Fo34RwblZ4kIpW9q5YkP8He2lORZAd3vnu9y1QkcEoBxUkrezhfZ7n53xHew9xDxDwmgW/BUgpFD3VfElGDBeALcoqaIbI5c4QiiRNJaRSdx46SCGppHf4Ue5Eu6ALlC2KUghjxpaI+plzBdHKammc8c9Xx6Eue3d1q+UN0HAfgTFOlth1rZ6n8/BN4sGv99GHBSS0Jy1rbVvP6XRW9mGEMsCkIX+0qy/Z+dQB7KhQ3T3br/AAV7H/PAGCjDtVmmUe6DeqiSLt/rL4B2CCQvRgndUhugfR8jjgAKbSnQr8lhBh0l7DDIkYiPj+Nmf+r1H5zz7IqqzVEe8OU1Mq1gzRItoe6e4Lg7STGJKY/gZbTSF8HDZUPax5fqdvfF9Ttl6gqZfeU2LWdc9WpNMxj8V0hOIuh57KEtsSyn8q2wu27fuBkHcHyVNY0kP1QdDN/6k2AowHvBmfh3p7zyiOuy1R/qSHyvNSzM4gm9LPDdgvz0teu+pBZhTNIJRye4cgBP8EcvZi0xwnEDxjuKue569DCb6/O2+lMR0NhBdQSdo2/Z3c1kfT7mpKnYFdnXCNGsTskXr17zB91oODaidi7bDR/cqPpJS1dw0f8znkGFrIM7j8V+vnUMR8zRSWih+cfsPXw2oegN1/QK1n4/RzAtnG+BTZlAyIwBiJ0CHKuSKUY3748c7vjNNl7dCUTTBfzM1KrmrbvgE64m739MmFJQKwZxEBVl7LFY8pRYwvhgpTEW1a0VWUMULdtQ7kzGPRrDZWFf4u8j+x3XOdHmTOqrXeZ6mVRevMQ6vPzGXJxM7zw123zpFh0gCYaSu5Je2ldRbQCYBGOw7gFdGRvY05OhOBArK1XGt5EVP/ExQ68KDc2JVxXzO9W67UWoMfzJagVm5W2j9Pd6ZBs8v4uoKqAV5b6QFsiHca9wkR1qm2pA3Z/zKqso6cVBtI0vV5sG/oFJ7rFNvyIA3NM15oaPIjGXnV0unkERzYxFnRghCFdL602QlPRC8wEg3uNo0vQkuwF2ry7Xz9MhDnKXYMLBmyv0yjqbepy6EZT1TKj+fUTOIyxoLg0HzB5ffsl7YuSssE/P4xr6rlZ6JsnIcLfjBa0PMJIhlb1somoFIhS5TcBVaJYQnDi/8sdZScEISU+axEvqVctiAvoE6lFsqABJ5YSEmEyaOxLm6Ls7a1k+iVp5VhSw2cQlL7yINqyHGdJvArQpHz8JYqN00vdvmsL8NrcsVetd7joYeXGCcfBGH8ahrqpARuPxDGh/KzxeSs2NK7gs+me2yom1lcolmkJ+V4FcK+Z5/8dfQ9AsX/kufSFOAbnecMx4hYbF7qxpsj+vNh+xK96s3zm5UQeVhjxPcrG5FJG6Lo/Ijhfh3nywDXf+IvY6pYA9OgrwonbRA5pwpedhCLRbI2F9NpMfmPTZbC2qd+4Rx2m/h9MQIoQizmuhfyC7A8W0sgn+3j08MM3L71YBuQgECNBO5MyTLSYSCVucyiS+deU8f6w5xT7MK7Dj996jITLcQFETgwFDelqFdPmbJzR0w/W7nlov4OkdYdyTjkYwbs81DveHoR5WAAesO3sYv3jYGw/4zX/Mp0OtHuj920jqU/MDzkhtO0zOWdh/Uw4ejN80V8oCczr0CP8++xsddl8klDqB5/cnO0q54w0CE3saKGDOwnreMo5Ov34g0m3gNQDUQCI/svso/SvmX3NXAF4rS+eVXAekxahz867hmmmHioAaiL5jY1eeW87lsUv9UtVdi9LnucU/lDeX7WVoc/bcfKwx/4T9u/UBmcCpOo/7HAMzy6sZ3lQKHMoeaVEAa1vO+bRI9zH18ri52VzKtJLvpeoEhAaL69iC2TvfdN6qVUww78CssZ2z9pVJfpCXDRQSEYE+4zrwJMIACl2dAe3u4CL7W8A7k3Br8ZZhtk9yQGYA1mNwzpZUA+URMQItgzAWcvB1s3PDWruvMffOQO841G3DZWyVHwopoBE6vtnavUU+fTRJjaE5WA3Y6Ej1Jsj8R9OtpOdhrT45wc/eXaiIBvw02+YC7okubhgWXwdlS/+WuWE7qlk9I5RmEXGp695suGow9b5WhbAh2pXyoz+3iJBRlu5U/otwq8K2FDZndpObu6hQZqa98dAq4std/E1g2KLTOL0Iew7+CEZgKKuK5v8oJz0CmAehNJNq6jA05uR8GjMHSSdWVn33TVEyB8E1DJPYYFSC8/v7uA/nBa4kUBvPPNyd2y97VFDpT9jmVU5kEeRwR/pUiODhqpQ+w4BakwQmuEP0bYlzLLoSGUVR4a1WxznnpslVPjid1xS4tiWod7SM5pHtPj8m/w4AgxQknShZbjJgMERfXlHrdGRSKIk0vikyPT+oGflOBzBk56jZnV6A5ge0hNk9OKQtQCL+Sv6Kw3XpyJgR3ihNcFcGvfX9VnJEwrKjWKJTeTlust8kbPvHxiNEwgr6GgWiicuT0rMPuR5cOnNZJJONE4OdRRcNnYFA8lxGrm1uF3k5Dm/jZPxymKxganwWcacypkLMaZLjtQ2PsO5o1rgm8RT1Y1BAgYrZupknJngSeodOSXjMVshc1cC9GDyhgMeT9ujrTySwaZ0BgPZEq7/Xa9dWopnHUbkNDCQFsV2Gi7Dsz9JHmQ1+X0sGi+IJgPEMed47tI5k2iJm3XBb+DKSkj1I+PvJ4tDrj709vQ2o2i5ixPZ4xYJaR49wRxvMk6f4c3bvrq/xeKHDOZitfei7eeV2ocX6Vs52ACbvkMKQHoxe6gikPImRK+OjggHfsombUnUAxa9rmZ9xescNiDlHiL1wNwtJ4GTmf8kagliAptK0owMIRAOfVqyl5u/vKxFKXJ1KD2lSY2dA8aYrdrBR8TTDYehmce8A/VaMPiabYM9wH+Gs4U+JkxJ0+QleO8ZwSeQy3mTjJAAf5Sgb9aCX+HfhBpYsXdad5x1TgUzIksfN8YmqTHPGomcdGmaFZuC/p8tYI+Kc+6PPqwqfZSMn1lxmP6gCpalSscLjqsaLkSuoy+6OwA4yTydFEqZudNgsZ6xSV4JDmXQlzXenrfrnq6FzxPvIEEDDXW9KtAjcCa/kg4kcgl/Om1tz1KHYV4tms1kSUQClNkaVMoJwMgqaNwhgkw20p5YhlPJJL9ybyuK+ZHEIhD/3pDvp+CY+maGt/Hf7ZKQSJcP4tSqsdIs7wCIWc9pIO8jEaZjFT0McVcnYJLnslavK8qrhVFdCgiHLvfw6Rr6ZKc49dY6gHoIAWCCJ+0L9JOEj4wcJH2CkRLu/vc6q7um+FRmPLQ6v/ulfEh2vchmrF4X2pW3O0+8Xzdyot2pVIIjB8TQg/8nzfbAJCLJomQwp7Q558xforPNzOrDJ+BGJGdgiG81IAAD1s/DBg8gWhvToLC8pLkUqDGomJ47Hvl6Z9fNweMneV+dVTgjsF7X3KZHm4d+ZZpm4Dg0NRawTsuA7zlgq9lK1iE2/3nMF008eIRyxNov+UNkMYlTWSeKA9F+F3w1gBRZbhE97HpNvacLTVyQE5CnxqUJOF2O6tdaomBl7P9P4Az0tPRiLXMqU00byDLxcBcjZlvnJYVFf+Id0Kyc7ZVQtO1sqiBCWeM8KRQ4WgBAGjIdZjgus5LRxCL3/FYn3sJqONAW7cTl6MQMPa6RaR+5R3f82YylfLMVFfn2UtmCFUESpAYWxAtMyHlk9XFmUYI1GI4hZeB1fPNoPrhceZVc7fNmCvzMLrD1z3rAQkwEgkIytGUJMGLbZ8WDCbCGANt+IZ4KR4t6PGCrLyYg3CAQDXazes6Mh430XGyst2OclBjvV8uSXAYWqPQS3EFrHvklLmJQ9x2D9Ot8yG5UTsR/DqAamWBhh51AHEKjP70Vk9o0yMJvY0bIUSzskekAGgjJt3Y2Icirg/Tjm6B8MKXk3ZoATp+Y0+/2AhB0CW3vAkhGmde5jthjZKGtsKLTEqRfNa2f8uqyDhKtCljeTbZSk7wrDz7nsh8w5onjpc8lbymDuzizoqAly54l5CmjP9xQXuv6PRK7NGNz/smHDmrLuGG17lp4pyP/9qIVmVRA1n0wvpwdJ+ES9+Q0QD2mY3kRPXVaQhI+4dxwJXJqrsN/OVAJom/5MSqdbbv8+JzEIhs3/eF0E1lKlu5PKb7Gq0zI37VDUUkBQiBIMAtNye4O1uwkJZBAvlNoDP9c6/1vJLIC12pZijje0nip68vfKBqUYd7EQdGswhzUlkbfaiCejIZXhjpoAlrhNBUzry/42oxA1dqcMeq9ojcFZvnIh912cDshKe2auR9CILUtBojLQx0W1A5ELmYqncLcOmuV92SmZa39l+PaTY1GFiRQApxYHvhJL2H9w9KhlekilvK9tSm3YR3/b5z7QeB05ZFODWz47lfl8co3XZVgnqR/XdUv7bsYunMxeJo2ZNUPpBhWIle4o11hHEy1B40I7ZJhy3dhC+8v5z3AiP5wOz9HWmKyM5Wx7LxrCuKLsY9y5Ey8VUgmJAx1ZixdRQhHamqd3uFrEZTgTXlL/44xMzJliOVuTsvdZ/LPFJOk5FfaScfHs3/miHNvar1mOQWuKiGN80YhtVfaYl/Q4z3kJwYyr6O4x6GZMtIU8cu5Ue/pa48Lz0yBJ+H9krP0dBgNMsWKxnn4bAn7cX6ZjTy7ujqSADbJt1meNRI1Izo/EOc1bLwsJHZqNsG6HInvRko4yL2zLNNaJu4ULL0//sKaNAyiWWYbP1I1KN9A1D/LL4LiKQ8EK8Lz5FTOic/zLs9KYpkSqWZyqk8ULDO7xI7hqijgVY7H/IPTs0QcfUf2I70T5vq75MW7Eg61ZoTtdWmrdm4ghXki5EqWCFoyjUVLQPeSJrBm3ZKq5HJD9eWBIxQik0lXpfelDvMupO2TWszrvEHOyBrMGP8wi8gN1usnAUQPO7nVNj4HzJXO3TC0WejQ7C+sLOLhsVopmTCiUv8bfiSocBuElxTaIodNPeqK4XwUYZH502NIeGGV0oQRF/Y8u7G3LAjkL9Ka82uqiF1TUWhVx9gZQTbi9AqTFYqx2Cv//WtoAWQTGx2Bx7MJW0jfO4ihkuc6thUiyHVzFeRTxOecITY3ZfqoSogeywSqFldBeZ7es2WaumQaq04yN2S5XvP27hFxse3loWKIWE4jho+XfBCK1pqVnu7M3IPHv/fG6xGDGxI37DY5Ka67oVGXnsfQZVbuXzQTq8u+aMxP10FM/I/UFK2GH6J48+8JZCxKxoJ5EUn2MtEOY4JuUwvNntmr03eq2Onw3wITritgfaSAMAePRzoZjZ6uGEphuC4xLE9kBvakPaVZS/jxZuqGNc3L+1rTyPisxlnp9pwI+NZwJAaiwL9w7qX9NLzLpTm+8EWG7qqTvjNGUFaTUx5zXTXTmvxNAyr6gd3pgBxuSIQbl6CZUi365NYhkJnMPL2bqwp+i4R2BziAytLc0+3e5F0oaUS50/f3oYHa809uRTkiaTC4+gxxLlNC3XaBrp1BmzLSGUcUqQX1goB7vZfkBwOZ9StdQJGevcHV2J7nLyMuJmUpmHRDcmk6/4dCRU+kiSJ/Go5L4YjRuo/sx5eZ8xeA81KNVms37udNh8p/maU8uttFQRaApL6jB6TeJAm4lejby6uONWXeRKWe/8dIZ6aaMFKqyTNKH+0yJRS02YRvkj6l9c6eUgAHYJ3AZ9NvBqZ7yyeSlSDnS8ajGUmqnSFbmjj/uPxJXSIrt4UtVApHeDeUgdVMNlz07yL/qRZBzaqtxHMC0B3JE8Mr8K6DNjRhvM4FMg/laDw0E/VTw22/iPLsfjMt9+1s2Za8/gXUFO0wx0922D9lDKx5XWxwPOwB3FuwSoLpWHmIRfU4ye0oUjbgMdS1WgGux8yCF1C0V2eQDRPqzh9