Algebra, NAPX-E4-CA30 SA
U2FsdGVkX19no+Z+baTaov0stq5sbu2icsow4+6PcD2FnEcY5VW6M7qiUBXIl9wFCR34MOmQZlgV9aij7QMU8tGdFwBLX1rIUG83tNn8DElJTLYaaYQy6q0YwCC45jcff00rWKuBBaIwOqaCZLfBJXBej5+6q0wJGgAefezOkz7FpKJJQWxz7o+2w+d8t4bTLhLgrc4RxXRXj6ylqqDTcOcOGmMWvc/lKqLxMraFcMBj86loHEJrEnaiNG1Ltkmw9GIeLhXOONVoLyPHvZuxSsu0XoXBQo3r1gOMCDd62bOkCR6TT67S/gPZOybva0A47PZaNuvxnPEYnYCZdyIKH5EFOaK7HxsIOhjK1iKbyP2RkGXCA0LHLaVT+HIwgH95ut2yEMD6WpNWgwXOeuOLkDGTPZmWV+pN0fp/k3UFF9p68FlNtwTsRI0y+YoicpTQnBcohVpzSs7Zn7WUUmBfZi0JiScpuikfjo3yreRXnuFBof9RXQMtsFS+38P73fiL+Kv3NidcN4Eyx9cM6kPBgb3P9uwrjtR3zuMomEfsJk3J3L3UOAJXB6/vcxdUcN7Sfrax0UG6czxxSHZxMqCeOblbr/q8fqdKFlTcBqKjw2lOsaj0+Cb4qw5YvwEc2GCdU6U+hZSLlZkuhgnR5csc5mY0Urz4XPmKjoIWnFiFoabML8Cfpa6ORTWht46yGjszSSfSwwNzdfbjKIk+cRzoHXigNDfIZtuobzk6kN9lb5KtHKzuq/HNv/w/zSNai6tbjeeiiE+dxpSX7Ci7zApuhNxZ/lEp8nQfahLqdjXGAhOcR8r7B0VpQcEUrz2jK/SHssV8yi/M/qD65THAXx8TmCE55LV7SZbbYqoRMZv4muroFtBMonwz+F9Txms+lu9LlpwKlMhTqwWvEyRAQSm8+qmiOUKiWxmrabd4QaKWS/it/siLhsDRkDqZbJsqp2Wv4wk0BWNaUq11r+njon62GeKq9gqsos+ESeonUlVknf/tL7KkCo+fkfuevziKClLiavhcnFP2UixMVaTN4+n4y1hou6yr438ulpJ0Kd4eVC304o/+EMBP422h0b1tlcBtyajZuqXljc87iGD9quDG3CjeIUrLCPCuvQa9GKLhWBH8yGwcqd1ZAclNZ40Ai6FUMqJzafA1BVMGIBhvh3oOCKf1qOSGK1HOoNK7soOT+T2QrjWYhOq8M/UJ59OdKtPkG9ekbpWJs/Palcy3sO0r8FFeEEK+vruvCFoy04r8BxWhE2hSCV/qvED6Gyzp3ZaulGXbWq2Jc5iNpDx/syUpT7hG+9yHdEgCU6oYjs8qE24vmJfR9bVqEY9Kg9E1JTJFou+6LJLeF1KCQQ1edPFlsnNQMCAGltQWcgn8zY/V/AJALMoRGOBKjIQh9jy5wiZkJO+jifdQX3hEY24Hu/teuPnoKS8XgWHNMaNdhIBMYyTDDjP4wbLbjuyzZTOHjuAtE9go58R/ECQO3WmaMQQgOlyIqRjgy9D3XMooOSpM2dm2pMi5qNQBz5Y0mfgwmRLsGGFfTnokgKGQAx/cZUzcJr9CCHkZ3Sza3Gs2BFlQQfkIH5GCWCtU4K90+ajEC/8Sw7qPjnliom1D+54F58FOsjRXZl8YFDW0n6T6qViw4li4F9wrwPz9OezZtXJyRdZ1MyXiW3sagZHRaJN0E77qMHEyvAdLWPvWB4UxBEqP4BZAOCWSDT8Ra6zoQd4wOQxPqe5A8nbwC8LSxgONHI9iwp6G3DQJdKNxdtkdmEiAo9TiF8c+iFY7/+23FIqVlXC3ea1L4Y51SXiORxZHXy8N3AgIJBxIiKNNhP9Kiofhq8ilNIsxwmPnBxmcgmD/T+0DTlt21+3mrhKLp5rni4oqCSACkt5ktdqd+3DLOfHa3uo5SzWq/cjvubb16rms/5IC2H9KBI8x5Tjt0QkI9OmwaxUydz8uV5W6Ma+LVU0OtECpX6/v5dNJsyQlinKAAV/kVhKz2sxdTozWmNBHKs52Mts009zRCbURnnXm65/f02ji+cFfUF20AtzRDM3J/grpLkwLby023WuP3lOOEV6sPvjA3kKtMSEivUA+R54T3+GJ/mrJIDdIqKOR3DFM4hxKyPXIifzozO1jLFdwBACoP3d/xH6cxXDB6GCr4NLPhWW3GOHJf/uciPlHChqEUVEs3xW235Ka84qpneKZUjHQNgG4pS+oagPgogJ+wjIXMOPKF4JfzWFn+ao+57jDGRj2vHr9To14wfXzLeWiaZp3gw9xpP2Z3VTcGMR+crVa2GzZch3MLlV3Q7DYvrkQqamZTFEdOErTeZRfpLM+pbRXhzzja8TmapKElKRAovpzo/2JPwswddEqBzSZzjYeqBUIX8Svc0rAJROs/xa1AoTjWeJfcCrivvAz7Sbx4Atv8TnrE5UWMp3xjAyA4vELm2ZG+TEdK7NL0eCVQRl0PKRUGnndbI3liGJ7u1Eh3cE6J3KEBRGzgCoZuTTwEdUWf0Nt1H+V/EtjEc/EcCqauD92nkWcb3GkhM9qwx3NqGB56+VUK9U2W7MWDIQU0oFcOemUlxtrHQU0oKIh02jllGLFITEeWdNvHqA0iLgzF9eUAWhRd6AHASgYchHoSQ1qg8svtCR5kRd9PzML/oM/2dhYgCGYE6yq5c3QEO3l9Mpp6OdHIjYmvKSf+fwbA6mJjRYTvp3/bXtG+niDrbW4Iv8QLtY94C+t0GBE4NfstTyS2r0rOk71iAVWcnNQirnJkfoyCsZLAYzuCxm9f2AEUY5Ci9NCHJNeg7SwldBJZEgppC5CHlg80ByXG3w1R5hl6NYzYhmxmhJP2eWzXOcdkRc7UA8DLp5/GXkNskYQjVF365/kDKogap57m5OGFDmi+vCGyZjXxyTxEs4GiCC+F8bNsSTz88i8//LYNR1nPfE0osbl4t4mkrS87SfKzF9JxaQfvgTk3adCTbOT3XZqQs1xy0jAgntbNsJBCMUGMDnztVoy2ugTMb3zO/qv9CeeOrIMuDEbx6fpLVxod9zWhwGkxqJm7r92Z7SYFEWEzohbfgfKOkeUDjsMHzPzK6wi63S1bDTzSLk9JQm3SYD6acvjkWUXw95PnpNM+YcJ9f47l97oNhzNJ+EM5qewVVvzx916LC5xHrhlSX8I1GyU8KSVz05qB8y1ryRo2n0SSgoQisN9V79VpNpb97PqNKuoQbWIg1SBklVs4/47Dlhbnx2+Kj5ZQxyBr8GEVwMl7XFHms4lM5MI5naNcCxP6JQT41Og20DLiqIRH0oNpB6aUJkU9Tsj6No3EEupZ+k+wkFHIDdBzJjO5PULXSILVbmhd5d/XY19fLsor4nGruSHotZqHbVzsuXUtTQpCTlJMIg5LB62j4hYtEZuHe+eliJR8ejGqEZEVJPeecfVN9Zj1b32zgEQkuTjDqpcRIfkNvPmR0ddvbe7GY2ekjgf8w24NTEHgk+7NMVix+HC80rdB0wbOfCOrYOSfeCyxMb38SJbD0jkDvq6pIIaU/GfndXemKQWkG2G40tJd0BBuSMMQ3E5/OisCTTeRGdWscqO2fszboUPUdjhf5zrS/skQ4HmGzmuAop4ckzbGKW7/AfY1LK80tGO9Qmuz/G9FAHoIwQfOXdypA2TyfmhdCHYD4v7nDRHBbPfrfJKFzpOxULuVP+6aJ5GtOr/qlF9N2Q5IjnhwUyyT04fBOcqST+g23yg68yCCh5KdoQjuLsQkgn/9r+XuTZaLpBRA6tfSkHMYrTuJ+A9Zc2d1j5DzUV0zwqN5B+YJQKmn+esVtxL36uUQO+m7M4xfgrjy8tBpYiFFyGyHtH4I0T4c69oTP4bq2nF0zBWhf1Wk9N5SD3NzRoD9w8K0WJ12ugZGUOYitvmnX23QHO8osBnqzi8CxnHl7qS2oGNP+7DrBVeRdl0mUdyvofCWHI+p66e5jbORLJIASUqei9OXVFqk3juFo9KKP0S0dhOxhCdpMlAAGviOQu0uUGLOq6BRDNdcQRylCBn8WQqcGEUaC7TzbIcrzUE21tFRRcPNlAWoDHcTE7o1BPNQba0PeLpR6o05QjFY529Q4EpB9hTVx0QsLppehA8KBHlHAZFpZpaQzoATLsq1zMl79KwM7GXLhIeFY36mLDMlxHTZYqtRxAClLb2jUwkKBJrYGpmIo2AaZ19ZE8eoDN7RRUSdRBI5rWKfRlSplfY2VSHdEdd89r7KooBo1f5oBQsRkyNSLmK++kCqMtY6YShz2qQY1Ya1m4xQudujy2zGKkQqXG7IDp+jefzUwlGqKLce1p1AeXKoi4RT5VvuA+xI8s8CAZ1oKEXWPOM6kw2FftZBQqpLVy5qsTWuKNLipqtYpb3883pXwx8nb+N2NRY/PFnrCOBFfV4KHKYUJcPMwgHe8F+j1eY9VDzo7A+S3QeUjcuNLqUc0YQqMnNV+yvt/ziF7TN47QIzb3ilkznybuwKIoQ1KLF3CNqYOvMpiTs+LWSoLdoJ2JZY8vgQyGcSPcaY49bxzPqABOpyU9687rPil/OVcN7cT6gVcvuZTPzZ4dtciKmEkhinDv12TtSIaQAld/yJ1MqI/zEcre7X2A3UWM3GOrTKVolWJSXFxIk+jw6zwA0ECCgfB35J/ZB7Ww1K7FkoSwFlj54UdxMSnc+A1aPYfEMef2CgiQZVQIn7nRxOElVu+L5dXLBzlzZ6T4P8mugTPfKESiVG6g1ypryRAxGRAwlT9fgeneIKz+67TDDUuw6ERbqz1eL43PdGLjl0B2YZSpUlrpj5LDOAN8rjpJe9TC5II0Zr5FwLF57L0x9Jj0mFiz4bBe3qqRxtBWOxlr8yQqiva3u1enreC2qgWC62Ti9cBkJVXGAD604HqRj0b0wlFKZuL+cEZF25sBX2Otwi2KA7lkyyxjVXyEm+MwNCJhT5aPuNV67v2vX9/8am13OUHGiKagT9k6iBg7/y+AxeCPL1U6Bz5lvTe1eFLBpf6wSxPAdeBWjOIVkNb8poY1zFAWYrIndxDqndn5ofRAZFrLMPq496uz9VilXRLM6B54tfArzFGy1ScH+zaBUnOXhN40ijqdaM1GHXad84FRI48E9m8LQWR4u7JybOo2PWdLDl5wjpgL80Z0uhw+CQwWpqCexvrN3x6eBbi3WUyNmnjF5erShzxlR49E2y7PlHyqJvh38Y9+RhEAKyPGLw/FSbbvGjsmz3AzHFMjLxLXo72Dtq/WA3m6jM03z0oKG7WKNwzrU9OjofYnKAqkMDAi4i1DrfuH4uRSl7Wc1/pDOXMJALkvMyidsi53thbD9Leaf0QpOrWrb6EmaxvmVVM+O1st4y/dzd5QEMdXHs6XkNQIqgztSWC4yNJl/IrfxIpkos/8/PBfWfWE+ItG71jVsGLUyiz3N2SDGjQGNUk0Sd7WrSM1fxYZUDzCAJ845u6nGwsjLEwmWmm34YcpwlLvRNgfkA+WXb3VawWpAt42AGiA1LmyfYPySlyZbpZNjmzv3A92CtLmPfz1MIvsiizcE8ZDpe0pBwAhM+yCPKC8Orh0E2EwWrIq/+70qYS5E+0z1VW/M2qy1DeKC1VCwPpIUfJ2GvggECkID1KnLmLpR0qNRu8+0HyZNr5AAKelG5ZPlwtQXmQC844Z/EO/7cCJJPzCdD3HBXURHhtje5tz3X15b0PKnEUGbgaO59qwlUO6C3wm1hBSOFJeWMREzP6mMvwMeMHshv5XnrCNO5hzvM8J9kzmdWs6H3xfNPtCHGehApHBag/Tc2zsHjV0goZ/7vfaLvwbCOAoVZfo0ePWCN3gmpUguipFKZSgDo/TDPEr2VdH69yPmYMqX0337AJRD7XUakB0PVkCKKAVAzWa4vqcHEbpCerVfosgFYogc5BtWn4ng8L+dNbVKMDtc6vYXojyqjU/OgBzbSeSgjkg88rAY7+/xsQtnL7JspZmVCT5OAjATQ9jI7yK7J7WaahMnqw77BNtnnA/XoF0s53WUyhRMOUIlrUANcl//dwDWwrTXvNASboBAo6XfPFZ9tC3OSh2ha42klP2W79taDhbicRbE0utQn9dVzLII0b+CxOZ3SrRQ4SmN6TlSTAEDKCzbnD9RE2MFHv5eDSOKwL3AXNET/spcw6LGh/ZaQvI79Ynk+sUUfPSNl6AlllHXa8uhKpwzuwe0CFbCCVk/UpWH/5wIEaAsUDulCbEGXgL1p6fczjvbvCX53X/KIYHPAkEdgxlLgdXK2aI3rrKK0m3eR6Pt9wvE/bRAlS46m7Od6tjqDO/nPbi+xTe+PqxPJ07Yktn1LEb0R95p3MI30oHta6qzDayn7OYHaXTTKNEOyJNcs3YoD6MLqw0jssYZBaq6VXZSlrirwAjcq/Y+HQ8p+IRdu0NtsMPDzAMJ3il1KkaEjw71/zf9qt1Lxk8oIvPjBF0oA9sYtrggc1Aa5EPnQ9wX67WIHNnkWPWjbIQddj/23pqBj0efOfCB7MOHAXfStB6HfAvul/mlPPH/WE9xhVzAG5+EuBjzKX+JKozmBwXXgZzfT9JutwVNot9EjewGEnvsY/znItMlowH21SW3ob/f7pBNo9zw6caf7JGBH+FBs96gzElwaJW/mq/t5fXZAvWHEzn0xcmpwo1baytYO448YynEXrKNuJFeEuYld64F2S6FaoCQVoKOaOs+VjuUkhoOSAbcXC0Vy0Q57nOt+sfu2JnUvMYzMtxo1OCCxqgQlwvoqpYD6+X4EsR1V6bWcnQJafU40+hRLHJjEey4nxkuUQynRkPAwR0rjq/Od2/42hTP9zmR9q9GuHdMY5QMTt55OpG6VvJ2rcR4ArdzDO7mMCoC017Yn+2HBRkXr1jcsN+LN1NfKx/I/LB3RY8mwmBHH7uKiLNoDXnPuIsm/MN5GqiiCcrBJBnAQ9ySm3MxtvKwSAz5+mQRYDPe/frjRHsy/odMPTX6ArWPegvkX7iOyThDBS9DuRW6HBwTzP9JPN/WxOAksugiUNARyXpWvTWzPVarULDFRL5sdQTduWIv85GK7e8Uowlk1B+QQURuKNvdTSto+qUit+NpzrdQ6y7EpUbdfCHXfx71VWZxYRHv2YteBdpVPxzH3iQ1LwJ9HuhnP94wbLc0VNRJYunHfxaP8XbSAm0rXaaYbeoT4VO+4rIumoIJUZTuQdBGey8JbSKCKN1tIGc9kNqKb92IrIdWj/Lv6O36ezH43tFGmOthNFUTKHDxxszJ0avj0h7+vGlwHyobXVgcjnR6PgDcPAjn9EcC4YiLhWR/6pIEE/qVribCpnSPfU0fr+ctbqu3L6QDFPLL+Vn6uufeQB+Vnse7wF+PidrgSWsVaEEXUT6rK6kXBSes9iJ/dHO/vqMSK36UhblAuHhRkTyUxkV7ZVKrtUIQlXa2vOi78fhuUy04BfvY1Yb0CQ/kXsi8YENHKIKpYVfYvw1pwdY7Qyh6xs8MvfdeJZ0nV1OZJguNbVAMClJvHyt+Rl9hkk566r0YH1OVIngpkFqp2Tua9za15Fkae6qTRe6YITlw36gucsV3Q6NYYQUlLBSV6KXRpnEVIgHy53HC+NSORFL1RY2FMf4n/zFuMEPRb5KIvbu3Ul70a25CUbpLIui95otoPF9XTXtjTspXn7UBebiLuq4SkcOo+ixcdncCfCI3CEvU/8/T7feAiU+BUH43x2iTlHzTae2Z97uNl4YqeLysC5cycLYV//PdH8pXUfnLunZDg1MA4K1sXvMXA2+FQtLTo8WghF1383kRd13UNN2yCtbSxVb12BWR9k3DLKXBc10YE0IYYdX9H2Z7eUEsEghB8PzBhC/5T6sD7BGa7ywBoD55Lts5snTs791oDzK2EdAZnH3hTCmeItUOX+UjOpwO5B9c9lE3j4SMwIEEOhbr0ze6CXzT7n0Tdm1CRXb+TjoG3qOeE8nlPryZzPnKJD7gkXwMEAyy7DNGRk/jI5UNMILqlyoB8ZKbbbWcYDetVv+ciEaM4YH+2/u0BOQwX0jvx7k6PGw2bhYnriGFQNk590YGb1qc6+39pN0vJ8ACr8R5YcuAb6XUqg0ziXh0MBXigRDUkG6XoDeVLedvttqRc7A6BqcTqg56O74jZ0IeSAUPKeR/reDeuNAQq9RCrBi0cwPOiQuW1xDYsmondSsVemF7DUdFlSIG4HrQ9bpaFmn/v4lb3kcZtD1B1nBENBzU0GHqbFngko2L5ez69oscGP7zD6b6rK8BHAmtEKlQ0T/aY4vhe1fZxUs3EB9FFiSHmXNTJ9PndIkFe71cc7WmsOvH8+m8fcFtYAxn63XhVFlawXZv+4BYJBE7EThCPR3yhryIgpDaTda+U1FshrJlLOCzR0siXBbIt8grSwTgn9E04GhqmmfOWmS6KGC8md8DVejdUVRzRKMt7Ap2t1JWHtZM++oeh+AmTqkoBkTiEX02btVUKiOQ4adFMQzW17GZHQF2aGRTykSiEO/nE2V8aQIHnvIHL1ENc8/MtCtN0zcyrEQZLZo7dfAeVchg/sFUuon8Ps3iv43feYtPYDT5F0UZSslXHWX1oyYPWpe4V4heUj60o5b/xpbuzeFNTzd3YlZJkGiVd0aKi3ejFSWac2ng8Ba2F1L10YeU3xzqc2Nx6gAEo+4LdNNKTrEHeZkUJOALxZ7dw93+mmL6DCnEvoeQi64KvGDAogjgAx0wBEU2SHL4HZKJYp/LG0iwl59YlhseakPOoV/7PkO/qrXOvkCsoADMZ3gZTD8kKBkhi2fZDKQmu4VD/eJddXklyG9I2aKiGPWyzhczJrbonSArAHLgiOAc7dnnn0DlNtyI7dkW3BusPmb9z2+KlnFOQ2JmY+Qb007/ucERwU1KW7MXMJ7GcQs57F7If5h+4mcEb0iNHJaf02xjiRlG0vAw0PqswmRxurfp+UDLjepqgyw3J6NLzvC6Ds32WjQSnmgQL1STqvIZEC4TvUBm//9hKp0otA5MxH1X/dBrVp78vlBluhNctSicmXn/i9SkUtcY+a+pH0H8lFYLIk762+91ycm/017pkXiASHaSddGgxsNz0O/u6kR7aofrcg39Z3ualfZE/ngo4dcogmbQA56m4/1yAy2k+UjF4k9nXIge6Jw06vHWynMfCHnGyUwMDEU9lpb3i1/QJXXSr3egLVw+CXlnmZfBA/8GpDtqluyhnRSXmKxsLiarlA+QYsqYpdVmp+dshEp7TbTcpzCMq10WbYhAfu1ag3K+DRemMrB0FQoEqUFc4hm4O+vNuo2tp4oytKwDlxsrdydYFo9ixbBUnGd6RMrKFzw6plUJdJwxTVIFXn3nX7mM4YCsg2ws5gdxHPruw9bz2CO+grPZSUlpjhOMS4aZbFe7aVhr/lG0fKqlngN7HNAOdE0xQy0/5fbRxwuBmdVUQx5Q+61JQupu33u4yuHayP7qT/pbbuM6Ho7Fs/ZgW/xk5vdQvzxgbQG4cy8V8MWHpC79AGkNJIBLr1dlgTozXn7ICAnTU1G0DcFVqN3zxASJiqCEN19mt3OvOT58o22h2CFTIYQCW63nV1f17W6+g87YE7cTXqwUKJQfDyeemN11t49/AxMIjW+O5Y0UR5GkdQeQ231649qxSJOt5eqi38N/SsW2dbF1f/HUpLO7QTZUikAp1K/mDJitXPd06ZuBdiT2w32L3rGYNJEYB/D+w7R54ToAezbBNim748VsXHrEpLRq9eh6di5a2HBILAbrmE+M6pQUjjSDsGiyBNO1vOXoOpLVfXg8SGq7F9K9sb/2Rsz97csNHt/ETDn8O4XR/mqXRHpxsR4cryTS9b6+DOlgb77PSRPRhWd/Q2h7RqeorJfg9gizdUo9GGMP4Kvzf0t0nti6AClL+aRCGPcD9+xt1+Yvh+9ivR6pi9E7k7M23LNmTy1FGfrV1Y8oS3WvKAx+OLxwjTG6wJ05U/tzX2DoLGUpdFHnsh1bTqMZ0PGdl4RAxOKTOgIQbnLfJgmQt37iBN93AnzkwuO4ICe3lT1VWEe9iap3IiuHkDgKre5saEWsSxJrg1pu2aemnKsXGINaUOg/7savRH1cqGvbJm4b9GtqM7thv6+A2+7bY5XbD/lCvRNrabpXCZAy5uzC/3t8c3lKsa6cXZSbTN6f9J5a9khFzJzscmIbt1etT9zqkLRH9eVt4MMXo4Aj6bLFUnbCM+LkflxZjDOURzal1z7kR5QAUvWfm+lIRgRW0yXFeBIicsza+roL+jXZhlLHU+AaQiRE5SIYYPAypQm4nXKowSGP4VybbijtKimQntNgVMx//AKD4CckwtK6Uhxemo4ClIXdCw/3EgigY5P+cRnmlea2GuGC5fmRMTPCU8ZfmXUEUPjhuG8KKxc0q/kiE/Kp3LaOtQ3IwhZUeaNwQuB6DCpSB4pTbfAwbcCpN951z07w+TK2BLkAMT6Dss44LVHjQG49Hei4PhCJSR8TKgBHzvTKx/SxAI69l1dxmPSpgC7HCZxicXmrSIgsHLh+R8EMiCFr51auzua/ABOVUyO7mZt5DsoS/LN4KrS1EmOobj5k7TkdBuwngNHX59yyUKzdqiLvBixFVW4KQlZbvKs/es0sn4PNgMFtMnn04WktswKg0T3lKgmqzaQnKnH6WkYC8K6/q4rwCoKQlXryhKsMx+tT0ZhWpPDqW0MFTOLgVbmMkRe4pZkS9bYd1NdQOIVxTPwvDMWsnzRJooiE4jydLHJZTw6pFYWXkVY/IzXrub0ed8TyvLaT94WB0ERAvQs/07tFRPE5+v+DmtzxllpGw0m1u1BBSGTiiY7GlwraFZswRQVz4Kr8ADgBTEUxJvLGS0rv7AiFLguH7izPHADkqsKxJ4WQOxtuNxvqDyIRBcnbIMmcfn03X3N3NI7RMHjRBC1rrdyyKJBlmhbphvDQHz2mIHkyDpN3RljGwTjPV5Z1ktjgSWl8o7GuP/oOdnXlowaYqLR+IkL6ByDDKK4t/IHptXoeY7/TUHHFKRYvsU0nqVRS6E1drc/zEbX2iF7KGUlDY/NGX7M9+MmSAicqDSIpClF84c/xWDoCo1UgZNF0AvvFe20SdqqL5fkSomK3NqAM+6VMhgc4LSSToJQykOexgWFUpz39yQgP7fQlJ+Ms6JExLszmIBolnMLx6MK6xsLlb7YWChAtdHTal27cLLsELvmzOc0gfPzc/J7E2KFlPFDyTqJtR10+67R+Njvm0PErObeJyNgcBOY0yMr9xO1qm3N5koueLe8qsmijuEkX9GXOTUnF3TrTzsKs4CJRxIvXFaNo6GOpo4OVLQQ6sB/QumDG9OVn6TYxq3D/5COTv0qJ9/Piz2qTwX2RoCPNdJ6m/ofGy6b6DZ2LPUNSDBccbjuLH8CtGJ/Sy8N1AA7omRKnHKfjqZIKgsrPvCxZcd8cyKu+d6SsKdrjsH4vlzM4Ry71TJrHuINDnuDgAqs6unJUM+0GrZSe6m6p0h8yUcgcvciTOi0xp07lOLfX/3DdrPbaUcRKX43r3pwVKrGOJkPNEt3uEulY/jjU+LI5hA/Du5YQvf90OAmLyQBKP4W8LUT33+Cv3k5FfGN9QxLRotaES5H2UkuSudH3ltlBkNG0JcCJAtoiVp6OzXugpHcuo0o6UA2KqlvzGFFvGyBC6r9u70hCOwBRL3+6Izs5SAIzyChj8tWaWcLhH3F1UicY5zU1afxGeGB8CIUd+7U3KnPcTeuh3ZPavTcQ8npqbKwhWT3bYZcwDQ2dekYaVi8CXYxZOHOOy5lcbl/4JpIJvlsPXr1n6cY+aI6lE86kezi0QY1P4Ch6KlNvFXbGse2iETxjmqsgifsMoVsQmoAUmTWO6VCgv5NBnTUn744A6BNBqCkT9wJoDvT4FlDqupZ2+0lMbEhQ+FzHU8hJSSitxyAr3k1AfAyDe3rW4r3v4VwZWLu4/2AcWfs02mOnYYOCu4riJcakfF/rPAirZ3zUfsRvuW0TzMkNg0gY2co8BQmnhk60oBGGQoP7o2cfVEYx3QacQ6fZsq7EDbkAzX2GBUBKK0ZA8beYJ2vJak7PR/wzja5+NYmkof7/59r+AyAOgukwGf0rpisuJwTWFQImhiI3/Km3pUmg+Fqbjk698f+mfhTT+pqb24GQUlGCAHf7Og6oAHZJDKuEx2DeyPF0eVzeFKSplqtcRpeJAuYZlRZaZhEDC5VjBRd+4d2VEte8777cDdqRZJZSmfXlnsiEJIC7PLVvzyOYE0/F+9lkfurgsPE29Gy8McbAUiLGXSD54TD1I+bpy73xle4B0koQiF4WdTyDAowU1lY9dDoIL4nPqSDgNWKNlzkAPphSGfIMe43/j03qupZeKgwJ9UZFbe/BHjPDa9VbjJcpTD8uIjg6M5ck6jMeVbTIUIjrfMnWQIdKaLzvmH1IW7cAR+Y76n5xQWam1PWzQPvG9aRqv4sfDm5qwSmDGAU2DBc67I6thxA/qb+zbiBwDxMFtC8z5N6md3ooiKhG3XPgAsMUhT7bOMxjfLSh4F2VjQ69FGzSACYXnbTdsyQxip8FPZIlQAPInYZ/RbodKu50q85YBM2vmiYpGNyEO2+wpaOf3Zze7xTnKdBlpGg+bzk6cbnF1at1ufgvyuE6tHrFcLhZGhs0oEH8Hah0G6YdK+LA/pWj/Jsj/rTtjSMikV2n8AOzkZRsdfZbpcPXsdfXKFbhpqoTHM39EetftUCr80bXu8gHcRWbKkLPFUQtNPFCYZqjGPTf4T6IFQ75JtOQFMuC+dorfWnLtr1Hqz4pcsWhL1gfuvy4i729Bv5cPRGrkuKbJDWedu2K8Qm1h1ZsO3WUSdy/xb4FdWeD55sFY510BRhjyYlSwuGtbjmeyj9iuZ3Vl5+Y7eYvCkOIaBQd1DjD6ZJZ2pf04ADsDo/sTzEa7hdNybvJvC8GvBYth7Ndn6Pqe0uLH/ylZiK/UsMHWjoUOJunLL1Cy8H6U1jingONMGr0uzYTSH4YRok1P9Ygi4aDFldjn1QAq/y7fIwFGl7OYrXhJyOaqE37sJw068kkjrJSmy3+NwlMlB4l1JiM6WhARVEa3c0ASCN+S8RAIgUBU7GVXFsWxXce3XvUfpyG1m3HnzQ6+ZtZfmOVnWTB10yI8BfgXKALLItIktya+38voHU6ySmXxc0HLcROs/kGEVBzmp4G2Es4oCSEcom5BFGqRkcM6LqKp2pfxq3S+w4zRjFuRZoknpM6BXxrwt8gWgcejygnSgrBjwFzAuHMOjxXC+wJIk5Hv1/2GD5jqEjp+9GOyFOn6XZA9h/VdEw6/eEoUKmskZ24NfxjS9xIk2QhkOHg8Eddip4Ccokk9eKyYbHraJL1e8skTjtwbKybxT0E29zKca94ejKb3LxWXtzPCTzgF30B66uTr6wGelQ/+BQnUVTqPeULOchmk8C+CNHjLclLQrb+4kYhIpuKEFtGENmzamKGjrQ+8B6JjHTkQNEgv4FzGuL4CCJHuzgIzHLO8ZsoeoQ8KEJAWOVHL9bM6rEf5A8WxV8GtwkCnFtDJKYjKgGcNTNBrzA/5VNEMvCCoXop0ERD3TuZ0Grs/9jtSd8KNmRNtq7/aaKQLfzE60+7DCmbLkN1C/rxVTOA1+0hl5yFyrxKdcaoDK8ZfSW7ggI4MQhnGH3yt8OWX1p8tcFURvOdTOyxop1KXqqwgniySuTrx0si0QC1X20XQFBtB9zkn6l8JRtkwKx94uOmVM6PaxVEe2B+BATVomHTlYb9LR2opEkQ4iqi7hGWEA6+XooNY7E4KWY7Ugkms2PkA2Vjuwp0z1hNW7fTukn985rbMogE6iQcw4kRjkCcHXVExCoDnygJBT6jZSOjD7L6QgEA/J8uco5oaLuf85a6m6/fwiwjourELltXagbSUsUC6q2u9vr0PrHVPO6bUASqhZ24xScabn528TpDo4AFau2G1CaCHtOLY0uFmtCzGmohRJYf2DmLIK/9YFgFMuNNqoL1bM+umwiuEMekQFJCsYnIPmWwpk/DZvTE6aJs2u53LLA0lmcmaNgQ9kC9EmAsvq86v8xOBjN2p/W5xRfGaLJZbyFAPWfOhGiP79T02K0i68CMfABsYR3F8ezNJDFcPZ7rO6pSSgLEMk6MasgJyX+75K+LASm4PI2e7R1urWwued/OGH3zNbdz1p6OTBJKK7pdqKHdHC78bevAnCT4/cyjJcjnubbnhMWaGx6FahGUJsMXakhK2Jn1NLtTTCVIGY/23xMRRmnBHB6pRT52t/Rl1OWpHCQvb7ycLC1zk9LCBcpm8xYtIGDgrI/PYKVee7S6OkJh4xZuggIQNLAHqlAT8UWX+6pkMXbq4UyhOigKYQKE+3C1o/OVZ9ylB0v3RFTLnfbDEowLzhD7Ot2yd55jRPh6yD3lyJK0OuEp4hUsLH6r+qCcgyPyIIcpJ6vs7lxf4Dzsxmqx4LhRPxfl4TR8SgnxslWMyzfkKaYQzEH6WJn+3e7+jANc0Kbj2fQIS3ktCMaqbwfjgXT9ITKvL9FuBt4neW7uFiMs4vARagz27CgN0ow/IbciCrRphksxLgtlVLia4JxJFugfS9l7S7xThanNfuIMRjmLanExZHCi3CLA2dCh8l5bwd/t82mA67OZeClIm7zEhLZTYDN/8NvadDgqgwmUi1KVSl4w8+tq/jxrvPpA9tleNVFJv7fTxbe/UChffkfMQaitcgr0F2bshfAqy4CpKB2bR6Vl4F9v5W4XXIK4RQz620vufbGh1NZbKwyMRqncrrlpqnWkA3hjYbrTGsOEfF5IOZSuPgx2k5bfn7msbeiB/+bKmTb1wjXRJUe0iAOQHeBfT7B/6ayLC/CDNOsTDf5gFAEPrL0adBkFtB9HFBHalpGojhxmJRqvdL5Dh4WA7hUyI7ne0NxE3XrDsT9qcJXuykccSp8wMYNdlhb6rc+esjGJwUNuDyXKhqkc+EegbIT96g88d1dCmF0lF/vNLcXF7107MD7WRY0hESrxNLAHO4/ZsqkNFa6KRkotXmCONq/jEnhBTw5PKZOBKZN5BLK7uH0vWiGxlTMnzf8KdA9/tt3Fk/m3MVI2ewNLjW61AX7ddQU3Mmi52I0qjOKjsq53yAKV1JQYiG0KCgKQXLFIpdCzX1dy+e9yc68fS1a5PNPDQgb2QSgrCpDBuO+e07vcg2Qm0J2ZgFCFdnPLmPTImvyfhmq3vaSq/CgQ1AIig6p5dcI7/we1YpsKuXalhah9M3sI/C88KjZiAEK8Z4uX3HQb2syxyoz9F2MAFy3iLgi4A9ODJKYYtcOUCYxrofTqTOz0qsY4wku9YHFk2NpqS9omCHhZe3CtFSa2DS/KirRaCkrm3RgMqBDR5Fo7NVTMQDM5EwhqBhkbmuWjUxUoHY1cKqY3c092BR0ptdwSHkYEzmC9bT0LCL17CPwzepaL4r8aUQk11keYOewy8+5qXwxxPewbXuaOUR87YiXMOCLe8i4QwHE/8vXSpLERQd7g+HJCQ6Qcv0/1gX1NinoYNAxvny50O+wOOERISpZ+u4Z8X6cPdLVw6Si3Hb9YhqC/FeVsYOsAA3vHa4lbLeIvnuD3ZDj47ZWKU1joTM0vdVTRLWksDp+a0DL19mz7zVtKy+MQ741re/7OEF2rVdHrMN4zB3hJ0s93+SI+jTIBRHmHmDSfNfakG9eWlQo4a01yDyRdmPccDEsdCEDPr9gROQEZhcApz4SnOgW8TsUu0eVwX0DzklDyruF4R/TmGA2pfgaTcjy6lfzRCCcqm86Ay1ax6RDe/Wp3cc4YM+o3prHXqvry3qtd8FWN7PatUIMeXs9Jdbxed5qWftxbetNsfFQ52LL6NvPns1xOn/wnLL+91gsYfzzQgKOQWePgbLkWmdSsPkVoRvtCu2z6cVFHtLBC/L+Dv6sKVWN4g36C2EE6makRwPSO13iSUfxli9B8KYOaAGT2iIuHrKlz+0vHxHFwGmm2QHuOiuwgWgz6pSKNQTioj8x61VniuPIn2ar/AgOgyL9yz5CaV7FbCwJaq4CMRP7vEdjZeJg3yoO/Hs3VL2amLAW0P/1H0NCszFLU6PxLFwSxPSJI7CJkdzQPB6S8ISMcuvl+7wzD3xYuZnMpGAoaLCKkI8U+AbsJbhP4Vmx5KUeHFQ+ADmM+eWcSoxQDHGnfe6SLwr5FcdUywenMm/qRmdg7Sc20hcqsFOxsYMsHFkfHVDX7iuO+OG8/gQQsMbEqkjbIy2MD2cV3t1Hcmew/n3wTdcWiPIrN2HtbqPIAW2UJgd4BN9T3gb/MXrKmSW82MqjXwIeP+GsLy3pUzIa+xbo4BKoLqD8jkgcb2T95t0aPasofhvvgCeQt4HJORVGfFEOvGRhO8yIaec24OYff3cs4Cb4YGR3AUkzoQb71NcSprpvmWD9PSaz3hc1biXpA0DAEhSOd5DVZnixrhys/tqvKmq2QZvM2HKz/P/IbF1sCnmLHXxJwUOw69BUqXaLPuD9vHrMSgXqD3O8q/uQZa/hUNA6iihEffzA1biPiXOkFmvz2ro2WeMMnAJx+ruryluumnYZtW8Gp6KxJbWbcolQAfU/wjXjfnmGrlM9eCxYzSntPIDiff1GrJUWg2MAEM38f9Q7+whdprhvhh8c89lFvclEJ/JFrIuIbPPXxctG98xowILlNsgW/n45qETx0OnQxgv6PsQEACaApxpzDRkWUiCLdYeI38vmwycySDTFScWXkpPppTpMvFKTjjxBAtoMIAkMPKMEnqQQM3Hk9boNbodBpkTjHGEAxLfUv9LoZ9l/ZG/3DATODt/pRB/xzFTI1Haahq8dlyVfs3P/uuBGXX87eNrC1kcpLJXYGGAt2ihonYoIvoEFhzVcw7e34nZe0Uw0+cV/kQTtJPHrHMnyTT7OE14d4aAgyfBQbb2x5Da9t8Dvyns7tAFTIluqGmUc+oy1xQogIXJLKLRuZAMBu1kZ7vUwbp8JNCdLV7qDY9j5t16KW4vtOuls6EOJNMwueDZmzbL9j8yV9JJGXNCPZDU3eHoYSzLEDYx7ZqM0QL079bnID4Tp6CW9+PGvqGArecDX7960s6RkbMIqejPmdawUEd677FdPur+OINuPtLk+WeKpuWAVuCFaJej6E6qwSF+ArkNEIMIEW83DiwsRPWHxcb7WgxhGCWJn2Yfy5I/wrf78NM8v6lr6tRntun+EmBaLs909oSEuztkw+psbmSllYRjOrxbLJMW4c8zVzAiwGw8O0cRA6//vEYSWlvTbDI/9MbBCFBFILFjzcO1f7vhXx3dQK/zhPw+0qAi5+5rZrB/RnSwtF7iQkfU6L4Apq0OhCDnbQN7wg3OGkBpj0VItkf4lB7zmTpPdErD5VrNPtBIRNbAk8dWSpLHQJcAkpU04ZNQGKB3GCayCpgOijpPpS7XuXT7mGw0FIJJmPDQDx+dRxgE7eEV8rmvdOM9LDJRldUfK0iL/3RI0+abUVCfVolOqTCbggELZApLt4idb6dq/vhVAtRSwO3xgLQCAH7D0jvKRlK6dCSdx0QfMpS303vAsMxtoABiAmYl8jwB4pcGP04ro/5pao6FWKPWYurKZPZeqjIlguHwwazatkpxmjoZPPsxQ0acJjhY+4lAW7cVQq/afC5A14b7qaIpdwiHgnXbJwT9NgxmNWm68NgbQDMCFd+8uy80ePPekvyk0Cd0m+cblVSya5tvwEQa0p5jB0H8s4Re4Vzs0D3KwfGZNQbvsgMq6G1KQwVIquszbqkxVKDYJvyVZTKxi7P2/lSEm8lCNG7aWDsREUSSY00xNImHs5m64m/WOdEMWi7WFkrwhZp32QVLaDGu00P1er5QxO1iFf/ibixQ3hcehUMcm9q5qfJrvxDlmqs13WbXBCXQQ/Zu0YNeJTMkydoCGzDdMPpaasFsFgCelnPCi2/LMSzOzqAJyNfMVm7K9SZyJTcYql/ZPRkPr5yZGbgjVLBFysDMn0kA6pE2/bWO8zBphg3BnwU7ZNwIFxPuFOorv6kc5bkt98v3MVtCZqQE+pTv+AmbHgQqYHpWTilJ6NcQUwGFAHM/LtWfpQ6ljQ969gVFh/gwpLCBnzyhofnzFlxO7Sk0HuyxHZpSmBIwfxKXUrHnbYjW3wflSjgkkz8vp4fbSzCtc9zDXUrtZY2KKgSGZ+sTXY88DdAan8tP9P+LOE1EdlmnkdWd8CgdmdH8z3BRvgCBEMAxF0fxHM3L5Qk5svTXrJA7nX6alGzTiKfQk74z64XDmlLqPX5t2QeR7reMxtX+pwuAZJeoxf7/23K27PV16+cqH2v4VfAfY9zwZ34Cfn097X0C2gQPcbcJbW/frcPIsRc7p6LVtLg9+eJZ9MLCkdJ2gfeNq6PQR6mZVASKf+AEAtRuMb1C+MrNK4V7irHSqNR87ehIPhGjBorCyMeyZNHyHHSNdzdiO0S1XWuA7veZtneVUpucP7LUkUdjeG75t+N9zXheGvoYye0TzqU0HVcQBCJUYmfOpzvMUOmhKp22vagWyR4x7gFpxSmRxNbsZVleW4r1OtIml3yDwR3QKCABWGXx4g4bcrWdL1YFxZbED0Oo1h2ERdGbEqwzJ/79fAUMK2zUltH+fdLVvQisZKsHzA0VX3iTNv0GfIq3JMbAbhxPg0wNOE50igFtWtLUczrROr87IxBvLDThLj/xxRNFARZouozQ48d/W5mNsmFuKhl0jS0IeWLajUxl+LP8p5RWvmQfe9vXn53IGxNphTrpF14LMeT8M0mYHy53Ujalb97u/MJz7BKUZU59IGlPAWn1PZ0dB3eqghPeYeZcMbVgiWhu3D38Q9TlyGhDH4kxIWwHesnm9bxuktDROqfTvPxAfeS+UEII/5y0+yfqkX+LJKHkAUGNloTCHcEmjv37TiBH630BqNs/SNtdyRpMdaAI2k6bKs2i7bHi4U3Hy6z/5++V3KQNxGgU3Wyx/J/Q4Lvct4/cBl6wvgnYc9mC0Scut2+NBssAqkNVvpQzTVUu7Ofs+4AqGpDQnBIAdwMkqTktDIPz7WfkocO2Ni3bAbdM+8n3/FKtlKyP44PUtMTID+cbQ74ny8t4UrcauLYn1vDfdxHkNldz0DruBT17WBE1lDLRDJOW01hDcExI/HMRsEc1uXR3VplTJVen51S+OPpVvus8PCKlip5wYmJaCsLe5QOO2K9clk6cUsKz5b7l8ENve9KMeEZcsL8SFVya15G4XhubvTkyucDtmkEodE2U/giEwkkqWKQruDpogmPZr7BbIvtDkO8ce86hc0XI6k/3aATu2+LsgnTuCD2QlM8sF4l1gCo/fIuXx1vUOvaMOgNOF3lDSRSAckogcKCx+I35/Fm7HSZDoTFIp2JegFmxc9ltU0tzeyS6d7DLOCYH7rc8sxWAFBHXRV16q+DmKHBwT2RwzNRUMTw0ATGe8rhp6pBi1Nm18nLgREVvFPYPYJut1EV8RS3nQEWbLoRCnCK2vZcDSLasl0pIwMlhoDk8e0I+0QddZPtWqqhp7YzUn/yK34VsUaXFlnV0+tirbbeHW1ubZygIM5BauatAPHTii9m/Qmvkfmd5zjFTxfQ3tuDW6PABRz8y8TQdZuxFuLe55BNXmOlWpDHJEu7yIBQWyyiOPnlpN7VbeSRMHKd0eRNh11pT7E9fKt2spJVPIrl9Pk5LDUc8LIOU6l6rkAY0SK781quK8Ft3s0+vQz1zBkdwrW5zNtn+2wAfkkmnmrm58TVDa0IL6DBZ7Up64o7K2YtqkcTGhOqkwgMHR9bwjJZ65lmocbx+nrYAaZj13s2ks4ohL8M1mKgP01XmgEXjRX5nzmAQnms8FFbkDrYQkbo79LOj2Jt/fsKewN0gtdkk+uxAM2r1lFjBevmXMaJdYnV59ME+ZUJUMXf0E1bW5uBytYgnIVoNURTj09SZawiiOWgCg8leS2D8MqtBJCWvWFDBJ4x2t8rneotgJMPlA3dyOdadNrva7lR5iX0cCWRy7fGWMexTdvJLHcR0DSeuwXGVBWZp4o522Tgk9YzF7Oet/WUTbRmFLXJGYz5q6MWhvhlt5uL05KYMrMrtx+eYAsVzTN7Eal4as8xmXkcBLEFmXoz0Jpqc6AvLoy/NW0hSwVwZBHvp6CBDtIvsL+L7c01+Zj+QVRhD4MY3IGo3oelbx/2zXW/AUUYIqNGuZnnUHGhxB3j+zioM0TVTZnmhOSQJRgJf0jGe1Rd9aP9WgjZ8Mq5K/ZuWZ60BAVZmJYHCC01MBpjLMb1zEKowHoB85LK92EPw+V+X7QhN1ZWFnaENDLeL7ckyqf3La34GznRhApXTZmHwi/qpsBW74h6Ogy6XL4uJdHuGr+j5SqIpUbHds/xZh7oeoLMZaMb1RTdZw/GPc644JE5uCS7bfAr+597pt0zawuX0qH4SLjKG+DpygeVp4JZbEWygvFQ9T7WKlGIggmN+GNJARNsvTD+ibhGZsIb1e1jjSHVomcj3DJJNvDOpHKbtE4lmPez/SaUQ2T/dVBnufttgpHyx0BUHWCnWdGsoT/B6m7A3kxs2FkUGOGWDf1N2CRCAK/CJGtE+/71tvjpiaO9srimjZxk3sM0yk6Bh8yXhuwXynN8Am+/g2JtXxlTUFw3b2zw0cT2tnFjRHVVCQCLrnMHdf3Js6qRZqC10fr5erDJPZzyVeV7PmcWAoqu672L5KfJUaEwU019/PYjwxQfI4fg0cxqiY+DB0NrO3UJEr7GYlESKX82thxknvbez2Rf4VDqosKTt7mNb065CbiD5JgAJbpR0ZlFWS242DbPkMkB3fEmCBem/bx5zKiM0dIflb70GiwPOLcI1AK6WdwHH8yHheGMuyJFj7dIPPey8/O1HljLMGprFNbwrtQzNaBEUy85t7913C+PCaE0IMyS3OVCIx3kDKeSFFtPB7GB4SwfepbbpcOYZzPHBGJJL0gkPKGpB/I/hIZcpULGmJjeoWezICEC8Efw3nluACJwcLwfMmCMUhQ/eg6KKwR0dG9nQ8+c48wB9TDflMZB5QFu9XtLhjUfmPnh6tcknuegpOgPmJ7z9Z6hiUOavrPlxwqsATK7mhrzRfndWIWM13u5quotpyirmlVRnGqnBi+ugKc0Uu1fGsLDced9d6ZjixtbWuZ/JfuDU+3RsxnMRs8MW3ZEsmGxfxth/Ehr6MkdzdVxCMjpUaVwthXOWCbUt7JQK0S0vQ0ELvHIsI1BbCywwR4ajjiRS3p4SErcuWkakrNOzRSwfeD8NfdKwYPrt7AM5KliO3fzqRiLRi3zR116u6lHIQlIxwBH+JS2GkLSYSD0p05TDcNdqA75VJ10jQ0a4leFX7kY7dEFqb/oi6Y1ElJ9KZ2X18hw1RgBPY+aEexx8M6ZFwsk7ecgiV0deZw6Xnye1/IZxtFbhywJvWU2lX+qDXXTq0rIsp1jawT+G3qGRpaw6mcdBg1CKrLMAaS6rA6/8GQ7jFCyH8DRp0ARO5dO9es4BHZeWjr7iextRLytF7jNgT4hEEiPYbrAN/EsadES6zJDKHz9/T167cunHXUzhNdoLzTChe3B7VcudlO7dOgTx2aqAquBdGBpFLEgMZamsGLrHicJWGziahW4Ss/uH2wcmtVNN9dPNk8HIY8qYFm7nKQ7h/BMmXd6W8SsXbDQYdOEOC42/NNBgTAaUA9web6KUgMHnrqRLmEvlxOBJX/8uFNHJ5ecQBlhG6SUkB8dSTJX/A5w9ywCSrksyGRzV1C+pndqno6PggAyQ8x2eeTvW94Dcgn0mMDlZj6F4Nk///e0UYO2ohDo7Q3NvX+ZAQLv0v/ZJ3jBQRDxZaaaombcQ00H7smY50O0A36w+69GUerB4g/BQ6LuqyqkQCpllPa/EaXHP1AW16xQeijO4aX1JEEz8H/5hBg+cvdfaPXDCbjIgqCHq8T2ndFMlJVmyUvZirLkbNjbF8p1pztmxj6ET9d4CzOJe81XZ00c87L5+0UQdSA1hXBGuUXDvpIADc/MYG+OjnLaxCJ9g/jjnu6nsYO6nuJM82Smdz+oq+4hxpz9mvEsGMgCpzjdTT5Uzne