U5Uwm7pAj4mf5/oFdUCISFB96P9hV0ta4uk0ViQ3OM+5ilwVNFqWlBbiCJbL5y1OYRReBZuJ0DeFChbTahbDV+a5m/0+p64Mx9pTxzVKHJYbmQhVGBuL9C7KnTBuZwwmsmudGUAHMEnnyNjK9g7SXToJktW2BcAU3dbY7Y0Z3xjMxBNquk3KyS5Zds6Bo6j4bEa9XgP6SSyjSnUpQenGtUObkE2DILW9vDF/XT+pozpCAq/L3oBjh4Mj+GCkEVZVObj3MNvtNjGdJg4yLe4fokzGxvZMFpw07BY7tQcy2bed6HEpGYDWaQsQlinq+WH1yeSd8RiVGrdA/G9Gbf0v8Z2+gUP14cUhQM36dcI++eTDyspyIAp7sJYD0vXJwS5xucaZPRKe/1J8BZoIzgJe8EQidohCss6Gxy0K1SqZk2FdLySCgeZbSwulMKnuqU1464e2aKA8dkBv/4PfEdaW8oujj/8hIy29jkY54ubG87j/M93mNS4fTY6+sRd9yOsvkcbywodq7S/D1h4JWxnrikXjzmuo2ELocb4DIgN0XBPayB/+ClX4CvxPiRJmczHOij/xW9jPYYzOqvDZ2GKDD2IzS99DvTXL7sp0J6HVE8uBti4sytgFo8IAln74x/peAESX7Ox57QZicHLJ5kbuKmSU3OJ9rGhm2vMwNhzpK6Y0mOp63y5/+xgQdPESfEtJtV+I6MEcNFR253zGuBT9ERPELSCY4ANk7HUvOQccGDOoVvA4cq6fOMdF9ju9TDTvecggCfgn0Bx8OmfClyaq8A3nF2w5Zcillhzk+4YQ2/QrOp3i9R/2S6rk0IkoeS18bfcebzRW5cS2SPmP03DbKaSHg4CvpGRCs/DG1MNuP8qZpbiHCyqKIhrFbny1cGiT8LHyUnlMx3QaeZ8MI8IjnXIzSOBTiOKZdBPxVtwxsZ3DZ6km279Ny6unhj1DMDOVAB9mH7WKN36Vxk41YjtZ3pbxr3OlYeqrUBKKsb+1LD2N4Yv/w38h3aDmvZbrOqGB1q6gieKy74VffRXt+Nl1joLuLX1htBjxxbo+T26ZWMpeddNLT2Ay9hbW0THEFgh0zxlM4wzU85wkv9DeAGlKL5oXAixyoMF2aqjfm7Y/UMnfkk32bmUL+8Pvxq9IYRxZfdF/CiRB9c6eNaGneYSIbF3iVgYNhaa11tjZE/RTOE2zxkB4b0a51krtg8c+VnLDS0ffPonz/+uI+lZStOTpyki+ExtFuwQwLk+w8zKbiVrs48APLyMD7H8jCGlEPlV4MveqB2UpHqv1mnG4K0cUVCLHNbvvPFqHwI6DQgPZazWlFJFPpwtWYUbGG/oGABwOecumkn3q+u2D/kexvn0KFIiqfBxUA5yQhjebnc8O7XWVIy0pTgqk10YhHesEMp04LWHtlM17onFnFyhthDWnkqUvZP7Ip1W1YaoqNLAl3TXrWXNo4aFsAESXGPADRUqTli5CkKETdVbjLvxdhqNswEP+RhT4B1rkCReCg58gddCiiBnHGnfxTWaHoA7I0tH68MXb03y48ithcgSReu7eUABV9rsKDeKR9kr7WxU0/Kp8isf3a/HWug4wS40bsDmVhT6Ia+QbtIPvWGEhXX5FLp2+ZOAcKosvUdM2MzMaEhRE0WZK6i13mSrXzaYmYfAb5CzNgzfMEmFG9l1vN4/S5apAKkWofhzVwQv2GuM/jnP164p7cXPXTKo0tz3lwzUAG72ePtihWaQBpb1GwHenWzHB0K6lz1qpus1oobWR25vftdqxBj/z+HpsXkw4IzdKL/5pBoz2M2NSlijujgYQSgmPLTx68rAkKy9y27jRymXL4Lszicag==
Variant 1
DifficultyLevel
581
Question
George bought a smart watch at 20% off the original price.
The original price was $450.
How much did George pay for the smart watch?
Worked Solution
|
|
Price of smart watch |
= 450−(20%×450) |
|
= 450−90 |
|
= $360 |
|
|
Price of smart watch |
= (100%−20%)×450 |
|
= 80%×450 |
|
= $360 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | George bought a smart watch at 20% off the original price.
The original price was $450.
How much did George pay for the smart watch?
|
workedSolution | sm_nogap Strategy 1:
| | |
| --------------- | ---------------------------- |
| Price of smart watch| = $450 - (20\% \times 450)$ |
| | = $450 - 90$ |
| | = {{{correctAnswer}}} |
sm_nogap Strategy 2:
| | |
| --------------- | ---------------------------- |
| Price of smart watch | = ($100\% - 20\% )\times 450$|
| | = $80\% \times 450$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18hBOLBq/7/8bZu6YJOSkjiZgm50SyQdEB09Td60ZxbzCcCaf6TjM8/EgIVmSE8gDI3yyzI7zpTJodesHPpP8Mze54n3chnnN5hklbwrVasXoZMTzTBU3nKmEUQ/QKxXv+o5eskv8bDyXUgUrY79k2Nhl/WJ+Pwzd2rxMKkhukF3fFhVwWzF1tsPXrYTpZKzKbxcWUstwBW0jkPMSedpi+F++ncMABWsqL5rWN7BTFg3TMCmRj66mJs+Pn8R5Z5tJ6waj8lTAX16R/pJ3lrbUpW9fmdCqPmpZwNDNtXj1HuxOyMmVZuEYWNEx2d563DAOEVHKDIgYkOqXnKjSgGOoVJftMfSrSoPMe+Anw9BDYQifvw7LXLCUnFkj+4qJQrvVccD5f9TbwcbP93YsJzSmuf33MvwRXB3d4FmVbzp5OOt18WYK+BjNbhWlWWhoGjUCD66CBTdmbFhL1AtLHJdaHGyY9TDIY5MUahLvF6IhvS/9dn3WAj9gK4os1HnWCIoSBOJI1DtYHBRLg8NvGc+jaBDHR0nXjeHF3hpmUS1/ScpsGaQ+hKo9JOZsNlnRos6Cu5piov45jBoFtJw7P6U1utxFVtJ57SF4s6AWVAGkaevwklpPbMRT2CVDwaLPmqWEmwzfS3d0lnFF7JSHVa2L/iDrFPhwBlBoRVBbROkMd2WugYOhHh6PWP4XMMCRz+Zb9CljjkKMXe6/9i+yzxAt8zPB8YEqTlWLeAJ4TLsEPd0Zg1aHq6CzMHu15cudVKabwmErjRBOTYXbg6eE2eF09/+eu4pyb+YNeC67YD13wEtiNyIoDZfv9xnAPRcJwCAURYIXUJD9pN49uJ48slPablnvTNt47IrMuqzHO++tP4yyIS9hCbdxnxdWRBbFAM51qUBQHmsM33JV6ntGqMmjPUOxdZgEOaFJxNQAIwAp2XBjiJPbWyUEuxwcPkipjaiCdEKyLfjAaQvHjVeNjXXmqQ5TSge1zPlvPgiNpqyHmxOXTP8TbHxSJeoehTQ9JtzGahL06tt2V458xD5td4xtNysFegTjs7teowxye5jEBCDl+j9c5Jvq6Ef0uRun6RrEYdcyWJLEX7MqB8OvlO/5yn13XUARAr4pe9GxolyXiMZVSq1OE8yGxFgw7xnEOy7yJjSQZTQQ3Paa40dawN/m6xuyxPo0C4eIIqfk+hgj7YL8bVPDathRbKgubG7FPmEQ3jH9z0YYB/UVKDOxTfumM7685pZh2mQiP3mPFAzGYCI4GWrBPaqFqkirBli01bgzZo874YljjO5FEPPjBtjz0gvt3P+QUFgG5YiMQbdeSgKhuh/dvWU3f45KHxfKCsWFXWw1ghTJOuILpgsNO72HsN9XgqncM+M/2xLT0iVFv/n2RqMKw+AQmLRILRSQeBm7863V24FM9KdjWlRyPEbe+E/uQOJ7L2NQckj0FyjuddH+71nRq6qT0PYJpC3BK1xYvi0rDkz0nNpJ5JJr3aTXpbQfVBwmGa2CNfeQNjqL5NiQb9yxx1E9RPFWXfrDAUignsGFwWFZjao3rrS4DXtEmNCnS/mW4DU406NJvRPOEUJg/rqh0AQOTgeWsjuhVie6nTIkGeVd0Pddjd9NieDI129X5EuUnP0zG7sJp3WOUe+eEieSTlf4hwFs1ByXiwtCqI49GHN3+rTIzsHPzZ/Rmb9nYO3V0TuH+hNJZadnbzVNKChqiyukukU5qpuIYtz4MUAuHCUYACOKZ/BCWUzeG3VWJXNR23iDq7YIa9kepZJsxvLCUzEgVGKbZgUwmt5gSck2sv4St6E0efgfIqwv1JIQp0XOj+x5VHcJA+U/qvR7/T9Ag2bbIDRb/6AqUtUxRt68/Pl0Io1EHE/4Juj/TEa8DwiUDqa94ZEqHBMB+YdnfVMdaF5qt5U9w85Qk6tUFGPQeZVmzVlz53sD3eOG5L1qvcs9JgHu5MBsTQi+Y1kMB+7HPLhiJ0dH1EgKXyE9fNAbsxr0FP5T+sGZ1QdFo52t1yZg6DjzJBlMm2a3O8CKd+rWXjbYd7bGr+V+MVvDnLM2xoSDS4fe+YN6JSjLIvKGLGY1BGDew2ps+qsW2zPHPFCOnh573cwocaC2FWvLs3zS94zSta5dmg43zGCAwcwgokM7bwI9+ps/qmT1y56iT8OfZp02f/lekBvXNNA7/lEtJmzepnNbalxu/zGpRa4QxdsTs6dYwnpGH2VU/1pNItECNXgWM+5f1dFMo8QMBSQWt01pG4C0ZbrWPidr6UCxI3DzQ4qhgZoSjFBdvbP3mhh0U0n4cYSBQCZg20UWlha+iiQI6lNftUWNVhwQwQGp8VxjJepkU6llFpiVRxiTfFMwRJ00SzqSuZdZU2WYdbfbGR5G1jPHDDXmCug8HLnCQLHG4yeje3mLmAqTIckUmzVCazRnXh6uu6FuivHf/ytJmS7gHphuqPmMLJrIv9HMu6gahRRCOaGg1hvyzwa4BFGlVXyx8RJKFsjAG3RNx+g/P+vJh2Z1A9CDydjeIBQKp3QyuUQMAu6gZoKTNQPr8oUSrejWOlJgPM8B9Im3yvJbdmOUGUTroNs2BJ/xwVyvyqwhsExWE19zxrD3FN281MFufaGA9MBq4F6OulD/2VdY9jHyYtQ0cEHlAghs2CcRarpMzopWnSgRXqvbbjRT8wQnwMWDPTkT/jMH82lctzv0WwwJnhHLASgz5C8N7ibY0gqAiQzxMirsNBbeP65ROGC+3hs/7VR8qKqnsxt94AIxSmsCDVsKsRJsJZvVVh7Y8Ixc2zDMKA2B4vYRVlj4GtYpaF8a6GamYFViAqjWtTvllGQ1Bf5vNJmTJus/ev2J56xuSaSXENBOfrpzX7cuKBBqmI+iR/zX5D47V4iX1KKYGrxw77Pol0SOaUX8G3pb8V09kucXubYp+4ZgAVNHU10lzoCeTkxjPVR80TxcRzQCOHX+p+UG5PwvH/q9LF6dWXI40gppyX98EBqXSfzNpq9tjxFrs3+HK9eLePkEa/+EvdYNbqZMtqM9HgVtspDSXgdgAqXshfXQW3Y3hEK57/5WoWPiLjsVpa6zuDz8ljIoMV4p6FQeIr8iqxWrgjchkVjIX4hDc5GVXG0M9tbzkc0VsQ+NwSrcliVCkLv8kVJFBQmh8Cwi6yFGtbS4c/PRanfFXE/o0Ybj6fUbECPQ5K5ZTOKzIQiq2EGYNz5Aptl9hg6w4gPOfnntTeChlzvb12g2p40AdBgRmkIgTgtr1P9DvFKOYaC4/jor79plmJiynaOkHXi6XR4R+gXMVihDtH0Ta0HajdEMOdXHQg33u5zMEyjadpEnA8NQ+HbTi8q7vr4bufiz0h7F8MZOIzJ9QewjtvnKN+whMcK36gkZxvEo/O7DgfVpEDoN/zh4HzUnANHBZYyS5DGv9v3mcWfl72ZwHIRQBXM/60szDe7GWiNOYjzCCeRMM2gPgHNkT8005kcTQTGbog8Xcm8X6yj27+M7nAOixc1XGeMdFGL0YI8SlkIW7WE/Vw5B4gkgtU7oGooatX5aroi5lecpxBHVseBzi8wUGX6QZ78Qp8Z5LrAvJq70c4kTGKaXm/04A/PfGXuzq8Ui2ojfz7y+3nhHFyEr3BMH+7Qw8Oh07UjLMVDa0WYGodVOxgBCiEb3RwF7SiAd5YA+RB8hwVbFsT5L8qa4EZxaazn800da26x8GahEBme5eBO6hH3aIZvf+fFJTEZnmOIwqx65Q0pNtylORZj3vYEdYsOYbm3z+fmnAUkDSJrj/QbCQ/nu+vMNut6IBKRSpLU+hzXyMB7OOKBgs0znCatyGXAg2KqOjGrXMMmmEO9FAvDoBqOY+L+N0dDVQjh3K093CmTVmhstQjP/nmUjzp7mG/lP2MFkJX3037s/WKnFiAeJoz7UhuKfpgzP52XN7HaOWi21v2cma3koyBd8X853dlPgRkv9LhiLM+Ni1L6wCcMQmWtZgjWOUUH7C0UJ7faNdC1DOfEkO8Ad4Qike7dHlDBubIah65dolEicrSxLRxqTOkIPm4ZO0frjHjW02iEGcjWQ5j8JQ8tCxeFVxjiT+aZJGVAdzJYTHToqIwz1cyE/kxCdjMN/JqBTS3upxudRSDVzF5CKfdADZmnuMWHX3BDTRUXxbZLC457dVLrbp2ukM2LO/DA7DPcty/SOA7gob1PGEaysQedvl9xSSb4DW6blkcl8x7/BwXY7ll5RZFtN6jI2wo+G/lJ/FV+LldemkAbXb6aRj+STv9xwlzLQIhPBXblubFwH/FrJoWdEJHVPcyIGIYtMwajdLvfL3/8JmuwdbQcgGt8Y06ZhNj830okD0lgfbQ16B3Zd/SrcuTrczpF7msERIn4lCJ+KEiEI5gUZA7sCtxMqpYAaT8epV25idt751ZaRjvXh2jHaPiL5feg0vW4xXyp2bTqBxjQf67Jti/nApr86s8ZUrGSQwJyyj24hUFtYU2f0W4xhJrxmpdCOiocJBEsBNy9C1FfnCxaLhqbrCmMQ/z+Q+MCX4qLqv7xZiz2rhYUuIvrj9Jiu8egelHGR5Q8Jq4x/OEq91o78eKxDb7/lhJrnyXQtPXkieMBMFVTZUCOz3YBLcUM9NWNjEJkudU7l47DXgOAn5DumLLEXxtLhhgd6zFJgDc/jVR47TVe6rXxc61Q/upnW4u8WwijWjhkVhh4AySxc96NlkToYO51p8wK3fe49kHMn5QICsBJzE+J/vq2IA4bUZo/rblg8Xop5OaVFZz8AGxFUSwBWUyXPT2kgSxwZQ5cWgTzkiNCJ5hfMDsEKI+RQhcN0pI3XcFYE6jPn8CTSMXU+hSdkgx9MuXZ2MBLLE40sM3ThESl/G/eEMbBOUrjD8N8VBIKJQobf/SDjK9N1nV+ZEPYAGmPULyaORq5vseMutPBhYEUv4u6MF5JhgRCSEgsMF3JGFyZjLYilYx9kJ/31StSyVjxA7pU3LWe+LwNwtWuNp4X8ORx2QhOs5QBcC2DNwW1lywdZaceaEcc+jFTwClWDwlT1N/2/zdZj+E7+xMGNMrSd4QGXMOuQP8Wwm9nunkIuAcOiDtNF+YkcRIfaU6FbF2SaERi56amtcg2RrWWHIzR4ovHWSmBl7YtO+GyKyR0wFE9U3VaZiS/TB1SidsKbt6yNK4LUQjREOh/BI8WcSmzkAGlASlmVpo9TYH35V+6UnyUgDat+/U1BrP0wi0dSA8Qs/ShGXdVYR2lK/mHFlRbeAYwxQbNUPtJZdajkY5lWyxXGATTSYcGbycjV16RleOWpPn3lUlkXDCqf7BSwZVUYrLQyUtI/MQe+97ChktaV5lVzF6pK/0nh8Zlr6IxZeST62wKWnRVI0DyDWk3x/YLpUg+kRbOiZVuxUA0t729H4v76ExKyKvou79brpEP210iuA34P2Qt5Rhuuf1XRIMjxq8pqzCM6K0n+lL5Uh69Q83zA5md4lsCbk0lf4KJx/hl/Wwey19bpXxvm0V2defm5Q4efO+VUcDTxzVruva6ZCGGvgyFxK9YsIp7YF7ga0godXwKZfmEqnJyuyIHsUMtod6hS3T3I0Wui0Xh1gS0d7XBs26Emf2prwGmLoGPXeWaofeoCb2lIh+SDd8XbdvN0n/deib9hb3eSvOR9Ig+53dqYOQmfr/vPPa2F1pCwul58NZ8dhvsdnA9h1CBLlhK7Y62wUPUvPT9gICj1IAwMza33VdOLs8kAcCDw0ibf97sFS9l16DYwIGdwFXol/yJsD+AvgR/8KU8dvjUxx6FTUKYSXeZM02NrsCS94BmdHnZ5wlysUHNzoxp9p8tyoUUHuBmcCbDehqyXkyurJ21GKDi6fzAR4ML07YceEuld+NRPBSSgwwfB+jxSojIuD7aWQPC7TmuiMhPHf5/w7AX90n3hrIdLN4hYWvCcOdRLZ7LupAKUnDWhjpDXO1fSr1EUI8YGoUis/8LXjdkBqZVzAklgdPsF0+nrdtfCtxKcx9bjbHmQrysD74LKYWVRdz73ZAcohtpuj05lm/xscQx9bRZowfUWlu0zKPA/QpdXFwhieXRYtsSRqRFI3JI2dRNIi8pVl+sQG6azAMZgu0IxmG+ou6rW3yHo8qIwk9PoCfU1M1RzTCfTMLYRfC64w0ska5w+y0T1OMbiyFXuspsQo3XgtviYliPuSmpUdSb5CJh2sHwxOyIngMBxSBS+BNIQrVFtc9bE8EBhp44raYVZzdI7k4xToUr8uOSmJ51c1nAbDCSTIRlJAi5hdYAAw9J0a2Z8zMQXysMWjq5+uOamkhQrtkhwsjTFwoPbldEG4q3NiCy5yXrrbjVBv7F1bTPyKJcSvOlq4UgNI+JzwgTBSlU0H+gOyaGgBfaVBah0hqpQls5FqJewZZXYA36MUmBb9goVqCgsromEp/T1WPpEvXScxxRullOIFsvnj+CZNJFxcHTquGWMCZAZ59o0oL507wVP84Hgw64n3JLPJDnt7KQNPeV4JO7XxD2CCMvvphdnTMmakVQMepQbJfetE0mc4FrHksEg5TUT1rDNTv56E8jgyPjsmuckLuc7BNVs+FSuASN8N0zfE8bUbbSqslTPXopv4J6JyPh5mGHu+wTfdXj/45hTz8IexUKVXRvHwykaHk2QGOm5T3JQzTB+Z/EDwYSKnFhg4PbB56nrQfn89DjDJAQznHQ7jnaph0uD70puuC1DOW2F/IiDVSSS+BHNEgkcGOFcW2P/YCmp9j5nPIgbF/pfX6PgsUT1ERD+t7sOQjGMI7Ye8xidzprdY2LgXORB/lf0yCVSzGZTs6wW5FBu5XZfXzhNsnjeNrUKpAXpKFc7Hsg6PEVN2nKN5SHpWCd5tj6MTK6IfFLRQlAXp7I6NtSi1kynGWVXAJ9ja46DdsOMXj6JMenD87Y+sHAm43qPk2t/a+lKTCD1jejIwYaUqS03t45zgk1zitu3WS3I2p6q8wanZ8oywrSywge/BXakteTW10E+6/JGwziexMLrkSPz/TvJl2okoz+XlK7NjrSYJBs/68R/cJtN8oSluiaMFFuOz4JAfP0uDduD9mZrJEgV0mVSNCzZnDuP+CBB+h6S4W/9Z5zoQw+E33PUVKHOcPqxbeKEastVClcSFx0r57fnU9KLrgkISmaZroB4smWcS+YLXzDmDKU+efFVp0A3olqTh1/kz5X6eeI90ST00aSwwTGWduJeSillXRtoQN73ZgWJk5/cNOFud/xuG6GGyTW+OsF+aYXsLFKivYqv4cZMzEjCHsHAsFgMGqX5S5PTTzfs9KOcc7xfngqDFcV5Pwqb0ty2Ht4YP4JN040FDE2umFMdvqBgdF7hpLbvmjifaU48NiuAjTsJMH0yrJ7keCTikt2UU4nVCqYsJ6eD9z2OFZP3X6hBdRgkuCDwjfZq6ds5iWJ95WArNH83QMSl+vgn0waq8/l7gwM42YhRjwuKzj0XXAegWPD56x4s/LKn2MtOCq89faLv1QszKxoptLy7oGhrF9JPBGzhBUU5skuw+dSliJsdB78ANknu50bd6dMjXB9BMCeaRg3KJgu0OR6xlnHDBV/N39WgZ5bs2gdzun2S6TLzdanE4Phe+pmlV8FBJ+q3ERBj1wCr1JAOm0t33vdOGrfG7GBXiZDA7pGKjta3ic4VWGsfbVfC/BzOhIkdystwn9QqBBIDq8l/eO8EoxDxNA6UwEamkQhn6rB2Cwgs+ur8YItKrhDvXNm7M6maybjb5vMfWXMWr+kFbH/cyQdxT+FVV6kUs5VHiDjn52FM9xlelc3R1tspRA2wGWrzImaISL1FRvHLyIBSdfY9wPE2K/yK1lDOG2Cf43jPhRNyMs5169N6GVOe1JZdM8EQ9YYE2YEFcrO4LUP+Zuj7ciQYi0pLcYLWX7zIB7fuJTtK+VsBAFn7UvcBqPHxGAgK+cJkU5mBX5f8l0WY2+3BOWYJEtiCvIlGvlOBelYBVTaRNWydnMPiBcb5tpPeYyKeOHutjfbL3Oa2CRfdVbjK5Roexr7kmoAWjnVhKj+JzoY4PokOnj0mMM06r8ea2Xhup5kMIWkrEjpqqHx51SWl2YF3MpiwhjvBoxu9UpZ242RDYhBp9alM40on0KiA3Xcn5IJFl2o9N/FoliEPBlq5buUbrdU3J801Dt7FH9QgPYEoOH6brb5ozMt4CGihnPBByJrDqEfqI+PVYOY5GErTB0YG+v1UWimMiPfojLumnRvSSc4o+W/CDiESJ+RLj/oxFl8B9kpkSP50bc0YZd215kr7hBY0mrvPIMjra/07ZA5SFe7iuc+0p8FFfjvxr4SMZxX0uoYeZT8/P7RD9+eKKhFsUdSaoNEwGitESg2nKoQ5+XBhVlnGiesRS0wZ2lSy27Qrf7kbVkRfFmOK/PfjdUy7k9sMfPUmFwbHqWWkf1muJpXAd0aLGPnz2h7wLC/JqqRpq/w1PVWYfylwHp8pP/IPcKVO4T7k45Xib3lDM5hfrZWnZQZq3ik2MYQi1CGCWVHITLciruk+sCXXExTsqKgfV3Jt/ISHrezZ+t7USaKcoR5h7TmSoPWAfiyNNRK6lIWg1fw0EYpeMk168eKqiz7ZMNmxxiXgImEU46rmsSzqIw0cXI8RLBdlrEk8hpIGslwbVLMck0fA4oOMaDQxdoVmZuQKDLGoi7y2j/m41mxZk1gxUukoE2F5pBxpXfoqRItX9FrgtS6kFeePqOMQBS1px5W97HBhg7m6vlElfnnEvOER12aS8umjZdxlncs1IsouI0bZkjPwGauwi4wMDfaCr/ttUN2MCvxoZUD7XwRdd2Xglb0t7XrQQLcPOsokg=
Variant 2
DifficultyLevel
579
Question
Yves bought a sewing machine at 35% off the original price.
The original price was $2500.
How much did Yves pay for the sewing machine?