4uOyaiFhQGuOJhoGSygG7qi38Zyib6y5d9ONCc6HsEMRLwBGSF1c+hdBMK/n9cBGkuKVrFwdod9B9bWM/DjsKqs3X4+lBoYqdwYHDSlumT0u3veCBRzVRBdBzLVAe8ZDR9XiK1tqSKjlbUyo9XK3bp/6OXEzSJ6E9LFZ2DWnYCCzQQkkA2Z88TFWjSQJX9A8471IF6pLZXyexexWPzTkuRDRIAILTodnYTh8BAmR2Eb43LdkoMk9AWLPDbMovkGmVrVM/1XJC4JWw2klPncmU55oR+AvXMCK5w3JT8u1v0fCP0gUdJK5l/xmR5J41d4rk8n/EbuTOTHAP9aW9HzLRyl5I8KgXsGpYlpZ/PnwPQKC4R+czihE5xZRv6d6U53Hm1tqYlMZCDzO/PqmahxAT0QplrnakSFkeEsuFeLgJNt0hwD2GccsQviTLeWjciZ+vUTj6XiKFwTAL7xjotlJM/peg0gXxSogdOdssqeuVwiVVfba9dVgg/UKC2Sc9haHDvgu9cJ17sGHGTOCDMmY4uF557801Z1Hd7Kel176FdTu96BdpjBuAm4K2lqdcW6yRplC2wKJPmxx7E6uBlXrJkT4qWbl+tDw7+BE/pjmSSy7S8R6h/g9ymiN+4dvAigZGnhzEU10/pZM0ksPGBMeQ16s7MOILGhVSr8dwWuUjaBxFpeieKM21wEie57LlOIh/66ZeE7rysWNDL389PmymdCUWgr03qsffTcjJx6shgkplXwRNGseaYIpHgFjdcBo+WeQ8ZcKLlU5/ALdrnW9r1Mv5Pf1uSm7STXv1DfZehY8TG368c5YC8oKDO1/eP91VxIqLtjspgP+JOQ5slGvkhNEBkNYTRascVjKRETchBCKCkfNdQiUWtAdXVFHe+y7iBnsOMxxo8cKRUAyape3tv0y/4PL2Yr0djjTAfoJSA4i1ff57kQ1mE7y8iZCnh/nLJ8nY5UgINEsFthywlsRxxCFEvBqzU/n4Z7rEZtmVXjPEwohxNAYfJWUB7SQRnfs9GkJZX+GTe6P7ngU9kyEikK8ABPfBRolIfRT/NCAVdKJkcX/sawBHwUTvVpm9K7ccLmmeBQgKq5X3xaojGhemVXaM3CLkU2t4ZhkbETcywGfgMrQJ6Midus0Piu8vWQA98O93U/PVouIvMnzVgabn0cP6j/lEoN96mD4pGSgY2Z9+c2+QvpSVYQy5Q1XeF3qlvDPYD64H3TsnJhoF160oEUtWvjqUlk+H9v9kritNp5bNI7V5dt2o/7nr7ZMBggwGbB6xTl0JczBIZB5AKsxdW5W7xBwMKMC5ugM6kczFsevgOhX07GtguxKZmSG1K8H6H10R+6y5GVTlSNpsq0jKuGjByPDdvIhpkCGxA6yk0UO1AZocvXNrq2MbVSubFwRHpTLPnWr16VxpVlxqDEuYGxoWP8ixC2fE+8XCHN01dYaeonYwCl0R65SlLyufGBqWa8hyMx7tT69pNt91coJUodxQk+j8z8SMoIjE/qbO2fSs2Xt2kIiQ5TFHkyR+qTsIdctnY8EPfrbouZdiKYKHR6dHdgvEwM795mxxJ/nVTxZL8O86/bK2Ys9h8FiVXQZ7taJCt+ch8WIGqZXCxWoA247nJa6yPdZhFstzY0j0vbxlFFBuMsJ5bqUhmYMS+LiRLcvrFzJGtgwtANDu93ZeSnEijI5GNvrHdbHI9h36LZiOjE5yBFJZ64otOg9gajjyr0yZS1vNZ37RrnEZMVewSAUM8UBQA4jN/r6f8JvFRTzbkNtnlyRfcTxsGYEfMu3GJsdLYPbt/H9Mj3bzwpfzgkGhhxUqVfQmyu+fz95PvoTvMbWUQtj1ogaaPkpKFwHKg9ie2RJyupp7RsnFKcOXYmStL0C9B7fKwALRFVxk8sKMp8D8R+l5Z1MTsAOh8XA6Vozh+PysZTiiIV4WUI+7TgCsqHpX57m7ICEo0V9SVpHCg644UrBm+8qVcGxyWipW8woUqFUCyJAyRXfmCN7n7IQ7T/IZ5CDkfFZkLa1HIoOAbPb3TR08LhoR97LMgvzpLyAQ+1eKlHnrsSobSN4JHwMSs20zVj5+PUiE0fn1YP5cTyAd1NQ7/iFhixw12OdZVcindFkW9oHQIV04ICW73sv/kr3RWQrl079+5Yc/pEcd3/4Ib73sPOoVeDm8+yjKCOHQMnOVo/Daz9TA2XJQ708WxnUV+MaMn7F0FVOi6PzUdCaRosqkteKQzg5ynYpCtQHk5VcPYOxmz49KA0ITKBnF2fL//xi0SIuQrI8Ilsgqiy0b5ctw8DbeSq8ETP8Jw8lIV9UhMfNCT3B0OUkr2A0Msx41VTs66vEeI21QThl2nTDlxP0y+DStetfVnGCqIfMhG/+gYnq4wy9APZrbAewZNJnwJWW7DIOh6+Vjmmiha2ZAkMLEVSacw0EuSytygLm9HH9ca5iekBJD2WeyF61r947Al3kXjodQO3SsksQvrOHwh6cHiHanwhuMJo2a4sjAiIpqrhnV3g7N5Rv7mZX1kPQ9DVDOE7Oui0hsx5kMPeBQzDUfBB0mOx49yrVDr0IFd2LHrLd+6/sqa9bxssB1pMWsJNOaLqLN/mCXwkqxQA1XshomEsH9itFmLlGMn0HUiYOMBFhdIPSB86xMMQau69c1T41h5OYizbzR6giRuzC2w/RhfE4NKmeX1w+pdq6cyCNiebHk8bzV3SQ+xeTPMWl7zfg0j+Cu4Fxp/SJD08AE24eo5+Djd93YY8XFB6cMDgIGdmtSDJyUhQOOgraIJQoxHHCuws8ZUispmFwyvTLWWkpDks8cPhqkG735ORjCT46rK36zgVkbWEwdqQgypfRqV2XqW/XITa1y0bvtB6jvx/nvsSlxJV1iByU2mQ65x0Pxx9ftG+vpV1ebeWuRH/LBPsiAi5EzUlPYhOLcPjo4d34DlUwi8RJgbGkCoaBmmmVycPDUfjEL3KpTlTUpoofd1UO4u+/QcvdHk2dhJm5q8yBynP1AeUjr0fP2njNb9nhcm6QL+awoTqCPe5pWu4I0L+9bSpTERh5FeiLf0++TZx6HAREOO+k8Ni55jHuuqNPf4dCxrVbIQYUYSRU64qVLPWVSsHBOlYHVMR0R839dee1ctwM4W7Ay6E/nQ0snlwFej/dEvMZF6QqspLo4SKBl+YjSbwBie8VEydqotn4bNTBXV0VbXgM3bAPdsfsasDn+FQPect141c5tohH54UBfpXYFm83u7020YmcrJ9SawGdGDBWX9k3Dn0ldoPFXZNeQv81hYDKy2aHWKvjRLGXM8HQGkKsMVA8rJcCxMmIbY0WDTagIyFlYEDpB+J1NuQbH50HC5PYm0zx1o6BDVLDq+p7jSfq2z8dTfe7LQWxmZGRKC8GHGnUIFvMkm6Q3ooA1Bf1ab3L8jGKtJBhc9Myrmk5Tb7CvF7Ix3ONW8d/D2qcRNua/JFdISka9U5ov/0fQ7kh+sTOhLJIQ/86AgzFOMWouKDsEpCiprTsnPUFntngAkbcQsAmWV7fRrAmx3oblKye19QuczEA+GEvcUiLiBJ2Ap3LJn/hKFsHza4m1hYhphqyx1281YR1mM5zbjpoQEUSb6IS+tKwEpDML5qtLlKfCOM9Q+CbFCXDrhxrgd3Qc8wupwnKjnIk1PeBU+XLQi/nDGI9eZSD14KgxZUkT3Ck1w8Gu6/3AEqQxqEZSXXXnDNUJO2cUTEAcR44lXjTWUCdgfIa0V9YfbbtHg3Mx1IFP0JaGvMLei5m8Jap7+3YPRzFcGFUHYPvp9aGH6At+Ft5NnPG4TRdEEQGncx5YP14Oj61+9IeS8HpOkWlWmhLmK4uJ6TL/R88HBe5IfIpjdnJqCPnItGYDUHwfBKSO8RH9rNRRLmlgzcK6OvupiCPCEfCxuKFglAqehgxOpzETXIHZ6sQZwQCedFxQbojSfdzDhhhl0tJiOWcPxIF+4nBsjieRWZLywPvvMdhMdLHLU4Bc0ZqkuaTNsC2IM+JKMbx0RMH62pgI+q40XiIEsOXcp3/N2l6JhIe5k2aqbveXbNfBj8DblPn/sv2U17gkNyNBBH1NA0iWa2+HDAj/FSGVyOlycIoueGMzTnMJWtARa0dpawe6OOuRFjzU2l7x0OdvLkGBLKkKWGG29BaHvczBFrN35592i5JCzfF/iUrBJb55FVbbTW3GoMHd8lDbHGbyU89FDuHroaLryuRELKuzdFb8dz7yVcEdo5Swm9PkrN9qJJfPUbGgqtn/NIgPnp4UOEb3TeQ3LfAEYLB+9hTrxeHuWolNGkrir8L+ByTIbKNKM5CXdsFYBpx6bVgXJxR7Wlspd41A45Zq9AVl9K/c+YH6veY6DWERyuLv4xo08x6C2GA9UCVZQDfj6Rp9sXPGxavkZJBNvY+iEVN2cdUttcX2eyEzpEl8JeLzNdABynGFEeRucl+PrkCWw/lStvUFwe75Il6Hkp2PEqfXpbR2TswwhS/c59sxk282aPZZlOCFO/qRZAtwjmN0r6ijZZyiyz0d+KJUnpzLc1p+IqhOlcGpHvKkLD21xwH/kiHsSgb4SmdTsWpLv0IwSBxla8cyLAMlVY7CMB21e3qDMHdC8U7bLELweluPzODyCnObglYwCa2bdXbR0V9pxDbbPwBrP7AS9+O8MceGsOeAz1O8o0B3KLWXOdrP7+6VYERnuWxZE7pLPNkPgDQerqlFxXbMXVbs6UTz+O3edUIQjM2Hh7J5U8/PhW5jrFtS/DLPhmQnSqEuRa499MAsw7s5x0DQts/DzaRcpyByrKui0+maB7Zto5plEasaRhKwvSF7cMmX0ogUCWuPBqAN4DzLcxwbHinGgb+ON3Qk8ZMzLzQu2Gwl9YGj0bbNCm/v+uUr5pM4DhAfJERsgqi7KR8trzxLI3ymyydNlPA2709t3s5DgjQYqpk4YTXY43O/zXlbXkbP30wUNpTyDJGwfAb1t1E72qB6IICHtG+bjbZoMdJe3Sggpj7hCZETOYUtO3qgxpuw9aY2xNiNZ62syBeHihR0MXhWjPptoNC4a6EQwJYRXV87PpeeO5p/VgpPnODxRu3sboLxU0F38ByNYUoAxzBlGyTB2deYlSIuaSl3tWH5+JV3DFwtP6B2cX+jRHH+/OfDYbs5wrzedYhmIZqkSb7mG8pPFkBgVemTV+Suea07ZpMdv/jc5vXtF9kwa5+PSHC1qIZzyaroMos6TQVAPaXoefI6+soHgQShowuUb0prhbIdu+/xsxhF7/5JC7HUqcRblFwear/BQXBBeyXJJ+8mK+1XkMU5T9NpD9OhZxj37PYmUXO28PXmZPrE8+0ysj8D5uk6fT9zu2C2jmwXW1aFPi3Z2J0YuHtNGxxdnkCnPSQqpfo5aNTnl0Mj3b/Xv/Qq3OoPAt7dfTDn69RtvqdtGwAjY5P0+4zTUwsuVpSnR8BnMjfyjHoyvx0BfGZrktUC9RYL2QriyOSU0v43XoxBX7IoD5ReDik13ZqrYpdJr7E0NDLT84MZzXC0SjdBS83iklBERQbUGFy3S0bJ7CsolO3cZj8A25oDJcnl/+qD7j55ZxOBZ9PfdPfNCO/gvB/9Kb85aBXJk7zeDtkPWUTE7GjzAin99EPmX8s2fzw418BvrWN6YqRx64FPbSQInC4aIxyZN2Zl5xllgQUvLFjqtxhTZDAGpvZqpLQ2Z58g+1kkqCnDDYCRbz0zUpP+wv8YZxe2zyXQs78PA4qfYYqrPUlPa38AcIWnL7Z93CKk0OuLf7WdNoM7Pb2oKRVrA7xGWLf+GSqndJk387LBpgBH6FSBWmRcM5QH1Us62fUpsJgoMiyD5WWEpULoLPc3B/bWwikmN5GB/2fMgyG9XW0+VhYR/nKdioKMvleMb4opQ2K0WWXvjydc52LSQ+30fN70CQGV601W7TDI/Dg8jPvVRz3EZ0o0XPchBmk79tomXSk/qJRPkcJm6qLviEr58J+gFClmQSRAzw0a+fnU60ehULTDW23IVpkLuVGjZdi39SuIQXnU8LBCwWXO6kMx3GNKou5mqX21p76Z14eqXQDD+VpZeUdBSFlaNkZNe3TOH0oz4vg6scl1lmrdMmMnyLrqKK7tTsqzbNMW6ZeUgDNAj6ID1z/XxkETMYcfYcdOjCVSePBenfldFEJAsXNHWjr5FLl+y6CHvSbwfA8IODo41ZfH064zKKyfRf8BcqqLx87wPSBL3RJTcJaUIPQGnYXhBDKSQjkmt+/hI+y+2BGWZ0vq6ge946Z6TF0Ek40fyLi9CFQRvhTNaCuTkzy5q1I7iATt+epPDXCrzvVjCMCrgppe8ymyJ6EkPfFdm2xIF05MmM0Dp7zASw4BnhEnW057KDwMPbrr8uTd7Pp9hzOMsHijGXB4ArZjNAH3YZbTh4IEKgEZa7adKLPP+gSUg9z/fRCLIc=
Variant 0
DifficultyLevel
706
Question
A teacher is choosing two students from a group of 3 to ring the school bell.
There are a total of 3 different combinations that are possible.
The formula below gives the total number of combinations C if the teacher is choosing from S students.
C=0.5S(S−1)
What is the value of S if the total possible combinations C is 153?
Worked Solution
Strategy 1
By trial and error:
If S=12, C=0.5×12×11=66
If S=16, C=0.5×16×15=120
If S=18, C=0.5×18×17=153
✓
Strategy 2 (advanced)
C=0.5S(S − 1)
153=0.5S2 − 0.5S
S2 − S − 306=0
(S − 18)(S+17)=0
∴ S = 18 , S>0
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A teacher is choosing two students from a group of 3 to ring the school bell.
There are a total of 3 different combinations that are possible.
The formula below gives the total number of combinations $C$ if the teacher is choosing from $S$ students.
>> $C=0.5S (S − 1)$
What is the value of $S$ if the total possible combinations $C$ is 153?
|
workedSolution | Strategy 1
By trial and error:
If $\ S=12,\ C=0.5×12×11=66$
If $\ S=16,\ C=0.5×16×15=120$
If $\ S=18,\ C=0.5×18×17=153$
$\checkmark$
Strategy 2 (advanced)
$C=0.5S(S\ −\ 1)$
$153=0.5S^{2}\ −\ 0.5S$
$S^{2}\ −\ S\ −\ 306=0$
$(S\ −\ 18)(S+17)=0$
$\therefore \ S$ = {{{correctAnswer0}}} , $\ S>0$ |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 18 | |
U2FsdGVkX19kR2yGMZinUBCZ/1FJz3zACl9rOJ4+nm55WrqjM/E1E7XesaDVufWcw5ZYmSV/tHZUBtL8R/wGe6yEItbBh+qDv8aorDSfjL3yDaYS8YZcja6FInEhBq+hbFvtFU5GYjBH8MAM5Ghiu5Xn9wojUJuo3Hr+I0OGL9L6TfDcXGq/XpdMzIj6B4awdyuvhqNi5qWJBTrO6dY60apeQfTyBgJLrECqgJe5hd18SJQNIzqqPXHvJsQnNzSH4+a4e4+VwvoxHVvxj1qfa7ibV4QyaOp3OlTrm8CBY51u7KE0eySghqx/1LI8pICopddRQwA9jfmar6+9eUlo6+eK5HPvkw1bNnsFlt1/DEoC5JthlLkW7TBZJQ4BBwtNttMfF1yoMuw6QVoLpgFBrJsIfk/C5wveWrJ+yRoKl+S2r7OkgY1dnFOLz1I8nYwU7DzHL8s9TyrorIlMLIMBnFGI5fIRnaOo7n3e8IRDe+0AemnKGO5Dhnpzd46OFBLkDlzmE175yg39+IRrf6HvLZ16txMbmpdGi1JvLr5vQy7hfHfbFBLNlrmBBiADwSjmFcBw1vEkH4/3b1fZ6OqUqzhoWGrYweMOauERmBJ0FQDrvyhoJw2yuBWSbRkjKq/g3NMCe24/25nT5LRHp235owS8O3TWafugxFDZSN449BBUeeA1xkPaE5EZkLSnqFvHBI+FSthPXraUqJKbY3diTDMUIjkA70MFZfflrNiyydSmqAQTqovnDDGOY+dumQazd8NlS+a1qsfNTs5Mae6WDxMydxbE/W/3+vozdAyd8f/CC63un/pqaY1OXKMQBR63VDUzi+JyaVTL5gR4EzT0eQS9J3lJkw/5eGtIBsQONyBxUYndb81wdN67p8LWASz7ZJ5L3YxHWcggR0/9u4yV34F4c3ex7Pkme2+w6G55nkjuEWgq0exUpqhWBobeXptl69JhyQWl06vTXm4ofGPQa7FVwkboWTGpLO5hrzbFnO9ZlaAWyVcl5XjVK3B4ZTEpsvzhXuTSNVTla5vOvxwcK6rXLaxNKxfraqjxI+e4Lb5rt4SPXwjqD31U023sHFDfuyLXysuq6I0mgk09JDaBd58xNip6tXMCZh1nVHaL//cp4VJK8gSMn4JlEpziuic49CLGp/7iIVZWL3AmWTvpCHXQq5r15ijLrFeNjFEHWr8wdEx4fI560lcU8UcvtH7WNlox9VcQsbhbDWZ6bk9ywYEgsILPtIN9Xnw0dtibLF7mrAMa26y+0fDnKz7+4IWVT8vLKTRaUyAfct4h0BDWCi/Po0kFzsOBsC1UjGQ047pyIRYhv9o1e7hBvTTtnTUel3GuINsg5wlC9wjtSWVVAfJhTD2cpk8obVxynoizY0+WAYJVR97+60xzpeiqotuMKIrwY/76pKOJHll0XETXVsgwX7o3FemmZA1krtsuWnzHtAtuSDVAPVkFF+7w/99AevKCror2kBSaRqmSuPm4QMj6sw99vJUaIj148hOT7KAauVRVTBwFeUqa44rq9n7vDER5yo7yRogfyX0wbFSPv9Jsb7tk51c0eSOqO/8s1QdpuX6PVUfqOv2dVHCkyuQIJc2GWZR/kWi0SMP2YLSfOoO0KPeTCcoVZJdSdaMy0FKPm3AsuJmwvNQq8HROX89RhY1OdzF9k3YHn2BdWO70XbrCnBlBBBPPUyOcbODwkOeAkkDXuL/m8R+WuVce2aihSg0qvtlIrd4hCYzfnl3hfAXTIpMc+3bdD9X4OoBr2ElKiPtY9LwajMgd73PCOvyQcbL+8nyLh314ql94waAYzGRZj/5WVcjCNWlz1GKkDwn5ekMnQbzjKPuC8YZPU0KGsc1mNW2mcdniuIOtS+GM0A6sNZeAA4Xb9z5pdhaj4jA3MmVFImJ095g1thxAkP/6QYAb3vmaRyOm09IZg+OWq5FDunhuIEYLcoKyDA11YnNH4JMph/0HtfP/xavYUmMvbGGOXUHt/71JfPlxfMtWartVogW//NnjjTjFhARpV19WdtA+UbzP/mN8mfGhCe+Q4RFMjeSLaUTDKKbObEpVFufjJJTu+OMZ3UcHEvVM6wxJeqidWF2Jwa8k11NylINbsefkD9IZuQ8ph3yN2Uz484pwxDuAnZX1FtMKG86q5IB/Jc2cJ8T+Ma1qqoJjz6XuymefBmg6x15hl6GnTg+FrbEw35fMux/yTpDaKb9aUxCHPYfuaDldnFsS3y4cfbLKOYj4fwTZMHbZIXWxZd7osA/wVVtkZumDm9hbwRRF8nvUcxoLLFNGgeYG+U/aupxSQ6pUca6iQ91ymSCnJv1py7aNqhSMCZIruSwk2cy8f21Hvh/gJj9syrON/5MeO5FFQT9Gh6xqS+uMEVOQOBYv5Wns8j2fFAg3ydr+wVqPxorCZcap/DLSQ/u45GYfeaBM8jiY0vRsMpOfg5RHuHc5FT2TjamB9eyimRJ6o8eOJJLRNhPjSA+a2O1tSgOBWGdZJrcSd2Lk+p5UpGdeQBoyTisjrSBnlajWfFY33DjNgcSrF5FNSnkQAaR9q7VPmegOj3mt88EYGxaLWQObpqHQNpMje79H79Pz6J0D7oWJSMLF5ds6gPArWrwm2mUNiYzIybftULksEpSQOmfGwFhKN9poQynwX6adE7bN8awT2qPHSmAkvw2xqwblWu3A97IIkZnqq32Jb/7ezZENI/ywEkd1B1jeirsIap4Omx1uVs5CevxgblLxrYFdmVbVJjDf3sTYEQ7iY+SBcGf3Zi/NJxR/fHo5DvwT7MJYUxZYdMY3HIP5r3Ij666vxZijIpBAkymd6QAbIhg/C00QR6YYzRlEHTSiRFez0o3o4h7xkHW70ttXvYqbB5+BJ6xk7XKF/NQJlSz8+yrZpJAUXml2mjM+Sfdgg6g2OQr44G5m66t/gX4QkWBOUekZoux2M/gfzhGHfdMMgRx7NQRsk1MRYxZQbbe84TO3F+B4HLTT3AtvjOyTq1iKPL74qJYRjvJBwCvccnyu/wBVD3oBedBWq8TIUXuobsqksgGV5M5SV/8zcs1/VWfEwvU830T0uaav7NwZrGEWIug9xWOhYbZZZMZfEzF1VAnpvfb2zHUGGvWpH+9Upz2ndFwO7AH65KKMJvwp0Fn+2bjLD2zfn2UtUPuKLSrjqGEEJO2RXR2TccKWUJ81d9t36g1aQoNQvkCmiuVn60cimacStgEwdYvL7cebkR7mr1dX+Jxhmhy+/ySvB+efR8B4TVP6qgF6PP6eyWgAn+ny5qLJshA09G3u/N0J5j2Fy92lpuo19G6eUkEj5qejPvcqAy+a0BV02dHxxCD2DGTWH9La8MzU+GIkbKBahClvGstp547sq46Oe7RowHICuE6HQSbP28uPrRIQqIIzSsyEpPxg7A9uhOsc2U683KUr1WgVRC+nEjm1QqPclvmaZ/CNwmvcDFCTYNkSWU9zGcbHU/zfZIA0DHckGeVAytaoN0m8NpsOlNGfAGZwJfVOt0qV1FNf+w1qdd0eX10gKy23Bp7wEQCFkPcunO0RG05EvgaeESRK3YzfoOPnsmD+Q36ELvgjiDpUKXtnVFTr679OnElmB7AGAo6idY2wrkDdDpC8TPmSi0iNC6sdFasl2nG1sWx1mapb9PUpgWoPlDgFOcAfuRMABrSVkoxFh1uUzh9SMf59t3GQjOR3Emn/ETFIyBtAWdALIFmyrIzpAaOQrfyHQ1r4GYEftjWkapb08RAkS5oaDC0+VOUXlJ1X4CwoV90dBpfcHgHmGvxpWs29jrSaO5SisN7NPvFhqchPgNp6HWNROw/wTelO+CmmxDyVoJIMrOy3lZLt36kjEclhKlvSjVwrpCqn7Fraz0KkuPPjfsG+MTuZsDYIkDLW6pGnmY0UHIpNd+U1U08HXEAkk10IevKY9uo33BqgtLv1845fbZfJPRFDCa6Rw5ai5FrzkgA1skgrmB3LoxsJbGj314X5WRUeKHm92uhz49fgIYBHzLb4+8KBcDH/uPKaQSl53UFjJIOFPnJaLMc7eo/iK7zI8D7Y96HdRRIEyYjnT7NAvP/UXid6cna9TU4VtKJs+/3dljAwSrf0kUfdh5p4DJeaaGVQx15PJLLErSECm+kK9viNkQOOXC/nRTSk36kh845RZvSKBkbr2yal+olt4gUYynUQuSmTUSgCoLSgmb4CpMVeSuWtwCLq/jjP6FyqjYEXQNacEG6pUsNI6cvOT6wzFf2AWeBS7VG0tg1Z3vzLghJTsn2amk5gJu3oBsJkrV6s1QuyBWYsmkv8/B1WFy2zGpbH8kBosPd1eJ7E5xo8WABcDJo4jKZK/8vPiLM7sOjIKcTMY5EHVcSpTcqP7xo1dmW2f56UvgV3EWw9NDtF8SGNfM1x9rfg2Z39fEIJIO7NV6IzcrEsYjKBITpgiPmptz7wt8c+Ku06icpCgFRW6SmiWHSv9YR8UqJOfSGuF2pH5F3/WAjUEuFKJ/9b3bk2huq7GVU1DtplXTuQIKLsM+dRdp0tfNbR9lDPOvGrvB4vAf6rlh6g7C3yTtDOo5srZ7xqdm64QPf4PEhnJ4uPmfCrAWxp3JjeP/XhqUedlXBC2nQJkyJ+TfrrNYRpuZ1Cv0uVxdMBYv+o7zfiggpThJb/FatX3af/wEtTUCrB0bDZNE0YDmRXH9yZbMbzX7415BAo/6cYCTqoYN//E2E2+n+HlEHEcgYlKnqq4BJU6sbHAPWdaJrqFzWfBlvC/4/jqCcdnq9VW4uTYV1iSa1AUu/SbVIcDSoTZdqz6dn3CAJ/c8pZU62AEqZmjhPAi/zbNLZcLlLWm+ryOpTMcCfLSI4eQxobkVyf1ntk9ah6OGfq5W1K3ngWY0WLQk8EoXQriE7vjFBIcRRt3ciiOV3Bngdom0Fj0aAo6IrwHZEjV73H+ZlJpp8IdOStf8jvgv1Cgh1rqACeiKjkKrH3gqZCFOlMwUv7mEkrmFYeJpc/JXv4xXppMBBRrfPB7aVwwD0CjpMlyXUoRW8QqVdTccS0cAMRUdMisYUMOI6jZ61MrssfzWG3seG7067q/ve9s8ZhJGbOXkj6KB/UMAeKxOH5wvOdzSaU998oZxc8kbtCzofS/XZyVQbGacXxfWjPG93GpHAgtWRZ8MlncxBNwYRoLCHBlHomru7fFZcrm/EWtoZFaGYuMCDK/gi2PwLDaNHCAEOMWrM3vyoCYCagGwrAaViI2LJQDNaE6uM3Bff47Zchm8t1nA5rgihwxjya+8CnwC0xMwQTtJ0mgXPauL3uDlVwzrsElMYKRMU+Lz+lZFb/zybJHV+cuFExXj+wWJqBH17wrS+qeCePnKKOO4tdJp6exjzfUDNvFRzTV7/pzLgc0Z1bO0O9nYHB5zd23DgM6UrlkbHrpQ1SaOY3EuCZw23jNofho6HEmm89grRyTZY2v99hIV2jYHLl/U7wRu71aMibgX4mC9QsWdQlvNA8JROM8h7qVoyYgtgmIsQRqRMOB5AWO11nrriTASTuPP/18jgMOUBbO2H/vA4X6iW+x0fpqL8MgHjXxUcDF/1h1NeMrEXJ/mlCAdlPJmQKUlGoTffDuFGUW8o83QgaDM1EnH+gJeBzdgw5ihdomrGOONXK/0I+9T/YEUJPE31dQLwyB16u6Go6zxb0ExA1MeOmu47A4y8DKPEFdzXVyKq1vW8QgDUKT4QgG08a35m4PhBWbPJ0JnWIC/b/gYLWb0yFqLwjX1d0RbdmGgAwI7XA7c2LHtFmMPnleZe/8awI0ql/MW7rFYUbBfF3IjFbpOC70dWXzRj6KYakZiRgHHdp4Fggbo6G/MsgzbkEwbN66dhw8+mobUYhgeyT95qz9r9OeN89pj/Rkk5KigvmDbPM5VLM4Tm3meZYOtm/IlaY8s5QSrK3vnJF4KnCOXBcLvWVtaCixbq03uW/LNiShBz33SmVDmK2JFDCIRVkPxxFLAU8oe59fBtBiq9bfg4sKztjE3S0/hVSUKasa/UYHUI4qGhWYevBsI53QamiuVDPD9uU8lyUMPEahyt9wzSRayuU1Lpr+Gjpc6djC9EdXLNZmW8pxzLWDC5hMmymjLkLQrxfajHRpG1RiFBEDnc8jvJHfDDwdf3oCvrzg1FnrDEx6BtUlgUSRVZS3qt4aV7Z0hFm59vvlVaCu/WziOiKO0IeIogaQiXC6q0AdPchYHWTPbyVQOe4xgyN6tCMUVX6CgqmXRCKEoAH2k3f6o5W16Jj6nAxVzfob/qK++1jNAfquCEhpA9EvCTPPCE/cb5Bn4kJ9yyqF7KyLazb67zre0b2kMLKIVULQEazklqcWIYgDlFZ6jslmz2UT1lFy0IctYbuJgzWX5gcRZNbdliLtE67I4gBG3CxLJepNn8oR+liavFN1Tv9398eNoNVxAWing01RndxYp1o0QzbQPfubmB9ErKbWHGPtuCFJf7yv6AuZmE9rShZGJf7Oa6wDRnt7gCkVdFURjppw3RcofvP4yB4ELcr+JMnbRd11V7awrsXWavQjiXIj85P2bI+aWDXGVbXInetqTc4dW/XVEblx785CtynGuojJo34tAenPi19sP4Ucapicqc3/804QL05+x7CUKgs4SfIgdAMdnpvOwu23YWFRWsx/5AkGIKopN2l6oQNuDXJBr5SaoZHfWTY8MtZHoFTtOLa1BWUuAYMklS2s7yZtvLpgqJYF4FtjVSsXtxa65aXPQ569cdRMPqmM61H1YGYOnrOvUwaJTGJ1yapFs+gHjbHxiTNE0XTeYDGJJqx6sGfLtHBQbePca2Yl9rLf8y7ed/A25Wj7aM5zH8Q9+JC+sUxnQ7GZM3Uwas6ejsyVzMKAK6y++qtHOHKvk/q7PKmRBYr5e6f7Aa+AcRD2s0ZOIWVWIxWLAPfpv4CCW8M6GG8Has2tNE+tojw41hfb7IKy8gDvxGFZreY+ecUi7+HAqkNP/4D3H6AVHPChty09JxGOvOhNkJI3DcpMVm9rs/7TX8DjuaOwPkGmEgVuXS2Ze4Jzw7N9I67sPDHmvDH5lt9ihTsk8Iwk0e+qAdYTq1Z4z+p5PPDSmxMTom763ZQBEgz08jfGFIK+s2C4ZHyXfGkZCdDWb2W8pFuyLPcdLBgJC18v2nOqyTFNEeuPqGbp2tmS0jt+QsVYHlYKjRIeKeWz7PYinL95KrXvfpi4DzUlJbfBq4mEjZfr+g5YtH0NABX51kBFAppIvR7sEI9ezeGFLRb3YcNlixQbZEwUz5fKqpz2tLTzdgjyv1l2G9P5I2ePRtyaIX5D5vk30nbnLa39Jz9EwKBb/XYrNdzvxpp5U86ACA+lRQKX4O1jAGKnrQu2Oj/Ux/05NQHrvR6COIo5Wm+auj/2GVqkw7LLTC3YCVZVQUMHPTPE2Y7IXPxH2lZRccoR3sAt80UKI00/Sc/m7XG6NE0EbOuzDNbhfPuVxwufB/Vx4fP/bcimIsM8ZNnl56SHrreE2couXY1OSOv9a/sYinKig1wtKYj4RwKrl5PrVS2l1oaYCzCvYwxMbSPKsdrw+rAh43WXGHC0qCqvT6lOKiK5OKq6krwUqjyzGknOY4/e0qpmyRDsr1YWbO3eNy6YWF/xoo8Zyg3Tr8gQDIODrxGAWYYE7hLO+dSGZS5SX0tckMAk+240y2bEj0YMOJnQ1gyiNJ9xlkbB5Pwr1Vn/MuZ6ItPZhH6ppS4oAcGS2bbRx8bDbfApHWaS3gonFXQviGeZA/MtCM829i1U+AoIwSoA6nDhGvzTeTFuvepX0776/VaDUD9I7apPaKD7SgCU8dN5J6e52gtXlxVBFteUQSPj5gTGAtrjfjMjtZTRGyJU6HsGj8YAhLuxxWXAm4c43mw3G39+onLX0ey9xggWxQFo/bLVm7hmRbAeBj7C6CHielYYAQiSD9cXGkwSXrPtK+4rM7El76SSfmNFNTvl55tfTx/SlN1rEo7+ZJksYnUQk2HtP6gup53gq/JnsgIHV7T7kJN0rL/Q7vx2RhzOK+octYfWvAU23XeMzKFFNLDEWpEs0yYlrFWl93m6/WF/6JLHC4ID5Q9zdQFHNNupzCxNg7ZB/uL0Nr/FZiR06Ewaj6ZZ6RNGs78veEA1EFC8fuqHpi97U5ORBCobziw4gdCvI8CFkl2s8w43C9TiKn5+VbjnSXy3u+X4eTcYjSu0Tlo991Uj43z8zXgeuuTq5CTbFAiEQ+IfZ3nkXven3E6N20Yx94lOjLYlptxCYu1xLWDtsRvCf7HOysUIAF1tcUThoK1XnK7EUCmr4wCuIHhK3X0WNr04Vt3NgLVjP/TkU8g7BoHHbGMOw3peohgQcKY6kl67wcOTv7ZtlSLn/DCgPizhg0N29tVr0KiWuHByp3TLwYUIHDiFB03y9ggKli8TUUPdmZXZZmtR7VkU8L8d7l5UcRuZhEnQJutoxS4l+ovvfFGhhbGIYXFjec7CuAc6iibqh9CofO/DuVCb4KFle0NiivBiASRW6bxt+dfiOQbAbKrd6XadD2Z3D62cKha24wYMv8RGkom0qYbVi/qcMyoC4NCHNVNXR0BgxWbKhG1DFFIIsCh850J9+o4WUmkMVg6OWunNS5xx5SUmfAj2zsK1LEhB+E6CLA8600PkMSuDwzNo5njMrhvctvM1KP/xbrBNJhJRWimUNmEhmm3q/UDYkp+xFmafr8AZRtGkvRUybWD9S48Tbvak1oAL2I17f6sacm6WMp4pbbTEKJTcZzQVGHmkwqlE4vPHSfFbVrvOuZSZ5ZGPDu1bksTk6ztjiznoBKzSHAPYLsQuLu74eLslXysp3bYWmRzBaC86xCCsy24dDF5Pw2rGVMHA6nDw23HETcmHKateGpgQ5GKFazUxjej6WjxLyO1pN+nj0G2k4lZAK8dgRbTBXs1/XCYC1S0ewQcWo8XwIZJERF7qH1v5vDOd8g6pCVu0vtg56WcKc+rtM6xBsUid+ly0Sf5HWXckl0YfwKMLca2lc56eelcKrCxR9gCuf0J1F0V4rENuN0CrufNs5DdMuyN3Y8PtPTbB11G0u2GG1gl8WG+Dr9mIaWJG5I7BQXWXi4wWlD/TyPTCnvI2isqK2u3c7QGCM+wF2lPzBlnJikXC+t6nG7m/Lp+YiPXPqSkwO338t0tUCc8mlltE9rPHMCIG/dYixeuNoZ2+FgDyHznAamdmtM3a1IjmsyrCwBbfPPAeIwIZNVL7hF3X6kDd09UwEUFY3w2MkPm4P2tY4XbRmO/YzHpcjoDhHwQwZLKC4g15e2K9pBERY9Ha5mmR395zk+PIG4JICQw2m74ei7MJCyT/5rfUl/AbAkpsKp5aasWzS4VaQ/38IJu3pghx31VvDzT7wBqEEp4Lc2X2II6+0WKcITXwm+qoLB6Dj0AvT4yBgasMlHRxlNDInzWf5U7/mSyjU1QpWvjvQMeYgXIQUMy1vOscG4FHINVkKtYBGSLgB/3Imp4kXBFA/y0wX96/yu5APteNlMXQ08BAwNWAJYHsTuqFj6oc0uv0GjmVrS1fYNwL0xHQSIXcuQQEHOVlSKRogJm1/kesT4SH2BpV9jS6dVhM28bOWKJ8PqpoLjqJYlJISU4g2E8o/ASgD57oARLraTbsUaCyKCwIG3nuNLVfAq3OsEZT4weUFci7QiHPZXf3ws91H7XwYfLKPIfrW0abw1yvmVKxEpSxG3lUW+0wsH5nG8OrYfK9CcjCrn/CJhLu3H++c3TQku1nBQHecxH4Muqw4ZDO1qckiMuRZnCNqC7RmioHNG9FowQSCjVF7Fm1XTnH3Fdjpbp3aJuIzETze4bbtkg1k+x5YsEauKbL+kdBOo1amz2GIQgT+N0gAsVjRjvWirmOL4YLHucK/WsrcsIw9TvXHBGXGP2jZjysL7DTUZhPEi389lU8l+KzWg9G/YvJMpMxraqr8Y34ar54gvrb251f7lUWrf6AlsKmcF+gmslfeNVprXFFFYWcgCLuEabdoNt7CsSZjhu0pKRlCyEcnN5GBY/NVgTIHV/HjTOc0ThKKg6/oz3zD+ofP/Bb07t7YZLiGlxuoY6tijF/C0uE9WHX9NkdBoRbIpCwpwrNhVnUOz6DFyCYIfPaWls4wPo9ljs7N1y7nN7oUsLPiwGOD6JQaRXHiAmznEhAKHtsiArYuhPIfPcVooqCmCXQSn8+abz7CZnXp5R9Idhj9QgXyNyIIjW85lMiFUYWB74700jMeRUF8AhY6U+llgs4F6EnSRU/th7/AKofNhixOMH20HwR/ByAe3LAAwwCbiI1buFKFwzHXSRd0KjXOi+Q6jb9X4Z6sJG0NQ7eH1m3whbeLXVEli0OCvm1Uh9eXuOdewzL4gjhudH9qtd4Outf+884FdZAXGcyn9z2CF7YWK06AXxJo7IhdrAktU4QU+Yrdn4fA4WqM1olhCEMRy4sd6r38Q+CGZI1D8dkGqEUIS1aAyVYXFW2qt9LpsSlX4/7+wmkg9n6eahUu0rMV/P9ek0wQWSR3hVaOenFeBHTuL6b3yPO3V3lFt/dhNEjhSwXMhiDGffkx25grvyixWV4PGChImQjnBb+DD2yQ1eowNfYzcwaMymf6qPMWnxG152HXXMF4iGtIYvG+IAIiN2K/3tCCT7+unX49EiJGJ999136LQl6/WtxBGh24UELHEhqNii2sjTM+Kshj+1cyHU/dBETOb+Z7aMgGDZlnoTlCAvdfIcl+Nra6HdrO1iK31+RVFexMvfwgx86Rmboqc5VXa7ayB3bZopHWukKpLbRxjfiqdUkghSXwOaHjSuUiNYouigdisBHP47hs/zE/12KBTToJnFwBsZ/Yst9/pC+/XtIhUJax3yROmCXC0b7sYDDB46aFmDtCeCK7M0pf8wWmdQ9LXSfaSOYlQ/h7FZ9ttoSsUNSq5hV58QFp8ykzWV1Um91XjKhd5uQ+lv2+fO1qltfqJ3y9wZX5aG2f/DpNvHQ3WhIz6or29cMay8Yl4TL7CVheRJuN8Li4CH6QhvheFCGTQUlDi/b0MZdDpZ5Ju1iqtxTAQV14aoegAwO1KymmS9qE4MAEZ/M/DPAnEZlEh0FhCxQI4ObVRvluxcoBiUAUnuuUznIL2Gw1nucCxQA8SQ1ejpPeMmP6nMxgBs1d8UETB7yQ1U+Xe1/rxQaomNcQTyLnKfvEmLE9XJyEPf8A4B1xK72crI8u/g1iVsqGNCxAaFEUfbgQEUuFplTkm+VGLT/jo5uULq2ZenyOYZ7B2FGnMDLcefp9TPdaiY6zJhHlzh6B8yWmUB3mLYwNgPt5KoGnfYPcDVMbCIypPYrAUhKZ8SCZu1f6YX1z0QF2/Vzkx2iBPqr5vGv/C2BFo8nFEPFrsHVxlp+tEQ3nqd7nPytehc6IREyt0AhII1A+l1IY5E+ovjM0NrsWpOBnwJpp0kNLkdnbnip7v4+oUgEXl6nCj698AgVet6aXo9OvTqUOnszs4hl5V/1Oxk36t6u10ekv7/0sXkDl1dlhoXMyj0k9yhJXLze2/OWoRsCs1LOU26tkCu7XCLAG61T8Kmqw+TWtuRvOM/3tf2pyKbrrsx32OSpGvaSCLZyIkUurxtP0jFQZUoM6Ft+j3jKULm7uEAScRFaWwtCEUJAt+C5/X8TD9v9X2UtEjNv+2A7wtvZ6o/O8fh3Ppn7h5jgCY7rkhdp5KidQ+vLv0MpJP2xjLusA6x1irxG0TEvjaorfWqaYIcu7wh37z7xLq+70HSwzH7VsT4pf4JM18jjCB/C121Ms6yaohWzIgb+qMSYdHiLN0/YpOphAb6qXTiY0eWREW7RNV0JsPG1Y4qDm5duRoBQEWUw5+Q8XyYc98XvVhx50kR3Wff11XzQ/Ky/jaBrsissLXj73gr5uMpkk8P7YYC/cX7C83L3hXCzzX9++FqOMgHrUNFLhFcwuUC3i5A3mzy5zzhNAAYPZrsM/dGTNenVfUhsENYmzBG6Bp6chV9C1JTj3UiMgfs5BLU5sEvyf5x0i+S/6UoEGuDY6KhHp5uqUJLRhpNmXGmqnY3g+3HsA6yr0xFoqLaeH3Bh0OeO8nqLYcQZb+fRO+b3bB+y8YSFabFdEQS0Mk/jP8vxZczuYgJc9T5mKU5+aNf6LZHYlXXMJxetJF5bZr5bnTC9zktVxj7DdtdekrxCVFTfn8ljD9htK1Yctozbj3ddaVzuobR2mI6DuUq10nflmEv8LAZyEIfzJJjxMESkCUzsFWAGkl96vsM7JlPQO4ZRY/dzslQNtAxW+EFGilOAETl3ScqqCfjP68jxS6dYlfkGxmTLFT0XFYIJPna/yon+TLOq18lXHu7c+pGu+9o6xPRY3N4I/JVZUzVy+B4VQUYM/c4/aK87eJUTPp+Xl56G8uoieSsj5v0LYNUSsC4cp5n90dOcLiBGB5BfT2tAhZy6E+CrYVL1N57DBO++DwbpGR4DWqfXkuPzi6NJfPuM8DqEqMNb76l5Y0B5GJ7pO5NHlRGPzyHTI0PbOP9aymJTDiWbbTR0SndbSrKt6/8LdGmZrI70QEMxnIH/L5p0BKFiLDf5h43txWsHJAUko6Gr54WSLvDFrWwqRsA2GSYLu3KFLrGXEIOP02nBH26aeZbiRa0AMFTXOBBRL1kTDWjf+hncPHB81kV8+ZddwCHL8McpqtTenHaChLbn9rXJCLDVnrMqQcgrUkUi/8EiBL66AarL3elYAROpiEUuoXWcXXm7Y27QpvLk5YmcEicQnKgkstb+qYOrku4uKdZT4VUJh4spHbxA8kYKvKw1k81FjCFg1wz/xvs3TpAYoBLgxEQsrzQPbXr67MMXp83l4n0zuTNq6jdBFEBFhZFcw1Y3OixOzKMBcvvPjEGlzkLpfLsMkXIHjO8J0NacA0BGJOx9Of0xtT+IwqZNQJNROsZNbtn12dlUOhChFNg/HbAaEZz5mFktIJg6GkZi1fPhUNjTRswp9zgYFSv8OBgwWCzOfvllyCd0IcUbcVm1wRjE1QHsif3uQVieFJW+m/0nng07DondKKZvnqDyCcsucgZ1zRXonAN52Qf3Q5HY8mwApMj4hXZaKyQY/DHVeb+dPsyeNwGxoHGW+/5o5L7mXyVe4KJRoUio1DLMX8ePq2cEgahp57cbmKIic07It/jrELhilk80B0cMR+TlG/2f7L7Ehmsut7l17ZGeLsGZYSr4q5iCxWxFC8E77Sa8ERBrkBnOOPCsJBdJ4NEAZMjQ54fNM8vFA8vQSOznz2FC736o43oilJ1i2F7Uo0xjcqZRaSUmpTVgFV0SUtb4I1P4+VcYzOLrL3lVnH2oVUSyEpIElXDGpLx4EAEgqhoGbrDPGHY7cSuSFcAubPx5F2sBmflBrQGqMCGGUIXQp64j0WVKkDZ/hCWJjZHfBi20pNv4aobCGRjgwE6k3oH53QPKWz5Ez+cceMvbdLVDmEt4AX/Q61YLJj3NiN/2qUQKdoVYTxxw6n+LVmLRj24Y2IxiIuK60sg+gahXzLnwsrXsA8xt239dmQoVXzZRNUdIfdL3fYwkTj0pbBnbmU6dUTiVU9aUvi2GXUgDVY0S0VinS6Yq1dG/vPeWrhcK8gj2/ZtS+5h5X0HGUuURwI6gQ3cr1TGjlO/4QYQaO9pe7Hsnab7iqKLvCyzTNyuH76TnSTx6qQsAMkytIqe92tiEljqE0vRwbx8ARZ2i37+awSVms0PaNGH7bkWxQQnuNbF117XqRFCW3ZKbcwGGsc1s2PbVPAkE/2pyeR89sEhLHL7fbSvFzuWK0s2cbDhmsAT5vXqf8ObI2sSoch6yF2gKiYThXzWgHEzvfwKd5GzFyPcFjlhBZvT8FCH4JNkbWkBJK4TRMuJlv36n6I8bd1b/YwEPSgzVJEvqySr230GyQGxpnBDqGSoHjhRp0v9NN8nl7uJssDcFSf9ouZ5CvZZIY317pOhE2d4AGEHCwG4ntSDXWhRYaoxbU7lHvZJsSlwlJiYeCMZN2aWH4A4MGzm780Exj7Ew4SBySPQmVrXkZzsAK/5ZTJcmT7JgdSnQcbdTe0h70SwGp6HFzxVPFETZkDXDZ8DCx5BqVC0chS9PIPoEf0T7gfAhCEIsdDSmiUBzxXj1Z8K7G3smSmLcaFpfUqnkX70BEg6+SBBnK9Fze4BTmURfcyo7o52M638cBIn/mgKr+ysMDGHJdLxUprXPzYzjvNuLZ6cz50f9SjVoxuYfK6DZQNBFPNd67Pd25YmE1QH1YZPpCSrfJzl2CCeudt+guc3bILVOGK7LvPyaKC9XqhaZa9D1bjhPmoKXoNUIs+/P4XC8MI24if/JTJrQKmJvigZN+7lZc/RCfa2ibxA71GAzh9cOx+0fEnQMHC07oX82nwv/SfzHRhivfQv1b8J4us8ipQ6+/XH3S5e8OIC5rUfg0crSrs6hjVn8QPSYXVGyRIC6bVV6i15XWrIFrNsFxlbbn0Ug3OgBuY54NAbcQKvTEiK2momE4IHZc6kHoPqYjfxB5QY+sDsTE3wUp9I/THe9ow5WTE7BHmEHEcP604KjCXHQ0t7IG8/c9P3k8fHS6DLZho4n9gscdtkRfjjhJLIMow+8a1n38H5wO0xGPdpNrKSjuODhOVOjrmCiXmnpYZoYMXmIZGhM0j/YVBX1GPt+lc1VG7hMKyhOpU8Nm6OZ62WG4pgSMNblfQx7QNVJF2thEmD/60DtK9cL0hi8LsdfvL9tG2s+eGtOxt+St1XMv9myHGW5uVAjg6NJurKRKjdwoaFh3AQS8kzZRfDlxmbpHy0OkEkchAd424nlP7wknrINe8IM1GE2RxKHXBCKOMIkkrR69LPjydCy8o4V1RzIklWwXTzGCDv0w6QY9a2cj6egq8+oWZnVKYjbk9VfF5oRQD7tE+hH94rJFVcP4x4CvSbHjRAB7zVZuW5+w7b85U4VDPkHszjmuIBrnSaqovpKlGnad6vD7JH6VB+8//xFZRyjB61ZQCSRVcPmCXEJkGPo6vLAZcSrc4OTwGfAaFgIO0GffQVrjeob2RXFnADUqmQXtezKHDL3HtYT7VlE1bMzY0y6WsB7fcHo5z2LrgovC5qBlcWrxkL4Jbjcl6f0mdTiIJ/zeIZfldpn9FB3HoZOllbkFN12V+TNvC54FyO57pnKvzMmfKsCQrS2tSA/zfLGcC8S+F9ZQjSlfwPsvNQijf4NRSIVJm3qcA2ENuROqeVVzONKzhPuEbEUIVO//TwU/lO8l/HrzUwdjxc/54vSmRyoXwtwdrTWmYSnEDYJwPtOc/UghI/kfvCvUX3qcM34c0eQUGwD0+kqIqd5J017b292soj7rllIvJxQCunW4z8SAQSSybmm6QR28s2daxonenYbRlF9Dwd3UwxKU8ghr14urnhhUIuHPiSyBRI/WPmhKXRUZtJcCghiKMdjp/P763FBA2oEJxKFWe+cScMJ7Zpvb864fUPY5YpEMU7Z4QUpccVW1pmwqk9puE4lqL8/FThfnH1ProZTwH1wue3uZ3QVomLxO4+2m82V98bbh2arKnDLSNtgyp1k1QTfvyjtpXHF1+ClCASIUlRjzCWT4JsdAfB0taZqGme1wswz6trfQf21V3P9un7jZkbi29YvPzuG+A84Wy8U17Xvm+/HupxPzSK7Tvy5tAH6RYgfZXuwYotx5E6qboJPvhamm4Z/puT/AFecov0B/1ujl11Tox4va7Q0TrPIm8EyBxQNtKn3cK9GCPfOomhaQSwdkJ4vrkPHfwpIYl9Sc3fLNPMhA40wNbzuakw887DCkO+w8m3rFzowPPV44Ee11mPCU+70sNfJKSsXkLdJmVEohowC2NPBw/tYIpkq7fbePEob2+7evZia+cGCGLLTG0XlY+stAnWcA+zqKTqiFIZDxyNbAqeAgaQX5HR3Wj+7O78jNjQpyIr77VY0JWyDQvZPn2+74YaSVzBcSl19Di0Sx10x4ogImS19TlcqP33rb+/qCdwJBhkfglr2MPVIMwo7wWmshs4WqxoHFqbDVVgU8+KR7q0kLqF9hM+Shre+fBU4dwDVdwcxhDMXG5w+ahRMCLx1nZ1YzC8TZpe9V0Sgs6mp2HtNNmyq/qyswtDjNqVqWo23g8139WD/L2MSeJiLZQH+SBsXZ0ttIXZVfg0eFoSy4qTKJCNMQrW93D/HsXJG7Mx0jSaNYp09DmBP/1R70YqbsE535x9ssKMWroWAHJZ63z9iE9x/qctPSVZLtjk/ZOIgVDBjYmXogyg7l6mNw4FwrjVgz5skkTB406PuyLA275m4jKQDjdj/waOnzMCLaMJ3qZW9rgBTI2pF8S5jQ8wbVcMc+/AKKDe3c58lJjIeu14QGctilxaTsi/5MMHgmEAYYVvaiHauzn5TJ1eyjgI3qcUB9wZ5lQNeXRgsgB1HnWmVI72Pb6tJSH0E1KO2I3LicL8MUHiZ90WXukLO581R24WID743xseZVwmwR12SLCGlenIGpL8CqWaeWlBWANQaX+/QkmRP/BjmecBm+EZbGogmdAEu/VXv9sJ4QXrgm2Jue9OYJBc6/F8efq5Jj7Br8oITiKDHWlzEAIYkFywCmhQAfCoYm4nyid8T8LpSbUllIuVhnSSz7h720FHba6suQA7Jhe3xIg8/4P5xTqsGCcuTl3SW7TgzXEN531BJwgAdXGyV16jBFqpjLSaPQ7giJFWewLT5brGdpqvCMt8pMspoebvNHYvMxJhPPL9Svo3+FxuzHXn/EF3Xp8Fv9tGz4snrSdQX3H5tFRXjKLGW3lV5bROpcsPVcAFDa0siHDTsNMxAewTNTSyhAeAsaarO8mcDokLw5+w5WJCkPJXBpjAEU+A6s5UcSqQowGBcbBPOWtUFnlAjbaZGI8Z2ueY66zm2oTyRrKxR7PW+0TE4RlTkQkW2CNQQaQGQd0Yf1K+8QpEswDINibJmqavAfTrb+EQtB9QhTvzI/r8dU18+AB6cpFubklFB/t7woriz5cSetoP5YS3vlDKSmtnpSQ4XbU4wKsiPno2Iafn9x5WFgBizsAV7kQHoCK3cPd2DEfnfmcQdCuPC4Fha7TNM3RWxOKnu5De46JM1OrTCtzLwEeuiADIclaS9xahfn1btPMADdzsOdV5wCQbKP7vZURzLnFti29HvXWdrYdyMUJtLb9qdjVBeppmzLSBJiG8DnYIokKle5Hjd8hYqLJ6Yx0haT/5Vkkr6yMUaDdt47u7IZpeFiBDRl5uZU7St41gHmBj33wBr5ud1xQFcbFZ3z4D+k+UYpSBP0s18TILgq9drvakVbW98bSvMN9WKB2f7PZKj80y21Lle1fHpgRjf5a5RRP7ycTut4k0L076a4HOHuTocCvUsOq4a5h+fJFmnYbGGQixw+xXLy0wvi7TNFCRoNrWDXroZxzDtcMm5HouVIq43JHEbb3YUppuNjKi0+65+ISrvisr8D0sVsggHEfkp2j7XSzmqnGB7fGDQl6UFFT8Xg689iaRqpHt3v+Yc1d9JvKSJ4rv8X+pMO5axcgCeuAEP1lkv0yFQo0VBPEr+o+XD7lwC4LuU0WeTw43ZwINSQzG060sMUOXYIu4+92/oYg3UMI4HtVHpnwGOnYDj2x7wyT/+LvF5CEWz8VTn0nVBIMATguN/2nSb1/RMAbVaaUauazrzBDq1PUFn0kfqTNq4nOYLh79e2rSLpqDg/32QZ4mXot7w3mlAz6QQNowiXcYaMSgy9rd7/nVvA8Tb4z4kxHaSp7T/iEdOPRX4RTLgDORODSjdBgp/wVX92Dd7zaPL32jLip4vZVEvUxOVkBjUTAxMXGYSLPWNombrorh/wB2QTtC/P06KJ4Hac5A/rzPp6ariMaW6vg1U6gDYEfsUud3D4/B96JRZdYK+DYcg3HuoY7ljtKCBgD0/slRzfqNl2eafuUiOQ2wwyUMVWV+CJaItelg2muhbndRC8SPW9WSV8Ha8H3uurIAOg/8I6c1kdx62vOMO6+fEPT9kxGdoqA2vRexM/a+w3olg0UsncNwlRaBxaaXbT5HYWv6lLuqH13txP3CLdqsO/nd/+ivLXAIJ6jMm/JnbhhYhyjH6ynI+FDolp9V4sVMvw7RTMnXZMesPuKSlUtuQP+TGioQVEabV0DkkAaju4kqVHObn5nscUds4EzJ5azgiquN4WOsSt3kd+7Zh+RDPzlMSjSoV63+Rylz4GoPD1fltFblFMN64suUAoRadZ75peuDzm4YtoyN8x7sBFWjitQfgFCZvndow8N4bgym5yZVGpApu0UluHEhSBwooZtWCgZbWPl5ljX8/i5PN+mYvZMw1u5xhY2rh+r9tZ2Ki2MumhT7rxcmne6X28iI7E8tXYEFYpjTbjPCgsAmlDfRIfKPDnvbQ1WqzJ3JILo9RdKvpKlIxl/iVYzHdi+jn/JxPQJWC3kxjstyQGQPxTvP7WQUkmdlSO3d0AbJZv/697SKKTbPalWotlTVByRcWVsATEkW7Da9g/MPMV4Tpkqtx9k63IQg/8tgKCAK8KvNgV5vOjxhV2lGnX7Keqgky/wa54cS0K9E4MbvkAvjFGVmfaCuz8GKtrjJgaP89Qt92kFtAdjPr64xjBkkjLz5j+f+jhxScpHH2a8IonmzZ17ar/UNiz0fI7WDij0YWbo1161+YErISB48cB2aeUgMZQuVN8284K9WJq0LobIuX6dnZPf5aub+SZFKmkCEk/LoWeElhvSc3FC+t/NVtPUxIicLXWFF6pyitEpoLTQw0/cveUrKyIhDWsfMEld3O85HMnJKwFtzft5fPagv42Vc+XjtEHR1+qO//vJjD0b2gwS2POSai25gVg5T1OT1GeSJNDB5HS66nFMfHnFhsgOFeh2yHb56DcmIxoFqM22Ys3KtAk/vBq3H+oEp2/ltGhp0R7k3ZfgsNgjiU6UbKcaQFscn3LVTPrMx++B66SBO3pm/MIsOv+3GyimpWajAc34Lxhi7dXLxLRmm8Wy8+FWDIBYMTJuF32LC5bLlDspbZsZ3O8gvWzidXJ/xdG9fxtfhOBphB7pnqdzPiCzNy59iTH60hYfoPcopuWHGS9YgD6iPbtM9bhnkzI7xGsdRVn0CphyxIaVJi8ZKcOQIeYypFkfWCfDNPfI4np8PPH693a/HM39atx/7rvB40Zpjj6Kq8zBfzRDRERAFATvT6vA1EqLsQeAJCgXyJpv5OvPCaxKkmWh4H7Ox0poPcvqF8rJNi1/RnCn+5CmfzZAq0iZFYLKDo5APuID8Chp5afo/g8sRENHVqogMK4TzcSG6lbMkhajHLdhtf6WAEBxhg4WB7S0ghMzHGL97YgyIbBn5gksO5uXI/O/sTpBV8djRZ5cb5+pabUTbJ6/UWgd+Q7LBzBZtXcZUjOamBAZaojPEadTjw3wbRCu+Bw6Fb2juoTA1O8K0d/aAmMgoLqZzXrDga6dy3VVA4EO2Jvaaq9H2boCKwOpEYK+WcrxOQ4Qn8vFnc4oMaNLwjhp4lMoluWczivjl5u+/GD8ytxsqe5ePhZCFMikgnVt6pzgV7KYIIiAEu0yvSzpVYOVSbBS80vANNqKX7n5fvB8x462f2ASLEa6zyqdquMg4+5rqaxdG9B2LTY2fKAVngqoU5Wq+CePZyE7Erxm8Q6DgfqXXxtjlT7+3GWh9lgoOwkW/ItCp7Mya2H9I6IYd2NBCSPKMKHSZzzuaav6zo89ZrQW5COG69V81A0bPFwpi/s0RnqA0fEyWNpBEr2MAJN1QoDrQAg0fCysCNNgEvzhDFkrW4QyUX9+3BprFVYZnVqAJ3PUHj6Dx+8KVT6xqzD2yIgY2W1Vx2axXkz5CeeCm351vGnGhqZ4pqRjtUxFotLTrB/vmlUFJ7nsGhsDcKQrF1deVLg1uKRfreOpQKuhwVsNJz2pmX5L94QL+SD3HPV7xNVxF6fh77Wm0bGnDKaCWe326SlKMieUovkC+QD6/vGbO0kv6MnhVEuS/rUu2Zrvkiklibu24Bx9CjkHh5QypPrnDR6n/I/4NPaY9jVcOHjebzgZ5XyPnYa10o2OFE6ivtpJQWBhuc6t1D9uxIbtIpSh6DOd7yzhrLr2I2K34ozp+GcLHmP6TmbS3zY7wDP408VWYMDH9EOJotHc3fxEHPutG41cTQXnefPjX0US5qxEh1mgVLVeYdFWDnXbhMbIKDVjUpEDdJck4iVU+iOnz/3ze/eKfmbhZl/avUjR+xpydfuOOF8jOIUsLjIq2GD/xoNp0xW8mj5J2/kLoyH5WKxf1oy9LB11EQh8pJaPb/SLTREv6SngNDWyktZd+MjxJAGuahcnd0aK99tfskkfkjQpdg3rb9HuMlhe/IR+mxmMP0wOXG+6uwhyW1G2YYaSmperbP/1klOUy7lEJtr0oOPDrLC447oX7/LGaSZR6kcU5GsuxRBV+tYdFCVsrIweaGFSUAYvXdAIwD0Q3CdZN5JgQM2SUwAIVddHpU7t5/HnYfqC8LjsbTuxgZhGaRVAbxPuzmI4Ecf01qIZuhC58YteIFLH0j7xD/09tQBttfhsmga0TPDCNBUmU5qCUlBzyLUJlXpecf7+gjThBQKeAp8PPcvT1ZK0JdtPt+0f4/l/uvCNfwoI4kbfpmh6OpHrsYOgOts3S/IdJNP1RWXTvv5LU0Zu14CqC4o/5BErkaBVoMh8Uax/3MaQ+X03tgYizpb2ituvup3zKrx9qRYEDXG/vaTK/QoikvsSWHqc31AD8tFqZ0so9Y8GRaF/2jo57T4Q4mF6VoMzMWz+jPcGd3b4NC/kC0sc7hfP1OpdvyUbKcJIrQIZp8TgCzmdvZ3kOGxXvoTziaCXGyR64Qx3bWYeSO/g6WzHLBZDDrAgEIwHIM6XZMwqcj7K9oiY63PXUcR74dtLsW/jo88X69oE+DUmvwVzPpZhZl9vSEQqcEHdQD8e30nAG0hh1Hu3W7wqCpAu8vJ9f6Faenei4uXl1Sqa6dQ67CoG/ObHAkWFdlz0jFtmn2TVm3QTN32PhWGE9GzPCkcWU8CEfCjyc+aMQhbtB1IHZAL1LXAiN0skO8aIrln07pnKKgYvvd+eIQPeOfD8NChwYAyr+yThpdmCsYPZ/m4vPq9Dlu72CsWB0cv+GXYP9XK7MJbZ9E7kPFbK6zhqET20PlUZYFSXH+WoP+tuUvtWFMPk6AsaKPx/YOe/ry5rbl/GRfxF36XibM7ZnUYmwhgWxjkrq89QaGDHlHNh65pCFuS0rl0/jXmj7Y88zwdQO64aMSosID98U2hKiueJtdaOzZWGkKa1W2ypp0XZq5lnmlKujJE4eoEW658q7d/D2edNdtb1PH05UW+j6LnEvkzQJG/GUDgMcf97o29pXBCSD3tVPjRPyRtLEzrIfUl/CBkoIoUPVV0TKcUb+wRIBEag4Zh92xuGlOSMRZd1oSh1i6np941/cuzLGa2d6a10TJ3Kf1RZ3fPd1t1hCh6HxJ5Mjd07jkh1SdjuM5CRHvWh+/VwpA7cG3WWOwk3LDDxhgSxAwiyrmsdFKp9PuX5mMVALKdQqFSyzS2cPu2Ms1z91uw2OvAaT1r2+UO5NnIcl/rdvUNaiOphgh8pH8lDHD8u4Tq5VGYyctALeXJTUGTdQT5ad1GULeKf2i0XQvcrBweF/M7ygAetNfAWAVazttw9Shv7Hi7IY8oLhG6K1ftAc8OTzwi2Er9xYQNBqiqzDL5qN5w5RPH/RNbvag6S4fmUZn9zepCv7mzMH7FxgAp2kbdJY8UPbU8sso/dSDaV9ZpV1Es2ygHl7opUcF3MrO8X+d0Q3PB8DddXYgLkHMV76IK3YRG6St2Bh1zschTN4W++T8DP+17JLWXvM19agFtSU7PWADa/quFUIIUvn3OCDXeCfThsCaBJoZD2YJfQmMI96r6HZy+sVzqlcXVeaJrZ3UBX/06zO7Ot/CjY9lzKAM+1v/yoKioITyCFX4RFawPUvvAPjrwFekQwrioPrBJ16tHveyk/wWDjoSra27Vn5gYeUIC4v/sEmFMopXe0xWziQOm+a8iTlOVPQdndamvdwXasWFgoqnCJZjRX1RjbghTM6O489zBoIxKsIA5TuFfAVC02DipUK5R2cFWCTKoBJcgvFnVWdyjrcNByhIyOgeyZXFVJhpSIv6TmEn1qjmMEuh9hi9lip0FjiLSARbth549SpSABe6TgXYshrp9JsQZquUk1sd6swCbcCzguv8F/BCPe/W/KT47usVOVTwZP8+lTkpHm/IsRmPP0H/p9jFrCBiuNx+FbCn6Q8GZCrbi5nzHlBtuZ5hlGVKFbr4nS2wl27UPYE+iaA//Ja+WjblrVwF2Lw/cBlqsSICy9UyCa66uH4fXglRYp47rQsNAZt7f+h2YQ1LJvFHVnD6KdctWgIgSZTN/swl5JnPm23IFaQ7rhwH62+YFSTdfF7e7pOeXXn62jg4hHL9DEZ5SyxbiRmKKVgry26KUsRRsek83xdvjn/2BIlSDvvVUPyFWwIvXJyjukPW33pkDfi3+tM9zH6mLnf8pn1/mJSkn3JkfQ6oEttVbO77vroNChHcCvjM2g9RDQ/B8fnKSW5eXjsuKqOJCBXJ3nawcFlyEs1tvpnJ+5h2TqZ5QJmY+vdPbSyxIO+r7WTQ5aMOWQ8KOhZqIZL8xKemnVo5aXY4FjaxkRoQNRD8Yfz7QUALOJEDwGsqxIN6lU+5r3sU88PL7nla4ImTcQ8pfyH2cSTlQVclFg98fP6HGWgqL3ljJQD+OrQAbMBwqgFZL/x4IaS5cjecH4mTYvxbZmO/yZCDWbTMl9PVQz71LC82ptqy43gJ+VUfMeb4/rqsV7rWf7hmFfOS0zz4p4OhTVRnr8NyHvcIwCPUgrc4lhRT2PnuIRthEh5ya4JnGvMc2vdHn2DJUXEQ+8ILgfbVLsUD1JHHhNT8S7+qNQzXt9gdOhCXDoFM7JStdIqimteR1ZSOdFNVe7fDhXYHa1z3nanKT/Bd/+zFrJZppMteDkXmIHrEeIcZ5fO0FcA3YuWyExvcw1QJQCe+OU0jwmcDJ/vpGAnrb+833JXGDfuyQBX+8kEPzpnTF23kIxFLWy5Y/VMt/QWqFbpJmzDAYdp2k6/lgBSwXpjLT4Axiw06htlvwp/iCfkGrz/1fYM2/HHeX7KmCqF6ukAWAVTCugik+a17FLHM86ALRWMJnbaQ7A8zcE8bkVn79+fz9B6Zs/J5ztsHe9bzVXpmdVXzTRvYTBsLl8rMPivAASTYBO8tib/sZ03bCflEtcvmWvnBC4T9mRvHxQb5rgsSxqtb5EVy3tvwuYhH1flnm/LQdekzZ533Aofmdy60R72rX7kSkBZpmdq6TBn1XBHY3aQKN/Px1C9OHBUPc780VUSHIm6aQSdMlBG5JToFY3TDfsFTH54pMBVIPxCHZvmjBvzmVH9i59KLFFk0LKuAEj+8XdtOygB7oFEF5dGvlmWhuwsA58C/0jbgej+ZUzKHDgzsvy46BjAs8XaPNsYBru/xCit6oqoMCRRZBahEE/yvHbrAtmqKUXLQ9qiDtbuNhsFz1jv/jnAxbRTflEVYnm2xPNdaDrrwibcgcb0xbUkcSRECpRBhdVppaN+3vmco9oxW3Pu6Y5wG4Jj2jxm/dVzzgbjitpcDgDNNLcsyucYADp8ertqoOrDxQ4QRKlqJrQR+4nribR2Gkt+VJGyP4Tv/VazuK7UdYWUAQSBecbpUkCc2T9l2ne21trR9pL3nq98vksCwj8Lg0wp8BNfrqXA5FHHGvd4Zl/4fJn/3xWAQ2Z1lGys3JzD7n4A/nWz3a+Z5MU5FL4Sc0fvUTVcrb2unfvvxWAbehRRa7whgZTXQoX8xocr626Pqqs1nCIOmXBGUkBI70tf3L0Wrl6LFbR8KhYURK1+Ifw8lRB6r9W2aznTjlx0jotBFskt1o3FGZDbQ0cv0EERvN4UWpxrxHnN/RBTBSDmQjvzFQJujkN8Kl4/zLSU0FPxOtZHRjAOjC06UhbjTMlm5LaUdycD30gA9autnifqcXBrvI1L2fCJsxn+5h06w75CO7LSLGjIbXDpnXhk0ebo9ugeI/d27h9p2Y2Ed2HR9NxcGF3w1g4drKTNzgRt9N+HFoNJ7hzLOdH1ecrXNKEpbJUO9TXQTS3YO5umSN+5FF9tNEAJqENJwcQapEbcg/Oxwh2ccJphYehI7M09jFaRgJ/HTF2OK3Yb0UqTzEgRlqblvUHPUB+dT2ue/DMFVJgbGLlTbEAdWq/V/LgEjSiN1eETP1C5ZS58Y4yDfienLZ17LYjmQU0P70Es0/KMyyhPKvFugbygydEVz8M8/7su3VsrF7s5MOeUf/htVJ1rw8L4rJdkRXcmsm1C3SZ5vJaZTAeapDh4kwG/ES/67bCG+EZX0tilhADxr3GwT8GD5MYiKo0loNjuKzuZhvzy3v76dHjYOxaEkus0s/wfan8jrNPvSlcBAvtdUZeI8nc4TZs1fphqYRI5R0of4xmYUhPxQ6aezBmvRjE2/HEh+Le4c+VAYrlIei3D5uu5pHQHWiNoWBQegsR1Tc41bPy5UFyI9B/ZqLkbqD2PjefDzPYWmB0rITjYiHIPRRrmDwSQR+jBbV8QJ7RKeIIBKtdWqBq7dplpGe5DnlIJkDBi6fJqMgOz6jPvm/9QWajLHAtttv6JFNruMFgLRPBZs8xGJIIazSHjVpLVlor/k8a7WCg2QbnpNoWmBXf9E3Y8nJMVzCC2LKsyaAmyu1fCTn3bXFWLuWPbeIfkAE8ewWZYRJcmGwZgTDpO4AWeWlklMjKmxZ8S875leDCxtryrXB5IFrjKHw8wIMxcqX23Va21Yux6PauyDcvBSZ5TXbSsMQk11nPNQJcNA+6C73fEzzFhy4nYXMWDVbKX/WyU0sEqtl3OsZuB4KWwJEmj5CNHGntP+aOdoc++Tq5KhVVvFLLe4/iJn+vPvWSA+rFxtkH4BBdHVBjm3cXxuXI9AquBpaqeh3Xj10ZtYO9wLlfV9eTMPl8hQIX2xxHYblWfFLAn9bOkHN2hjwQaVeGMwR2EYyVPATAgrEvzQjz0AxK9X3u3oDXzWu9DEYqXWJ2JhMXylNSErTa7uUATReXxC6yoidHu0h/+/qXwUh3zaxKSbEDDXoWFNmExHItKiHAVDRtqhE4LatwONBfW250SSFOMOem+sbEwc2UifAzEti9WcJxvXN0WVPoziFim1HSZjzvI5sykLt/a2IfeSwsN42Pp0ekIx40pK3DaKUOnznip+IT+mDaVsL/gL0VcjNwyd2zZejcxFfFT5jCXegFuc4DRXeyLOgHV4tRPhUtdqAynwEXYHAo0jhVIBlixPiG5bq42g2kHKIz4GnM/lDGLRdBpXEFzceA7baxh0EX43MbQTnwBn/dcwUJVl2+kq0H9igfq9dbLs+Yq/uxYk8Jw29p6+QyfRBKDa4Nhouebj1h5h05oGwfIbVx6TtFT6wiRt0DF6XuWWQQDLfx5DSbceltWvKMIniYzPszp5cJkZwdM/1K7umDb7aKJlcOL/80q8SuL/2C5iN5B8Qwv9ECpGVroTAOFigDPXWXQipyu7EfMj7GL3EOUTyo+OChe14zRYJKxDITHeAlPcC82vAUyiXtBcXVa1BoGEbVgW61NORCTWriZoxMzE2MOK8zpwb8mFvJPKRH6hqOxZJKsyUMnrjDtF+yl7TDDWhXng1117adKDGgIQMTYBgFXezrT6qII0B0SMkb0A43X99cI6+6pMPJpJyvJGHk0MXZK8dicuKxWUjUlkZv3wQE8tVEtEUwVf8TB3rSK7DjHKMTDbe2YsGi70U8lAKqL98EsfXxE0r9skWIfnbiSvG4Ra+ke5R+XbtXPTunDXZAlK+aJ0Upice40bTRS0O72ACNd0EB/QbBke/bFssbistejxA5HwTOfggw/qSpBS7lsNVGA7KWDpek4XU0YoprKY9t5G6eKMKUWYm4W7mku6XeISN0yb5pOh4MODkVDBC5aUVHpx0i9gu5mLxlA9e7fR4wd0kru7ygscjXoLeomGqyLz8MPS3hA/zDowBj/uf6V5DkANcEpDMnyFcrFQBEN6aKdbIBySVCZo8WnlUrWz1Zo+eG2iw80HQvpLTWbtWkLbH0MtNX0M3hWRgnjEkUjduvPzEHuw99w/iPl9w8Fsi2vaL+crz4e0frjtOrTLeMXD685iWV/4pn77VBPNYtXn7XdK8DoOvjtfNB1pBfCDKci3UmMTnR1ucDAPgiYKMfCQzHoZ2EKnclOnth12t/n7G9NUCw16zvfaTakXhA6dGHKhpIhftR2jiO4W2GHGGO/YW1KLwF1yT6WZ0nDbJsWkRJ5v2BTxz90XgiMC4p6Y6++XtvdGs/0k3h6pzymizNpGj5FqtgEF4k3lFIDEObxHFfWQ/iZX9GjG1D4ibjlbu2eT38yudieB9Hhe5UckkXFExQ+YpXlUtsffsmLaM0HOWu9fw0oEnKTNxgq+DnW4wiD6cwg3uQuSfbkzO44X1OJ7GPpOuCl2X5/aOqM7oRTXGTB2yRb1m14JA9d4VWdS6HWKJnI64iB1j50CfWlmLqp0qxwGE805LOPa4xN5EbvpvniUoqserStXpInEAYW2potbmvRl1knHDpRciq004yPbww2wOtlaHjl0jcwg0+I8L6GNFftUFlQ5ZLFeKFdYUXU2dK4UNM0peyTreDCiooKy4ypT3OwBzRXzqcZOL/Xw9ZcWd6gvQT9uvw7mYu0P9kKyyHNIF0bEww/3LJG0KSE8TtBq4SQyzwcJkcx5gE6vWQSbu9LUHOaiUXQ1EZVAxlsCeihVG+eqdxWq7mkSunABDRxgugqTvIe4OG5n56+JHPG0ZJI35P7OiMXcT1LFEn+Z0L0RXZWzCRpMxMM9XCKNOkPC/wxGy+gDDPIzeXybC/WXfq9ibbsg/s0bqgEDszuzaA8wGj7/sfhXkdnWbA0ER5q0pUDECAzNmmXahOFrcrLX6336ThCOaeZ8EREN01cn54LyLDYI0loVZOY2wEQDqG6xG2YfOxsuMhVEQS8lN9BrS1GVrn48ycAuQhUqwKfX3GieOCyZYdwJR5iE95iBwN3/2Qzhzd3iWqUttogqpcc19b/eSJZYeTcaop7Swrtctr2Q2kxj5B7bACtqcRgkUKYGbFUcKqGqGOjvoVyui+gpviX9reRHfPtRpwZDCtq2FZh0VwmWM7jCI/m4gzCEcB86folbjx3Un5q6KA4i4kjSQ1VP5/MtAWOkah6dcMI9fBcugoYe1Cvuan/BGFbG+pIRjSMvWt4znGx5gP1hCqHtWOt0H5JhSG0tlcNh+PF29U8GRq1CZlkMnz5qwqIfVNtIWRGZvW3tPh303y/8Uo6SnXUHGc/DXTRUghe/I45gGZbo3xarQW6IHmKFU8LIElzZ72doI+xAh4KaKs7J/WFO+gYALhSprZAmSkoR0/8kj1ioGp/Y6u4jv2CMD2xHmoBKtiUkM0ZIwAEP0H6UqnX0wvBiMLsK6B4kziAlk7rEBy7wX+Lm/ZrTr114alpK8l7OP3U6NIE5BN7OXj8gPPK0v/cEPqZmTZUBVbpy7iO1Owy2JkvbVkspBoOVqfvbcnhfi8FNbTXfvmNzz3VRiiusPbeYyLUk9NObvTH/YWCvXcAfdT4sPVxZ4873Qfkj5kM0Cz5oYFBfPBW+T6c30ZWhNCx/AAZyooa8pdyyNRX2vp0ebwbpq0K9wOGUDx7ETPu5nxv3iakaVnc0Aktihr8N+aHM4uGvORz2D9qzTke9jRkXRJu5Hon7nIrb5o3r1ikRU/5F7KEtYp5EVP23O6qCdBE5PLqF91zb7oJvndS/rdefKVKjgkXR1bbPYeaUJ2ZTxQ/TORS/EFzWXemoDCrRMWvX/HghGseOo8AJ06W5MGoXia+WKCeRLOGbuJterY9hf4JQgsuHuskJc803vLMyPQRoALUIag9avYcPx4clPBVeybL6mH280gzWhj6t3lgovfyx9JHNTJgFn9ASyFYhOqKlK1FqCB3qJe9dpZUzLe3PW0adhcDxlKFWIUbcfCiOQhGlwx9JLjzQbk4d4Wq0C3SirlkxFgaqNxuhF82EraITXZfXlBOjMbIO/DuCAEDhf672keGhx3y8udssJ3dHOi6dWiZ5QdjD30OtgTW/68C8NmjaluYIzcv32H2Uvvzn/5RKkv2gKxUJosErY2uhcE5Q4Fh5GQExgVWC8H3DqR/6PgYitwTVyxWpuErh76xNP5IeckwHlMJswmtOVZwDE0OYF3/QRSNHjIOiV2S5TLMXUvw4gEDqWZwcPAdtrUFNmMEcxzjG9vrL84ZUS1eIVs=
Variant 1
DifficultyLevel
708
Question
A coach is choosing two players from a group of 3 to play in the goals in the upcoming netball semi-final.
There are a total of 3 different combinations that are possible.
The formula below gives the total number of combinations C if the coach is choosing from P players.
C=0.5P(P−1)
What is the value of P if the total possible combinations C is 91?
Worked Solution
Strategy 1
By trial and error:
If P=10, C=0.5×10×9=45
If P=12, C=0.5×12×11=66
If P=14, C=0.5×14×13=91
✓
Strategy 2 (advanced)
C=0.5P(P − 1)
91=0.5P2 − 0.5P
P2 − P − 182=0
(P − 14)(P+13)=0
∴ P = 14 , P>0
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A coach is choosing two players from a group of 3 to play in the goals in the upcoming netball semi-final.
There are a total of 3 different combinations that are possible.
The formula below gives the total number of combinations $C$ if the coach is choosing from $P$ players.
>> $C=0.5P (P − 1)$
What is the value of $P$ if the total possible combinations $C$ is 91?
|
workedSolution | Strategy 1
By trial and error:
If $\ P=10,\ C=0.5×10×9=45$
If $\ P=12,\ C=0.5×12×11=66$
If $\ P=14,\ C=0.5×14×13=91$
$\checkmark$
Strategy 2 (advanced)
$C=0.5P(P\ −\ 1)$
$91=0.5P^{2}\ −\ 0.5P$
$P^{2}\ −\ P\ −\ 182=0$
$(P\ −\ 14)(P+13)=0$
$\therefore \ P$ = {{{correctAnswer0}}} , $\ P>0$ |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 14 | |
U2FsdGVkX1//W82TjlCSBOImG3kHcBFuNN8WRsR1F35lunZwKzJ0Eam5NsI6FUoCs903Vd1PsPS3pBBe4ip+QVdW4gV8eFS5rEwtRHEAqbOCAlDjGgxMg/sE0eN+x46Mmjn2sEzxaJejKonASsA9vGQfcy48+EMcw+Tk55lEl6VdfLLo1MynmYyiKCROnU8nSTGqMxN8nuvifSvzJi6zxGxwy/ezfK8tLiThYXVMIRCf7lTZxIHfXNT+fyS4S3XNhNQySGG8rcIgA5zv8jA6AOeAk5N30ShiE+fwEmHwO6K2HrSG20YdWNg0KuI1iN/hrX2chmnWOxtzEq8lW6pqfXKz/Ctm1nehp3Kj1QkId6TIyvRrbPfVNn2OgFMQq64MO2xr11ISNBafI3o9f8NPgq+Q98edLwJJx6VLB5I1aTsvx7yBE7wxT30Smmqjz2+9nJLLzgwCHJMSvUI4e6SpdEpjneIUkfLZohF6kES1jgoo1RqHXexmxr1fPlfLM53Z+nokHGbVvt1fL3hXtsfLkXQZTPVUJXG1jOKbCuu4SQYkAusEz0/+Sx35QeAkyg2bVgI6zQ9YFYlvS0fLRCHTaZmq1vLykCcqishhdx6FJqiPcPMGbjQi4JhhXVyayT9ZQwwk7soAuMD9zGeJPeyOwsFFLhhDo7HKTlYoaV7gn+zwqkanvWGAlwJ63oWP82ByfMXWJvT3Cn8x6G/IJaw9Vu9gTIQDQ+4MFTIPRJ/4G+P06iqan3BvKDayfNW+Nn8SRYpEbSQetLGq3weNsROGnVNMNRHXc4CAJ9fA17CwuF4hTy7Q4aewi09Nhcs5URxYQHNHTXPjPa7ZkD+iecmubPKm/uFSpX/GETE1tu03i+zQxkKydP/fPNsMvh65IGqBMHYw6VrDS/UUJ+8LmNKIqjiwCn7HumrqcEVJuNr//Uaz7EAXkJ4bnhbckMxUBdKPAAT4ns/0jHlaXf9ANLRztz0GpmN10VsGoWHSkneHmKO8J181D1q1UH08bpbjQN4NkLq+qgGeTNMJmsPNcVpqi8z8X+x2lSItmHUNJe/o9n9P/XD4jObTWhElAveRlzz1QMxW8qQK7mF7mCucWJhXINo1hPJ2WfCjXKRCG7zkvSm07HaLMmENnwwje/2RqCkIJv1pNK8l/lbLLamVZg8rKe9AHtMivlCiLN2TUSzP0aaNENQv2UraxlwbHV/qiid2Vv8LbFfCiiwogv0IzVSLx5568ZNDoO9835T9utr4LQwuV9Fxqt5wRPL0qYkWh09IwGXRaZNe7LAIdLUbTepY7lPUqnCp9fydK+D2ZUlSdxAUQBjJIo+66AZ3yTLzgGjRh/0aJz5N47YTSW0TsOn8uGVoSgrKDu3CgTIBbGp8vJMzabx0inxK18m5Q3NSSJNAxlXSqxGztb7umE7pVVDMMaOxG1Uanel56zXoJB+H1m3BgQtSLjbepPu9oKz1ov4o34KmsZb6leihA9hmCaKKmEBLnVjSgVrsO8pMheEzqw8Sl/wAK8OfbXTan1EoqCzKqaDiXAklLcjRkGPhkeMzChpzYoc0+E8S6nay4CD8RoFYsfn5Gu8kMpNl3zIY3P6KfDUcE7m+U4mbqcOGtRKQ5yW58b1bfpGwJfZXkV3wl+7oy0EqvBKIXpyoznoczoz9+5Sy1Fhxl4bJsseLg/YRH+ecQXygMPFp+VN2IF0A6qi+WaAyvtgCz80uQDF7qeK4DMT65petE9EObY9nfRVIKHSXRPx3DAbek1RXpv/7dNGfxGCPqv19ai844K+dTtYRhlTvckqxXZFRQafxrN0H+OeQLhCvu0RGkQt1C6nNzIvKvpf2S8ZDuGfJ4Amhecq0QvgkpcBpXhDhsdY8RdGQ2olVlCCqmMTvotsrDSwNwDS2fvsg4EWsN3I/CAuhWl2WnlrJmpKE++qvHAD8GOz6JfMZoGRV9W3eOBIhVbdd0rMkDZgF7MNbb0C466X3csuNLW5bMrkQrZELBQk+GDLLqssZozD9cd4kdzGc/7LFp8cwmDBrN1Tt4Spef3g8j1Qs479ipy84fzqE/aCewUXyhwqtzjPDyeeUFry2tkueZlOfoBzrD6Qxwukv+EorA9fnAsef+B+x/JNtOnczU74YX7fH8Ki0k/z+tF9vwrsghaLJ1d5rV5fJYq7OGq+pZjiW+8z/xD9KGB++2lNRFXo1CJCHaA1DdGLEp1Jh+pXgXUjPv+SqHV2RDxENPDKxkNG9qJwjg5UGXoSheODQjm8nwt4K4+QOrv3DK4yW7SvxnfvIx5lPzVVa2BaBPuUva/YUG1Zj0wOaSRr/KUFjXvBnkgPSMrIk4Y+qx1lqpa7DK/VGCb6JXMTyWrKqkRL1/9woDtsXzxUBpFSRAvwyGSA33j8HJSoDkG1expFGVssDtLFCHCpEUZOv5DOk+TcLVDJBntnql8nN/1te0zX8AcQGjZww90t3cw8b3lz5NDMMivZO+Fqt9rO3BBQTRoYGFJ1eAGYQuFM0w2v7/ULmLTwbNW7WrSzGEpNu2+gJzYGTey1irn1P5s4WoDFkigBQNqnvioBVdQore9aA8V0t6W0Dcs+phZbe15QckQkFaNsFNvMF71c8xLIaCsXp90BgiLcSpnNGhYdCTDFukr96Dh9WJbjta62fJD41OG43lzYbIjk/xssfMosM+QpZX3xQHhUaywV6qNJtHIUdRiAC7NMPgAnnhiyu+MKls1ORyol/V7+r7Zb0x1ModSezfbO7M8DU8rE72wuGV+/Om8+Kp1ZBtfJq+w/FlUpvd6kR0REoAacv+ON7IGouoQYVpUkLmFodyYz/fkl2TyacJe8rKsbcUurcYeH1UjY9xsJPQv7HmDfhzPa2G65NSDP6OT7JiqK+O0PW3m50g1LDG4F+HfqGW4sGIw237ya4E08pZFGLu0d+oI8viZreMeebkW35tiOrEYDlez2vHth2EgkHeBbU7HvNDBNna1TU8FCheVaL4gzV7XKIMfTP67nI3Yk7IpCtahIRDqPuIB1Fs3kki1pC/A/8RLJ5vhjUoPrC+6QBF3jHgImoy3cIKm1mZk2A0vdz9aymLtTKeOLyDvFGaGNAFE8j13UP2VZFDX5iyzTg9zLY5Jwe/h/r5kLbHplDt36jv0MTgB9+MFXiWe1AvvDJ5OOFZUjoqaTULL7dsYGpNbyXJmLQoDAnfXP6Rxdq7wvf9pMxoD9zXr0pGnit+TZudSAUWTAK9KqNqRkcMxReVAtZWS9un+Xo6Srl3EWWFYXg6f3nHWitTfICYzYzvlist8yJ0c9yhO07mtdZAtiMGlS2PoPKZrFocbLUGFs6yNXPHkXCGhU/bx5IGEBC9jpTiOq2nP9RWxyjKfCnqbsOvr76RtthB0q6M9ts+qX04WpYXZQrCaW2/tLev2og+y302voP8zXsuHrnqhICsd++rpsV2EzwVxgAMR3NYYY4U07Ovstlb6NPVpa1t4b5uEic7XCmuhQNekX8WlpW3TOBLOXWIRvlJ34pj0Zs7V443UTACu04JGqLUx63q0QZ4UeakIEU3m1bsW6Do7dk+9jvPR7oSSp/VQjH41NF5Tr+8dNN3rEQdNgv2bmO5vOLPwyTdyGwXgi44kvYFwYKe89Peb0L/yNS6z7ImWrvXmBSHoa9ek2cZVUovlSaiZcdoqYgn/G1ay81rzk0V6e56HkQdrGWC5mXFKFxkQUY0eBdCLc0wdXsuiSJMybZczyQrxttJpw2YV8L4dn2FTpk83cbdsjdX9fvotTvTx6Y+O4hrHG44OPiaVqB6P5yRW1FH7qeU/nE0UhCfxnRaStSj9Z2bXzMwovVCVblJMeGzQVSVRGqucZspnXC77x9tEmuyod24u0LCDOliFCVkpJwlxV3nxywSTsu0nhf+owGS8jW0S7/g85N6Hqq7IjmWMz3/0z/mi3GvPb3alOzIZ1mT8zru00pIOWirTFMPZsyGKRqO2SYnDJJeNZY2eIJLrVWCXdsGCtb0FSNH6MXTx/K4NwTQrGcgbsyo8jRDVee84pzLn4GDDvgOSF5ZZW5AycUlvR/tjbr8yNcVhxqlpB/keG5GLd7WqdwE2qjxfcKrqmA1By88/OzSdRzsQooJ2I0eisMU02snhj2TUmtaOhgOVxdlRIAT/Oo5MeAmeKL/HTTrVCivV5bNBZ9tSNFfOy0pOwBWU+D9UWbplyQhrUhfWKFRWuhSD78b5NHvYgzYk4pec/gd8PoKyWiWcWPFc233pdtiUfxnha75LH/L5qA1a9mICeJvGQLzRhRr8To/i7F8eQUQz22jG9SCzRnYNFRcmpyothpmfmlYiF6ulKPm/2SxsoqekX7IfIhf0qlzrL1r1TtM51ti65D5yI5tcTsM9GIwOBe/ffWeQJ+REPbCjgKipxd4oro0aq4yEg93g8P2F3WFIz7pnfMeEduXeLww2lsy8d0J43tyynlU2ofyIY1fbzZ1pwasr00Qp0mjWyUUzdkBIA+t9cBkxFCF+1/iFPtxPsOV+m+phWrxX1RmVaIjaQrg7GAksSZn8aGJwe6s4ErgwJNrZhW0/xq+pZv3BZCINbRLZZQkF9GNqEJbqIQXrBVLViGxih/MbHAl0X2paZYuR2pZfqWpjrNaU4s1Jk00TjKaADqT28Ri+YRS3YQnnCwkhTz3uRPnV6aMGsZELW13IbCBJ+ANz+NMhTIojI/uQZjgz8ZozMFiXsXzslwZQpL6eHRHjT1lczNaOnygnpihg5l7Npnkz4r3bs1w1o8I7twRcQZfBPGGJ4u5lOQvZAmwJZ4Ia8lSsIQfFCCib7JggZU+xh9iBWBmRV2LXk6y8LhRcsYQ/Nd+h7Rcb/ATd2E1r+fbNUBJv9by8bKrI/bwBxccQnftQPuQ7MOZeiEpLwPloUS3fBCe104zsYjc86MQroT9jIvO2BNZeJkjKmvcaDIj7FeQWR/Y/7s1QkdS9ivHQbhkxxIL2Ml74ORUQFLYmZ8V5ZnP9isBTyvAsAMydX87Y6XQsvaxbSPhkMn67zisPUnXlUJw5ulaKw7N3XyFnHTyb375BnceJwiX6DhThLQX/HQ89aQjOXP0ZMvXPZmA4p4msOev7GVn/bYbzjB6UXWayBEt+t4z+AUE8szqCf4M2teqFcsWJ+VV+Cp0HQ0NsPWj139Fh/gbxTX/4vmT1pBZzsoWEHHI88I/zP37vvRxBgPQhMq/jIeGYsdf64dAj3iiEHC7CPG8e/Jc4ERcg1bFFIN1Gmt3mB/dNuQ2S0MOChKIBaQLBeBN/Xb+J/QLOnx06M+0BY6YA6VF2kgGaQ1hoOkjmCugOmJo2d0ffsia2sgWvwJVoAijhKKH/XLYxgLuT7ECvit49/JfZkvhqSBQ7U2JUChh+i4aXLJ/A+YKBAojJDp9pGXYo4KwIDvl8LmiMkjrUJyiZXpIJVzRYBZlb5WUm15ah3p8n+hHl6hlTb2t1xJJaRrNMNracqYkPdLDIIgp8MS9DGSsRhudzS/QETHEqQUSUBlgCnUI5gO1PEbq0aQ5Fgj/6KRxIRHcYGXMo0s58nJQP8G+tFps3PZLLkIC65dAD4YUXVnjtOXxj2RBXUHQuPbQiHov/Pq2GBHuaSab30WOCa9iBzT7bVqu7uSDqmBcTdpPp4dsrLywPOotejzzCzF7o+tIoDl1JnlREO8nJp8oSfxjd4MOBa1EtiWSAVtfbs4eC1AtK/0CxmAnEwejIKmPWRmvPjL02HMUW1jirwwVkMJBaTTAoCpx8iiczVbkyLGzdTwWyLBWG0m74g7uO5nt4Ygz8GUA48vKdHE6TDXw0/mx5zw+eWDK9SPxraOSfnUmN04KoYT5jKK0JxI8tywdywSvckYCwkLvl2dqqh/4nhM6ZkR85lfctb+FsJm9GJK7qH6WaLCSPkbjvAMoWI/64I/1ruAfY+k5FfD7klQzE2F4pTRB5YSoZkUOGVMeLYO3/n2CFp8miQTm20d7NczxIZ220Sbq6gMQx5uhsmQNROBBzbaZmSTWkkWlD33U5Vyd7rGDeSSPGdlYtUQ/2Y5gIcoD5uCZe16MlicOaYI+mfmYpUah2Z8XJZjUTOkgEcWR+6KbxglLXRNMreIU8Myynnlh4cfhELFMOD0K15HOZaOocJZ6qoVkvYMDZzr/zVNOAtGNR/fD1o8UtSwDrr1YZo+uUP2kcqTKmNSqJ5D8Ceb5s8ShQMDtWkGblecAfA8Uc6XyEyCrh7QMGC8d3vmpznfBefjH/KP4JIeSV68pEJF2DmYMEGD8tGGbLVhpp1w9cZsimTyDd6n5EjKLbp5IBt2zWqjWTOvY6hSqJCoixBoViPTnC4I0MeXiR2XF9zQLn1nbHkyrUS3tFmGGQLmZlZQvOxvTt8ziKtR9Mk5th0qePe+SE7qXEfxwoqNIE8KrHDsoEdtIPZS1RgAipr/OyYTdEpt1PT4hG92mKnlvmWYyKcdOR8hsspOPsm3kNoz9nrDwTrAzmBfSOutfah4Q5OA+NIFqsPwHn4GYaRMHxCpLb/3V+HpxHyCYYoJp24IL4i3wHjRB5CasmBXR1zrYWaqHUb5CRN