Worked Solution
|
|
Price of sewing machine |
= 2500−(35%×2500) |
|
= 2500−875 |
|
= $1625 |
|
|
Price of sewing machine |
= (100%−35%)×2500 |
|
= 65%×2500 |
|
= $1625 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Yves bought a sewing machine at 35% off the original price.
The original price was $2500.
How much did Yves pay for the sewing machine?
|
workedSolution | sm_nogap Strategy 1:
| | |
| --------------- | ---------------------------- |
| Price of sewing machine| = $2500 - (35\% \times 2500)$ |
| | = $2500 - 875$ |
| | = {{{correctAnswer}}} |
sm_nogap Strategy 2:
| | |
| --------------- | ---------------------------- |
| Price of sewing machine | = ($100\% - 35\% )\times 2500$ |
| | = $65\% \times 2500$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+WlXsiDebca207UpK9laSysG3pM4MxoHeg4gGLwVYFtS7hiEgWMKCBSa1cn1tiSSgQbsDr9sJP0GEK8ADZifRJCl2vWh1BSTucil9DsO2iI8s/Zli8XCFop/U9DVinghyUfS2FhebWgkPPvhvHigingOMJdbGvc35na255TwcG+OMicXQyBpJvQWsAhp9nhCDVYtpR8XmpOamEm0jI86lW1qO9wlqPqP/8geanQIp6kSAjoj8qun36F+XLLbQ50W5zOmiDpKzrMeTu6WSPUKWiPcQRaAWaUEeLpU/ILMW7KHfqmYBSaf1nDHl9uZWn3tblV4XOZbLMIdV4OmKDdVSqk7CcUP0DDCN25fJV9I0FicKKPqeO+7+uLqx82oCySVecmE1tPgJzZ3QUXTJvLRg/MV8YDw6T5jseNdPx5MPg3FRYxalepgfy0Z3jITq9CVjAhADkd9AOpOg1ceC1imHcyVA1nHEiFbR9DrwDKrAjyM9edUtjtGQllwrTosxSs5ZBeLf8PGQGGrzsAryD5TKMM2rcocn+9Xo4FAi29AeO2ji3VuJ5UuNg/1EgnivOMdk99B8sqmtRaeSNjQagTLfuX6kpKM+droNUdaC+ZFpNxgJWxwQWr1cS9uacfOczmxkUszSRZ2yvsigA4QI4RJx6AcdpNhGTQk7NAe37d34i4JxDMJy58rrJfwyArFzf2R5tNi893HQsdrSEkp55ZjZ19iOsh4yERemW8rs7MZLnxeAuQXcnXnLo51/OQgDRekdmHII10W0UhgawgFeNQSfm89AMMlWzv6MZ/RL38kZAuVA9W9MceY8VtNhVTJwxuKGODlptIpa5mwVe9f8Zoh9nDezBURkkHrqWoDOL9ItOBESvQLIPBl7t59mTkGElDcd0O+0/SIIqA/iZh2IrYHw7ORYIbDvGfa+jS311t82Tl0Kf7cBwMkmWVdh9aiuv0l9YoWaVjYXxthqQqcWxqjcurRmQaTALmgDwFuN/bwmxIOURxStmePQvgI8hSU5/QT4D36OZ2QOmW7FYSWz13rFkQb5xShc74+Z1CoUtNAmlSgpR/N5b62wMjXifm0CLuuRiNv0cpIATrkIDlVU0FfDjqnhsfZUyPjYaIiLyR4bnR78buS2HScSwqjdguVQPbV5pviAsUWY68xsWLewxgG9J/lb5OBSdsNtK6rAS+un7uOT4Mz1zerfRJothJxx3yZ55+Cv7nOHX2CXaCQjmRUAklxwp7zI1vzzSEW2laFOchD8kZWAsgW2y3xgbpoKR9LoGiiCjl0Y3glGEF1ebGWhCZO+KlDN6TXMAcK/a9eG3xO+m3PXfIUF0QonnOjpuh5a5yGoR5vLwfSuyO3lqn/odedOfQ8UQY+ovKUdf40T7pBYl+uU7DS30XRJHYuT676SL6vZupLGcOWxzhZsqYfV3JwWhYlKbHfq9aBr9dXs40gZEGfiHONtX9EiyPL3I+iwQwc4yktIUcqyFnEEXiQxQJlWOTzBXqE6vkEy3zsY/0+7rhzAzxK+KTir7rzs1YdsOfFhfk20v+2SQqkVQ1nuuUvKSR5kSdAdlhu61I+D1PQ6YET3aQfnS5qhit79Zfx255gwTj2CpOkywSBHW7Jtp5IosP2mIYYItIVYqfj6fBIPV63Ja/jzGNR/pcK8FZgZN2qz5Kv1ImCqg2kSi4+e3xvtZWzP5D1P961hNGKPCkTAmw0fS4/8ihndZDSXlYeV+BBiaFnGEgmrOqokHaZcXF9frH4hD5cEvxna7t+J7QlVzNBAs5YM5oVwZPe6yQaM0iOXt57MZv2ZznaLs0gi6Txx0Nj+skfN7hPmlhKy17ZQnHx6X27WRVhJ+R9YqMwUu3GuuTTpAtn1Sj1V8W4Xf1k1Cx+39DE6T7if/loUZ2xXUkiBfC5Vt4u8tvtc5jNKQDx85Vir+BJTcYnJuJj5WHB12iszUnI0ssAnyqHdAXk82aw95q77mv92OIRpZEnaR73593hu2Imk21zYCEWDz9DsejrWr0z7KRYAvukvqbTUS3PEONXMXaJcJFyIMCn5CL/TzqtQSXaU8nykJ50UEO7AHe+MI8Rmth39AiVcEUVKP3vLIpCXTDC3fSYEEDjaxH+QmaDYtV994/LY4w0TB+4OIY/bTYw4rAk+Lo207zcts3w199bHHjFUh/2+7JT36BqTFd/ziuMVQSt4RX9dZ/u65PD1zFyEIjh+PHJO8y5iqUW6w9YaZMShWaNJDkjPHU0VWZfHEpzX8uzICu+HZzLp9liqPUvpFMWkb4LZ4tpZWeQIRaLK5yCRr2k/XmUCB0xILBAonIh7iM9k8qyxoJwnzwZRSoWSB6e65HushsX2JhKrIN75GjC0w5ay+9rn5+5LXVXJ2Xjzz0I0haGdYu4zQXNPZ1YCcqZhP+ZmYaBMUWHxv/8LlHTPft9L9bwORd2LvSd39RkS0+RYMiTpqag4JIngTodUApIWyRR0aWhHCgmIEbMOXa2X4mSfcvuFgal5Av3G+BI89xJoF20BIUc7ZBNX4wjdFJ4bHv1gJG607/EoJqtk1MBWjjPhSfwTLhOwYe1V5zWQmUXhuvCcU67Jt7gkN2yAxhcifcutc2nGMRdDtQhmCWRiA/aQwGhX4qJRCtttPxnSh+QFJD8/8O9srtwro/pQmZJCvONriKqP7A+tjcesjczEBKKMVCt0Jd+UnCZTU7yxsPCW53JY7YqWKgpT59xBhYDUz9sFjV6472NipnA0JtgFcSIl50sSfk2/FgCWpVzg5C6nBVP+e0aHc6UyitNf04h3pqk9JIouVTBIwr1LJcPyLRqa70MK0NJiBnLgoQs62IZDivvFccam8mFEdEQCp/pi6wP6+VDPXV5FB3Bj4CBd/SA17oWDp+1NGlJQY9ws8G7bf34R3Zxbmlo8W+pLi48IQJtYjebgoK7EshC8YKD/acouQcQv37Ue56PB0JR5VkD5z+sJ2zh2PNcTjQrF8MfWqzdcDebn99T0VzIl6elYxiaXqbZpoa4LVfWNYVuf4bNXOIEqQzR20odtuzf0SYAgIlGNxcxHl2U+W8KR77IIrBuP04Vgjs4FG0F+rU7sDs2CuQZNTNL/1+rlec2DotXu4VpPj3tWCXz/+6HSt+IW+rNk2IsixKPnE7Q1WFG3vl0owuUpwfKck9rZdk7IoaNIhYOL/Oq7QO3of/3U0EOnM/wdiSsl6vT0mE3WNjdW5+jLULLareIZq2YRhtLT3OexeSPLXLDRVBoCzpDwKXMYEpzoLeDXs65HmODGH31mrvqMGW+SveUeUrFYfQI+TZ4aBmYaB+F/HojYvhSlnFOk7ctMPiD414kI+5wtfZrtN6L/QTJlCT8/O5Loj/CoEcE0vgMnayrnBlPl251hqTBD30dLur2W5tHL+UBran7yMsOMdly0zcAHeCt/t36R5s7aobvEHSL1npjbXjL3q8Hsas9dIY3nOhdy2YrLVzLCadCwHjtf965ehC21CUXWKTefupjhLPeItcp+g8aXc+5zkO/FZcAQE20eAo9OPNBTCWGLFKTuflClooMx9e2fVVnfVWeASZdZeWFkJj87MLRupih35EcCVZsRVA7upjv2BBe17ApUZ8cf9XDgBdLyYBSSNSrDpERRTntKAIQpz+wNgfB0PZDC86LFWWTKmzCTvLHjeLtNV8TBvZtMOEtksRbMdiCk1snxBZ4yatIVRjh8f/EvLqHVlU4O5ifslX9wzyb1mlbVHBOZ1Ekl1uKvAZfFzwG5e4aR5AbOwc4cs1of45wRAMxUJvECCmzXFPru/JiikUKgw/Q5d/IfPE8x47+u9iMyL46Sq506Dd+9hVW14frWwrbxPvWYcQy/XKdEsjJq9Wqj5xXuCD++h8oDVafpVVrCkKqk0gwa25OvfXtmWT/xmva3CxnhkRQH2iKeeslj810GGPPmHSDXS5V8tTyvG4UvM/Wq2fqEUX0Dp3ZpD/TQMahrMsi8kA2Ehunc/QncExra1MahuKXW3aNN7i+q0zf/Ri2iMc07tERNO0yb91DXsmr7aZYMA1zOdx/KGlHVPD/0j0bjAdsd1bes8tSBT5XDr87OzPkXQhoJcx+ElNKQ/ihdi5QMfIPZJeL/X/vzp5BCazfCKWa41rG9k1DNQiiK1o42KemDkv6W4eWFMjTsfbXLBgh4GsPBhUVQvd2HUOW1O6M2Ibbph3LCpBcWfVR/TMUD3KeKhaeVk+qcIvLnWhjm9gNrtHBjUvHm2bblzZ7E582utqC5Ry5GAJhXmEmfJgI/P1Sjn1zJ95TEwrpEEuoRFkKC1pClUogKjt9gr2C1wcUVJ+1ECdONv35cAgfidbMBDOVBXGFMUVq1yRZa4BbXCvyMSSGYZlA9UrdW/B1PRNwnSKvue/sg9IQ4f2olX9e5480T6f3JFfNqy7GciNrTfB5EWS++0133rdiCfjJufbTXPLvtxFrYjQIrhjfIf1o0e+rY6JTdaaZMLcsyWE3E0BoPVeO8aiasHKV+To9gBTo3H1v213+tkv4eRvaNGtJDzB6cL4kRiCWswI4Bt3TBULETIcSnnEXQOgGDF7Y28szZrBy+o3kujH6x5BFNKwCKzkPDJ0bmeCVKeBCFKwRuS726ZYhFL6ZWXah2mxHbCRgIHcAf40AjSw4H4uUtSrVLAPZmGoEp8Il9W8uCeHGH2yoFzRrfuUq2UiEEzb5xsVvlPSWibxe1X5Ozram4FMCEBnhpmPZuiWvagX4ctA8cg8blmzhO/cH+LgKZVWmGE/iUIBPAVVKjfb0g1fHR7znfR8GmukD40m/wjRLaxJpVr7Jfn02Ich+elpzeOkIPG6DwSc01oKFozd9p8vXl6eFFXyTmMmQijtAQAW6PiaRa4PKixjkfn0m87sSrUr8HT3h5bl7JYvXxHAogtv8KdZn4509nLOQ7uoiuSINpz8Hw4Vgzhv2U9HbzflYXHeb/3xe2hmgM6Jpm6bi+JGEoSCQEFOYAwlrIN+90zwm5yH01d5j/Qhb2XOq4hqwQRYICF+0OTYzWUmONZaWOdlWzfCr3Ug9ccNUvlXwcLs9lSwA3zM1pHT9lYs9EknmL8yfgekiy4dZlnouwaIsQ4Qzvsd2WYC9XGe1OPMWZYq/JK/VyDeJutp7YEBFleCG5EveYg7lSqYlzMitc3N1J2Vbt5ypPDdywqQX49HZXXJwwywa+P2dGgpE0Q9VuPt7HkyqlmAfnYzL84gKKqhA2xHWyY6mm5/rCYeqdoPsIqEGrhJ3n9MWvPZVEzQenim7/INnu4LFEd+h7frJi2kkSxQ7jKa27Cd8EQkSjaM4HDGVHTfKs8keJxCJ4W90tr6uRJCROxDXTbhJnLV9SSGoJ/KpW4ajKe9DFNAB1c+KsQcURNhU7yaLl9Y/Xkv6E5qOi9tcsKnWPlzXTpAjTlR1TKCdeLP1gy8rVFAPdzDCQqQU4uJLGvY4ymwZUXRt5rJZ5oH3/RSx1+ftl+/a6Zcw8kEFJoywnE2vALgip5b3TZeAIjii1kqA5XQXKNooxZFe822bZ9st6BK0JChsODOEGz6v0h0P0HhYapAeJ2bl7k2mDuC0TRLmoPA1tM4ufBeAqzxsNjh49zI1T3zGmtqjsF1rET9dicqWKAi3AXioojp22rZMWsX/NBojFiR5qTcrA31yvfJDQzNLS2m60MFeGWNw5uA+fKbT1TFfkb1fF2cPpoRqlEqTZjayi4f7xV2vNuWue94Cmd46nJy/+s+oneLNryYJqZ2ORXcb+O3YA9pM6e2bqRyx/75mldBL0BOo8LZGQpkWl3OEXWGfp9NdIPAAW38JqH0zzIPy4dcsXH8dLA99iVgBI/4C1vZKDg6dw8j1Hfv3r+tDWEEqkt1beI95LbjJ9buDMy9cncRvxyy/O+UnN2HJd51/N646H/AMn/ngKTE/0Fdbp4ZS5cEZmZyYa6LvrXUD0Y+X3el3H7XrcBDE3RI9gVBchlgaoQ1i5VI+4WSitK651VVErVInVYm1S9Vn1YhO6hppT6gJCmZL4AjLqi5womfuW/gjznVvdtzHOk9h8/0lmhPZOg1K9VlB5vuiXi2eMnvulaEw55vz20WJHztCGP3j0PSP/2kl6QJtGjOBJ0PQxVbcd1ozBYD3fJG16ANiSiPNhqFm1e3gltav77UT92+gfpI3r+Jgbb0nMcD5uKqTUAyL31DlpLlbT0i7kOQ9wGTZIdW7R9vwMdi0teX7c09mPnjbo4X8LxjfHaaeyeNwNbunN/mROv6g2+7klEfmHLmfx9V/jQ1CXLzGEpIVvW9vzxqRVSpW0OsDlJI7jPig1KlhiLP/qiy1SpGQrccXL5svJ5Rvl+xqARK1O+m3ggDZyQcsLzA9pGMyRFJG67TQpmB7M/GTeNvs5+OF4SMmPQAvtuksOwgykB2a9ZBa/wdF80OB3mEffAaQMsdwGggysat4o9go8FrinAxhRGa/8eZeXlMW1gp7dNwsHyxIOr7QjUISk407hgLcBtFrNwcRf36XkOhHhcKm7JTqZTdve2bCA91OhUcuDOMM8WySchzOqVBnvg/Szb+VrgsfjHpB4olhD1+l5RJBIJpUuf5agC87iQ3V5QMwbI3Rcwil+Bn0/ZhzF7LvUvzbB4L8dB1A1Ht4+umpxppbbx+jRWs3JYd35pTMTvqtmHVjz/C4vZ5B9cogGum5j3M+OLwKxAlJvLyA/tpNJ3DuQHJXXPPO2cpLQkEnB9h7I0mVS5U+frlZ2LDntaDptUsQj1c/nrWgyEBoMa4tdB0QoGx7BjoqbqCHwcDXFMzijWCD+LqIVFBhNiIfMbw+bD88B+KFCOTHrce2hu8blX48voJDj5DULmyxc3LjGlt0pIBLNHPXcm5FIWsNDf/9hZQ4N4ROXVz4lzCxxoPOZEtpDlYIwv/Y17PZbT/61cQBe4cHF8epDmAKMdl38Yhh2SHLotav0LCSSODVDsf5GNSgB8/8af0AVMKXsYmAXY+gIUWUWdr1X94fTvoWbtoUXxxzmAWMFKeYcDL09C8w87h7sMQe0Sc6STs3FKWz2OoS43XIz4bbK5lIPOxa6fAHeYrhwzaq2rbjCW3tZcG4ssGTbasZ+doTlGE7LkeVNSQQDmpqJiBzmFmMDnD5+stSWja9iTHQKYfVT5sqD9fO5KXYeQoEAnp3NyUsNFlTM9WtHhCgtTBFkONN/yrH4vv3jtASm+MsIUqzOPfGfZOaPJWuak+OmJI+HYF6Vs0vuDFCLJIJ4VeuU05lIdHbdzfBNvcZEDzjUiJTs8YfbUIzW2LXfJa3SeI3NR+ltT4fl7s/8gEmNMHNL2tANzndES0V11grzrFQDOCERSBU2VPsIKMVH+go6AuYnHU+W+4rYrpBX4aqi8wqydce0ZMswK4tuMLb9ARygwnjvCoi35Diiv7CQIYEipCJmzF1p/51YddqcJis2t5O5PJ5Zwopt65y2q/Ej5T/3PUnMDvmKln9EjO3BG/AukbfFSdld8oz+3sUc6iijYmCxrzn/VsSFxLhjNf383pFTS8108DBcyJkMKCyXGIoxroXj8g0faGaIz6+gC/4/xO2vbuVAV07NOUNA1gLTKnGzu4C/RnPnyhsGTdh9DQUxTYVmiyjSOeZR/U8FoLSH7SEOzzl1TyzgwqryUPgqy7mBDi7XabqdvB1wwwpD8CXqDpm8sPaM35Jg6um873endlCeGIZUIkB4Ju9EgVDtBNJTH/F9zMhFX2B2inrrvXRErXw20jXV+S0CwAhGp0yfHHvOPrOnob490kwm+qFYfehvUy6OkwgUHiWD1ZP6I1qecWLD4/jR9hlctA6RzU6Yk6IH7M0j2+StvQN378eggflC90eI7dwNTItL0Xi+P0kAofAhUvdB/PiBmKBm75Qjq7rKm38YLx8lcXQFH52ONyt6nWgHaeRUpBsR29GmSDrJ8Fk1EsADZrnc/xJjWFEtZNqP5kprB6JunZaXPFCDvxVuVLgrGVvBgWaPjZOH3YVnm80Aj3v6ppra8kQRS124JXsI0uGgVXZVTKkJ+OHYZGKDkf6oP37R49Acimva3e/eEVDw0QyOhon7gjbWp9Ksne1pazJf734q93wRbWb7XpHq1yXrSnKEbHtGX61RB0ya1nVzZyznWZBZnIzcvJu2C6CiV0UTxT9/Wt7B2K6wQ/jtN/mkJUSOKjYPmOscsGQ2aX4Ypkna9zXQ28QMY20dUntxpQ+1yoWn+IAvt0oNqcEV1vO/Scw4jf3CdyxieuAG4iWF5R6jocA6T6QkmmmW3SIQWs/tDcomZ7FrPXWxClSbufwjed20D5hop0djJgMYYLRSKHv2X1VLZ4YN09kOGBQ30/LP+c41MM58uxaEHccLA0r7DzmhxxXkF1p733CHlcfXDmfc4l7hU+LJvbii/a9CnF8caUF4xCPSv0FKktVFkZgoPJ2y5AReywruyEzSetmNBjIBaWtCr2Ce6M/Yavn7OuZWxq4xQYoTMFNwePGbqCwJtoJo+Fzq4QCyk2r5qSDXHjuIEHiQb1tq2kaOHv5e78HMnc1coxyi1Pxb6MusaklurHStYZpAyPpRqV3urYRhs33oiL4aZ6TOTyrNWhzLtTa/ByUi89Ta4uLTVajl+QykzTHWjoEjO0iPQIIvagqxchK+BARhsp54Ut0crFYCrVzWC35ezrSvMflPln/qvAvC9wpkioV9titLI4ftGx5bde7ly45SAHg8ZC+qyBiZIExjhfkmnv9fHCIK5BX8rg5xATlW3CbuYxRegjkGDnTqzpxPEHdEw1AdGHVeHUFl7G2oNTb9VGGMjeIMq7rBp7I79RoYRdeiho62BbhCoCb/21WG5NRwPeU6iILj5zdWZeS6Ggwp3qj9PXalDKBtHeQTc38aoFvQv/ZH5prd36FtXZpfwTfThExpF5q45Zf26JkkjWh8p0pQ02Wmc9yfOVRxFkuHQd6FxRogymYcitOcmFWhD33JcqGvFWwNoyoZb0BVfAznr8tDpSz5ZQfc0zc4Tns9JpKQRlk6Lb3LGXcDn4jcs776Qex3qmVk0Fs5uxa6sLOPM93/o/1Ki/AjMuJJVY0VahRQpX+5YSdF00m5CLiFsC+OhZIIg0CaF+9pNuPLyA+ifN9Gy8Ko0+Gbr0OUMvlkOHpiykxALYqdXz5mOGWrl9GG5SHI4hjtLIbyCwF+ChQBZ/PTCf/5D/gkSKxsQ+booU894cBFPn5OBh5c+VJ4z4OIki7vwxu8bwvrDVCfHtxPSsxk368Leyr39+vxvskD0TW4Ki7lkkFUQ5gBpDoqcEI5o4ws0M2qJN4WTd8MU/SiAAatQ5wj+7IkYlz3/POGRcU+9BMqcN2vPoGh4OqjITWVMakI3Ud0FfPuNp/mncCw4oJse29GVXduVg6gCQ1pi4OoQq51Ego90BIpUBMAJsg84Ck/D2tibuonlxLZ+xVhPrPEKPdtLENo4rx+8AfmiMDLQQiHzx2kBL/MQSdP0T52Kzh8QQ4J2kh7BsScz80bSJFM7i0EZNCLvLwhfQp0=
Variant 3
DifficultyLevel
578
Question
Indira bought a new car at 15% off the original price.
The original price was $52 000.
How much did Indira pay for the new car?
Worked Solution
|
|
Price of new car |
= 52 000−(15%×52 000) |
|
= 52 000−7 800 |
|
= $44 200 |
|
|
Price of new car |
= (100%−15%)×52 000 |
|
= 85%×52 000 |
|
= $44 200 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Indira bought a new car at 15% off the original price.
The original price was $52 000.
How much did Indira pay for the new car?