8N1N4LRKs2pT4sxN+UDC+9JO/XKdUamLoMUMFSdghZCjAYifeFAW62FgHVlCopZBzPJn34KxHn0beqP1UIGAsiNDntl706vsmtzkpW0n1pxn2KZsfF3N1PFnPtJGujBPAHMVPvu9zHev+gIsLOhYngnV9IOHx+SCWrjJeOoIy5tQc6JbfI4deXSrL8g6FVX3FG+VI5eAEI3HX8CtqKgFDBrSXETZBP6kMpsLeFROnGVHnYZyB3HQTF7YMDB7SJNuQtR2UJV2tYx+lh1DAVePh3OdIWD0KeZB/1f92GBNlJjpoL+j1VZGaPyxd1KzBNLvsB5C0tDM8eSSwrya9W7CcM47eOOmTHIsZRjJ290CtQ7ekf6821F3MGDSug2F7zqabI9nztH4pbko+h6z/e6NER/L5sKB/zYzxcrqT75Kgk/Gph7aidO/b9lTn9gDnYgRb2Egj4BxAywCYTyVX3OWjRGIxULz6hIUSUjp+4bdh8bj5ZXyXAF6nkCzVt2Kg4UPadTwl5zrCsH/GN5zhN200U0VpNoNs34q6pJl381ZmMtk547jTMjkXoinAALjDrrEEO8LRURBIa/7uJJhILlAExDSvuemNXFTv+lSmV3ZYAcGRJSwVUrISTZ/tTVT70XJM2cZ1B26yDaVg7iwI4KwA1VNLtGuORlT3zhihtbn+W4odlnAALq/2hBXCisVaIPECAfweqrZCPdnsVW+w05jc/57oXBjn3X4iRP2sX9xiPmbaxSOSqdEuXEc+oPsxzSLbhdYeIhPaQjaW7HGid/Q1Z7AQw6EEgmxf3c0QzK3xJFqbLMXSZGV9CNGCGRUCqxfRQZpAq1p53TQlQcmb09VQ5k79ATv3iZBo8qq5miiStb1R4y4dbsxWcLL0DTFW/WOkKuthhtQL3L8hHQi0NEAg1eyng8zSvguGnvUTZ4wBHF2PXCgFwjZRTdhKeDfDs2FdAlISOVuFPZVBAdlnWme6Kkm0QQP5e4/KBIxPSq5+bX4A/FJSL8Va+F+iOqSUZcLlbAPoBatqMEWU1QWuFFnK1b/f3iwfS1DWXBg8FvsQrpIltyMcivC0KJhqsErRKvOMiA6n4CIDu7aTNQDNWA+ToRUq2JVNU8rgFjA4KCgeVDHsqsOTuQbJVH25fQSMP/+9rcyM6w5cpff8hJosoJ7i7aZJrfq++T2kEk3fm5wGwKLdLhGUL06WPm686dCVqY/c5uDzvOCU72t2fJa1n5knh7wKd48pwwqP2jKB/xhLVyBmgoqLOhVrEJbEinMeevB1StZg8z1L+RNxxbqIEGG2+lfkLLEF17JqewxALpvaIvSxPoWYxjAx5hIu3RNjpUx5f7V+SSVJ+AGFMxgCl+i0XTOrRKJ/rsZfa3BQK4ZWxNU2BF5NEZBcl81ZRKuc2G+XBF1rGBag4tQtCOiYnwrMGMQWMpJAeVLS6VnbAnxBEubKyxMhjV+dBhxpE5pmerEFn/+p72sIK5MKqKO47vqQSt9KHfQ35oNU8l9uqyPXj12rAv8OiR1Vf/BcXc3/toaWk48mqsBBz51cunu8w/S2WbeJsgKQxNojrOytM5odUu/x+KNc121Cwc4bTMUhMW8fhJqCmVuMaQ6M1kCGw9lgxrATG4DS/EYz71ghThvcTgMA5D5cDsiRQVi2it4ANVATLdGyqoLsVO13uwKNCSLT1cWvZvCOs2cyGd3fgNuiKknuEPCgGLPs3KQD9dKBaG1ewxYhaWJ4sI/5Eskv525t0oerWXLCI6rN6FI1KHhy1o7K5aU3c3htTAwfdgQcjkp1YymSjFCWnMIDoDOanAUmdDT8hSnnTv7mpsoprxgf4A4nWwoiS5lkApH3QQH21hUSZeUcgeGnvPxYMtFy2FWDLGdI2e8huJOlmJM1IpTQmguIzk1bHnrcOQc4rPo29eOjQJBpBWgtVPnZmOGAgoZJl7UWV93LuRTtTJqfc8P/sev8FvgtpqUALkIkVJXeNlRf+w9qjMOjwnk4rG7xbzDkrZF6XZdRwxVqN8IsTPTO86btBS7lldbjHMPpjvm8Psn87bUFqZTw4YkknwN+5O08ytRwPwB9J7xs1TYwRaa9N7MffzO0ACZPyHbQlTLZSly2IcHwivNC32jbJ5PT0OjHogghMkkoi13VWLEBlbjQnva/7tfV4Wxjn5nyPGAEpdjolwoPoX7tGtRsLnHntQlCLWuXUfrMcNhUyPE7UVSLa2ssmcwL6juh13JyIiww5juUNQNNYw8wIA877VGfB3gMNmuuB0rdErB6T4pcF9GUeRC+B3Qn/g6grDqShj11d77Lkp6ZUmQSzGBieUzQPCUtDA/iCFXrQTfFaLw7PHz3fnlJmfK8uecxgAprj294VJuh4fDzQanhce7lYHWLewYWW/yhg/B9US1LsQb47umtLY7/MpFK7jUdMjxJXypsH1p/NhJuL1/mnx4RdMlijpVIf6HFxOvMEJJWHhfjUQMHITume715YsJqqrARbWlZjL25qYxyf/+NRZ8Uy9qSpWYgPgBwgoCA70FknkfcN915V3XZDFWJa7gBFY3WbHdcQunijTzNg2W2Ijw7VgRXRibIcu8uNHk17CoehPC57h5wRa3rZlXu8JLJ+4KdxSOT8b2f9A5zfUeHKpMdk2Qo/E1OLsMHDC2FgdPV69SlKfjWljImrkM+43rVMGAwWi8rw80I4Bsyiqjqu9m9tEzxOB8ObPKJyvp152GpjMNL7ZBwFWefVudh+PxzIfgR3eo2lwXeGvuUNYAS1iMfx7Eb9jwhlOz1WYxszgbSdPuFmKmHQ6sa9znjVRoZg8znePEmxWLk+Jp8oMUc2gKvZ4zC+TF4EozSavzFX6ucfhiUNywCn0hWsUyKUZQ1+9N2CTm7xmwdMg3Z8S6Ig6VbY+Amc+Fdll07fBuabCbvqSnyt4/SDhJ/xow9h65gCy4uav6DUktC2KUfHytexDG90xTBglMVa5jzSxmC6ZvBoTk/IHX5YWny9i/wOT5Ad8+iWzThuVpw8ZRg9gNfMxWrOLhbhlc0V+tY673ycBShw/UNIgehgzm8bny8OckSg4x4MecrZlPAE1FIDJyt6qPTTMad9e0gEFwT146OyhXxquWuZYuktYOPg453fdy+Ek/6eHLru9GuomCeQhVl0riceCM82rMUZr23I78j/AGJYOyQJQA2r+f/mIH9jBAnWRvdP0v5sx8R+zzxrSC4AgnYVmHTLqMr/NLrAzKWfl+TAo1y9I6zrRzqRGsyXuRPdaeP5gr0ndO88sFsqg800jxv6wK2IbHcrj1nx4ZJQQuZPgBFlAzFop+lqMPAQO1RGpukESZRjjr/RbiTgCJd4KA0oBplHr43ZEur2nrkXb0LjgfnyQXxb5ynYVuXrzvBt/02aAtGFn3mQNtlwvlNKp1/MZeBtKz4AjvvC1aUgnGGtUXxJFarOd4a1MVnX/BIrZYvaI6lMWwQAo6l28CNGEXfguPXSQJLeJuREqjkGU6YjoDAfET3u4oiVyxhkYheLOzoqk76rnRXc5GJiQNsTs7IIoDKx51x/be36xl1p3WxTr8ckLFtRXAtxNHoOV6k27AuaaIwpVrro/SFqt4kts94iD+Bb9lDmXk9Y9Q5yY798p6qoC3J1RguvsoKfUhjFw11Ipo0NXn7VtFyTtSw5APtt7uqa93/EjbTfaOVfXg8ygrV+UGwtiBAvZ6XGTbRNvMMCWsSKCcBIlrqQfKp0s4hk2+N3Lad0BA7CCPjC9ajpKPGwpRfcc31pEsjc362mdV24sYs2mMrK9ABqu1H3xSCwHphVjbQxsOXnvjfko7Ice8a7cswdkfSjQqcf6ZY5E5oJZWDR4wpqeyaj6t4z3dojc9U1ujpikeruvsZcT8c8kEa8cwBpY2kUaC7xMUBycnkns9zSQ23Q1uq9aHjcCbvy6vdBiPU7SBFYguaXn7UXf469s7ABl5fjjwhUr/IpnWynqkrWuJkDLVCljEjAzs/2WVulKKNzJI1GpROKgCJDqVwDEYLnA223HpeGy8njJE0Ml57/AqidsKsLtcW2JyGfDBXbRh1A842NIBo/yNuRYu1/KAKIQ8rQkTBaIaiJNjf63I65sgLUm4BimBz5IuIABAmvz1BJyijGoX+sclf4pOfOf3VX6PQoG4IW/XbuwTz7cAUZ8X8eAT2djcsFhuFa7i36UoPprRBwwyGgUjRVLXyOHouLi6fhrJrgetv/x9zKIS+U0BhHi5SGJz3bYOZb+TPXWlb/IUpz0ZoHmdHGsczc2YvLnpb4dEReE27XyuqjgjGy4EWrem2aBM62DfHpvv+CTAKd3C7icC77AEVPyN+4+3fZApQxy3tacQwfosBedviCY2eOCDpX4sYlXsL1VvQy4v4e8hTpfCRkbBYxbQ+hPNbRUP6oGfxF4MnAyu1dhsg4HusalwJLqi8w+C7kFtTbCsSM4EpVaMqdHI8oq3Zz9Znqb13QCvvuufMGFip4a9MAFB6ABV5zXTNSZhgsSgFX0kMjZArFsadm/nj5khPBVv+aeIj+U6Yy9qOELooY9aDghl3l4ZZYOM8UUPjhCuOl+Km4mGrsSUUEpOzssO1zAn+OUj9TQvEBy+IHXWUKkE9dFdQAWBADw5f0TLnaJC5fnilMxnaWxtKD517VMtYiKX/fKKOIl8NXxwXbqRsUeNheuMElWFjrUT98irIOyoqUYuamlGGEQcbhBcRCMGzOozz2vJPIXNnya3NJOPRGcrLBcPAn9WAUNddthXkEUBY0kz/Rg3nAfY/2vo9TgqZ5GM6Huw7pki6Zu6F2U/xxG2y35+1cZ+hetByPbqhP8PmEOOVOg1UY5/M+tFKlmGNMLvdChCBUClPopKsIg8I4kmWW3UbVgc1ltJxYYccXaubvQpJFC1a+RCioNkq8k4BxK5ZAcs2H0SETx9DaUCfMSwTVvDq/HTn54qXPsqJeTy98xkrOvUgN7+syl8PmPlmhGEqHfItA5VtQ2r03SPynGsrzptVzqzm0DYu23rKOkxZ+07GVGXuhERR21lc+qIqeXUcl40iR5P3IaEM0r/kjvRfh+//ml21I82WAR9v21x+lo6oLc1oYNb0zAv5s12W5YrU0mkH+zuaa+9r1ErpNVoBntkw3UyR/i6xW/uMaCdYfvtmjzt9j4MOYAspeLgxiXpLhZzdZ/9F/tYhSUNIo1rgJ4zW8SASZBlprZyviLeZzzY0umYJceSRQMAWNL3wNQQeJuBEznd/cjLtKxQb6nusrOxn/2oKuaQXP4UO0isTubm/WnZyhKd/CZcjTyjAxu4EWr/euOATdgh26kY2h+nZuiEVJBsFb/JlqX66m64DWoOcaYJ/xMpHRhAnd648WXp//HmqukQ0JNkch34UJuMb8Wh+SbOdbp67SiVCL54JEq+oFbJ2EcOIwSE6lHEWxoWbYBK4nhhvvoXyvFA7OQuZn/miixxul9WcfG33U3NQNKne/jsy/RVAIYsxTKE0p0gA34qGqj+aE9J+x5RObJRdRrpWBntcdHqH0Rcuybidhsme8jpbjDfAkktm5zXzJOEr6GVktMvEPhFAwAYgbByeG8piZcf2KwIhMElFu9DquefI524AQlMK4I5ApodLn583RrXTiy+omzHy5N2O1w9pjDjNqeL/XHB12iOTOcwAExedS1XIPGg5zol0xya1WVXEMwDq5JcpTIARKJv4PTHlcBbW/oe4VSZxTmDJBZpwKhUMaCtT2cZITXe97IJh5O97XyIRKed9pOgsDMNyl1Qcj2klkMix9bXUSXNkzlGYzh471PX5Qck4msgfOM/xCgJGPwIC62ubK5hLeb2jMnDqKi2dfP5N1tNtL8l3iu3R11PZjxnzRefLS8JmEPC89GGZZQSyPGLzYhfV48JybDNWVR4K7eqicvDsgiIn0G3+S+Ne/MTzTvjqVjtuDB7SQPIhc3O1K/88zC0mfeC6XZuXTixBkRDYeU0dTV6Jxc2kqOQEvypxqyBmBL0jSDSOGDb/1pLUhCjRyxERKPPcsWv7jelkuO4kU7GMj4erVvuUBblEI6Fhhj8r03XhSbsh0xdpf4SMme/DOrFDx3VJ+ysPhxP+1heTtNX8NFrjli9/Uj0QcWP+weI/ixJz4w6TI8se/lzk2iq5NhnLdgbE9k3GEAL3Ili6+V6jKCOkz4fQOiuf2lotygXsqxzwu5ZIvIEVvGJXxicCz23t1pZ//r5ScJbkMNSaPKFQGfMGPwk+6hsV99w85pX4Q/tT963j3eX5FsWxyiG58gjtO30sIG39kzpmzzzj7UOn9DEfXwQv7ktifTMIHGrjeEiAMzU76xQZsagepkeAQQO5jAhgo+6j5hlj7LR3taPco2DEuulKPkMOqpv3rlrOUOVMqjfA/d7J79pcy2+xiJ3mrAPQhYHPCDJwTaJLPDapycbVqk2Z2z13tMC9k0A71YbPKKR3dYdLm/hapaaBiiGxCsgFikvV9Dx6rT8vJpTtoOzLPBIrI4ZZUOtb8+Du+RAhABhyaqWwgDSweWpYj+tF9J2CQkPHz1WomOlelJRwXMYnJksn7h3vPUobY8LOCpHuBXplcPfr2OLGgWQvKJbfholz2Xpn8zaJ1h/Ec/QNEf2NxSbngPuNkvswLIC9hfGr8m8/oXZLbcwHxpNjVdB4YtneQmjOL1iY3slh+hKjX1z1F90Kkb3uD7eptRMyoOtIeCC49ZgMrIC9hkfTScOab68z1Dw9PL87VaySD0uUW6DE2e4m6vLrPWx7h0dBUy8xPem4llMpWJ31yXOudazQnxca/QK9g6C5Kz6mlr6HlG2vf1IrRlL2IiRDs/WHE0D09KKp9m1iN1IT/nQQND6iHrdKEAeGOSzKIJqpWkoxmrZMSAlaUbwwM0xS/nvnPqJlGQBxR/GnhVstiOXCnLEiUtWvgJL8SOFzd0FW+96JfGvTh8/vqITnRzP6cX/O4Ov8GB26xVKjkedMjh+vO3Lwzsh2g/a7+fQ6FAVvRs5pguFjhz4cebev8hB2iu9/w4+82A4+/QvPVXubrFP5gn59cF502ElsFdpj3jSYeoqoC6HQxMisN/D2WwXiQD6pFpWrDdIb2ubr7PHssZ9kvhGAwLkqPCgftki3rgaNG2WBiyRh+R4W5rmKrI/68toZ66KQUjL+RO42pvUNhVLpwYjnKtI9bT6ulA1LJaE5ko6giZBDp9NJSD7RlroW4kNfRW4dKTzyxDPfOtKjGWdXu2/DaO7pAE737C/1uVQ4Pfy99KOjZXLP1BVtY3oZZHLS9WFhH8NuJ2Azd3t2UipJSEvmVCwurQMgTgl6tv743a3dCsHgko464xS+FjReby7zCMnavv2GXF90PcBYzXcR4oU5d+89M2P5f0gLpqfXtSfwlINN6ZmGfXm2RegevR42/LfEB/1UWHPqaFfpY0clnYygAfbxcKqM2gk9Fgs3wMt2DrdVMSgcyBW/8cgg1wHmBb8Xn/Py9d8H/UB4y6ZT7JH57g9MuDZpq/q7TxGm6L+yfSvfO0jyMDlvU30MrOir8HPiJz9V3KYSvTDsP+ffsjpMh0FEq85rdGd/2cnZERdFf3VjMYtnSK10iY9y6jav+hJ+H3FwEPxo1XR/RJwZ+MFaL1SV4KEhXElzkNW9GKg0Cx8dXPHWJh9h1nLe8Wtk9TeIPA5Ad3MhCcuuLGXIesHSAs1hwymEBiMkpEWgoq413lXLlver50Et9i4cgkEqf8PcE+Pq/7+WQOWsRDbkADJSoTEePQO5zRWHYHH3G2qJrkfRpTb6401FNPFocC0xWTyGkqrb71yA6dpBnHFUKABrMaDrQjp6T5oJyg+fTBlXrA6tIHotbvgl9xfKQLZkFGHAXkyRVPWavT0U28wWGYJPjYutINd5ik82cQ3j44oRaTg8G7zCqsgqVUY//tWSBTo1FXTXJ2n83S06tOBuELMhfsD9/s1yNqHrhw8B1WOG9lu3E3DNpuVW3dreeRf8HN/U0XyxGV0NzfkgyOp5WYvtPGF2cntmYDufhqmnenMM7PqNIROJDNwv3NsdoBPv48cDPQPWwxKOTuMfU2yYC/+YSUuH1snwo7ub7iag9w7ZqmTQ47CUng4LNIkQv7jNrexJeYvXwkk9uRoZ5axl0DZw4JecHZ3LRhgGY4DcTfFNH6+TN5F0wmB4lIyF6QhA9dDjOvN5P6Ht/4Ed2AUmfLpgreukKDQtwubjjXSdrm8V+jSWYUcXeWa0rrNHJVbDlHgFaTr6mcdQthEGmHsCryUWWSxWnvkmr8lXCQgOaKjr0bjZvqHihprK6ioz/2Yk3Lnrz/jMkGulvSkzt72Y5TFKYpWf+OFysP6ujZUuF5FJw5xzroXZBdMhrcXq7OqQH8Ly6NLboCzkteYkVZ+Xe/AUPaJbiBkgAhQzRMisK3/eFIYdV77DzGQ7cu5WCV2aVAd2EGd1igap+l4hEgRUGepjwaHu/HK6z+S+ZzkSEnWKVMmaIrDmdPPUX5GC5Yed9LweNo5x1Yus425m6GffxkpjJGUrJrqhzjDknU+fFiFCQdeWLkEZyN4Jbw1fkqPzqFQeOBzmiQFVZxkBPZOh+I5CRPEfhGG5Vnx95aDfzmkkO/QtFzkwk5oHibwu177edzNhnjkUsuVqZXRtOTW0o043C03Nq+Yht84sGqSNQs/SXQh2B1b8cVs2k33eRj83ZEHE+WfplnwxNyWxcBg+8u6P86r4hg8YT50MBN9rhbtI+SYHRWVjF6NRSVXl5tBsa62ujCkbP3Z5eN2RSEtC5fS5Z/6QJc4CuKLm67NBuZNOukXXj98WPNFjKhJysF/YAX0s68gz+21w3BPG6XAFp3Z75ZSbbZnviw3AFf0OJnz4rX3KTz0+sktuC9MOGiSHbDOhCBr8gNmTP9k8Zwe1evJf8dOT+SWFlSVvaFFVRkRxYqyobQdOvYrlQxhcQgTrcavBF3LhymYohhn5tPo0YuqSum3Owm/jG8Jiz7BwSOnkjJtEp5w42YSGAfZKjyrgdZsC/zasm/ZMrhyEXfqzvFPJBuK0QrgcHqqTBcE0XbqSLFgox/M7rhG661gD2Tl7jstYFEt2X/bUm6FVLxsdm3JVX8h9drda02TTjuiHJQIC00Zas8Y+KgnZQ9J/9oijdsTlfew2Mx9iIyWhANpT3mU7zIpVhCje/q/J5gO7jTp4eS0gpnKjau55/j5omrif+aG1k9RFW/BYUE43767CKttB/+yQnIvK/Dox0NHHK16RQO3xbivny6+NlWT12p1JjCF/syI23NIHxrsL8XhzS0TxbjeY1qYi/9AlUdjqDGdKZbI8AWhtwsQff14wmfoJe0zzn1i1KUicIbOejXy9YjFB5TBrZcc9bVLYaBgk6wzCRyoWQUyR1UHTiydGN2h0tSw5hKbycWGvAFbbhxnXSLGVLm/+yL7ATDprexMejs7sbUX82wHEy7SoUHEE8edgUgm/IV8If7bj8XFspJ7FK+zSnFxa72Dxwq0JL/arfXkDvlhMAfoRjTkHGi0leG1UTz6UhEFjDYWmiD+NPmdzOHNB6GVFo3Onq8sqKNxTJQ9S1bp9ut718OCkKi0kthHSd3L73bR8J6OKFNIhtutENSrMjA0zEwGDAzKoFuWcXxWSfo+NPQzGNTycsIabKOsFtfX2t2guDptap1Br46+L5DT6l7/KCVq7lmK2HVU69gvlnXuCREAldDQ5J4G83WZfYbrqxpizIF9xE6jqthIJ03B8P/7Sk1BP2bAPCpL6TM6NqgHpDthC3kazr+1mKBH99Z+910eJwqFNV0j/7jkndA9lixXyGgxqL/2rjzknHTg/hQ0KgSGjWtSRc0GZzue6oMksgLykkbirmk+PmHkeqJKzm33t7q0Bq23tjnN1GqeCjihlAj+3D1HJuzW2IcZWAmdJi87b+iubqkt8VGgFf+4MSgqkigtZ5trQmIdkGvB+ihXWZzQwhaPGBFeQl2oG+u/3AMsJJvPtL9Iq7BPYEA7TwBGQ7ZYV4fWtbFZrUGwi+QFLk27mCZnUY77y0sL29aDruhKD99X/JCF/FamQN9z/9KNg0V5BYD7abkuHi6PfqgdeZCOsxqM3CV1c/IqEpUNqRTxynGcfseNsEWfioxupgqjWbN2BrCqfUQuc394EM3/zlQWCR5lto8m9gQ3jEQ7hCozJSZ67GoM9T01YHO3ZkrH6gGvnUWSKQGfKkqr2JYNWSAuTyo21NTlEYA/PuEcu+qNT23vMcSE493XC5W3DKUCnsyUm2DK3x/ISp8nxFgDt36Fv13aactOSuvjisIK/XeXcTXnruXdG96VYIfUdwZt2v/HOnArAnLHrhcfsO76jOid+Sf1DOavlka5jBFhNexoSD+Lf8RdWXXhkuVYvYtju7ywiAu14dv3cqXtcSIoLhhgOM30Kzi+jowJA/2movH2/nvFYgXBCABU5DGDs78/nIIQv2yPQJfA+ZuiyIPcKfYNuERWOvW1G3hU5Ak2PGMocSL8gtXRtnoHz4Ksnm6nwGtGhOgS+SIjOlSBX6H7nwyOGVPM9WQgE9T2aUdSA7DfPooiNBO2aRQUlzqLj0LJBTSaFvuQQxerBQXo7Z3sIFMF7fO4PMNDo3fNoobIwiQ4gj1Cl7I5quM8iRixcoVWKtc24tU1E9HF2OLqHhG4x4IHFJ7gl7ukz6c9l1iReqZSVhwlaYY2lwcy9w3KfbfqNxCg3LERg/ENZ9DI68ye7PBOoS3uEuN8tlRdbYbCagYe2j4iNw7IPwImPsOg7V6PtJc5KO+Vdkz1A2ikvGcZ9TQY08FLI9Bg+NL0HXnngjSPyVRj3y1kcxQWBOgpd1A3vJSi7I8r5ltyA8KLV0nTIebIJS9CTI3BxZvrhGZxCJiIs+t9t9f1CjveBPgY2XfgavEJRLE/EFqJKeT3Xqp7YDw6F55gNPIwRVUPC3vnKFLMTnXCXSwSbqy0iV32TGlGec0T5bovJagytHFCB7YfscGkkilibYXcAiTKdhKbvCoNg2CaqZrA0u+zz7ITwUUlemcwzR7PsH5lQLqVTRGWRioS92WEVapO6aOsYC9raSM+nP+Mu6/FaMSrTLs6RT5r06lIwn/z1GrVwVBP81MtwrNbWTPPeUmnwCz6sdvbbgMI9F1Jt/08snReo2m0HYeYL74qayPtoBykA9VKUXJpF5jxeayPN/J/y8B0p2U+yatk0J/9NiJO63GV9Nj6AysYbi6839DdUSyQiWRidV3mGeeS7FfWkL0vFcRU44ka4lZkmuhG1combcNgtqYuAqVfhAWlJb+o65vlSabhsgMU8x4w5tqxMUnCkfImqgLeXJLMzUNSDOd6wc/by95I1Wz6Y1AHExrVeqD13OaOZF8mtxp3K3nUL9ynPNOC4jWFAzwZWJ97kXIqDz6k5O0z/wtpx6tviUqNW0402jMieQcxX59YLNmhoiGxaXovNEpDtxPc/IWCzJjCyFhaKHioHSEmtX6k6l5+TdbyfuoXmcz5nygyjRPE5XO0yUbHsKmZqife+tTiY+OnGx1P5Uu19ok9onX5DSx3KzMoi9SjXhAQnckgMuIlzhPTmhM66RnWGgEs2YyJtUqVlkajNQ8iMu9QA6Py7lzu/SwxrktHg1emLPzLoyXOm6cNYaAq68LKIfBJYd/4VDIkPrKgM/kb0NzEcVvvGJZnjcAsJuN/bzCH9iPKuEr2QkpIpn036F19rC8osnmmFXDmnvPl5Ax0DIVZcrE+wGvCoTcriU/kfTMamzBW4F6SBfcEZ/8yR11fLy5RdDDFNGGVJ2+AFV3u/7ZN9o9/XXscIXCCH3pl8DkfvoOXE4wnIMchTe8r5iqoe7wY+dRVuaRZ8TvI/5TJKPfe9PaojqRh73ACnPyWb+cwsEnapD6DyepWRLqBly5Oh83iMSuzjNd+0LvAUPnppqY2+IGlV+YZGQzWfSz+WMZlBrtbPVCw8uqq9hgs6XQSMz2j6X2qd+olupquVDR9SYvjc3vR1u1Ti3YQbqi3RzwD/egJKHqMAtKa+Zl3agiWetGxdex0Q6ycHaHAgnVQvAD3+baa4TqkByK9B6Ge/EwrveRJNkMgGEhYJgdx1WpHNrt+wwdl/H2K++JkpsGjE92+mQMw6RdXWiVLioX8pNFCcCEHQOVG7lrg/175DqcrN0TBUwGo2UwJzIxadeHAPUeqtBcpn6EozWFYpVsco6DFW/NBjMWbUHHPcmMM5eZpA6SS9Pxj+v8jh3xNV7y+X5VKV1kTP1+ZwcbZC4gjZI3/bwryq41yVtQjn4p5kP5xcFn0i0cLfIQE8PXDRYXvlNkFFGzKlxOdIisjKfTlI8zXOs+5kIVaPQbg3RNmPGT3cun828OawoqYSEUYiXcztf902ncRl0xc0BFzWNs4oTgnOl2Gg6Dr3P0rpHGj2GfVcjDcuIFFWnP1ryv2N3Dn88ytf2OHL3usI6Mybtu4gU67Gjm0BKtJ0grnyQUMbjdrJHzht38fe6a8blzLrlcJGaAeFc8unZ2xgjT4Dz3IDSDzbLTGPtM0fi2YLTW0ban5365EeBbjCrnQ09X0ogT6GqLPGlNyAO/hlT4z1WtrkNGy/6udCgorNc1QKfM79AIZgsq6m4aS71zJEvPMmwulzqLKLvnhm1F/vJFpeWfYUAWF/RNDfIjCUGfLHbqDc06/l30tgGMxAcBEgUVPlO+JIrWRr18E6iJlOBcs1v8aTctjjzAXY7p8Ghlvpt8GDN7p7fnWhMyoIZ44qZ2+I291MnSfVxBim1nlUnYEX/jcdMmaA9fTUSXmUEDhw9RGhNKTLCw3GHTNUiK3UkekiYqJe3GPsS7ulXGalOKjsaEFdL8Sk5OmI0zK6xo9nP2YlLEfSgXifPwg/8ZV7gVfsJ2nIjm4++1gJpAmKpIEYpGqk7MhBNiq4wGNY1eT2x/GAfPPHB724gZAJNnA2TMmOCdtsDJCLVis2Sa9/iKFjnDQk8VtUg0FbKaGui1WMxpjDlz4IRl1RCkUBtHbU3Jqy9o8R9nVpcubbldbrpEZYL52jnN7aePoZxUnlC5v7j4nv1EVML24dg8C8B5rVg9fiTbHlDtMNuYiA3TCLv3TVzZ/+lsLrXJ0GAvTusR1wNdiNYjYkGCxqiAQsVLGPT73iispp8vB1frHaTSDUTXKLLGXfMiOzIeBqO4j4KloLksrr6csLFb2R3ACux/q9bqRGOnto0x5n46G6ioTqNXuSWtUvFkToXBYJoneMCZ0sb9fG9CD1Kr7dnHmnf6mPxFcZ28+X1ds8RhEUddKtBaJO+sscQMI4JVV/dzU20lpNGXkimj7xk1xGBjv5WLZ19jorDZ2Lqb7WeigjKUrPzCx6WT3pi5p9e9i7UPFo5+3qdZNhFzPm6CGKZSswwnnVvec5f1vSymjnPWyaG3nn5URTvcTjmHv10gp0rghXHCwltgBdw+Q873RqWS35L7Wxhx2ff648yoa5dnK8ezesu2VMFMcuBEeE3dKfNtSw4/fz0dg6T57pCUWi9NrMz7USRVT4Y/KjLNNZcVobINamRvOPoRx4L4qZFjMdKq1BtmJkrbH14GKrbtupb1AJGTSFslOTOUXqSWmXyiQwAIJ1QpTI9qUbYRznBxZu2ehICoHNO/UblkLioMWexolta58qvI/36ufUgZYeSaEqia1iRRIpivUp+GpBir3r/yWOhoio8NZzf7UnNoO+Q2wMHpUT391iDHjBFT2CrYZhoAKCTay/k4QQMjcILw0WYAzEkE1vkQZFNTAZxCNKBPpoa+rYM2W9mpZTZQk55cUYMY4ZlckWlUaztjUPz1+59x9Mq4aVC5D4nCwNFOe6vrMp/XRZBMNMO8B00u4KJf0onIjVWpLtUVZHBKP/OajSxn2I1qnqjmCxfZ+GXwPdHXcyk2yFfWaMiYygJdFOP8lWNFe8dRIAMpPBXmKgmNMn1QBSqs1rsWMWXVy85N080I8dNEKyuptAKm0DlVSXOX8L6MzH56cPrkiVonnItbQOHhjKsn9XXQe0MMJOEHEk0ocap8lAmzBtTQ120bZe9Oc6myGiS+G7BNxolLm8A+Gy/Zo1iI8eFFhHh2bO3XnaqOKPMY1mu8vSSAj1fjBC8xSTgKMuN/8Rw+qTICaNg7spV2ghJMWhvLVDvJVHPoMvrS745QmF/yIAOABvUJnLDau7+bb0WlE4Xd+nHez8ABa0zdnZ2Kmv7l7Cno496jRi5h5C0byS+1JGkKIg4zKWSrLSubYGrGZZc0Hil4jO4wipAer2xL98oqLFrT+bCRI5X4ZDJQqsPHa2pex8GtCcLtzL8tlXlL4cmlnlPjTAvJTeOwNY5OeHakU4/mM73J0+GzI8wBvjY8vTWBtU6MR3buEbz+vkRbw50hTRgkn3/YrVrWL0YN2bRAoLUuPViePuTO8hLVY+7tVubkHBz4zOStRw3jX9fs7UMUeAapEYztZwRmaD0S2lucSxzo+7OEOFjt9TxKCxKPjjwLJyV6TnPtAniDZiZr23kSPQ5zhqDO3BHTc8LuBM+ppIZdfNaQ881Fh7dqlm5QH5/T+bJpV4eyn0W5LNp25iXfgtSwnGSeUk/sxz7XNkIb2sAlVyxCeIcMPoVK5MYdIuZ4bgl2zataamARqjWMjmTj6BHockiLf7Rgv/hYsW9MtG3rBpOtm3N+2VD/vJjY4iSZN/0lg9BCMpy4Z1BzP1hpFJcdxoyaA60sN52vpoO67byDHxvydozI6VhwuCL8i1/86z6OrMNuK40QkMijYBexYQBlzkCDLmJx/kthIKq4ljqAz0EmGj6Vcy4PTw2FwWUhylgMXcpMKeuJ90HSm09FdeY7zBNJhg+gDPz1Nh/j03aPxXyxvxEExbo179ZOEnLaDYtPDsUTp42Nf2rm/r7LVYXkdOoCKCSlWDpHwxBv1Mf+Xd9yGtLOSkMWeK3PqJ7XkmgjaFpbJiTBsGrYUuOR0kNqCQAKzlG4V1FFVSA+EJ6LYNylopThRh6ILlsHaeb1uWaCCogaT/BdQ+uhjJo3yMCM7okM54wLw8pmkAp4MzUho28qgP/7DspURIewG+lTp8IDPUEsaRWrKlPxmmTMDGo4MIfA10NFrqWjKmYbCiQwVyepBQvhIkYro8CtJxEGLXqzI07vKm/S8LOa7XXbB5pLnCYHHeC+S+4p2bv+P7SLh2Viku1Kust8N4Sb0VnKmCdylhXfZUUA/oWplqw38iYIUDbjYXc2l7YNDStVQpvIPywBZE9leWWnK34Jg1dtCiOjdhkYQnDemUzvkLFHR/d/XnofbNZZ0oqNgFIjKtXztQCt9g1szPOI9FL+vcvdSOlcWn9vtQBhnJmfxygd7gd7p2uSiY2DAsjoH2jh0jPme3fQpuA8lYo0dA1wczAqsBIHlXvsqeRzdEYlOV7U0SaGva/X9kqi7LJ0u3EXmZMO8gN3ITzPh7wXR1dPkNv3GSyL4XQgwOlcrtkPHiqPFUt4oUfOaU3Ag6qhGxF6vhiQ3p6Ju8Lrny3vxLA8OeezkmFL2xZBiTb7GpOxfkCu8qkWXJKJ0/rYewLYNsHGBIX/FGHcLifq4vZVqct9TtirKkCe2UgqciYhScQjysWJTCxaQSWghBrSK2K4TlWr3XnUQ+N8r6PK8M3RqRtRnECWR8CXv7KtFhe5LGJG2npHsRMJv4eM6C/r1nkx707gmVlM9OBgiH4YzdW0NhHNogIiFqg9R/2fn9dYJiRsXbDOFNu2FN/NjLp5ypfQh3mCrEjNjYvIWYX2ijiEJ0aS3Wj/ylafKIdgPdFATWvNIqrbo3jFWhkAmd/czjFtPshhCR0f+aG9CgMg6XPcTLr3r1tpZtxgqb+vlN69G2ACdU5N2krEYkNiPsA1abhehbJ+TcqfWCQF4PuONRqdGRni2Itosxcnv2G/uzVd6N/4INiwGf3RnfOlhTzgqWsn7+1fHXRkCGh2pB3/t8XhTIvj8AuxA/UDAtuLdBkaZhfRN01Bod8+teX97Kwui2oY6N34/umS/Sxv2Fu68FyUBJjgMvBtOhaKU2tlzKZfH+apV7A/1pIr6hv6bMnZ6I+M3CrulsO2WNZpqn+qGZCfgHxVFtYfh6lDbG5Cbx1KCue9zI1WAALfmXGpYbZ1DgX7iNnVUFAQvpTSK4/l7QyBqUbwyrxVtqoGA9H70YVs7DpbR+ZGVdj0C8mzNT2wcwbpiBWNItMr0fWZiNpZIF/iL43JvKqIV0lB9B61CaD5fiY9sjxRHWRpPDxPIWjr5gOUbHi4cboLFozb863cxOCdq/jRdtEA+WpL1Cg32ywBV90upNjNUxsyRvVv96/E70sHFFOK217OMD7BiY6it4jQIJTpKJVbgAMlo1CZYjbunLN+ku03VjBQ2M5X7wyjrNPUrKc2ClkqSJYgHHPlIEbZ7TpfB3hCOUanNwLWOOPFcGcHS1q9DR1mFo15YgceFRSWm/sGESfhFAYPnOBSNlqBW8n0E9k0SEgv5pKWDcTsYgHUjlJBcWgN2MSxmh+6IO9DosoEvaEerNcJPmAvRSMXehjC4Lmu66pgAehMqyH0WatVNZsr4NRT8bHTYYj8bnOzDqupuXDYorJx12QeZaUDkXTNxdny06anel1BYwP/TmHer/L8gJeUCsyPHPFE5OzjH+DLqJRtQugwQRfrJi8q44djmcx3A64H+K3LHSxmIe8gzvlZUd/CymWlLOzuFGgti+zUOkk4lboAPlanOyoP0P31lQpxdDAX9woUwkvyHEWn1lsfeKiKRbdNARK33fEeTnqzG52h1Gk8ioryIhRkk5mk9MjtAXK3qa6Zv8iCfvQYslCZXqOA7Ufy3rkN1PXyRTRWYIWJxaFPfUb3um1VWpBg67lB8QeCyRDjUyVfPtvjiOyzQIvv06n2NLxAjRR9WStlOwfmeVAqdt2iM6rEqkIgdUlMFaCYI8iBNxRy6Nk1LZmpsIVG2hFOPbPFshBV+MDNomjaPf9Hy7P1Oo19J6t02WzZ+c2B8/Iy9EAPspMZqcWTcEgZ8eatJ8/XFmYSg6ESrpvFGRxwbRzdLVRhVzHx796IxtPxydA78tzn9v1RSE9IQWO0MeoG+j6YybssKouxnOGPZ3SiE8wup56X65idwGIu0FLxTbmh9EEavfPgRTEU14keDX1nrkYqMH5CmE08PkMTIRoHfevtca55vODkuJdn8188QlRZ7tnPabDn28gTYl7Q0NrmdPgvUaaTz44rcTebF+E86vE2pjB1Q/bFrkq7jQWxf/lISCLTh0UAb0gFvD0y2gFhw7F0kgQaNl4Bws9tMK6APzde6W+UllRzf40nFVqKARTx8WfFwZ+HM5DeHvnleEQhaj75JwkEtHWHimBKOGdjgpq1goudOK5iBG9STb0U+1Afg4OSjQOFSbG1E1TcMX/SGU8BxtbUa3UxqDB4b5Xlj00hW86oyCi5J4AUueeB74PT8FFwLMwj6wpQ8pT75hPOpnE6JZ8zTFseVXjILqdgeCDteI6/J5xes35fc7hU8n6W4/RyVYvQPoiqS0rUXkKreRMg2Haz//NvDu4x/51im1f5cMKhyCeK3dKtatzkWlUkk3czCBUP+qym8Mjubp7H+Urgf8vzKtg1ohDEsdZmAj7WLP8KwZdlTFNtz+SGk2QRfWWve3wH9dHEYLl01U+HarU9wvxX+dwWQ7GHa+NiZ36dsY4mj1xdG9SfkV7Z98qThXwBFlhmHo6sNE1Jmzi8XLcgHMp//cDjuofte2uOH4IxOImPSeAD2q3VQpXorYhTchUAv+TVrK5sNsXOHH6wxo3RsbJW8SRWBPHaNzQgHCKceKxT0Bm26bUBkLX5Nbt0d4oUpnmJjJnAev/RwhgFeH/6u80EtFv8dE9+tl/5KQ9Y6i15ZGos7DmkeHtQZxNyjqo+tshkKpq4K/sTrBGMgIgem12fi8qj970TSz/otEWS/jfUaZp6Idce//yFqDgELJ5r0dmfuHvm1EV+ooLNFqYFVV6hI85gs3kNWo+Yju97uUjJqpGEYm3Cgq1WKEYcauYY9cvV/hTdk/Lc1jt0AQBRikZWX8vj1YvCBYrKTy8BEosJxWl8u+BpfViqhMgrZRTz3FGxorvhhXUc4Nem5VsN6AtYqk4+RDTmptPCEnzcKrxmSpuNLyInThJt9UBaa1JdLIOVJ/SvyG3eMxY6Cp9iWAXROUvyfFpvbYTOoYeQ2SdT6gCDnD8iLWkUKQ0cQ+eOi+F/XKaAXSOPxX8220hzv0CtuTMfr5oOfLnt5S8QCDXmjn+O6Eyz8qTWdfLR1Ooe3mHBj/OldNghVVMXq9uCznvDm0RLrkWddL/4zGlx/Jj+BgBD8zW2bCwu4TQxVtDBn6c5/k2bVKBLdUsRkkRhcM7/tD5Igy7IQK6zpCDQFQIYyqWOShmMaPmJCw67ZD+a77H5WZi75ytJXKNTY/kbCjaiIoEgmNWMOhTQkdZUua0NEWJvQ5bieyeFKMyKHQoxksrlNDEHgZj01u8UP7N0LLKcp267Xn/jb0jDX2w+pS4HLDM7CtGtlTac1hcinuLU/Q4IxgmUo+vcb8lK/Co6ckIAaAt9LUCmbsMsZlebODtOfXBXu6zCcnCmEMJYtIFQ5/sZEQLSlj8v0SJI/MujFdUBC1Qy7UwDZ5XOgJzJzxnshVo2dKdTRdLlGSbgXcPnHIfMeJIWAQXX6Uc9u8ennWypfjJxdi+Ax8hRaBnA7NuyhCRKHqZqWQUhKmwGI64mgNw9S7LSqd4tXYaPNXjjj1sImLQS4dIUZ8ZjC2OSEdyOKpziQ/PmQN5IDt8My9UkLmdGsCEAPrKlOy3SiG3WL3MazR3VTUaye75SDEe4hNPlUhXYa1usDE6H1rKyFeS9MQQlUmGcqezllzswBT1GD88KEp+nZjUSY7klJ6R60dlMQpgeqvTFvmki/JHNj4RRNHh6QENuORZ6R5rusjwAH1FkDvgj9fLpID8SQGEccop8JFJZYXTVT9k9Fxab86a94zB3PZBd0H369y0gqKU53J0I/3e7yFyJNzhKIbblQHJqb3j212/Tp+clI55dgw/X6GmT2TXxWRrt0cT9HzV7jk+0AVzS1u1decdc5QpVqm8FnPU4sy0F/iHxPwP2j7jkdnWcbH0MK4i/cMFqNCHCCQ8gUlQWerkqIgLE6VrmRkfTotsrE8O9/X215WOX7+WzolsZz3E2Pc/Nnn/tky0r+eTgNLnctdtGJg2HUMQlZubG3aSJELmZQ8QsI5k9+K41d3lp7k5O0qi2suX5QhmGjlHXGbhH1vy7SgOgfE0aLJ+3ACqiRp2gExJPWcNApq3diJFuuTLwpfj0TSVOwR+DMEycZgb5sCz8no05q3XVJCsJ84pjHGr2VCrGJ/a+HBcfqwEpEJadoS6jwS48xTHTTF3Bgvrhrfn5o98oMgJ3CR3QQm1BhAYpMM6WNK7jkeJgET9Q9lpNExj6BuIjRQ4RVtcHUS4LlpSi4yJIQ8VveAt3ZW5tW+Qgy23TGF+KpQQVsHrSi7tTf326muXSdcawYose3xNmnSaGtzGZnaKI5Kb+KIA7bFZCQpN/jl+FZ/hBbATUU2YnD7Hv4LE1eL5I0NxLMP376cmxnRGvc45g/b5osko7GzBW2kL9VqJ2W+CimuMKWNcirUKvCR/Dl8DqpsPYR4pFsB1vPtnmZo/h5q9TTwXdBEVhH2Q2lNFek+xAJT1dHe4RYN0mK4+Ly5LC/05agpVcG5XNEnER6QMgu/j9kVwX55Hdg9AIT3h5mC4MYLahGZPJq9JOo5/Tms35ADYAHptQ7kJ+0jU9+zo7cEbTdV0TbtpNpON8xea9JDBUIZrskNX+Qqhv+nM5tiHHjKb6MTfZM8l9QM85ObHgegXHvdQjZQV1RBwCFSw49AlqDmfJae8CneDeI54fgzQ063m5jMtvXZ9op9ZvHZVKk/bt8EV8pTtfO62ha59grjrawvraSDtGAVaJDdJRKepSk1Yy7mQIYk0F8Tb4bSlkxFawsfzBrs9AH0xfnBUFaJ/VNuoZkdEJltma/S/4uafKklRQme4vwDUueerRNlSzQcdnVmf71TDQIWGwQ95+uBvoDnvwpJLKo6W6hLf2+cWFreqL29KgVlAp+4ueDEUU0TsLaOF0WNx1lFbN4wfnLk8nyW12lNrWRzC/mD2g6SB+8/8ys5u7InNgqdjpdcb6I/uQUBAtQPwMCf7jWp4hcKHhvUf+VdrOreiWjF6BPTzJDWm2AuD2XG05Qv551JFi/6o4HwNRFajIyDdWmlkzSr6weZytBExL0Y5u/uJZJjdGPQQhraygCSUcvQPcrjjizNR6L9wwQQtKn0ab0I12GjZ26wX+vslmTieIDBvU7fEhD9mCPRkoUPaMj9OLNvTjzmEumWEmAa6LPMCF10WE90u4l3E5Ft20hLKtgzc+wsPOD3X0vvN94KdKAjC6V82PqSZ7jLgnS7m3dANWvmpXL3on4w43xGK8zi+sF8R3sxatW5JfdUH1ypCM9p0iR4DrclIgFSSC2va9pEgp0+X1GfTcUJF7Hek7Mtpt4O4IMkPGbnFGr1qmhcER/GaSZkYIiGKIWx3kZj14HJevhsQeAdxpKj0aFvqzzp9GurdpjrAShxbHnuD0F7loJJ2tICnkn3H+QbLSPEvmvK/aHiNwh0X4L6+1AGGauCsUCjgMxZJnpvpXnl4RpUvsTGDp8Pflh4WWDefF/wV0xw5LRIGcwv/6wh9LueKlgklvJ/ZpYYlR4D2J9JaX7iUcApvdvw2plViPstCn9wOx6D34IDV77O5tnN3TcLMzyNhcr3SSsYHSfv0H0aQTtDh5RIZ2yWjoOWL6SwogTFiten0895kZThO5hSrLmID2meciwu4QvbtyWlqN7pkkFP9BxhIwTQ6ypPFJq+Pn0wxoE2umTaNfc8nIiQG5gVZGUBon52YjXjQ6tajTquz5o5ZpfdJIptQ5vdEj7zbmmYKUpU5dCMc5hH277Voq/nFmfBRqIBRx8yvA5hF5fUGvNhlVFqtqmrCbaYkmSkgesWNhzDlKog6UQs29aJ8CRQfq+cMqI3SKUd4Hy/GXe7l3z3CcTvf/XhGfS+F6a9KdFaYjBqIEFBnRnAYCMc4Dlx6x4D0ogVUO0/L3luejNbhpEv/UM/cz9mYkgUseBtJVKYcMuSCB1CATmOwRyQY94QUcDy797y8zpjIxSxSqz9BMtvsDFfEik0JppO39EE12nNN6aVzZ33Zn5t1NuVk9MyxVdxSIebBK45h7LH1nJxIeA5mbvpqZJa1LW1krIXMwrAojDOwrdBdjlUR9GbQv+S3zEvCfD1mGNNhX1QWQlzQFiH8O0IQdd4PDRYFe2O1HEka5fM32U/8Fma0kVdxifHqFn22eugtBswajDzbUSgHikkL0B5R7V8Lx7dhrR/pFfv80LDHzuKjOoDVueB7T1Rsiipzq/NkQ8xb7yoD/0/MyTp6LBzWG5F1wp7aBjvef+dTQaHF+FsVnSQuWh8c6sf+f7lzzEXxaFHMRzsGtWTa/4zBe2XfqMFogpNN3MyWGUNZyMP7k9QIRfQKVw4F8K401WNQu3gSoClmg5AKDj3NOR6lKNbv7XL895nfrNKGjeB0hWKWqi43+3lWzLMEsQ/sGzGbKqktVPyRMNHgELQgsrvSN2KkcD59HwMN54iK4Qbd3r3A14Gs2jzgUEutLm+nSBjrWqqAXuHE8gwJAUp9fgjRnjgSyCWdj0ocZZ95ZDsb/zfRTO6t7LBECjyl7tAtXYG4wElo1wKrxyz5e/+UZ8wSOXwemvtDNsctSC12HTKGCVj070MI8sAJY9RnTjxnGMFDQ2LYzCc3ptoUXwQY5BzMPvF0025FQCsUD7IkzKLMQi48l2aZnjJuci8hnUphamHTZt+EdnFoZ/5lwkUNn/1thD9hcznTo4kQSvzObCVVHX5fGI9Rw==
Variant 2
DifficultyLevel
708
Question
A teacher is choosing two students from a group of 3 to be class captains.
There are a total of 3 different combinations that are possible.
The formula below gives the total number of combinations C if the teacher is choosing from S students.
C=0.5S(S−1)
What is the value of S if the total possible combinations C is 406?
Worked Solution
Strategy 1
By trial and error:
If S=25, C=0.5×25×24=300
If S=27, C=0.5×27×26=351
If S=29, C=0.5×29×28=406
✓
Strategy 2 (advanced)
C=0.5S(S − 1)
406=0.5S2 − 0.5S
S2 − S − 812=0
(S − 29)(S+28)=0
∴ S = 29 , S>0
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A teacher is choosing two students from a group of 3 to be class captains.
There are a total of 3 different combinations that are possible.
The formula below gives the total number of combinations $C$ if the teacher is choosing from $S$ students.
>> $C=0.5S (S − 1)$
What is the value of $S$ if the total possible combinations $C$ is 406? |
workedSolution | Strategy 1
By trial and error:
If $\ S=25,\ C=0.5×25×24=300$
If $\ S=27,\ C=0.5×27×26=351$
If $\ S=29,\ C=0.5×29×28=406$
$\checkmark$
Strategy 2 (advanced)
$C=0.5S(S\ −\ 1)$
$406=0.5S^{2}\ −\ 0.5S$
$S^{2}\ −\ S\ −\ 812=0$
$(S\ −\ 29)(S+28)=0$
$\therefore \ S$ = {{{correctAnswer0}}} , $\ S>0$ |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 29 | |
U2FsdGVkX1+NR1cQqN9aYtHYomCXMZaZ7SXqnrCIi5rNve2HGveVIjHZCfJNq6+8erw5pjTK7y0UWku+VaqgQYPfJ9Kup9h0cxFTX6Pjz7xALZVILJCjqgFIb2+abtAMJ8kPD0FIt6XM0oE33BmplLpM+lgTh2GKLzUUKistV0PNwADaizjprndcZJfXIt84pHfApmM2oyp6NQojEq0E9J3n4M2+tlATFHTHA9CXXVb95zW3GSnfZ0CfhznAzq3c7/cerj3SW2EKjT2I427oEE9gw6N8e9i7pJS68o68CC0hsUsfoSr06V4zP2VXjksrbxGci8SDy7L7Zoiu9qJNRWNH6Mc5JVtXzgD7fvPMCHgqlo2UaerQl6y0SrYyCC9sFnY+tVP/J0jhKKrVmfrV5UQIe61XPZ6KvSeWbFg5sSsBvuKtBqP45LqQo/KyN9LCVHJUj3YNQcug14Vf8HZdfWSx2H+ncDhGL/QguRzTC4ohu+S6aC+eTPfLZRy1+zUHDdXpDgvRHwxRcIr7By6Ez14eMpF5LHeHRbmu4phgBf5QuNTuzzVHlcDK/odfjmJ0AiEgnfLU8NYk50WlxdJfjDu3pKZxD36JsriTp2jXJqwP/yAyFY1tWoPsAhlIjuyl+JGwZBJBJ9Jc3Y6kQl8rwvYUsSqNwrpe/vocgduaZn9XuM1sH5i83NjqFz9lE6NwzdW6k7TfnqsW9oO6IoKgkaTFfDnfWfKSvv7+/z3cUn5hzwC7kf4ONewJC3DzRKeVAOu7HBNRUyLzhfJddsIs6KNW07SJQmNup3+lsBbIe/IUct/rKZ0HO0ho4WN8FyApR3cbzJLqq25Sy/G+6F7AMBTujkS/kMZLeaI3yua8xbodAVJ3aC3VFQB0LY5/38E21lOuPReXmR741/WZWwDoShSdIeImsRwA2jMGEhsXwzEa2zbdXsZEHMfa2JkfPVgGnWLooyFuhmQUVdO2uXifoET9hmdWE+uclRDTgx5MIznIiPnISC6fZJlKm8u5p0nLiG3XLbyDOoWZt8WIIulaoR4nyY5PCKV8j4HJEV+bhYQI8VSAR7FUAZWek8RDfqSXVIwetdQf8RzUYpk2Q34iHxt0v1CRN0vR4SktP6afLov86aC2QMWIR/kvcTfvMxMxvqSLUVBnL7s1DaXqIvUVlGkH3eNdgt0/B+OSI/mC1405MFGR/a+CTGPqtQ1vQzTOG1TIRlrIY2BYHBs92TOoWohIrJUFnu1eaZp1Iqjw3t5f6vjfCX42WMfOZSXgZKzf6NRTaVRgTb8FLHums1kgTOasVB9L0T16PaRvybGoULZhMPUpPU8UAYOwUpUtrLvE7+aqVqs0WJzQ4MEdNJ2S7vQ3AQpCBc2QfNN7s3uL0CxxN7Hr+vSB33RqTqS0LifwaRuXAUTd1/fgjn7hPkkZvgW4Qhg74Wy8qAsvSogofq+N4ZbHXC0BsHZnh74CeS+FYhmU3RkLiVCYlu/1oQ2Hpw+zase5voUxumOClurMKrZPFeI9g2K1F/Ee2XurOuuB+61EIkXCi8kegoXUFJGe/kK1JWSfB49+6PrBm6mQB/dPi/1C3QVerb7VcmD8FuPGlJlyhu/7aqJql5mWmbesRNQ7tiXgKRoc3CT9Z+7/w77l4BsPQPO9r5cQhDYGWWyo2vcZ2t38K+hzurKA7JRjBFr2MQRz0Ku1kvPwe2pqTAH7qO9yYMEYG4aWa0yHPehXm0dqOr1j+WLcESk1g8hhOLStbLa4aPBKVhhoMTmE5Sb55c4eZZHB3FGfunVhhZxm23nOOUM8sAQM+PWqTOOQ00Q/I7ZHi/8Hin4JvSQ3XwQ3zBrlPfUWTmdetmgFSC30sHSl4mbn5agbaCk+ezHRsWKmm8mmFiB9+HuD4JohfRz+h8MYRpG39r84BEz2NpsFXUgFk6FR/iAw/bMR5BVKqCSSI13rzPNNoERXd1lOv1TAjK2dltkk0XiJTqTxpqdsMW/YEF3uZ40LzMUYKHEWTBEi7CD03ZJJ/48mG0qyEkloB4z9yvkQ1mIQ+JNi6kWxM6CoMPel8DP+1HA4GA2PiVddVC/i368ltYdB0yuDwI9rKLZRpaUHLVme1yeEbcVDmRVU5p6VPyH9E1GIYap+jGTc3oWXnT3FJe7QC8FGK6PSnYfzWhlwOKzwZFm9JucIjJfCLw5yV20Jp/2lPNGl8EmTE6Ez7lUQ+2oTyNwaMl4oum41+tyNz/tEw0Oixi5JAAnBmQ+kFKYJGSUIvQe0/hvpDv8pHwQxzNOGrs+PHY8IAB5J1JnV0blySu3avxNhoQBUSipVzxOgA88JT2bZgMG2ZYO+t8aKro4m//zJASz6oVe3NrO7xoi2Cr3UeYbE/QKeZIZgfG0fTLJgJ6fbX0is4XyotOj/TUJrVvIQuWWUU99g7u2Xv6PPlKdwYOyUhA0bTdmCPlN2H0GavdWAz4J7zkrCMgpZeZJBD+Jomw0YPCyvi7JQaI7DeZiArlFxpwU0agjj+nMVj9adRPRb6mNBBehCB92WQC+eAAJz+/b2dBOurjTai+oKv1YOn+LL9luUAnI7Ia2IS+5ky9m4eCuZLR1Jgr3L5RWpAKpMEAuVir4S6sWnZPADYKTd9rY3hcXRpfqdoJqRsIpIaapnMYZCH8xrd5XQjMGbUAXVn+vwA3Vvomv1Sb3hMS5CaBXnfZ9u4bOHjkOnUKvIYyEN4gSuCHAz6VcAqd5/EJEDqudgpchC9cA1BCsLEXyWUbMBS9/MR6DhqbulrTE9NJ2RmotocqNeiQfc3SYu0NVCIBKPj6HG40NqaGXmzq+2HKE3igab/WiGb7Ok8hUnJSJ2MrgaWvhIDtoAwWTFRzOCTBL5it+TIXXUJAIGWaVhCfpN4tT9AyrDTTwwT986qXtN3J4l/iaGUcAdI28SyHDSfKqpsWPuzVyLoPCNJV8Uzg/1lB8dIoAYkgG1K2EvUbbPIsvAMQfVczce0/h4PzzVsyVo+sOJ0ItgtroTYV4ZOEmdlfqJiA8Qys8/nZ0UR+Wc6viot9H9Skj1CRCet62dMnWxhJffSGF7bEntl9D1XaIBZofroFeRsXhUIr7aCzUevXxyIVVuYxfMmrkzgAN43FvrPA4hAx9V/uLp3ryhvNX8HiIt2S7ezmHp8xkJyy+/PGcfKo93iWuSwgyMjNg6QzxcFabJHoKDqW1qwG9ZGzaCm9VqJAE9C/1QOdB1VjiVkPZQ2JJjlRXLf7DvCsvbdpQivVNmaM18uSM1HDNHYwHT/pG6Wzow7rENartZnUQYQVk05jB1c+iakxDVfjrYlZIbGt6OFIrmL9z2qtF95QyWpXPVLy22nZJiD7EJGLg3IoNg2pwzuIgA6laLp12sUAzFwI9WXNiWtk2Hhi8Jj04nadSyqIPGGOZgd2SjPpuTqan5MzaofInFHVzprVCJXXeK4AmIzt6bzDxYeV1xaWnRUPLobqRAOlgmw7oav8hDGeCmqAVkzbeWlkJvWYc99aB1FeiKYMafncGmXbHW1PCZdjh20bnxUHLvpimlhX/YwGYfUORyxJVcNXtVqQQu09gj24ChisLBDnoEmdpJb0++XhAMSbY/LHCPmXGMEyIwnFfz3KlCCR8GCw824xHrhWF0V4fN2sGW7RyD+oN9YstavHulY0IiwT42kpSTqd998bmdJJ4m8gn9XXB6VTQxeoQtxQJWmuIzzgyD2M+CLmGN9enTps1IKABmuuWTdAWblGf/jIpaeorzisehP5VldIvAm5dFKzR+gbmzhAhlBqpdpMJkCwtEhjz/vzpx53abEdyBZ1yrTuYTMlsk/T02cYwn6oCLGWSykBZs7Sv7MQIJ9G6Xt0DRsKwlnp9hxvEJOL3266MprMSp/W5qnFMiOKn0zTkUT9IDYroLC45ucyFm8WXpEP0cxEervF2pWjHjQBInvu//1ajAngDK8JMQpiQ45cscztWo965G7Ar9tFYCPc+MryonX26zt8xXHMhGLMZyr8hcT7RYl6ZxAr5SCJeJV8x+AAG1mvbZBtblenv+ikBaWX3FMd+KwnIDFoD8tv9Gwf6mSyA6w1z7VWuvW6ttRx//l2qfmqYfFG2EdQId1UB1p7VdYsZdDhat1txwdXhXN9nFLb48Q1xQNcMUR93LeQPA2KvudYT7cjBruD9D6aw3lvFU4khKcBI/mYg1HP9wm7/1HK8dOxHonYA5tC0dog8H1qpHNLkKy4WGN8xvkzjfGqEMMLf68O0tiaDCYG7uFqYzzIwEfeC5oyLSVCaXJHyzovWySv5eBhzDHkuWygSSYe/Y0PbMbIJKjokF8ZE3x2UbbXAq7beSgQBxw3rlwfJ8l4kJDey9jMkJt0AIA3lWZgX5VYtYlyoOPS+dvF5FirkP9jh6gvu4BDiAkOpBV4kTQeaemIkLyJzX1w10yusVZDOMm5XRzWKQIqKxAP5tE5K8FlpseN6fXjGM8HTIuNOYr/0kaJWFIcoA7gyditrfg3tv1HX/E9SYXjKlMjOcRcQhMSStxoS7DgUcnXEyAmWbrEjqBGjrxsibH0wkhKEKCoS3motObfg2H9kWBSD/Y0He7u9e4UJGq/Y+2Oxn0GAVY712EZga3IQ6Sx9cVY7Lgr+k2Ncf+2PMJEySCcQdqdDXEk0MbESooKrMa4M7OBvAI9MoQ8Gd6d2rTyomlKFvWkp3z0AXF+yVvHMGUnTx3apk1Ka/F8IcSnzkOsc20HHaHvyaMKwfCEUuFSfnn33h1ZapSohSYX8RhIbRujC9znPjvQD2UG+q2by7wsNwbZHLydbA1uPFjuWtWuohOHP/63f2vhzw2rlmIcwid0wzTlX96YlrZqfMcRvBxVuytS2+U+qZmB6eTPk6x+D42FtJ6nrf7PmpUpDAPv3wOAjIiX/qcHOSmAXdbbC5tKhSLwcWf0ut/PBvztuWJDZF0oM+tV/vJe/kXdUXK3VSK8o07nzVozfTraqIrd2h/qaEONKz4q8qFXleWUM7h4qFy8Joknb0nAEJMVhrgtx4Cw0G702lmt+D4lPN2k3ISFkSD89Tm1xClVow3mLxv9nKHOcni0xqT6xU2rbnMXj+2M427OdRphuj3FE7PXUZJtWktgV3yAuiSP5kaTDRISS9LxJznI75ZtEXDNfnfVQV/imnsV4OSDCDqlixq+3iegD+HZgpPK5yHpVEtxGRKAUS1/acvaVk0anVimvtRXaOFo/PGbbGYtDi7RM0kiKEgv3HaPy084AqMih7QUJgsc7n8SPfBXClf2p//MDi9fzTyAopQgkx7YRZxc9sJjdRbSypvHDisnWv98tJVRo2A5gp1CDxy5ggvF1Ttu2aaxLn2ZpOGHnQtKSrhKHvSSKBt2yeJfUMOcXXNLywB1l6QN8PD6kFm2HrTBKa3sfns5276rW9k2zV7bm1/LyTO+NN0wsNbXS17VGuoPas0CjRd9GrLh7xamSytSmA8pr6rCmmak05ygIF/FtBz7o1EMPGuxD0jShNXAalyGIVtC49C9ng01XenfoyDs0FjPaZNXfMTB+xW2amLsE1ZOOJtJxcejDVrlj4aiO3dk1hla4VnV5/HbunAYJNsjXmNav4oqUTfwQyMEhue6+p2+Mg0O2DKznT2wkWaSWYXzJcGt9sNWZ7jh+uwWhQY74NrSlbXzS1bb9gA6Sk4U110EX0zECSTNprrWf7E3sWzvmeGF8QNpPzQ4On521cS+eWeUpD/4aTJ5U3FyKHuYIdsKF/eJTZ6kczn2LPusC+y7YMfmDiBkubmoDADZFmc6H8zoIeY53NOGutAF4uXCRBnFRnFMbGCXXRSlKcUqcyfcjoavzkztK7HfT8OJWNUYb7f6Y9w66PlGq5oj+JVvlIoDVe29hwbTeCa/9xsuNOCNdQl5RIkIfgS3knXOF6xu5nwssr3gbiEnAjj1QMyXV80PAHzUJisGoRBLiTMNdi9KYZShOYisaXWP1xwXhYVTUCTcdPHGSCzNq9IBspsXF2h0RXugcoFaR52q9BAx4/LPYpEBS6eEz+xmTE0MpgT+3rOTC7F4Sy8nLWME8qR3yE9geWUcG3Dkj1ntTcHTeqWP4O78j+7sEgjx7gfIIZ0GzwoWFroVhovaTgyrFnsFjt/kJJaHRNTpWS9bQ2R+ndEtbdttD0KvKrbfOzbmYOFrJcl6n4EECVK0pyXH0Lsl4ixqLvtQtVcZmRUhEKMuQLiLE2uVGT9ydT57yTJzVFQneE+5OiNf8BbHrTqFQbpwe+mVkglxWROizmoiqlUCaa2Raora0lBnM0ReIYQT+MJIWwPTVRxVR8LBGiEIWLkObWwYSgrUihV29Z0EAT4TA3l5xg+ZrhdQZ5L6geapNqKYGc5xWOqP7AkHJKQc/2wHtHwvhjByRovBMNzTm5Z/g51sM1rp9Ag/6lhtSEJ7OI/eCA5pWi/BFbOmQnMLEkwGHp0bUrFLD4Gc2pabksHA9aorJ4QpnMNS1HUM4Z9SwkdKKRXCknO+oqwKcKrs944RkFPL1RUlRa4KlSbxO4wsdP4tBbEW5UXvAQsel6BXGo0aqkz2xHR6VWHgLnuxtd/KLk1EmFrHoiFegl9kN2Mt6b81fL6XpNi2W78f/fW4LN9r4hfpvrlsAHC66V9g7NK4nriYsfPZ0TuKr+PuWLDyTP+V1Cs+nUCoRBNMjiSHtuydRfg+uLvX6Zwzpy64SiJji3CnTSMV9CR7J6kfWgSSXWMS8HRC4JI1rcDrmsBnAcExmIBqqQFrlATIETjnemjBmipL45HohcZ7xSUqWhS4e6nBmj+L5dKsEvBqNV7KIa4DNeE8fLrXvSvisi1KbzjKmtMg2zFH9XmNBsq4moBxAOm+pqxrSSTcAaUhDxGoRtPyBK79/RxdtvzryeMRlcbTyMkbTdkLelE9ykvchErqXnsRF+p6KYVfC9i85jPyuwvZUncXFZY0P9I+5lv1drIphz4NtybwkLBG7LN25JZ+15+O18bzUJrKlDUKGvPo0qWR7ze+13cT3YPNbuQHtOinip44s2xzKB6cjccLLLI6nr7IdJ2jvzHvSYRle+D8KUggA4inln3BStrYpPay2S8XrBYHKq/+VrbB9osdAxn5HFPpqZhBA4Y4CY/FtsfGlDrSH3/OYYWY8vJun0QB8ZKw6jckT2dUr09VBf1gvBbsRA93oqMcYA4kvQTgj7PHtaOVHNvJpb+778ziISyPDD822Eq0oEm/oe8xzmyb6LnhLqpDQUiaFwy1izy8Z8QbgdkrEZhyHECV6fmtXhNGD+NYQk7jLW+cNRi1puDMwq9XaRLHAM781CzRbHrWG3ED84zq4UJ7HII7T+WotEBXN5T8+kxRXJqlGiGC7rUVo6WT9cuq2ZcBuY9GYi9Y0Mrw49cmutIHFeJjuYvUjJBmllCVnivUvAHzYNWPbwmO05DlVRo7ntw5J36/IZVFEWEuxzELczNwdOF4riYLYKsxecwy/daJWIAWvIISSiy1Z3Dp3RBv3SxnLBkPr+p6Po8RsMUo/cDD00YiGuca4PwwfOKAIMdJUfACU5SOMsLL10Zf5Uz89nAJQ9XHavxOvNYwGQpd52I9E1noHBViD07+Tw9BqXno/IWyfpCGotR62yGjnxMbr5G02tjtCg/ZfoF+8ltTqYhlPxyxXRafr/C3AlmyZXaoVRZIXPKm6r/qrV6SlpZCa4NEmA1Cg8LKpLJSLg8fjdfED3RwR6az9r/UxOn3e1aZb4Mx3kzVvHPNyBukzeEC+P9xqV+JrGmqRGJCuRNk37PpBMjz0Q0rHTg+QeMpkzLziwqaVMxBh0hiPDT3WM/cf+Y/VEX+ExWWkosOfCRM2uRr5PPAm/cKywl/Oxmaj7w0FVzi/nwXYvkloFU39HOFybW191YEzRGgEQWV4Jyw11CU7auIQKvIzERaxPpqGiZxN5yhLSsYRWYbxkCJeu/fxoGZBNSUuW2yNuZCmlNxny/4Rf/EUlXxj8im6hD4sEUP6Ct8JwDhfWR8fTs000fsb2Ms2dgi2mtADNX7d/yEp5qfeq0H4l9sfLdN4zyXJMbNcG5eiO9B2RtpkZjacn7Dz/0BFXWOao+rmWFJVHeysWRFFLlR9xXeAzDbt1SYps5npv/tUgbTec9WuilEbEqByrfqE5MkVYrZ2LxyLiZSiaI5kUCrEe91bfurPiqnbo3hoZ1rH1z2MF2SkOLgd7WWT9ubFzSdTGoXWBl9H1luUV8zAdDBiYvjry22bsI3MBcfvnIu6W1sVC3l55R+l5NWWCJKmeSO1Lfd0uGzTN6yBE6nGvb9VLzAcJeTWT3EEMsYoOGh+OjxUXjwurXAFg4y2TbpgfC1DVt6kWX+8c/H7e0zxtbGnvYNyJNpNxsv/WWBDfqyvQAHpj11BPct+NlCpwAGOTNqfulsehsvhW2Q0HC0vCF8tvr1qJh5ZT6/nO6xKQ8eMQtJJ2V2ck2lFO6dS8QgL8/NJyg2/Sa7+JRbuZkv8VGO3TJE7bcMFJD++YNT62uusZaejkkraMFi7D7nSgJA0/f+s4YnZ7V9TyzAnSl1vWXtCVHZqOIu2xjF+4v43g+f+nQXCEnA/18O3UwtfYEVxGfv9WSckCR6adJ2zg7FrFqSAeWEo+bNeG1ZWp5li21UGA+ELm1/6d8mSTx69qwQgES69+yqDZOKF3Dh+T5ul7Qq6pypSdLUODzgd9canmwtU+edH+xZswei3F1XLFrlIVHGF90wIg6A0nQGIm8IQikNmXBHPJ+v9qzFvdMXDA3e9r4CuSdu32+OD284omS4h0f+xfq+9neZUpiPwrMCnalZS2qeGK0xEIk4BHmKqLaTkep6RNsH3Q8OJ9Wg8/pKD2garhjihKwW0+9RaTcTszJIHni+CYn6JVVpFa2VYtLqPBtMg1UYC/wrQemH+EPWmuCfi/tdAZoHH1xPI6mYFuSfBPFmWuEbzTH8pMqy+b69lkz4edQpXYqZIU+aWbZWBR08WJ9gVP9SYMFqPDoRT1qrzxPyOzdfv3YqDpEV+Slj3dzyHddZr4bGHA5cDAVZT/AQDVVpPY398Zce3GJAvtfrBmYJ3p+Ql5QpJM7jGjQIl11ujGVilZ066zpbeL+GbsvtNfby0vFYIVAUu9piYQ5z4YU7dq/BoJuN7YQ1Y97Wzj0pQLXBYQrN0se9HWT0tONxeVBlHU4AcpE9jQ4DoD/X4LGga+pnggpxoC5i3EKc/dXqToOlOGvLP8nvLVx9GIr8yQcC2WeEB7HP4AmIX01vuCmGl4O6f/56mkogkFi4GDvqemVqi+yY/OMnvyPqfLPoKWb0eqEvBmOc/rtCUHbWtUFK7NUq6FaEVqVREZ54Jh9jwTRMjkdhvUY6f7QVaOnkL5QqCPnDgyJlkBp6lPpoYcB7hABjKI7GRhVs3zluyqkXSha514CvjTdgBFnaKty6O5TzUN0I2eLP7CoqCTketZQ0SRKUtbMz8dHvFq5YK5Pr6/e6Ofd1SsOgeHurZcZ3+o/3cTvVjArIeJUT47X5hR6SQxa1YSnqEi2xwOO0sslXyZqQuD71ZV8WNNht8ytP5i51J6O6PFV7ri82Vd9qlz9W9zZN7PGEf+Z8+DCutwtfbyQvEtFFqxXMR8x35YlquNSEGyPNvjCL0WlO69HDy0bd+UzvnaU7pXuHS2mzVwTORMQa2wv6rGarfilzY+m/zSB96b8Zzvo399koOVQEbsgcm5chjE9yCdYZ+xiulkDsEdobdrI3vB4puQV8fynJwrtJF/WEl0aNc0/vv5vjs1qQfR7ImT8iag3aeT1Sow3G528tfqH/XHu6HbEXuuebtRsuRCOu0GDzYAummTG+j9LbefPRxTD6QonmIpJJPP0Sz7+thiCcgT9mrrrBH5d51CRN+lgqq278eUSjzJDP+Ttwfaq0syMwvuUJ4GQEqmhh/3maFcFPsTBJNTNxptFxjV8NeD5ZLihROfcBUdc8mCoOTfcMsOFbcQzOnqjyxp+3YRSzDKHvNBMCWesPnvJ5j0EO6Ofu8iywEpvoz/iAbjDrT0OZt17FPPDhiyISjAwq0ZkwhrbDXSIo1ekM1xm7ybALVJhnp08PX4Jk5Ihbff9PF53nsoZeOpqyAdFxke5aid8X5IReP3Ra8h4Cje25MefJxFhz8wjqcaHuGbxwOmeBBIdByl6ed9jLgI+Q/RvrL+F47lc3V9nNpRzjQR5nw+oTVqA8UEVxjicRotQTd1N5pqj6NaDzOLPG8aYfubx4Bme7c9b1HxTxGbV83B17p9FMI9D08sdolmwWwEwbpjqYhyno6ybD9YUq+/sh6HRQj/37/DSVMTC+HSJagFFw+5w+REtNNTHAIqkL0k0saE302pNpCffztbIZdxNQvmebN1+FEUnMEw5gtVQcByjc19vNvbFNnkJgf4VJPBeX5WVwbS6tERhkentjfEQhMDA76kQ13PkKRRpDeVve4jVNah2nJDgEWvKoHTxLtBZLaK17wRUBZOdNo+AI7XgtOhch7RhcL8InO8MDHyLxoBQWEtoflnaWjrKOjfqXfexd4heuDnL3YZFXvOMvaBLoGAOg5TEE2cbstzg2nA8IHnIS7knp+suwMKnkDUZz6urpeIpiw9woQg6YB/uGsDtyku9w7ccjZ8mEA2rZfwrvHP8S5CBpKIdVeJKkUgAIgAUpcHM7YIq4IAqyGsSjJtgerk9yGvS5yx3Z1bLGFvog2r8c8EveyDYTVbb7rfCW0slyavdQ2H5VfNIZ6ewB1UK7Cid7yqLCzWLZLlAVVgGfGba9pwTmOW+Owk28aRS2wf3Kpmu7tX1QsrAdI/lVzi7D+b+U4NzVp7rTXVp+luQ9Dv7cz2fOeE64Bn7bz5ThXrYq9kmEZcfs7yZ1HlJQIreq6IXHaBeLMDTMscYNNvZVvPgo750QCVqCxnDYPU7i33+CTuP9ppTbfXDE4q8aCqcq/r3OVq+bptaYyC6eC+ojQNbQB7SSgL+CQuWvcpcwM9c97mJep6hyGwfGpJCJ+XC4Rx3S0nvWiJlWv3JlfnPss+ARmAqwavG/UivVB6784qT0zxkNnMQMTsjArsfFWpTf1IyGl4mZER6sh1irI1+lU97KJFmB/dROSP98fiN8sfDTTfitybRiTlcTshpDwBODbSYihoEQMX3ue+VpT8nWW2xsfbUH4Q0JEgFW4d2SIMTFfDwvUiORheV3S54CW0EU9mPX7WPgHR1wBfuvfRJVeo1ZuGjKdRqmZiGZ9qOtW+GiAQFR5ZhJ14hx9wBKDqbGIzkbO+TB+vNw+2GG3MmQ4Iuwu4VOy8Tu3efOHZWc0P1oB5vWHo65Z63QGFzcW+1Imrf76Lb92TOV25eAPW6vHqx7fxt8ypKnc8b7Wepa4BGMeX/RslH+VE8Rn2KkDe8MwGlXftegydnYgi8zPmJEjp7OS66vNhzbTvikhg2G3wFferzOjc7/xLLAXRwVepwa6fi+NF9gKIUbSqX4xVWGWj96oHOFHVpjc54WL7aNM75KgAajBMuhl9NDFnswBJuEFC4Li5DXFKyh0Nv4UVISQD1Gmc0RU3hVHj2dzqEl6R/Rl/PteY5BSQjBkGvTvGsT8+b0jgr0paXJU4fn4rnosL1ssUEdTAAnz+0lj7aMPauIIJLhUk5uoV5dyTKmMMjA+41fqNK4UNiwQ37+uZyc0RK8ICvOR5bwDhutolHkXdA05zb9S2nG2WZOeSvwmbHCspDs6PqwLYg/OI6U2cUA1UsMqNROS6vXNxRPK1i33lnIHFfk2uHW3cTuFWR7zRs+lxii0cY6kWsLeyl9x+nl4QcV/fh5fslgYdLJO5oFAEtvXd8ZNjkY9cmb8HsiVZUm1a9OomuLsu7f5U0K+N5d1TDt7kiQ/hIS16SvsbyLLuj8tkkk00u4cJqKuzUzmA5ygAjCICyOqD5k/DEirE5eMwwqA8F+o/6pi6rdx42VZslb9DWQkLqMq3FVb6PkktVYHED3qgPYbLHPeiQM5d8mFwU0fg4mNS8agiV2DS5ZH+uncdxG/yPlYy/mRe6Be4PTmvkjCAI35jQ9h9hzI6+Zw9hfKG7F2uIkErI/VZwM2OVPzf8g0xh4Bnn0zxsQ1Eo1uO7MT1KWw5RFmgczHgr/FB2NoXMD/qfSk968l6BS1hGGZV+/Bj+7bOTDCsJBtHEOVWEeXEFFbp5NSsrtAkCMcd4TcWqQ87+XLS2h7ENbNRnkITMzitLLupiS9O20xEOZWMmzvjl8j4U6LiZ4PQtON9D0cGLnipcrhYtkIMsdo28jfURArjJLyY8cCIu03NIxoA10sRq66aRmLta8IlifR1RmNerB/MOpVN0t1Lo6+vb1CXJ+d3PwMMz10IuDleOLRJKDqi0IiGfWTRFxCzNkgFt4ELhuRKDhoD6athDqNQtjHKFdoShOwx1oRKNPTayMj/lj9bF3o12nb8LJxiIZxgI+sfx29o0sjrylWrHBU41Rq6CRdON6iFxrRGw8X5ieA59KP+EOTE6l9I2cccuSBido8HW4iuTYav3/jwtv98qdU/GfNpYwno12FSzwdxoGvHkh85EC4NvhCu251BlMvhmVlOLI05zZcuJsbC9X+alNxwXLsxopp6QjN0Og+no1rt8NdbU9I/EH+bJvVOTlafJFUo83hlHhsfZCfL8318zYb29zNvwFTSA2Y0tYNVibbjYQBA38nMtgcXOjheBNGjknqFTlJ7063EYroYL9JYKs1ktZP5PsWxtR9SEKByCZoCEVF85RL0Q9XV6ZiNErqXviy+jdd4kmgbciSgQLeI7YrNqf5uTvGA+lxWE2jB1K+wBrk8l5sfil6xCrPQRKaiWv0LRfUuci4+zQvOZgQ7Dkr6DvpHLbUHStfTzs5InBalvzrc7/L3Nt3H3Jt4OOCvqVnEMeE3FRHDJM3uniPdkO3lt9F9nvrWFiJ0YEpDeM4SEq4+8wrb0WPhzWoZFvohwS2nUrcd/D9+Jc4xA9o9xvfBQmtJYn1O1wFjX0c9uWaWAJgGsSwXux7BoBrFNBtHwKUMpTQRwZkw8TCCDwkguhVygbZ0oiBG38tUqj5MmB/ohGMqyDqv/C09AlrpQpd3npQm6JSopSl5WBGmvjXr2VEqCnnc+ZcD0s1rvQOEc6XzI1CSrmw4A2SbG3PCJtSl2yFnCuucAnD6czvimIOnsIMYUK1L5DRvL+ZIxzhLmemuvyckRUmhRujbBQsR4HKXOoPKmWwThOKNtcbBLzdmZpdV1+7tpDgObVto46ZAaTpPWn9UpjpOTnLaPGppmAYMrvLiOh1TB7WXujdAz7Lwi6DclE60wT6JZX+iCaA5SI6crx6sxJbYk/7EpGr1baMkvNSSwSAdJ3BW2t/tBQ350guYGlby5T2GtGr7dR6CnqJ95nCwtgW/seOUnDd1llQGUaJYgGdAlbAFG5vpoyJY936JIjO7ag/tDlraUrtuUrhQtrXF7qaE1AsAD+6y1vY7+Oq9t3f6T2dApgx87hG78iryTiaNipqobroIc5S0+JN8/72pXuLmJDDYCYVtTpbJD9Fhkbz4bd7UNrjaaGF4Q7yxwF6ezmEKMjYzieoWK/nTtaHAnXKAHaUOM7QxH1LAX4gM43MfVODiZ99aHPnbPWHmcdBikcYa7pn0e0gxBdpWI7l0nGw3m6Xrl/Qr/QxnthK5u/64fC//TiFZcLY0rPkuWEqPQr/6+jWKv2nT/FBDYhHL9kWrbK8tg6m6p93oOG/CV6/x2XxPZXc/AJAkr/ht3Z06R/WlXtqUURcBC7VkPR3eZWlC8pxpjqfoPYrvC0w3Akjn/02ivkFDedcv5c5iCByE6Lks1yjBgB4PatlRg1SNFTIsjEb4dYq8A7Z1QGTAZYLm408ciroljG7hZifgc1Bmj+MCDPaNnZRsCe7lX5i6oDhLLiUQH0PJ+Xj/McZ7d2Bm65eIHokLH5oWYpFfTUOJcUoVDEp4YmWStH5Q0nTyevJ7C1SCWeLHqwbIXxnEyz+Ps8fetrT0iYVl5COKv0rkGoY/wb7iVYRxO9TPCuoAO9/tHsnmmEHEc0B+PQR1tnJcUFZC4NhzhPB1hs4j1x1jYvDCqL5tV1KgQWtskWFoPyPvKIEAnZvCXAqz2e09zwKffRFPiX0gIKtVKW4JmA8s1IgOVEeXw8jrbbBISech2HFANs2OllsCroJTo8Ree1Uyb1NUTk69eJLJgReVbvOOTzkafhBTDnFl1otv4sFTn37lq0u86U4dlhy0etoPV8a5kDKg0CGZfySN0OgvdX14SUk8VnGZrCy7ul1KxBo5Rr0XVrrMik9FxsYEO+z0HUFW45BtemFHsetpO1ZX3RjfHnvCnoEKsi9+jaL+xGpydaWIJze1U2BU+Y+516+Uoj3ghoELX5MTunclEeYkn8rVk30f4txPrbNGptmkCMYPofCyxfOPIx6VY7TbEpgj+UO5UsCPfJvuKKhTvcpJ10Gs/MoZis+mnk4+EjMAa1kz6bpmKgUDuGwVMYOVQnyUAmuWLUTtZZB2oFXRU06Plkk7xJAhXTo3FFI41RndqJQM9lQ52C9vFIKuVicpOFEeEcyWPJjxP2ecFpfPYm49jF4R3uRamMbNRakXsvL6GcmQH3t14vKOUmNUFLMVkl2Z5LxSmMgjMgvVM71hPFD9MIbAt1W6yaRJbb0rjIKTWshoK6FQrxojItbqsyFS/Au6TdtaYFp1u38tY/f+F+H061zeDgMBjMTQ4cVuxivGpMJT+n0k5qhIKSs/dDbDJ3Xyoq92UPDyFB9KpFdvKlGgBO61rnkU5QofpFnXDm4zIFfJuG4xEh2QhMGCjQ5lXLn6KLeiWM+/G29QKN+WTLtFRjJITNYZ+a9cn2E3ytR5xHGl3dDNBMCUTkWN5pPA2x8QTvi8Ov8ic41hjF0weSzw2MKb2PO76pgnQZ+0UVOXeL19Bqw5BSKp7VbkClA8W9PvBHiScodbTcr0MGCy1POyHQqBlVkU+vl4ML6vM0spzF6JL91hemF0pb6i9NlpnsuUW14hx4KpU0a9+AA0Ianq+jruDmF6a1P2KgXNaflU7wDR1yP6KYPECC+PpIy+8XOM65TdogRUmHak2o/A1kIk7FZi4iSrrbCcoENPZur7GcnT2v6KsMlQpDDPvYTsM08Auth50faQQ93lYwe0hAo6CbfERj2x1tyr7fP71rmN9eZvsPgoXj7lXrdQ1WmdUzPJ3eyCfhsplRf/J1Qj6hvCPHx06X3pzDcuMCvu3UmfPLuxkXkLBk5SLbe+pVTjzqGgkI7YdY5kGWF1dkWAbhLsF5gUAwkI+BKGEMmOd80bxUim1uQh8li6BT98o7roVCzZScr0s//sKzKc+VTQArLqWTtqQZJOqqhk1WCjJtzCnp1AR6mshyObaAL0AGK+43nhSnmrbX0ZBaJd5HWiReQXE0xeMbrEbo/b65KdWGC4n2+2XwE7CoazQ3T2WuwwTVIUxKxHsPdtdXEOpcK/MO4Mi8FRuxZbB2zsmiINkNpOOwoKFNwrxX3/XqcNP2knc0BVS2M6M0/A5vj3SFtnygS3zSkYFk1J++acXskzVi1wruue7lkCZFmr848daNOyQ759TIgQ+5YIVRinn3s5SZCNTtg8o7wFZ33J1mla1qC2niBYvBtXALpd4hnyvC6Gbn+tzng/z61RRJl3SXI3XX+YgXz8n+9hXZlAWIzEqQlGJWhw7nmZdpYaCQ/LbGmMDvBzmGXz2q3xo6TL3wtzgJEg0JKNuabrHrYwh4jOgAZQLzU+N1IhLK8agcZOdO/bRSIUUbkTaG/hmHLSuRfw0vSoQC4/764A6ZQQpAzmKSaQO3y6PMMQA1N7jc72+QmoaDclQMLixrq2O81N9aje76/g4i85h3GyMxcO1oB7mBHNrxvoVIb7ukfUuO0riwmcYyB1JPvZM4ZYf5+woyN5/6s8M9I02EAUPCQcOX9603Zqct1ztQBlYuWdbKULOJMkbYu+z3b6BaI+SSlyZ4TkoanccWzuFjbb0HpIZ8C3A4f3kt2GaVzYB7P+c8Q5vk5YbnpdLLbZIJfeVtywR79yutC8ZHL67TE8F3VzEDJew4H92+FZD94oYzTAwOuW8qDQH22qbmJAkHACj3QAfPI8sbvfguPauAUDvqQ9sNmeARmsVNY1f/o5fU52/2JJdEE+IbPXhIBQYoakL0t9i10DrCjYN3mtOX3aUsNcK0JtTV3DFVXtSHLYauK/SDOKAvshEYD1Ti+6xnz0/mE9TXNWpsWmjFEJIPZhU7hrdtfT8veVPtKK4qtaPavotRyVZyzz9HWxRGiXv6LnLs3ZWN379kX+NdJDNufPvhtbuX7Ht6sUx9xOu5dRNipVHaTXx8cWxq8j6oHFmFUyvuEllT2OhKO/m/KJg0xm4iwbRtGcK9Fu6ArEc9JR8WLHnT+Z3kPpE7ETHxUfPchwPEZ7ptvf2o0qq6Kxcp46DaAl2a2FSvwRQxfMv7nx5J2nsDYj9m2GPVmIuZIATokxfXPOsmhsMY9iCmfXcDzOpV/9mxwt2dw8fSZ9vsllCdHxRWSznqwa2qLt4xIe2J9lur35IPj2tfEUw6BBPxZbTcSyGyEvZSpV/IKnOREGghglCxPjK0O7iJDdwpQmstzxJNVVVE9mBCiSq38Cac9zracvNffhynhqaMvlyMJ7d1FH4bB5ldYHCo6tA5aT2orqPyWghrArM0H4tbgUxlgIMavdIlIQkYZaErmVBUQCwz0oi6hSWN4tz0f+bZYemQXhT66UDrUamU8EvBJuXlAC4Lh1y30o7z/JmXpXkkq44XaGS6HlYFJmP97smWr+bti7+hQZvFRpQI4mbq2jjWm2MevgIMTGrqwlh/U/i3czPeAr0WgnoistqRLQedkl7MnFDj/CWlf2SrvGinzjYOF/fQzFdbu40CYWygInave9XzgpRQ6w1CSeopWTSX44CRWzOOukvh/mXep1HXrF7UuN3uVoiBR3BAcAqs7wYKfM7gW2TDuC1vWEaYHp+LFbtB/gG7dqYjT4ldOR9Sp3ee/g1vDfCedFmH/Q0N7WHKqi9pChgKLwckjobY7ZsdSn7NP/H0lzVE9+H7EQOE9Lk/Gu+oIEiQQsOQhREsBiUB+dMgfSkF0D49HdQVqlpfqUZUU1qbL8EYNTB8xjlSRV+79NM0GWMnZZdS0iAIfU9/gvzE3Xe+U+sn0uzDXnDYvn8zsiDrft810wYmp/1USTOsMnqm64hygTRMrq0x9V9xjXwf4xUrWpafB/VoO4WpLvZ1VeUZYSdCzpP4hZNoZWKUeIZ45gySRxWYcT1v6dYdAry6D+49pLFKc0z8nkP7W5V7osRlZ7nRzFRABq3PyWsLeBdmnzESp1Bz70VBmaflnAhJrTG1dQ5xmYEM3C9SD4xZWKXVI6IVtwrOXCVBdzwYTUl2gn8j+RAOf/7ljZX1+wOUuMId3RL5BZHdXkB6d/Hz+ClRie2VNDVr3Otqj6LVXwkHc5IPhIpqi9zSA/uPPKpmtpcvNXngQ0AdkzS83YW+W8hc0cp6eBbHiAY0RB4IjIfGPWaitSjBRiH4PiNGth+fDmz9tTNK2xnhVI+lHh6nRWhdbPOGChD5Ro3rU1YV3obtHjguY8gLREWbyCkIX79BmumYmCTkZ0efMWSZIM3fTbip5ZFWPLVWFjyYFXBlvIHsmFsUfvzFEwzKqyT7DWlEpOUR0li7cm7S2qbmDTYmSDoqvj796L5ISC0cAwT5fRVSXObLzNTYqnImiuQoZuhzRvd5bj/MCw+j/CSCQH0lANuz102VcOcDhYCCQxCnOoEIsw5zOWcYbHX3ubbI9RxACRPYr2oV4eBqX3HInxwF1F47j+utJJBlNb4S2AONcdxWIYkT2/nx+jBHS9yGZF9Vs77vA/7g/p/7CpHP/R50wfciwmLvm2mMZG801eotE3Mx3Opye2jGcIEQYGvIdJUrG8P9cBPcn5naChOixlTxSat1KBfTpFCDp/0R96Qko+VET9f7NGhennKWdreXhQgZOLG2bs+gKGFj7VPI8RKWfeSjQCF05N4cr/cOmLGTCBEXE/cD8gWV0MnaQV48uYW0+GyW/Lpjigcba9M1f1ynOMmGWZsS5lLtwlq/Vt5T9YqOh04PY4810dxX1S4Efarww7+c7nAB2xD4dwq5l/vgjQUQ7vb4sENji6JWbOIi2jyZUZ3mZ0drQjs6LbEhWKr+aH32/XC5huKVfNyWmTanQOpnQBToQ4C2Q5SJtMHM8xrUxGFMrvr1t6aCz7mH7yMI5oKmkHjfJC/nhrlJxceLTMN8qN3V3VjcFJMnQ7BZQK0nRtFfsbmxxkz/CJGA3bzpEQyw54WsbWLwUi6qDRyfTTDcju7nw0AbpxwXREbjlmCavObi2KW34SgIBJE+Us0WXqH2OX6r7JOBUnO+xF4aYGnGRa1rdr74r4gxeqclIAsvHbJM3gsXRvsjsGunbfiBEy47VLFs6wA3hcxhENlQ6xE77HowXfGAfDYYNRxK31wUbEB7CbFjuUB3F6Z44pSUCMwpnZ14XC3ZJUE65PvkJPn+lzkhOawfjMqiSOwdSJEAovyfaswjNqyzDs1KqXwel1l/kry3waHykAQ36epY2+p9jUyPijYb4aQujG9xCpaEKXB+ZqKbC/XgtGx4ExiB5B7pzqxdu3T35U3NehZBLg3uE/YxU6LGDMO7RIGYWArluMxzzusdUcevErslRR4ZzSVNbTDlFQBxtDaU72Hh4aVpRasyRZ5zsMbeNEvd/mgxK6EGEpWtUqRuBlCpr9tfeariicEmA6+1B2fFy8fuO2FkP9+PuMYNgA6vUtaN59R/neDoL18w8qq+jHVp8z8i7EbbmbCvyn04dH/7A+jwptwqOGX5WcqZoBA9ZJFU9eBaiGJQkdFvq+0AtYPSX/cJkQ18aPp8LoDExQOpV5/6+UT8YgzbvPBKRNB71WjZivJhD+cXOkuKJVWM8+EQ3L6FRGOM7p5k/S2298Ehnea36jr5DUgtoxBWaCM0yV37MyndgSDe4/9KBmoyXE3BRvHYgpP6lIb45OWPSVsY6GKvxkdEhdGpzzqBgRvdBBaaU2VEfUEPOWVAj+bsNhqMFmhfc96uyxZLw2H761uD65E7vSAAcez0oXYxyzjl3IsFqdnjnCJ3VQqFkreIWPE/uQdqksPekmjNKdO/CT2LWjsN86MuwdILcsBH445kpCX+Ww0TJ6Uq2p2qfvbFxJDgPJMkrkIzIFvh94+zODmz8hUwwGphVd0FaKuvDeZPehkgWAz5gaDfc4nOE+/ROEeagHcmxDERZO1tLuvKmAw5V3AvQdXGhU9qApN0BnNgTptR99dzO8cQUsrTyR3MOEkieEwwer282Iv/hQg2ORkFFFnZpSWJIMA4Lhwlz0HHxeS8hw85SCmdj5KNglUPcZozLOLqu3baplWCkvbnn1L6hmiK+8vlHl3sdOOTCRupL1jWlbx6fZolbtbXKHHirHBA/Fj/UYoD7FuzKoEmgWJuEmoV7KMAzc4f2QByQqVQs8BE/U8rWnjr89OmYwUD+4kSvgLS1h4PyTs+ji1xg/ZjxDe9LIvh0aCGIk8UltNNiDZZYx13eswIzv5lISonGDYc27nSt3+JGS5yFayniCP8NTyAIOcVTMCqpkcCXlWktJb+Mey32EzCUdx2zcvgBIJ575IgRcUcXm2LcK1sL2ILMpHydx3qqDjra4dLEH3C4q/Gadhm50WPxPiRjCkBjMbJ8YXWyVlQJqSos/GEp6kusIjf2JSWx+pKTsNgbUWhSbUKFVo+1Y/AYf4MAOqdwsPytjWP46KfUK4yS6C3uffoWfFU01m+p6DPlDyJ85XVLxsVZvSa0tJ9gqykhdrVcbD4rYSyDy8G+ff9dMmldJLAl5AULTX935lCdwuL/MyoisU5a/EgIsemaouMESNAkm/rz1zySEOmrInhSPqJiLf8rsTOBPK2mIlz9mTbGOLoz1gSNJAMvCTVvmZNqLOLxqAnjNplNiuMdiSThQ8iymSkWq8KYlVi+0Ci7yLvY6Xf3CSnLzB9a/QIHezfvkJcpn6uBVtwI9WlWpb0aTPXGSR1CsUpX44VkN8LhlB53wya+gID0XZEtp0w+dkWQv04vcCxhTKZLnqtwJPVPpe0tZ/1yjoCv6QUw8TuiQgKw4owC/2McH1C2RUiCpfWDkF/u1HUJ5t1evEiMraGi/esxUXWZprmtUIfQ/jONBio8Km/DBerhZbprDsqK9FdRxHLOzls0JUROC0RUMc+xPoIftF0u62HuTfJwrT16gjfroPuPxtRCftNFJ0d2kE4Tuj5Sqp2GbMsoxOH2HznFsavsrEn2Z80VGEB6W9HJuycSJZTBkgmcW2GH0O/tIDNjUIjtKlV+DIwapLPPNqwsDoobaxhSRF5JvboFdR9+lb/Lv+h7BzCbCY/adTKLItvmCE0xdwb+Y3YeD3z/KRGieoOwNYV3blz2M5AGufw9FF40BqSVZMDGnw62xFVb/lED4ykoEvgBNJAoJqN5XiCHfKH2++Z/LZURGpcUetnC3et+/bUssuGVgEKztMTLVpOMdztx4mYfVhtjmCpLqXYzcVPu1gWx9nf2UsIiupAxGP5uJu6/vsaYeSBlH/A0kPBh5lFDyuKtFZFGhgasJ00RAj/tc3u79Ped4IO0pv91EP2l0q0wBFd84u8gkSr5x6wO7D1A7KX7jDQF7QQzh43gV9/xc2A0bmQi2AvLX0ciyFmhsV3ARwnVPn6ByNYXNjIwHEAbm40+ga6u7VnouV1bUEpVUXV+KKr3vlfH166JwNJSx0zYw29qacPb56tnc7/pGs7tqFB6oXXvzKAI4pSI6QhGfyvfp9RsoRKv2GTwfUQvSZkDOEyTElMoy1A2dfl9px1tvVf3ro9xDupGzMLlv0agsOrsxudxbZuXeMzs9V6D/VZdgRl2LlbT/mi6KgqbWNMTaEpEDf8j+pLyxvbVQHFeGDmFC8ocIvUMQx78UPBxciJ1qfsKOmVf2NX5MMSemdrt5AFiDR5Z2mgsx0g2Y7NlYL5c5Fb5v7GlrXCx3kYWbOCK9OC2Bg/STAi31IPEUrClftkhpY5z+8d9K+jc9xa8va2f0WsBJiG3nP3wiTKQRX9zW87S8f2KnkA1uJxWSI0U4kikcV6caRULkBHjGi8jg1RAp+vrvu18iotYKHLnr0lF20f3bF/6wXpf+Ae5GnzO3qJj+5PPpN/mE0QreYYh12n+5CMAv/1csT3fdIjo2kEbFk2Kp01iZPh2ipaVb7reJfIXdBv4Mw5a71xM57Z85dIE1/29Ky9Uv5KuZJOzuUA6nAen+zQ9sMmChi3VWiVYtYc2aPe8pQlQS1pB2VVthcMtIlONvCn/4w4Z6A6A4o//J6CLEOfmI/lleNORD1xnhka7dVC7PmD9IUPHSlqX9TZ3a/mlWX6yPlYQ6YBHXlZxoHB7+4hU+VlnK8bwDiP7eV+93UOCKKbDwvlxl9eegyNAXNKDhFuWt3XpGiR3s03T7WX8G9NwThELMax6cEafzyiuT2MEtZfG99DY/S8G1fehAY3iCcpA0wzREk/uowN2l6mPxiltcr94nvpEnDXhham9mVR34ihkmffkS1iOvEhKl8y2hJ0uYimAXp5ZM7kmyN+rBaeG5L+TN9zeTCcuiWk5U1mAGLAi1vS/aAwXri7sMoe6Z7gGLyHkNDaraArdHV4UXjHv/egdqHxWM6rT4VrHCZqRtOFZ+IAwbDnGb3Q5XQETCIezsk9hdEqw0nkUn1GBdT2T13PEVDDaPhY/yCXK30I32Gk0VIYQKzo2BsH6XtDkLJp+7I6C7XseY/SsdJV7KfQKJIBbIEer9wuhI5hzEwOKB2wRKMB55rCp78dlvry027slb7IuiOqPSHGkQYrE8m5kSvFZzTyQMAZH4LkaECLEiPi/WxMM/1mUXapeJ6fRQIT1KnS3rFRojaFvTJkM5/Rsw3PJyZOZQ+7b8gQjC9RSRLbhEXSNn6ZwNuCjMaPEgPH9IT+BblaBgIFy6WNrBWik/Ox9y5NKbCqSTvRMZxKik8Gfv+Zow+JA8ruiP8T/3NPAGRkMljKIcIG922hjoIv4tjWpTczwf7PTpeG2UR+Z/YLIknXmk+PEKa/DlHUzjkDfL9kVuGOP/AFIDkg7lYWGck/Nj87Ma23ZT0mR2W6b27ospUwngTFH4dswK2E9E169E8dxBDD2Ehw/k3JDyW+1QMxXr/rj5zZhSJsPvqx8aatbLoVGkH5PplEHb7D1p3C3fjs72TZMAuI5uHmFzDpHWiYoGo9BuGsxWtu3Jid0EhvX1aacD8cte7rXvMAICfxFqqraq58tcubJ1CzTL4W7MxkLNTWR2M+GMCOfn6+OdEoGWZJKMZ/Uc7Wq9PbTMzUUhXYo850iwvHksl/h92D4nNI7jRL+C5RykznBI/ZZ4w+rCInZI9N8Rad2hNA8/81FXhSzybkvznWjEfAzxPjOXr49Y1QLFYVR0zVhqDlN7vbPu6QsmbXjLLW/vhHo0EOcojvXEo8oDvZCslz7O1Ls1fCf99BaGaOkwsvUIk/3cktJ29Qj5E5bn5G4uUrkyG400ZSoRVVzyEfSbC9IjTw8JDlofRfV6IbtmrCCT8eTfPhKfsgD8zwx4GAiRPV2PlWkKPB2Ky9dqwZ04Ip+1le9R8vFttAXO5bu/4DFEBXOlYJqxBw8Ff/hpIPxJyIThmCofGWJB7bY6puQs6zg7pJ+63kIS1KtehbrzczT2/pFFa9nohDqdte420rlavnQibJlQJUN8ayNylYWklaqHFWYfFn95fn1nNSpILr/6HlzTzbuZ9csxlHM6VUm3wNQIyTV2Z1LNKWMM3sRlA1Z+IUDJLuoPCcAACFGKkREWoGVVTtfO08qeOqd0q8tgQ/AGdJ+nMbL3OsUnrvebUWWRQre9MGIFcgCw9JDesVfohVNCN7ryWw/DSD0PGGrJe4Nr4QW0cwbSklNT0SMLtCRfSQnjPTS8drcbEpXGnka4+V5xvvoqC/MZ0IJprVe6aAjRqez0E02VDUl6MMf0cjZIVjshE/HJA8jtv4XivFsNNORZ9I59ftpEgl1PYkFzWNse2cUCw+AZzdrawcAUobpwhb/XwQ/hM+wLwEG07f4pNyEhO4CWEUgqQr3aSeJsVUbbYOkw55nO8oLHvOzy8CroaIFGfK7zlByhVjzrATQpytIK57CRB1DpE5mC/i8gXMjwqTo9Y6XXFIUdeP9oYVMZ099n5zssb93QdnWgHkY+/fPesTCsoixQEYP3PsKUwjZI+BdNdMALosM7Tn8BtNTV707LwIKt6ezGoWDh44AcJHDWtw89LYbC3gk2DqxDClaTyiSI7p7jzHV6sVfULpUoomvy9oCTYpJrnz1+mQ/ciOuJjsBuLR7Z95Mn6pwyjQ0jc7Zz8KLPQLbyRXim1JgM+PJaYarWbYYAbs4t7CefEBIBQRugRxNXovxMGe+j3lxVpnclEokSdIVNKlEOZIKG+5RyoSTjqv9W0+AOOlyj/1I9mKLo6xJJzrV+qSVLc0CMFUFD/YKFDQu37jyerlOcuf+M3lbSR7Ofgm8SZOmIh9qFgCSt5YsJvCHQDPaow6KSMF2TowEKqtRduYTIuBsk6ODbxQWNm/wL80SYUau8KV7hOXH0u+poRLq45udsjJ0s+dLb6IBJt8mg2VM9Lq1n2OTlcwWe5XxX3umqUu2DUJRLNM66100rPv7RKGjKHYNCltiPrglbDk9pPbbPnG9oN9KSGO2+DxwJJ5f3gT0bup5sY4sR41rFPym5lBNw+F/ZdLW815tFvePVfmK65GBV2kQnR9fgKRJLpLiErTZ48KgEelcIzVBUseKnSe9eLBEpICcWd345577aP+B827fcXLve/e6OA4TruMAP3WJ5W9jrnwxbAUFC+ij4D/7UOPCei4EvqXVs6O970/ZPhEvKwv7IjR5ITMYa+p2TpOYhqU7vUPYRe3XySz+xxAPqf/atoaw7x2pLsfKNf2EOSpuGZ6q3qRVVZ1I2wxdC4Ym6mUtIGvhTXfpqHCCchm2imkBs/4goG2hp5dKbW9iyw9xSDWl+T6KnB+HF8W12hdxhsB9+BCRuOEjgJxycjtHIsDLJEOnUQY/VE5lInmssL8C+gkBS9JLKVCeSBGFvJeob34ocWifUCTh179Ev9bJD7za3+pijKV3gRTYRSDsU1Xpl0ZTlecjijIiCN1wrJ+rs9l7TcTB0a0Bh7KJeoMtI4i6d0z8riUkvgwU/EmmnJ66/bLrVdE0KDNl0HQW62+wzRHc/q2ABQwXYRVocUlfet6CX+XLXalmmTZAAwtB33SoCTZhJXfkpyjNRKRN9Yj3h0wg31qXWHcMci0ZLcRMV0pAZJzcG1UvLQKjskUFJGgcadIjT3kODRZNcXq66tvtnhKh4Gh4yOlE9jute2LQzBCy7hwytjavbC+rN/+oiW6NFiRsypgX51Rh7sqANUD0NjwOoL4avaX/dDYDU2w/ZPFiHRF0VYg/lEwRBWzyLArwRHOG/XwBDVcIN+9Eb8RRMPNtrhhnjxnxKNbxwV4ZegCggj9+50x2d6Ci9hwk9csvwt6VDTPBh2iVG81UiDuGsSUJa5CsJwylvCXlRbFtl3jGDBBWQCNgUHGdk6WEi/Mw64HG4dyL1qUFc+0LvMWhX39Zv55yYnEC/dIYz5M7gSXkInZe+Eamsl9WVbRySiQP7belt9YsKQATaHziKUrsgnNSzSL9Ya0/5nEQP6eY8+NFexEO8/SYVuHOmjAeZqCZiFyikd8vlVqvQbmkDjXjzTZuGHf7ueeB871xbRHp36vP5BIvpNUvp+kZ1g9BJmKoF0uMkBGrVUf4uJ7m0+z9C/zmbzAdcpZLxzeJPpabJLRAWqsYvc4A3KcazU0XTvtlf/dleOgFqeqRuHAUMaOoOcCxSWpu30+LfILcYPdWKuur1czIKW3okAwZE8ij5cCPfKuq9LTgJDlFqCrm1w49o9UkKsOqHcDIZTaHYQndReJvbj8g9lxamQnmbqnWH/XTWmaOKAapeNfMKrQvsNdsBKy0bl42KvxPUcRKHsE8JoL8ZmQCYt1kV4fzQihh9jvpiiC5DlTXdCaYYkqxP0P/sDSZ+MGOJZMIuzLvjkFJN96176tQ8C+8IH+/BuFBL/dlkyxealE5eVvb8AaXLfLYpcLD2PdPL3Y70xyT632sG+fyP4onu9CLLxEc2EZNRq3paum4/w7FZrZQf279m1ttDn8GdJHLkSlzkpHw0xWt8NeBipWaZ5aEGv7VRUI+TXSO9oc7x6gLXH3fSU5Mrrg+cMZrUW2cC0OfOedKlNnf85pob493mxZayDQHRJHykGAgDfHw1ZlV8wfPsbvZRBw1zMV1Z2KrvnZ7dIGqak8JZuQDDXC60nlHyuuhlbvdQhyf87kRB8akNAuIt2EY7EiCOSt/MBJf4rXTZKDEoT/QjyNhDusQjM+LrAOM4pO2zxUL6cObnei6e9fB1WEFpTXRPQlCbSLV+Sb42XJ6lqjOCFDZu8dwwqfh9c3VWMgFDRroqE5DNu3QFMIEXnFYQnmMYwy5iaYvQYOTcfhSRg4/YkFpF0ev+ji3x1G2173M9KPC8UvtuIA7e4WvmUdRiCl+ua8Gkh9HoaWUcTbHVKs+rXZV2O8LOrsIOAaoijh1pfoVP9U6IMKTF69vMm1xvj9h1CIS7IX3Jwrp4ItKYV8B65d5l8RQaF0VkntdjFsGksmQRDcb7abCIy1wcm9iETp+9VCRypXyJ239llVDiBZQ1XUIF/QjSB2wODAImYceHbICg9aD2pOEXfYHOez7HfuV178/gtWK+1ZExOLWJzuBCHToSVg04p17m2wz28rDiVF1AFKItKo8Iyd4iHp8w/sPbwwzDCkkRwKQbdb9trg1im6q9wqJy7RyMmM04aM5uXTEKxIQQ/Odmpiy3vuw8GKBFWmhmM4peiyVLdfJfwQxR9atJzasKvn2o3SANc0xdQ4htjiEDC2K7dRuWCzoNIwCcFgGpHuA9WOMZFR+ukyehyD07EiTIxSZMQUJmphPQk1R5Hw26ux3mWTq0jX3Sa3e1Udip/iqA11siAjAgRbIsk0v2I7ktdYg8WmEhoiEZYvnjh6PlHBAD78Ejpc+VcWxaEc+yEVY2SH7/jldmD85nVt3/QPdnO4bN2GnoRAijaoTj6EMd+OhVKPYjLXRvUinNVAGzmbpUZm7YhCRyklp0hDgsaN60mL7dpotNX5oCLNjukx4iHri37mcFxtCEQPItXigrXhiWsZ/ijGY0eGpW9iZ8/zsTR3knjUr9DZvZQy1KK26MJfpzwaDdsvstSK4PIHQKbPrLMcc+QB7r4napPhknnLyg27ryHkUYpppy+BtGVR60A2GV0Bs05tcS53mvVztk3+jKrE9liyV0fslYY/a+L+CX2NhVUIbDNnpEo0DfSGXBT4dnYkj/qTv8sNYZYyR8l0R2MqAzuasS7i3P8o/42jPQoiOmwgUboIbc2oJvcdFXWuR0nopwj9LFrCmQRavSHdEwVg2omNFPMpwxh6zpCaFAbGCjtI00kvQAMbFE25a+8m0pgmHmeqW9QF0aGudNRSVEHrY7P5NXIIDvk1J3dYz0WNvfzbiDf6lOdRH2xIPMC6RZNx6wcbrF5SpS0y8BzHlajHXn4pYLIj3f//bO78puc3PvmQ0R+sMXanTL3+pZZeM/pj76a4rn2xrlXxZU9FMNsSG1V5gIUTcXIjSHxYLLFVB+nMmLBRovXUyysP6/OShUrTnCOhjQmB56duKYcFey5NHuATWZiaW0O3lmxovJhCGVFK1c0X/1N42LgUerTVHg9VuGxF92UGWQEUioVog3j0cZRHSlXlv6rNWvQrk2RqPCl2CzqvU0a54Rts5b8lEag3Lo62B2WHn33f9eupEiFtZEiWGsJ1gqgUJp3QC6iVmc45O/fLWxUN1MJ1l6+NUBHRDTmcOyqLdI1wtIjvRDy104O/hjSNP/onXTiNxpMnSTFVmVYrSHGPhQgVLSAlhQfslQcFk=
Variant 3
DifficultyLevel
704
Question
A gymnastics coach is choosing two gymnasts from a group of 3 to compete in the parallel bars event.
There are a total of 3 different combinations that are possible.
The formula below gives the total number of combinations C if the coach is choosing from G gymnasts.
C=0.5G(G−1)
What is the value of G if the total possible combinations C is 15?
Worked Solution
Strategy 1
By trial and error:
If G=4, C=0.5×4×3=6
If G=5, C=0.5×5×4=10
If G=6, C=0.5×6×5=15
✓
Strategy 2 (advanced)
C=0.5G(G − 1)
15=0.5G2 − 0.5G
G2 − G − 30=0
(G − 6)(G+5)=0
∴ G = 6 , G>0
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A gymnastics coach is choosing two gymnasts from a group of 3 to compete in the parallel bars event.
There are a total of 3 different combinations that are possible.
The formula below gives the total number of combinations $C$ if the coach is choosing from $G$ gymnasts.
>> $C=0.5G (G − 1)$
What is the value of $G$ if the total possible combinations $C$ is 15? |
workedSolution | Strategy 1
By trial and error:
If $\ G=4,\ C=0.5×4×3=6$
If $\ G=5,\ C=0.5×5×4=10$
If $\ G=6,\ C=0.5×6×5=15$
$\checkmark$
Strategy 2 (advanced)
$C=0.5G(G\ −\ 1)$
$15=0.5G^{2}\ −\ 0.5G$
$G^{2}\ −\ G\ −\ 30=0$
$(G\ −\ 6)(G+5)=0$
$\therefore \ G$ = {{{correctAnswer0}}} , $\ G>0$ |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 6 | |
U2FsdGVkX1/HwXH13XVA5kSe9492WmK4XHNKbsH2TYfMs9XMVoBIk+y1Ffp8pt6CMRit/NPzDKdVBkxhyoVvR7CrxaVwEZ83uKuWmxM4RYino/y+YeujzA/cPEEelgkfs89zGC8jCTR160cPf9T3PmfqKUD8ZQLvOhBhHIIHnYAoP5OJDoEt+HazrVrfP/+E4QjZ7Z8/KXmn7eNbbzaeeXCOjVObOZOst7Q/Zjjg4X92KaNw6RyvvSI5yLLuLaKLXPB8A+wdx1xq2x6Fodqp259XgItdslT7dVoIfZncelZEQtWg74vMJFXRwTylTP7zVRf7ebt9pZPpsR/4b0Xep2yBA408uxwX2SeBIduyUVN8uaCi9l3zaN+bKRlPk6Z/mD++mLtVTGuxYY/kTuGnmE0hoqOSLU0vMgy57FJpEWUx5FYV7wtjfwDGKwn0wzIUHmauXr0WVdoPCS9I5u0lSrvfJoQpar18Y+6rVcRsyQ2QgmmzFXMQh5NQ4ju9dGhba9H7T1hJTu6ZJ0Dsa85qC0sFrGtlvn+YQ/oU8y3za1IaTxQJXgZjpsB0Opjcg/Wx49U4g5dJsayVxvt04aKDj/8XXZaU0XFuAdKa9GsJynWoA9PQm+Gv9yrDCYEMb63KcQbdatOfDP5AzxPveR0gh/ZMViEhLhwuDeIh9iiScGVcsmeRyBU8mqHA6ISQdyiay9ws/c8C1y0JGFPOUbkW83nZvyRldaK3KnsI6/oBjQd2SzzsqzXcDRH2OyqwidgaILWTfTRnyfartzZ0RzHcrnLny+DS8OL0XBxw6B3ur5LjSv1Q5Lxc/9yYRklABSf7TcLBlnrXlAQ8PbPciIvYG5uCFA5oXJRMmQonJrJLh4am9cTDR8lReyFdY46vrWJXckzhY1/GZvxK4jX3QbOE9I5uo3U+wdECBbpPip+Bq2GdLCZ1xMrT0/CibhIsiBuZ/D6BY4HGgbfV+jUBNU3rCI2LoEYoNMhUiLreWK/CYwDb9N1wMvhu4Tk+W1Udah4wmgPe2wDNM65Itsxl+xE7OM+vTpv7FE6C7R1QcJvIN8yuQtpIlT1800TSGeEt3wy3e5fu4FRvFi9USAZNXn/RBUwBQ+feTilrqC7D37/TMSW6yeSAPd/S4wXtMGKMAPlB+5SEzgNNhLhnNGjB7u68be7un0oCsgMyZQW9pbxRPtFeWgXlJBs2LeX6DHi88q1mhAwGU8eQhAEl2Dex7xaLRa+UoR3swaxmpRzn3S7cZXVscEpgakENUyT0Ry8MGyEZeEPYmRN4yTq0P4bscQ/46E1T+03ETX5AF9E/NoA3xaGnecjpLM145jLgtOSifXeVRFpxqn4DghISG6swW7MCGqO0o4a1yjGgomBxRGsIYRufGFGbvcXBcXatP2mrKwfo7QbA117NH8Vn0mXXQVP6mX7NkYrs8DKxGB3Dnd45HPRLcz66zSdVNHN+IuqGJDSrRHuVQTGewrVvHHerBl/9ltj7KtvqxDl0o1xqbFdVdpSiscEPbzC8Kp3AfBPi9O6NFpQFOPzretNCVxWVUxZgmD2B8pxVDaT1qq2Kmiz1+a/T2a8Vdbs8ggyNlU4gOF5vmxvzyZ2tdP48SshXhz3AKgLPlcRqc6KLQZxeO7dqTzPfSI51zyblU7+Bjad+kyAgMdOv52EbMDYuVyEv7Hr0rekP2FSiJZJhRjuujSKlP93TEXc8J0zn70NNMdI8AtrwGXJi17crxoJa0t4GfvDSusiP+mfM/rTX0AYBkHmNiIGfjEgR6UdRzzfZo8cMpndnxvI3HyRWhI0GtjvK3vTqu7YaAgjUncZ44TO2k9vCuELOQmbI7KyE818u9tZJub7SD0JAoIfjnUMwRS22Oi0bWsPVJfa9QznavtT3ndG52ZxEU7h10EQa/sKodPKCZVgChim0aEVu5OcMk+79xCUvDp2uC8VlhYFvwMNZbGZh9DziIU1nK0Yk/VwQ5aPpqBNKeiZbSSkR+U389N8l0UNWsqymdFEmW/1my1GiiOiRgXq7HcxFdB5glriJHdVkh+CB+mtqSA2TNM84ncncbQLWXkLCx8ckcwt0OCL6q7fc2f1hDYCf7D93TeKmslliq6t9ceKbMVKk4MrkwSvyTe868YSa2ujjmxGi5rmKq6EbB6cUcfoRPg1SV5ePnKItEuwH81RtpPUR2G4MGfEG3ewcu2f5tkVqgJog9SnFbOUyI+URC68XCnHS0Qv5fPnnhvvuewFr2J+2MB1Y/J8VMnmI3G7UYtSlNc7PBxLl63BqVn1szYkBiIQKHa+Vgc+95bMT1LFAGWvxcxJ40QlrlgCJe7qsTjWH0kG1Jj90a3bFHqC4SXb5CiQEGXLnP6voza3h887w5VFlI/AONcueEcVkUa6OB8c6mMIxy260Jy6/kG0xhqw94EI4VHu6n2WbQxUDbcc2EdqaPZXaNBlzexRg6Wmx9n3fPyzm6/OE7KGx5twicyatko3BQVf3RNSR5NEj9UKTuTdonUyS8oxS0kWmX+7Pt9ZeuFMRsmDDpwUMyAz7GE1VyZ2LftIROqS/aPbqdbQ/ekA2kLBF6+tZ8anYVguAPx+4EY6M7Tm3HlQ6vrG+78A5ubtdNSl4u44O24OzUmFHfXLuOsxJuZRMSELlWvWfbju/pu+DnmoXKrPqfN+UObuzsJVJEQKjBPcwSTMymgac6jPERbGgTXWhm3UC1DW338xi3P6Ff7JpgNFOZGBQeyP0iMFl7esYbn4tMWf/yfvMdLjBc60Pvh6LuQZL8zXdN+WJkWzYPEfZw9HuV0Yossvp9I3RmgDeoksLJzhs6SmpoHyVvzjnhi+6dTTtdScAKe9308AI3h96NKQrOb5JAXpxbcgirFfq1Xs1IGuxYSQfAYy2i2d8lgWjmPcpjNjMgGl3ml4X5YRRla0aUC6vRAParThRA7Gbd0MV6GI0Ul4k1jCUR1KAJ8YXgBkzJJ1roAblOQTCajR7eBtBpvpT0lsRhG8LZJPoVPW/Cm4yYvF3k3J3A9GSbEtwqIVw46ocmKgkrK82Uz5ljai0xq0NRsed09bpPxUrbBiot75AnkkpBWpD67oyt+DxEJcDF1uHEYFtCwRoN5c/rhwzfKs701nMeBx3ggoUI7TyJR6/2Nafop5zL35b+syzgIQqOis1xNwzCfRb7TcSRCq1D+gJUst8owS6TgBGfGIWAFHBQPIMXH5vr5MB7Rx+sXVR8tRfw78MvxkIiK9DQa67LGwla/r/C5gJ8z78MyayXzpHB7cbw8JxvAEVt4ijRAmfozD63/ZPVwhdZmy9zLgb2Iobu2O4bu9EDU6YZzlcx20lzUQHJLhNz/b4ohFmsUkmWXEvPZKfMzP/TMuNTNpd4NpX61GAvRvD96Nv2RQ9g27Mlzzo6k8end/OAjwPbbH/dg0/gvozchl/6qrgAJj2gGJiPtmekll2q3nc5GCcxSexBpu6lNwN/OVc51WA5j6KxLI/XcZa/SjSokGnh3Uv+6MP6AD0m4xzulFgOP+ywato1aVCdQSeutmTq3ymdliOfoquriLQvh9JcvJQe3Oa09ZeQPftfQH9TUHfyILygfAEEk4hwBDuM5eneZno4tj+iCiwjDdg6U0QLMQ55JNXR7N10vub+ahfeRhGE2DMkGITCNGeTY/O/peuvh53zIsEdXhG4RaEA98LPoWLVboSTR8n7T0QwIisyRmVkwoOhIyFOe2NOiWqftfZtSHy2YqMlDmHRVKfl6bXpHa5ocj/YVEnssb28+z9CcXoOl75V+O/yf2bYFIifmVdYXFuWkIkEYH4b7cpQukdQkjGH4XAI2UjojQZH24n3KM7GAhomYDcoDQhM7moJCr4c0ZcDGdmPGzB9htcibQKMzKhkFuk7x18yOFge8GmZhHLmNm5UVV7yHqkJ6nCIY/TZ2jrqvwpLcmkehWibyILRxh9TIz1ueWhpygvZin9TtjoZo/RgfyP/KhaDkhJ/jp90tYYDNi6ddeIaDlhOI+0VaPQqX//36xmH/kM4lzIFytDhHR+O7tsRXv35byQXD6iw+KLxKoysAJcfz+BohzgG6rcm70BiwLBRLc9OsliQCHLqZSwKrMjHFNOwE8Wq/tCu5bCMETSVQP9/gCAJx8QdCfQLd/WjJL+Hi9b/vsopCSW+GdDjWRke6Qu3mYMnfv8ba2OS+sjkRzd/se/CEYpa6cuXC1jpyizZ5D53OF61kc/psgVgUVuehCR+wHvY53ev7e/d99Xb6LnhuaeO0aa4lsrQq6xL34A7sc7reepnCueabBTAgcqzqn5f5AVTrwWcn+s5lfTRIu8obUTQC7eNBsPFel3OEG812BD4VVx8Po652AgbQvrOJ76qCRTil6R3YBdcgnTAh+94vrcgKlsE6kZoQiPW5l05xTIyrMEg2kffCCQAr9wKJmWBxQy5j1x2jx77QRMBRE5EWHFZCs1Xj2ikcfDfTbewGiNN4i2J4RLoZgNu/D9t0/+n1TTpyyQvFbojTR4DSTzeflSoBquT+LiFoLJU69ZQKclPW3vu04BJxr04BOICtRQXVf5knX7NyHMO/T/lP8bru572jteAYVpxdGkYK0jIOvvUMPRjFfWtDd5xhpdvdyHWQS8t8L6ZVGCd7LmOEGyaRW7e5zaw15PQiRcoG6Unxno8uitbtvggKAXhqmo8g8ZkH4GPoeUU0yx7xb6lNzpVjolXGFeqJS99UnwcU52RwXB12wfoP5BPJQfC9glhHP3SQz8MCUI/WKoHxl39H2YGB5IeGk1CcY7Vw70yuvCCAFkq6uRkx1uQvcZ8SjJVU2Maqu5FJQJrMIrPGtHseYAkgGYamHid3uGfETk2BS7cCl3QAanka4QsoxMvYfy3wN4/T3fR6iGFHVQBdQvzW1kkGMBHOSpRFp8DwANbiXU2UYBZbMiVrGf8Mfl9LZTVTjvxAB8DY6L1qKm1bhtnvHcdPH22Brc5Fv0f7l8z2z+Iduv5bR6MUYqq6QlGSGrPsAGGQWqssThC1B4lUrRTCTH+zN0XQz5dmxu5KFPzt/8kDZxNXwCjyUXeiSu+BO11qlsu3i6UAFnyZFCBygEwRaX0elLc7TmtLwS5Z/d4DS9/OTJsOXgl37l2ncN/Q+PURXOKOoIzKdSwvFzv8PW/R36lDiRT8omvK1POS8CQPgaz7vBnlxq0QXxhxx1+WUjSBHmVGlXwIuqHVU6fL37b7Tma3eRpnCkimx4CwDFKLF3xK3Xebxr/z48090VO7P2Qtx4Akw9TNgoNOlbYpEVBFExPsXh7q37V1RMOBFNaJr/1zfhCREvwwXb3CqDvga0oBGZG5Pft48+MCr3FlLtAQPyelmf7pBxajMeoRVAHf6Z2vIBrOwkO8mX3drBF3p23UpzTMR+fOj1CDnxgbxOW4CtifHF9FZJ7w0/yb0DEq2RCULWNkW+sKVtUXbh1EPQrgLDzdX21tjwEt1Ps8Vf7ndNI27sWHXkiX9ShLgfjm0xEw+vWpGYuEr8PIgOHkjI80n2r7vEcSwwSyTnEGjkGwrBsG26RvcEQidkV4uP+f9PWUQGb4H6YexwkvmCYoJUOEwAraDDkSJLwa+Woj53b4LBnO7aBXuTJyNcA1aIkIbiR8mAW470bptANgeNDNAE/cBukb67p2S9K51r7/xjtBJInZ2Jw/KmFeWnrqs0umob/0kZnf1K08PclhvvmjeRIp/VRMp4kLvkIGrsl0Mq4foYwbmfHEbQeR2jHW7y0ooj5xDnoN/I50SDcr6Fcu0iXtR73sdGMbwbLmTU8CD3X7YXieoOvQY7qDlAlMFdtDoj0xJU/UQRXv+Grljva5HLJBNdDmOF6rbPFq0id926MxvFAdCP/vZLbFYev24YtNNC7N6iMBKtyYjrbqBJJ69bnhO0It7OjWPWnH9MJ7ivWfZzc7bBuLbS2mJlh1Qn6hB2r/frFHJIKAIilRJz2Siwn9+XqNtpzgePP3smokcmzjaA4/u3Q8OdFtSghR7QMM/m5VzVahTFhL8h+d2RL7X+HnZKqLYxEovBvVKXHMhMa5uXfOKIu3wPSnE7rVeaj+4jDMrtkOi/dKJLaBqcj5YYizwuPot8aPVfVBFB0HqWCYgenYvXt+P574IjTNymFt46JYnfO/jCWaMlA7PN+aexGWNId8LkgAd4T8b0uPDM84fJj7HLJy2ih/WGTyLs3lkDq8mcexRRT+0ZxKOSQW53LHeOec2UmculyLL2tNFQYgn0eztc22nPzTuDCsXezCe4PD2DBd/i1zI7kHeOzebyautTKeoIX5UQvCmMCOeW4GZszL1Je0miJupTMTe96/15W2TpVZXIt4SJyCqoCfdXSCKECcX8qS3GGdQ+1Rp/OaDpzDHXOjU3S5M4H4PpIz+m1LBbodBRuIKPct+8cRNrAb6mKpveP2GkK9gwW6t7uJG4gvTq4YPZ+Ag8LzD59l/2ScXU6nzkWb1jtzLDSIoXKwi7WqbOxQX17ktBIzH1vTGqXW5oc+9Y0y6Z0hloAi5tyZdWGS/FrP/+/EO32WRBu+5CwJ7gwvmWMbi6b3zk6pCKgxQDr+nzvCg03l2g4NDhwQMRS+Q9PXt8E08wdBKD1oSoVgwjCqD9CytNAPbWTbI8ggrLBG09cqa6tq4HSh2D/AG5WuMh4S3qmfEKGhhFGP3TTpzQq3o/j8S8xok40OHhzARWIOPsf/xQOZgXe+GgIMbAilC3pzEVKmT7k2/HqML9rTPzVN0LQOCdfKHNRjnobFxPp7zJs0bYy/1t8+cJKdgUBsc+CwoNjrim6EhFi9NtfNaBJ/+XzfZm289fYRdlIrfic2+Jf8RCfRS7iFm/9tWAKAqla41K4SiyvOKonQkdbRy9U6G2InDj5IAC/Nva3L2QKexu7/TKV7cEF7Hrh4+IE8gTtgVFLoMZAjx6bLhz36EKKGclumx8HRfucfNyRlbnTX9I4kNQKUzHadppxn2UrTpOEu2Ysylj2npikQ3W++ADtkAXOLbEvgyDpbNZkQo3jSOngiQvBLO0vtz5SpD2y97JoOw4DfZSWAWL2RDLPtH/BH9OJ2jDwvxb4ISjXHHgw+YyOQ0CKOv+FJBaBTjNnoWoXoq+ALCTidsJgNLL6FMkAop0YpGXYO1I6c7+CxQjyxAX8M32G18wH5z4LspyPn787p+c3qffwY8Qk/gR5BNM1MBKHvDSCAk2u0ZALlziDMqQ+l+eeGb5pNqdwfNF0uweOCfPMlXE2sLFQ4gyXCcMMdXiArAcPpshNm332Y8C1hegYrdhRMzkZ5BrYE/e3LIl4umxiKSejVJbLL8sUxjdLqEIhZTpDRtODH/YVp85QrDfK83Ka7FJh3qEcw03D0z0woovVCxEpYD+jrMxlgv7DpdA3WshtIlQEiDy+9u/oplY7uPHlnEko2Ki4hqce8D3pQjXwSSrrIJGwZfGcKktZZVk3/XlQatXHiiMnPJEaELkOyUvxVbFAklwL13isxAkgYBJvUDYq1Rbz2Ko1bg7lluyyC08zSD29kSzTqZwWq+Vhys8uJkOzScXlmspVPF1P35dr+sz9jIWKNFBXHQL00ysNokxw3PCifegge9YZiDZeGpjkNHsPtAHuM6yQCfjBa7Zx/uRcFXa4vRJ4ItYstLU/Gr5yuaTCpqsM4jN2uUd2lBLLwz6goXdsGcSl5MEmTmegDi04QWY5jecYO6wjEITxttovw8y2lCPC+oYQ/NwrQZ4eO3k46E1jwLqSOtnoT28mvOlWg32UU3RYAbv2tzK2m/8SjE3nHOgojtG5iZvNHHaaDzrM9pfAkhKA8P5/s7U3Zp6q2fCtOLpdt1zI3VwXQSKKtGz6YOBC0LvEAikCGGbp8P1M8kTfOudostxPBCsqZI/rYKESmJdh3hba+fQsFDCvM+slZqU/sHZ6oD1yazxU7I1iFdPRy9QqP0jNDRJ0txN997doLQJ9nvr8H7b3V4eYFWxQd5JnhWW7YCOxC/Yn70BDqgUjRTnNsf9s/xHSml8RjJK5pEfpm0ROiXwclx/0P3iJJBl+0aXXyzmDEFeOqEQTH2xSPjeiGG6t0f3luHrZIudJsgxygc/3OFP8xzTaROOP477+BDBz8LO52c9QNFpOW6SQIoZORq06JsNDyA86zCkL0ttNBM7KZ5GAVjzKXPY+zv2cAQWu5khpR+h6hgDadWAtmmMI+SvxbY4c8jmTJJujNq+jWlRrk8lkoMt+i2DStQjjKeUrXfFHxKQf8oTxkvA8B+qpoimncuzumQOny1S3iZL6MtIxPnQbLBTJj+AQ4FhfddABhXxJKHhB7sNY991Zch4+XJbjyitMSeMqqnaKicbm4vW45Emk821KyJq7EBqdf+oo8ahV1mezmojqwkmaJpg0H/cd8imMBSUhzT1eww44pmTSsLOdlDvmG6KyfZyHdcvUxtX+c+ArAWou8XQSemBhKxsHB3byHEHmYDeBPPCNtdtYRWLEiFcJ8KpWb2Fp4xQnGrjlsysodeYfDX8HYImJiqCg+4SqGRGHp3yzz8IeBHVJ3D360QwUFjNNcuB45hNjCKpDPCI2m99ddgOjYCLHx6eJtHcoIFPD6zo56lHHn6wiXh1g7oz0Kgm+yybJwJmKHAAnV2bMw6nhntDgalAhejbMCYGXlVlFg0AywLbjllsW3u27UZ5qAl3bVyk0HqKj8Et8MqGDzOtvJYCmWmcVYugE0eX4KLUlXk66YAFdpz5i1eArGtIonrsFeaR+L5SUQUe/P8RTUl7vOrNQMCqdVhBNRwxxJ2DLJQpTKykot6JuIkjqsvrrXPP2O0uPnY+w4lKiMD4s5ADwHE72suSn/1WpybUcOgJOslbOC4td6dCt26pShrSySU2JFxqtvM/hiKnWHU24Q7+zlpcOzxn+1Ok2vOUOJmFSGe/1aTu8cshoUNZpgqa59toHcKa0oX13KH1Tej9/u8yDFbNVrYXGqYvcVTLs4f2EOe0ThE4z3JQJC79N4V9wY8k9S2ePeQ8GTk9J48mlP96170UZhdK5RLbNKswuI1rgqlttebO+HTug6EQvm18y0qMoBfOohAJybLRMA8nkvDEv49XGnO0S0vWnMjczU33sU8aM79FX+CkoEm4UbdAMvNZEjgRmKjodgL4cN4400Yx9p4f98qxDTSUbiLkgibTJLtASoDUZTD9L4x1VZJUZQS416cN/hfHxkTYCTPn2+V7SuAbceL6fJ22DgE8nVlaDJTFL3BLprn/kXx1ztFB4JIhislj92bCL72awLioMJmD1TZd0Zlve+w+0P965B/jCKrvKZU+SlmCRzMGDMJ0A/XkOMOE8M06jdYLuygxrzRkpqT0rk2Za1WnyNgJBMc4Jikfn0QJVOA/Vc9+B67RSajKwAjH3xrpsmcNJPn887P0KePrYUw8/Yfa7hjhMAEmCoHr8P9yMvD4gA9HWEGY/ykY9x2FNaknDDa0wBKN0u4Lm69qNtub0+ilzbTW9G1UXpncWKAqty7VjZBeSK5vzhOLE4SR+prbit7rNgTqx8+7AqTvsEtgBz0jpCjQAcjXEJK/jGriQzzFN3KIV7e2Yx5h+ctdVlT71vkBCXZiiSplOdDg0Ms6AzNucxnkMZ9w1RJXN+zg6RfXMABnNh/0ozJIP7wgrSERljfKbvtfpeoZdUAby13avRIr3sXkq7VHAPbkufEmtEt215qiaJBXZJuwPDjjfgeKINFrvW84cNZUHaKUS2mvcGYut82iv6CKsRkuZV9pjT0CI/Rr9MwDIbZnJw5DvzC+tnggdR4FtFgKe41+kE3sJyLtxPZ+Ru78WDc9ba0cn7JwbPdJyeM7bXeETz60q8NcjF0RYdudHC6/CTP7Kss4mA2ARS34yZ2erSQKoB5qrphXPtZIwCDUs0qTzWPz/hGcqT909laY4L9gKMglSoYwlsGU6CWITuyvs6JgSk2X6DuydytCOLM0gyI2jtMH5e3J5vfxsCJTWr6YeaTA+lkealQsX9XCauO1GH35q+04t7Sf2l5yqrTC/KQr+j78NAvzJi/BtS7A4/ptsCOetkjEDXQfYyBOmsXdEIC1wLUQCNwiTCP2PgE7o3wfDODDZxJCeVye1M0IbKaHAT2MXjYp48ptWt67vv2tZNpsWVs4Rs7pRpNfoVIn79pGNosVCVryyUayBqCQvnVvTGay9VQepNqot4AgVi6nEc8jtVc1nS5NabfO4nSjEQQprcqmXqgJ8pvK8XAdo50WekGJDydl7jgZcLjxTif6uiQfouKzA7s+h7Ap5/itMT9HHxK83RmfiVrcTVuWLO2m8g6P0vw8C5omrgVE66lR5Paa//IsA3Wr7UAQijcymrOf8Ie/WLSPT2Hy489fbceor3Xm7Dl3aUPIE/7PsUmbttr1k0IdXUf48s30TBIIpMA3FXzf0+ZD+VIhivaGAE7qTab3M/X56bWw8EerU9egXNckfPHDcza2IwRUYQygW2UaShttnMDpOro+Z4po20MtY6FMinVUHHE64X7GWLm3e+pLHfn2SeGrELTVzObXX2G1Y9ohGPkATMiGA1mIz++rkuCsAP+veSpNWod0DbXe3qIVFQAkwrAyBIUeLvUgGtNPZ356cIfkckVMZ9HApO1/fjCh/N4EDR5bPTc53JNQ4OTCpAcZEYoydATDIKd7PEHecCeoetDDffINJ4buO2WvHQjXjreoJJ0U457eBxwAdWr9NSrRbHoK+85Aof2hHv+vc8YeZA7Z1PJ/UJuWgWdoIZ92YOynkCM156EB28C7aaA6++JlBCE3Ks6ukl/DOz0d7X8V1A/ANsPb/4js5XbjlJU85KANTG7TuRhlaiURavFKc2KpEKTSmyhe6NDcLyNvWclSB6oI+lHqf5tTvu+m0vsL15uN3ZDKW5IlizBtqpdAesrb922H1CnUN2Z3zjoOMCer7Da6uhPCIiVgL7VDYkeh+7wg/2LxvnIfnGB8suLmlSzHQJZaMHo2me40BKM3c2QyPwtzA6vXWkqy1VZe/ydKsRr7oVP04mVP3YuBBCr/mPAyK3hAVj0jt8rB+ndFzdz5BnffARkG44feXOEjSt8fr4kVRBfasU0IUSjSCHVtFLRoJU8Aap/aWIHxMcpDKbkM9ZsDPo5D6+YL63P8cGTKE6Sx18YHO2a3XFIJSH0BszmkL52br6sISG+zX1TzOwIIsrtroQ+s1Y/P7Xayp2P60pWqoRaAaKoL78OOT7WyEF39loSPd9g9IVH8wrC3mhYwntUWzEQiACrqxloHjG0J3RnmBiLU4Tl1Y8yvHe82MM4oCdh9yfyP5nF9/bhBnLNdfihP+C9aaFsg9HhGSZUPnEO35Eoi3P+GXuGtCpznX5s5yrMbR+Rm2bO2V6hPaatphHqTW4thyLpR6EwnY4p58qnTsAAH9lcsIxatipPfzYn0HkntfYjn80hpOMgrC9oDIDh3aYVgBcFQ52EBpVkPqC8H+6L15zqj+QY0Hg5bKu468eT4I9HeofCByuoccAfZrxBRW0MaHs+/zQ3AYBD9tpnCsw/y9KrbR35qZZ0ZcB5EUyLxFO5PqaMppG2bVi16SfFxKsxaaajUAaSNxLQN773KUMvkBYNvMP1une3tYe41z77GQAgO1UxdkxYLZ+fwJRzEi90LV2BKMRupA+8DUDEOXc7PT6KJk5RCl0mRH+FGXGnaMKlFaD6OQmLwB+CjqoF/tuJUMT4C7QhIRgPlseRal45bvGWbFqQd83HiXdhX+/6toej3HtGQAbsWlqyOqJHToS9fn0WRz7c22f6JF3Psu6a1DzM6k3/JvM8HjUYwwccv+kv2g4dWMEQHQSvd6sJwkHV0K23SUDDFQ61PUAkBZmMzjsRjrXbLY0D2mA4xUv765o0W5YZL11Qi7O2KNMdqa2sIsawQcnjjv2a3cioUOtwEcY8imyGHgcXkMTvJNCftErpML+8WwlPw/DCbCvfimelQPqkk9MUs92skL0xOAsiYUkaNuD1yHMoLZJaqAwobI9rXlOMTSmK38GnZoeU2AEWNjLc/Vk2gdb5OgHuZME70kNcAuBPpJ/WNmMxXANYhKfdlaeI0c/qdV2uUe4AuTL1p3xz7rDilqNnpFnBgyIscc+Zab2rBap5KSfIJ6MW87oHgYYhzTC0Yhk62BGDCC3k13Vmcg0JJJubcqH+VCLxM8+7xxNoGffXNRDWGCgdxvufajzDb9HF9rNED0e1nu9MB3wBoqtdoW4QRZhpta9Q32l3a5WRQ7CIVA6Uf0P52bdp8bPqBQXk+FxodP19GgywQaHr/aer0aOCclEvYX9wPbR04yi4+yPrbBOd+qqDNMC9OikDMaSq1vLNAD7X/lbjfIDdpjSAf9mjMbpxpAfI8FkUqjyzqGsjqTOYsRK9w4uoHu9H610030y21tOUhz33QGnW0vnELo698zT8wacqOIbkYAQqNXpWmua8kjJqlHalBPs5Mth7q+xnsttgsF3IzbU7bf7miWCUtnjyk+KzwF67jIk5MSWZK/dKyCV1dPEvyNlpydq9jnAXcF75NW2uO6H0nndMoQnXIGOXbSlLP44AMAbLvdWEsSawIB7w9jm8Gm4akVR7D33J8125kZJDjekwX3qQ4Q9XHxg+pF6qWEwv6WxJyagh2gu2U9we7GlXJvmhfp3Z7crY3df4kxBhaDhYYz8BtKELSC7putKc/WO1MHa/zqF9X2odzAdZzeJktRyk3CNdxBDItVcJ1V1rvrgEPv8CvfV8vxGhnKc50bR0JMoTtI0n6yAoFxFYeOKPbhhVL17NeeDE+D72q4NeHp1VWMSV4qBxDwz8Xra6vulewl7j2PvrlE6rV+uUaf8zID+5ASQ7mkbzbpeRYgupdA3yk7WIsKP7mnb3+KCTrRr51VtNn2XChcR+8Z59fmU3/bY3Onf8CU/sJE/tpY2ytULz1BH1+fRuF4v9Vorx2BwDzQInMpyBNjwaR3RnXtvPyU/JwoWjLc2SopEb6bO/F9tB7PZfngD3TdZ6fOrqDtqXDwfo/bt/3FulbY9TO3qzD8HXHzjQ6Stlx48Biz7cXbPggXWubqk9v7uPtn0/gbBEcfRXkknQfuWd8WoN4nr7iKJeblXlCMTvDNxOtLYbr5EZu1A61Kiuzg3pRD1CPaIzDTqI5mElzS8Lw59oOEvCDIRHG5fm4S5uFKSQV/xvWuTUPXIVbMJc5cZ3P931IjxeXkeM8Cn8vNzABjoXTM4M943j4lfeVDtE9ZdYJWON9oxpAB5iJFCoZBaw9R+VEjU2nm1JdHgtLnTeRu4lmv8/axvhg/AwHA16T/X0KeugKUGX+s/oq6iAw4nFmAcci3WYp7U2f2nLPZtt4XRtznOxFsR2Ki+58feh/Hjcm6aXWqfwCeHcpUj+Bhxnczz8NksM6NoQ+TxEAzhyaXKFnHQ0DDHkyzVJmyeZhZHHOtKpWUaBq4qk+05u/Y4FEaQ48a2oVWXk1TzmCN0aQGF28Jq0dYllFO0biJ5XUCF/6C6TyrancEgL8RFzv7zG70Z3jPZ0v2yWOBTpNpQ0C5n2BuhrO4MlPWWHNfowDz7cZ+xOXBqSZbSuaxU8iedOurg+xxZvDlDZLB8MRIPjSn6KtFHBCFbxx1LEpjibpxPdDIohir4OIDLsBJWuqwtS2ireJNhg6hKuYxtO8zLEoAAfUMSQvHd6YVZ3cCA+ZfMgbTyZqbY4OOyppdN/Lpgo0s4VofF0WMD5RVtmfHkKTszNEgH3Xv5YI2/XkvlB1vvStMLYg7wDvTh5azPE6MxTlSZ+Mf/QfuemADVYReGrRzO3i+df9NsSDjq10/cdbTVEjN5JX0c7UUBulEFu32tVA5Es+kV1IPaHzshPzQ7l5OLSjuHIcxLH5W36NvZo1nuQGdmOR7TdJ+Rm6AOmRT25cw9MZ2oD3lyHNkmRNJu9bRS0MWAS6hXK6JfUirc11o7bAMT+tKXrEM71/wPRH57uFThhEAudLRosquKD5eoJz9004Z6rsdpfIVZdCmBUki/sHrfYuIfyJq93Dvcxr9G+F1hTROiLB2pGRv/z/hcvXJuyue97gcbTJ2n8wvh0sCa64zdNtq88824sjUkzJq9MoiFm5kf2myDV0n05nxoCwFPh1aLao2njaaNTPlbeHcWfRcQRvVJKD14bombfIRm9MmaFqYqTDhxIgyiAMzmTakaEXQn69gBlBorzSB0Bfa7f8n2lcQ2JfSFe7N4BnwpPFOXySV53zIeXjNXPCml3sabZcn3ROHlGr5Tq/wZHgYmH2U6LwVQqpnMxMv/zvPPSlKnaCWNjhp4Zh2qmcqyUvIxt/uD4++w4PM2PVxCqiTTM0W2Spm30OUA6WH2b6nMS4U0jnjEc3HSjo2HvpIfzXDeMaqr40B4HxgD+mHUIQWnm0A+/0iW5q4qSCQJfLUi4fWsaWezGozPAqXrikjnKy900Dh1NmEYZCjLBGTKq2j2QY/eVZwN3r3q4zX/zfOlFVUC/UpjliK+SOuOIK7tgW4FfSciXqOxebtSDpfnivhKxqcUZR3wVAlmuyCmnkaycpmkTtC+RHC/UUrFu1ox5coByfkP8u9RF/wkBtfWwipPBwM0GrPzaR+Jxd7fHNH+g9oE5aY39tOFLbPNlMhl9yLsAqWQ+0HCRWEbdpc/02KkfT2UN/8NVnDheP2wdbf3K7DhhQ/sERxHkWs1n6YToRckUYb+w0UEpjesRF5Y58aG7kqxUIcxevB/CJdUisYmTEkKqOdyyWcJm875HN7OK7z7SKMGv1wTIq1hJ3eUP1UvOuGepkFWjmV1icQ9Q8K+jvmT7Ylzx0v9f6KoemQfqvkJSslOnjljKaC662gioFh/jqL3miFVxy9N0yclkFs4dWKFTh71GOzAsCWoDW8mthsU3dGGttk4/OofPeZxjK4DfwGBbmMX8H7j2Os1o16PJFjdsmM9inLmZPgZsDNDEEWMPs2gOrBLD9YSzbZNNWY0t8ZkjQ6SbDI4GTc5dCvFZ5EpJ+zHz+vTMVA1QtKGd/nD57PiJiQb9bmTzBj5R5QCxkCeSsDRujjT93RLUhXMqOLY8PBdhsGOIfhBSBYw/WM2VsC86Wj6uUhhK54WVAlARGDJq2+eRA8GvK3b3JVz9KUG7DEUlYBG/a8L4ODaV3O7o4CP7IUcpC51C2a7PkMEwz1OK1ofOjOODuDXJy8SWg1OQDP0OsJsdOQ16w243zLpf16d4cLvDL5ov1LYAY/YrMWslhBzPVYMio53uRY8GeIppKSXnnpCJqRLp/TK5gJi0jwAP2hNVj0eqNFltgLpdX+7zt+tT7K7WTA/emLynQD5WnjfWddTchbxcEQqi9/pQUpmhtuqr5OLNwJgBDPwwWnApunjpG1Wvw3Wa+LF5/sG0bMXawKxt6k0Q4j2D7lfJeje6xlJv/i5Tjpl/uYE84hA9s7oZSzk0HKIe1f8qfCvDRVMqJ30i6sjg/61zho9BtaZhS+kTz5GC5yul3XKoqaPqxASl8hpIAlqjFIEXGh0fhwywQIHi78QnMjz+FMRcjJvF2qzBDVdZh4ioNwDw8EEM5bixYO5RTTiSinC8ohFIaSt4tIje1YGiVWBwohB495nDz4PhxDzT/RXbTc2W4v06YhZvLdc2k+jMI+26GRbjQzXA9m5ubytoxawpwc09gue4sv1SEONnI4fSaNcmy8j3G+AA4cGCnU8YoHlga+ttdcB6Mz9QXhzuaaeNoFs+N9kN8w+iSP9tl4fDjPi2k3mO8en6sMKc+50nwJwvkDtpl4ZWReHB5qCF6TSAWqiO3oQLVJfE2COBOnOlIBnq62mw1Mfy3cBgzxIWQOzDLuiHDvOn3fw21J5tkja3wjPniIkrSRvsy1bqS46iegP87fMhFF96yYVV92BvaBfc/kQeT/R8JXYfoA8LenBXHuZtA1PYFUT96T4nSK0w6hx8RU8rzuJxPOk9ZkVJ79prUtkJaOXPlQPaPd07BrJJHVoO6jrmoJQ+pHbmI+uMJwgw9oUlNIRxGX3JAXvSq8APik2nWHKmI75PXtbnI/miHxosSatvi6RMTOqcZpxpvMaKweGkKX8TLSjlFdcEWYupu6x0RePDg4jYFpfZTShPD20GNMLVCUiCPIQyjphg8E1nJrsvqRAiBWFzxaLr7RL4vRyGIVr3SmZWRVchYCeDPVQX6NtgRmnF0VJbF/kP2e36YVCGPJkkXVr74/HcIPa0EzRezlyyf2hJgR6moKuIrwMvZHopySVDCwtV8h1jkh3DdiAK+32NqsKY+05toqzKb1e00Elpb0l/r722/9CWKa/PegPwsDjTTUEiJDASegn80YYG0cncqjxUasUuXy1vvO7nlb8L4iq1U2MqehFDKufbckOzwOH59+m3LFjr21UmLg7ORInwFUg7BKQrS6nUbJXbKASmGJmU2WXpEdSrb8eFREolTxKc7h1qTrfhon6clTMznzVyle9ECfaHWd2imgSyrCfQbxcYQE7ljiEPxui9vJtQ6ZNRZc2/E0VbtIkJLMe0GWCp9YvzR9qC6cG1oxppo2zs9u1zdiyA7R2LcSSjdkeWvDLFKTfsz3KF4YY4CHdny4jzDaIdHR7FWRem81NS0u4sXoidCsHqCJ4YC2utTa1P7Ir+lei9KtZn+8RpN1KkyaFjWJ9ba9OlaIGC3FM/vgBph4WPQkfidvsGVpnDQYHFHo4cI0FxMM8M4Mc8eQgwrJG9Apbsr2YN3pAYQCc9HcWp+jJbOFr68R45H4KPH1RqrVlAVhlr5qxGm3oGUepSxyxz4IJTpC4NIzo1Y5yRW/Ap7ghaavveoTWcZOd+lXorm9pPP/FP6on5b2N7jJ1BktTF9ZbhyAO9vO8gyRnnRiFIlKjlcyZ2iy870V0a9+XJJzzPnqjUd7U5JnDXZdc3cnwnG5uj4OUfH/Ek3prY8ZIRf76lvOLWAzMWOHF2Jpjxb9Py69qnDd3yo8JIjFB6M7G6fSOgyr82cOj9BGRcO7i00nfj7bS5S8PmCSsVxITZ5XZPEOaAitk6vaCSRHPDWB0y9EzciHzYcvMImxPeJZOpTRC5N+BAXlQMs2Kz9k8sgKr1SAfBqsQxzQUvoO2eYucnsFML4dT22aEnykKEbdoOv/70HRBRMqq2s9O2u7aShLBdJXSo+VrsgdZQk3HQ2JGtJJAveuoccAIZPbhbOEP3xkB2dFjPFRO/OwaQ2Z8vtyjXivTxj3qf4liFp8L8PHp9o+MJbgXu7AgYhO3CoDHF3D23NY3dmqrxjfzLAnaOBfuzU0ed8rVDKtZqkq41ZPrgq5Q6V+KoH3y4/FUxy7NzPTQ0ASusdxV0IGTVIWOsDF8EXGOWLIEYIepAyYx1fiBYeL2zJbfxp1RKvR4trWn/CIpMd+YxMJ6pt6qSray0mRwRrWOZweso8L/f4ae4gKAKmfR3ZA5ta71TshUn5J6R2t5WHLwvwBM/+tyi8b1MFmjJqY7VrbzVKxaFvATTu4o6Myk44hDbXEEwOSriUTuHTNArBZV1DcGITMTqCuna2zTR5smXy+ogT8tU5tOl6JvuWuvvHdNEHEXIMu5pKmmUM5CDNsst6aEiv9CQK1tmUrVH7iYGWtnm+HhmoGCWWiey1Zc6YLHxiqgHmMDEdyj5WwXLofbbFeiZ/36AEB6H+J6n6JTIDJ7bRKQI69JvnRKzzQKIQ4hpQVmMbK9+3UIINOIQLfCIbBVjwaD1jKD061+zOiaiFofHDWoHyLGdixGLlS56ZWn3GGyeJ6GFhXliuQHhNojfV5ytyZEmywicGyhpAbYqT6d2S7LypikE9FAN4+jhWlRDecRHRg9jahLnk5aP9HKWcFCJw/zJWWmCAxxFxPP248qZhCE0JpENQ5ebXsHISxNaItss5TOQ5mACHh5bzG4U1ayGf8iwTLHKGyo3oxJvs80t6KuoNLjDOI2zPkfDaxnOS6RTcUmgS+O++hw2CnayEMibytg3uWP2l1CJd4U+ubsatD0ZsAemZIpjLvfZ9Nrqkaa2YRGXiTGNfcoaWcErQwVDoXI2BUkJTQgQE8akUSJiBqKImhfPFMSNO9WPhi3mtxTuoNzxhPpVdHTbfldTb4h62KacxSLlCZP1l2ntbm1AvT/6WUYKBRJZqWvXJAjpwbj6yzP0z8ga2ijRLtPA526s8Jt6BKezi/zzCzqTf8oFfg4S4HxN71e/POspEPlE3ddA9VHud8psOaZHTgPw1cAL5LxBdoW3Ww+IGDjcfsZNViBOkIyQUJfGGWgOUwrmD2eWOh0wPUVns4bLfupDGfXcdSz0G/KqPcTv8rhbEUKB6Yrm5kazPTp0jyyQncOgLNF9QbLkfUigX6JWwi+XzovwZzU1zKsWHW6wJvTTD+N6LRxW9EkpHAqDNoDYZX2vFo5Yo9aB3pysAE7Dapvz/a9daC+KPbnoKXFiwcwfLN5Wy06lSmRNAUcrPDNI9MWbVX/sLHYfr/JrzLIw3b4aoHl1hlKcIyN+af5XeptI0+Gugr12C0EIlqNJUEICaRMmEJHKK6/GI4Q/AIBg/cfXgi4wheuvcGLUnB+vGld3XL64D9LUwL/ADpc306LdApLfdY/c0n/RPD5j/bs1IIWC7fJ+bjYhwXzuvcNyMT/Y6P3ixuP8M35aFJE0+J5yvSOMdKr68boEOYqkydpKIVC5lraVsim7Bc6/jxl8AhqynEi1KelpDWqDHKLiRbn6Ils/Yi4ATycpGuCs0qqTAskeLuMFhG6IWwlHMoko+nGJhdEu9hvmGGzzyQ1LSoYHkpd/tVMtX6LsVPIzJk/zWT7Z6XoIkb3AH01GK/miys7Dl5RerybRsTmW8X6beqUSHKiNXuIrLGQ4Y32E6TstYzA393paHw3bG/YCNjTnS2QSvw//DLDwQRgwLlivuatiyPeObzVFlLFBLL+JwFv5p4KGhMUfv+65GDice53n0QZhZVsN0BKFk+gQ9hA+h7SKtilY7O/BGncEV1mfmLdLpX/hYmFv17KOHdreEm1lx/QAfqP2KPmNfNEZungYkBHBVNB22d3HEYbBKrdKdYFuaj1Pyx9A99t/O3ryusqWAadU+WPyd5ZN4J+nWin5E8os3+pXxDmx4kJORkgjnOsZG4a73MErhkHh2zkR2H3/bH7UJ+Ys+faVT8wV8iPSp6kW8XLtTSPcBzaIHDHl2ygCofPVj9SkPa4/Aonp+PLWveD3XXSGxk2eoujvf/Ei/tnZsa2LbkBzDavuAxEYlF3ZdSowWXjLfeHO2D4KACzlOsPLOtaP0PGu300Sk36iBQCjMuZhLL7N9xchoZDmSxlJhoKOQlgPoaBBJiqOaZkYWcxf5LRuTy4+PeRtvsALHPSCXYFyRPWJKx8k/0d/ZUho7V6rm/cV1CpO7liDb0S4Bhm3p+YiO+7HcdJUyPVVvqMZEW/kKhkao7jH2+GQeGJcA0Tgrl/rEw+Mv0EtP8DJJTWxJGHBHqt42MKF2qbiE6JH4uqoPZme88KbrJaoDhUu33J7HTcph/un3Goxld5eYcsv2jZrFxCAZQwTuLKioj0Eo6lSMY0Zv/VsxN5/wXsOD+S+rEbpLWfLGNq61efRu3HEiBa9bkmY1ACnL1xwAXvDBDVCVc1ssjAkfUDIcGv82LpIVcxlxYOZCSd9D+jKAH16KSO2DdCm/ImVJchxfygq9D2S47oG0Hvo7oCw7JsjmWNkLq/w+l85mISj+y49P9+Qh755fpcRceZg042QSszqGm0G46nJ6SJByAfhVssBeEGmgk+RnrZNB1dtN5WF8yBw+Goi91fVwy67Vl+dVOvtYvk+EUO1eHth6TD3kZhchayVhzD8+vkBTZfjL83TCUleT81uP8j+kZWF6xzbNMGQm2yJ/sCIAJIshr5wZlq+8Jvpff4S+yWNCOuTyJvZeHDwgc9ang1LZPhdGFnnKVfFxK6wWCAM4Zf/YE8zJWMhXaXvUdSarq4irHo8W6UQkG1eR4tX0pjPwFCaym5GkqdZy/lZSJCD3s0+HKbQYAphCQU6GD0pOOSxhlLgdfw9xNcGuTiBoWn6tW1ZSG1XEWhysenOEYqW/0+XYWzDBj7DVT8ZUwzfcy6UX5C/6ay7XVRxmFmj6cAiPx+hrENvDBR8nuwzctpeVZAnQ8EoXRTaMGWE24k9U9acPczU6KD07HhuBojb4GcshWeG+ZOdLal3c82dwhABNBzX2FZOtBnie/rdiDgX2ToFQtB+kTdjyOD5SIEfOgcDO7TFO5Zqqv5V4ZcTqqupa+zcbu2QcPZQY06+wJj3/6UnlVdAc6JYAWmp6mIfcT0Djw2fr+28IGO/Lv4YAV/ZODEoEitXqanxKYG4G4kz2gMhWngWxGmO2Uh+fBxd1PJjxcG3/h2mNtLanwawOrsmEliOX4khhe6BjUQ71yFXThBknn0nIlgANl9yQd62cAw7jqI0SHgfSFwYzabWqBdF5ymT0HxTO6y93L0hFeV6FbyqWgWFq/lT/BvZiL7/STCxif1Z/AukBaacLfTA/d5r2ikqhJNqsPkwJKIHg+9Zc+/qKyYH0n80DX/+ULv7+ktG4bFaWPnCDgnXZMkW2PPujBC8PnA+MviMnq1VvTaNs6b3hWh916ExC4VxpFTqRWde/0hoFYWmqyVu8oubdIgIcxZIkNv9EfWYu8sGmQyQRUGjac55lwG0oCRwg0fD9M2EB78dejbvAx79wHz5A7uyD+HcYZw+lcC96t77a+wyvLplr7NMQNUDfQCjvMQfnK0jzX9CROGoF6HzJHE/E5AeyrN3XCTphzy6b6iC/pxMJ3xaXRVatBJzeu7+UuW18FQEg4PO/TMHbQgQFJVv7xGVHegn3EWx7cbz9myffZXD1eXdltWBVvOsUV26IDG64DOzw+CbM/4dyc+RBsUuFpuIlD3MKC/JWUKUPvTeLzOJ/Z74xXf7iD0pl48azh779ewp13vl/GVLpGA3PLkOCwKVP3pfJZrjPcdwksmUdFk0lV0XLq5XHdm5GnFdX5xPcTw2cBEm6hFAq1uXiMsUm/nVfMzhDteouZYgcZ8U8ii/ONgg/ZxNlAAlaKLHoh77zbr6ZmiOy1wUc5qnPBeRg4Uoljpx8OwrUqzr4IeF1mAnRluDY/QeU6OAIMz6iH7guqbF47SHukW8AsyijQ7+mGOY8rkZcGWBlS0UESs+35Sgt5G208qgw79QiZ4D/EK9lUuKnwLWD5aBfXAegZGjjOHsRAyuQ9GD8RI/wDUCvrDjLxXH+h/axvYXa/ryJhXEIxczkid86Y50b7r+m1EIr87QC4SIOo0lgTunk31sZSQWQRofvXdw+tUUeahhwZ/tHyTFF+EbAkIk0qhdIP/lIuJAOjFtQWmOI11t/BuiTkrdplYwnk4m0WqHIrSHOukgpCYC9UpQXX8B/INBMPwgFwxBQvgm+dvXWmMF0E3j0EkF7Zfk30absTVOT2npt+hGrgdCTbWzdTgOkBA3IFjgRRQT4TDqk5jKJ6Wi5jx3Q/G4qmihIHYgkMURJH5uPZuS5mgWiOKroam/5fxmzPfsatCvdEqxxfkmKI9tL4ySF5r80SRjZKZx8SI14nrN+yu5DNmb2LCjCQnqbpPoecgg3gyPWrfpX7uEprz2XQPJ18Zuhkoufty5XPwlvSOwhK65UWcdCLOvzjZQNeAQ+U+VNV77CCvRYMOUAlOaex3Ux8sHqKhF6QByL9frlg71u6YYW/nkAVAiKmvTOHxsX6iRGOaz8jEvcygm040hj1EDrTwHeeOeDUlpuNmKfflMMoYjQWiR144N6Ltw7JpT2e4u7yLfnTyDxsIp4nTOfrWYsrFxKjx176xydZcAK2c1AV5ecBoldfmgWhgvv9XdvvOb2Jhdv0RXcKGc6oUG70Z41Mf3w8t8HD+2hR5JjVnKgEpWoP7Ov+34rnBxWWQi1Z0KPU5oaAVjymheE88LCfVBYjxikktC6JP3Kxn+vjErFWt4iXHAFMLme0R9dre5UiySDANYqkf+0dQ98MUpB3vWnH4ByvyJKZq845FQIZRnWtekRS6yMW0xrsYHTadROf7EzJ528x0EIIHC4R2ORIVzeh3OnXGNdHbIXXwI36t92yhte2xWrEy1Mti7wFxC554xg2x1w3ZCcHib0Ry4RsW2r5Ew/amKJ+PeOM6wpvFK2NrqFFo/e3Z0xAiMgEK8nlFlldBsUd74w07rAi3IgV2Pecj1AqmeW2NIWqxkbgyZLatMtI46I9xJEFMgk5nQRIPK9USw81N/XfAfotKM1K8lyjIWI0u/2s6ygd+rUVpepTiHLRhH7/h3bnwmNf+p5/Igq/tWJSjBAqfdkdurt27ULVANBpDATlywXfYUtpPF2iE9VWFhcuOlHI/QsM59GB1XnFQjHTeeqmG/9JI57uWiRHyU8bpZIVUEbt0+MW5ISM7WjRjD+28EEJVpO4bwJGWLRXShMLIgznUqF0EoxbRqSp5yLmatS+FCLf7Ypf21Tu4Al/EWZ6uRrdhO8IZ1aW6PloQUnPscokQU1NgTRk8ZGSI9h72q9DhtKgR+wvDs1Z7oS5WejxsDg6mi6LBvL6WckSj+o/TpK2BBomG+ecI1nz/stQ8UMM0I6TlyumH7KrxCmoh/QI2nZ98hwac4tOO/iS6NQX17IBa714vKWw8Kk11l60C/+awV/e/EUa8+3p+dfs4iz0iocAcCd0KD3rRsACQMf3W2OFl5LerwTjychZBDsRN+JP1SMIfrLsEEyMCLREzPFmT+PnvlsNfm/P2eXfixzCqVigHB1YnFRQtHV/xmAat3UkujKAKY5dzFZb1IlpWAaTC7UtAyXQh0pnJTZwZSRhKLYWqvQu0TtibqjimmnEMnEKOjXMA4xX6hMBOIY1btY/i28DZPX1t2jaIh9VVoBr3iN6Hdkfv3QMGuacMwt9MIUoVHl6ET+cjBpHh39AqZjxkPFG+MI779tboVpj0bgcA0kyAyT3/sb6u5KzLUnKfVwpFh0P5jBuQXAJZe9f2nEFXM61fiuLvVzYbIQ52EBvRNvAfRkA7LYAQkoo+fVSJPFihznB1WJQW19Xk/U13U+VMcEaMeCgDZj6croEoHgGdnZY7lKOjDevtXzecFLz/5s5d1v4Dv+zR7oVCVLbz7fOGP9/f9ROadB1PwYwWEIsG3rR6aaIDSVCfOkktAGyUMVOAvsfpKGMxmfQcJqbAf3NgWWXZdtzbB3wEG04J+3e3rIeo6GW77t2Kx6AQipvp0DK8iKlqB1Jp8ws+7HQZv8YrH8J3SBL2eNK1QjCIWjkN4+LB8uwBfimAj1P83MLuHNRzDlPGqXXBgpe0USZiR3R59HHhBMBdkwP35b2k9MQVa/uV42SDtCkHc+uwB7gbmmWo6iocWXSbolb75XPJX0gvoeeCVu1/oLk+eF9qvld0ABpwHi2tTGsOM0Txr6hL3xwCSU+rr+SgRipsm8vuD7lN7EGxgtGD10CinJWhbcCSV8uHN3bbh5z+QMqamvTl4Vdbp7EqQcKBY1IFw4PFUdO3Q67o27nNr5eNCm8M7mSa6+dZgcIJlCEwY3P8VJ9Ahb7IQ9Fy2+zw4QnCsG10V9KfJJP4mbq4tp1RqB4dqqhK+S8IDiiStSd4rqdEn8GRgfay7GZUGBCvU5CdgfI3YXKG7tlurCCpl2nf1Wsgh3MQHiNbTXptDj0q6m0siezOrMWKlSe1vRNvYBOD0/mmnORxCXb6BKNg0LMf/IrsnBDW76//Ej9UMj2lVx6L4aT2l4xsLuYdjgD6P0goTIGQOjjF3XKDi02gYF14o7Lx52bs7g1zM40dgjGigZm9ge3gaN1+utKuCI8/ikt1yPoR1slRI6vHcx4eUbN9z1oM/Z5c5d9Sgt2RDwfbBbegnTxBjkF98WNHLRL32XUkZOR0RsBsztamSGiXcya+winO2gJQUyBWWZdvnIQEUQgDEgmqgb6U0nd6TCE+xMYG2Crf+GTj8WDqItUAprEgYtODxJFpkUtkMw4730hZLAVmvZUoBCMKklpzEljG0TlVsabIWKH68/0lols+SvbfJox+9BRXX3zLt9GQ6wVY2pg6H+Kc9/7jfHDPeu5yRpxCGv1w8FKbzrXKuC0put0fv3aL7bAjetwwcJ2+faembMHaLAHufuiEc85a9WGcwTO9qvw08LRTmZXFHXK1Fs8yzJDaXTkRlrtI6fKKby/5UcX9o2JWrt7TO5kCSFSBRtAJJ9JkjhARLLx1B6Eqdj+53CeAzmx4BOzLIHu31kHderYj/lMbFLnovGtaulJNfrqptYao1gqzF6Eaz+nLstpZRjNHdrXsr7+EFy3qhVck917DB+FHXAYKw2KkQyaVX2MMyLwMKQUKZecfVBg8I2LsFetn6cp6SB2swbdX7X+iNLd8gyN5MOIvu5YBssTQAhFu+/uff5VedqGTmsDQVWAVP/5sxqy9GZCJLLoOdhKCvg5KwRQiAqofzvjWEvu2j4IcwUVUXVd5iye3tBC0Dc12oH8uRdAu7ZavouQQS6oHaJd1xZdUYvXAd1cKLE9lxtQSYPEsI4iPx4Vr8tpgMN3dq9cfaiVl2WPWL+FX1hLY+iqJ9jvPPVB3PEvAbZZkrRhJfSMmEfzbdqVsfXV/nkNEZQjKPd6UyJ2br7fKs4mnq0sxgl14qdxuauCAHIaLp4OpoViVz/63VqyZNS7kOxhOdM3YMGzCxLrV9O7fljPJ8DT7j0+nLP2z14Zicpxhu1z0W7+e1e371rfEfp/FnLVF8kDamq0Bjph3/xqab41goqhOK1vIlhBtjm8xiirIfOsHee0f3x4jeeXF6TaaUYrMF13+8F+eLVwRN+DfpoLrsBVDu1QSV2fzveJr668Xkv1UH3g7IE1lRs3MPWNgGROfgQUjf0u67HF+KIzErX9D+kVNDXT5U1Dj4GLMl4VLMAfNgkVC4Z3Xd1TLhbrMXiKAbjlJwRDDNqICjkGcAmQ+HPJMEnIgAMLmj4/Oy6UFDIHJuoOOXSwvfqrB0X7xFOnSetNHv+elLu4QmdyO7McR4bf3wXSgeoll/LVVr5d1dfy/Krr07hk9xeHNCMdwdtnOSBB5PvezZNTgQj4qwxi5P5Sqiy5D2+6ON/8fT3p2+Jr1rUDWI/C5+0KJTlxCsWnkK0B78OlatRwucOFm3MWa6BpHfPhEXbiKtoXdiypydRdJi2yyo3oRXDH3zu/pp4cjS9PZIhrPuv4x96tua+O4fRWIfP7cbKAVUwKdn48Tsc8BkkPRX+tPAuQsWetNwUI7s0xrb+YoEhQLSwhwg8hLheeTgWDb1GBqHDNTFTUkhTI9TvR5EeHGqHCGU/ixW4hDjG6sELcsuB4fQMtimupXXWCREEAxVc4k49vi6c5PQ2akJDIjMdTsOhCFd31lZpMp49WW1wYZxbBU2Ur9DjdL51AuUfEgB/jwtAQyp0q13FwY2hRV89ejfHL7mibOhv/SDhvn7USb6IsvKewR2jfd4smkakWMn1canrKvUnxCy0/udivjjdWPm2WlJ+RHtCmXn3oxDh/ANtb+Jypt8rqf2oPW8SrrEcHgkRHZ0rwDrKOXVDGxYtCc1+P/CQzFOOSr8DCu08sQXCIaFNG5bz2va5hs1LwOFyw8wRoc/fAehT/C+JqppUIINcFNXonp+PP51UW4sPIsPw3SdDeXFfqQNp4zJ/WIRrQTekSqcrTeolwgwTDJjv2W1xOuT2aTCNT+aaDypa7p9CeXyFJP0oKe1+QfrGMUGf60lK+yJeQHqxynB59DvyDVVRg7UAp+yFB78l7afBQlE57irNIxikB5EOTDgEId3br9gFkUyQzb2zRSEvhM7td91FKR5VdLaNXi+uO11V+d0UmqssjLfXIj1QiNLhZS5aygGNKJwiklceKKlcqoIg+4OTkaf5/eh4+elpaZE2wpeOtD/yYedR+C+t4X9pHTGeGj87N1Cub5KdVFQmmWfQkzdvbBTurPGm1F1tH44IbFkHbyOrGd6XtyaC6ivxs39Ff8dyq8gznLsSzIe8a2hRQ4CuqEfd+pcfOHga4tl6ZavAreZeVtg/crOyoc55qPp8sIuDnMelGaVL1AMRvfo6cERcS+HtL3zywFtLnF+Vm/T1uv3s/kXqAiH9nqS+o6NVJ+Eo/al5PJ6G0V/vTO4OgMFzF43Ndy9SZ8w8ja0i7tn1XtIPkG0eqbievZP/jjMfRq8cnc0FYIgxvkHpwJGsrBLOgUdMF2PfspyThSpsJj0ZCqE+tu+mW/3UYJT/5th9B17D9njI4OjnqTCaokDgMz+eP49Kz3bUxvdqH9gnC9v30f/r2YSd/Rqu6jMTMD1Aw4SBzKbVSgBMm1/DTDVAA0E82m93sza3r2N3ptfVZk0jo70qoOfhpJ3235caEFW1V6AZuDp9p2MCV2rHVwmcKVX4D7w+d7eSED3adOi/9Wlx7bBelbTFvyx+bhzy2G1WbEHhk6cLpxyG0G6ZYhTzly3ma4n5l0an2SzcB0AUuRK74Xy5wN0tYSW/48O2ZRm9m8xJ/z8J7prfonADDwBzRNrSP3engLQSPFnw/BLZCBAlkQn7a33C470jiDxX34puiT9E1lU59RMKVnceD683BMBKiyePDgHkXTdmKy3ekDg8nSRw3Rtgjo9RXtPUDJ/GLsKo5KvAQbMf/lJaAbFJuCaJuTdMOJ6oZ2vjEgVzEbaZHawz1tS05AYBZYn6p4pX3qSTdneALKL6wPMOPZt93avw4pg8/JW7SJImJs2PaTbDBWxGzhG3q9GRzreZP3sLuqRozz6g43ps+Xw8y1YfL12j3q/b2xUaBJaGHx6mzmHWGMEMmm7VqM17JOuosJt/jMLPnlchM6jgawg7l46NBEsQOx2QpxXiQfw6Nfvvc4sFMNHQfmworf7O7HoXYV5Ub7gu9QDTHZcdnot/5X7wecObYPA5RU4NwhXizaaco65Bv/EKsd7JkWx3/tKNvSCtS1VTHKKJQFsCtMZhCYhKAvPNjIX/6o7Gt4HEFQB84F0U/nOpcbexjI3YpU3M4R7cssSJL8cmK2GOBgue32udYY48rsGoPtpwUAOXihsreNycMU0L9nP0+MvNcoZcj05pFRtkO7pzC/sJGNgCY57GEgD27rRV4ZONCqVjtrS2FJU3G8NH++U0PVBvFJ3BkpFjKVsp2wlGPoWORuNBSqArmHNMRQDO1vyoKPUmyjCs63Jxbvo8q+gLNz852tJOP8ekPjMwPNw+cVE3Me0Yg09P7tcjbgQzpsOYNaobOQXXoWSp1RnMfeUVi7N3RDpCLYsJq5wvbtPRji072qeJyUIghZvKLozHYq4AZ7Rw8xak1ARYysn09hsi6e8Q39T+T0qL8lnP65eN+BUvvZQdD3u8ip1oazicyNZBEqn/VQlY6R9IF2L39pDR2QRpgBnH0Qv71wARH7hqJ8AG2B0NaB9/ky3f9vAqCiFOO9qS++RL/ic9k0EcYcmDP2jWJ8SWvd7Vc64FgAeNM07TWl/0LWkq+inNuK9bwSn8qFjYP0a2EFYcziRgI5rCfd4Tjin1VQdx8QsdNM3OZCHIhiG3m+FzMvsicbv2zPlsbtq9XDfFpNq2QDpJvY6AqtHcJLBQOXagqqBTqskowKiDY9HZNbG1vLz82Z5NzpMX7xIH0k3M4ceBDAe56lXXVpXnqZpqNWNzuQ4G03kgHF1dG3FMWhem3JhgY4I62pD/Kwyi9bZP54EZCXWJD/B14WOOOqvF3+wOLyzLd8ZqlzUOPitKTmkjOXaclvZWcJqGh87ndPJY/4iKZwfBG1SyFmbR7Vs2q/7PaBJeUmBw0e3Y6bZ8zf3ITzzGkAMrCD2y5zOnFz95LB+w3l/urpf+hLrm3n9Ou5N/lnjwJND6vNROoMiJSmpiuzQLaKb1RzEanz6dcp64z3ot0wqfIbvUfIuJUnE3ziqVAUcSomnPqTkIcC9PLeX2hGWmQDD0SekLl14XpNr2SxrT2MG+2kjAXYdyJ9tMyKMDgMrLEIOBw1WPnIPgOe3m5SAaRLE4y9akBGA3HYSd3/SFH0e8PcxIB0aryj1KquYRFBexLgBw594WGqiS/qtBouw3LQ9l7/bOWfLjei/AG7Ydv8WFhJ26ab4pd/13AecCrwQv/M/UEEy1HCWnqXNbzz1EQaGx3hWv7pNUaveCvwRcThEXsfPey17bMfJIZU9HJ4lUofZkkxw4Y/3K1pzvVJ6y1hioKiPRo1W0OS8mapJqgxcYM6a11BzLmG0Wzuh0NKI0mxmNQhZDe+SGmivApr63hrUXt0Q38EE=
Variant 4
DifficultyLevel
706
Question
A teacher is choosing two students from a group of 3 to compete in the javelin event at the zone athletics carnival.
There are a total of 3 different combinations that are possible.
The formula below gives the total number of combinations C if the teacher is choosing from S students.
C=0.5S(S−1)
What is the value of S if the total possible combinations C is 78?
Worked Solution
Strategy 1
By trial and error:
If S=9, C=0.5×9×8=36
If S=11, C=0.5×11×10=55
If S=13, C=0.5×13×12=78
✓
Strategy 2 (advanced)
C=0.5S(S − 1)
78=0.5S2 − 0.5S
S2 − S − 156=0
(S − 13)(S+12)=0
∴ S = 13 , S>0
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A teacher is choosing two students from a group of 3 to compete in the javelin event at the zone athletics carnival.
There are a total of 3 different combinations that are possible.
The formula below gives the total number of combinations $C$ if the teacher is choosing from $S$ students.
>> $C=0.5S (S − 1)$
What is the value of $S$ if the total possible combinations $C$ is 78?
|
workedSolution | Strategy 1
By trial and error:
If $\ S=9,\ C=0.5×9×8=36$
If $\ S=11,\ C=0.5×11×10=55$
If $\ S=13,\ C=0.5×13×12=78$
$\checkmark$
Strategy 2 (advanced)
$C=0.5S(S\ −\ 1)$
$78=0.5S^{2}\ −\ 0.5S$
$S^{2}\ −\ S\ −\ 156=0$
$(S\ −\ 13)(S+12)=0$
$\therefore \ S$ = {{{correctAnswer0}}} , $\ S>0$ |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 13 | |
U2FsdGVkX19tXVlPDjrkj0hHzYDV+5F/Jq2uJVG3BvAFLscfo5pN73I3pQxQtNt+fBfZ+MBE55geaKBFq3e5s7OpcKtLkbsVgOnhxtxjAx1GE3xqrDlZBPUM7b3M3irQwDB0lbrf14CQkmMbaywNvr/DyFt/eqnppa9wo1SWljSLgalZ/N8VgRuF+IEGkh2OuBprhvtNKAfdIOMfG7d1Vuv8xCCmIFW0ipm3TlUHhN4sLu07mxf04o9f2sqR1USuq19BRf3RNZFk0RAbM8B+yT4JX4XRQKUwiD/XfdQucRAT9N9lX6UzKVk0tUD2Rx894Fg/VV19GgLcdN28TDogGYDSXm2FkTRm7NA8rTl9Q/B6x6uC6Kw6KUwNt9CjxNnIVgcw64mVPOPk/tNy0sNZbUlrbrsYbWmu+7KRmg9yoe9QDdTRTAe6Q4pVMsD24cD6WjkZqMuufnW5sS0SOnabl42P+NgbmRdVGghOo7ri4uiblhYT9qilQ70IZkuqqI+JEIwxO+ZvHTWNXxJT1T9H07wafwOE2KvHW0BXS3yBLco8qfa+2eZc7A6+0dC+Gr01ymg75xcaFt5Qnh1/4Yf3aj5qAsxSJYHW0JEltHL3o+brFLnuuVA0kNB/cbbxlt1A9zaK+3/IwKtUC3vAIGeLr3RTYFjF7op+mQ2wcwLLJ5zW9aisBYS6OgMV/JrV4MZl/MK9YmQcJ/x4Rp7A4z8faoSaUMBZNnzOhiarWB9VTlMqWgLV2Ek9eKsBzKqdA88torl6/h0be3Vf9sQp9hKA818XinJlZAp62V5zU7qbnkAczVrU8exFjAnzdL2Nojnk7JlRmIOEDqO9IazR2apMMucsUQHS2VbdnFCOxC53Mx31+PkKHVGQ/xz/fyni5hdH2qqIoc8KWPJMjqm8b0Pbih+lMlIUuMF6gtAsIbVLVOo8LnNWj8YR++1I5zyaxHcVe+mCfzfimYgS8mpt/UjK7JZmKFNRrrfz8Ix8I2/ichxDMdJsWY+ael/KsjM4TFEMhLskW0GeB8kvANxFPHfgdlY/fBLRkdmypGM5611Rw5vR4gyhlb0OBd4quABwefvp0UbPxMQ1BuCHUbTmcPHoIMkbeM8K9iMFfxDmtkzFnoCrVsWIkwU99MK6k103BNxjr+YBY/uqY33Gv8pbfU/LUOTlRQPI1Dv0j4ddexqKW+4d39XrlowPEQ0GpNNlTCMuelippEx8hkLkxp4SNgCC4aCedzba6FAr+xey6oWKGgCWPiO9ILWJwj1oL6Wb+RA/yXkQZM76IdCH8fSwBCzNk8+hLxfM3Gk8QcmLQGgetrST1oS48kK7q+fav43VVAuqq7dB76/RkttqCI/E1jxFZddCDwJ/SzvZJegWHMCIUWcrHKixuP4/FR5g/ufC2uq9nNHPCGCmcWdT7auw+PakBhug5tku508lvTUYJLqZJqA/5CWNrAL/sWZmGTVgE7GCtfxjy6HF46St/TMbEUY9haMFhj+n8t3VJTH5dri4qUYdBT0rd/QSVYcDrE/nHTMuCZnH2Bjag0/O4Q0CeZ6INnztfip/iHYEQfTSI4lwNEN1QkRWOiRh/rWXRdbbVl42DxuqrxPSdelPmNMJ2sPa1ZLbx4Se0IOQPV+8Qs8ZKRCE9ekah1FZhe5CbyC1uqhf5jhqwX/LNJZdS7IEnWgffn+73dUwt2nJkMcucpQvIslWKfpDG+Zlc7qa03LIqv6k23hXGAxk1q7LYOnmc/yoEWmmRzZKvEsH2cZluD2bmWz4k8rrDkoK1b4YYrxQTIN/L1CbgyHJPYgdqlSlz2A5kRlh3rzhgc2HG3wcPNfdrD9G+Y7IOcRJVn8trcgEVStWPht4nPSSCGKmEXGMfxJo44gWUTYYSBM+4/jPjomWRCGSR//OyG4ClfsCoEanqmFoiF4SUt7ogUKzu1nLkcg9NuSaPm1OXHUbw3wkh0Xr7bnr/8Id0ZGl3UxU87Kp6IK1TBH4u7CfN8r4JUV1Hldxu/V8k+yxZARS7cQ4uSkUa1ZyZ6A0LdHkPv8A1Q6gIYkXLMTNOs9/L+tSpguJ9t/DqmKI0IcDR0l+AtVeBFSX7D3xtBo5Kt5td8wOthgBPyVTekig6ZQT/A1AMcB+DK8YBvPeQHA1FHwHjUrwe4/wJ3w9k8cV7qUPcYhxYi4UsO8m4X1/MkjySakBWub6ne2qj7R5kapUHhNNwrdQyIuZy20VahSKPVWWFxmgZ0E2bfs/frDqA1psVQe7zjI9+UNc+CJWSjWJhl7o+vaPdPAM/ZWAauzoejFP2e3PBjLyaa7pr8kSCxlJjhwcVOGWEn2GJ4sHrwPpYTi5j1HhM3Xxik90Pwp6F+73fP46YBmZcGz3/88l40TOk8+usk5eiXzoNRuuAWeskVJq7Rp9tXz95kjRWc3j25D5DjZhDLTd12wI7IU76Cc4QDGKkydAetPQGgfprtJQjXwTjTjPtE2dNbbrZnlSpxWjn37+hD/oP6f+vAuSIjZHxl+ZtGZkxeydF38XWuf9oiTlSYDSTAf1w3bok63HUO9AvBWbsmrshw8iAICAfwnNRfZA5/AB5poYr9neSzDmzPYscuSwPsvFidEEwqwgXBfImOVQ+fWck5HVgMKWqtq66lmX2NgEn8jDeyc6vmS1gY52g5LpJI+55pErt7GcTJ+UOxXGpdm5IuwTe+FgRg8Bk/+x6Xm1Wa7Sa+yW2mVtTuR+wciBheaAvgCMpIhOBS4ubQaOAPudRJIlGQxzheab5vruP4Z49SeXc4E1DR4wHRhtG3ZzQhpooWFftTjLT8Av0wCTzpy/wCUbbs8r0HDMRkaMVvMtpcx3mb++70J21U3kq5hnf9iwElyX1S1UDrYomTY6RJx/kBBu8+R+bTpwjFTx0hbgwLiSj74+KQ3LeXlwILcrwpPhw0wFyn20bVkNsZPTuEPNruyMp3ePWDyHVHWfeFZyRn30CidNd43ZPZS0rqRMiNovfoB9w/Eka2slkYp61Pigce7rscT4dmcfLuNje5BPk6uSKAOh5fpo9kVcLI4Q/rsWk9/BP0cFo+XKx/ihSCpeZNmtf70tK1dGanEDU4m8yOhKGjSH9XESDmVdeIT7NZhYpwF57xb1APDarrmWbit/7aRaZtnuMtccW2PitReeg8qkLiaE9ryOd2akaPVEZVzILlzu+MsO68O6yf/kM/vR+/EPRtB7w6q+J2GYCT+bw2oBfHVShYFAIRX8q8Jc9UPPoDHyhLN4C0p8ofnqZRaytvOtHkigLsmOwd/r7L0H+GeTGq9w0Yml9nkSTXkKlJO4tF4Of/pIMnGAIMI5c1/cClexvn2SUb3qIcV27cf+XnxwrL0rjdTeSVrj0JEM0Kzp3LaEkTwVQt0dYNCiiSXinvBQbEH4P39bBeYLlfZ2uUUV2xfKVMHfX+d+qJnyPWS0wMHO1UPVI/r3kbqk2fJZJUpkBnUhpG+V+v0IBw3eQ3EBEi1f+Txxbq0mnXxUPYoIHENKkn1t0Yk2H4IbvSfB4pHfwkoOGaopGbXEVKL9+BK2spJuv8U3+bvRMfs9T7Bzl/7xC8GLaQEQcZeVhXZiWYQSvjYfK+zictXklYvy7+OJSLng5G7IcLAZk/2ZV2Nb6jF6fCJLwVHE4ZgLeMBpKDKf0PvqUf9IlDLdoEx4jt1+xe8JPwSuM+UU+N1h2W40J/+N1pbU+WPhiXKky3WpVEIDfU/SKu9AEGWEMKgZs369M5qIpYFeQvwKdKtZ3JQiK/jTiQsPV+CWpWp9tNmCujZjMgjWbpypQymQgInMA6BNN1EtVB/gGOkhti7v+4Iw+toi6ty+qEv6jdcocn73Oy6yRkuPjK50on5hp7dhXw01JXlm42KjwPfmd2m2aAhcM23fPP9n5m+p9gELvbZA3456a3yqutcFm5jF8T9asBBxSBiuW8h9abDNf0mcjHkhZ6OsXFSzZGJu2i+tOO+a9mgLyB9bq7GUbSbEgZtiWhPJhldh7Ul7TkKo1HBb8Ybn8p5oWzCdJbw1MmUo17cCC/mgLcwOELqynwbvG2YCtIw+aDRrHXxnVF9NpnJepR4XJojzJF0Q7xblAxbXOEj1zcflCS7+ueXGU6iHRfCZA1XullS0wASWGC0tnVYKBfVHcQj9trK9zFu3z35Q2LxgtcP6gy9HMrVxQK7EIWE0ciE+mdoHO0rInawopS4d28RFoX6dxhG/npiV2jj8wB1ERCwM/LZy2FZDvqeP4VWNO/PPIuL4eVGzlQ9m5EC5sfq5uk/jV/ueznGD/O1RL8TdacomqwYgFvaNYLaB81XO2AzXf+iEfiilHOrGRakfMK178Lf5vbi4lDxczRDySnfQSQGi1/HqnfF2PG97fYUHkGtkbuXyC0wWduiPGmkQAfi/qHx39erJIgTMDCPxQywQGFh50EYgWErYkVyDNH3q6/STr+keVxhaxSFSAx1BfbdjDbnMOr4CygIx8Gs7OJxtT/CKPhNUa4lRsz37qK2/JaB/jFWoNXbJDYmimjkdBKLMXIrGrs7X7DEkMgWt8Y+xVwnW9nFwKPl2yDkJGgpgTScRRqqdZTQz8abmf3uS4YW3ZdrgOsk8Leqiggxl6il+MFFA60sN3aj9njj+0or3LtFHpd2HmdTk1dcmYgCdB63P29gZIzKsDLOZeUWcGSfJ3wmVGv/5t/nrBkmNAcmcCamOmWGEo0qA7TV1520QSY4oc1J/Cm7s9QH+0yuoWkhCiBgcvEGlAGNZG3+QEmgeZ+q9uwUGhQYY0WCcS4ZMahEjYar8iuJ1KIERJ4j0a/CUmeMESe2fRHsAOl18ikLqdj4rgViUj0Z7zISEqVSWRd6J+yOl2YhndQ8WaFtVjzh141jmQGYspX8p9j9UbqnmChfB2sAvkAtwMnF3E6dO1+EyCNJpGtFovY+5Y+yYB3lzQEgemoot4QcNNhriN41BZEF1uh3Y4jgtM7gnfHflTacK9luqlEOrLQg3dJx4U3VczU4Fv/OtBiSOOfreNBahZRciGxM8HkTKafVRY9TJcq94ymJMR+R3Rk08qs+ShPnQJqcnmpkYiSY0SNdi6zFUyKrnFe07weBV85/HzKDxCuOpBL8R3magGhOFxwODMDx7qjt2myWo9Ps6W7EIP4RKAaoLNF5z7ZZgAbmQ93vTzPEb8NhSG57axjp8yqm7Zz9HdE05BscL4mwMJP/kq6PVEuhD6/OOeXtuedEm/ctznEidhTPcPUBnYBfvuNERQXQPOBP5Oqxh8mSSEFDr+qELIk3xYIRA2346JGraBUiNhgzrkJdOierFeIsAcGRksIBG6grJPhCJkrGmThIU1RqBAGL6hX9M61FsDugpCemvYPnJ5HxAFf0cs41nVjTMWRTQakFqClXCeT+Xq4LejRlFfqqJRoEqNJHlDPZRh6r3M30N/CIXWIwVhvwJdmHyGM6BcC/Jo3DmawIs3VH+YnPkyqAPM8bHU1KnMFFy41PynkwPuoYm2XEZYtL6nCJxxHvv+vsqLdxrMQf9M9YrSWKzs58w6WFttermYL27tib/Ti/8jtBM2bwO9azplCx/jeed4CF0jkIJovLa/tYgJH2+zBGOyRQHlGqIs0HvlrXTUlkP+uTHot+wvJgzYzUevfWtF0cPWQqscO3UQ5S2ZNRdmFeak0NNOZGUqenJvRkysoZ4NDcuSB6WycOZFzQwve+NeGPM4HgRoRBpr/VgMCuw7q6/BZrKINcWi8zk0cZNezbx4SAf+KsOh3wNpvFFoi5eHgVRZEHZEzuf/wBADG/wgBCsh6wsQBLmjtO5ywX8iAGbWhdjop+sRK/iLYiCCD+n7mh33d9ve0U2nRsgC7V5h08UclI28kWZmdDaUX5jP4W8u7BAyxBnfgtajtkDSx7OX6DbynjlCKeNSRyJorACToSmPxcybwtMzOVOaXl38JDQKI4GnzjIKcetCCDoNtv0eCJebpMiSiqZ9mg97oZqvv6DR+sgXmXmYLxTPuGq3RtfBXpObC1DfZ2+oozze/oL6TJFN1yUVMXG93pdgMzycqg83/BBXEQEp/iY1//z9ogNkU6/AE/0ND8C0zrnYeaCH4YlggJ6I3BSKhW6IpyOecnRWvVaxlfcqJNhwwjVDl0y9crQ0sjE58fX8TTC0CV+8gyF1QFxTCBbHo7TN9j640/oRp+urnms3bXLqqga8GItYKfIfHBIcYkyGDk//LPpBAoL1NZVYoAN9iNUDJuAy/SBNnUWYLmKdyawxjtyOr51R8t+fDxnTfAeQg0A+zr8mgv2XWN+YQ+863+Y6Ex01aXdUg3oivsfM876K/p4eRBIAfTNWSAcd+KtR4um7e+HlKbqS67VaWQotBofPA8vGtOBL5qh9d3sdBfHgW9K2l1yBrUbdZN+fzgY9alpfm4+Ymb0U2BRADS9i8eLmrU1ltAcS1CUr3+f+q5lo92PVnqYbvwkeftBDugb4T6EbEZVHzNe8jpLbqjPK8tEMJ8zuzkQPhu8ulMEEkL7LGxTYngzeHFMX08woD2jmkX8iEPDlA4JNAab8SfU7THatTCr0bU6RVRe8EfEWj/0LgBDnm7UzPRt4OU5eKX+c6Tk9j+y/OSqSquJ8/SjDyc19DFkGZ/vEfu4nCUarmOhJtRVRrNas0hweZH+Ffu4EbsZDGIuz9W6PRgiXZEOCKa2v2YmNExihlQQtePrSXiajLaCrAd9si1jk+OXTMBaIdf6PUDr4AJfjCOedTZTjJXk/1R6xSI/OyFMDIMtz/E0X+Wj++6E2K8pkiXSZLg99GwGq0xZoBA14p3HR+fOAgT67wiE5fHZ62PRnZbr3wYKmv7E10wtW4Evrss40vGNWSwGOGsp3Ajm745vZJQZumjjDQAAM6u+uKo/zEC++dj/FK3ZXDXRbOxMwT1FE6FNSVaTYHmpGHxa9FkcwRfTS6pm1VSZ2YYzCEJ5+B+yLC+2z7FAY+kjaOfWd9iPF1jGpRX9n00N5XPqFCCvcAmDpIoSbcJEDNY5367NephyLdqmdwqFOX06tU35JtO2yUyrEnExN8XglJfzBsX0ghkK3uNqzb1P1G0QH3W//L4dphLwQSnZGKRcgY3d4AV03Zx1POh0Tux14hqjJ8z/X9QS1Mfp9lpw60tR/cBe35bHUZK9yaDD0oPLM1yziMdpZ8d8gYpnD9ZWaUahag6/cYs2oloFZYbm0WPyHRtOwBD9LXt8/+HXlIGSJvlJCl8F7p+1Tdwe79q23Zg4aFhA3i93hf550uwsR+fojg8SGelvphAsAnqoHU7hkrHXHA+u6pBI1bwnOeS/dJnGEw7ZJcVGtfsEaRPHiKQ97c/NSzUfgw4s6n6rIQT0pu3YoO7xe50HZqj2WpC7IWfTY5m1Itr37ZvB+B6KYHJn/t/O6h2k0Drfm+BMD32yvh7ybifzA8A63bY9ydogN+ELsX9PhDyRlX0D5CyNPVyJC+N/0YCxIpl0az2UMR5ETWmzAP/2d4pSflsxiEW2IUoGkDEKYPhIigFgc/TtoPw+nDUNGMgfWoVtZzpkDDPJUddWzzk5gil6k+J/4BVrLH4dI1mn/Q4AGoaVZC2Q2l1gT7w0eE/Eio8l9wxhgXsgn9wpE/da+CgwTPLFQKS8dD8go6zDc4ogr9I6kkyGCUBiFcN8PyBgn8Z60Ly48SYl6VDEZLEQrOD9hbf7BBuFQz4MWPKR2X33yJOeyNXcZ72hMrtUqHri5vCf4SkyYUDP7nhhHwKdXM/2b1NWFAWsU/k9TJJlYHBXY7mP1420RyoUYIGOrnXuba0DId4dMxNYHpmV7YRYEQKoTFAE10Ejm029zZgTe5qd74MRqBGDtbljfS92FsbaCOnbcroJvOzS7fyElN5eoaek8Eiujzret5e32b+08rUGnsIhX0CkHGrTdcuYZNcgB8ccCDEFS2AVYbh2/A9JrGhJ2rOSGkZ+U05l7dMDhjDyRzTOeIFzwph6gRqiTxw/w0y50rSsyN39EPmR5d+50U+8T2HtSOkfpSXPUbVLSlz144D2av/EDx2BLGcbdTqUaqZFfnSDy7tzWs72LY7rPaka7PjrucdkKG0Y9RZ9Re0c2I60RvUmDc7mQHqsoZKF8GS4yVzuDqE1ahrM9WTOHuivPNl6vb5i0cYxkixn2lTVl6283rhqvWzE2bfYOLDSlQ2tiPSpEMUvlIdpzG1+Au/7BfC5W5c2CjAXd/Dk5kn62OfBk8g0Zc/nbR6tye8xAoWbJHLgJiDCGj+6imsq9NQImMdEVsL0T05sdWqxNVkyaFy5SHptrodMT7uEztrczIDWbD9AMNARbb2pvWjmi6I/FjJylRJP988UXZHF81XTREdaudBgmJCVD6OHwkdHZq5qDl2hArB6bj7U7d6Tujliq5KHN5ldDgJL/+dfm4V3tAXnK2vs7SUFeqIByqxxbFtszG6LaYN3pib6/vyXtPMXu5tXRCb2mG1rvprlsqyAVmw3IS9SJso8leKuTT5k3xdOk8M/up/k+zBNcRCcqL9wI9zMy3F2ncHVyhKhFTEdYSJ3WqfJ36meQzi9VIpM4XKYkdvdHJP965rHUNLU1/v7qMFvm1mFS9nj1LugdFWElWZAX1L8HEr7QmTiwWK/dS0DDRh0l+mcR+z9ZaFaMAmGHQr+/yhXf+SYbV8Xexq5sxM+2/NHm66rv7aXC3he5O5PbuPG0UIGgZNQYqblJSc+FS7sTNGlMERWlLq0/1Rc7ba/anqU2Hrelgbz6SXDkq7fV6CVRh11bDBilR6D8v6AuVshVznEPGsbWg9kGof67pTArWq7BKcHC1yo1O5moT4RLUUFlSFl/TC20lRDSrfneWlVMxsuj5vfcoKEWZOwXNlFkoIjYDk36GkGOQu/LkXS6nbnpxDhXczl/beRPeS+2nWnYweq7zHuUihFEzDg9wZz6rE/nKow+GH8DxkBps/BMzQB8jAGsST3sFaZXAdWBud2U4L+X/3c6w+36bExGcYS3mxuTljFXhlh5AnKILwmjl+r8RT8yv9xdm6LhIIzQsAz4G/yo7B37M7WNeVB71Yad8nHSOgSeqpL8s1a/k/DjOH8RA6kPBND93empWipccQrxjYOwmjzpZI9/MC58f4yFUeQpVNcKyhnRda3NbQdCwjcPkSOkBEUtnjsODSRBLjN7KqJ6nz7syfS6wkuhHnzDjKD25x329f82hUgl2vNyTtzZ6xgJOXfJe5fvOwB/mDVAMITeBTLyAHIVq/a/aZR5FVE6IYeR0lQ7pCi77siOuvaC/DvkpjZqox7ZXw0depFOs05mVT8G0gkBkPloTEY8JRMZh8NAC1Hk9UmQxRzjXNK0v8MItMMSxscNlrHFrB9OS5w4mli00lvRnqwAJWLaG63zEtl0webLfmvzW9dQGiv175zlCKKBHGngdla5xz69I93VzNmeNqPDf7z9/5oRuCmZZ8/cPEqA3hdb3aYzWYvwOsV+fyj4LkQiPgO6s5GOcunb8bCdOMD7Jrra4weB6efQImkOSsLq+0un7C2Hq83IDik76vjr/l82M/wgy1rmmG0Snq+TMIFDnls9C5t3AE0dbH/aI1TAki3qQjQl0j9VsI6mpLYS+lq+Xu8ICu82VlJcdVs259fzYRU0dReDdbFw6LQN6NZIurytRuyL01g06Yh3vyN+PrcIDIF+lqgF6rEeZ9ZM3U5hOdRRvrk96uGeCn8+PggbiFnLs9u+HwhlufxtcTE+eXiAvrf4MzAzT3X7gatUIihqHaewOCO1ZZBJlrGXtoJgyVLNWZrUGDgJPZIvephxjRrHxdaE9pze7BzoSbLO5O/bCDB96UT747do10DKtPJ0Kg0YkPDI+6hgEwKGEYITfhoTw+zqla0WnCb05SC654++yrWq1Tp7dwYMyofiT4egMyToLd0N7wVLsJTUKhBZ0VB2BEpMqEoRhfKhzPMftUdE20reEaFIAi37psrXDVDxqd/+F+NiSsegpGr7u+u6GPCMeqdfuQ8omoV9oDPjE7LHGp+Vr2yq/YLPGYV1AOeUbeaUs9UDY3OP2rfjAN2UpeaM1PA8e1e7gOGkWemJksiPiJiI4R5zCCBRAQTUX94RfW3eDtMhQ/Hv4nEgi6KR5qomHPCPHasvOOX5uaPUB1ytVcZVHLfdEEQWrMmPeEba3GKa47g5LSggMHY5czhnWGjXLEeOSwkqM0iPReIiCGrHYxFil99d03/edmbmCFFEV9cbUFBAwVfFq8+0UOrTXenS1uDAM39eclImUkPOB3hBGwCMXM7Xk6AKoZTfzeRXktw+O7xKa5y6ft4eFh1Ps5kOUaR/5IT+D0VdkUQSozRczqNRlf7WDePpJhnKGAFIAaEeU7exkndupBx1TNdpzTsg6UuAUzTGBN9aWwrdvXTCtG90l+7YbK/a0wR3FA7Y9CUSmpi2FLJ6qGqMcxsFt5fN1IEL5NTwp+55hOQXH6vyqXKquupoL6aB5vtCSqcAqkqVCjziN3whRG7lCF0jilQpZ6N5kYg2I1j6Uap92mHsAfBZiIwz4RX1iTp+g5d53pjPLsDyrfz5dEhHrm1k/FutME6soIM5Nv18TpuKWlnQS5MraCwlrLWoVB4ItwzOkzuqD8Dr+xAKY2pG9zrDCl41hVU1UXWy5hVmvE0tL21QIjgt2zZudTe2i/bIG3prUJp0A1DK12J0yOkXjjD7HsbhaCBCj+crHJlKdUxL2hwchvPeur5V/SXRG9q28YJyZAHxP+yubD68Dv68Q8dbNdOs2Ex6a+hux0o690el0Wx9jy1LPB+aeJmiqd4z3kIks2kckJA4Y60+X5NGauSjrM7qSAGFMnUD+2ZN2X+zLy/XX9hIJlH8u4UoDbUlVN1xhhjtTDnJYe0y8M9k+C2DA0zy+N7ZXMxrDMISjDZ5Yy8JdWJN6Wea9OgiUU4B5vvrPTRAGEgL7o6ZfHkSNbpiYyqOO++pjkIj2S3z1u15h9GnJr5vixtUcSnJd1APru4bypDfWHq7vLxCSFB1OnzJxgJwTE6d6t1xKfqIVtDA/KFUwheRY3JdRSfWxliwZubBOrehBkvi3lOTHKV7YQOH8G2f4Os6iHSHzbp9Wx1MzhEJzrvTZ5Y2qymuzUGlMHL9KsMvgLxBlGHyNlXxEenGpW9CsnqsGgn2VZBPmyVw6mrl24QaUGMC4PXnaXPTBPt1hJaMfDhSEkSuY9dniwbIKhq32Sqc4Mncn6Gzf7yhYBxmGyebTvNHOe9Vmfa/ozvwKby3hwFztwy6SxPqh3a5juQqjgQZd92pUNXc6CpaNAmaB1KJq0BXqEYu7KPISt8EqBcgTDMtytRtCXzio74RGy9kZgTC6QGLIefQ0SyQ3AnDB1XuAaNFhdHWRc9s390zLmtZYgjcK3772vUxrU2LItZuK7bRV8MG/ulKaFDWbREAVzJsW2myZ8xqk1m/IVoqKrqjQJky4A6f/xMmicq2HUMv/A5cVeRr6xLh8hrPebBVLXnPQsMqQVshKrrNOE8j/umWrb0B7ZzD2z359ZsCzA4Ut8UQzmJRXc7fEHYD/jnGEVI3x4RHmIci/cbcsX2Zf4DYDIFcrZ8lTXbVDAC/vMwHl9yLRGJjoWvAVMe31qPNsbvQYpip7idnom2b+nGlfu7s1vm8Lm+/qTujtfKYBQJmDXkVrYBVsVNuG533llFaQllEil0Bl2X0bwJ7aNcxj7D+P9RxudkMeMfOmBKA2rjBZLi8sHb09+uDlyehVlIL5Qc9RCDUK6SDyd8KBTDAgQ53O5SL1eVw9N+8LWiYDH5BQgxLU1xOmjokYbw4q7oPCzq625Kz7/4sAuSe/xeU91LyUwomBd8+Yu2x+BpAe0Gtq84AfHGBaspPSmEAEsNuiKGS5zgFxdj0MEMPaHQUIdrLI6PYUncc+LlKdciXgRXkr03VNad75MyGf9EixZhhoq4Yka0r4eTKXRzddtLIJcpakiCa3EnDoIaFgUR92waFbLeEJHHIV9h/BvgoGjhbspyapmmVOJerCB5al1xJafxYz0u5GVRgjgVT2X4jjb+PpdDP4wqCasjyt6j+xMdszNuNYbcD7h0/rAEQY8+xikEEIH5aT6GCSVFyfw4uHI51Ft8Xd6SOFwRX0ynE5e1K8Jy5w06hxwBueuaekNpARrfVvTekp6t7BLdcQwVE1QGvUf+9cMG85O728OZBKByYuG/tcr87UMIuwM1WnR51zRiPxo3wY05nq+AD0srRmyYlCSnhU1QPFHHuZ7mTVhlI03kxXC1sMobV0q2IbJ9/cNoyXYPqr94tzRZao9vRoLOecBiw1umxYQfejBp+N98bhB/AiUIi/WabEFcn3ZoZYWKmBTOkVmua5q3Ap2Xf+BS3WFf9Zsc06cqzeefo1RWRmJf1u4S982mqeL8qYnDZucKzP2NFKB2PMRanE3VGwWkcDpXfeqE+v1Zo748iHjuXDkU6CTN05u7cg0LRftfTB2tih4Q908DJuni2/ckCnoD46HOABHBDBj4Ys/tJ2X2x3TOX3586WD9YZvthKBs9jvVZyMU5CcwJ3LbSGJmzuL931Yw9+3FM1ya+ipOdZdMCnfxq6tiB6IkzCGZEVMzk/QfljEnWGR+HWGVgFkhqi6HSSf0TbpKKcpX5REyQ4yYXbJ6vXT1EJYgkvzfQMYzWHkcaupm0dJtx69D6asmk803L/+dMcpi89jRmnhSPQiMJldDsfU10F7h7EsOX1QhArV5c+FylxxlLLBqNPqzQ+OkHhJomeDaJCSBA9J4PZloogU5Fui/6BmylvFi3nckbnkNKtG9YuzeZFnQiY6qDFlEuE7GXly0Al9C4xe7evuvEprbmtjQs1Phf8mmbPjskqkTYGYsQGXHUQp1ExHOta1xrw+2YOsWhNNKM3UWNh+hBLX0NRVnC3MF6wlOMXYnqnAH6+FRN5tsWnX2nYCyDxKaMXqEFUjlWmPHsLRNqPXBZLvXHrzkAvmBoFF6PfAHNMUmpwUh1TvE43qVAB2kJXZOFmdUz3aArnMmOofmPq0ieYdrlD0G9R39pbBiC6mpzHmiGsD4ZpQHDReuLFYxRMJRlWQtRbNE99xZ4XS6todA/2hFnoeI9yyytFHlBgWhcm6fngxYzTCWFCeLHxBH81VobwL256+ovfvRu16K03wIAbURZqQrL9IyAllRNMnkNC8yT5JIVFs+r/mdUbeFw7HGAjoIiR3gb99UMs95xsuklEHgWMuTb8RpAhLiLlmeqZNWPDL9H5wehpJN5s1nseCCDMHb3R4t6Jmwqb0L/fdaox74V55m0P/vlWfmDKGR+60lzQwUomjBEtBiT29Vvm1Sd2xrLnO6SznsOISJrJdMsVndjREm5wuLcvvJzbs70PXkut+OcOx+w5GkFOLTBpccN+AY2K42CAaQHwLrrn0A6prrxG9fr8/hTJbb4HNL3xtHnAZ/70Ajc5pUdMsXzg2vSJLF1fW1TqkzxXEgpq6CS2QQcaC78Lt9pe684EmDAJWoMtTc89Czmm/o+nwYGijW26wpuYazXd1dgXw5qCWFIRWomzCBnEI9iJZ1mVlvFFiERx+qNeyOjMUtIPWGcWXvEtV7x887H5flfHmnIRGTBkkjrzsxTeYkZOLRxueDhRSoN7qVvS/g9UxU5U/lHuFbB0EHEGdijr0v6DP7nsWGKTvE/Ut+yHkBKWd/88fo3mEpWtSUmS9GuN4onLVFcrwKtgQKMq9yetqw86U1SjqgAE1mnsUrJHTH3QAik8HEfB03ZiEA6R48/bEothkX5YPQ45EZp2mdf+IoOugcleFHrhgwxHqzMmGogmUN4wwA4OfgJDxdgKsSfiFg1lh8IoLL7OSkv1ucfzTe78XPXkIAQRS5oFcw0t8nsg4JiY3A9+SrDWP+OLZPBk8DsPQIp6I8EYSvmU3xnChVY1X0celJT7VH8G2AuRYbxCPN05PGCTkXHvVamS3HPML20IXSBNYIUEAISG5oP0ebbbOMB3EAUDh1/SIJXifCulX7856fbPMFurmtb3KVvCB7yPNPPz0IpyFAFEtGd3LLMWVawm9pfDwtXkJsxI4ShUGEN/TXLnnPHKyGBH0VSuGDgzQ5X22V3DYfZqkVFMU2A0rKLKreyVSOHDPtrJ8Wt6xWhVhRWYRk6cdqf8jssYwf0xM1sV/6UKQN+YmpozfabsaNEUfz3jfBuecNTM1iPDvHL43fUYb57xzVJF99ZYim27XoSpGLOJnEpmezSs25CU8DT6snOQ+l/IPsk4NEWnBAQThpA1Dn7Y4Z3exRKR5fn3abJWh5XBFfbZKFz2Io/JTORcHT/CHzdEZOGhwyu++oytmcZCKdrlbKjJfqb09NUSVM2/XZ1ZVeFXM3VbUdvmPj7BWUWWn5xV8+sIsss6lk+FJtNVPsleExAAzZQAqaFPSaiyzrDEQgodV6+dNu3u+ppdxG8qYrbwIataqhu1qXwaD9Dw3DgoowHCRdocIvVJShi3PVFrW2npZcj64Rpg5T39k3gbOHBSfbixIMEUiJoGE3SgHJivvMWYadC2Xpodc0U2m4BwmesZyd3ZPd6SVd3eK7pYrQ6TNscvHTD9TELw0cj7wkGHyhNAtIjWQtKRSlhqDn5mQJGLkOgtlQYXyBqktvK387TmPRW2fFGhst49+blZxACK/GN7g478rJ85anZ3j/WpRcHy0OD0Ckst9Y1E3adDhyei0X4OFLANgxDoOMDDHXGKYJ57kXhL7Yjgqx9HHxPhX12Riq8G9JjHrnnZE2H2Gi70AO+t5Ue8K4+41IVXldwSBmCQO3T42bGKyJDdao0yXU4HN3uvinAU86K04hSIlTz8+cPEV7hjpt215YvvP4vlhJhY1lf/snAGbnSgk2JEE0aLKM4a/dfZh0d4gjOO/4mqdTTW9uWLLp8Qwvs49Ui8zepeuolrpPp3VJVtnUW0Jz/L0xXO4iLp0pAcjKTKQkXRfElhXu9j3si53nlr+SEJ3PiCo2pzYdOhZFirWAWfJvFCuplQ2jrU5YTyLiTvxGw8S+mpD4KpX7FgNNGhNwAnFH3BpiZyFus2nDLisfWWD5dFu14+YQuZA1swB3clfUeBcaJ1YgOrZcv13bMOWAqNyfLWdUhAWOZIN0E+9iK/ccJUau8jpjBkSsRe346ItnpwNEZxT1kH+jXYfGnjiXgQ3ytxXOjBahpuExS4LQQJ9ShLKpA5cv3WWtemKBeQ8EHMEkwuKCqHa8owFjzqzH8FJQQK1Xe2F3JN4rDBiC4/ehHDWpVmQezNXiKlV/WHR1zY6J9KhwK/LbHOtfi/bYl3jJimh3d2isjFGuDe++hUhX1eMIozaRBlZxN4AU5voWmYv+ZzqypUalh7pbx2HMmQV/bj9d9rAxWPZ4c0s42axStT+LJCgGU0Sy/XcPoQoCdYONkWNoF412N2hHZMTgreJMtWK5Ech+FhPTaB4mKE0+drjLegFVPH+yOMxduWLqMFtLOusO0fuBoInZeO7vXrGGTlP0z6+0YC/41/HZBovSowEgI33SIhwkKdVjGxR+9QDfC6KPmgbmckJ0NO7eRcwNcDPKXktX6M6/0xeSoIHIZ89K6Qr3W4DDkbYrAVRaeTGU3Nem/SRJxyeRk2zjr1xgwYWGfPEHITwLJn9y0Hkkt77QpeWAGHwKUEbnenWrqdPtDQddVl8Bt3Z1voNMgWc2CFkQOAP5g/dedMb6R0BVv6+YMc+Xv+axJEMcqcBRgE5qlRwP3Wxc/e4OOCeIdAAQgovQ6+yvwnCvzIVg8i/tqy9KF9SrSDbos63/Ayz+IEaE8ttxOK0gTpbuRAE168SveQjOyosoJxEo770APojNpKQpttbdvb/FFsZyNtk65M8kBFEjv6EnfWEutKfvpN0Zm+pXVn+qMGvbugzAX7jtVbcDq5oLCLdTfjGp8hWobOEj4+SbLu/CHPiaSmX+Y/xfnGbqsKeUnJs03ZdHYRy2JU0QidYZNrnf0I/6sp28AgOAWcboh9Yeh2tyga5+rucHBS5IPBuhWJ6ogPT22u1CJe53TsdaiLr9FPotz9Zuo4gThgwtkoqSq0zAZXXvc7fiuhDkTdObl8U0mfCmV1rev8/NeAcmL/W4wF0pwXz/kDS0Ra3Dc/EXJKPCG7Lci2d7IysRJQQ3Ej0K5GxGfbnS36hIeLANoMfU7NMNGUtq2qTswEB+ljRYDtvnKOK7AwFMich9hQYZ3rTB+eQt8o+XsDNLfcX27xezTtzexBzij7YAhPyBbaVrNXpQ1ZjtnZag+4/XOCKsoSwTN7/cC0FdmfsGjgxMQaFrtChu7lMe4FceJFAUVxPGt+5oZa2TQFoBUu73YouFK5+Sh0KTq//4tn6IJeoyMeta0R0Wyr6uE+RJRETsUWE1OE/rrISgMSOdBnST2qIAoXsl3jJG2Oq+dWxXs5m08aEn77Owth6AfdRKddDkOaHkZkKi49pUpn29FSx9qYEqLY02znClsxROeDIE0ryQqYX3iIr1ywDoQdDJf5WdPqW/iBuNYwIQFLw54Eta0rWKUGK+UHVxvCpTL6rnpn7UMU8TkSYBPJ6LhxLwp098EGMJLFt27F+d8NK5mfXQUFnaW127Xnk0ojtOYvUexw6T+2O29qwn75B+Jy/p+/WxqIcGiKpvzfJdg1Qketh21DgyuJBOqJ22k3t0APzs6Uz3Kbviyp6rx0SBuntQlmQul3zNjNcMWtcfOlR49DX1XwpPobJgQ6pRUTva23u1M40KA8kAi8YKY1ZNVbdIR86mSRJhOks8oKIa73xXHIPrp2ENzU2aJ0DQ9isG18E5EChAKX5XmetBe+bm4OoYWfRafcZXiie/HkCeJpA79UF7I53u3qzovKdqqW5G4Ybhp3ZEypv1Rn/mgHendb3EluTL7sQmkMiZsm8voMfPqoGC3bVaANPHqUJkUqtNsKeMiEpP0SCaUV5x4jd6p8RWT/yxQFMv2lhzbUaPyjJ6MUcupTXs0NbBqd/WIcHJEqVZSBHgf+BZtQc+65gIgUJRwXHI/A/LdC2OPJIBiyLd6hVStZTSu+UW58yA57cQoC+N4H+WckA4bnJbinzBprQCjVtF18kPksan4++uKnVPSWoCC1NSejBSnpAmX9cZ9HhRjlccwWqxjg18Hz5IwG9Q01jTOThX4dQ/2bEs/Qsii4xykbtjMBRtI0sWuKiEN4slKk9TTtx8+wX+ud9vGfQEX8i6WpCNEdq6kRVAzJFVSWnF3DeXnOX7xpuC2ttRWNGYJxB8qT8wZwDsTxrTlKsNaozBvlYTP1OX/oMvHe17ycmhotvgVjUfe/OpR9U1LoiAMuP5QxdB4WXfevVU2q+JHPcMlqLSq1oBh0UIgjFz4n1AIMpoqOVIjbQwo/KUWDTW7rlE5jYlunfHKjdcwUqwKayOsKNK/mqzzBjvpI+KPaETHBFP74TWlOU3E28Q6cC/tWzPXB+EHhw/J00XsvYw3kGS3r34cgTrPtDK28Otn/rpw9FmPNaszrmlGNPX9giHpRuDXYsKxnOFC/Sks4dHl1ByHV0FeJyOBHzKMdfn4p7WwHHPpL6otY2GQs73D2r8W5xScO6hIN4TRmJZ4H+xVN6QdUXCixbce+42atrVvjf4k2YsZ4aJ9jQQNEAYH3Ny5f97gMsiOpmNr9Bm1d3wvHGgujIvmfIWbIFKb4GW3MNXVihAMlfXRIskTLrwcQZ15yGXN3Zz3RzlNHsOBM4yFhfvrqnX9QFjMUzhufvsjeVlg5sPrbm+z7qUXdHuLo013zJx6Xm8vuRkNkeaIyGBGviSYBbFFDB3brmqD/N7qQGm+cd/h8SOfKP/Q/Z4RtUvpBEw6rQjXMtiAYGTo1IKupOQWElYnEhWbC5cVMA16VgWP2ibc/rxiHJ/vtwJ2hJQi7hXZJC04PTNfa/KqrYhZGx44UuDPYZXadITskKBEMeYWihAbHjokyCbYo0LG3LpNjELYZadXpF6vjkFxZ/jx03V8DwTLzhU8f0KWdY9zmKnsAZl2E0gOHqf3UsCSvRhGyvJ/MCyjCs2FM+aRN8W8JWs3Me50+FEeb2NQTpPFVFJqPqsu3vYjFKCF3om8wG20h7I0Boe2VN41r+D5EaTIFkdEskliJoQKOh8Pb3Mrn4P1YRf2vA6m8J77/pl36gt9Uj3oZAc62M+hN0uVJ7ORdfNB1Q/Ec72c0BfOJPfsYtikAbGXrn1zxZEuk9GtM9Es2MWqsa2Spw8mBr0MEVRIAtNcqvNek4Ltj2PMlCQPeh3YLiPIZ8f/yUGp66HjwB1mg/3IyNMHQmnLRI6G8Rs4mnS8vD+2/t3HlyW0x7sI80StCUZhF9oNercGfxqEPa4FDmC2bbksashO6Cj9MlTPruNKwneHp//HcPEtJrPr/blvTmh9Gl/D5Fb4xI4u8n621COB/PANZI8Z3SdioiC5zTcCFfWchO/hUW0iZys7+gX5++D2JIpGvU6jvRSmh2epc89c0sSpaE/D2djOlSrRfWMvHNT1CPVAnObna0T7XrtLNf1boG/zo6GcZmelHU27YbIpkS7RSeGoumlpwwisHIHiO4nuzUGNjZUAR7w4cIbRyO3kWN0s4yAp+3gsAONK31CR/ulQu1t2awac+2aglj1GbSPw2O+f2ZINvy+tI60dM1Apz9/EfYdRM6q1cGmrrvEX2Q4Vac/nysA/qbuXL6FImwx7ETkxBLHfHkWKll/ZqfiFGltcO6xIXSbDhzYP0ffNLEULIa3nxufgzAf/YsuHLraqASQXDO4QdE4JEqGAmZvhya8R1/Ov/KmKsgM5TwQ+xrhL5yF9F5Taa/vtcEIITnJepYVRoEbp/6017qXv4s34g5PrGJgwnYOsTXTKEOgQV2ThY0y8k4jtodaZzLDKmO3vLBfcbhKqrQ+Po0YUPGgpW0IASVmPtl+niy1kuz8/9ymadcVDuKdM6lMfSoSuJAiqsf5rZ5eGpqElC7l3rnIE9QcG/W2bVcKL+3hqC2PlBLC5ZFVxEwwLi7oWT6qNLaSkgX9YvduQAbX/nTWsvQqQ4YMTThygv6Ac3BTvsrH+O2oyVfJUPpz/Rzh3X6VBhD9qHTUM7ZMGb8MZ3OvSYbH+5tNzPx0sk8ziMUzujP17cSLw/eKskyadicfbmJiLrRZjFCx9/hT9gBYiMxKA11gmjz9GXUaMdMPUjR2ihlfPxgqqBIPGqGpbnYVbt7qOIMvAw22wP77NYdFnGcJQf5QIP8hd2IS3pslPIK7ZPknusz3mtNsg1h6vo7qV7ErDU8EWlCC/uWtYDzAnylXnz3Lb0GMBfpA1DGoX/HvJMYdR6rl2u/4aMLNssx5ok7fYzwDOA4yTDCMPMWqedfXx70kcxdmgCKXQX2f5+420E3Y1riNfmgrLV3/Ia4szRzuYQ427du6v/Wuro9nybTCrNRa+XWoulIJN0n8UV8aUp4G/zRP5IpdRibZTCS0loBNnBMRHWlDSGv74M+2ISZxybr9X2cqEy/sTu6uDTm7X5NAwLLa2Yw37qDU7iRLpQ2vYJCgTdtR7FAg8fxI08P5MP4LvRMo9cb0HCnaxqmRCnTunCCOpGl+oF5NF0WOgH66K050LEOsk97Q9u2MoOIA1jTNp0EwC0EvOWR33Iqrkzsf6NyVWF6nqIoK9DZAUmka1wvSxjSoh+zGbanEV16Ykp1CcChAXfi569Bz0xNKNTAs33HseFLVALDwJC34LYNl66V1IjpnqunEr3uF/sRVJIgpF5WfTXauxXfWm+8OlUN2bbO8PN2DCqaWPlLdokXOZUTWnB7Y6uY09kMM3aWUDDQCJnHwihIaKDXQwWxLemjjCpFDqVm379JUaLzGoLJua5cDDXMTGpofuoAwUPERGZ7jYzEjnmHsjmjSzf+8ox5Y+UYfH044dkLLGpnab+i3HxeRwUCoAnUKx3a+rWUCTICfqcwVTTJkenZafRnLYA7ZkHAVj7NarvtLOiAiKL8Fn0gqMGORS5jv+F69qhYaJYNH/cKU10sBSMOtWC4fCk+Bb50hZQPWly9B+B6Dzj9zD5HD2ApbmgwRlr+WnbdcRc7XPCiapL+WdgYZeiJqqXDzJKqwhZhnrBNTEM2cg9Kcbsm1AtFWICxdok0p8565ebYdqFF5k6n4A0Ra8osZkE7EFoKqrt641nFaCnKKKccPMrfNXgeIUtl6Xoiozg6kBy73KDUcrMZUO806RS/zrWm5TYeDl03nZctsG/QkZ/+ISPRnKlEDDgNg3IcXPYoLgjw5stCL2D0dVhjXVLIj0ruAJ176Ag86NSbGYygw0qUw8BRsNmVKTRRBnyQo0gl7s1bATZLA5enAx8tcWzuRWa+SLbSeeK5Hs0tlnIARqgdNG7+Ph9D7DkYxIzAM25PsFOm2XHtrBCWEp1BtKnTeg/NNz8zbVeR7DWI9F5VJZCuW3S/6naOd8zfGBQKY3mmU8YYV9OapPIMzgE1Vn9rN4M4m+BYhIfgZDzaNNDKFzkckw23Eit98aguffb245Q9nZ6O2DANF1OkPMHIsP0ZKs2cYpsSfA60iAA1rO0naqsXu/yEYmO1t32Of9gHAtrpW3jTxlQ4jwiitb/LsWSdlLopNuluA3m8TAvO5tbhzXB5RC8Kz8eeCqMxjH0d5l/qv95B3Lsbqki6i3oaIyErbgF4a6JUeHp8qxQSU2hUPs5spBqkzQ822jSPtcP+hAszAvkrY9fbSV9N/CsdKpofhDSZLv4psTopKueRrheZLp/tYGCk/Mw7Op+cHV+0OsYC8WtkDqQIo0/7I/m4su157vxjYWrsUG/AOToIbMsCxgB1g101g4N77gGiskEyhbx7iybJBu3yZo3/p06TealuXjV+ZPK7NJ2Kek8RyU6FxOwHO+CKrbAj5fpYo+rrhm9fuo0cLwrYI0VV03JZGFjJsZVpOKMCYJIY39Wdut9tSBBgXX8rXd2qwwxIpoN8vEfahNJlcl0P9HJdijVik1Wn1M0tgv/4ERlQiBXw5PgIFYLGiOrHnRvm561In/jPN1Gy43SmDjAjXFGYo+R3ezhnpm7LJGW0josCj447ewfbNfporXSSTLW2/od/8fYpXhULxsP56dwCRtNSLXBawy3lE4UWM4EXc3+u56EqsuuDf+1CNuh2KKDVjnl129SvIYl+oqbWmk1wfr6DFT/bmzB7YvUaGv2CK8Vv3BOtVp7pvcVd3OHJtT5gyDaGrT1ROFGRCTNOMRDFABGXT1HNEYIrAMN1WQdKcsyAgK8ALdL2UDSlItQHKm8RMsKeeXALF75b5gSIVJFn5nZNb4K9KDVGPJFF3VcIa1ZO2nNxGgPtFGzEKHTY81w5XzLebd6U3r2VRsrfk3VcW4WC9g4jM3sf4QTDLbB2fMHxPm3hFK2gsIi9aJ3UmmT5NmwVCy+RZNl/Gf+hlm3v+WSeEZeDBtlpBC5Co8ogegBcvs8dJg2dCHYln6TGQwZW6vQnYVGfqHXipd6KDc/3wf4VIpqqdcSeC84mvW5DpXTF4YhI9JTefvBXbLV6y5+gXyd6AjtABKmOh0b/wW98kYk/l+HJHa6LGhGhA8qB61fF/VH08KmDYL4D3H+oZ5KPmSCl14aUxrh08kgYXehSQO/C0i/4/+xGhSik1L6MK4vhssFGy85TnBhvHyboCVUPpnbN38/+26t102VP2J48c1KMpgkVFrB7BFqYCMQhji/UlyAY7Pf5jDq5rSrposqYPUZ4zvlqb3ydLJCsa3iSE6haQJY/br9EzV54R2bGHrc87QmlIrnCPFBx/FRFzvqxjgJAUpx2i0JfopntsQLcCn+1qS7ZTKSvTguELPQzR6NATZLkfod92mpHq84ccO7v0pwIIVdw5gzLwaXn7YGBRZlrlO/IbQ2WSG2nlhJPXIdBhKs7UiLQ+ICXMYIvPghTAzlnuIyHeDgHxJWjSv+Ag4ckxuaw3lwf9bxIEMYXgUjgab805hZ0W+in1qcerzr7W36mWejSCYMvZiCMyn7KA3uuZz77yDUbsrKsuoH90SDsGB3k81+uoRqfDojF2ntVfybsbYg4dvy8AVeKp3+30x2cV8RaADfiROaP3EAQPja9s2eaKoDeoR39oCjNaEOUvMD0wCiNbtihDVuy8dLervbnF3k7lyRoL3ovyHHX+yvLwmKaXRjUEboHlCsRgugpuxv6l/aofZ2PnIl1on7/UkzM4U7Fn1MtGt8wY+uKvIxc5V6D0af13Yyy9ITrbUqtL7CIGAKvz6Neb2MoF8fpbYROhnKfpqafiLXPq1pqw/3a617lFUuEBMml346sy1sGox5wH4JOck9lgJugeixKDCjlyYfC+7Jeuk9sY+VSZf/HzWn381TNaNrECc/fP3KFX1+z7cq+xwi+FGflQfWVCuYawpXomuCLU29LUvNNUt4E3MJuG6cUn0D5KX9VvLkOKceZvOLKfrYA6pNaY5Dy63EhYA8i21Cp5IydQkXZh+ntQ6y5wtNN9eXpd1MwDASIbrI4ty/TaxUicdP7BmxaRXwXKvYr7C+rGnNWyasS3nWNRsFKGXD7f3/rmda3cr81xwxiRG6srQjoYj6Li9PX4fPjQeXtlBUf6ZQ3lp8GyEzeZJfPrGA+Z5Te4thzxQJYmZN6/H9i9KhfsykVEf5W9YCJj7fyYk4tjjczme8xCArEz/UcwR32Ry562v5IZMZDgecfZnvGj5qfl/8UfHnwwVZmUYIc2JbW7eqiWoZ7VbTtXFaDKg2bFmSNf33cJRkv+kOtaW+FLVJ8PCk86d5OQs6/wWtDavA9An7IrroZXkKN6gVXFNnOGzahZy1EJDricL7pIFf9YceNeldX8WuKUQm/OgvHDssFBBaokFnPcSu/l/9yekYoku2pA45A+exBi6hwr2CflF95u67K94gF6daoED9/QY1Wkui53BRrBYDXiwiGY9o3IyZi3In5c8wNmH19pfx9H5PozGdJVAucTDMwK6pHiFb7rYUVazDV5sqiPgbwgdlY2GWiafB+heqCxkFARSSBgWKZu5C3HNCGl8oLMWt9YU1Pm7yTvftbCTtKLN/47fAnToXav8D635asUX7vdDamOFrEXV+YyLSx10MBBb1pvRN9498y/Ux4kNZzMwssw4/KVBkTG1jDF19o5yCaTnHn3x2UWcck1WetDGmX1fvXEJ/C1elaPUCG2u74unMlwrzuixEoxT0rTAbf/BmyE+YRfN51ASBTmxz5cwDxS0S+BQZ6aUGzlLhNAosqIMFHlMI9nVrm6NOEkaU7dxBlFYuyGZ1RfBczB/GoTJjBuaqZwGZfVK8vD2c728UdHEr37JFxaZwk9k4ZwnYkUUgO5pYc5QMW1kcAjg9r8poj0MlMKB/vtU+zl3QackyE8SclKu857JVIo6nJbcguAlflCaSy8S4faPlXTVFQxzF2U0fMYawoG7u98PvOitJ9Qy7r8c45FAM1CmqlixLTb7VUyDMHfU2nyLN0RNtkcO966yVIPj6xurNvg/cxoRIx9ExktORzURhjMCDlptHISrDoyPwxURmqHbRl/TWOp2+/I9xN1k5l7IjQq0oiyg7PSQrbTZ/UqKFxqdRm3wnUnyVF2ExBKPWOox1JFtaaIEcXygtx1yl2vOvpOOgyzoIAp+FEXQihKGFuUqD1uaP0GrnuVEgB14Tj5a9dnoShH1ay6eP+le0i66z7CFdxVWjZBl6wOpxkiG2FeBvcz5GTZ0AdHuf0ugahxhJa6Ghlf29R4Nm5Xw6N8dKBBjcx+mgns65BM6UcEG93Ge5FulUn1hkTMx6AbevYAzJjgpD+MhCNaQjDAxW/7VxSKbYTQH5AKqOpkrFLNAMYFq1mkNoz0MizrhOe9i7c5eZTw06catIUXwGVc45KOvUejVxiRbf4mrFWoBvTJF6AR20CwqXeUSfDF+lr4d73GtVDK4jvPiNE8aj+EzANJ674RY0sH7DAtcYoUcZJQ8P40KlzDoa5vcfsMba99Jc510WTJd4MfyNh4GRwGgscxC3XXlGWHMvg8ZwLI97d89FrNtB4UjHe8R1BmXrl4KeIAnvshb63FLMnNfpPwieyz2sWKHO6qJObALV3qfKzJCyrwDW+7J2JZtgfjLE6xgBIaRcGbFCbeJOZrI0/RAwn9zozDvFp942fYxwkztHAiw2ORnx1D8JS6xSqt2J7AWF1nqY6G5r9WtuNeN3WD3QSw/YTCLuzpyf1e5wJoPUhpeVcVieU+u+YhDmq7j4ujeVYnItJWUOoB1FY9Z9h8aHNfZwWLLRxXWHSB/txoDXPivsGxnGujSgQ+r0vzXBlgdbqRse625D8+OnQ+wlq2hlLaLYMX3B3qDANeYJKgB/twuD8GjtX2IdFqKgFlaSgQM6YEuvpZAD8uCe1A53rlanZ7IGGNU8wIz67DiV00SrpvP9NYy5FTB15Ja0XfgsPVtyPLNyYXbArB5/R+j9p6Lk1G4RT2RS0s6mdBztmeLKRKtnfKd34cpWoB+IGBJFWBrPUqUsiul5hRCnH4JrfpIfXbnHso/GoCLxo0YNRd373Pk5TtGLynDc/xrY+Q2RlqjIHSpNcTbcmPILSOELww6nXMHDX6aIYzF+3Xu8sr3zqVDj761bGnkr+Ijv/Wf3Qot0rTiY9NeO5BmXO4R1R9+27i/j8IQYMC1/kUp0nUCt5UumFrT/2n2fBYOhlIapnc8Z4S83O1Zz75w0Hq8MTPKxteLkJMv+hjmJPLE0jncpLl/1/BPJj4vHJ8hyKR5r92QnIOKmQ4ZaCQffoVGztIcLdR32/5zVn4lzt+5G1VYxnTTP8CaugVdv/+xDgws2bKWTUPuGd6dOHV/kxddkSmW82GYYJser5PVJno686mH2taWA6CQDLi1YoMchaprmTCbVj995fea+oxEygg9KQeFrL2bOXJ33D70VzdHm/YL/JpK3YlxhHOY/2ffl6Qu/nh/JRVzNSXlOn7z8YsIiPVxKjleWrgASBTUmi4NZLfRxNczB9fE55ebHf/EAXNgh+MMbGL/SPG0ZOy8ET+65oNg+AYkWOWukTfNmg0kOQEotjhyndXEwNAJzbMGzfnh27e7Lh0Bf+Jb3Ymp3tn+ha0LWgJj4S7vFdP9qOlJQAnQShRf7JLOeewZ1dR8Oj8n/cB813U0Fk6xCp0ZvzY/GPRCoKFWVs3Sk+5B2hh6pNDib4jWgAL/sUWK7u7QJQfIPLht8R1rOm4q5/FW6cUFzvRdvMj6H/cjnvDFau9MUesGrnODDZrk9+NKj+7MKRrgTrEuHOsWAYsGj9eAi1usCXviKHdpbZWtNPrDAv1PQbMnP3cJuO5nfMFSInY+hfuCUUyEVMjqSWtetsU5faMTFXnsiVVp9nI6KDQir+An8Cvf/F+9m64j4wANvEqyhVBDLehzvrE6BG0XkhPcTBCReNu99rAjeWOu3MZulFL5GnKbK0rSGyyQ9RYRxfDXE+V182o2yGSU24X/HO/2HYtpOhT6Lpzd/w5l000RQjpf/HbpHYozfldGfzXqHAkKtrQEs8CBXFgOCwCoBQHJeLfTFpetLIh4pFJFVFiREru1fg/d3OcnTOCcWpngrQbjHOwvq5NkIRN6C2bskODuNYDt8YLYiLAkPU0OXPtoDj9c0d0CRyczNm7Erp3OgU6d2vOZObYaVnclv8Ky4FAsQk72mOLQUhIuamotOZfOWd/xBxCA3Jzk3YwuY0DYjnrKnSVwZxdjGNG3Wb2FvU5CgO65cn7CZG+zceaJmxHdIggiv60pyd0Ot2YfItBGFanyiwdkgN+mp9RumflnlWhf4z6rlB7hwcK6xW1gu0VTLWSrb3U2taiwfK426U3c4dtuw77Sg7RpHghYP8dYG0NJqhA/YTIMXQw+rW4FLvlsznLJMsq4+S7+rH7bjk2L5ZljBjxAl8GMob3lWfssPfttpYU9lDzGmY1q/UwW0wHojyrpy+TVnhJKVrDvQ+OdOu8e2IaZ1sgbcNxVE9o50+oVznDTAzqHCh7WXXCewodjNw26f5JdJMNzsKhwVdDn1QIqFw+P3A8C1JEhm2U5rSfAUpKJ6fHYuUSAC505kmldK3jTs7rXNfETQbKhmrgZq44h+4kTTcZKlpQDG8LR6Foa+8JJfaNvXthu3y5aTUrumtGULcduT7ZYhq6kWcXAWKM4ggwe/1Aj0qrlBNWdot+T33QHE35xhaMjU5ezJifygnB9lcjZ49NawVj3SAi3yIZ+VWv5DFcX8IrDJh+vkufW/diYZ8+2/XHIK5ziztVbFVM406JrtNdpriVhgzl4LlpKihxPM5lBEWDdRnTRIRfuYId2+ByjmBKJJsTlHRo3+ymX4sXknht9f1yoj43NLlYIV/cHcnYu9TAvFpOwTVoIYQ6UurgamJDdvr7xIectKZA6gWVUkFOA98iXdPpuNBu2wDKCwR+hnmX69d9s/eEShwXj0ugvpzxBUx32sUwBtFoekE4zvUJ/zdszTPMJmZ4oTwN/YXalK/t8IvPGS6gkxxZOkREHY3HAJFkPCwTw4cMD4inVRRgnf2ycBDymSvhn8Ib1QyyEppjocRmLPnt0wJVEsX18uDnEZAwkMQct5/1k45DjA7BW2xHKLfAVY2FN2wu3qislBmrjxVyRjpBTA4Yz3yQuOrKovuZUE8er/szaPCB4gSSEOKf5HvccJ4Uk1v4TRLTuaDFnNlsFEIyXjAFHCh3TV3OLZd2wXZh7SY83flt9SoM5XtH9/mEKabKRnNiLEn5Ggh5OetG7kTprxI6vI1Wd4s/gOrpxnzMMfko11fXV6NWq8GBg5gZH3o+fm29tp+xDytNxM5vZco4CDVbfnC/Ntrub0h4d9uNA4+lC/T/vbDckYwntrx5H6Dt8l0kNWo20rhG+m3CN73oJaSpTL/J6zmcMWRCdBpQFeOUAn7oioyosDYdQ88dpCzkkHseULKZc6uEM8b4XjGqngXmQVqHPWdj7AbNJoQQvS/j8P2jHodyYOSV3CIJTzcFA99w4M9bbc0jC01i6K4Cpy0KnjmmpUHAe6eEyfGBzQeLWv5g+lmIR+lN9OFbAFAae4LnnQPFwjBVep3NqYwRVE0SLdfL+xALbZOfH4qT2uy76z462mi3CBkIqu/+jgspi32QN7mwiVDl1cWVzOfZseaXxzlk76sB17cmQ5GemI5D19ZaUtIeIBNjjOwHaxJdSo15glvnAzSK/F3jfi/V8V+8aNyNWhVwWIgPPPcoZs7k3VlWdQ949L1RRNNuHj+6QEWCf5DNthtd/RLeogCAlj+7YE/hMn8dljI1xad7kdPB04Z7yPKSR+gqHrP1O4pJLlTrLBzF7Iir9KziTy/REeY7fzzx+BBv3FlIJbaYzWS15m6rrPKbyONsWiNFBSqjoxGt404dTtoH2SqPmG6uTdzvJ9GftbeAK3zzQcAXcp+a7SlBQyON872q7SYOhv9CB14LNsnF8T1sH246Ii5z/Wvx4n3BvWkZSaxofY+bC8mOQW9uNiZFjBjqSaoZRGV1giwQs12f1nBRlXM7kpQG1po1aW8s2Eko4N6r0CfgSaFCa++KG64kkGaLrqId/N3h4wP9fhH3GSyUWS37e4ZTvZ/M8jA4XIA6Ibv2/oWV5QbVstbeREYb+vp0kDOYH2ZJDUPAA4o+Xz4WMPHVUMumURnVKSkx3rfOFXGYmAc33YgVVBwyavpdJJEDyCr6qMxiyVKfuRXNXVIU+jxLq6V4pqV/DAY6r+XXt+Km5rRToyUYKtZVRq5W72675RYjT94a4cDLhJ0hBJ4X4ILTiLXIcjB3f0cGFDAkyRfCmWGQu9HnsXpliemh37WdVBcQcKzrCgYuRw54zvGyaJ+b7/6EDO3yRGz9fQELa7LZXd4dkYfc4X8DeIZPAnR8HeGhqu48m8cfP9c8PPTl6Eadd1SQHXUB76T9qnh6Gy8wiXBZA8QdFJBejYmurNSabIngLx2QxqZ2ZuPcQxs3rpf1qQtXXEQB0+0joSHarnWttSx7BLsvL/GNyCKD5BijoaeGfPGzXLgUgRcy/JM67PVWWo/PsHwshGIX8gYIPPUapz1IDGtA5owKW3xgKnBUSg1u90h5aSNlxkKUMT2W5Qg66Zjz6g6OAk91Jvo/DxrZ69lHMgrhzPYjlIpqyrDBSyjqv8wWRlii39s7kc5yNhj1IzEfclTO91d22X5j6sZgvmG+nkvyu2s6jR517hrASzwk5MAuYC80IhGOxjtRgcDEN1dJjY+DVe3YYc6jBvW0/LjemFWyCUScUoIQENw2dvyG5NEdggigTxR9vlgEUngTWElyEZroWxAZtqhM+U+C58pzi364mRd6YyQ/5WMqCVf3BMXVk0iEYnXmzq36FJprBeM60KNxGhirFB+bwZK01anchSCBn2fA/iNzMc3scWud4ZQKJWASogrYFkW5ihXuoT+GqLV5p/orSBsBAKUfOUZIpvUllroZ3abTX8REtijACFasZUh6ngZbiGOCcEujGcxtkwiKpENrfIU29kmUUv0Gp9KSJ1DelFJtzGxeDiJp9vHV4yMjT+v/abW1YZp4bVuFKZ4J+45tEvXe0Rf1JmQH
Variant 5
DifficultyLevel
707
Question
A teacher is choosing two students from a group of 3 to compete in the regional debating competition.
There are a total of 3 different combinations that are possible.
The formula below gives the total number of combinations C if the teacher is choosing from S students.
C=0.5S(S−1)
What is the value of S if the total possible combinations C is 300?
Worked Solution
Strategy 1
By trial and error:
If S=21, C=0.5×21×20=210
If S=23, C=0.5×23×22=253
If S=25, C=0.5×25×24=300
✓
Strategy 2 (advanced)
C=0.5S(S − 1)
300=0.5S2 − 0.5S
S2 − S − 600=0
(S − 25)(S+24)=0
∴ S = 25 , S>0
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A teacher is choosing two students from a group of 3 to compete in the regional debating competition.
There are a total of 3 different combinations that are possible.
The formula below gives the total number of combinations $C$ if the teacher is choosing from $S$ students.
>> $C=0.5S (S − 1)$
What is the value of $S$ if the total possible combinations $C$ is 300? |
workedSolution | Strategy 1
By trial and error:
If $\ S=21,\ C=0.5×21×20=210$
If $\ S=23,\ C=0.5×23×22=253$
If $\ S=25,\ C=0.5×25×24=300$
$\checkmark$
Strategy 2 (advanced)
$C=0.5S(S\ −\ 1)$
$300=0.5S^{2}\ −\ 0.5S$
$S^{2}\ −\ S\ −\ 600=0$
$(S\ −\ 25)(S+24)=0$
$\therefore \ S$ = {{{correctAnswer0}}} , $\ S>0$ |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 25 | |