|
workedSolution | sm_nogap Strategy 1:
| | |
| --------------- | ---------------------------- |
| Price of new car | = $52\ 000 - (15\% \times 52\ 000)$ |
| | = $52\ 000 - 7\ 800$ |
| | = {{{correctAnswer}}} |
sm_nogap Strategy 2:
| | |
| --------------- | ---------------------------- |
| Price of new car | = ($100\% - 15\% )\times 52\ 000$ |
| | = $85\% \times 52\ 000$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+GE21iY1Od97MbheHR/azP3Azb/ZhXzDwVdpKtxJshYffM31csf2P3w74wfshSxHyQAk2lFnhwkvsTegSGnQ5b0pIuhI4cl1D8QiYjyZD1f9o+oujrRgY0DBS9ZWbaVeZ3j3wx8rKAv0LzrltEYWDu1Emq999WbNkDvaQwi6+37Vdf5MG4A32SbHwrKt1BIgnpIt0IyYRnmK3q6cW+ppwvHgD3DXdbG1uTcRbqkgI+bpsAja44NwADWrRhIbto0Wwq/GNKxKQL123Bert/FjKqjxZelqwSBNJ+2dkqKj/vpUobwJM9VTZ9uyKJXL76lkflTALfce/uskeR1UgGYTNt6s+DnJifzHpwIuOBRETe6XbKlHVvAqNHTusiYS/zQpa1OY8ZZqxmHa0wpL/mKY/opntCcd1d0Hho+keHa+O67fwQyc5RfRVkehZvX2xFSMtVFpXXF9aJL2REWRuKjQqKHzqBLOujKutJeHepiUwgjBHe7gMQVUEqyQ5J1D1cZ08/9Cl93lF7+J1YTJXUA/DUYBdiiyIKtpCIztJEI7oZX/25U3D8wEEVMD65xgmDrxxgqX1EcRIuGydk6g5NCEizVe26pLlYS0qS0Bu+PY40JJrqliFx03dAoRLYQBgp0rB1z1v1hl1ow0q5gifiEOvOhQZA41Oph4XkwODmYaHwnYgPRTq/aEPbyPdhZmgfmQKrHgGxvmpwh/xJ/A4hqAYtbvoVwnTV9cEJZ4tVXywazLwNsJc35St2gkmJwEF5KonAMCGM2CbR1HjmwDJvLzGR3GS+rMcWtEstA1GPBGXZ4wRIlw5ohWgXRxUNVzyZzTg6/lmZ5AexHjMrZDZb9H+35BS6T3clrtqr/kdTSD1jc0zLRoy9AwfL3dTz6aR+C+v7hv+clgH6nkkU9kXasNu3gE7i7+tlpFYrOzl97alXCD2Z6lKoegaLje4tm9bo7SKT3B6mTQOUEFTxfApfif+AgEqT6MCrVIAMt/wxaYn4GWFEHm4CP1OOPnNbvOnOqb8umktCETaPctug/WexpBF1+BcOtEDiUSm4owOAM71fx4b+T+a3GNIgzu+K1D+wlEE9nA43fbgQjs/qyLPIIfmMowZcz0LHoBiDLWS40YJxsGtcM+LlJ52v6ZOGafYp/J/qt5LMrA7fIUj1mygWrbsmgCKCHkQUbWOMTKAcxARleEBTwgGGDFS5+1A53HjTfxcJ0cCnWSsT2sRGEKb0BCC289EM+h0bou94AMX8tCcKOKVGD2ERTuF3bZROVc5NwMLn5+eQUWgTwNMyy0xlID8dg52bRXuASeP9aU2rMIUk+8C2qIauZoaN9jGB3JI0E1Joq5aCR0eUV44gyveFoN7T12KEL5hHJDjXcUdfLExjKgxMgoiQ+MDzEyPOBUrsXFHW8f+AoeXGosIgpuqefHc/cJDkiAmFFHbs849sRVa9H75Jw9ggeKK/FJvJf7DmLrAb35dUEo+mr7g/NEBQNEq6lcfWDW5iEWJoBoHIrCsppNQsp/1yQYIXS8oC71Bc7D+BStei3s3oyg0jsgUQUF+URBv+QOgc4TFQXxOp4szVJQQlmlslJORswXYgKj6Ji/QxLZLY6bmufCuLPGJp3VJPI4wbkRCFgVyYDFBFBevTju0S+/xXb6u21fZ0/QXwv2WfSPYtKxjBH+/9RxP/DROWy+kDFRx8RX8g6WGLOZgbtyHlKH/RuFJw0eMb2cprPrt0PsuMx6fHVkjBxNyvuvZ3VJ+KAyAxevqijgMI7LQY6aQoGPrn4dnYEMILCW/glbnQk+JhFyANkHdr3O/qlYDSZE9f4btVL4fISzikkyN/R8CizSqwAQOirCAnZ/Beh+8HhXaHmGXXazGH5D5Byj2Q38dU7AeCG+Puuf5MyIG/I2a0n89zoNChFFnGdDxHfa3yGVpbxxYYqivoAmKLt/AopSxPQI90yMzsjTdNUqOyaOzDDKWVdPjZ/ey1b6BTGHSY/q5YCokGfdtxsCc1q9zz/z1J0yIqF1G05AVxH2zaKXQy/u2q6A/SE0wmqkSpJsMimtZ/ehV7f/qWQsi7rYOFqRscadhFS4+c3TzVuI8U6AqyKfrHuIHFkZrhQ8CLbZfTBBwnIA+P3a5ECl8JdVTLPIs8mD1qSrfbMNRReo5CA0BMPQO8Vcu0qQ2ysiAOkPBxbzCxfO7JcoTQDXKY4hoKXxhVS+z9iL8yowRmbqK78Bu8wXPaGr+zVeEwcVKa4E/0qrJDWOp9T55ND/TIOa+M4/Ibjgv1bzNmFHefIXFLQVgy/nVrHF5MPshejiY4J9vYOax+fdbiHxPyG/R+aVrrA3tVckVIpYfb9uBrs8NFw+fOstDQ1NRZhFmyyirvX0LhCEyYFztipTds6Q67rcOmKwDSzGHOmKjsxL3UmhThX6Le1t3/9LAUW44x26JPbbWqbSwVwi/gKZVxsnfrTZrJnhR0IetiveJcMb9kZBYOcSIB0HoHsXdaR6IPNJ8m+k3knH7SuKquVglSTu1Oi1o52N6haZleCy9LDAMIx2Bd2RwkoRN4G++IJf1zYk//CK5K2Jo8+ZnkoLg+/vioxMaMCz47qtEISqrRSW/gq+7fI1WCKvaO/z7BlfJMqIyL+KPHm3tOpPYFxK8Y5E7od9Kec3+U5xegvqi4rMV+L3pTLbirkvfyWZXhkt3JjoGGLwqz0YFvMwd5RcniiFoOoih2oECj0GBtFPdfzcBYLcLyIqDFBR4xYiNzlk3Et3HXuM7AI/nbgp0/az9A7CuCP4si9Y6ogZXLH6eLIuoMHFAE4JlDM1TOX6euHFjojTbEmVew9ZVKrULYB62P5ZovD4km5hgd2p9PKJuz5JkfKEu7f13C5MSK0r7p5xL4GG15D+rjgrKMZSQi15iLB5YfQlW3F8U3Le9LIit+iu5KbGPj7PqwLEKmw8gezH7LaeHjD/Oxq6sDCTDxdV0MROw4vqzOMGUH1PQrUGkyAHYMlTBmkHrLN6IWHKQTFRKOF1p1m6eGj0YNIAT18gu3zEbeUAeiznjCqRzWfuKLMc2r+DAiBruhfpI88WNAu9ZebWXoWMhrquy56MnLvE6uAAahmRQi+va9Hl09kX+ousvKqfzDLTEEbyoUM9lPrD1fTxNtUYK9R/Ca2XMjLbWysQwyPiNMD+XLXei3SgJStxQSzqC5ZNoEy3fnuRI2ZejQJqcl2TwS6VwoVsdTI2yerlwD+UCKIbBFdfltBNnRwU8JBeSxvOAJpPghVZ5ABBEjAABPzdTgJc3Yp0cay5LBzpvaVfdLp3tEwDZaxYMBPhUw7/cZey9XaEIChwQuCv2csKQMYlrucNTyFQvhMrMMF0/ySxpMdHtw7jCqhW11t3CnA+qYtkBxMU2lifNywmSgW17ERdnNIDMPOzJnbIi64F8iX9SUP43MCqt5bEUGsLtcvz1SL8fjXwtFpTqtx/GiIyxBiIzLNlMNokQViQwzs5raJp7VLxeTaxROc/fPQmWw6hmp3ftGTCxb4XxZhNXtZdu1rmLnLvqGmUFhumIO7xpUTQc67Y1qTTUQjWX5JeRKJVGkQ63Z6p6l7KBOIhDmc6hfV58lmfs2r/o8WSesQrr1NuvDGEmo95E4VkcU+30MDQUQq0M5am49QIAu6qDxINorzQRXJJU9SaClcRZgkyrWqzAlIUc0Ggrcow9XFXc/buKvs75TGzi1S3JUZZ8rM0F8crvrFsV+aLfnGoxSHcRgRdzMZFSFl1QY/+uUp5o0Io63yHMeY29d0lYOANYq1gZghZPOjBGtV1tYGLiEGgXgqkqL16TrYlcVPgvw87RhV/BffdW3fsQrzQc0ZLL9VC2zyuzMXcv0bSl5E1D9kUw5/s4gauINA1P8LxGcFiNt3FB6lCAFKOmWx4c7fbRTkk5CP/9BrTb6gr0lWm8j/KVWDi3rWPujUFVK4R6T5KE5JuqDCgeVn0FmgFYRrxwEPuwqX3VOU/BDhtWlvlZEF5o1ITrVkk5fG4CtKgKWZrnspokDC+8vxjBb+vUNuyneRIMSeDS2zBAfRgJq7bfev7gQ+lvnPQUR0BBXe9wMesRHVfj4kt4jGT5bNkw9y7GOhUQ6CFLPIKnjEvaLnc7xkdXFcHb5bC55RcFaOOZsUt6jOWuvXf6c1ns8aEVHBj8CE2chXjjwSHXSXagzAPZN0XXs8RXE5YMpIzuEIeKHdL32ZEtbaw0C6mng1+UrBXDaWPQkRL7ZFlrDkA88NDz/MXog5RZlVweFUWo4+gR/Am+qBL0mChiF4qta6J/HoB0GASbGVGOps4MbA22HkgyMQF788nCHnjiTRCrNQI0hrDujg19gjwsoJvgjsuiu4caGulkCAJ33x0XSigtxD9E7o1B0ZLU9dnFjbtRsPtPRoNeZ9AF8jNN0NIlf6U+QgfD9IkdbjHw8JpC8XiWbH2AHhvZsdm/MuFcvZXm0+h+McbShmNsiVHbJVR5pJ/DPQF5tomcWlUPvvpLSdLsEXJ9uwBAm5dmyiYG6aq1CR2IfN2feQ89GnNzFf1Q3dWienuncekhCQExZAAycXOYxiFCVJrO5b0aCwOgebpcka34SGh85Zz41ViqRXYxTl9KBUqKVsNymN1qhmCHBTY/lMut7loI3UNcUegXGi75PisPL1gQdXUG3ZFkFR/myYyKcBS+9Q5GKYdzNyfBgzxsekPn5KfSpMZM9YQCLckvwRc7VwP1PN/lekcwa35W+i8fa95ynoexUFFANsAwZtNcFzY3ubFB3IbyIHkoeoKdgxJZLpRn3eAF5oDJr39urvoqz3H0f+WOB/FC0SlA0ZWpikM7vhcHXM8clDqplLuDNlTWGI5ZmskCZa4WZkbimToawNLPKT0k6kGsf6S5g5QVhLrE8CBPu6rTcotC05ixQuSHgV6qbV1H5/XJrqfpuKIbzkVBgGBuFJBhwsAz6Qxv5xTPwwWX9z8Vq/j2+MgicollEqsSKM9LLPafzwHCdPPG5IYRvC5bDYBMO6a3K7xiSn3PAoyA3gcub3KQqwZ0Igrwj/hhd8T3XXVV1teyYf9qjYKcRYbpLArGomqFCrSL3KCdD94qxCWvK1xdPRJHwOlPCwVBT4uilPzrrslvIx/gT4vFrjKazw/DQCdw5cZRzlkgJaJAXvNQ0vxcBbX+jmIxmTaHaQ7C2mPPgsiDH+2+VWGR38I8QfehSKdeMFnkzAHiDQCPYACFxwMzJCrAYD21wUCoigRGthDgckjuRr894LKoaI95mq7TDLlRhwD0NA25To4xttAL/OGDwkvFBf4lABHikTefcI5ehdV1/2v7pzdEmpOi0hyQvV2/abQ5X+WrtZ0zBIPoeFkjVJAdqj4mDhXkdgHP4g86s+2eJC0eN3naIQNDYbgQ0CVzfVn4IyGw196/t7aCyFdpxJOBDNtODM6vbvjAzPjyR5zP9cL+T6Mt8iBGOYmKZXW9RG18a20V/JTRUQ7lQidOIz8auPBAO3Pvb0jx/2nHTaeQOY71FHi52d4BZ3gPHg1Q6JFNHYzX/dCW8UBx+Z3PxiteQ5j5oAgvHU44y2yGOgYMVoHk0K1d6viuh7Gem1Mkq5Sve+8AYHVwcRUoNRvNsz5+Y/TrlvAg3dH3+HC3unMVWnrDe12QQQPWyf8p6Dsqx5svoFwBz9/9BV3xjLxHbFpBgFqjZvvZdWnI6loletTnsBvGVmLDNbIiVP0/7HGBRny5M2wQ4ogVwx9wUbL0aJ1ktSLd4ZTA1Ni+VGLCpz6/u9b4Vp6wkcvrOSZkupmmtiTAFwnNQ6l3sRbEnmZtzq/pNBEhnkOPA8A5eJ9H6O5EMSSh8b4uSYy8R0qmMdQmV6a3bCGR8OznR3N3G+YmzQQvCUvb5Px0AWWiTrpPPwXzg+ILzdEBzxPNQlYHLha9fY1uwJfWlrtpQJ5uBKSvH3NivRTyjIb5ltHWNYzw2TAJWJGro1uEieQCiqcp+bYoB1vzyQGFOatVeH7R8uEnLYFMab2d+CSgVEsQBklQOqZUPRlO5xetKVxrfsn810JlT+EVpMtQR+IaCp9AhZswNq6TPFWUUWZNZka+wk5JZoNfDuUZxtQKNkb64fr8NTxDtGtsOP/VN24vU3WlpGwOIa/mVzb+ZroxIDyBt2emXhGkBrABiveHKf5lVC/UNEuQca79I6o9SRboll2C0njT90M6WVcKchkewB7I29aCX17gm1MXoq/6x9lqEKmtR3VaN/yNe299r5Wp/B+ISzSd/Ca9Au1f6gTv1aqZA35P/CQdC/o7tWp3EV40Bm5u/nPGL6YolBOr77eDN+utkefTl7gyk6fInuN8qbOJnw36cA7HOPN9M0HziDzJCjDipF3XVlzLhH7yfQGmBxYHgPnKFC3d3G7F+DHzf3TDomOYvetYkFlwpL8644ANYjOxu702SHBiCMLh7nZFLt9TZodXPbMm1+tb08HrFAYYHJecCD23AplvByBa2+5Y38cjbNJDZrRj1K9xuslnJ1/SuGMWIW7eRunvDVyaZucAewbWjJkWyZuoMqc6pbA7EIEIIx5gJZgPVdTs/eaNNJW1ScrwFgFeEIG2aiV67rFgK8VHw7ngYkOrdBwmVn8EG4xA+pWaCQMJK33RhCx2Kob/JYq/svb67YTsbmAfVT0sv8sFoRkFStBN4i95XFhJJwGSBTbJoSr9FCJSmKM+A/NOwJKlqrn7H5Ag8giyPKTUPqxOqYmoZQL/R051Lv3eCRgJPjDHk28p9d19Og9BPoxdgj/fXI7dGjuEuJX3bJAee3Jt0Pqdf2+WvfhApNb+BAQhaPf7ZK8sU1nJ9EftkOiL82jZciIhqYDytr8qsvGDSkj3TjDSpPQCfq/7tB/afem5FvxRKLjpLcmFxmyJ4bQW/xzCGkXOPVEy1eGQdWJgo1YpnnWxZuCmWD8omWDKu4UjRm1EVSDK3aCK4HfSHABZrqRq9P1qi/QYoA+2JQNjoi2XyQVyBzfa426J+7WS8WZnJigyrlFj4HzsT9zD1ztRhjr8nSHCXHP4lHC5oCcipy4ModS5NUSinorMF/s8dvBPORiQBmHudVm6vnZZHq5iAKgBSHfO6w9CcFfHoko+nQTj1fkrT11UsfZwMaM1NGg+lWLXYnOI2Tdw1Gnc85+AZHSvmaemjm/ro6LnA/chtXdG45HpeAr8ciZ53jNDzU5WUlNnqQC3dsh8FrrqFB9VU2f62FyRXB+pGzqTeZtPdxjnGLAjMzjKVE5qtiwCglN54V8MVXqF+xjhLrs9szJ0JaI8HGBrJSDG6TzgYezEURoh0M4xqxcrgThkllPm3rVaildfPM3ihuh/3hEETDjwkJDb+eQk/FfwYa5v2BN31t+bgu6q9+L8iTbFpiGelOn6AgXwqJKNaGmELWW/5kzfyjIhXdNsQBjY3Tvyhm0TOmj/wcUwkhx6nIONXckQm5lMC1SY3uJKK7/v2cKuz2u9jsQvC0G0Als2mdGb19MSDS1dgfz1nXD9u3TwQZoaks8wsvHlY8NZXCFu5gzSKehOHcj3cxSM/2lIEmDicN9VphK7CZW2yAEfC/H1S/oAT+nddTT9ESFeLGUvGWL7GN2TkN8yFSDT634/aIau3cWkABP2AQIABIH6zSgoue7rjTuKitWOHw088OcVItungH1qFSM5em8tPp4siDfhVUO6jZiaMwmIIimSDfIm9AUgxYdhj/axPA9AJD9wf9u71Cgk+Jd2ocgNwuJKOQLdNp2vuwwFSws0lSAnEAJMTLtVu9VGGlMzMPDsFty8Qa72/PI6ZMEm6f9G6CWwxaESFF0VpEEgq3VlzloMHzFI8fFzRNlHCyjewVxufnunqt/3Tk8zzWQJ67CXIxj9XhPfsGsf8S63nnO0J4sXggkzaw4yLoGKGjP5gNayeNmph0IAA4sgzZC9pOpDIqG4c183ZW/sxNfZC2SWSV/4pfeuMGY5bnX9g/sqPZNvRFBJ7aJ+R+DpyD2MIFxYiCxUdK4c/sdvGQP5QtbYFmQx+Iwdlj7J7P0aB0W2HdV0nuH3IiA0i6BKB0rIYQYEyZqMh8ooBJjzkXGSn005FDha472iMTDHSSAkGpNg88L7WXS/5t12ciJvbUQJBjgFvChaUeL/3B5RTCwwKcpL+79vdAoJ9/0f6ygTLHACF/uMcfe4Gsudr3P5r+VF1LK7xQ9iODqxnfZo5JNBZvbnl/hPSYVauUNky2ObaJWVyL1jJ0f0X6CcbFYUG4tKtoZnWzkK5vi0wC0s2UOHHhOMBv/FJMW+32ZuuPykJ3tKS1BXbhk0nqRHO1Y0xes5EgqgvrTHlDRGt2qEXaizjls3CQ2MRrE8P5VXQdrHdfRepb0+UrzPxaErlmwn83FwcQGvXxNjIK4ObJGscP2fR9Rv/zfH9PwZpt030gT+CaF2ZUdKV7z7DhfhY/t/RLIOID4tDK/FJEYZgSlP66050VeVAcd6z8NaIfQCUF7GvYChuvEhAtDW7iNyU94CjUorz6DbvL3vklR4SEEhwfChnO4gjCvw4qIn7SuUFnpGnn97luV0EXhQ7GGxlEAwohE/e2l5LChQJ5kExiOx9SU/K8LpjzV9T
Variant 4
DifficultyLevel
576
Question
Billy bought a new saddle for his horse at 60% off the original price.
The original price was $995.
How much did Billy pay for the saddle?
Worked Solution
|
|
Price of saddle |
= 995−(60%×995) |
|
= 995−597 |
|
= $398 |
|
|
Price of saddle |
= (100%−60%)×995 |
|
= 40%×995 |
|
= $398 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Billy bought a new saddle for his horse at 60% off the original price.
The original price was $995.
How much did Billy pay for the saddle?
|
workedSolution | sm_nogap Strategy 1:
| | |
| --------------- | ---------------------------- |
| Price of saddle | = $995 - (60\% \times 995)$ |
| | = $995 - 597$ |
| | = {{{correctAnswer}}} |
sm_nogap Strategy 2:
| | |
| --------------- | ---------------------------- |
| Price of saddle | = ($100\% - 60\% )\times 995$ |
| | = $40\% \times 995$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+WdzqCLX9zDXVvoHD4yjYPIkZyKQPecZHmJRzW0cHL/NtL+MaR/EXBjnP8UnlOKNPYs25Uv/LU+o9luTx0XCSXcxM9x8Htxoo3dfMDfN65/RaMAttdAoC6x4GJNoKBOkO6AKPfv1gt7l4XEEM4y7dski3QsWC/AYHPU0CwnYEhKiGcQRvY8b2PDqiBBv06Ignt0YoB8HD0pgka1m3s/e7hQyzvW/uWS/qLklg0UTu8prJYg0DLvDLPth+6rifuP2Hw2R2VM/AKs1NE3Kz+8xG7vYCh7id4FwhW6eodyuWzJN7J+vvKzgoF92Z5h9UmehqeHMWHo5aZ0UvX1/bhqdZjjW3QvPIs/5HPJuksXvth6JAwVIQH+SmD643x0kAq84Ad/lEi4G0id74GC4R+zXgPULx8znS7LG0hse+3neQBLN0V1+Mb0TFPu+1IzBhRfwP4eKc3pxSPe+PWBm19vOjwhI69WpZB7jShGjYaGHtWKJhAX1ObUUQt2oMhIBhiPbeX4D79b3K9ZBi7njzu1mWGa5mfokN+ll1hgxRq0aUZoORktU799wi9l+aazGeSdR5crcRYnepAi+z/gi8kYReei0UT0iaSmUJjt4if5kmKtu6xPzxZzg/i6z/bV8R5h4/+Qu0znuiP/hKCxXylEKo95bnPF9J01A908ayDbyrYSCyuwRYqTyZxlP9j/Ys7Nfuc22noztQv3T+whxjLGk3ukeQIHLKXlaggI+DgGtWX2LkkwGw8PNp4TQnu0FVYYlM9MpYP21kKDkrVY83RZ51XDx/4ft8yjhuPScn1dpJ6+pRVlZ9uPz0R7XfE6QU42odwgQ4ilCa0qKcMqEaBvyooB+I6pmsT6ykkft21NSL0rBBxqNQZSr7ur4CNL6w4KWexMCsUNqF45L+OXUtIUAQS1igKip8VAwnQ4OwfSoGZGh5EvGJpYp6euk/CjxYgkgaJJJJEECsAhMPBtTRDXksJV0ZNgkNaS7yB+ZvnTBW37KJPuNRI0skxJ7f/y6sfT2dQHKunnIpepvbzo+LcRdedFwgdTdvsR9E4Ds6E3TCbkZuHNs9FsX/R4Lt6cHupLOOTtVW/cmB1seXOeyAAbuqk47Yb356FTEcCdC/VwP91oI/5mSMXRrjbXwd0/yZU/NWldXW+MmuxxNpGGsjxUBHpbEv/pAUvIakPh5SMJceGvNcPwNG+LYYtjcE4wWupKWAsWFQGSGYhH+FR7/RR2lLPMCD0TiZXsKeh5vHTfWZvyIcRT5+2Kx+N/wLt5NJtOZBhXHQ+gWsFILECf5nDLGoSYb8iiAXEBC/uy9Wat1P+Gu2t8esP8ykr1oBoUnu1kUwIVLP/lkvnt8rFc1pXMiZKY7GrPFLFiivI9R299dhS5GaqKOYrvz/Naa4k3bFJ0Pko7ea+l9clgdmFIBiEND48ibsBj6pjrecs+cUyisMSeS/Ufd6VWB3iV8Cysg4ol5OdW/WIu16w/NWDuka//dkHe7LNgNZiKUSbc25izktuZ0f0rm2aBt3/46Q6L/oh3uJJ/jVjJXee4oHFJYW4x76l/WrllxIM5vBt8kX+Ov9Z6/vRSqusd/C1XbE90etO7f+tRTGI3jQ0qk7/wRGAQzZyTWGgGdeMSLGjuo6yfaNQmRjy/YkzTIhbBqWbmeGB6IS1qxjfNjOCKC7mswTh7ZEAMMdjzEmnEWfJbWGj80gAJzK6ZYleOXHmYCthJrzLQJmr/Oldh4JmvMavCHAWa2jV+8nt474i2cplPc/0M2YMzzOoT17CB3o1kMS4Be8NAWd0hSXA1xHIOHbpf9sXCJU16agK6l80O2YGcgP6A9CEyNLi6u5nSOIvVjfwXGaIZdHGLN11pY39ySfPnNzLHUpi324iWxvbdCIUmMDrsImwGk5SLu6BXz3Yt+JzHY8oWXg9/VU0Sml9bQL8S3aR6pgttQyJRahHabdy2yOEfyvmHuR4OfO4xiwwKJM2Mfw90h/uPpml6cJHE+dK8cUZwtXgz5ucVND7PvZUHSoyySEkSyeOPZ/nf/lJT2MVVIQlkwKbxFuYQMMvc+8t1l/40TYczuHKYJ1mXzRXc8i9o0F87Zgwp+qYdIRAjFVJAjByRiwI3PR+Og78OEbfC3x5yw3c9ypWwdx9IjG6SFzcQnrfXKJmFMHAK4BCKfIzjjN4cJi9aiYgcxgDJa3Bs2E9M3xnqUDrjbg25cRHlQC2RklBJ3rB9YhrPcWaH69k/ZOOX1XqpfbQWtCQdW2ptBiUPw3t1AWjgc34/UI9HJyusl1X2+73ITdwOcFEZo2LfpqC68w28rr7re6iG8Bi6tLFBYR4CAGoTMStSMOSZSqfJV2EbK96afOTivcojCQl4ANAZsjJZZw9Wmp77MH2z1AQGoy8F9RqlKLZ+GJevOwo3e5Te+wCXFiwBfeqI11bnkSOpv4L/z3Ei9jOhLMP7GdUhMICtRKW8FP1QjNJjO74Asms/bhd8+n3JiUhATtQ4lyc59mQeWAJvNK3p6W3B0WMmg7trgEqZfhklYAAWhUyJZ2PnOulwfM41fqvLM65+hkzYOclxjGK3ZnVJNZxuEuiwDGV9ypuYfI4x5a3a/dq4jWETqF0CB0vxJ5rGZYMfmHPaSPyEEf1pk9EOkw2/kTvPIPwqYdR6pIe1Cz37HsqrrZWsooVCRIVLocPuyJLgFG++qrvrEF8i7C8oAtFdLhQ+CC5DnUDD159JbYfS9UyjAFOzWkVTI4b6m2cO/Xxu+E4FSIzOAvoVF5ivqGVPtgRxQqgJukGLPWCRYIEhrmaX15raXP7MOQ0cnDO7dUtP2ikRf2PwUtpTsKRmmJVOx5FKMWa+SbOYLvagqpzKcbV9zZO88HFWB8hb/AWIBftS3F0MU1x/Ak7/SYgZ0Llk3LLnMQxPMlRr1tHd/yVaAtbqRo8P5dhT+Kly+CjLDD0gPQpYeNUkydKLjQj344ZiDhdvoltZmHZuyUf0nnCnSWzOW2gr+VQJ8M3xb2D8hDARToWCvoxa1ffmvs3E+ieN9IS6DQb4xlSdCOfXZf0FBqMFxXSVxg7O1HR0z38ajT4uo9OX1W0PNISZjUlJs7Rrk3xSCJDaRIu8rPsa5Rd+vuQTVWN+7BL0mtMnkpW0Wbwzn16bz3zOybS14yyen54ctxNoIlk9SCk+c0m4CZ0yVrRBqNhPhIdpqojp4KrT6K1fuoNcBCWnHD5pavy/Yy0JHzYRr2qQokPr+JSFjW43cGn2is8ni+Z+mNjiGYR8XzI2ZvJ3HZF1t+MPBOfq6hHOvkriBrRx3yP/CQEPhCjNu8NGDaFLfaXtuLqcy4/mp91t44fpFBR9mmP6r++YCo88bElKSMt7Sc1EBjPrZg7J3Z3mxV7qHWqINtUGey7qn2beT0aA8tjFSvM6wmLZLkYvkWK8u1uiA4TziHnb5HzsoZIG1cavhCkrsvFkHqgP0FSv+StSECa3qObXGdK/1y7yhw1ZQO2gI53ekvp0ef7v8o57kGqLDJgferqWKKt8loOiAwU2aBamrSFX5XlBOT6WvvF9dY+Qu3ozZ5SH1Xax3PNcnt5yCh+ocSEZlfkx5I0nOpmZ2ML8gQGcowYZBoMsggm3GQIcvxmL2uZEWIQsgnmUIGCcpd1kBDbTDdPXcPuqmpjdFjEyt8KzbXWB6j+nXdnnLRHlLxN26LvEvepz17UYfcTtFDjxlLLEixTk7oV1qPBNBylaJGHYqklJoKc0ZPlPgUarqPIO3ol8N22dG2zLtZitp3ENFtASqoW81W3NBvV2SB6U/QFWvBYNbN3SaJu9vV6TfL/LmSepA2QE4ikTHponCuzl8QROn8S8v+q4C+yAnTj8oQswXxK8Zqzxt/jyeNkqvmQO5aF3KARd1xbDS4nurhaFZkQxvcmyCwGLRrfvoZdHYOI+Cpz4iJaDG+a0EHi/Ol0FWVTlmCb1jVEz28wcoOT24dgFhfPu5b3DkEayIK45z7EDeEwsY+Tqz+ZqFGoudscCUv0IUh+2BiwQQXxSqXbhqSudsA5Nn649GeWMzqUtT0yUuyvjuDRQ1NDFTwYjmM8AHEece0VYidwK/WjLXQ3mZQRd4KCajecxAs1s7aY1w3unhPm5npy8uubI/IKZ13UG8P3dohdd0J210pgxhygR2aGsVunJvM0LODmFIp1oXOzZsdmq0YJBEJqnGvoXcFA/qGRs70PKXEjiGHJm8IgYeIEFkgBc/oyn9owDVoh+iPb0rN13Cem24WnLL7pUxFNwmr9YgV72Kz0R3XxSYjEjPR824HEKoU1obAMTQcZr/gvq6zZtNgtJDUVlFSo2Gxvuj+92UHm7M9FC9PxTS9iVVt1RuB6RFuEWvRMaDVSi6nsavHs7N37kT2KUVKHYpb23KWS25DYlcH7Mf4mUNCmLRw4m73qJXtBPNj8SHTL+rqFxx3UHryCIg/2nimt1UWPkua5wJ0gpuTQu27haQ4IgMjItnkZaowAMu+D0jFk2Vx/UKNW6xF9rxWXYegAlkkyXzlLvdyFoWXsHrtqjFwuuGNJw8PXGXiec3gyENdKu6wT8/n8r4yZV047Sw6VVzJFhWwONcTxpbPQ2TACWLAe8QZ0M9rFE4ZhftMyRP+F+Y39CAjnV8OFn9Mwh6OKB4wGWityRMDHb5lhOHw968dT4wPAor71C1fR2Ed1DcAWqr4YLaTyXTwc3fT7dzT67oIZANIyO9OI0Mu8yUZfRq72AvjO+VM9ef/J53r3FUsagARCfKe1IuMLlLPbu5NDU4R1pVIC39Vxt8HStRr/5iWfzXdXiA0iyny/DF6Q8kBysQtCyst+K/MIseclxKzxQ9lQmoB4gT+p+g2dc+nQ4nBTIzzXOuWSLIjkFln/4vSJzce7mx+ALbErpOUnNNJ325bM1A+iuUWmnq4NcIyxU8lZ0aJ3pThsVjbYlE2tQABqPmSkKPZPjMRL706FzWcMJMzQ00+SSjGxCPWVjV+MPMEHhZIbQ1CIgyt3kZiajYkRNs3lwrpC2sgNN+uQERemaJZL+hK31RfcgEiaxYCqV8VV/oa0eHhKvSbGpd6ZJC1SDYUPRa7ycXN18/80zaweXOCtB+AQNgknKWrmj2LMMxz1e91mStsGrh8Gxbm/apv9QKcrdzwTOzIKPDDv/TKUxa5R4FuTzI9yQD505HCp67Ayj4M/YHHJoUJh+M5QGF6BH7VM0+NShP8pKNeNxIjWfxDI4AZfLlp82RnzH/E9v6UWI57uarydx+9ynXsJYZKzgKe3l5MkHlMKNiR2MWyMETS+p+X2qAzKaK9qknAVVAaDxT6NoiIArB6ymJAY1FV+O+evIbVh39o9DkwSnYH3f2OxkCv+eNTOkXh2Mdyie6/ctUXKcQ0BnWnhrFmLa1K4fXpAWEPcb/9AeKBlgzda+WqhFxSvFFIZHSVLAuM9ubc/fwXOKl9uIaHaEkpXukjaNf/8K5Ru1TcIPO3BgTPV6J/1+6bdyDep53LOD9QUekKMneg8vl7nO3Ne1gqG3lH0OYZtYDHPe9uNK1W8oB4ovOAA9JqEuUqMlv6adrYFKQN86oqfWRMK3Mc5hQPLaEmL1XnnkST4u8m8navimKKx6oDuZn9I3+aIJVIR0y6y1vMXjNdFSvi+vfVPOaelnRZQm9JBhtFYZyXLYXuGWnNa8W/6Q/j3FQGZ/h3nGSEoMUmm7AiwsZNyDAoBKarSZGJLLhHlWtHSCalpaXlMI3F10/VgQFGmRUa2pCKFLwKyxVWf6dGJkdFFbG0s8opogxSZp5VTUQxMiN/HlicSsmJdN1sMnstFi3yTByZtPwin6P3/NW/0mFvwDCvkClVQ8KmxT9rUyYxyQ2h2uW18xoJDGFmnj1YVS2Opv92LlsKyxe1PhR822xs2YmP07KAtlJv/AB30lgMOo2qoulxT4kGe0QXSmIzdAYY8I3ZXazt9RjoLsTDtOR+EDWGrvB7C2EjT1pDE5MHMCW+SgJ/x77lKI/UiKX/b+eKADWe8RamQHYmRnN7gboBGSM+I7xwoZsl8l2FYSnawml8v9wlItREVTbpOgW6JIkz2LJQJLFqik4bOSlVWEAZW9hI3rgUsY3wuhM/EwbgBFk31B+FfDXX6E6T2Y3zAwR1WxTnU5gKEa98atHh6IS6Tok7Z7iRqQsAe/kXA26O2DFYpXEkomsrrcuzKUzLUOTVYVuXDmEu9NMpYG83grITLMhgxCrn/AB4Rzcw910r2wwAjSqMB8gLVGNBjlxXOrh66rGBBitVlMY6Cn6QmynoKVzvqFXUtrKB/1e5F/C3Tq9sV9Ish6HU+I6zYQ92ic/D66QvrOe8FN46SjZa21NBOzYyrela0Y/XZEA3NrAbSlJhOyQ3SsqB3K+F/E9vTKZdH+y5VfIIIfoMiGV+ZqXJlh+jry34tjqgiKVvoHKM7hzuhFNHhzCAV7ryIfYgZRWwVogxOzgV20vyobgi5ZdW6oirx5HZdADfYFVWfUjbqMYu6+93MC1rRgkqvz7FCujgPLvVaytxUSFBUzz53H7+h6d608J0Vq4ecPEaC/rr0xqDaE1qsH8011SbXi/qYHlH9xHbeAeQTBiZm9iZOe/B2PtvuSjeD85OqMYq2xtXyJjR1cd0wQ1AMmHHt9Z8xAQ+AreKHC8t8aZsiIcSk6qQq8ixUOYgPdSJq5Tv3059iLhQfVa9KcZ/DPK5YP0S9vLaZuK88+I0AybB09xheqWmr0LtjTItQ/rsJQh+8Ku3uy42qVX94Q8OJmC0zaVPXIz8oxVKHyMaCQysoJPokJ5NlJSPq7pED9pkpjCLB/aOevy2cYV9UI0TgDBPJVNJtwDKn62Y5QF5liBFX213bK0EADXhzL0s37u1Qb0IiFW2VNgNj9K0wHiOO0gSAOBegWdld229smk/XGRHQtUTqervBcgn4qkUM/MHScJ1xfVaD0K/3zfMMF8eHfBZY0G1VK4LXQKDnSmj4YHr2nltK05/XK0aTl87AO259Kk0E8ZeE/OiIB6rJn9fi1LnyCWuzcFVJpOhKx5zGhSqkMo++Wd+IziinpkJPnYYrKBlhteqH/w0zYHMOdgO5REGl/W/Fb45rgYPctST5m01TWj8+ZDzf2IxZjjHJV6Qjgcy2ZaH4srqWj2aCk4thCWe1Nqz5RCT8GyD3B2xC/qe21bN9lUu1izKsqwnGhw2tgSjMmNE6yYLYutcymozf3pE89nmw4wqaikFwG3YUsDn2Oisvr1dTFw1DO7cbSlvkSzyfr+SI3QQcagTSWE5X4rCtZgVUuoHOIehsHDnt1/Ige4u4FVTgywIxGv+5uwsdXn3DG4hnhDEYh8ekAEEWyDPqsyaowZyEENHtmtQ990FcMGJ8Kd8wNh0RdgJxNYNDRQagA4G7NxfKwOUbI6d0C7O+X3L72adeZlkU8TuIpRrA0bTw6qPU5yHFlBbJzfWkdC/bki93H0ii9A46AjyUQluZb0dmzwyzq9IBMD+MsrL+qdt3mjCciTfUwbz2/uAFyCuM3sypYggF7HBoZjXW2Y7PeLG5MllI3KyKFrn9Cqb0ReawW67PaojQOZZou1+l8ZfN75uCtcJxy//KRZd6cceiFG4cSfn8pIn6/YFJnJrR4YQvFY6+hztxvAkRLyKZ853Y6Yipkh9mD5LKOzOyjzwr7V6V1jpO8Thr+YPKTCcqe50JI+LfkiDcMNrp3R/IijLjgOLfk4yg/HOd7mQJr6u0FtvDqY8Xa15TTMHnbCqY5Wgjn9qlj5rqNP+tDUU5YiwFIzudI6AvtPzBzqERvpCKWEqPeNeV4hLlYGc4ZYthByPnDddb6YxSWY/7upNxZUjCU6B4ziPOwQ6/9d+wxjy6g7Ggs8l413H7rIDW7O5lmUbxIxy2pC+4DXbp4L8ICFyvb0FOuvRQRMa9zxRPDS37w+/unLicsPnRgyF56Wn7FY/nrsjzHUgBkU5kIMsEQNuWDHFuXZ/6hRtggXhoiaY2b0Rhmw//v93H+D5rrXNGwagghTHAGuMJGTamVgeqotn6mbfnqxYA+Zdn/+ADPxjKqYA/6yVEfh4WUMRU0Flusk5VAdM7+0dcOvhIX3f2Mw2qHZ2tTyh9Wr2I8tCDZZWfmmVBrpN/FfPRdFBo4mu1z7ZgV7lHsYSC13OfH7BeAxuDxnYxPiC3kuSdaPz83TwsMnLGy+pSMr7B8HeXlnooA2RXr2cl1k5HygeZ7iAKequ0KaheUNGbjs81g45n+34Cll2/1lWq1T6R0ub8rtIx4l7UmB2LJWi5CbzqLnuSoIiOzKp1W1JSQw+gsw/POxyvcVAw0hn82HLBXc9RJmw0K0tyZOS01t7TiuqNkiAUdG/e84EwUy2a6y5D7IevjlKVQIuYeA3bsMyonSDIWXkDkFlVZZUUPYGwU/FOOuAnzbDYK3NW9OZ8fJovwcyx1T8mypl5iX16jYvp65frhsIkJGxY0hC7uEhouGSHFFJHKSsjcUZQ+Wr5nkyamY+ZlMFWRI7kpEYaMv3dnpJIR/Y4x1JQBdMCHoh6h5RHkfULe5w8VLbgA6HU7pkRjl37RM5QdtVQ6mcNtXqqIODMTxphjGhsFXisyDLqTnwyXgFHf+G/W1NPN3i8CBbe7vUmei4rgsfxQwdmHYZmVMRqN7ipM4U2JjiGKj+hel4r8juep88NghmDwz8LLlhegdNKp0Qh3XydK7im7nNI7hMKlL9tZLlXzJL2mtjOyxuZPYXuML4M9q3r/WuHgjKgO4biYb4jVJaNqP4ue8+Q9tlOtVUt85M1oAwovzvSoBAyraJkoj+YUn2luNtC9grfjKBMuTosxiX/naw=
Variant 5
DifficultyLevel
573
Question
Prue bought a painting at 70% off the original price.
The original price was $2680.
How much did Prue pay for the painting?
Worked Solution
|
|
Price of painting |
= 2680−(70%×2680) |
|
= 2680−1876 |
|
= $804 |
|
|
Price of painting |
= (100%−70%)×2680 |
|
= 30%×2680 |
|
= $804 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Prue bought a painting at 70% off the original price.
The original price was $2680.
How much did Prue pay for the painting?
|
workedSolution | sm_nogap Strategy 1:
| | |
| --------------- | ---------------------------- |
| Price of painting | = $2680 - (70\% \times 2680)$ |
| | = $2680 - 1876$ |
| | = {{{correctAnswer}}} |
sm_nogap Strategy 2:
| | |
| --------------- | ---------------------------- |
| Price of painting | = ($100\% - 70\% )\times 2680$ |
| | = $30\% \times 2680$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers