Algebra, NAPX-J4-CA21
U2FsdGVkX19iojQc4QA15eGY/279ytOzGLHpfvieZnsYQsB/JfyaKvkeP5Zt/WIciZ3YHUIKd214d0h5JABRIxmneb80GKuBCWAyoeCpv/HVkwYNNj2IyEUXyoVrZaD7D4kEC/Qsw2Ow0qFfUUW508nCQz6oQubsYw0D5cIy4LBaqhHoQ8txxckTbWVrWO9tq1BiHNRyk4LRgMKSEaoIeBhtcnZNVQbTJ1YCU+ig4e25yF5DU6RbEP5L/yqypUpRkUcR58o8f8XV4ndbrgC5C1CWnpYUS3SDdw8F3aQkGmsI7ec3rwFzjZ9RkgG4PcJMSQpU5gQ0gidKqobVacv1Yty4IXTvSDbU+nliOyF5hhu9Q7kBISWNTlhYexrSeVcEYvr2OcEC9p4jNU4NNFtHpOc7ZUUMX3RW0ObhRmnCXyN1nV9goLMhPRFuW/ujIObf9c/4mJoBpzi3w5godrbKq3pf/b0rAnyErcMBDH/mOuCs9Av2ZkDRnRZB8nyseC1fA7cK7OaQjpRcAO6tSNGgX++6tH9+SKtNoVxNLjoc9xjq2Jxsusbn2Q8vEYj1LP6aQW4n/8t4z0EJKXk9TaNH4Lc4+vgkT+Q4ud3SNOSXSNc9ygOg+E4iie09mbjYKzd/F3inrNzZjbnRI4CIqaZ3a+rntUqbe1lC471kfa6g6oxyjK75iChas7RcoehKu9LoUwQXD5XZg0aElasrHeitSh27kWLAhGr0cy+wimRHuaoynxszqBS5Clu7P8uUV/HFSnwl87KI40+3yXlGiGQnfMuOsstEy2LjqTxf1VtXZK5moCg/bxyLFDGdNxN+/BFIGbACXUKiVYfGov/9w5Avlzxu+UTrrYJp42medTNvwqLqYago4b2Z/BrRrNiHQhMxo/C+skVXVTZVkoQEvrJ0sHOlgGfPOI8IxNHFpXalRCMz8i+FhAQEcOzoF6CYA+hi98oF0rHrPV6YcLi7eoZiR0OTntq2kbcgYG3Yha8Tt9O4xKICInH/X/oRvaq5Ktmq/9/aOEzwGOzROrIdxmduzHB82GiiJ4Zf9QmtfPLyab+YNq5uvegrnIXINsPhNuv1PhJYjZjFKDe9czaD3DXXLIAgcX/C+IyH1hddnnR82jn3jjVwer2on1Tc//4aDPPl1U2q027w5owDSnfkyCsgUhtgJe+3p+DXJdeeEN1izklteRwEfRLsGb9802AA3Ng7cU6XOm70PPZFA3cEpKVQiG2D8O8VTlv79tgQ3hdJEblDgtH/r1UAEUnjmoyZjXGjhOj228aNW7A+stFe/z09XXl5qThfALIlKzOVVlPT5rI8Fru5NZ5e8DAhD/+kVMOAir/ExlnqTQWzUoMM1JR991B7ZNgBf/vwrks9dlAENLiiG8SHmUWUNEBOZtl7MvNagDIJRFgpMFiWk0pnjTMyvWF3yuYwR3Xl3Y5dlurIz4lfB3fBs2J0R4Q3sU46vFO1GOLbuwgUBXq0JyfxEApUiQ2tcslxB29NFQtVTtuCaaGeS/2un6r1CdfR5NGjSEPVXBf0KlsJcL9FEx64t1t55eHs/mjVF8xpklvPn5JM9t7P1MGE1JcdWqUw6EEBmeOBUko6XmAj+lSDPGnLe0PHynaMaEOswSrjatiS3Qc49yv3puUhCtTZx0np8iGCqW2JOXkFQqfu5RxnRuIpW85vVmmHN4sI/dIzUE2EvzIXITti+F7uPXqxd+PP9p67B0Rba9/Zr5opscxkOhkchfGJYhSkQbHYGKB1Pue+3BWSkMz1+3ARC30Tx1+XvPQfDzg6ZsOduoVl28Z29Ih6F1BXyQK4AB7xZ91J6JxegnnaForkskOcR6m7LykBQvmHByt9ZfmW6Z4+GgYrU2063qgkds4FzYj3P1PSvkyWQnPdzkK/fca3qtHt8PIFToHTRhY+SiOjogHY38krEvDuuCWEThmYngclj/pVfGOqGmomdX069ZSHbK4XNY3wCz4jtx0ErBm+LcfbXZSMFV7ytEW75i1SweoNRilzgZOee5E8LPwBB7xLk+NhU9MaY3JGzGTFdA2EONSzgK/dMZAq3nqHlB7ypPHgnYDmlr7Tj2mBTPYILa9VNrN9CI3GP9zNwpNaUJtw9VFOH0PcPjYLGFDOCrUE5Owl+qH/KhqFI/6WugJJnQU9AzYHmDO6oStmM762o66gMtmdBVIny35NvAA50DtFt/ENmlhmLYF9T38mfjx4Egdl+LxKDjG6OqbHHE0ddNtcCxIXcK+uDeyT2WoTC1pCsy99GAeHn5G04bU7IgZhevOrq0Cx5OtSpcb1Ghhf7I3OrHAMEuOMoQA3W3zZlHukvrrfkjmIT0k+qcJ8h67Dk6QMs0MaFpkZSpyEDo5lCKmz4DD1+RcSaTOhN1lHzURySA86Ak2uzlmCl9AFAmzuKTvKg+9AkjpzRRN/8gefQXniGj1Cpijsw/rVtpBomJOatR2WhUOvG+lnt0Ntk1VMqh7Qb258evabVYanX2bZqmWLJ9UEaYBnM9+d1CHo/PAwCgSz/Q3qc/mCOesLO/iRmzqMvGYUhT7vxiFnLXDC9pMDZVjG3lUbZPjrkKgSy5lRn+OglqIkp0Wun8anHAyq2eAaCx7DGjgjw9gbXQ6xaTkMQSk4lZDBoGBO5MgyzTXe3a/ht+8HHhDBOuAaIc+/NbNehVKHQ9paagwstI6hCWDBD/R65sQ1tdNdJtftCFT24sZroWDs+67PhaUMDIHQjxLGNO2WZQAoJlfWy/RmXfD4N9PWEIHFdHTRSixlQrVbO9Uh6z5gfYZgghK6aKiYt0x8TmVoDzEcaQ4n2vVFM27oKkuGQjt7/uk2AkwW374BUc68JBPRUHzwW/xj25pGTm7a8ok01hUK6yHZQSG/A9I1YjJybJ63Zw5Jdszs1TadVcvPn2i8hJLCpcmKZtam+l1GrTBjwmkv71+IJYl0QM+oVsl/giy5Jm6Er7omp8PWOTkHfV7bXkGwUk/vQkz3KKFvwhIWh7JEUU+NxQ39fqCEfz60AwlVJw6tNmE9He3SkG5d83q9+oPiL/FvTfmwJluvVQ4NyIkbmmSNB8af1LCKkSj9z/5AeRAIEjnPj4XuKjM0lQ5FdqQ0jEWcYvF/8VRAmvtAPShN0jGoQbN0mMD4LmTHzyG3pkWmFzOCIZX9raGoz4aawKXVKgFdjivSy1msuDZdvVRhogIFjimh+AWP9fgjDTa1/e7GszsLXxYD2jznpz7zF8WvsHQumlYTRw0l7jcJGIrBghMwLW8VYDF47B525b9GU8cnIppOMt4VVMumMEYpv9ILqBnCWirOZt6AqHCL5zTF0+r3Xda6s7+Ul+C+wXKAxsGv8qAGaajV1aMYVOUkWt8VEwfwb+joiOd4jpssCwJ5b3aF0yaKjN/SJTG/Q/I6gKd8I41YSLV16JyYGBjpaXF8U+KQruYNJxsNPSjyC0rm5fjKT4L+nLR1w/qiVVrk9wVxhqLM5v7e0LtuC5QQWIoKgUHuLj7GGN21Wv6BxMl0ALzpbSNuqIb5D9oBhEEBXLKBfhoaNIGioKAim1P6LTBlc9usu0lZO6x66+p6AwqiKf1y9Dut3wCjyJ/QWId/JHS2IfXQlyAnK9+hQApdSSrCYuyD9Xag0tCY8FeWjp2NhoKKUhmp+SMB5zvpSCF0R1HiihL7NVBjM95EPtGXjFbwSCzGhPj5+4bVTyF28/FvNwTwUS0g6d0hdnjLUTw1Jp2dxzeTAI18nRkWCX+rU3BfyrmBSbmaJERoYdoN91v1dYaiKcEdKecHll1nldv0RWpuFWS0IbiZK/GG4Vod54LjsVLesbT05eb4a8fUbIwtzF2HDOd+FBCk9RYS74kuGjwwfdgf8J8Vd3ZJ0eDDQxyuW6X4Zj1FqhndJZEO26ZwcHDNOSdVa6wrJq41mPPAXVbIaOYra2YM80Up5Y029WdWhaughOcVaWuy6cn7buJUeH2HABskrET3Y2cLpPVpVR6PknWDfrntInJz+2+NUf8JzfehOSyYCfnCLaDFl1IeVU3ZBrzBur+SV/BwUxgBuOkci5fIpObK4uuga5F0IOAU9gFnOdncgfIyVNRFMQshH1WFCCzLHJHJJuz792/JvcsKZ4tg4TkR+uwB2W2WMH5gXi6LI1EoQs4fBOmbLhP8p8yGgJFGalyx2LjVuKEExRKj4KJw5HA1m7Tbi2SsK7Gn5u6YwjNm1J6jvQsVs42gn2WQYN4JgXDvh/GeHIGgIqUJ7LACFYoImogn/uQzL84i3duJRE251rYA2NKRvId7e4THWBBJ7VCszLNc6bjFNtqqD1l3a5yyas9Cm9SYjjo19Mb3d7OAkzI3pLvK6gHU8YUtr5ypDaMJWHucvMSQGcHesUKFXjNBoewdtZPSJvAeLNmpZjETGj2q+R0Msfq8+q3iGTfWH0sTivz8RmTb5GUUE+79SKwOsLlY/T6sCyC29lXPDL0Qp028zkMmRp+kt4+NqUsHy3LsZjYg9mvxQwbqfRm+Z2WktOgxdoM9GYL/cvU/LuqNannc/Vm7mbd3AjiQmZUSNJMh8jRjeudlRKc08hLPGNdBPD6BQQDQ7A+NVITu7o0T65Xt8h1SNqTL083sU2jUi2daycYI9OKdpriAZfe6V8PydZwFeY4o0Ij1LQ5YJ8MhloColcWw0/TMmJEMOCnwTaTBgBS4cIPPbJXT1PkWyYPpl93fb9cq3UdRzYEVjZmbzy1smWPt3VhoBPmx/XxTUVcwOjXuDc+EQjrniav0mTYYMw96fHyt6EEPJi1RelMkpafiGvpMPrd4u0W8oFvWMnE0dyiCjB51zZyN67xB5Byqug2E2Yi6yzyuImy2nE5cFVBcWewxq1xaGoNiaRAW6gk8hMDszmgjHE18d30siWmw8kM5Bwa1av4e+JimngZAUBpo8YBaWzcolKIu3A8c3VDibFswjwRcnaMxkPcXD5gFIz4FSE/qu4ZzywaaGVyggCx2F6yRS/9Z9ewouqHOvPyDykOAkFkGT86d/WNeGoaAK7EU5VXs6rLY+vu3xNwXUZPfK1eKXkTlKGNFwMjU5R+CiHN/F7q5aJGzDh854/fYH5ApzqK1jdzhTy2qHVPeYdjsV/fY7aacsdptXe4laAI6chz0Kt9/BNP6cxmObqk1mTJi7uTGucPDjOIq3ygHwbAB2uSUaQKEryfPU1nKwlHPDJdZBjSMBJsvT8pakwosv3eMmJZALFQ6BGYTlZ2h78hX6AUMpie1Z9SIlW3B8z6vRDYwdRIw8nll8cHMVqSwCl2icj5QvvWNtmuderXBErNM7gwg3i+nzIAbzbdmKZiLNgkCcAXAODPP7hMUrzVZ3ai7N14RTKC1ix2crjFQaZTHG5SI0mYkI4qVB4MAnwB839PPMQlh9zk+NTG8DqBv+dbENLdQRqt7v3gMVx3vAMAf/fX3th5ihGTAUbU85W+T2w90AphjZzWUHYtgXNti3b0Zb0/JHaodw/OIrvDLHhmVAuO7keE2S6Sf8lPDWb18kq1N5MHQ4NyNXx7M7bfIeHhg/DM6HMjE2/0hE/mN9El9Wyr0zyGfMqB6zqPtB+GRGxPXgQP3EcLd4Sv6issRKqfONQA/T8KqQN6TASBT8p7Dr8QK8ZdcQYOuS+WcU2vkOOtaJaOs9e1gsxLTthCYIkiESJFYUHx4L9JOPyuAzsisnhUYpQoMO64dm/+/a2GsNgo7BfJqKKfv58O3qCi+I0JNBAcs0UlZhJdMH+8N0S2E+TRbWrMsndE9K0tZB9lf5wlB2K0EdyiBi2aVJy2P2uDHZEPQX9mc2d4tm0AdQ5H3+itWOGqX1FLGVa/FuCmgTr5ncSLHRAYb57NuhX2d+IuPstBZPriKvbsUpiLJ3CdiynP+LINtwuu7uUPSzFhelfZW5LJS8wil7UnRYzBunJY/6+g4ZxNb4zYUHEu/TmLBNM2U0CgZ4m4Tl985MvGy5uAPlqvCf694KDQWdGuo0c0NkOjw79CwPhTgUAsJOzcTI3gjzR0dWr9Ieiq7rr8aNtt3rWb1PPsk5N/NsaOyQzOp+srUYodlf/rn8xBnlDXru2w35udIr9uzCeHLKcYHj5cY7rXAjK3ZzBiK3b/KHJFSeCiPPmzAtPPyNOhhEwQaiB+QjX+1yGF7ke/6g6VH9IVuJEVIDzVIH+vyT0Zo/lgEXFYMmo6xdpbqT4xggufzKHpcYdTFpd+Kz/WWHGb82kn1LPptKABxO3rGfNA//3tomYBq4dxqcIEzcwkgRHxmx4qmaBgwll9PkzdkP9aAQ49r/egupG1ijPzFdqpbyyOofqd797bHmKv80QNSoPtICSIsGSppdczV7MGBZ6mJfC9MtlPHEK9Rrm+gnJxl658VAOkj2YJ3cQqLJaNkX2Yem99sD00JY/Ysm94khCdmKSs/GjPsRnZObxwX9Eel9mwRfXzkRVwVyuQFTCWCWr5PCIg4j059K3EDM24muUvQpDuzNan35BJQq/w15gDYqQoycgox2KZbxfAwRkPjaRqHn21UR5Y1rZtQ6nWYGEPWis8A8FEj8fZ+ix0jlWIONjDe4H4N4w5OonARdWtMe5kddKY/21ZsYWvgFeQQoeEy7z405GFKVXumIoY8j0bZObV9gceMNa4yiYw3/44p8JfI/o2KUvOH1DLkMtlsvmlJSzFmzcghHyoO1dMGEHwRpZMZH8UsZZfAC4LP3DtgTOBE4ptmbMGHbPKQ3qenJjcnhTJTAE0Kf8NSlyward2WxYGVG8bBDzvTeZTVTTPgr3DEbEIpTcQweMXpXVHxrnBW4jtBnadHo9rHvNIeDlM+d8hW0jDg11V4G/4S+oKoaVWoRosSBdnnzj4Y2Q7YXlGujxxvN/Lu59VhTVWVPC9Ff7h+xoW0x83bSI/J59VnuuIbQStPSdq2opHH1l2dJMtTRHur97kAFG2DkNWl2YNNXTtr8HBhrGhIfKLehWy7awofjQ+QQSbSvPIOShJY1a9IqbnwvWzzk7ZNw9qNXKM63H15L1ay5HkBaZab685sRcNiwz+Gc0mRGnSAaDAD9bD9Q/0FIUgwCIyXUY6/Ul2Jz232DH4nNm+jyLIY+VtWPNzr798f76qGEf3yqKMxdeOkfL3GRKpTBcOcYXmod1qbfdwYwjejOmd7A7nsf0YuxX7QFFpzzLsuvlrup3msk916N/wyvECqmLXdyIQNEBkjn0OL1MDrViChDifhZalZSLvYmIzJZWBuSOW2deY8bVGqeqXvSgRZ/vMnoqgszfVw0N/qct/rOa4E/QKvVFXU3QiaiclfzrNlsPltT46Xy08VnTQvWyM7K7BPezXAWRYsfjRmEvS+q4wm+MyJw8i6aGSsLrUsLZVuaRUS+Gpg9MM/dQ7qYZq8OJhilkHusJJ1WeePe8hiGiXlWNWeGU/r1eMZofS5FCv6oBBbBuBylmGWeaqyy6XW964PbqpGJrrxLMnRG7e4cxHUgoTcgKCADaMr4nvUN2mQ6l6hsNvFEFC6Ro/+g8SLA4D7iI/L/4gHr6OCY7t9BIk6ude3wM90gaGmrejXZrcNOmV3xuxcuLl8P8Go4NbZ5Dw6IE3ZEEg1IeN9Cwzb2FdIMLqjbV0/HZ9J43p4VBingDeBuXAZI3fY2hziRbzAzzILd66Rs15GcGvde59aZ16L8K6bOU3RWrklzrFqoDdvw9Dr9LtfgpESrG9lIJ8E0878Q2x5iI2afh/ZafgqcmN/fGDF4C5KRLcqNDs+ds9QVcElDas0LI76vjRKRfHt49lW3o4LkQT14K8LLP28cvMv34075qwACyqHuaEYZeXDs9HZIv4CbDrrFyXkHBzvC7eVHvM75wMJuYQOQ6+BTJYn8xl+gIBU9A/jyksKi+qmRJGH5NN8FN6uwNp7k/1Ee+ilzMwtyyglkwOFS5Uy9pAp5tewvCI+8sOUQoUDJCbepn9FqagYHml3U2z53jHUv8tqM043GZSfgqc5UufqgJC7hIpZEQVStZ5J6jOUCM2bXJWq3atnjKS5/KspEGZ0GQbsRb0VB3E/HyL8ZqfBEBkWtlFhs8hBF60/CNxcoxWEGwz5cwvOuxAKk4aBHOoyM2N/JyFU0/JISB7T53or5DvFXyi+taBQymkjv9W/eOwpg0V8Q0ZTQtHqsN+ANTZZlXtMLYghuTky8rhrMDIZCI/DEMuVTJghqHRa2BhM06xPvWmNIeCQ40FaPNKXa6daovyzzM/ERzReXTzPoXm0DR158UzDp2qw3h54haZDgUzR1C/86WidEJ2s9KNa6T8+SYigoKewOT1GLt9yAXzK/Og9G21LO5edhvM9Avlfd7GY6PRdevKSHvxcFYLPs878Cqs998/lOeJcG3Cke5O/A9M2Eh3KZngyLLW3zdM2gY7NhV5Kf8awG5dJhHwvFZptVICaHSrUakjS1cv+UL7HJxOsIDZGRr+5UCPrmL2zwfWZAg5frJqqL3gcRkCaWzUMAEiQFux9FCdGpHgayM/u9dlraF/BTgo9xic8lUAP0qeM1nUYT0hFHJoiWNU630RXmIRSpcRZycSxeGpGWRtmJUyhfRdBiHSJhHgpbwKKtHd8eUUzaNqMrUBiMz4hd/Cs3kR4hmT4NipolSc0AdWhDAkefXPYZY+swKh7zMBHgtj5WwvWdjmbCFMycOrhYwDlTUoFON5AB+pUH26xdVICvB3tCLRD49Qsn3aVv5lr/RmEjFRXLfsg1vfvcLwFhyv02FNoBfvrXC4J6/HYe/sZXqS6VoBqRq9HVMzONoTHJI+fT1EiYw60gBGfzZkwQbsZocThkmTqNHzEu5aG+6swL/jHeIOSl2bUlvNLK0kwauX9cqDGowkDVcoJ3ltMGnFhrv1kC95fvPIaiznXMk1FNQxh6RPUWK9yXi2gMT1GqD8V7lmWnQDV3kaqR8JliUdCIm4l1PAk7cGi5q1y9jKDZ+15hEm84qHOMpB7OUeOCjXEJOQkXtXY/Zq2lNmgRbZv0J9JXxGVNwRJdx2TbmN585MTPDRg4Vo1QoSPMQ+tel/RW4fjfkrjtwn3ZbOzNAShAEDj3bm2XhFC3XuzAozYX8fT0D6iMvs6usdWUSmgkUrl5acvnOQCbU/dtn90OGChujcjQaK/3zhh4LzFIiZtJG0cza6bWRIUYabM713rToIrT3Z12KRaDQw0dBnLXWB/TAHK7NjgSxvJ4Q8GXVBanWkqrf0rl0GnBsciET+A1Kq6+o6vcQDoXswm6cZtKOTFIcfnFVttjAigLxyuzd3fVuMIeHuIriXHlEutE5ORS8RHL1ZVO5oaOUaeMIUOjZ8tdtA+C6LGrSvLXcjB1NrpeeDMVoEtE1h41jHOSE18LJxLo6+1CUeAMhR2k2Hd/jEw/Tc8+1XVxmvDlANnrCU7eEQM8lgo0GtfEXpZVVXczH+phpi7USisDOhP/W47wdkXEkTAFGLqCV37YUCQ+RZ8BWjHXtrQeLPZ55C3aHzMH2dbQeDBd2OqWdzBxWbSjLTAzFuP0zjX0yZ7HFHOFGUjRVSHXbZsixV2Kktn0KUwcOinS8uFWw1l+NwlJW3ol1uwuH2RjAGClXTTp5MHDu8lyQQfCmVSb6S9DxFQDSieE+iB4iHYyzF3ndA6++Bq3PsmKcaDaHlZFmN9y3SXhIjB5f8kNG/xraI0++9+xNEsEqC62iA419oZfEkIRqI8POTSvYg56pSqJ829knFI7KltC/9HaQVPn7BUMurzirs4cEX6/AUEY6SCrABFYyWBN25Qkae2sGZ9mE9riaxB0MUhcTwftcqy9dz2YrvRf6Sa1tuFrYrpDWRToIjiroi/hdMhTpMrjyWo+cRrzwkSz4haFOE0/0+b7xzzkZh2m6Z15GDrrSjhAivu+fSd2LIJaVP0q0UFFg9+Zg==
Variant 0
DifficultyLevel
582
Question
Which expression is equivalent to 12x + 24?
Worked Solution
|
|
3(4x + 8) |
= (3×4x) + (3 × 8) |
|
= 12x + 24 ✓ |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which expression is equivalent to $12\large x$ + 24? |
workedSolution | sm_nogap Check each option:
| | |
| ------------- | ---------- |
| {{{correctAnswer}}} | \= ($3 \times 4\large x$) + (3 $\times\ 8$) |
| |= $12\large x$ + 24 $\checkmark$ |
|
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | |
x | 3(4x + 21) |
x | 6(2x + 18) |
x | 12(x + 24) |
U2FsdGVkX182MbERFLAahDGDBDj6+qeqV4tSX2EueyBqWT7kJ9J1MAfhb4/A5dYM+vidT4/4ZgMuNKCjEEon/wh7m4nPY8DllW5I0TE/ZI+xY945+7sWUOT5whJM8mlLft9ExtPvIJB+E+jpU6YVXYZkUE0hooHbecxOhiqwADkTzSo62GKy/sf3jWv5NU58qE6ZM1cn6GaacIpoVcaFmGgkELi7pZqfFfqZVRuuEJGqcBf1MrwDNgvSjsD4kHAlj1MQi4vTov6x6EIVqlcnkDzX23448C1kD6wr37pYHD66sgqmEnyYLb1p2+LGJ7U1h8fzU/XNI9CIVX8t1sxms4YRuLK6gevlTd0S7tAKi5b/EmVwYcDF0mJDsWOdE2WBNaZibyzk133PyRv4CkpcDt/B70VcFzXxuduUepa/xYeaMjFpQUQGk2hCm4EW9HsLybBhLMMWljFGXO8pEpJiaCKRmJZJim+hAGjzcznYomlotNzz1r+OpVhggEPGO1GFAD9Io5jq7+vUlmUUic4NVmjaSlkgmSMMEjaiPt+3HHBdLZjEUQQ8L1J1oM/BJiDVZpkGVGS+Z0nvE+2CqDJbCyEfDhGZmh06gWzImVRgsA9k8UTnsq6nuKszx6QA9rdPaC7Pt2DhYyoAmv1q5de7VgkQC7IWbqahlmEZCxmK4oBfQStsNoN7ovrjTuzmRgytVF+7V6nSy35eLwIAf7H/6e/4rOLRgXxzP2Y9UGCYdAD3g4lQRWIyfqKmnWjrBVwD6Rpvqbf4dH+DsbtglroIIqijWPtoiS0qS7WxIM4MuLzLcu4idt8iszbCdcvKO5qATVoiPlKWbzGezyiXjlxUbqMahDH1XYRMuSgTuceLFnk8QHBMZHmFn6j8PKcKyPBJsrhPwtfzWaKKhSCwQQK5fKbY2tQDpcOOdEaD9jYGCBIAUvTWga9adX4BLzGEWmIKz8a9iEhUOWnMdK+hj/i4Z0JlrZu4VhzzZIbRBE+tT3uv6j/3soa2VwMiBbSjieTKUuqiZDcjnrDb67xhj46hx1hgXzs+EOgDQjy4VISzFq7ayMpvbHlIkeak2KdIGmGMFWqassrg1EwLGvEZKE3kv1ZDBdaUMzni6Hb+6ifDk3l9sWBxHjX4NMK1aGyMwohDtvAMN/XCLwBzbzJOUqZ3cAvwqE9eFMQFCdpfDUXkv9dmhtUqWy2m/T1KrbeTT6baB6JPzt8p/LNNCj2qPJ796PtCGYYniUIKEyd+TxGyfdCtcGfuG4gK0wlRNjrtA4iqIjtauqtKTViFoUNpFmsWBmVubgtEefM8jjrBVTiTIAwctj+n8yRAvclfj5CN9oyHp2/cung/eHIZFemtSD5pUZc3xO0zJlYLt54hWiPfCGFZoDdCzGblQc0QCtRUArBp8nMVMwC+7sPLGRJ0+Rs2F0M6/QCd44lIYruR7PkD06BBhFknGmG0xM5/QlEZcppF/5czlUOkEN3xB3ZG9SFXI+qD6YPSHH2kftVLDfJJrtO83KeH2op2VdRrepCyyfSd6CsaIjchuhZf09RHVvtjAhYPYBQVMcLsHxmEDMbqlkLE+MBqF2rN6KjAHhefRQLkjuPLV2ZLzvhYm6EESyaF9/b5YzacJqpJaT0BTA6uE8V5KWTDUt1BQw+Kts4zo9t+3H1fBp11tXF5qSjWn03y5BAfmI7cImUZJiOb99K+6GJNGLrIJbbSLiYMcFs+yo7ArgD95ufEQeecY2Uy7PJNLTrCU4llZ8owrLOh+OB0CnEJ3FAtaZQml9CRaJtF9OhoCx+fUGfyGpn6LA5sY5tP2MftcgoVXeOisMuG3W+SgpijcVMcHtuiKck/ihtjIIh1b/RQPKZWkbVVTTLf9aHX3vaV746tjgYmvPDJvvGUjjZVfmAXbsgDUZtZXuvYMglZDaCvdrjZQm1mBDr6BKMhdxlFAzRLiwXGlaFg4A8r5KQJhcXb8yg+ILSKvL/l3Ldy5GVljvVV9BiHWI6DsLpVSEeFUTJuvzeEgXtwb8BPQhprY27IYRqFXIb8ip/A9tOceFGPJSYKdL8qLsBi/16BogWL66BnaeOfzjI/un3dXE/Q8PGcK6EKnTQtLrSrPLFNjCmIF/b6te1WRfp9rvngmaKgjZd8zrWLFY+GuCOcxmn3ypmwOsaIZldYmH1BYKPeFbpgekBThjDOysyckPMHFc1HEzOOXjA//Ot5aFKg8NYywaYnUUW4V7N1RRoFuxfRKhYPf6gzJNvVW+GpCkc5sw/sz0i5KBRGtvIiFQRGoTqBWY+29I/7l0mW4+N21k0JUfLWxUF1DsfEAnc+Q1/LB9ihFBmRUdifItDLHg90+o0wij5Sf50AMRVNfjvtuf+0uvUrGCrCcDbdVBKsNLGePAshBvXWSaD8o+PbdM7CI5Uax0ezvi+bZQqT5b7o+htemYFb+CXn34UMDn0nedRuhXFEuAYSX+zqWn8d1VFXep4C0Xkh7dTtT+6n7pkhdvXSnQZ85m3fJjizdfK6smIkOL88odMxSfwg55nMb1njoIGiy3+5E3Bmpn5unINkVD09Smk8y/cUfygmgZlBO9PuL7NpRwSpHJfpJy6Cs/JrS0RbUdvKsbsC8ZASOXcgO+TZ3HH1gpCivi0KdZYCdvo/f/OfppOOt0Ady5W749SCeGMq+jXH7JSHwPmkYZJ6pbdt0Wcl/5cfoSG+9M3sOmULEcdnQNY1/101gWZBtHYo8DkobV+rCQFi+LgKQZEAFI6oVrqQwvjQjyVD9Ak5SFgFarFJb+l0RIuWKFcYtdrurt4BsmVyqpsl4OPwCg5NtkVRKMDyvLhaUCs0gBkX9LmN3qeqa0M6IESjVtg7ahgGcbdH43b7iCo6x5PMGNChaZzS/xJXQyxoI9l77+ixhRPOQX6VjCSDuLasm163Q4dKqZHBH9cDhupoRn6hcP9f40LjUsObk3gYsAYgjM0OOgjex9GTrgepLqaPm4aFXbDpQ+39idTgD3DZ3NkoMImlzPXwP8177UgK/CVfxSsgh1+VGjlj2CtHyM1wuvZm7TrRKjlEK2d2IqE99uAsUyGwruNpZbY0dAj3M6WFQ4if2MgrRTk8gZtA/YbluaNEU+u7uodjnd9xpflut6ltAxEBaKf1B68Xf6VdK4/IqeRQZcVzs3dyZ847LzCDbtS2pNzuOLPDe7OjrX/2LPbTJdf5/PhBACjNN/RL5ny38Yb1MiN+i9dBmkZrhuhOlh2t2pkVJAEvWCetlRDgMCId8PEZTjCursDkLQnM8sepd/+1b6edDWAAZFi2xdwSHv3INsjA1ZseAaqW4HBws0lzhH13+dPy3Jk4qpirYOjhiqDewwXLl3qRdXttS5SYwwkW3u6Qw7CTt+oPMUToOemgCMs7U9JxDElqegBtg25Y8HouI1PD2K0BkJtX5f5XpgILUnAZ+gJmZE/j5iRDd2SJ5gQi3wrsV1b50jnjocKYmDjbbAB1R3+hdb0/IRECqDXy5dCGEctBWWC/crYSIWYLS7OnZ7iTxMgAHP7h3udA5uLl86pT7WVlf+olYiKWhcfVGpw7M7Afr8R8gCJvcmjRQ/WxVbv9f7TP5YpV5ehRSxol+VBqLo761BgvYPof1sS1rkTSB1dwHLOzgkGL+R17i75vEedk2sM0fFZGyVisjmBNkX37S+XFO7oOHGI5tiOuT4LrUpJZCZa1rI6LndIY69qQacC/BxoT/2z4raE4MP0p4CbKuDbjcidQdvxQf5QfxEXU6Z7+mp0fpPNb04LKf++xKTT79sUJARPfmz3QjmcZsjo8fslnarPa0+apMnGG2H3mY7SO2YF+cUmKxNu1b8Ng2xTqxNIOAErUlQWMzh1hfzfFNOEGqHc7QBwzDKOb/DQ4KTIq1iSslHC8du5sqC3EUNT1STliFfKlI9eFBXhPEtAwk8WMy68tb6iuIOKZ3g23f5l7VuRMA9URNmzNdgTKXBMB+ZdHgQJR5rijjWW3gYXZhm/746dc/NqLWD368wHFqTVtDy15BPXFqeEnS0spU9vU/tMLHG1C1O0sdUHSuvGtldsdfCexe8cahYSqpK5Jr1EfGKdlQasP7yDJNjbhn1fXhrlU53xtFjtoBGulAUJgUsYOXWYOGLWSWK+GULxD0a28fR9r3XbrThKuABbqkzej6ZqWfMz4XROTqKlD6v/yBJvNlHzpc338d3xdwYpuOo0dxbQey4eW6KIhWXseXEHXVIsmCQoGPbBjxxLUKGy+iPjR6N2PKCHuHTgNSlFC5c9jCib0nUq7AWIGycoQh90+TE6qnCYJTJxtkeEOofy9/QqycdPDipQbZrFL39uejwqCCIShcp4kqzYAfTDMSrE8JXAim/4eCclajA95sdxJX7LJf4F1ybI3P08CCawSzYDw4xENzNnoQM65P19jWDiXuQZG8oQyKUd/eOaXM2csEZHeDhp8ZMNPEsOZZT0V0E+4V+2qtr9o/MFkzJAUv9Gw5IZuHfezI1U0bi0N8YR/41krN/lTS/m4fRgkKad8q0/3h+bdcR7uNIabWRwe50N3TJcBf/IQhpbgkhUqbMCu6abuYQZxwciyuK8mGVOG9tyHehlK4kxWXZMoko0vUHKKUnFS3864MTP1avmGRsYf0wiQvak8J66X0DKVRO72oGMYs2wF08YGNDvNKHJt66adK8yj7a5DJtQS74Dwdv0fa1YjSG8cpN8Xd3MEnn31kG1n148dm77SOrII7PVhGSm0gXhrNbh9wVVCPsGL4qGfUBWUrmN6Y/p+FwMf3T/oLnWqF2E1jdD13IBycgo/R0gbN6RWT4VF34l/zG9DMueS8Wh3CF7UUVg572gTh8tML07RBVWhF2FCCQor9JzsobtgfwyQEMkqhY8bCeBW8Anbe4mBvtkG50uoWDXr7BsA9CI5oT/+GPBJ8qUgazJN+//dbYcOVoCGhAFAPwuZwJtBvwtzSX29N4ZKFD1LUk7DFFJSt4XGnTpNyrnAx6f03iQqQyWav9xKQebGhmyinIk5vEDyWKXVew/fKbBVgO+if1r1413fkGxxje4nPUlw5vHsmlWm1ktrj56FzfDw2yVMrnVp0mNIcyWMYr4Zv3cWUnn6pbvLt72KEC+vzetutP0t0ySxxY10g65jbiuBc9w0OCZVw3Hd+2B35lVl9ExuEXS0DQx2UOMWOW4zxZZhdCEjesspm+/wwqDcDU4PcTDE2LQphuYlr3WvsSOXfCmEFMMRrnrHEZ2GLDMPUutAKwJbfAFnVM6YCB3OtY2svs9gzNIRQV9QxTK5RISGugl/RhfxpXiyvrK5uJkHAEwEfRhpaW5sZkKNTmsvO0N8qhdsu1yuWBTMKsbwmYmx0tx1CM6/3/DQtzjfydOwvNAJwQCflhHFcwfBLIwRdRnuwXt62F5U3jl1sxrfBo9Y2MieFECM4LfZtxOn1OTC+6xiVVeT3pmLLw0YUscRV6L0EuWQb+i8tuENNKOZgjFJDP8YBimaKRW5ic3kwYPggMdeVchHnEPnamroM+2H7MZ86pE2e9S+kbUIXbgwXQX59raoxXPc854BrlToGcUQ2iO0zLJiPbGq8OsbN2dO0pOqd9XD5WnZPaKaazEvEo1VeZaO7sQNWVKdeVQ02usafdr+szeGddn/scqSj4iZxjqgpbKfO0/Kuhz8O4Te4Sl7PA21chSDYkvtQUgoqYNaejTRX6pmzbvNP4eF4RJsE6QBJUOibnZR7r7CID2SRnBkHlpqv1N2VDOlpMaUMuqHM9pJxTvmuRiAOPF9Ms2+KyP3ifkyMwaO10dGUlqTGqtX38ErOqFuHPzbt97ofPcg+WKRv35UHJQOKkuOoulJv7v5ApghQFNAR5xa5yt6pMgHgzHfhzryznuoqXl/VrQrLH/eYgzXqnypY2+lHw7rMfeGkhGSyXpVDfHN9YvtETGP49ZA0xwdBguZW7F+QcmhlRO5zP6iu5UJ7/dPtzuYr4YYsYOcU1QSE5W14wh+sXRmb9opWvtGLJ8eV/JiCEZIq2fRKRC/QyNIGKgVIEHRxCSllUbMeE2P9XCZr0UwLpemJvI2VsuoSKlA9C7bEJxJZeHyDS71D18ALmEvFvNYpVXaP27nvQ/KBJBNAuqnUZrGNCJ0cfkiwiv/GRGd6Ln1DAi7vrbH4b725FGa/uzToOTxFiMYBINuzI7L1DuRXI20nLqF2ajNnLnmn7X2FY7BDBGkepapgQ0OR2CjYr4OSpYMORFBApw/xXII/3Cc6PbgPYw/w5hHfNDNfhqsmHe/E1NFKCwdbJTBLMUyq33PMLcVohqOTmXvOEbbAQo2tjVTmJ+lJHMGTeLNIS0Cbgq/GvOy6IC4bm/NGIieK4+6/PZB3A2gVYjqsPtuJb4IKwTY/3nBba8L/HMsY7M+CUjfYxUFwaYtpxhKwpFB6yJe9X380gtvG/vcgW2CGD4Lo8JqpdQsUq+5A2YqVphzx/BQyDNkSc5N9JrQ7PYy3gbGmeJDXYoPtJfIUmeJTqRWlT0ughvmdQqpXWr6mvrjrkoi3LBlR5nKW60ba+5laUORgezZztrpbLG5hTD7EK6mxPkU1bJASEmICg8ND/xf0ubpSzjb1A9uvH3Tsh6oeq3v7HsIwafpJ+wGOESwqjKYGcW4tb4Tci8el7e3wLCAbiZYPFusbCt2om+BSTeJJqwbR02CDirliWoUXb/MHEWE0lDv/p866uMZLiLeJX3GsM8hFmwSDbFA4M24gM34ENomBcGJYfU+zoQD9upmljkew7RSp5PvVhNliyn6FNwMwjn7BBGaYKeQ0j/OHcqlZrP0jh1Jw7uUEyeKD/P7hdRdfxt33N14EV0X2LUILvLKubOXQhrMn+wosN40SLEemqcNW837myA1Su/zq8L89Ossy5/ESCukbyX4cevMk5HRRdz7EMOe84Zsp3s/Mhaw1bQkJnnbx4IXQ65bv2d7MfGWbN6wrX0wIJ44cA+JBu1vDyR1Ij3GkWjPXEPIjC/v7XLdCheZ94GPQ9iUSY9f9X6sMOqw4oBihGkNFgQg/lwZaR7xMIenx5CqtYLbuSxixSlUJpilmjd+M5o51uA1HrDwpEVHOw8z4jvEzDmaKp5vd+nikQjuwI9oQo7tbUrx+6mlBeoZq3AfIoN0Pxp3iW9H/CuhYL3Es46uArVbFNyUE3CUbFzm2HKiYF6feDr0rC+cOAWETmLJchw08LDj+XRvAfcf2ptuX0MiA5seOOQIPffwKjoJPw/DcZH50tMn2v/Qot3dFHV/g+1NHF+9bb0w5pukCaamNwWWyMKC4W0SonhRPJ5Arq77fT5cZd8CtZU0drx28EpcgSPa+s6j1io1eWqM+0d0KfwvXXNvLTGjjnT7npEoXu4ZEsvmhcdWnRQA58usQIu3YOYcr2MxXoVNY/2St3kJBzot5G4GQYW4eAHePL5m16lcbOgzTCGOlgO0fWnP87QuswqnhdylmV7f8azQT9fQb43eS10ENbuMoSO1/Nz0xpPzy1R9/vqJAaSKdFUePga0JhuT0aun2Cr5jk1noYL7WBVuWrymWI1GSz7X61ac5YvBw3lKrsT14TVt+tHW4eyJlBR55mZDuba1vWzBowjcBPW5kVec0EcZCh/noyofhZtodLNoq5VO0x0rkmt+mNLrDel12DO6ZMkI4GjVdIInOIgAlnzz/NwO9KSU+8MGQPfrNcoSTJZUsaIqtIzs6lEUX7X42bqXDymYlZpgGE3iTI1q6fTNQXNO+h2YVtWKLxCE3XkrXQjpxgK6l1Jg771b45YaoKuIeyyTrU4BwwGOV1ad1enXznoQjtu86FcyD3DH86XjfY3kp4QxyENlO189hnllo2uRp36j/vaPKSWVbV8Jck1QeWiiuutfnfcrSVfCIJObSK1HXGmQ19+lmjQ7CA+ry8cUK6G+px618Y5iUAYci+mPPinjaEzKmLB0dx+bkjKiFi5sj5p19nDT149thbADtsg9kICJlLlOsUHSdxRGNLVDmNbIHrCAPcL96WB5EvBCB6Ycj+n4GKroOQWnm7fI9FW19LkkKXWlOEvevZQNR4ryRvHnnamfWdSg/Dg3J9mJKQsgQbPtWwWTh2tPT1H4udanzm2lZf6eQvKM3Z6e7oZkfy5oUV0oBnbZw0MtLCyZjb/yERtjgdHLhcRqtqycuKRPZYZtzl2AjDbplr7M9kJ4B4B7IaJVtqTzrJQDuwqG845pzHKLkzlGQ6Jx23B0SDaw9Nsvq/Dfh2KJNYvX4jhEJWfAwXFzhYq9YTv9mXNhECmsr3YrYvXEx9ZNm4jv32FmugVwtddrSel5QQWffCocpzmZ00qORmE/labzZsiLj03U/r3WSvhEt1nlpnk98SJ1xIW0o8EQzWjX49objEUTRhGQGbM+BhGIJvoWcugKbBNIV2s4CUioPIF6qCfC2kG/TEJ52XD8IqThAwN6gCYBwCzP8hWycNrcNuLeWdUdkU9W3gnuJtIK1jIfYppPmurU3VNRbJuc269mnXQiPskNdatnT+oFNtBvkGwq3weyPHwWgp+Z60kQZ86xgw34tJpssxQ0P+dQ6/tXx7vl8eadTUezFvXZiqkeuSECmprNtmBaV2za+Tz6IdPj7XVl8shA11bhojodkVTY051xCrKluv01SjoUw/x71qciB0CfFuAYAOi6fJXa/QYXDZgOvOlePvAb9zhCuMpbaICnoS+taNQpxaCGE59G3rfUhn4x2NwyWjnbxEoVUBPOXcIXTDshEf47r2d/NV66x9U5p1eEPOc6NmCMGl3kVRp0F1WOuxR34zXHNdX9j1PJ00F6nGY3LEk4uFKWHE2DBt9WPS0OoastV2RFyvAzN2jb7z8iNTdS8bSkWB3RuKdMDBsrrg5YHWcJdTwtUqxJo9IE8kJWO2nFjFRdnFCSqkiFLIYF8e5CCzkzjrPH6y4C8Nmv8Xvp1jcyajiM9HcMmflTkCzkJsV3e3QB5ZZdJFSPfiVshWIVb1tiX/S5+eWND8JRKXdn04dJV1ALyTe4LL2IZKk41SCPcU70cR8VC5dSWQMfneExrW+Lh2+4gCnfv06ly19S3pcZrSyFZ7gQ+vh5xsSuNSBGEijw5eV9lo95AImCj5JrP3KBcLCfvmqGc22uJnMimzbMIVl+fkNqnrgU9J4mHjWd9YaN+7qrCe46y7ucIYR+p6FupLzcL3RYY/HCQYU4Xl3Zr4TlpGWEZza4JFq7Na0oaqjnJBZDgja3xQQqafdKunXAeC5vIJoNLo+IfIAGuGUOaI5Ab23FUJQ/KwV1AiXYD6JNo1hLE2NNbOf26J1IKlTazKmUGDffZSwJA4DC0gJ9IycBB8M5fscrlW1ybzFZWMI9dtCrbPF9V+FNKdVUehGjbF5sqDHOtEgBww2Lfz0QVwPjntIRAYaLL2vbzFDTFEW2ilCIRTjg63IulDJHAfLpYRUAumcY3/ZhIyeaKgkGPtYNa6M0dcaiHbi0PAw7jg+GxqLw3Q4B8t2VIyCmAcFJHowv1rSKJNMI1fHstWRWqs8eUJ+RFe2BatStQ5A1dn9kdYYuSiEZOSgWMUAI2mgKtr0LJ+I36ph4jpYi8oZG1k4S89zbVw6+Jr5UMTQJ0fIOUvlq6kITjrEfIlDMf52MotWNLAXu2b2zwb4dg7UFUJ3hwrmnwL5kBm4pkknC9uOLZFoKlrsfjRyuc3h9aJhf76MtpR5uKpJbiqFfLcvS40YrdNcgrmimzgLRw4IG9mtbxLME6753ylwu3KJf0k+BwvLOMM0DwnKfXHWQuOqR1VrTdmTEkSh28guDK6Wo5hczP4HS2rnL0HFLfwQB/DmqpdEObYYExtLewSUWzJF8hPw/AS3ncazJxVJtjx5Xc4Q3lA4jqhsrM6N55e7VfPlNvnisrZKNZOxf/tglu1yTGEL90EWLZm88WBQNQFXxgAW3wBSnC24Y21wWS7k4p1Xi/AEt78TGRKccR3WFNfNBlvANqtT5mphMpRbXmVd3xe5kXzhZ8lpZVB790/zrsdU/ULxfCDJuDSt+5+lPImOkuQflZbLRm9TRzBZL1pc6JTqdGqQwBpofEIhb3u7L/KlHd5KgP9L12f9v1H4pYr6T0NGv+rPR6j2kto13IqSSIHkFNfaJ1BkUBcUMkHmxz47BjGrBz7g26A3ekSE9df79ZP4m3mDP15aROLAxUwUIagZG164bUp7M2OYCVvW2qHD9bfXHp3QOn/fjh3vT6/rZCocUdQT7mObJ1Zc9yIJ941C81T8Viq1WekY49/k1OtgMzkxbX6NZ43MRznh+wmvIVQFy74QroAlGPRC1AJyu9CtkcsudaDtuW2OsIY8buFZ8eHhpXI81gA08mQPrvTM0TYSrJ5rYTnRHbKFopYwvFdeLhJ9h8zcRzqSfoJqQNRP1R6vKpgT9mN5Foa0VClzoXFRQpk0WW5QrB0RLrDJhYVWZ+6QmsMKnVCjmCWRtIFXy2Hr8x6ZCN4e1jBvUXk6AjwuYYD2ZDWHw+tVeImzwRpb/G0ek2YFCMyGqRi6cisV7mmA9EMhvJrrJS74tiMqzCjIE1N9RnfoqG663FYfrSQjwIPIPm1pDWRUugwcz4Gwy1qcPAA7dutZ7YnFsa8Xnc1qxZQM5GNaa/cz8SPtVKXCEo5jLpodsRkmLHFexm2qi94tHdUHR8hvG/ukLgowkGy8JKc9WD+ijAza0DpBTVkq0E6N3z5BNA+RRjedPuoqBGfc0mBdfuJNtBrm+VbNYo9xUHzmjRCZNkB02fsqGIa0rLG599p6pKe1irBdYbl9L/mLxo21zi8RGmZ0dYkC4O2lQjLIbkhqTqxSjI7Hl8sJnLxE4lqTSUDMXdvDEOhAT3VeGQCAeJZ6LCUli9GnZRDeB2R+xunKDVuEitRjJvtenCrOjiUT/ahGEB3KeOHDTmAbORAOJynWdRCyiDKmOIm0r2vle+/3lWP2zgYn6yvtcmVc/MPqzDjPvQcI4lH6cKeDpmuNSPdAuJwwxS0ucrppAi/jVVAw7cP0qT3DGAH/jdmj1wB86pr2K83OnhYhQ5lPtGYveyDWT1Az7NGESbjD7zPpH4jrMd7WoHPdCCeVSig64RSeIKrk1ZprT4hD7+bNvHdG+0B3CC8XqONA2LzWqKtEJkVUFdeA6TJnuIA5SmpkL605kfqH+EArIv0Y/Iigi4u95p6hNJZxXRrJeU8kldSqR1om59tWSNkd7v6gxUwSt61v8jiT+vkbjc5epY7KArjiMSYaos4NcdiWJ95AtdLC/ziEXo/XsjrYGX+ndrEm8p7pryWs82Mbvc3W6waJMYe4NhmlRR555hX/bveO8c5WTEKKwsi8J8t5s5EIQbJGyVneXTiTk2OMcho4sT6VmYvW8FmDrTNar7BssOYXXNvQTvZ3ZVG1ZkrnVH/1hLnHkUze5ytveU0jwcxQrHDIOB8mA9FXRIVZ8RoGuiSS/qM1FSllOGzHk7mA8ThiFIO3FapMVB3eGIbF/ipZ0FhNWgiGo9rNB9urfewh82a2aNlD3+lRK6tu2IA3uLMXfOm+lQc2stzWAxg5zlnFaLJyWJvBtGYv2Wk0XI2MgVO+girt1ZoDBUVQr7FfwrSXFIlGO6p3owlpWSyumTAXk415wteHSV3LDDy/VKZGkrBM2/1shhpBPEzG/44uhbUVxNzfVkPvNHCkpEedgd2Cp8rMuNuayQJ1Y5o9ApGUs6KMdIpF5i+BAiitkn1jYGFD9c1GxCSBRPT3pHQpP5sz6NavBsPasNEKm19a97GJx7OFGSyCQrac3cVuoydY8qaBndPwwXy7r4qd8oYyy0y32r0GUXSUhG9hNxIDxWXMni4L3K03Zfn61Ps2VIVX1G9msxxuj1LiROoxupg+EM53OHfxBIpSNu6Yi4pjPoVT2vM0fQDcocsIFlBOY8Lo+7WglEFo9xUH2WUZvfs96ACms7Evml7m26ixGyOTxe8jFesUBXpq8B6O56GvxChhE5MB0Ftg5Pd/3FJH8JIKNHOgfE4f9N69Yyn66N+46dZka0SWLwCvdNeipKQZR9h+KgzXPkwSwfU2xJvp+1ZaWkxcWfMtRBBY6PNTArnUO6bpzBms2vUVK4ciYHjodcxe3MQomsJ9nzUQ3a3VcRvsnP/rSMrAw9pztEnXhG6Ay67jBLCvguFJibQauoj7pu2vn2s55iwxoIDA3p+b2lN4sT7t9bxaGaGeaoKkcpu+L/NEywWVBMOOUigTgnWuP4ee2pF4OE+tAZYYVlcO3DVHemCClMZdj5nszNcXiPRsRIvePoJoml20ltwEr8SLJuaOednd4wX4ZV4iUaIi0G/7yeSlTKDtOhj1XU929wAnppTJQAns2xpxhggcs8WctRSXHfuo2FGHLm5mHUAUdLofchGQKa8z0z7B1qSoiBG7ThlAsOU7otbkxMpqJjVKav+GbTdMr6QFUu/RNciIZqc4MgkV4/g1hvp9gxoQ3jYmgXc1MCys8cbhO3MahnJdYnLzakZT+pd4L2nRh9D/dEIBRagYNI33yJuME8DjBBLJg7gmLSTx4VWTnvkkCFAJgUdlXfPCn/L2tdtpcd2yYNPw87STMAamoWAiWe69+4m+1MRrSo9SzCNDP+/ePKkIAY7kRgieyoaF72H4TSM4A65CBgQEIgLX++08GUKlwdWwgUWtQrEGze3yx72X9Q6Uj563TvIusVLEDnvCaqVxgPyg+sLEXRpnapsAOduJXLbAfVQ1EDIpczPkwM3vNv+c+rYNTUPuQBf3+AsP4bj/CGXRuSSP8Udu6KunUJa0UyAb+Q/isj1mt0ySo3NoLbWAavvKq1Hu4WEGknJeR8+nrnZOl0MWNvn2kJTBJQMesWgo75KrSXlotVgGfH2CckgZFQJ++JBKbYLe+ASlrh9KEbMbCV3DOn2O9Pmt5K9atAx7xD5fzoERvyEWyXMg9Kvsk0DEbQKZDzJ187aeNWoQC/JSYvUYY1BDZRbLuyFNAgZOmF1iKHpR6Ljy9HM/wo7yHLDY8rZ+rrlY4salVPSVz6j2HMpR1q1zH9OecKydqQZR0hZZa0MPT4aPfSIoUqxwmLHikJQyR1NTP1HhtIz6pKMdplf/kSAoM/L25Q3YYavOGgDKWCGHolU1oAH2nSdzYvrfGJ7i63PQ4WFbRbSCC3nCXGDfJTU7D6ovzw6YIBH0UxznxIQ96S+4fnkpOlxS7qEixNkZaD9vhfYh19RZYLlqwo3V9uUcEB6mKbRsfEHfKtA9Hn3cMNg/FvzQmcYkerSfOPAf/F2G2rbFM/xloswIS+wcNcb55+NEVzS84gmqDaZpAvqzz7fQzFuw3RIbucr8U1vpxQZHD7l5emoWcdXPn3IKBjbTWzza0zJFDKdiyJm6gEWLOHx4317J51szv4qx5309lp1U5f5tArhrCqEGG/mWIbn3eOX/LtTeuXwYIqBIWVxE00ftr/lK2ITPDKGNIq4qd48Pudd+vfCxZQreX/BHxfE7HjutuBf+M6uz8g7bryyZ8GucfeM0g2p/w8W9ntga+jWOo7qdmFzAJzjaghKItUbQWLBwdMWhgDaVtIl1Zl5b6Tav9dCOg/6MEp+aR8RFjZsXGdJt0uJGER2Cncx42w/WvNh/ThkUVVAlyGmVVsSZyb4JsUl6DvBNM8LM4l2UTdVbjL0TJn+RRAiWEvJd2Bky2P/MIjsAPyKlwSE0yTnwGbjdN1vuwyoBpxQAnx5Aj59TldDDGg3lFPu7xEkMcNyWfU09Wrsduaf7BjQ8GHaQZp8mLRVGh1D8IzwIX5lo504U4QQ6TSeC79vjDi033nyoklUFoPkTkV0TGwuNxEiqkN1Szg3Xer3sbYXZBXCjrvxc2ev5NTAr70qD71Ej2UPMu44bOA4IMxo41lqRc45LBHyziEmxdm9lM+AF/qIG0u8KQXsF18+0CKBO8F7zqZI6X8e8qb2zOIJiwRkdsUsHBCbw30KhD8O7fyGKt71FDU2IKKsATgS9dyr94d2e3FXV3C0ngCsCz52Y1IT1/ElEqxhC0CqrnAFzbHmaqAMVFUCFlgYTF4xPZ0B8PHBtuaWMU5W1mdO1qQu71hwGGCnyd7YP7FA+Ia/CElmlvU0KtcKLRntGqmJmT1xQnWCwhtAyukW1MCw5i2fXthPxKCzXE4mKofYm0xQdbgbJAc3Cy/kO9PrF7q+khT/0LEBMnEmVEQzZxUSZzHBbj+32UGPYkReuBmaav3DZ3Zf64MYw9fb+2AFjdMFZQByzLQVm/ljM8Idpzt0l3ryChHJm4XN6UqBk6ZKorchHwKRpqkEmUC6b/+NDY/45M0+xPgUEPqCY2qvcj8WmHUcrBKoc9dJhb3QCm/QkKEznhGZTyKAe84Yq/SEUR7ybaIfm+Ilj7Z4LH2/ECodHfu2XReZXue0uJEhVe5F7G8fnfwxBlhzuynaecXRNEm2Iu9jGL4DEyzUdKbxgcUXo2l8pmK1P034iIq0spjSQJHnxqLqPp+1betBirKTziXEYyBxDsbx1LP8U8n/n9JcoYQCGTTexF+UuG0hlNMLcliwJpTTstbz5udWN8RlsBf5JqTIh7tyX0SB0fpT++1RDMTER/MwbNdU9WEeRwJDM8lz8Kh2vvpkOLBzMtvpOO3lBEFmV66zojwR0+1l36Bypvtmddn1fsMB0yZUcRdqbGdSaLd0PB9cP3h57Ro5yRSarp5nGLvxjQywFiimIwp8CYa6eUhG5NAK7zXb7gCZDtEVVRlwG0/gMp32q37p5JEw5AVtJul38N77evDQwlPyQIpsYonyT2/rXvpIB//ZpApRCuDnYjkBqtCdp5PY6jwwHADQbWxggX07IRcaRWOimOOiTSWG6uBG00WVwvVtIUBLFvx/hGsiZ1t/9sPY0zpgXYfOg+nE3UwvKLOpSzsNn5qKsJS/qydI6mjy8XqiLzORRQx0DFWpz5SPHYbwtSfRb1C5WzWwoFCbU+g008509KqikLsI8SvoPlv5UTO9Z1MaVAZcFlexKaBIQHjQH/UA1ngR38RggyxQc3bgmMhk6F5XwyrGXXBsceiazKl0IOskJYnsfY93oIB7DBHW88Jn2nbWRLXWpQQiTPqI407N05M6F8ZY7AnQvHC95rmUPt+eQ3DtrlXkej9Iihe6eYuUO0FvyEssMKz4mQ8Vaen0uXZkYhw8iu2FNPfetwkEJHzsNlO+sNBJCZ9TLB3Vi2NQI5kQMuZKLsUt1lwPuM3+x+OZ7gnXA/jTqq9ziNCbzKlIdYUwSlG4LIXiiYSpS9NdDqNAS4ooZTtBGxPt6apVy/GP3Q17aWQ6LvioW1Bluz6KBoY+94+7VXHWJIAuKMOMp4ITwk8BcJ+YO3B2w1lSj7XHA9Pvjn2+sCM2+o6t5OexWVCxJ+owXKDot8b9itb4ymLgOMcFeyUFIzGJZHCpi0vuQ+GOm9F1kZeazllWUzn4IDJFqCjenbZYjWfiGEea0vvlGdI2/T8o5291ySYjFnVYAyfhpqf73LvS7h1Ds/v2fRW1UaCYTP2wHEHH/VHDLLVpXY4Xj3kHr+LHvxVWfjcqn5WaV2cI5rPkYTrTlS83HKWpKInG0fuFfU9r79MZztg9TC2HwJFp0c/d38xD43NdP573Ebdt3LexKsPXXStvYUi1C4RS6if6S3Ol5xrymO6hBISeUDdGblgJl9FFW58MEgfCIPk+QwrPIqld1bGRSQxErbqzp05UWVqnwSZ/yUx/nMCC6ZoleQVpPFiSCwkXadbmT1zGv1Yho+dR+Ag43M3Y/Aq+7JsBYoZt9ZCnHPdn03iC8SqJcpCVNttaad62Me4jsfUHaZ4ZyOI+HbJqCJulWV/5GDpYHTwP7N9elc+3h5go3gFnkJ48uXj74vQWMXlivQuvMIOwYylOLmR1g2e25XzPgngXfeQVwoLbpbIXS3dJ90JPuYEvhMGZ0xq/1O6WG038uZPWjUkcmgUNDLVlxFaf4vFFDW5k1mFyvqBn7CZdNL7NX/Y9z2ssULlxWEYj1xOEtpBCxb/tsHthlz0f0Ixg7CYGpjk+dnQwJ7FVwF+I8CgqFpwm7XmyRJHF6GWpg6zHUqLOfNRTpT3cqSCRC4utBG199XUNw1LQoZo2yMuijBZavROSvNo1IrJxVMCdw0rsO1rucyb0P0DFAK+8r2XrBpgBgmjK3iA7Bv7cObM/l04hqGjLsG0Mg05qk7L7u2l0i9appedyKweyKJwV9jBjhDLJz2encKyICXF6YHebCfLHeQAqsfkpY+AcuDzB5M6j57v/OLTMe7Y+ebwvPtjQrvJRGIIa1IK7/T4szr5fni4GFjnud4wohdlQQnMuIDBjkbGxC95fYdp5RieQ6TM6RPctquD7p/MVPHuY4vxyOwXL1iQ/CBaCy8dpGTZlyivtpeQAwvdZm37oKqgQgWUnB8UB+R0biLc/om6JzOgo1wbOphSUicuRMp13iO/erEQwR6PW3yGCxzWi63b15Xd2HSAdzS9olgiogixwsaub2jxQ44phZxknz2nFqWSZsPHwp9LfpTZASxKx2ciqCQF6wSHw8bQsK7wI7+26w2djDMH0QEATDf4oEjC/tzFQ/0lgxDFCKa5euEKnIC4zzPpJPPlHF5WTI4OE/GVlwbQsblPYqr9ICav2ODO3xcVD81+Gc963TZHtSu0n8XGfYN0PePZ9lD15N2fwAICL0yyFs1W/D+Q5nc3axXYcRGJoKxEXYnG4i/U6NWT4ATIfweFs6iaaxez2hm7eFhT/5Ht1gWjcm2mGn+k/wVGt7j3uThCjLZsJuCFQtcH52u0EadfW3cEA6evZKJIVuN5Q6HljZVutGFL2cByWk6AZz8x/F/U8i6ho0zFB1EZurQQuMv2d4o5rZ9L73YU2hJSJRyCszhYNsSxdT1gamHUpbHhuOqpMXsphje1ZrTrpuC0XhUyEWZ/Tz2nldEHiYwNzsbqHGTmIGnwhRGYvJxYl1Vk8epF85GN8Nx+GIGM3mPvW/VrtPH+c+vgq5WocSZlGZm++/8k6mh5ACAestyztsjP/y2AljXzks3VZS0PKrtTSFzKFEpbQqKsJIEmJU1CkrW3wSVGoAzBLB7B4WumIZP5kI5RmCM3fQ46O++Z9VfSk1o3Pz0k8uLAG1WW9IYdDya7FQNXpG6IDZ6JWYP3jlSCgFz2iB5gVukRjY5xo6+wyTbGc3Hq8IYTgGutukp+8IdTVFhIsaAAm/2jnOVVwx37rT4okDjpJc/pBPEkHKp9ZcmgMfngadsFKgYkNGHEhpNvmQRJd4u5ntvUut7ILtmxDscWBktlfgBpCtk6EUexQOzOAeakYlF+1DnFT2jkffgyg+KwJv/lM55hCXzbXX/l0IOpr0qhL0b6AWHxAq7llxyLyomqNOtLKZBG7+AXryF7YAKi1u/HBa0ldWOgLhrIbKT9KcPGHx8cs0l6mjHaezDFvJ7gakUUfkomZIzLQvAILQxUsO68WfgnOHFMq20kjrZjLoOEQuSQrqnorM/deEumnYHuEaikIq+wJUzLK9wLrdD6El43kDwQU2hUH83nvueDso3VLWOI0F3fvuuoBu2OX47SUoIllnqcxjC172YctKf9jAecF76xsVMW7pbahFnlD4CrzqKYLqHlQnqojEIKxsYEqBNpD9c6zn+BIDf+4FrbEMyILMA0TKSRYgEbBumJOCeUpoI+Wau5AUuuL5lG1vsptEGA4j/NbjCVGyYRV/GYaX50USv0nNuf1yAMfnWw5yD9rbWBsgXBrWVgYnHlDyy9b27UNwtreR0Da6ikcJUsX1nn1DWh6C7M3HecErP/hEFhDTtorZ7TkvkUWmbWOTKB0vGYjLlnBM/KjU18uzf1aTS8ZEFgmcQaYdbHgl1UO421f0Ndoap/BLuwXKoB64x8EJLtmLfrs1uOedEfdKs7o+qV5CWqyeGFqpG831jjuEX1EBE2oD+YhUZiAL6iOkn9iFpuh5rP5aA/8c5kY1d0dctMkDwu73EUnJBOtBo7OgMq3PXQ1CtzBTYlxe3jtnGc8oFZC2QN29McqocgayFFQQQ8xTszem5zPXBL1vvpcZsh6qOS69QlSY1HovAuE6jOd3N9rYG1sVaQytDsLUZx5zeZuYJvqIjnkq1LKYh8CD+HKLM1ZQ7fmh1zDdpxDL9wwkSL7qXJrrZiVAG+5pNnzQdDjqZVR1Zoh+QRRm+aBZ94vvuuYOmqPutpFL539J+/8v4beWLuJCgZqsqT4thf4n9550DpNxM1hrIcXixwbneCofWA4n9jhT0mbEfY50s+Oy+XQ5+HtpxSCrPVS0U8y3I1ICyEBXbNYuWwzSL03/1IQR0DMvupVOKt4fpcIi6OggHMrdOoRBILnJfMws50QDo9VrEdhRF6ZrsWIpUtOcngBRijHns68N66sf7WiQqQLt7LbL2wqeF527ulP5lo35u/mIURXRptYkmG5fuZ5Jx8ybR73z8Cw59Z9tCA58abNsSXT4duVECSs+X6JQVNyvKHKUtUl5Ir2u2PAnBgBouNwRsuZfAGQyYvIc9zIgPAjaRVhcYwHRgCK2Yk/Os9VeQz0C6nLTyz/d3dtjSEMZBIkH/zJBdI6Jann7YozWlXH+C5NMANL9uN64ntOXIhc0rKymvkQfFQriF8qNwigOgQzTi/nklDU3h+Gk1NgTbZAxRFRpk+BMO13yStpBdNdd1AWiwe+mnMyuX8iHqZi9JQw8NhnRXqs1OvnwJ1TP9weTVo7c/OyMOOjOtIDKOJlqI8Htc9CdASOvtVm36ECjN5AroUdwl71O2bPaEMQSWlfKVWs8H5ny5X71zdPHvGEmQnKi412skeMYFi57p4fNVknozJnRVsUaD64oUOxKNaxwgkM9jDnKH4COI8mL5H4tC74GAX4s4z1X2soPYLm9xhtinVtVLbXzKGON/XoYexa8OVrt1VQUZBtLVaHeR2IBW6Sc/g399OTv5qZg5YcvFE8PyyKp+EcuPpPjUdv1SM/bVtF48SLWWno5DUh38UPj0xOYbPmz0ZAYeglRH56vSrEAY8xmgLDfk5LxrCdT9LgxMoGiQw/BkTJD0A2Pf5ZaH/fnelPs5Bb0z72SwwzEqoGlHP5bpiqr+dwE81QoWvZ+F4+nRk7PUvUn+06XF/AXARMb+7d4yJACeDXPl5mfSZoyp3UPWNde1UT0hhgQgyOmezH0HEtSHiSFfo9wrFoh1PGvPHK6SqNvI3gnzG8RyrXMJvoWycxJjuVomUTaJ0CoU/J6AGKJfaRnqb7YW0WObhSotWxmdbcKq4UDUzd7nfRqwl32ub0WtDixxw2Aw/k767flyfkGByvuFRhLxzfHtPnz8dyKi+1qViZeoyYA38uQnwdVqCUDF4PiYpCFUtr/3Q+9Q+olYkb6g2EJ9CbAGtJ/PMlpNeORh+g9UNjKwVK4dKIzpaGIRe91aOhuj+d0zkRPfhQqLhZ6SO4O3xq0iLMXUwY2uopijRjNH7nXpHqdwqeRIruBWSnzQLBSh7YlW4hVp1VyY46JkDHo6tloPr6p5/z5xTVQzpo4qgbM8otKb2M0pohKaxaYf+qz3U0WGGN7J4KExdVVgnEA1LS4EL0T7qHAnQPux/w7X/VYsA2DVvZcJUH5g3Gvr9sh3hr22WGgfR711PPx2B5BCNH7rVxUnsvEeHbUlGhPMwmvQf01Dc1if+8hYsI02rlOcJP1SUiLztvZ1hHbOjjEar8CJcbnORlJ1LnU5vBjmrSVKJc4WCh3EItZaTFKpQXEVJXM9AgFsEQiTMP7LUPuvtFJPRC6u38XycHrsgNhbWkprqyKZqyeQR9QZ9ZxkOa868PVfY9ZQdocms+dIDTsf1WkRxy3dXYpPNaaewv6OvycO+R6kXtzRbmGfma3UhuaT+TIwuWP3qOSZaDcOJFB0iFW3P74epCDt0utZyvEdEmMjZIux7RyxiL73N4vRcZACstnDMw3MdXTuWZlZ/OHkL+oQs2NKOMwfp1bNMY5BAGMgD7/RdWkPa9EDNVvvmb6ECpcCiaZ8w84VyRkoyIRRSzz+nQZTuCcCYS/Y3+QKIuex/+b/wDsSB51Gv2EGVuUxaoJ+IFMiuvNy1efXv4Jl7JnqIZkJQ0Tr8vxj1KMf+8xstrcVqMmQ1bblsYWZPSyZDIlZhaCaLnk+oIV2Igk/Q8ND8kjDG4jUpt9yVfcehb8yjoqdWq+mOmKhJJBoH5YiaYszviXj1yNItzKt+XdEePcPuSSqyIGbdPplhAEaaAWdmp6j+3Tbp60psqLZYup3xKWPD2RH0pDB5EX4CJSiCFEhGGkXKz/SkgzWuM/N028d+SngAgjI3/KthDWeJg5LXgv0U0Fds4LyJke269455seNromlsqn3ATPkKtJIYBYMS9iwq10SrR08fNAaDao7i06DzWWzsMuzp7bplVkwYDAhgKQGNHDMBXr0QboiOFTWmcRemqxlZDTNY+nKuleNr+dUChQuRmVsLJNTMUuzeLb2ocQkV2k1aVYJxz7xPoU+wMNuXa/4w66r7RXFoQuYYlMt3cb57OPWL6XGKfGXIelYH8MBwyV/BJlbG2iUJGTDZxJ9AMtxa0fqHCrtIQ6XWfDOew4VI7LYU+j0znAzydlLU87Agh8k4lDnEho5IO+1TJR+Ksi7kLXvFHjWFJQ/yPdJiFM47WRIXmsBEBt7LzPqAAM/owvr6gmtHPpdgPe1i2MTg6grrxAw7qssq5Z1qf39LPWwW9i5YAbWCl2xM2EVJ9DfScOMm0OHtGYkN1MetjwQvKSY1bMqPRQ5gkgV7gaZBJk0
Variant 1
DifficultyLevel
584
Question
Which expression is equivalent to 24m − 16?
Worked Solution
|
|
4(6m − 20) |
= (4×6m) − (4 × 20) |
|
= 24m − 80 x |
|
|
4(6m − 4) |
= (4×6m) − (4 × 4) |
|
= 24m − 16 ✓ |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which expression is equivalent to $24\large m$ $-$ 16? |
workedSolution | sm_nogap Check each option:
| | |
| ------------- | ---------- |
| $4(6\large m$ $-$ 20) | \= ($4 \times 6\large m$) $-$ (4 $\times\ 20$) |
| |= $24\large m$ $-$ 80 x |
| | |
| ------------- | ---------- |
| {{{correctAnswer}}} | \= ($4 \times 6\large m$) $-$ (4 $\times\ 4$) |
| |= $24\large m$ $-$ 16 $\checkmark$ |
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | 4(6m − 20) |
✓ | 4(6m − 4) |
x | 12(2m − 4) |
x | 24(m − 2) |
U2FsdGVkX1+VwdzH9mhzP9dx7z3jBazXf7OwXBjoUOFEYwEABVreUwGs5MSsWxIjLxmII7v3yDCuumsRAN0/1G4/AYucrUlBTH44+Xkb1MC1c2bUvBOcV7rzVGxFv3xgvOGC8e0nWJid9cupK5qkZYG/Xk7oBVQ5Ic4vrRFOk1e8ny0tCKmmDoMi8esizU7ywM4lvCUr+hicIvVa6gvY3x/UYYS+WmvIpyGZKNlZA/PPrNecHdogKrIruOVGSeYkIg++XKEjecM6EMRwoRRDvIix2SPAijnapi7DUdnlwgWKA4khB4hGb2Uudb73DqLeIE55YF9tn8RWW6g6TtCJ76n5SJTAvyjuWJoY5cH3PbVCiLlTZLnlwQ3z8HqKjxARhcbxjlvYkepR9OxbkHCHYUHsVHgJ1Hl++5pusI47XDLOhjYMAmb+sXK6yjdoin1HrJEV0vvJzwTuVf1/eifGEvaoPg/sAEu6WZtyvpUoFQrpItv0+bTGCkA57g5VoFAFY7DBHxJcWov3IaJOSliZt9IImyw9EWcJYZduSMgdWnzuIOp5p83fNl+5ZFioC5wykRlWmVempcjdD1sg4G53FpKaONDwesI6ao1vHotMhlfPd7kthID4JLcz+OO36QuN34jI0j12iw1PmGQF2xeL4ilknZjc4wVYzSsYeHs85CEHyFMKs/poOPEj2neB32bBArIb7raQe5KjtOe82k8j6+lMWlKtjEF3yeBhbTJlEs6e0bGiawIpHg0NLmqH4UgTLvU8swm56o9hxYlwRaOJkf/LFOa3HjTncdXFOYkXp00ZyFAnh73csniOoSJY8DVHwHJN1bZ5j33b8XG4DK0foYlZqizc5Y+pZ341hW/Uud7PMQemKZGqrA7b5XXVcSDLsaRxxtPspSb+VR/5p7CB0VEjW8C+0Od4Ze06QGbDgY71jsgW4j33jfq4Wiqog5aF9lyeYccgAIEueAAxZ2AS6nvLeNh3BI8FX3C66MdGJAzQMjWIccNjucNSEdnmKNqIdHdN2q49KZSo0X/nWnHXxjm5Wjq0t3B+fvkvSAhcp4hXh7Wi2SjqkAqE/kw4WcoM5FkPt95ySMBigThhVcoZ0CLbSFXbSs2iAQJVRbFk5V7V7bf2AbPsAZhv1QRabRTsAYsMEimeMueWb87dL3VEIQEN6H3fRVHUJdMybIo/+nQqwb/OGhUyWQ1a+ARoUcsOFgJZ2phdyDMVhLRAMeFb7kR3ZXHp9RidfPWdzQtaqVNYcB1Is3AiObvrhiLulYBdjXUAurUKUS58LCzjdYvPN6lYxAAfr3IWyuFc/vYZ24Cij6tXnFsFsbJEz3zxDosWp0JgOI7qHTmv82+DK6wpQbt28uLNQXvRgQIbmueiEi1/RlsoA7Xm19kPk16/AAZwiBUPHj0rjVFQq1eVxYw063nzY4uTO5iMrxgg40LJfIrvyUzFyIjOkUaigD6lEwBGN8bgtj9o6UEOFs8B9Y3tyITFsI4VKcSrp87Fa+3Q0YKKcaHuFQwv42HEWgsNCI92mC4QKKaHH4rv2jlSIZgYDO8YnZwOcIfobYv6E4qk2JFvIasmrbHYLlKAuo7OtyUKIO3u3q4GY88Tkxf0pybt87LMSK/cIGnIABkN9eC4fZUC3j0imS5YqhoBMK33h9vN/E9mBIEXsdIvO6im6pTGQ+KzIB+o1Kk+UPNFRbzF2dlkY/uGZvUF2ILCd4tO/axsdsvC94n+nyOfaO0XpGKUqKJQOqOZa9Lm6ateC0N73eb72YsMnaBtDCR6j1o9nayl10TRhxYQRxEykVeULesFXRplHTzdDkGRl8JbRhJufPBD/Pc8xD6ZDa85FcJncF4OSLAAx5mf0q2CntzcIdvRs/f40YoSUcJ3JICD5K7sUDgFb07qxxzfV1ocdTchtzq2psfgG4RJmMrcmdUNf6NMzJsMG8mmdx2CoEVbHHDEIj0h91+AR05SCEbiq5J5KQTVR7X+stBwHsfT5MpzaOSe6l0qMQ4bS0+OU8UdyxvZrMDPV6Q1UDLP9479luT/zW+H060NspfyPkBMR2x/zOz4lKQ3Sw5/O5GFWxXLafYX55NPPWk6U3V4loRKbNvbRXXfaHnRPhPBhzhMQGU4w1zftXPVLBmBJqJiZvnqKoG3sb+0HYSf0AF5omDrQu+QADfjiWEOc1EchPXWEdKtGdQwCnlj1NmDprHw2T7c1js8IPZh1GzoeJM5JKAK3MKsVJrleB2oRDihp46utf0o/UqHx5BeoLJHjxdNviTOaKJRZcUPaISn33gc0+pWE9jiyRoYairKj8TwlGXr9AGTOy4uCvy44UHkgvQO/MZ366goT1gTRAwfJPm3niNDois4rEPc58Q26+wwk9BMvNl/WVYn57pSAU4KgSFtjWBSm4IuvmsQUgsT+CFsvH1GzulyI0z9ltEKX7X0XstzxNF0roJ1+eTsMV/hNr6jHX6J0o08AN93Iiahe7I2QxQ1es+60DN3jMjnrgTnZQJc1HkUtu3s5X5YfezxCLpyAjUVaPYVCIJNQaKALBRVx9PWQpr2/qD/a/KzkBqIQiFWaUmKBbi5HWoCcZu4ngozDVLFZJsFRNSm4F4Tec62hQezfYa6n56i+YZutmQFp5SR5hwCTP3/4B3pDIiyg/RkCUgnbax40B+3KqeyNNj08kywtXg2BTILxIl9bEFTSEB5RshYYy8h2qL7clwB0MiPQwCvgUIaGfo1stmcbfl22gOOkzqYCPcNKdjr5efPGnYPxKRH+MLF6hUmDII/Xskx/cv3O1f7990Ii4fT+QgMmGV3aKYuIHoHoF+oU6RoukWm4+wJfsNanwHi6G3EJPCNfwNp6lE48jz4DlRNKF+xumQAlMrrrcpcoDM0qIH/LrusFzzS03yOLWcNTXt0zhUS4sP1mWvVbVqXb9bq2Zez+LZDt8tnE3IWBkt+b9zlJumBMf90V0AupHUCy9x1IBvdfJBjQiL/ZFbwtsTIZ0mOFv85i/gp9TV+v05pkesV45TUCPjLeTXbY7ul5nGj0PC8rIHMFCq+N7rOD12sA5b5+oUlCXuSz9Iky81Jtn/U1qs/NHVE3AetJ3Hlf7DKkNi+Y/AXdZ4fyRrrBWgT/EDtogSw2ukDhPZNqFFE4hM76Ij3XmDeIx5leTlmMIG1HKARMwhL5L49FN9170PWyshlbW01TXm7wXdyPecpm9kDUIw20bA6GsrW62+O/4N3EE66vIdmx66JsuV3PPU5hR2RPk9e8YXb3srmuWnMi+Q2bpjjRanjtebWwx3Ihm4iVh6ItFwtCXKKe2vwd8ewmDuozXenT/tLkYyX/uwHpvOH5rNunN3XXigjPrwYYtBxEOTpt5vW4z6h6syG0Kynlonv5u16iRdm+kwX0lDjrGCuuSRrr2T1l/ZKSud00OpGxul9lKmbLGS7CXCAdow4UZmZ/mi6HSUu0+EQESjygtbQYjr9kcKCJ0uY0+JZ5UzZ7FeghNDsV85yaw+z8FTvFEXqzIv0QTJLvgLAcZca2VKiSsYrHZdUi/jwf5dLB8Y/6W5g6wAQWMzhB/XKqlLs8VSzeKiOM2VBMvPtsUwOnbXaM5JLt9YXB4sSEF9iSTDdOmF2Pzl3zE3a4Qk3oxKvRTVguRpBuiSJMkD8EczIq122T3RJTtVOh/GSLlDrhGL2mDc8Uwsxphj7pbZiCEqcaLMIsvt+B0xPr3hmZiRkL9i5tmh0bZXJvJUONQIqmNDueX7fMxtz6Q5BjCIRmMDnCW9ST5cEFC8W9MBPxwVJUNMZzOdTFBtycV1P4L8mh8cr5tvzG6szE8zAwq3nJgQC44kGb0CTen4++hM9rIfk+pM5VWI2XGuVnh+GYmu/5l91inn1dMikgogDwJVioDm6V9XP18a8pgQ2lLWAJZR3NcFN/OHYgiteS6XkN3A2gJoGOHdFZA7nSL8NDi/x2fwgnZ9s+BPYxalSnEJ0mcVqbXWgf6UU98rtnLK9hiZ79F7Owq4iNUwqHROS8xQ3SJbZZwKDyFBQshu5WwLTgsJsarCk9XiZxa0/lGmwSd7EefCP3d/EbLqkRlCCWUxmFiEprr740K6w2hXwYpxL7fGnKG42USTLf0l8pFOULcYg5hqhIIwLglhelzus+SegEcu5zMLiUwoZw0jm3SuPWcnvxqta2luKD6JPEbVyZVLuJKBGk9uhXLSNDV7jVXRCrX4qoxAilvJ+p5h+/710mjDpnHT3uiHWPi2Ao8htmcrHvTBAlNG0v59VpnJ7RT4QxVAk5NUkl1GB1RgAHdtI3mRlT1nb/vw5MWQA3qqSENXAz7OEVk8bVJrEiGE78eOqu4cCSVjthH2vJUCqvHg0QqJnp6zkpMzXDp2mRdpQvcZSRq1npDRbMcZD2A/xqJxj5BvdPIwKPFAzFwh6OsWkhlPW5vJexRN+RDUusdGMyaJ0W7GWXPSEyrabtKI6P3W6APuw2UgeedhPb5uN0SZJ+S820jQR0+imHul/5RdD9GFAYxz9qp3LmibeVRr76ehAz/SaWApRBAwLEe6MBw9UBT9SuKwX58Tf72p2UQLluhf1+ngtLnlXZdA2uOegzt0y0AQYF1icK4RBxWibFXXJmeT3NWKjMxwudarFotsQwi1nj5/uOrrRXOCu69HYzzDebnOsmsmEYpPJkxjuJT7cyKYOKH8WFdX0Ms8ZeOPQ3vR+YiToG8izmJJgP83oP3cqqluYIjxy+o/n0D3O8QE+8uoIDyvQ/pLoshv2+63882O6jZWPSFi+5JGvNdw7aXiizPsCU8svSQIzway3IdFjWnC3j4lU8SvBMchzVVpC3Pxmw5BrTplmrP5JYnqlVIQXHJSiHTaH6LKIOqvX2gaykyH0brrpvqXr+138xLSBFOq9oHYGMDpUYLxMiGzEu2HHu6m/y/H/fYIOf/rN3gZaQY6layJRkO3+dhPPS1KnwjED6Y2oN31qAJB+E2ST71FWeJ9iDvj1UdUlXMRBKvQT/0kmcdbZomEyAy7KJ9OzrGE++yLHXjam1FPKx4Zngh7/PKVCnyXYauceaWZp12xxXGwzsTGSdWsgk3V9PX60AL+dYsGXRD30pHpWdXRV3an9NJVNgbXzr1wNtPGO5Twr9jT9POiglz8sTcavS1cMvyzk9y+nAcx4MdSFE+QhMYgCNvfAnxeZy44Hi1kGhlpAEJgMxHrhatF06Av4pzCVmkRgKAj3NWvQ/HNdsBuZCArXjGP0B9KJ6WBisvn5F1pXeMz1T8nqKElzpDlCgD6nwkp8Dn6QLp30wlJ5LyvZdqx/L3Put2hfKGRZFGaE/wkAtqk8AOTLEO+CE589drfHXVyU6eF4pNJ50omx2fO8xH5YK+4KTaBn4rpUrXQqUnIJTJSBhlBunMy2Jz882q6J0lG1UU2PiQ48pSJlzykFiOHmMpCPtCaeYctk1uwQYHq97/sXO1Li+ZKx+TNi5f7XYi8KJwCTCH3/hlEvhw3k06EQ8SLN9nda8xi+UkZ0+5SMMpgG12TJphXwaT5txuuvbe3u8DwQEBHfDMJsIC6OlLyAtK9dC1l664F+yYOhb31ejkhXoUGfhm+Pj2005D2Uwr3YadlxgFWAqgV6rsUpTUKIQ8vRTfvUf72b/+UmxSDAjTZGd1tjzeqC/4iIWNmCbbRyafZ5zZHNrjwfMfWzZtfT7jxo/QbLfLBRwdiaQ38ASVp47TbjwB+1U7MNdWj6oGDarcO5qaewwGO7Cdi5OBZ+HscQB9tvrHxZFLctDqtMO3jTJMS1TVfr88it0fw+GpkSoLiftO6AIdISlhTBCCiQMG8dgk25S2J8UZIxauTAQJ7nscLuD4zUnZy8XX2bQbu9imSpLuum/deNkGYFPke0BygeHF2X+HugVT6plynDVlObSpsOu/149iK0474SAd8ysxJzNiTGFVJFo47j+Q0yl+MbtR3b43Lb1tjTAHDsPy7znXp4N3BAPIzm64GUz1ynnpNeDfQ15Dn/FOvieh11DBya8dQjbJKzoH/eojDlh0PFxMs5Uut9yTrjKgAcha5+YD0QoVuG9HzNswQJm17M5PDKUjn6kUaC1cfsGO+vr/gE4iQf32oLXwA3w/VgRIuDuN2GDMVUab5oKnXgYY1DHegMbsNegOH0Ns9mcUhVjMmkF7YxUkZiKapdqaBf+/EYJCf59QrQKGqBoRcJUnCvrig1zuQNk80Ow42mSKlu7Vaj/s3uMZiinMKbquPrRzu8kX7/yIb6FiHSbz8cYp/SU0PLPX1RWBfLyhlNi/+jb6f90nHAGt6OH5BlnBfSc75YhWQTExOQbjJAG9MlN23n6rttDDjxwlvT5ZJWwTdhKk/dENPkayLP5R3hx8aFrnOXAmzu9KFmZp3zPour2LVdr1FPkILt0+xqhsZPGkyE5MKJyvSxdhnyK2HscFa7TUGWm7XwuxFNIDZpedVuJZM1W2X1FKLiO+l7/l3kbBlPSn/7pr+swiFuVkfM6vQTI5Remc2YnhjiqLbdFYGXXvPbmY+Sot+/JCYDL8V8Z6hwadjV/HBuVB4dbIULD+xQn4vBOB2lhX+I3g1vikA7VL3sNqGCvV0RxCJOjOBrri2ONUY2WFZgKJdsSz4jTTjPb9vWxBz4la0y47JHICdqDVvW6oduSN2zdVbUL5bzNSf26uBcBTG8ZdnzoeIgx/1oEi0/+4Q6G+EzQX5VzxPOjkpiMyOsDr13d5vnxavfYM63Tm7pgLWX8G6SWNSuQZ3yvHfuvXba1Pn/qPoPJ0MO1YK+QJzdRgBmyd8u7+XJ4ivzNcmQxYZmgl5/B+QbcJVmLytjNsc9AlyQgW4KBKY96N6PYlZWQsVl59LLWs5C7ZSogPxMINo8FpRuy8RmFq5RcwBJSFDiUdKskAs/Y/yW56aLeWYSRLL3K4ersq/yQFms7cXp6kxyN59yqa/gcDeFJpZy8vA803s5/+yq+YwhqPO33czLezWju1CJMlc6zN5SEKSroxC/WqfWVrRJ+GdBQ1e/Az0nA/ExvXc7IBJrFiQGVtHU4vGuhLRLEwePXwW7OwjugLlezSI4GxiVwH059xzuyhT+bHzycfTBG6RUNtX1wr8HEd5FDF2/DUOJl/EOtd/RbF4/sslGEJiApyXzAGsrU53Va1KC9Bu1/Alk5B84uiX7aB4wcLRxNF9bX1y5Xwa5ABvXrGRImuky3RSPs07QY2+POskSw13rlPN3CvZRF8Bv+ZCsgZoKs6DFSCACzI1z/3e+BgoxiN0qH4FaC2XD6fC88uuQgfyYhg40Fc1RbIqt/HgTrePJkB6u+E8x92GNT1UDCT952ubNd2+oRUDGqwI91ScJ9+EyTVdJEwWAcpQ//RQ5FDKhT2clcvafb9k4qDKGZeLQ7e1HxJYI8q6/yssdJ5PJNo9cuECb1W5QH8G54UNz1ITJH8W7If4DeWmIC/jgaW6+Di217Sn8jzJHd4fltlVhe1EY6T11UkO/66cQXhOQ8D9nK6pfMakYZvt7D4OaDdFfzsWUxjz/KWPHbqhrGNkUBXte/ZI7lBraj3wXfzAALw4hzbRiZkWngtHoiu61jmLFMBqfd7BxmZrXYRJMa/U/IEnQsV6azAzKDm04wpnjVtpUhhcmVY9AGavOxmsHVsNqU1c0XitfSTGdNMpPL8Wn6W7UHH1bjX62niPOJz6UoQWpOJjp+7+yMBZgLQJBSZnGIIj01Gqew9hNVEcAolQ+R7SnKIBupKj8Lxw275cr/JyMQcp+bg2uwqtPYG4lGTl8XfV0mIDVPmQt92PuPxgQVfHljFrcX9b/i8MaGixS6aART6TRftsLYGRYnlw4pUkl9trTjpfhWnytgD4pf3c/QCjU3gc0gM2GhBH554HUmxOyLDCi4DAY+JqLuSXcJtuS2vrLgzSGw56HbiiantfOTlKrtQY7NB4Fw286NFjobCymCWCW1H+kGI6cJJwYx73dWJcXXS7PdVLJu6PuimdOVb43PvVm90SWtjvrsFAe3BEZiuj6WsfEOGYDbGkiHoKAfcvR0UZNHZPTxEaDxAEZkF6Qj09WPy20Evbc8n4E7ZaAn9SjkH/vEgzrvI4mnDNZPDEgMLfb6J3imKqoK/G0sTHh1m8Le6GvoqW+ACxG1H492bI46ZwuCCAcI+s5EDlIFMFCV+L1xVaPDoCuf7cWUfC9Ud4vq3NLqrL1/gQleNXAcE2xXqyDTPYnRS5yaVOOqnGAKaJcgZYkpu/D28usuiHo3nLrhdZOBvJbcdvvpUFaGO4ONfpp3+VcA4Rl3VLmRSB+eUGqH931Fnk3esUVOjhuEBZyyUJqG8dafNRXczGbf3G0kyw1kjiabYvuPo6GWLrQTGKpICBGnAa361QMFLItgCK1UL582ceHCByRtEY8KyC0BdZuiO1XaVY6qja5R9+Y8JitS9iaaox+qaqnmVHByycGNTBKFTMPQE0Oiy19x3+KpaRCMdjg+ifjzzL/TghBKXoYuo1b5FDsSbc4LGY4sH/yEmfOExzyJ+1RjuBk3vwZAat7PQR+Xp2m/WfPnPRbClYWE8Q5mWyKQcI5wvhXth5gU4wOF4UkxbiK0WgC9X8OHZgUNvzqXX3VyPyp78e9g1oNnZRHS/Cb4MVxBulm3N/Jh/WwqHtwSY3+4XeEMPeBtyRkBb+MZgKwRZcez36q6dBxlg22J5/HGrrtTKsksbaJIDNaBn3xiXHHznS0G851WRBddRyXRvRdTpVaf08jZPlZ2j8Z0nzPf42CT0xRAjGJyYJXoOmtoJSbvY7JmLjd4vCwNZTS5bBn8Rjtya1H0+APBaLuSe7DMeNPeVaR85dX53wiHrhuCOF9h/paWmvwpy9N+P1XKTthniqVTtFmtHBSwUe+8io1YFfq5o28J3/7caf7x//yTj9qS9euT6CrR0MTst19TllnfN/amG4j87pfoJ1NHIPyakTf2ow7CFdPiC71GNvaCIdHrIBN7nsqGsSOiXYnVrWsUzmr93QHeGikwPM2+5zaWrbkpt9I65kTA+2DfpnBtcXW8uIbfUHqNdSs4TRNVVhssS3G+0f4YkTdpfiuqURE/0fyva7vNK0Qv+HirLzsvP9KzBHEt8GMdRUlQtOfo8SKCtwaH9zPUoAToQbQDMKloOLrTVkMHS+5URN1v3ndEIdxX/GmAT5pfhsL8FAVSafxL1/EygJiCc11R4DI3fXLzxhZvIrRLm54TUGodwth6DjjwqE0The9KiFzZpf+0Xy4/3gBVfvdoWeCZvjxdvPX4i2dJtZAeSplcFk628Fa7PUcr1U42qSuCdNi6cbtUjzZVzYGlAjy68HjriuKd0VzveMb6A8p7zLkyJu0GUqy8Ldl7p7EnQyiBacA9ZaN8g96JdgjQxWaSxEMwss4V2zmDlkXXgqWJxRX214k4AkHvfeThl+tL+7y85mBztBCI4rBTklp5jtYaAQcES1PMGOTvQ+PNCJA7QpFK7BQ52pwxjDsDjkgll2z/9cSk/S+9N1rGDBbXJhc/ASR8jBH7Xf4DoJ/y5DgJ5EgHx1PYJ6E0KQsZirpQDI96fUHcxppDtP7tbL7ROUsFAH8dfKXf+Go+oK3rq4AnY2B0ah8e5Kv4skrrJ8WFhTgn73igeVFKpGO9V8C3cRZItPovgFDKjmfD0QLwq7HMJRfnedSKA82RzWaSMUZqAwKHyS9J0UENdcaSjXMg6rkft+FYUHQPt2kfUp2nvOifhoTmvtknD1ZnJYq1w7Rdk8pf2M4jsXnnk/t8+G0sDAhUDdE0Vi6p3YuIqIq4eT6OeN+mf+3KjA14P7yFHtaStQ1/rctfMxAWPR1FHT1EQbZhGjZoLtGrZPtq2hmXo1ueKOdwD9t38X9xnxmPCdOiw1vwuvN5t80TbrkkuIvqW86qSdL5Gt+qJ8g1Khi4PTKhHl0u1BSCHcZqEa6pOt0dhUb1Onut6r1gc9bNW3xsz7Pex10fsMvwHcvpWnQG32lEQCOSbzPEoiD69qaOuxuYjVX7QZrRN0VFDqe+rxPg2K9M+F4+g0cQsCRj9O7IPdAonseM0bdWEqoPZ6C1nU68LZ/wPw8Fd4f/Px4yzrGClnu5HaZpfspLxsc4SujzP8+r+IshihM9HkHWzzb9Cwq7v8QcvubbaATzuOPPXBTudFTP+SKeEkIV7uPTw0vLd/P0/DehWoV9kwjDg9AF7IDxxBoqeVNHiPcjw2llIqI+CK+xDQenNbJaYYPzEaIT5Cwq7uJ6SWUFpDaVZZkdBI/DOPerc0dLeOlh44UWuBrJKPiSdVg+JMjWJMNpoBXvRaQB8LtoPyHXIj5mUGnlVcI2lAAtoNfFdoud4XGx+BhSFKUZtbtd8P2a0tFpcBwBLgUla42UtSYEW/81n79DwVWaDhNptj/l+J6rABiqIPSsy4l1p1gSh4qFkTob2Cftddik3aXficbZLJEl3XkBOkFLiB79FjLxj8P/vy8nUGrUn6Myg/tswvAAl5M+NhZPBNjFSU3VSPxPHMrRPdOC4uqNaUwQMVVj6+MmEnZL73kZdhwYSEdgDDWicARcrg28yyKAFZzGIp1eWC08ENJoC15oqCw8BX3dfcu1HB1O3Iqhte+Lhj+8huge3bHHySpTdYPKvqLYu1byYCZjEx8HGk4Qbbb0xvk6vn72LLRZy/X7MWm9VbZLbEk08QOHnySzC8wi4bLiWdmfIM65xw5lQKwdPr1Y+Z0vcWFaHx2enpNwNedcN/sBRCai+IRx5uJpfiPjw4Jxwv5Nl2rpG3loYN+jGiU0atHdzu5s04ZSFoY6bq74dzDU3KIhebxu1bY8R9EyHB5jw+WwMMfjZucZ5IIlTtpaciE5OyKWcKsjGxgTfXWOSSpKYDGxPO4GZWEwjHcQH2vgVhpD+l31NUkl326cX+6ET0qhn+mO8SzRQCJWLlKmWQmPV3tpgOCLyxXcgz3s1wvSnZtQzEROFvTGzN+SdlKYhH4vhtZBrfyt2bI8/VeL+j7nK+7nfMhCUijplmlTOR6mbnef1WUZQmVPwm0EqzgFGUF3VCdKtBUNQ/HfDDHSPLxHpaCpFpkGkdRRsUmCpzYbxuQPQuvXHygkVxq2Il5TYRtVZKknlSIu2/05bEaKw2R1Erd8PGGIPByrr0rVDqyM22W3a1lbB4Yqe3tfavQt1Pqzuwlgp0uh2u16L1VHDeB3h45Y3wpttctrMFVLzrV7em80iGSpVNKHeQgojOpcc/b8TTp4agPa60MH3mfbH50RmAYHLPCLP988VUAa7eKDZePDawHa7suGwdnG9HPnJtYZcclFa8TJ2Al2zKzH9WWppBRrnbpjJiy02TRf/UmQtNzwxVciqoHS028zk3Q65ZmpFf6ZbTP4uQLoMeuILWNT4TTk7qWa8QKeqLXdwj4ggTEso2DNil2CulL5JU1VPXGrbDBGasokP3a0JLvum1WvOgpAfAfdNwPOkszg/vajuWZBF0W8KqeM4fcR3tYSx9j6LpQDX5y0tdlS+MEm3EgHYUzAxdCxZVIxR7f9J//HXEN6un9AqHRIA76W0gPakcpxsOa+fTuPvL+sqOQQSjrv4a0Fa4sp5DXQpHVEhWha8gp1KX4ScicDnld3k/WpOR3IpQqibErrZVMR7syCHohUXIdyCMOJSfcbkBIKeBlWDxCCFo6NVi3f8Pktg5+wYjIw3ks48EfMeMWHNeQlkN/G3sb9O3u4AT/KwB+qrozM0uggeqkfgeVKR3GYNjuxXZm/2Qip0vBD8olTAQdmkCFX3MxyFVDolzebsId9bLVapSU+hEd+z/Ln257pT2CvvutbR2/GNBHL2dB3S3uqi7tIav2h8g3V7EKEITAy+BGzmvnmIkZzw1GZIDJ+to9wCjc6DyGCae8tL05UhzfCmxWcJ/1QXobPDcz7ZWFtgdJO1LXH0eny9qEaQKMSZbNDzqXNGioTTrV8Zo21NWYNd3d36zbTXyHapic73nwwHt+cfZ+wlEJCxNhYqUyj7d8UiVMLxLmeYwrffQyE0OdTP6mJXTqDU2h9YyofZk19hROQfFT82tqQjjrV4log78d8YN79Cc1/d0T7x2zfSRkyk2xedmAM/oCKTBwVVSnrgMY8GJZZI536xigU+TjPJvI6vuU2yOJLgdEITMvv8l6nDeomGkqQ+7vm3QMFHOJpc1/QSyMbJU/gVlEtH0XOzUvEutWw9LeE+cZi9m/jhHxPS6/3ILLxVHv4WVAW2OcwtampmV9FiVxRVD+9DVbDC+KjV51LUdGxFOftL6eB/gbAvGNl3sedHzabyf5PGNjPqgU6D+PDw5qXGm4EG983zAjkSARdOg83y0gZ1pFowXzCFGlBerzu9Kd/QW7JC+GXHyMY8JMMVbeUceosJTqMj9DvhXcNlTOdirAO20umh8/icPoZfbXcOxyQrmha/0ktD9BGRqRCIsu0RAs7uWLY2QW+QO6Ie014wZLxX2AXju+JzLQzhoCQUSTVUOQnTOdGQYBgAPNCmDjjtE1weRyjpjWpSGljUash7TdqJHurKf8+OYtrDgvOtHclXoiLhv/QDE1A2as0USjcInsQQVYlidt6T4SL2MyQFuTpxcCo3yf2GhAznptvd0Abl7Yu7qpTh8LWCNLxktSwypDfepF7wZ/r/vD8zujO9LI9TZv1JXvxrjtFC5MFqH8biUkeqOeYmzdmOoNjQrXEbCWGvPq8u3JzA5uOt+mvXZUQxoqzWChNoUAFFZT8CjIAUxabw8a4IEPInyGh7wliG1sdhjT/uiunc7ewaVx3S+97UDUZU5vEq5vbfXmlYIIvr3DpGkWshz8R4x6+Cmg8Q+yqDpieMLN+Plry5XDWNzWSM2X7dVKlUKaq4LcaBW/Nn6piuZeWK5MHmGrnOrDu5NnpYYN5yrlrMdCoUY9uXug9g4Iw2TTDxL1aqgSUlsxhlU/lgygJTmN+jChRHE/VC6pot00peesmaIEeVjoD0rUJKWKwIy5HmgN8M4qazxuxM5pHKExCBosKCKEzTKLxS4ezlgB968QJ6nqf7Jq84RcgTCDf/4I4iPokS5FF6ucycjgHDwJ47SQl3mKEaaFB+vpJSkiuho4NySMqIn367C5mjAcdRrM9UmBVbFi17gj+ddOunllboVNvEHaOZd8wo0wvVjw+snGTACCKuvtIUJ9NFOuIRJYM6QpMfuYRyJT7Ed3Y6Bm1U5xGVAEiS2DYY68OAlwQfybxmIX0MDUE46odEkrZTrjaUbz9WE51HdO0Wa3TOIycTnC3s0+2ZIdMc0PcviaV+Tag2YqUg4Ol2WFqLv7NxYhT9Fd3S9m56gA5cFgmpq1Adr6lzqbPXm2g2/IVNtN0NZ+vIRhPz5wzEwfZ1Mru9G1NiqVFp1C+2XFzGCSr2TBAZ96unLhEiiMOxs1rVw+ESf5p5QY1Yf4wso9vPlnIr1sybRATjieuNSqgGFwe+XwMuReiiIGlW0pndUl2bYluuCxT8JAccNEoGE+y1H7AJwbqAFpt42mAh2mE1ONMCbZd0XtiLS6zty/3DZ/RqGd31t7IAo151s8I2770DgWNO20EChB3G4IMdwOGJT7x54NPyQQVdm4H9LjztnnHt34UwhXUDEQpqzFj29SRU9LTxgBK3+URW0pOLVrfZQIIko7VkM9Rs4ncYJlkvR6dpaPu/vDjDnkTKzZR05tW2cnstzEvn9wBNqbcWlHNbQ21hK48L92/ZLGP1DiRXJ90Fj4KZ53hzlA9bvzhj69+8whLVd8UVxavP60gUV9B01S0yJfBnsnHPA/5lD1OS5m2H2Exu5GphBtXq5YFa9FiethlUJTR/yihmEy9VU8e+9AtqxXa5q8wyQqXc4ylvflvMrGpZCHNtWeYeUiZfP2IEbKm/XByJL6Ws7CTZWIXXWvDbdTopzVpUX00O/+3VsNf6RHk7oD7pfs7HRh42WJBexvI+kt5OiunzX0KsQUW3VWBrdfegFRiuDY1mQkfpckgdUQWNT01mEqAtafBBhctJALs1uKo4JYx9z+aslt7b4Ln3HQ/91JLlwrhzt/NlbuKRGP7fh4C+HJFuho95FUoZQNoSlq4/Sv0gr2e1HOod6Q9wEZlrTO2+Cvxd2Zz42ndqPG/XYd6Tr7ietWsRXbqPzg1+yylOLXE87PQnpd99IkQq5hGst24A1UmJowv86JYpnIWgFsfXKTRHPalzmBFFhlcmiTOiNlvBIMmgkmaNwAdlOfcPZWGWUz3XjvkVp770U1vEVFdStz0OrW6IZ2wBaB4tRvT/ZH2UYbkrzYwFmlUQ9uTHWXasYiGYU2QahHn19jhw9YH76tW+L8OuLJ7S9s48/2PyrcRjz2BjdZpz1X7Rj8eL3BNeCaR91AeV98+7aHm7hAXSayKodHkDweRXAbElJT/c8Gh6hZ9dU9H8G2J17ZJ8OkSiBKcr2v2xNg7HpZiHaQE1reEb2Wv4b54OSQLmaTMK3eGeCYpWXf49wBNG8leim6vgj8iprlJab9i4b6jxw8nqt394HSq82fHQT5SPAH/jrNq37NXtibxggfAFJbmfUcUyeYGv8gGRHD9VY1nYEuhmeRLyGItNctbR6T6AaZMjIS7Bd74JGHFmJyjkfXkniQ1C+tKgGUqak9FzPbXNGQXEI0lTPHg0s2usjwIgoDwu7ZRKTccZyOBTGWV0vhZN0MNYZSnGHjHGR6RsDc1J02SQcMNUg7zOKB8YOog3sV8qfhUHikrmufs3YcS6M+XM69IMeE8yvyjnXxRwC7wyh2JPGnHf5oPdmfChXV0zXuf6e7PwWR6uew0Of2vgvECSZDv1U3DqHS6QrG3Ow4IzBZQjQoqx/pghy6maOp8aowGbjuFgzGB4dgdlkn2r/OeGtzwuI1X4gQMqw7B92qupz7ERJuLkwknO3+eaTMhhEo5XOwhyw1yvk5TiUcFTCi0ye71BrcDH2GF64xCEDKgFBIUvtlIlrZuaZl02ZkCuWwUghpsYce5b+UN290Sb7TLjQISwkz8mEU5ETGJMulx073StSj7IIkoe8p6rXomP7zrMiOPn5AjA+NRQzdvwfMqz5KZ5UME37bcPDRoxavDSvec0T8K2l+shoLNchP+3i7CB7dnKHz5VTDgmRNqLRPljxIePgKwsWnzVUWeCDorLjq3q7hWhgnthfqjLRcWjEv93P55bEcemBcMN1kLHRhCD5zWt5MVBwBp9w5Qxhyfnu7Udcouq+T1o41T8PkXBbpZnzhTfWX4DNaNkEnhvo7ce8AdyfPx5wR9AL67J5TruAEIsZVotL0oqEN5Iq7Ua6Cllb7h2SMD7vKAAyQ5EcPWRt1Xug7UIewm61PggXjGaKX9mISBfyjRAKmeE6P80aIqcxAd8rpG1qDgnow7HrCRUAuKZPtPWI58wHLLkDOqD8KVRqXpyct3OPendChT0FQDbKHq+sLybZbzgXUa9KXZMtE9c+BEeBwk4r6vapSymy8/Txusw54wRKh0hY0ed6uqb3VFIqZhqwPGRK40cUb2c+m2RHntO0may1K+kxngsxxk2YQZDlY9XLnj7VAjMVoW/dP1Qybh4QzyoQAkDt6oBGN8OQXDCP2JCQuAo8Wit4yFRao8KrqzoFUdFE9LcMFYD4enylyTN0ke3Hn+F1fMsc8mfTZl2+DUP3cy8h9NrleiVZtVKO8XMAXcCHGV2leqHb9IYoPGbx8d1EpTQDnqEJjrDSFdPIwLS8LVRzkCkq4ptrIAo4htaPjgf61Dyp70TXrOKVQPGO4Q0QtsF9iylsIAR3J3gCdC2+eyPkzYVqraVAk9MUF5G/zy/CIMJhE23pEcCsUoHQ/MYk1DuakICyRltYDBz4bZxXuRPekJt5kcfyqXUD5CGl3IO9s5F1JQdKsgLWSeRZQwLRLA+DxCYhJ428d+GZkJhDkZpwRy4v35HHDkIDeoYZl21bT7VDRh6WYg1Exbu2XTPLr0Xz+pDgQ6c35maY/LbUtMejgOFLBewxfqiNz7g0YxVTXUIe0JtBvk1rhy4nLOKlIWusldx4nKSa3FzlUarpRyZdjZkpLJ8H6FRmCNQUHYhKH5PqnAzhxdYEZqBS5e9ZMZs9rUDUczZElTHr1hfIefsqB61QbqWacBzt8bmg3SeP5OmUvEk57mSBO29Buz8GbCvfRL3GJ1Spxqh8MwLSDCvVsu5nCXwkLAn1ujzA4JEthPmT0Gsttw9eMDa9MMSo3v6YsKf5F93uHFzGE50De9MXn3ZjSepB6V74I/q//K/ynvsVWdEh9NxYf0X0AbyL0gmMk5VsDLCWes+Ir3r3eZd+i7Ch5hCVLaiFLxcmD+lZhSxWKo4RTyDIn/8OAwKSU8PYALb1cKIROrx+oIgdTQg7AkOL3MxbM9kr4gvZAlUxhyJ65efbE3fqc71c2V6iiotToQWJww/BBcrXpcdcOC2l2YInaiCf1XdpEnfitpZz8odeAOZiN14RiJmb/sm0RopKFAlx+7PxX9DB6+MD+Loqr5hEwdz1iYmIYbzirzSL94O2Tu/ZwdglC/vV3oaX3jnGWefygQh4+Rd7GhF0SZImhiRdDwCGLagEhqghnQmzqqna1Xdvy0VSzJj87faiUYgonEXlXW+xQs3FxUHQ60YyZ38qdVEz82o9TDcPFVAwbac51v3QL5ovCGOpwME3Oj8CmKSKF9p3I44M12lvHSubeJIxRs0NoT10s1bGu1t3hR5Mbi94oE/jEWbKNHZl1g64BToGH/oszT9SVC4e1EfirOKMBGUyUG+UzK4uMaY4u3dAzSRebQEYgIQWm16vNCAO0w8y0bMwLzZ3+aMPTwh9+THI3c+Q6nirLymN7HmmrBwQPYQsvIqE6Cp/eynGKq80xMdeGtlp/uD+NYGU+0sZUdl8YP2onKVjsminspApbT9d8l2C/v/esGjiTLuleC23PfZw3m1DfV75xyLlvn9r1OxcbGDf7hmmKuJWKjHjAgrGE7DGHrGBKfiYNU3xKCkDOJa4XqLus4PlL5pAGUV4WFk8zRaY2hY7X2gykaEuKihhVE8930OwiyEqFdvjgmIQLnuHjk6U0G6ud+U1J9ScfAKqkxdOpd2Y6u1NljXZkIBcJblmT1TQnFi8cM3txSulD+7hxFzracSg6EUqccTWyfTsZNGItEfdC+FDX3Xia1zTjmF7HZOsZBiE1cX6XmiRtZD11S5dnfsWL3qVRn189M0eeGZWk0m6hOXsdsaXu0P/ypM4b0wUuFaA85GiLbKHBVNBi8XorTq08a2+4UqoD88HKZmMKoOdpKtf8ZMA2rCp6LrNepG8w/O7yPuvoyiskt4rqNJHOn/6IkT0h1eS2GR+nYnZGdH07eLas1ylKC7S13NpMqdwUdrV3cU9TPdR5Hh1ElTDuA/44a2ldGYJo+OGUpUkaGInt21/J4Nu7U//b4SME5qFStDBqTc8zLWaYyjAOuQnP5kv2atLBmNdQjp1yPPJqXysommrSrlBkKER6qymVX9MehH02CJ0rEqvO3Z51Q0acZBpxUKlG+IzaG3vk5Oc5GMgpOmnHUE8uljQAd71FC3PNQ8CcVcFEvP9EonR2GsDSaXvyUqWONTM8BhpadysGfPIATpYExllllaHzNs37GnH0pDNlHJvR9/dtPWlWI+/ZvT9KhPjnfZ+e/ZLGqJj+jsp4+qsDKgHCqG1AwBeQY0Gl71imt/AXc0hkwRZB81TnWpYjd1PcCWlWbxp8w/MdPm9C6F6CFzSu2bX/qRFAyqhIyNWJZeT7SupOkIl2O+n6xhJJ4w6uzxIymmwuD1LQyUHDJF5ccG9gyOLqt+MlZkn+wNFnXf/g0NjgIcVpUmlz1sbAubTJjphi5yjWXCPZceiS8ZmFBI+lLaVoEdiCs4olDnZiQPXGW5w9mjtG4D/eBUK6Jyq7JGnHBuQJGyX85A8V52EeW2HIlgsfLpAVERbvQ/wfyiagWhMvbr4UAGQeG492nZQWbMnVsXsXuB15LSSR6HeMW3fbkbXABYq/TuXw/jE0+FX4SfPiJtnd68/pP40UOMSDrnSV1Zi1qOf1wpxjOVfhM8lSClqdOVcjT5pjWEGAE2tVFZzDCt51ie8neAxbFzeN4RGbEO5k8KH+NI31WOKdmyLJ4C1d8NPfTOAUBwIRbb7WKMGA88L1OfbUnyBNkp8iTtx+LQeOzJsTVoM9i9QHc0csoikr3PK4tXx7L9rrtwzxR8TACl+T7lRu6h6yy+b70DqHNJSJBNqMHHrAzhQhitGDipaLDNNhP068IamjsXWrdaLGlGSdDXW4Q4/92A37LehRGBHO0EL61KBnFmYoaGuKjk0Xja9lyBuv4yUe8s+WNETpoBJDZgCSMpKjVdPqTooqdFZzeC1sphwCXC73iWZjV+abAoLJpY2tlqVjqyzgkcKuM10p/9btMYTHftLyyfQ6COHBJd1elTQ5vXi31B5OiFHYNcSSi4+PTHqbqnpC2FyVViRR6hVuwcruP4KeQ5xYx8JvY+Lli0P3sM6vj5fr4qKb/59+8pzN5S4JHz0KgAahvAihkUA5dhUd6tM8+tig48+UU2erRg4kDsuiul8rYW3URlE28SSHxtLHdVAu0NI01ojYZ3O0OXRWB6wf7wmczatIHw4JRDjwrRtA9Z4va8fsaolbAODwbrwf+TONaPDEyLWozqg=
Variant 2
DifficultyLevel
586
Question
Which expression is equivalent to 15y + 25?
Worked Solution
|
|
15(y + 5) |
= (15×y) + (15 × 5) |
|
= 15y + 75 x |
|
|
15(y + 1) |
= (15×y) + (15 × 1) |
|
= 15y + 15 x |
|
|
5(3y + 5) |
= (5×3y) + (5 × 5) |
|
= 15y + 25 ✓ |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which expression is equivalent to $15\large y$ + 25? |
workedSolution | sm_nogap Check each option:
| | |
| ------------- | ---------- |
| $15(\large y$ + 5) | \= ($15 \times \large y$) + (15 $\times\ 5$) |
| |= $15\large y$ + 75 x |
| | |
| ------------- | ---------- |
| $15(\large y$ + 1) | \= ($15 \times \large y$) + (15 $\times\ 1$) |
| |= $15\large y$ + 15 x |
| | |
| ------------- | ---------- |
| {{{correctAnswer}}} | \= ($5 \times 3\large y$) + (5 $\times\ 5$) |
| |= $15\large y$ + 25 $\checkmark$ |
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
x | |
✓ | |
x | 5(3y + 25) |
U2FsdGVkX18TcHiD8C8DF/Poh65oSKpdukWFH1JLUjkfV2hPKjCM4ZdqqDkNvOIUsNPxdpG9cjLaH894ofWfZNJ9ARmGk722QmhaWsnpAv4Gemz7YISOxyDsLGff00JHIpHxnIhadcAcD1Q30pFPxoeFnHmfP7zlRK/CfTdbU668I/5QH9f3s2El0QBEvlH5xiLLkxECsQWq06kRtjfOdnSiZHMpXSPmhYEvbgEvhwFyA/eYBcjbHGUCQrOy2vmJnIZoRCmizi5MYIBXEiW75QsGlnuoIrlnh+9TyhFfzogV5/99qKMQSfx2ztpnGHsMyR1IhGZqcNA4Klba5fReQ9/hk4E+4Wfx+JgS0vwiRR425UIfyO+TPlMgcKQCBVKVAcEeN+j/tIJQLK3aAqLHsg9ugbsAFZdjVfz49Z5vOeyvLPVjg1b8juAvi12jR78fL1nBovC5ozAvlOQpkx/GFPCkW1ZCD5SYaRJRsKPjGq2h1hlGrWn+Pnxh4Wp7Yz/2bfMsgV1tkfWg7SvCDT4nrVAhvJEHHktfdUueb8WJqvqKcvzi94Q+MJ1NVss3xg3nid/D1C8mzmdJu6ZO3ova20cZsZ/OKaMgINviFlYj38qLs4Gmnc+FVZEA8rfBbOxgl1DPe9TLn9N8bXO/UBF0u5rsA2UTAuO+Ssy5jgieK3KnMYFfvCeSsXW8CtbQJ8QbhFC0Tu2nQBt4cpUc+WGOl0l2IcU8jEnBDCYNtIG2kz9dOvsDwa/5qOk6ozoYV6if4gEEIcEuuyuaAxz/W0NCpzLTWTEa+J+bWjxf1wRB5zrDTABc5OhfOohfU0kpzHzxwD+A3fG2Eztfeq29OceRcMrdBl4bPkIGoPlLM7Et/4IfIumAB2B6rLC8sfMnWA0pAfKYW2PYhonSy+wQJy5mpC6zSIkS/mz27Jt5NWL/FkuFHYdui/pMNA1AWCbh6285ve9+R3Lc1agjlroxW+HDQhJlCHDlDEirfbSOgNguMorHzym2wbpiMuaSx9Z4d2T5aKa30c88gk7cUnJ3hnMWvAJHNMOog/y+2Dr6rHsJTedm76FcZcsDyq7kelpIwcNnKZZBOtEjBoPe7POlCojTeqkW4ng5s7FhpZTxsH8w1DWYGZbxUr7uCfhtQgIZDyN/sxjYK7mZUch9dZHuduMRTVhSqDUzv+qR9AksYFOmDNlMpPyQzzM+ORKb/YM8Z0Ly19SReXcqgZ+WrBfza/Rh47/99ZMgBWgdkBz8CmDQfUMV+jnK3YN+3Si9JYWPTk4c+NdIxakFCkBdkjKmHlDzZuRO47I6FWQKi3FYyTZXPPYcmGbmwlzIk7+RcebqtflmNkDcgpAOLmLLQ2zP6xtjZzqpao2Oumi7LN2RGY+TAmVLLE9KVLjbjiBTaMnnDzJhT0kno0kXQGOn4/B8t64Hml0acNAdJQAaoE0Xx632wSEiYWEShiMJKzMryfRo1eUFxbnLvbaNsNHdxMb5HWYQEhSHyjW/HyGtKL9elu3Q09mFzpKlEY85YzHKTrDRIHZbAyHg+lGrwcEokHPSWaOKMSOHQ/4aSPy6toaon6c4UtXJa1u4DIZnOGLwMWYy20ta/uWefUjUny1raMJz4ntIGPm+20HnysByNwBPtkCoWBlRQzQz5OHSsKc4qsad7lT1C2De7USzs5u76x8q/698q3HDtiwZqI5U6pWusxPbXi8cc9AdDoSRHfaU+Vp0TMymznWMSnP8T/nSIejWLgQX3EscZVzit7Qyh563FOxgrDROj4Ox34i3gnC+xchR20zJe6MQuqQIGUAfhqxy36cEmgcVVMBwyajJJ0mR0MnbInM3wAvaVc3BqQFabJKmF1f8EyYDVjtvoOAFTcazC4d3/vsHsfootV5jE5m7PYc0DCW/PdPcaPfG7ol6Rtjrhe9FVH2+qAgQLuBr5SB1nyfIPBHumI7s92PIlUfnLHA/Qi/FwxTS9+pglb4ZBOdRLCKzdJcVDU9A93kvFdN6dewx+RiQQs0oMT5DIhqInUUcFQ3FKrAZiZmhYGNUQWP+KyK18oGSkzevchmOAfSeYFgpvmwLiA/Ze8t8/feS8l3sKw5G8CxbI3cZMbBAFAix8qsxlac0TLMBr9UtDNdBoBryFMqVsxgSMxO8dyMMLqGr6ahw2C2Tin6EH4u3aXeA1hRgKTds+aH2rnMqsdSZhFHP7HdED1MdbvnvuF6Jad/qSkJKJy5NQWx+TLsJRLZFnzlIzGO9oKy+dAZF77GWOgPENawto1uCNgOvERsx9ddVK3UJwwEQXmQmcn4ocsDOlIXGFBB5zpVbgzqPtnZfdh4owkLKQH458e9//3rO312XWgBXEs1RaHS47Vidp8cfxw6YUzmDkQShl+6YbRX9MN7UCVsz0wGI3gkbddTigCFHpuf5ZePdUlSeVd2GvqihH1nm5l8w0QihQpOaZjHbLbrJfEBu46/eXQvJNjSMkybt9eJ1AwqdiQlsSNrZtTYR1DQqxTDLUYzIXMOcQf5mILiJ7lGGcfETkb2yob8jj+N1XTPMUbllaXyQptiDaN5IYUEWsxGVVx+dPkE2b+u2qhVrQLbZZwBS0me5alRx/OdK/MRbWiecyEv/ZJ0eSEFh2sMWaPLpmmb6Z43wN8gvucG84YT+kvWqiB2E+SJb0duXo+BobTJTuV1aKvXUg62aHR1h4lfjJ5lJ8OmHdExrOdLxyhV5yyVa/tniqKzM2bY32YN/9BBrIFJIX2Yr730YaRbJK+W6p/wolVEq+3BeHRFSw+2SEGSNQYk7HA78XLiQ8wmbGEcZ81VGI9XvNAmQrI8umMZJ91WNfF6Fbg5DruGj5abH7Kjw/Q2qO+1rfuzMPAJdvglOyZiJ3ekHIy6nT4+fmTnOlvA0KfY8lG7Ojp3raA6KW2foInAAugoNDRTuGej2dcqyANP2jT1d+jmKUNhSwXKQhCEXDcbYVATXUbBi3TeS2wEbOFSRJRQTDpZcHSkC8gpz5fHDreY2/pCSwZTP58IZ3FPItbYW7f8KLFsZm6RBx87Wzmehqgt2WrMNEDHb0hUzNOgtbHPvYDcwhv8+k7+aCP+2XOXDd17yDsmOkdfS1JEc/rRBYih88N0JB2gwBffKDaSlhksbhS2yG2V89Y6982c5shYAz8l94nnpFm3zsUc2yLHKJcGMjZfwTbKlnI6fpSHfRCCPiAM+pb7D2kTMLcouC2bSFTJQh6edSjT7RauW6gR9CiH9HglL54cC5W1BwDYIMJArxdCdU/Rt+Yu7MCkN4v3Cf2Q70nMJTqYSRIIspNDCf47rZnyBjOBW4Od/8Q2N5/2hY6ccOmqTiNzbwVLIW2FDktFPMaWlmOumMREHTOdH5W1PoZXVXVbIql2931W+eEeSdC0QnAAeA/V73h5bV/jEcorNICE/x7D41wy5OTXTV8he1+iE05NXBWXqImN4A8nelVcM+I0jJCFCSNepTqR9mHLJ+zfyk0jQnJU7IDC7xcaLNkztHsSfGgK+g0pQiZbVXWF9VTJ7MZZRhm2p5VmRs5PVFa6oHQXeljJWdxIQSN4ija+tjdnlhPrjFtlraP+slEdSlFhaizy4IH546sFc3pvVFg1yBcP2T2ahTQnOATPicb5c6vY0Fv5N9Aas9uUDJ9HaTWd+Z/ikJ7ftNzlYdMkgvLThrYv308uXXG7HKaFb+8rNbXTrZZEyuRfLHbDIP3lc6Ul1/6l01q3LnZ9DqGN+Em+Ae4YUvSslsvSSsoFViLytlP6gMrQEQhqm+hDWbGTcGFJT0UHgHXR+qSaq3JPH66cbpGS9G3g1F4EK8Up/4WviyuoZAllh9Rnly4p/JPxgPgmjH0TO5K7sUJGW4fnwSwNL6hYUUvCN2iOOLpxq8hEAnlN3zF4MQRV1kohxJhADQpg5cnyhn091le+CnKceYWR4sSq/wMjzb7iXa6Btm+SdeEqInKEC95e4agaB7inqAHZea0BRAHf1Sh4w3MrPo0Kke/4ZJoi2FX0R+tCn+0OMqtN1Y6OuM/Jlk4b/8kN4IiGU44nxnyUN2wVHqJPKeJoLQIo7k7xn1dR6UTozp/iAoHvXFXOuhKSS0tPH31NIOv7CDRGF3j4NNiWqoI5f2kCrCHjfhUidVmmT7Kuv4vEbo07lJDsQTNHf0Q+Zd+7WPXy5kB0EPeRaoujKvTd/OBV2QZ913ua0cN6O2FKqEuXK7okdnctFm9iRsuqvub+1C4qUyz7T/qGeI3kzfsdRD5WOfXTFg1k0X7ohqBq3Pa19nrMV3IOemoq4dx/+2pl0L3N9ztxbhNaKDVs5dc7GvsB0f3t4qodW0zcWSs5fzm6pWZE1qizCFSZPnaSde5/QJgVNdljNQO/5JtntJURxFU9HJcmAo0K56VAOjzOeW3qIXetRGIHdUb2bSTB/UuE2KiN/iL9ICnOy/B+yAQynMjPj+dnDp0SN4bKn7eE7icI6wpCvJkePLXPW1R0XTXdwgGuiFW0st98ZTEihBiqXjIrHLOMGE82/OgojANk4lbzF9ygDnsNKHiXaE4HH/XXYjbWNt51TgYz/bl9ZhHc0jLoBwGq9tL8PNOvCJAhPGwTwNWwnccgJoDNi+4R3dSQyqNNdTy/aL3yfjQwjS00abPs/nLiDEb4oYFNG3BeowVhdmMnMvY+gQGFp+gJ04rGYWE5BY4vSh7XO3MS7btu0mtsikwcqLQiAmy4sh3piXZOpWGuBppCjJ/xx2bY2fdwWn2WAD6ltOmOhyjn5RhiC/0IXVln4uzaRnn+kVhoK5TjZpRQtbnq/+wXTi0fh4y7aB9IGekwysYtQwlYcAx96Mx1rqRjPMHz01SZM1T++alI8dut5Caymd29/0KrG3iS6Sp54ygzhzlWpxCM1o8Aqc6H4rAEw8Y/IySbrggRZ4LCkyuczzmyxvz2IEoSBFS62kFhmDtOoxzLvP8NtLRo5edLuW/gPY4OejFd1UKDq97zQM94h0ZgzY6YhvrhgyyV/5emMZBIl0d49u/EFD63oerPYhqEI1ieo+F5akjmnfCMdRSq1DP4Em9jbszEbAMmtX9TTHzYsGebetLv8J0+KWxB9YOTypX1U6dOd6RKKfUmzVDF9WhvMgBdge0SKfusOTXidosFHReyJhIxnTiRvtZXUJsvfUfrQEVkiYkR4iEn/Pu2FnuUMXXVvnpMQeAFhHE2xqLqgaNmv5uAnTwwzCPWuMTYSyjA+/4QHqQcuKW7zxZf5/O6WOEUpTHIMNC5LtpHMr3GskwaKwqaOCUMNKsKXJ4+YSJt7Spv6n3wzTMNaLhK5bJgFbU7CLiBWIEXJawEYRTXjJIX/rhMDWzhSvh9wHHUXDaIiTKJYuBNDkzZdVxmnQw10lt7o93UkBFt3+ueuoBvTk3qDLDr9dYvKC/uZiZM2FzpwFwn0FHoEBhkHcpa3n2WMYc/3iVGV0+8sKyFO5KwXwW685+lMf40/tTvSN1uTmF7tyAH3UCI7jA+Ms+YSNe/fOQ4HnXH7VEvkaGwApO+IYyCFm1lkSiAoLOJYGKvA9yZLU1T2u+0kAJICbTMK10JgR3bTNLc/Q3LPzOzl9scCESr0Jqrr8JDHyif8Yf1ni4jmvsFIlF5nVd2HefEidG3TOPyNZfFhDVE9u9H96hFDoLb7RRTU3ayo+1wEBPoccuUSqotEKLGPwSYj8ReQ9Jg7Att0O9RELsZPwGpy6rT4SkgLzCTIG2FU3vRktAYFfyHP3eJKDHsCHxyvZddLygDeGQYaOLwPBAsdKz5t6vtAbzSdNGJ5HhgclA8xx7MCzQ0HwYWXPou0Tctdm5HBDUONaFogWvVfb9ZgOuqkRjiIpWX3ApvzsPCv2aS2KhMUp+WfxN+YijFRQ/Am556C2W+4W0hMNyMUU5ihsuvQ94gCj9+cApT1rXnrEL1caVXv/NS/TPDw+mAg2LazcEtJ5AbkDjLEvSmzig+3IfOCIQO5nF5n6VAQe9OhEehk3TxENoViWy8NG+5RdHXC5sJYYpYq8XZ/L1O5Wsp6UaNZNoh+0AnuewuilSeE4EZrLNsMhMwY3owYvCClJuiB0mc32Mxbjv1G6wjgW+PmrXmCCpu70ZU1BwgdTRobgeXdG3mPk374WyB/ieoFju/6kynWCRmJGACYGGhKbxgQVpqj4OMhX/yz533zbXuY1+lSIjagVcGNQT4SPQqj4Sbhq4nNBEnTt1MWU9AKcskpQCmT3xdiHq998s7QWVN5TrcKQoeINPISxA3aLyemCWZptTLTmRR5PujnfGw9goaX6pmKNPcpmyN1aeXYSPv0zt3e83/Iu81hWX8nAIbfkiRDLSOoe03oeNQb54FCD9beUdaJq2X+fKIWbRhAVXbETHXpBJp6Z5emvimZ52RToNbLwLR2AYS0DPi6ZlByj/ajSnxbP20ABfRqN5tZMzkBm/3JcJgHG4NUMXloGo931BhE7tueLlHf43tDkrIZbGeWytCRfxr4sazSttdtWQQe0InYvWnGL6ZFnHD1nVV+3ZTGms1oouwl1djdeRWAcBrud54WZdEQZjbDkKHYguFBZsiNQGiYdmz6mzjxnP5QklN96MdEIRgfTD3aDeNR716tj0mlNx44RG3keeNI0V4GxVo0FB8FKMSFU8bXQKrr1OTYstoqJ9VQT0SkXlUyLvEGIYm4+VS/Mw2W0g7E4ckMsRpyEr37VUxUWMUmCJEluBeedU9s4WrVin5tKkSMF8paXdKFzDIHyNOQ10CM+VX5fxo6PLxWH+3g0vho7RqIsRZ66IRyhg58vmPDX7pk00JqnflJak2ox04QqJgK6ywGze7A8wf9OHS28R1Rs4n7mOX7yLbIj5ucAqkNeHi9H6bQtujskZ+nX7dYZoF153aue+xuTdq5BxnEuWUDlvV8z8NWry1h1W0eB8PATxbOIr8gzMPT+xwmEuVrJLgzVADkaQF9ME1a22geUkVky+Rsn5+otRQ10R25PfW/SolNL/AjHiIpIE7OXIUdmvJ+SggnG6JhPf2npjaJODa9JCrCswATw99gwqzXhkn38tKOm3RWImSFqn9BINuoYcqULTaBDX87Kd04z2hf4aqRhDDsSY5BtIgCNoD5WfII/aVqp+SPVsqMXcUeUQpwbfDKidadu+XdGnI31nEjSrNtnjhv+4oJ/jo1FxTfY1vFLwVRNrucxejXUXzux3YAgWkSKZJjIqgGkb4yXJIakVfgIvUN+HxOyoj0n/N2hi8NEJtfR7iH+kDgTlYUo03h3D5YeTsHaR6wpW80tar2QKBkPK68o4bBhnrRuNwB1gKaDfo2WYx3aXE8ZwVEURBoIEIa/JVr+wzvNd6yneXrwy5GB92Wq0uwagf6PqfoPZKh9sDxmHNACkx2OfdDpstn/7Pbq5apQGFg5cPANK6n6b2chx3X/KVRa8IXYWqm+oJbNOPD7IDlh++D39KvYotbMlC1/ZUt8is3GYOCcVAhkNgcNzmNNhlbC+vC1J5ByT7/OJgQHDgwwCBrcOSt/0je4qvOXLjq8LI8l3wX6cJRI99fQOZ84K8KXpyAKZuuE4u6dPpPCy+73tQ71YOhO4qU0Muiv++GeSsgntU1nPtKxgUe92Y+Kpa/7mK4snabJlIovSE3zcR3Jj7C+RwPeKfBAmzOf9I3r5pFrj2xcBb4Yh7IH483cDnmsHx7u6RgsOWa7EHDJ4D9rglE+VBX0+O0np3SeH/zzkGAd4pddTJhUQMs8XDAoDIdnS79qQbX+H5nRcTEsgEOJhBCTuZgpM1PJdztyG57veck0H2ECA7/YSztxiLOQa+P84OzhTaveaVpQYW2fGjJsEMjmbnttrEG5YxaHnjhLmWUVFUbSRNF2FJ5V9W6iW0WSuSPt2JxUDvP17+KUVfb3nGmCyb5gU/N+FGSZNnX3ouBuvLQz6uVBaXQeJFibKf8c7PRcnwt1eecNNrbvk7scWIzvFO2UARKWbZl4SPHRS0Jn6z4PPvxr7ydtelZx7gUShOtptqw/Xy6PTT7DstrXcfU3VEJnpuREx6qH0JxuI0s49jJyVOKKJYr0i6A6LfblSAZn+7ghMn7vVDIH5mSXf/7tpk1u8Xalac142s3FesF/SHFFeTnTrDyquQYL6j4EsT0vSDFGIU6PCHdV919SAMEz13u4PautA2ViZwFRRfKNeE8NicF/9M+Bb2SeapI0STuLu+TRI9QHoxGAyW93i1xLAwtHw3gUh94tG4OvxF8eo04XAhIvHymTh8Po3oKvqoTGikQIqjfVGUju2LC8+ihZ08rfnwxOM/gYqB4nFdfiFNkgonTCNLH8+CSmn72uwsFYwH9R9Fwime9gm9pRmE7vmq4+4xIgQa8XO9+2arF3Jb23nWla2AH6fe7wsjNhuqhG77B8Z2/mhjHvvRh1RM3deN1WU5ne5Q/78Jw32lpWnEGEZoEnJnTFRW9zaRWLQIzi072MBPr9TFCqpWDSZsPxNYVWGXX7ZS/FbhbCufslqaVX/+YvA3dRqzyOxZDEfYqDmB5f9xOEWkEihiEsBu5koFfSDOfQ9iGDW6Mv37Wlw+zbYojqX7Jg/WttptinOAIYQsEqmCxY9NwBa0Kb9f5aIr6qP4cnMNxdfxj3pMiDAmCyWw6yzxYHQuabTioxcjnGsYV2ag7AwAgOao7X9ngV2GT85RWxrDXSirTQvYR4lCBL/URL+rRl+/XHnH/ts07W3hhAQnZgVFFK2EVCxHIvx54LY3i7w4Rxt1NEn10uMhGYNiJ8cydITo5v3h4sgRjRjWER09xJB34VGgy+TVf5YfY+YsV3EyG+onltSW0+2JV7fwUxo0IvTwcrrvb5TkaRfZ03E6wl/wbxdCzQmYqfKHR9NE2jjPIu+2dD2EXNz1EGJf1QyqSyoncMW1xOAZMPEsNCegFx3J9IK6zf2j2/Zun2mXOWRD+GUhbs2/rgWGcHlGDDcCZN/4O+ewF4Uk/5O1bn1Itto/kPBZGKTLUxr86/GDLkG4yJt4Fx0tpVKSbbae15UVl0S/PzTxKuvYv8qUnrvJsp+PwdXnHNGbyRl9+vSXd5H/tqs44w8lcCrSCN3Bcva3W50J8O3UO+i8GB6er6nLgR+hfTNd+SYU2wQqWdnCPVZgWGLW0lM8DyM2onA+TmcbKm9dRU957ML5cjBaK9YacfpScA4Xb3NgimsuZZIW0NnERsNztjexBcMqLaQkkn9JxRegyfPQMRU67y2uzu8k/DYYAnnqkvlnwWfqMa87rx2u6wGcgmjkQxmOeeh4i4YO7cgjtDekzVu5QlOCkyoKma9X8ZBmtymZw7V3c3xAZh/u86cRJW6ECECm74g+9GfkFJG/Wvi5gS1WmisMKdwsbibNdQ/MRHDiaqq5UkrKOcYCucgv7vezQRY31MwREounnMP4ZfsgYcz62tVGdaDosdOx43/iheqspjIbUrSq9293dGxe89UZygBf2CFYB2HkgQesZzfpvio6z8pznDBfRCAOJ6iENxTQEeLLQct2izCuA6/t+uTsSvP/99QlLYgUXMql29053L4kES9wry1r8aBq1rETUSgRc2EPUJKhRbJJvx7NDdnKdDhEkdGsTCBv5iPDSPae4TQIS7hLlzf2WHiG9g+BSZ645dE76jRE0qaTBxNIKtDS0REQvMOsnoMMY3hCsIbj10nYgE9552ehoCz2CnXfhZpYDVFkMA18r2KJCRslU74dI8Ted4+RCeCddYUB46NlZ/Ps1V/+z3WDAJtSk4fmpYWQKVTk2Nzse75qO63/SshNYDwnufn6H3wlJlP2LLdPyXK5NAYbH7uTTVUGkARJKUsOXvf1EkvKvkpitJnA1+CGPQ5MqAKG5i0zNhM+FTeuUpD+RznNmRzBzFZZj3TM9OiuuAqCosv6GM2f6rNlMxNaXEwGMD6jgMIUgzjRAazeM2WZ3hZ/69pCxw26jcf7X012SZQkKz367JiCOnYKV7LTz4xP38YZxRgbVDF61tZQYp8nHIrTLzELgmkbM/0rnJg3umgz8G9WBuwpQvNxdv7VUGCKBq0i9vN0SqzljxN2salGkydxKS2wYqq59xZ9Rw3mC7KlG44f9NDSJGDiREj2zytm5SoK1aIDgbDrWHkiuXv7aGOdW3K+9+v7v25TpivpT1s3/sBCGKU3XkAbBr4hZ+aklEavtjqzkAT/22cXRvwywCE2QGSfdoPlWKDWk8PbG+0+hLLfrVngXpa5aqXhbW/JQyA2UpM44tk7/NuDcvUThvJR/irXBOYV9wF2gH/WSe8EIDoKuDp3v18WsLzVKosCdNibrfsxwjL4LyvUhU7kwFfvIcd2icw6CA59cKdp7LuoM0q34rCevRKwMYScrN0pYwEwWPQyn/FWNLGc4OGcoH9or6BkM5eQBDVrdvzfZ2DSLC7VWzrvgb9aoHXsa6WMzH5eOtpjXXfGDxTgzAOFfwRRvT3ix+/Rv9PgX/N6jM6yG58/lpgbHVRoOa+s+N9ChUvbYffETyEe35gHiQnursNXH6qn1siTwyM6RWuhNRXe1mwqM+/5JGtzf0TP2I9FlZVPOdE/wlL+gEBoy6hfC9FbfXDKOV26TyHy3O7WQabvTHlfBA8wlHCzKYcU7xgTZTr7TQ5ryhenTZnhMSgXYrezsXYsgtL/XcAuEdX0Ofg15a6UolJqZ42RgwAT5snG0unUOkGJGoVzSAXQRheoIeZRb3L7QSvQNgCHSLmFEaUtWNSL7zV4APzqH7SA8eaOLPoBs7SpLA7Wdyt1a+c+Ts197kCNycQU6AVRPFnlGGCKvePaaxPJcJgBzY8HLcjj5cY7C4m0HFwPbsj5+lquXyuqoeNEksLzPOGdLtT8SkGVQSwMmCW1QavKMAXPNQbMcnM8joUmZufzcwb95BWfAcZ3Ourtv18APE7gN3Q+9cR1DagzKXhA0n26yWGwsCwun1Qwu0cq53AjpDY4ADJjr/0Orr/hqfAr3RO8kimoTuooBOrkUk8Ng/ZKexQKc8+Qid8eGFrYIW/F1h3lORXcc9aJEO9tptRtrzflv19JZkFGw8ohZmAS+mRQpGxVwgK8/wX81cG+eDaSsbDBeK4HwZ9Ik5M5n9GAOzq1Nna01IKt8hXfuBKtxJQUjo3nMesCrJynzuzMcCI18p1WRyIc3RE0pME4QfymAeFACrNpk8cthTQQrcAK8Q/I592k3dKzz+/RGjj7n6K2K9Vuhy4Mhod55gHvghh7k9mQtEIM3zKJwWAJbh0BfMN+ffArV5dbJUl9WDGsQLICkUSMApeAH91sM5TCafFv9pZoDeeBklvk3qIdRhaChYD1NtPrwAeC5GRISNHrZjNl5kBelT9hrZbsuwaqM3GG58H/RhrR69SU7Fh76UGq11ZhI+7cQWRQUvaEtbLHcpiSDKTRDiJnv+qo7DI//DyjPJeZhGPlr0k4j1yrrSFEael3LT8yR6wUKTkSzlV2XowkQ/AMKyx1amD6YfIPy8AbVEAt2Dhq2HPKE+arKZHK7F3Usb9no/KkHS81BUCVo4NkaXmKrbA6bMO0+0/Wk6IxAIHFc0qvdai9uZfLD1fzNA2GnqbOyXF+vZYV1/cJ76hsatnrKras/5rBCShicckHX07KyspAeJd5CPCJc4UNJc8lL8IcJtqRBS2aTXeRUe4actzz42beBfWez+bHBbcgj5gRSH/9XbO2XmLre8+n3TkixHu6dJe0biS9U5jnwsPT9X0qMqx4BA5blVVdENmgDuQ3ERrS6W+URFekpG3qR2Mg77oMotX9tfAOQy4IjOoCW0cEBt2VbeRV3SUpDxYRoUy9+CmvgR9QM1ox30SSKlrti5pkbMfOptbOkWEi5m917FTVFpMrJBfDAgV/LCdoneAxcKb3w9U2+ZTBd1elOhqQPWmqEMbAWutYgOjvHtisI7Jebh6u0tKWPiciS7G76LU1YvNaPoGB2nrwVaLri1Uzgz03OzUVrjR8lf6iZ/AwnYxHwI3I4xRUBh8FnZcddYKmythKX+D86nykROqfDORd8MpGy/qPMiuztIvd1WkqNnKSJeamOsspOw04AsoljXtHEVMyySEsUgYVkH6lz7sV+GynKxsPJIWMdGrz9461SO8mD+0EWCzqV+X2qrh8q9LMK8J5Y3G5o2nMTZYVDHHvUeJSk5jhINFEa5Ia1GLN4EDjAtZAA9QrFNJoY8cgczInvLvN4STAn2XmbBHLabffxMKnc0DS15Yo5gTYhx7gqvOnDkhzM8hKaXtUkSS/1NJRkjvc77D+PKdtE+XbFvzNQ7qKPqr/bysuQmPrc5tRqfAut0oYe9uYRPqLoT+BF6SCQpu1vdm7nIjrbcz7tkkc97/GnuBYBZtkOyZI+7vJE+4dOyL0Usg6qsFPjudeK/ff4WhNaygx9FK+4rlnPhmSPKX8o9baLIGtr7jnTe178118Tmr88BUbwJzSWHlzRHJzo3KcdV4C0fiIzAhltUQ8pHyJ8Z2ChcUuXUIp/dj+GQla/xuWLKfpw8Bod2tdpQ+5LOmPFDjJ+AMBCkUZO/ZZ4z4cvXw3Xo3cVwsUV/goWoj7jVGTCqinebVDHqV9ZuABffBvBkQMs8/Ooog77b6LTbvV1PBWsN7KSQJV3Pvh0Zk4dSMrkSb9TOwpffYvIxy6ZbHoGQm1dHA6HzY7p8qugeyqqm87AhTu/GYnWD0uaZE41fhp65MnmBWmtPslisD+wRt07/IJX6mKMm+MkHxpegLI+U1pvA7GlHfZRpqVr/BisEgPdwQwAwSqQubcQz8HSW9iA/7sEQWrUzk8BktCdOOXss/zjq5okqGjOYOGNzxEwieiEX8fdthxHDAxfjIFixeKYYy/QdH+r2Xzfg1ajqj7zs65wlrWrhwkZ5x7qcA9il7t77O2MQ+iBsn0Y0NUHZNUjIBbQg9TofONiJNrqgx4J+oA62rXXk02UMwztyIV7BXImudHHHv+co7kpJ0HchmR2GiYBYHC+be5cjiWgKXjD4TaA7jGeHmNYIci0cB1TUouWs9f3I7PHpzrAG7GF/llw4zcHQ01WMOH/1MKse1rEnGc344fgmpqA7FWrMiMkLJSn02GjKzIQ3SE7Hoq/S8d/2wT+f89oo26wt3suhrgv/a1c2pxZKFoSzKKTsxsA3ws2KI4kArcVcI6VdPZ2WYpLI87ysJl1CIPQGk+utq9x9jqYSHAu2rDO+Y3LInFFesbXzuFLncnsQWnl0vM/gZbDIFxnb3pDS0RHf31DtPBI9ib5fSZKcA7hTzAQE1yDCpqodmVCc5tZD/Qeemis1uVZLSM3d6W7FkqTqzbqIphfvd7mUxeLFXj2ujJcJSqzkcQdcTzZkRrJwBbh+zS2htU/r54aseFZbuww8b6zI/QnfgeqEsixyC7mJGAs6kNh0BfsoJrIkBOIvIUw9WWhu7J9EdagzwGlmcY5te9YsfkzLbgEwesqxyFtX5CLrQdHNjeplBKbxJlkf8lzQTQprTOWbGZCrPZNnDKCUPv9pHFHoD7mdHvsp5cA23sAkQXH7xVNxvd1JJCO+Zv93QaXlWqAN/b2NTJ4NpAhXxGWxATrmuU08ReKe5J06n3or98fqQlX4TFaYX9n1ILC35c4z/D7/A6GQLuhGBod5QVywUcQXrD0vodbdnpZDMsuqOSv479fXRkk9XYsCpYyVHzklidqBKmBh5/R+OtOvMkmY4qqATgy0wmsxYggD7XmGF/nt6SPqoC4yeErtY2FJxo3M9kVY6axgB1S+eDHYFHKsYQrUVzw9iIbjIdi6xjAOr0rLquMy7Qhw+F8PT+Ol9Jf1zIKeyBrIYgcEwNnBd0x0k3WdIOAaRYnD4IvNWIkOE7Xk+7WgV5BPP+/SRgMw9u27l5HuuIKpap36NGzdIL1YqK6CqmR7Gt1dMayCRf/tcY5bZkW+ElCY0UteW8mmFwdfqx3Aw7ALT4c60PIeDZRorBtF/8YBJjsYhGlDfjhxz0u/8xPpQPGgVCgqXuds1M4T2gblKih3JQxgTmK8w5HrRJLWcSjybYt1LVu/HHIzMWNDeUsURc9Zw4d8lLL5yEoPdkLdiAqA8GIwkyc38150ywHh6RogzIZxERg16jhEBDH48uu7yN01axIsfGrCzTFZnF35dRmceJ2vQybbHJBg8Wwrzw5/RcO955mDTe0cimEt7V4QICpcqXIF+BRISC3o47HIWSNS30roOZ1tmudNRhYvVhMyMgSW+wfnr1wEaITOgvSILrFpYLNqh+Ahgp01M6Vc0DMwTquYSd7I6q2INGDCXHDamIg26p8uEOVHIKQlHhlotFj32zNnq9W5XPSzb0vQmcwxFgAzkUvwjPBClDwJ3vyhRke69Sv/QNR1/HfZSeoHIFCWD0dn2FMEBC++xC9iXrmbJMlJZELSSo1zSaxu+2z4bodCUTdmEp3jltGyISdIxCRprXSxwogFuA73gELAusmtrNYgf3fssCs2wyHtu0zyFHN7vGAr+oUkbtiHSJ34nADZENmwJxdSPD6AFVLcoU75TOeeInJr7iS2UxlYqQYy4fysBTf8C4E7cDu+sW6wBKjeQ2OPtnWNGOykHukuLaKFggQR9yTpAEFJ8PKQjb3EEdRkCdeJFr00OLAZAqRvV95qmBc8rSnpqlhpc5bh7TZpbOxhob/JJ84I8bMi1RH0SL42quhDpOG31Gxr9RUlXGfojX1phvuX1ustAa9DBXT1qR3f5RuRJL69YYZYBL7r9t+TxYGog4Ld8qcR51qdPmjtvNI7B5xopsGqaDg3Reab+Q/+XKTqotG5lNN1K/jVazTIgcTt5ug/0uPNY7pMsERjvsMvEeaVaejkJSeQpJvevIYQHnOEgwWZZpvJoz3PQj90P2kQUUbm0+6SkvpllCrx7ruu0+7n+4Pw4Kqy89yMCMfTCUb+nZKRIkGYuIhm8vm1x2eYhxVAOIqkbZ/6HG8WxtnrrpSkXWWE4g/OuPdlTzUmcA1ifv2J3vkHDXMJDl+Cx1K0Mn5iV+u5uRJ4OMtQZF/BwL13nAZnoT1wQeaBehfL7JVl3HRoDGRVwuPm/iLohch+Wl+UYwHwtOp+2XZ8HfR7nUn7JsZo8bSVwsXPT24EEst7WDEDQT39YEf2AqheE97sA2++qn3HZ6oQa3wSWEhTDgDdzuK56fPeBLC7pApYa4+l7bXb9cBe4nPDKoqfpOLByaz8KVCUSbjFAI4//Xl9+Ay3ItqeqmPAKXmvw117JD23k+OY7Tt5r/bdqRYQTsNZ6dZ3zVezGJpefco7gQu1hjRRi7z2rrqnaUMg16mN+XmjRjvUCkWeJ+Y5CtoYGFUet3m6lHEryZoISLpxeDSfE8my+1QeVnHVnx5wMjGWzJS8zPkW76sN60YjBfe/tEuagf+49eq8M+mMpj4DGmuqeH2NtMGtFTqlwojAo7KhB2fCs+4zyeIv9ySJwDaeEntnptSJVBxQ9oR9dDLUmD4uw/VvsxyrabJUZxe0qnWr/5udDCyD0UndnUP0AuM0BPvqlKBGfIglNDRQZUqaph04SJrM1bVr8c3uVbduME5YkhaNaq4FG5Di3u3czAlzu89H2u3HGU8/Mtd1oqH+OKWXmjj63GNwxRA3+rSTUqkD+qUTY4GS8/zPeod8uluAzUQB48jLY9ee0gydyzsNwNIgcfCRQ+icAbbDVHjIHgMLnFZyruuKTd/7b0QOTxK2f44QXCLDraP1yDOk7BWNHQ4STjxucn9ekoLZA0WeJuGz4gac7OVaD7GxmsUT9EA21djUMgbzHruy9qsTSn1Gg9EbXdArRFGg2ZaTZ/gzBCX6RbJMUia7PQHldPv4KkRISfvbXWfNOv2qlwck3gwVgW24S2/BB9AeQ6XjmdpoISa8cNzS0fP7ss9ZCdIZSd8l5R4Pw7yLp9u4PJwGIasTxb6ElnDoTRAQyxz0LiwB6YACBA+w/U0p4jh6DTy+GVlEcD1TbYORB2rTAQd0/HxtqMziR4VRD/QLWVCemXDvbkr3piKsFgR8/fpwPMYgIHJXXPTQgtc8DdrXK8ZA3tGN9nwpAbhVdU1UPDjyzsBDxVHYoDYNnGkEUJR5/h3FVlgHW+QiV2uUJ7OAz9TFEiFsRSMSwom++89HXAN3qHBzG5wXtXVO2ezPs7euJp7sUUvYtVhUwP5v0P6fOVajr0UaNPNsSXxocTA8P59ai0wN4C4HbOOVKIkd80Y27vCOi8DZ31vYalNzKSLTlr69rmSsIRcOQm9WWKudu8mDQ3VpletzbMc3pvPUsOi3yypkcfMd66UrHoaGgX49ue3hgQs01qnxiXyyYcbtHFAopZmvrsjMHTgRMA77z7eG7qcq967vSxJDOKYFzk63XGS+ppOeze23qNCXu/KscDWcETMpsSqLKEskAXG1G2tI7UHhxF4Bok2hsiTTRX5pNlksuPyRRYL6H3TeyUuSR8DcbuEAXijc48lTCXRM9Kq7zJ2vQ8jVX2SSSw1FlbsK4Pfk3ZDUWcRqtYbPVEpVM+b87/ZSOL7+vdD4X/ewEJRfz0LNiFrHEqsnmTMFCQzcdEYdZFbyIGy2Cr9VsaFvKYlesGOBAuPZCSwHskoQHSXcx+KKVafRQeri1WHhZ4kFWDMBNna5Mi+Ft2xkPocM8klP3dCTARNq07HFGw07zIPr2/PiST9vtWmimbgf0yyXZ1fkN7jtv3pXzIjLl2EsS7x54TnnOr3pR/8t9pV0OpwHEwcnd7CAk6wwIJJbeMN1ycF52+GdfO0iEVQL09mwZd7CjnqNqndGbULlkekzeWptQVQWHknC5QYqVWT/0crQl/MPsO4egLpGu13ZM8Bkk9A64xeI26PA5RkDA0pLWu60AmSlED3N+LE5bhkCJRlIMcBfvm89LaAclQCy/skXOBO38ThZrpi3vvRhFE9/WYA0y4KxYl4dzmYTz/fgTnk6CuBliUQCgj2stY9BExTHmg1FnPepsFFDkuG+Kvy3Y52PQEqaR1jLjkUFoBGbUM0+ODUHGecleK/l0hzj5OeH0nf6SA9hCLX+vvHnQ8oeWteHh35ZzXYnxhKbuM0UDHDEumou8dXnrT6STFwDBCidxjFSkBWOML2BaEqYInc04o+uUDVphg+1gOZOmxpXlXHZ4rjdxXoPsFrmTchtNST7FYFqaSot3Ego5lMvrySXN+4IOT8yMtW1vo8quzo0tHIy55QONd1j9HZUwOSzZDNW5snJDjmuGWODIrr3p41gqTVHz7t6SV7wPFY8BqHKq56AXHHRPD3OD96Sm9rrbdQ2rr57o9hmkMRddR0DykalHtYd5ZCP7EK1t5ShxH5HDZB/CMAD8i7bATuuYuwcaR1M17EdzyQksbAmP5z2y6DAFEmlvBnJ0LdBmJuiPIcaiZVSb3t1/8DWv9kNogc5VHwF7/LSwFJwqZVjIyILRm4ARK4wRZYw8mTEHzAn8qpOaXTF44fgSOjLWYtYKUxU7jGOvWof+YurxFKoCnBZhGRVgV1oA8dWx6rWKjWXer8zzuxCIEIBIDYNSj7raF0VQ14LU0ui9/ODXBJ84BuzA7mFCEEBdomb7P7hU17//4oYDu1Q8LocXaPpwrZsDoQv3RlhRJ7sVyiFiF8GAIjGieB8qZzwlpIBqFi2xqrDeWuq0qsBSzE7VuJanF7eKk3bhYF0tAUNlD5SxjUdiS+tIXzjQaLD7HbpVhK1vSwda0WOfLWM1rGEVPNg9HOWvQ2hmUQIgTl5Z+cOV//DbrLIw4de3iI3Q1ANWxcB1nUoBvBsmVGn1z0VXKTfDl+TNkbVOxGU5dAPwVosNVWcGq0CR7H85TTFFAGljqO0z7cg8D+6ziX1lf4CPz4c02r/wWckoP1cmefxShb/mPBHw4I2tekNVdfe1W3pHR8ROaw1zvtWsGk5KiCxGwjVuEw25f0wEX6s6x6ONnsKiQDYXPkAiekg89Kso0lLHhk1fAONWl1qKbJIfOf393HjuWTR3ChStS8RBd+3vwigHoExaJYFU6ze5nVonn4nSrNHLe+EqGZJgBm8TmnyyyIRx4yrFJKgd/vFMHzOuBxVLwNNfHDKXC0ukODfubyxsLSXGuqWRpulV09EOp4g4AfO5XlNikN1/Awrb/pOiunsRSrZ8DCEHaYOht1uNwj9pYeUo+Sz8H4qmD6jG8zWrCVtPO2XwT4evvn+da7PmG+KIvLSeW+c3sqkvCFGdHVuFn3fkH7Dw794b3Eh2IseB0b4VHdYdP4D6HoQd+bfcpESKAoy97ZqssyGekyTmCPyokxs2gF+gYzTYlcuTRxtfqxufqwgErvQLX1rVnCFU6qm2td1tpZmZDRqfVjfFLjisxuFfX5+nF95PtGgLkcjy0Hc4nugnhu79YxKvmn9/4MI7Tgy4SeluhUz3quRKd3WqhaEhv+X5yYvKsfRqQvs9H2B+/xo6BKwnCUdfrI7MHYql1zsKZuJVe+SieRBZdj43dmXPrOs6GIciIHJqHBCxKtbozEYVwYMtY1Nkr+UuRgsD3v8cNkcCK9K+cH6TxiMJh+IgwidCG8VBGzzbQED5Wqs7zbheSbelaKqImYm7F/V+tywlWo37SodsNQ+nfd2rNDEvKacjI6xkThZpw+rrB5d0WK+N6Due6OuHsY0JFkL3XutB1FxGOXZnH5MKKHWHGtZkatz2Xs5gMpYM3ayZ8ODDfVhQQlyy+Y+emeSC3/nTvx5kQKiqtyJv3PMN1HOfzm/nu3vv1Aeu/0zv4JzJp6dm5Xap07cX9fwVFlQn8gk/vTv8bqWSRwg9nUctNGWHk9qnigSzhE0q+pxWVfVnEy1YYt73A+vBuUKFzIzlZWuYFcuhJZ3yFVaroaGtxMGoCBDda/oqRA1CBJswncGzcOr3bNvGkiECyJPbXXk0mmrvrcTGO9ZMi9EjmDbDmJTSp8y/ZDRK+mPdpGHsOWPl3ncnOpQAC5XJ106O5BsdUpLfdt2XpeXzfr+BKZxFZWqaLN9xXnb79poIAbFyag/S6OsqDPhKmoAf2hWwdRDDT41c5bXgzDICwgmc+wvud9J+VXn0hPFleBUKNiEmFH4Ef9XSA9OLAT0BC7UCxtFJtl7kKtPRuXCm5uZEYuJYpKELEZJDGbeDbf5dPfyW9YwIXMvRZifptKS1oop64IMYwYKfVEQlvICKRE3e6eOeYK90jEpP3h/XIS3QFaa1y1hFDonAxn7N/VIjrsYQfNqruxuu3q4rff+0LQw4+awUeydcwbfpzPiQAleG6xJkrx85EfAIjJlkOLljuTNiaZjt3r6mjfATVi9MqQTM8gpFj4O42EMtXHndSnT+BJoPR0/ZQGH0mVOJeZlx7/lSdxwOnfei9Hbunv29aCLG26Qu42cVrmwY4inyySWRktozX8pE3gi2Cl39NLnM1CtD2fNWEKGk6KNpym4nttbKlu70ILQ2qhrbCsANd7aTnTLnlbu0GiBHpdVm1MFcdHORdrG7zs0PCTJ8FnNOr+bfq8R8dd86rRK4LBGBBoLsLaLLUfGqOe162TRLzXYqEuZi1RV8w3TIPvyHgO2XdMac3UZ+AE4J4NYUfeqHkVto8dQ/V4LbwLBeyozvZg7x+HOOmpuMvesl2HPYV41YlXpQg8cNBS4n6Ur84ZGQb5Jyc/3jJAxD/vBBfpVe76Josa+xCDkgu8bn4FBu8aHQik+SUD4C5IfV6pdUE9rXMwaRVuArRqlSUoxmkVIqkyFDPufLvQXGgQaVi4JQYKArDMQgl1iv9s/aOXkZu0XHpjd+qzOq0TmK7hJTEmqtg/LqruKI4DTof7FWI2Hf4kgf+e6bUVV4/bpJ+bkmDjzFOCMjVBwkm87rnS432x00L3SDu0e1SfcBvIslOOBE2xjkIxef1Dtn9Jje6bEjc2vWz3HsujxIrZDwIjg5QoMp4C9DKa/ps7o3SS0dJkzFynrKyW5YWbo8ZtesLuaeUKbct3OSrpYPZJ3ZrsbsVYhC0ccP4+I1JgAAeENQUuzWTcN3N4m0pbsxRt1i7xQbXQkLtvl2bO5lVzqwSbuBnPSFkQ0tNVn5xNhQL37VlFdOsnh49F6eP2V2wlc2SPu/hmp7/ON7Eq7D3hYUbQbvbfhWx3voPJKHQyLEP7Syqu3Sy4027djbs95pC7hEKfqzhDtykbZa2HzdxCLlAqa7Dwae4V4g7YeK8NvxxYBNQdhr1qzbmGPoupo3J8UmhGDYkgJdbVmtQq8O/DRrFeztrgulquD+MJH50VbaztW65UOibLvWAv9ahbXI1VVtMmSRFZYS3LLmDoGtki7j2QEBLZjEe5nRzL4u+272s6OTo+rkP0f2TlCpC3OWGmX6lBXwwV/8Uufp9RCqcNv6OuAtirRHt3rlq6uUFuZ1+o42gA6fCdeA+w6Bsa82D0tkSAXY++1ei7pmNK6maF6dVw/5onD7v5V7OaMbbc04z92yiMbIBkj74dOYALujTRHo0HgYljT4QZC39BBazQ7fFt2y3MTTjlSLStAvjkMLTSTgHQLcss2JCX3M4EXsMPW/0DPI5YnEuKLbR+a+zo4OLruSccYX1lInkyXfEtpNvReuCy6FQgACx2SLmmZMo2bsJlCXSKznmmVW4aH2yiFHk7tbA+YVsjVMgiqjMWZ+FFnDA3NFGHfNp67bozV9SdmjWYW6EZTb2hFVxndGs9lOMqUonk8+Ml9RUAV6ebl85mfoRd0GruhhroxGstSmcSyg+ARzLwfzV01nBU2x0/XZgscYufodk+nrBsaB5VKwUbBSZ09sxRrccxN+5HqWxPQ09JiJY/n+ekj5hepaEUXWIkExvHVSDZWUTToUS7GTSUxQVjBh/Hn7duUtDJp+DCoJyce0EMsymM3X4CnNLVd27wz+YpoQZNtoXxcY3yaIKrvcQqqL0NoZ5n/XQPCAmjbkaVhKC6ByQhiKv+pfV9cCHk+N+Y8y467ovHvf/Ee33EeDDpB/ZVQbaF3W4UDojnGFauYQygNHI9kMVbvjdDqEjULrNetYCeycJzZJwmlP0E6/YE9Wvzv+SGu74JHZdewGWHzr7rR2h/iJO65oUDP+wG8sVMZIHa3gHhUZg2iX7OJO5bbJUJdOdazaaQxgVl0ZGcpbsfBNqQ9l+CaDTHzPv12A1ZPKvXKNSNDQlgMOAXw3plTwkogiMhRCGobUykdak8gTwjfpJmzT/eyaV/kM4A93u++4cKH3Y0oSm25R8pQ5AYCOrhYpZhdO23NI1g+A5/inZsZKzVpWJDlDNC3aPnf+PyxYaRmK+JqIcgEJblHwsgEeS1RyouG/fVlnBoFAZBCDLDIt/zIrpVSS+5UimhD1SE+ED27BmdBV4NxaLNen8G3f6o3V8NWTMK5EftlB7FlGCI6la2tDuYCLqQDq6L2sPgs38RMk8JFdlPztFknOD8vtTPZirrPBuMWRp0RcEplCztCI/0YyfOIZEqQpgg3kb2QKrU3TC0tLGuQNRPkmA7rIE4h+k5EkrgI0ZOAOJwOMH5e02VIL+bfmnBt/wls2tYxe64CVavLl5mD974CfRIa6GV7LhyqNCO4hV4ef+5lFe8U8iPObaAln9CIPRwHn4q6SpOpgn8fjlzks2W4nsMUTweBH31MNG6NIbROsB5i8osebjIE1+epU37ztxJtQwzLxft2iQhOxqcCZp9tocgtlSRTVN9CKj4M2Ob/aJawho8UmqQhoO+OI8yltwfulHAE1KvLt3DuZFxoBaYbAAvlGepReceenuRUMc3UF/ZIhxB0E199LCY6Xprn9ZRErryvCmKSsjBOsTR8MavYHTWgXdwhOZQRiE0IT9DdtjfEwaPkuwDkFwawygV+TZIiQPclP1jGR2+eRkx5BDOUXA5teQjFyuQxLwEWxPHWJMQOr7G+tDoStaAGyyJfghycYv6mApGudzrsmcUZKg1W/jbAgpF4HgxGIyct6w8RenR3OJLCqHFt31d9kVlHVjCTNsGU5ynvzZEfahVE3hUBIfX4kBcEAITOBFu95CVnLXDBKx/1MgeBEygELTc57ceZvU6Kat8b0bfP4GljEtFmybKpLFHnboaE1y8SWjaWHRtiTEMflQMJMk79opTxUnD2QnGbOtssgjWLJxNv7n46MTNtvupaddVYvzAT82TUxNXvlav6NP7djSKBaJXEfe8AF1sdDZsnRGLEpFHMGz88I9I3BJ0JHLhFTtbyEY1YdybsvFfDmmjz4nzop/EGv1pBnbbbXqiBzrm52P9MjKjk/XLdtI8jPdQbMW0XhXyEx33gbZWvOcvJNIepEAEZU3rZJIX7t3jKHhEp06oooT2p9ZyBVVMHPLbgTxjjianrQ1yl1Th0m7UBIBRhNEFfurjLG4J2anooKvHOzzZ8vOKM4FVqj/jxVTdM0MiM4PUxGbiEaXccClBGDYeoF73bZGbhUWpHjDFXx36IpfZ5AYYkIwVsVRKlzFg0+hKVYq/sf/6KnSDCQgtkO9i78Pl4ZJKnl+1UvcEeUz3cn86dG7DAOC4sAnJbE5+n6wSG//y8FV9warTRNSmBIPt5KOtTLvhSfZPb3o1dlamgybY6iALVEJ9Dy9w1tvXXWJ/GU8JP+QyYk0KLaRFR/MfwMcXKf2rqB4/wsN9GqA3XEfDnTtJPA0q7Fh2ACa8W53wsz9hoMz8NPcUhkCJsED7vDzXq1Wxt0Ap0ZgTlav62SHs1RyyNo3Z/H69uLugcyA6u3sbLSZepuVuI0k1xsQk8qpLR7gcYFgl0mLFQ2lZZ10mBwnTF/okkMYWXhkjtLqdJ8brgeQ00WFR+m7fVD3Nlj5tzeqKDxs2xMJzIbe9hFdxySJfEXBdBVxv/L9KJG0LxdPEmeLxL1s8gLIhMnso34RnkzdVRV9J5xYZ3z9605LUNUHudKBAI6rFtDKQPIIYCAr4NO2YsoaebAq3awW3ETxBfXPW3HBlJLgR1Xyw1qPOD0B9qbaqKPB0qkpWPRLTxY0x34I3XzuORl7xr8zjjwjqu6kzwaNHwYY64IYxYK7uKR44OiHItVFmi8778KNdXrL30p9ZIF5yPQH1Fv+nBdfE3InOb0ryqcIlVLliFIRn
Variant 3
DifficultyLevel
587
Question
Which expression is equivalent to 18y + 36?
Worked Solution
Check each option
|
|
18(y + 36) |
= (18×y) + (18 × 36) |
|
= 18y + 648 x |
|
|
6(6y + 3) |
= (6×6y) + (6 × 3) |
|
= 36y + 18 x |
|
|
3(12y + 12) |
= (3×12y) + (3 × 12) |
|
= 36y + 36 x |
|
|
6(3y + 6) |
= (6×3y) + (6 × 6) |
|
= 18y + 36 ✓ |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which expression is equivalent to $18\large y$ + 36? |
workedSolution | Check each option
| | |
| ------------- | ---------- |
| $18(\large y$ + 36) | \= ($18 \times \large y$) + (18 $\times\ 36$) |
| |= $18\large y$ + 648 x |
| | |
| ------------- | ---------- |
| $6(6\large y$ + 3) | \= ($6 \times 6\large y$) + (6 $\times\ 3$) |
| |= $36\large y$ + 18 x |
| | |
| ------------- | ---------- |
| $3(12\large y$ + 12) | \= ($3 \times 12\large y$) + (3 $\times\ 12$) |
| |= $36\large y$ + 36 x |
| | |
| ------------- | ---------- |
| {{{correctAnswer}}} | \= ($6 \times 3\large y$) + (6 $\times\ 6$) |
| |= $18\large y$ + 36 $\checkmark$ |
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | 18(y + 36) |
x | |
x | 3(12y + 12) |
✓ | |
U2FsdGVkX1/yNAbNhpUqqgS8zQVSr3SLHDjKPy8oTAuYQyFfJrKWBCy0drqkm3MJmr99B5MjtNFqJ0vtjchmuh0/hfcZjnR7hmcnVqgWtsYwviF6Q3UezlqRaaTaiAOuifN8QjRHRkFzs6QkuTMS3f+CP6BeccBzSPvAPbExw0ZKXC17x3oVmqHGpr1l8om5i1hxfv2qrsnfGlLYLJ9OfI/8DUs+yESj7L2nEjOP6lP2GidD5A/lUWo6Mu8WcZStBFgtyGwyJsgQS8JQE7eH2q4GB2zmw0uIRzG0L8UBJ3xMk2OUE6/alLL3Oui/qgnWmnUsyZftOBJrQtgvdLReJjcBI341M85whru37Gl5kHWnmfDza81WWkinn09mtYkJ3UcenLfEqeBIEKh591JAeLGeEWxCpsqBesM0EW8wLIrerFpTPt2HMstBGHtbAH9H/GIi8TTT7AJYxPgJy8tcHNlokonfFXoE18s4XGoFicJ8xFDFgAYphPn3vD8sOU+S25qy/h/ev32KIS1O57jRYD6M3bceZ04Ivpb0UtGb3EHPC7IO4J1gqGuu8AEidAVVKf4zec0NeBpJRcit9U2C5mzFo36CSf5Zhtv/74CiU5ABNNI66qw8mrjntNOJwWOhBvMQnoprT30gk7917++ol9n8v2D1oqFjiHUr+gIcgNaNd5icz9uI3/2e4lT0nJali4XLdu6ORjJSOqi4u/pIp0Ldk8/ge7o64lYJz473+M7iraQ3bVwl45IzeLSDcs5II1+uKKVcnDrZ8iOkWR03PkoxPYxZejAhAO2iTtQKZHT4BobJJxm8AlVW4XkfGzKCYhEwC5RBwOb2CugYD+tsi1KBRhdJeY7MNF/ztvaoanQGX9WLdIIgEa+65Tb2JWP9TmADptCMCQJlC6bZvC+LlI2gibv/yJN0joEeQq5EiIHR/A3H+jIueqyc2rlBVDILtd3vZpfaBWXlxIBcqRqdyrFCxu6nd29FF5mWZ15MN0vdmgM9pW38QPeP6qBFBI+a3JMS4VyWiV96NrLMZi7E7+xDtoDCknqzQ8PR2Tnp2fGdSu16swpckho/t2i2x0JWndIWLIfYA4Ct95b1ZCYSErxZRzOww8ufS3K7dSoFglX29l/rBRoiLDOdQSooQ+QZa2cF/2kt1YCQAmKxnxoPuWPwSli6ENKrW5lIwdGXvNJcqljj37OQm85eGr3YTnHh8FFW4vtUY95LXpGEy7GmQV2PAfJN2w3PM65Uzou0d+qe0mg7/Qk6i6kVK81X1CbqhBMfYb8218LwXLwWbNLvBv5HF4qqfooKTM80nb052Hs1pgg98Ho82QKRthLeBiQnIslqLjxnnRm2zJvOiljRz0v8/LYt5k/8MlVkNncDmsLfBHYTZNm43yYwCXOTygsjGgE13lNl859bR9Xn/7FDqJRUbvo4p/E6F0Q3CgJIpia8XSZpBaGB7Jfkqtf3e8vlzz9K7FlAKrTn/CCmCnAHs0Z/i/0HGrt828/r9stjLWgMw6ysn5kG+sabt0ZSdtvNOPORCdjpiPm2nI09YwlCBSM1g7k6xID4V1unz+gw+AFFIG7CdqDp6izVtD8qO6UvsDCo0KNsyhI2S9iM8l9LX387JRgELEPuy/IokdCMFwUxNj5Tdiqa5kj3YtyBsjhxRlHp+HahOoce37AB1QSLjbb6UIgYmxRZYjSRO3UmSikonT7/tEL78fGPWd1gdTNn3G4DKM+B9kCvA5Rnz25Eh2Z9eR5o8u2pnszDLwc6ry+n2RfX416gA0nMr0PulQO5A/QUC6H5JiaptoBDEDtO+L+yJPYOowFl0aHBZ/P3+RqgHjP37uX8jF6QgJ3XDHVH3BeUvxgUpzfEqf5UTzPrCEZvfrsWIuvHpYRuMu0isetk88aQRy1GFaOjJme1WuseYfbBvdwTYwjrttm00iaJrg8i84xbh6xarqiouW3DkdkdvBfd6vd2vanRDoW3cxiGU6HJG7rIN2cnP9dxH1zRk6bxXV7DyxbmNvTQX/ADGTVpkmCy1b+C97oIcP1GGZGSc0ND0hjMPKBRRdEHvL2fQt2QXFkIFhlI5Qo0LDArOnE6Lv2rfphak1fnSuk6fzqES/uNSm/4n3tUs/SNiwSjvAYcfZKPfVfgP29QTcRMRIShqS58k6j1dHPmNEcUwO3tmOmyCnmWewjEO/JQq0BIxvAco6fFFxVMqdUxHCMOxiavbFiucM3WOE4yPi0KgkjaAMMKxKBDCGOeiBnksKYhAy67Z+C3VTMlO9nkSJ9RKyTOddt33ttcqUcrO7hUXluIeytDEvnvrVKOw3RBHh9BdFil4dMcOnQN9cJm2khEz3m2Rm5LucAkU43PeMxr81YqV87ZhLwIaak01jjtUvGqFRVkXU/gsID+DUF++bjcXYfhHdSoLP6ce5mnCC1UZCrtnwnTvIv3eCrnfcBXTbxYeDbv/H+d79KWoGpmNXVclyUbwL8CZA7nHbnwsW5ZdzwQmqUsDOuB8W59+xEuOAwADRveOM2VJQ7uW7cLMM1fNaTmZ2tZoGp3783Q4nvmA1dTGrkD+qxGVDpbCX0Y/LTyVypfmELCTtK1NJ4fB1/CAEuMh5KFSTP4DXaN3YALemYCJZtDXFyLq6eljOh+fDBOwnL2/AWO9JpEXGkQXtqIWtoUkEKTPivqIu4m7H5pGePzvzxWDuoq4FDa+Bz/5ifGbzDs5v408pvP87rRQtyLfS/Go3ELFvuTRVTdjPVMQLhBLitFBxpZ9oFucHLSbMTnYr68A0/iJsiEGErSXybV4wXkOeK1CcMDlhzhmfn6t2SI79oY76FQIRzXCvHP8aN6wlOKPa3kWZLNw4z8tWLbKxD8a4VAKG1RBdqlC/zc4R+2daL4IH/wl7/iKsfZD2JC0i43+76TbdRYl2CCqn6QoaV3YBDIeS1CezCs+tjEGZppTaBM0mad0svnY+R4rIJHwZqSQWGQz7pBXddc8AufbswERKXSZd4FtQMWDFajyEWAp2T5P2UTzWkvU17beu8vCxEDgeHNzHLBZwEgH6KJGxMktM/nfFt4rVgm6l5D6MduxCwCZ6QcLPLUnf9/2rFCR35ogrJL0bjO1VGhtyK2klKLZBnIrI/gE22cWDUNrhZ0uFYioJuLNia2qKC0QffCAIdkbEelR1y9d+6jUwdhkFbVUSIB2L6pEQn7U/vQ7Js3e/u9TMW69/i3am2pcheE25XcyFN/TFJw2D6pgcdpIu9sSRzVqfPXhcQtoCfBbtSrjqOOJWoMzNrpAqpVCwzKzb7l6CNMoJqLY8/jdoYMc8OArZQX3N9/EjYdI5M5hJXoHtgTSaDVIuSUnT4i/AorRa7EuFurhWXplvcXvrecyBRDjIZL08KSVFstiR+RntT1FpLQuUprZ0haEE0Zl/rOmW+7DHhQ3Rg2dtPoKImiBoRoZYJ4u5tV+xZH6R7RcgMp7fYfw0kbqy4UwwENUGvUf7XFbYvYnECD8uFR0l8HWKnQ93sJdTNHA/rmj8/bKhVyoBvUTqOurb778wJbapT9iAZpc/v1NpY83UNESmyC+tkkuX5omu7WZG7NerPY9iUCIujpU8pcoqQvSmnqiLMGgJ9yLi1tJg83MB1ZXjfdyhrtXj5aSdf3r8OYFokNbP5itep4Advc0druopGdHjatCtV7XT9n0NeQTZ+1PZyxyn4HUm8CYRxDGzi3URDK53zGBl6Kh+JZCcHtPmBMG4IRo5dVHpnqcE6FQBcrGtb3406A1UPZ3ZNoQPLYBmUGtt4mpwjwR/G5mdeyjJ+5sHn4By/MqpAURkc3slLPurksvnttF2MZy5PvMqi6z7CfaAt9enjxrZrdb5Z41fHw4hThMb7VtAGL9vzm70di3A3wR5v5M2BRoQrcceCCKVzh9/JXOgWjUlTLkee3Re1nRZ3a50CiZfATiFawP+gk1yqzj/STtZxRZ4y9sDIothaIMyRIKPF782/2eyjkV6bVhHZ/IQrvTTj0GQC+6WdM315Oq0/Zol9BqQw5zfKjTSTe9ObqbSaDKa8mMOlcdtsrSMUxAGuYP8ut1ufC/uZEUDzLooujUWcCBu5kYJadiQgArrh6PYWrhcM0S+ad5DA+IeVk12madq2HzFSQoLZr4uHpotJxgwr3g46cXWMdlQHThBdovPyZ7FvvunV+qnDQwdIphEvLmhh28HKkPU8nlpzpqFL0l9q6GNbKNEF91yIY0YtOX7pg9Mqn9iwCS7H9YVHP6a8dhvl4KlEeDqRgKSEeUEWGDMwDqJ0r17IjQNwCfg6gzlRaIZ6/AR8HghgpAZ9GvYSAIl6mI9runs6xATIp/a4SGK1kUbp9ir2ZoRo1/121PsXKSf+mhDjzMn/OMESXhbB9EQd9/FySStg9OhJDDSoSPyUhgnzEjbBHnB2sTXXKXxoIYbBsYZGoAvD6+aBPfX7czHOpHNNpY/37GMpGWm+NMKq1ypgWSH16vXNA/kQx9wg/5nnkZarH9TnzqS4d/eumDkH39iEnzRAXgklt5OuKrFBYVdT1QD3qcjU/KzhOoXLSdkApR+IgUFqO9hQp3UKWsBaLIANZB9CCLHBqhg3gZ8y7GLAzQT2M0vwK+LOUnqrMTtlSyms5Cz+q8WR7IK2Q3esaDL13C4cs+sA8zPK6WMXfihE6MDsQdyitM3fnwD4NzQeMff3BXUM3lpLJmkjYmcJNg9I8B8rZ5jpzz/l7pnrmBA3+MdXYv2Ocd9KmeVSKW5IJVp0Xk1q22wCsjORM9IHmP3vehPm99+Pgybjni4oX1SDLroNLTX52aDVZkdDeU6r9EiziVH/tay7/yuNe/5eaoC+oNMWO6sh4qLbOpKlTZOC8uSswPkmrcYKV0ZuQIQtkpqoGOQZklcCNR+C29Z212KWNZ/aPALB3vJ+mbecBkGhHB79LCJIS/ldsQX4LSzLKYihVrkGxHwAyHsSQNRejYZI/MTTb8VemD31/cApX3pVpIFiYhExnAHj1IPFiIsp3AoFYel/ee7BJcEwPfd+nZWIRxNcrcLFxyPQZdPI9EzvZSDTUJWmDVkQeeY5hRrzMvQEXmyVfww7xf9C453SrxPNaUHdms0QMPd4NNPIs1/LBsn7FQA5Fp7JnIWQIo6LsJmd3g1yNluFVHqWTmfox8+6tipQ5aG58DS5m2I7GM9g4+W3c/hwTYFTlEpZ4Q9mpjhn0MEAnyfVr/Y/vf7uCy7QrRmn7B7Wdz9hVVRb6xA7JQsU4AMB4BWxBwQ9BEGqkGhATQ5OMArNZk9SGqdWzEOnCjqaH83Db1LN0uA9O35Z2E7vm666//yL3DIOb2sEPDbJgPDkw81FfK94cV4YDe8DCeZcWAUMCKBx+6dv2YyLDPJGMvuZYugvhdpklU6CdcaJ917xp6GPXwaw03KLYN0E8Brz1gIQ2fpwRwIcFSpoPL24FwYjSVgMnxlagWLnY45TCSLtyyUYTRUepLow99KpcYjj7coWLlEHWM0VeZis3vNMT21J260qPEI79AFp3dboJMTN6UMF4hea4GAOm77Hq91ipt1JZlE3MuagErrpo2MiyT17hrp4ik5M/FNozGPrQT7/O71MhjPBTVQY8+kPXs78M5YVLZcAiOS8+ua3WzM37Wl1b9EGTGst1YiNnnxBpNjrs5EkRJGg/m3Lik4StlCu9ulMlzhH5J51cHjc0X3AKKiMvkAyzuhoP/6VWNeDZeY4lrWwBKrayTvFdaeFDfyQQrZ489w96W4jpiXIgufd/HaAHUEbunkyp6VYXbKctsvmkVjiEVySTyqB0QEf6bCEIUKeWduarAZP9OlVA/lbpkP06H8gadbXHkMbDaMuIvuhYi0swzylIxa3ZEBrTmD71Im2cgpGcvrB2Vinjh0p8NVzmSmYl4YSp1rhhQ4OGps62kLr3c6WP82XEy1jxsblp3WO9wgJT75I8KXfXFsHM4csp8fGiYmc9yKSfPAZjxreZQLQYcsrGMSK/GGPTRQSmLa0RKSsFk2hs25BV9VqnWNeyV7wpx17rzzpILVodhThafVvuJ8KQsC4oPAKyIhWpSvlztECkEzQ0djR+zHwHSomw/1BgmBcsytmByY0oLU9iGOzLJmpQRSmurZ1buqelUArv0RurFEsar3WfOnmbENv215fG6NvuuvYWmoTnXyMWKCfAlCCaAjrcpPFYBKegguc2dEfxwBVW/optvZQOZY+XMeTcQ6O5EtEhFti6yJbsAjJJjY4gs0kp943Bpyahj+B8aedV8L5Ld3+/4jibPYB12jliJWmutDCQhA5/UsGOPkpPDnFhbYUVoLPcoGO9LS4qU/Sh+HeVEpkTM5k67e8CH7nyqvQN0lK9xdxdr+SIYSVWo4DiZWNN+YB5yJjpbDswpUsxYgkP/VxPKJYw9/6OIi2WW5GeEIvbXEmNBl76K+h5Ak6SyzRTIzRIEdhHc4bgcLlilqVQyplLdGoIU7ac+QR2aN9jInZDZa7xpXpSxRrYGCqEek37QDWIghe9MIwjBGqB+MSsJFTbvl3wrAh/Wx6pEknC55KWXdyjrt3yRgeZHUmFFenZFpoJD8NwEKHkQz8PUls2PYOCK4IlXdhRYIAJCswEM9DPiBCX49qYaOAybpnMQjIW7/AgT2ug2l8WNi5BKEYLoNseDxiHA+iUijmMXv5+96s1VdU0ZeXmIZi7c7feOGUJZuof1HYGRJjuEFSpB9RX9xt0CD6SWwCuRjr18OHd2rI5/TwO64e1gZ3cxG7+q1XBhfoJmv9cWd16l6Vzl1IH7K86x43I/4Dq+ZpHnXWMzmxx8a9T0EPbaBLqPYkt8M5DEiiXvMUWPzkosYLAY2HYL2ustDNulNQpgmG9sX0uO/SfP/T4BL2gG3VX7vZlOngDrNEsTIjPA2B2Z9cfDlqlXcOc+E+NMGcYGFJ0K/LIrCHz45oMwPphW0Fxy/i0iLVprwBSGnGLtCLLLtVJwnqb3ep1ZaMM86Og6QmDA4+NwdUy1YCQkV4zEnPUUc4vxdJmBaBeEZDZ0XbefHCJ+kFkWI/w6CJEMiMV7s2CGoQP0c0n67cPPH030lV0hPACZ9T3g6J3KeKl7IlO9TjDZfscDWa8FZ0ZtzLGQ7W5ZJih6pQ6+hL7J/4IIs6+JWQBRQLwx0R2RKnArQb4OaKsFKy7mawF8a/Ro7baYsQUpuW8/nHl+lnbrk9cQ+dIzlUS3J8zaoImXsYB7gQaFisl496zxWJaXzSueizJhlmB4yDbnbOTcsJuW+4dSaE5qSZTHZNeF0c+3KU43YBGqHRPmRoFp9v3VtDcC92SZL7/y43K2266K/SXW5yuZY7YtzENPBJZTCKLl++kOfSEG2QrUnVjONhzZHtQYDig/EX7x1jKDGcBh4i0+P5oiNA/HzouktWj+yf2p12dZgvMVw5cgPpXqi5rGpzj06+zf2RW5r777v6qQepvUjvkXcCXQiHOW0zNdKxqlKJosybBpayrGVzYCkosbRxvi8gzRvXr5OzJ+1vwOpYlAKNfuHFnc9pqAtXRROJihPg3SZZ/5B/tIVLqjq+t/KMx3OmDRx+VJfimEcjEsnznFqDz3wL78UpArBkshEGmo6tViRZI/+xdzKyNP1O6fdvjgzUc9Nqln8d9wppKi6Q2Kznb9J23MJbFz/PKZZfeboSJJs1Yozc9eYrgPu4kRhoNTd8G6PaQA/s94YiKr8RsbQvDxaDXS/CQFpiwognM2NOUXRZOOOb41zRRscKbtm42neAna/JwNXXFUODD8t+BYaUblw9LSYi9gNEa6hs6mXH+mWecm/t8XGur+jLDoTkaxqpCYKES7imwS5BVoD8i85YD3NGFhweN/KweQBQlE4n6CjfCxiflV+p9gwUOkEgi2aEf7/i176VEtBy+x5v0f7eRjbXWK5OYQETElBbwumeb4TIs0l9sFgTBZl+sh3bFzVHrnsRnqHZ4AnyUqb7DrTzRUdTbeLndiAoYZDtMz1wjCTaDQv0Ovmibk2j5B5yrkQuyMznu+F1NvqjsrKANo10VJfzwK21ZC++Nsfr4267JbPWkshEEpFM0f8yhxviUsGdpkxiwdZEV7n4pAgPVCVrbrGn3131B9pJb9m0TFe2KA77nFcBFC1OeXmeBGglIxfdz5TYpSEzloNAipDWibR3cFFk/J0sgSC0L30zeFMska1/zOdy89gROq3JK7K0f9BCv3UkwISdVKTqWoIY7AjBFfZe+HH5amK5XgsZUm3Dn7tVdkMwAxFFBJw1JQx5S8GQ6EvLtzFK9PFIYogwg/ladUJor6JomkPrRkib9qarZtgeNePNgZqK4T15COjnKkrdJ8R8/wrumYT2sFw5DIAxos4lkJbsj86GLHuJtGQa4ckpTERLPzZNCVydc94E/MlmgV3e5kZRSzhod1kkAiX8vva2Ms/wiwFIVXtDIuEkIikMnBUCBRtHAy8V/vTBopf123sgD3BhKuBSFjUVa+D8N4U9Kw9Xcqq9SydMxu9gi3lwDF/x6MLybd/H4KjegzTqE32U3Z6QZ/etdcsSiw2/Xpr/kTqUOVcqOeHqaHA5cT/FMuVzg4c4hmdePTxfKATHh2hX7hmv4lCESoluaLGUkWXokGvLUILX3Pu7w6htb8UuYsVKIkGEXYDqXJHUw+dgrsVq+H65Tl2/37GPuqlOsgMx6f3I2t4OSJXeHbBMpv+yqMtgd75GC7TOaLwUg/qinVG/9hOMEjERndlL5dCOy2lBeeS7kEF8TJhqd6u6qOw+Ah5Cv671nEXPy9bDrfXKIFDlg24ghMo5L22H37AertAYC25qPDuYw6h6f2rHFH0YeG+kC+oXheuZluPT4Hkj7yQZAm8gp7X3xMel708r4rY/JiJawFpl67ssXROLtI0c1ZCSqZgE2nHj7an2xmKdSSpkJhVBQTnypIJI2VZUhlg9MvvDbyNb6R2VKH40ibSzVBcFsC3yv0W2JD4q4teBQ2A6pH0YmhIzxFBbNjZVt86VFywvjbj0XId54hKpX9Bxa24JJo8JXKFTMn+gYvHIIQdP7pZcA2t9QxnAt8Z0wkVnc0yw29mfKLupOKfClBS/KwHzddWJXv9flYtXF/FriwHCQ/jAHuwCsNZHEAJwzd11QV1OsZ0qyqPannArEm//01knUn8RqmdTdfp7cuCBJPzL3zS4ksSQoUJd3LPXURj+2ZamtHkb3n8eww6vpcnktmL7IFTfw2TWo2jDQ5545MPYCWErdGGLTFbmI6Ygvt4+fsMIUV0E28asfvRI2iHz8PRJdYIXahc/pbU972PudGw51wSww+3CIUZobHolCJBTw/RvFavdI0vHLfTlLSzoRW791FIetWn/K5lLg6XVNvUAexG4zfpCCEkwHaOAkfuHH1TjKqSUQBQ+utTsxs3040bkOGlMV3GmXkwGpVDTP+SJyjjGVozW+r1dbpTUjyWxSXQKkTEt+3KorzkxFKJId01v4kpgZkiUc6nAQs3ED9svmW2EixGEwGXmTH6/BtbW0ILW/GdeW1foGfZHBRumfL8nNrijUc/UtPenI3Cv9gxHasTtCgJzzO5yN7BCYEdSNYyLQ0QQoq+3Ghk+7vnyGvl2CWFO9eE3vLQyUC1VwWIH42Ld9sv7bc3siXa+tzM5+U195U5rKgXLlVI6N8K0ALQ7dF7fnocXlnbaV+dbujQgKXodgMPU6tOzOKm3dZF+9MvLembmPMyR53alJDQG1IYKStn5h1mx2f81dVfU8hnDgElD7QN3dZzmKn39VPL9RnImuOoe433MJ5qxRARA3WK9kESD6xAxtP4qynANw2wR8RMJNPOxJhRnZ5u5egptzv8+BXt5DVutr58Z39beoujYKpyyiS8ksGyXS9Au6p79BsxqC4FblHiLz1n49zDpg7oq4PaD3oMkCdZ8vhWq7fRlZIruBfNY/0FML5Yb5gQRilRZYw8dXRTjzGyPyB/2NSdGuvN25/5xbWzOXEJizNPX1BAWICZ/T858jJQ/xvHiyUt3qUKBXhrXj9M5pTqhNTRWnbrsLo6CfiIYRRNJZgq9FxwjEvtLQtP5LGHmDvPnAXQv7VT++fE2laVOjHOzTkMvNGi/ZxXD/ZSPl7gB6yBnITE1YWNMTvH8lRhxB+ZgUrLZHK1g75HnDBp/kGS0jPpiM9kEBtymUZRjUOdepwUZu7nDswo+Xe4rnDpJoL8cbxuUYlF11xItqZ9h1Q3I6R8JPfA9YKxc/MpLSD2Cpu6HwUPQDagBXkbWc9v+lsrLKPeVhRMkcxlcCI29rE9RbGaV7/wgpCnw/lpqkZyPn5S0MJS7jn6l4m+mjMAYJeWLZ8g3NwcTANm2A3svjKqCgIF4+wfumfFUBB244TGk1bSjp2kcHmnX2bMnodDm1twqpA45rWf+sw+R7QtyNObAhvKqvDMu0j8O+qS5/EfGTNXbjE0/bmqmf4zMZXwj/C7hUx7FdqJsRP7lwsc7wPH0EEXiYJfE4MNvMGvOoCDzBWIwoTZIh5SbNjhYlw+c5YcYy+vfaOZ3pYTl/qTf2Vd9/B0/ZeQJMjK+EO1L6YUo/2pMzfbcyKQCl03izOpvjwlPqpIwHrC29w50/C2VrvhZ1OUe4BNZNyCdAMVridtcSvWAy/z3KcHgaZguH1PEHhzLimJM/4FMNxJo1j5BNv2/GvGc3UTWS6O45+KxJEjkxftnMXG13fyyDEqoHNBXHfzVdqwOP6Yy/898pugkCPOSwsu0ZBY5QgiOUDSMDf686uT/4e1RfL8lc50JMX0K8iZSX11o0Jjgg8O9V5siSkHtMf06s9lk87lj5YOWB7QSXkYn4nxWQaeefqSAG3nA6kNSgrJtjgCKXM8zwtCkCtPZMA3+kCZa7puNQl4H7nHlYgOua9eoZ+cXfI7Jjx+j+Z3NyLBVQqgOwQ9lp2XWEJvIXiWNTBdnzSJDLcAmz2d9zcP5gZMpxr7M/KBvAVAXoawzLWDVgbVM9eapEkBkd2YemxsVkArJGo3h1xSNJ5Dt6PqVaeQ6a+8jmYgsLnoefjeIe82UHzsIjkU3RwOVkPmU13tTCiXy1k5ZoS2sIXNWiE5jx1ovawzUuUbi4BsrNytL4G71SxFxGywqBtOvUpE9tpRtrwoRHlhaW+fr2N8xzWiVj0Cx1IM2pMcL8gu7GjtidCj8lsGhMaDdR2i4uoEUtIZir49fMJon6i/iBUIX17SgRUiHELDR3WmGmo3AiHXfeDroV/VteStPAWM8sKbRdypbmrlHTCSp0yL08oINzWJ/XQ8310Qtc52Zo8L+ydehBS6LNjnIkhOeyRkN1Vc276XMqLM7pF662qjXvGlhHgo6VSiyKT3ci0CPSGke3vco3T3Hc64BtfRL0hp90+6H4+PfU3G7/7jDZYgxY+MjT47ZQTefhZv8lzj2EAxclP1Glf50qmWcLhPrmAID+Ii0ul3pmHy7xQ+/bPXJb52gj7fkkmzDiR3553hQxomhKYmdaCnHVm3GVUlg0J2mBLCdbmuNa9+B13m9hXeKKH9p5wXiRIBYAU84FYw3YEfNHTwY+BfiSMyLQTul88RPPLW6ao1iaAZ/UBINfXxerNl0w8RHShgWFoEcFy4kyxRXPS7qq0UpubhtKNBsh1aG73ANYJMO/mz8qwd6ssbu48eZupPg0wYEb50eyQIG77VfBTYDu+dOC60zPYuA5/OF3Bn5HtW7jEbp3rQN8wbPhb5RaaFOLfO2QmdTa37/3AFLDU+zgL5EVZwowq8a7moEATqk24yJUd9m/x9pfnhMv+AdG6tZDAgWtC8B+mgYluJ3bc5U3iicOalByPTczkP9p2yp5d0pIq5k1VhzWx0oH8hwPM7Qv0RjDRGp+M7kfuu05GbE2J0+DgCBW4ozc7JqhVZ3p/HIn7QJ+gSh63H7PJ4jVuVHC1XKCjooXabAbGcmzqYCJDEjZt+vLbyQLqdxZF211GIKfecKWfNpr4WY2oFr81DS7IEtRpDEwTj9anikajeZXQ1BTfTliLy54IxHgUl3Jt/8M8Dn6Fa2AY2k53eLpZ93ThG+oPMES2yG4ZJanuQzeSNn0hWPDwxt3pFAmYKvH0RGy8u0dHt27cIHdmFWqA/fxfYWlVX0qvLx4mCSIbrqEw0HQr0fIumUV70asBNZzZdhcxrQxg7gnpeklQ1t+Y9wCuZbTYCzo6xTfbQ9eeKvrw/uhvi84wXuOfz2lsxZjES+Q8Gp7xjeKCIneYhJ2/Ry7XR7vCadZtVGitLCS2cCRSYAan3RDOqx9EkCnIkdlSpIYesJDQsLI72hWTLnvRi/B0ZtuwiQ2TRB2Ns3phaO6aZjM9IFvbPUqXF9eSrCKB32XsnjI9+NZVzEgS3g6TRgKr9sobJpwRs63Z+WnXoZLCT2ZlbaGnCpIfmdgKJQc6JOZp/yizlP98VYOLIggqPg2u7ZSSGJyHW++X94uiTXLAPqEYieBAhV2fgGxcE39Gg6CfUINL+TatbdaF1z8IxXDsS0OvazJT3TrZgi3UT/TGQ1ZUELd7vKPZHrlQILStI04d9AcQpuANs96vKZp/duuot6Dr6Y3I89YvzTGKHaohQnyy2TaTAC84h1zGwMrZyckUtVsDjKppxvBVbFfvDu8wwEkdlfhMfydnO1Dizzfmep97B/NviDKBrvz16sbppZhJZPrC+dx0hdSc33jtLmPFG/RinYQDsFZ3V4RhbOHmqMgjJ1PYIWvgWriLuac5O1w9n847K3kwcECOmHJwRUFSt5kZ1hMIh3WKgAAoPjHjrizNX88YcWb13+D71jJhyWn00v6U0hwYJos138x0d5qfyvN0zwSzhTy4A9GJqpWwZPcCJ4dkx9NptebGC+d5GGcVaL/9EuRRdsoOfMyVoLtSRSUFe0tW8XPC4Z/wcAd5/m7EDKGGT22Cypn0J9/PMqYJYeGk1QHFNMOT9LhjstliqnkSzAKeMjg9dWh64Kbm6v6pvYXLKF/f5/zcTRgMAd0V1wL8JB/44pJCp37HXsd0Tlg2W3RFJ2jZAScEaeGx+EVlhcLZnXGAn+1C8WLizGo1TRWpm3z9cj5MI1yDb9/kviPcHfMO+6Y8ZiST+uOZKHdNSCrgtWenNt8KupPoe0A5xiGbx0h8fDwS/6+KxFKgupyr1Ip36tNV2QwBX9HBNXE+FgoPXdL/21ezGtmVUPaMpzD1AuUvFFYrTPD/FWxKkxkPr7Rwp5Z4Fgi3opGH139KGKGW2O9+rgrXBKIquNrqtmhboTFvEJ8ah9LVwmxmn9JulsJMwaTzVgY54wDascfBjR4/B9kPqM4HdvKzByiSTdEqc3tzt8AJPDb6t9FXrVtDeuX4gmA/XnKFlQhliHSSGg2uUbGcudikeMANKqc3hQEQ2r2SuM7hMmmVmuPZ8h7QrVKRJRJ5k0U9h2ezfw7V8bUM2NunvoebOxSv71oJlYMpIwRgI7dhvQp/HtOTdamyYAGxeka/UlIpbDRRb3/TJQnoWpkmXpkSbCQzX9WULexj/rVaHaYXcdHwYRzy9w93q/RlOxnvftBywJYmuR+5l49MoUUa9/0gAP3pOZkk18ffjcYhMtWjLkP+ARZBTfRH3XZ92HBHghCP9VALi73T/cEGzuT0VaPP6PwwX7k4YNHpBDRLwtR0vhWho+7lZoC/19f8BsXwUPIPuQqLuI1f1GUr7dWHt+YRrNJ/Com84Tw7dJBx4p6pfLg40zApf2AcHQdWkHm/A1EdLDV5zqjINqHSuU4y9OdiTnYYA4CKll7BnsxlF4/Yqn3KvZIc6RL0bhd7n7oBhbqI53TmobgkPLtVOGmi6xtKcVjNg//I+CanbMly4F1bMlreE/k1XIdwRI/oA0/FD9cVhEBZBGWrVe5vaQWepB9TyKvSGi13hEQ5s4zEdapwwkm+WjBso7Ka/hSOSF1naK4rXIyX9qhQeZUkMl5s00zS2k4AtvsmZTbM0/8BEVdOGrdzRisbe1t0ctNBH87T1ixJ0pojCDciKC0gboncA5xtO9foRBWIzSuBGEvyUdZVtuE+DxSw+aQoXPBUgxJacaJYQQienDNwnVlC3XEios+Yak3+RvqA7nbYdXRCVVQHn08vjYrJ8z7sgrlAmS1yCELXdx4XW7pH/ppwQLJTn0znlbY495+V1TDB5LbvkuTrBIwGoy4jn38TQh8Hjkod+ADRiZahgNuTX2OFdZV5j1XBUeWePW1WqeZiBJ4LKxI7PsunxWJc2O4Ymy7BJuZcP/zHZ1bNJK4CEda6h7vpVgBYDds4mYn6UUY15TVbb7AZEvKowDNg+Egc4dnpHleD9Z8a0MVEWt2D7viP/EQ2QJS6tH80YIgS1gzrkh0uporAV1bjC1CcjMi/79/MiAWq5+Oaw51bemN/rmVWfsYh/DoLeICe9oB7uACXEf0gp3WP66ctbVb/YxfLx2A3k10RgU3DTmRJAKnDuUDYhAFY34oD9S61u8BCVHV5rCxSs/MMb+NKXzbi/s66CE8UxNWhlRS3kc735UCa9baGMe6aH1Q22xGr2rrI0hUkGGz4/DnHkegalnGeW7asmKrXu9/3ig5dR2S16+fuI5AceQx9Or34Cek0tMIPW2/wP5QTWth/PGOkXlAzDj9kd5NlaNP6UFVZMpiEe74ble+xlqdY0zXi/AUMwgpiQnAabT/4HDebbEhu+GBkORFEInUTSBadJkk+iXd7Z55P7gTobQOhUBvNH0WxG/AGZEK1aoRhM4Y6b/9NvlzdItpoJSegUOgIUqRZAmvZYBPEOqALo+KXX++abRWSgY6umLgVmRTgR9/bOMZgcHjNXLRCwzPPyKmaIFi6fqE9g9zMLH8I5lNBTdBLmJOkCTt/V1zi+qyVt1PiBhenmYBH+YHEaqhPRN3+7Pw6/6//bwA5BRJNmJhVGvH/Js35E+YolYYElmyQdyBI+SOHSQf2Pi+KIGV9YGwej9O88r+rozZQP7ykczBKgQgqLTQzCSK9WuA0p8hZeitH/PKnkXmmkcsaeTtxaIyYh14Ewi1CSSm+OEqJUnpUNPHJwJ+2O3Ylpw0+fT3I/KpyIpdtXbguPHBk5wkOsDwBXkdeCe2+FX4vz1yLo0NzNN5pOXNxLnrwHpIXqwAaRQHhQOPpUk=
Variant 4
DifficultyLevel
585
Question
Which expression is equivalent to 20p − 48?
Worked Solution
|
|
2(10p − 24) |
= (2×10p) − (2 × 24) |
|
= 20p − 48 ✓ |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which expression is equivalent to $20\large p$ $-$ 48? |
workedSolution | sm_nogap Check each option:
| | |
| ------------- | ---------- |
| {{{correctAnswer}}} | \= ($2 \times 10\large p$) $-$ (2 $\times\ 24$) |
| |= $20\large p$ $-$ 48 $\checkmark$ |
|
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | 2(10p − 24) |
x | 6(5p − 8) |
x | 8(4p − 6) |
x | 5(4p − 8) |
U2FsdGVkX1/Fj8mHsNfOTw5zeX9TsCCOu8JwVNqHUULA2sin/Mze9fNV4Ehp5Z+WNvcQ48E9jfkZ21BgNcBYpp2U4cp2b+Dbbj0N27iMJKnxl8rN1yxjQ7xxJ9wVbbK1EANDvK9GaDMVIYxbXcMrXI2RAYsAkp7UPJw+OeeUt2epG/4i3Z7KV9tAEM3v4zzYOG0D9+ssAMBE7igevtnFYKjDybTI6ciFIDYWCany2MueFXEmDiQihLBL5qjDjRNpG5exas4F2Rg+6RjDY68WJRJgbE9wz0pXud5+M0gGNIUBxfj9s6q+A/WMPsKltwN/WRQt5t6PwO8awNu2CR/Bevyhu8mngt4LPI66qw5UXcpQpc6aTc28KG1eij+rzv57/T+3Jbdtvl4qZSeh4wtyej4arqAQvH3nm3u3RDXNnVHgr8Ko/kHr7+/jlU2oW9HefGq6AFwkh8SyZ8hr9sSKUtoQSculnNqVGK6jdujH6jA96ivQijeRC3E8sIm9Q/hls7IRQwAIvjoerZc0Y+J42SMffpyyLg/kJ9e03hqFrZo1doefT+GCuhbzvUIJow+hg5Wtr+H4koG7Jb36gq7tB/QFgYAHk1zuf69xR9Y4k+MUcaJVNRMlwGM08haRRYewvo5j/7XAFCVk9nwhxX74GdYm/H5WdgEYKwsqCGB/V8LWcPuJEOU4OPetnuutbvlFh9d996IA6OqK9AaYIc5/P5huCsK2fk9zg/sxLiIWHobgTUzfwLEOk0z7x1gkQp4RjjTMN8OYZ/BDZ9CahE2b3nA+q2sbkInvRfigeCOgvGB0C10VwCdRwCW+SJFOJdm8A/fpcN+o0VQlNIQWNdHOFZG396pUIOGlpXq8UK1SUzGUTbNkfI7igUD/jjGXIo8hJ+lqQlPohj8S38LE4VaHZ4XY/VBRopSDVccGvweWv6c6jP3eCh60sy9TAfMAPROBB+bwrLyIBiwhp9cbImeU/ILtczg+/EV6ArU5M27TpYf+4SuWdo8f04l9Yl9AtcVMojYZ/IGucnynRunc6Mhb5OhOdLnazZ38rv+byVLUgrZcqMGcEDUXg3V2QlMMxJUoZxlHN2dzP+8f9QY/QJSCWdpoDTa0ZK0xSaAox6ZCrtRde6ms/ZBodbffvWb9ce+W3JTAk4ZyA4QIxdMMoI2x1vpIrkTbx1/nEiSCAL3g0+6XKqeKcKAhCS7hQWdA3sy+YHPrWBnvkp3QAGk604bb5Ui3fQuG5zqCLWZ4yVmSfuBCiuDvJQz8bWsh1+VPdygzutj1/RytPDDA4JeINXNZ/WgDpw0waMa+3S8NxbnWshUJQkU6zk/ns4fkoyGYvXCP6r3RMKrzCBwbB6N/L44VDwdf/5rZkH0akr9a2/trPwnfvSTMI0zF6syNSstuM0aMy432H6r7exaiobUnDdGFusB8M0y89nLwvf7kI/4O7jK0GZCCoqIa1ZTUPNAYOIz+XVzS2P766UT4Dk8hpd8OwAF5s5g2Q9gMzRwgqHvTNpgI0ekiogbXWeQAWDtQhFWWDWl27mcPyD5YboaLh+kjPIB6sJMls/zMpl4Hv3fnKk2WlxKsgwMu4NrUrluyz1KfpLtVr5QSea5YQIVU+n0cj4mMtdIkukqOvb8WXJKmv5AEBNShTxHBjYWrXjFg9u4fw6Rx4fh4dgELUKzwvE2W+03+EDa5GN9mM8Puc5UyG7VRYTEzz/9Tw+uQouje9oZ0jcOjqax17x/wqGAtkeDpZKEwa4ZitYGtl3OSsqGmYJ30h0P0voQrETKfD7H3bz8V8UEpdc9SPDi8YmqfXrtgpDwFFHoiMBAEPr/tMlMN7svNNxMYi4P3J4gJ6z6MN2J9gJUW4h5H2RNS5OhzB1qfVahzZYnfn7qwXSgEqbk5s4KxQ0UqFAF7UOX/+UNAwz6o2P8pGeRmKhc7iddS4HkwvaLhn2bl1cDlxnsTWVVUdhEGurEkK7cUfcC3uxrKXnwSMPb0+JalWBYCcnTgFGxJXmQpi+lInwKEVwDj/FzlQyBNfrn8Dxop6RIFhfck8FYUKt6Lm18LaBTQW2qtbqLs5ZI0vC+SBlAlSaSPV4oGRH2A86zMsivRUj0bZ7n61nIFxEzJUdvn9ri5913dYHk4dqHXMBM6p8AUWSe1CFYZmLeOIQ2Eer+KqT/vwaVHTQl7sD24ySxMEvKcdFu6CRGE5LrYhris+AjlNPjCIpuhBG/Q/7EprNKUoCdtC/p0u+MNPnxzC21B03/QNjU3lSC0r6v6jsP1sTTNpWL0OJ0EZXqfnRcWN9Ln5KOHakcOSDC8SiHoh+moLYthOfj53yHuR6AFdKKfVUFVxYb+ytVP4RKnjCxDwr4a2m1PLsGRd4peXy8bKkJMQIFaSIJTahrYYI75TCK6kSXA13mm8ikGww6SLXQzr+S5Twe4v0xOSgsIkaSySEuWjwuqVZANDmAUowRMr3Aopg0qTyBNcEicpzLi+JR+5uppBn4e59u4SZ2v0SZhqezYR985vmqQTDwTGueM2dU4689ghu7ADlIwl1ZI3NezeWlPEClbdNwkiMEHSPYgHtl0NPm+fVtqqGun4yqRILODdKBhhVqtpQ2jqrViZ8I1jy6cWtZnE4jq3ofdkpnGrebS169moqla0CZCBcN7+A7T5+S8wISrUMBiedRH03jxBQIigju93L0dFt35cGXk9JQWdiLu9bB/d+oGQzNYolzsZF/qzA50Bs1G0+NnsJY80GfYs9AJw0bnD2f70OBpg4bEGfIgCzEtjenYm9da//x6B3FM7vooDmgDekDNLLSZwW1jq2cntp6NhPHatkfrJzswbIqEhyKUlTldxcbUfYzd5x/q2FIBSbvnimknu7HDm/Rzi1ZBCxauRgoRS9k1dJtIPaw3U4B+PSP2qSmM2ql/9TPuNdGfrRTjCp0VBm9kOfC+pEkU4phQ4GdvBf1GM2CxWaHXar/BSdzt4Orit5+1nrkE0XBB5FAuzp36c6NvQ9ezZhGbWUGUKNVbTXNXgLTQKxG+ORbDBP6PRs2VhcjDBhCG6SoJOtiCwUW+Vg+Wxo6r9evXDmNzy51fYT6SgSOpmxA+9AXSrP8Ey1UypRkq73ZeAWBQSiRLzz/0ej2uWCfPHKlKGEsDEkh/V06IOVNnNnxyWyac+Pn0fY97WelnuXvjR2FJWd4FFNDjdr6gwMMhCvVTjkqHJxvEE/fT/L4ElaU01LN7HJsMvhl/whLasTNoUNu0OaNOVIsTvxsNeAXnixM5+EEYE95613UcyBqxAgARLaVu0WR0Cst0IdDJwoTkWYpeu/a8jFRGMSECcSqsuctl3vM/4qWga90zr4snALsMjM9V82DE1kEI0E4fwm6Dd/6EG3g0NqFzhEou7a0UHf+BMqbh0329+dOl3PBmfLAIHBmK02xSDH2K+1D8bDdrKOQDxk7SadmQH0kGqcv/yekAOF+TciwsGkD9czXWPLUuCdg5tYPESGtLglj9mMJqN/KAqRRTDYEpAJ55dL4EJ+TPOpWsaAEOTBBhCzXp+47rLMi7hJeOQxU+z7eDVGH2rb5pLNteFtHT0uOYK/I3Tx75klOBEX3uSengiwFB+B+yoKcvl8qFfgJWGvnNtFCzDdhD4XQPirlfuWN7k52MmFGdZGOo8PRVyfVEHa9MPRReMnx+4OvrJEqcU7OcXzLX0kC5jI65yErBd2vv7T460IEV1kiIwkiZN3T7LhetbZHQGlPTmuo27XhiIkn2KfsKOnjCrBxaA2Zl3rjGCm/cxG79TmFyqSowwoqWzBso96Uw20Li1Kst/4ajGHetjstbXswX4z6PRn3Rx6zbdp5OY5TxZ1j7Xc9gbXqKNh8vkEDeHy9SXZy3lEDaMMi0WgK/CWyReTJbK2uKNhkJlJrJ+a5iyBfSQ2TfaAaf3J8V39LEv9iRZpIQzjpRJykcMlo3ZaFJTjHtOlbHVu2LS1EDRbb4fSpfIBOJ/CeDwG7oXTam9UAHMoDHpBbgW2n44907aVOiaRlSKoETL4wSdJKjHHvWRfH0t97PbxE/GUjn/m8fTx+w1mUOUbvbikUKsXs1fulwGtSsQJ6AtAP3dekNms8KSQonflQsznsR5QOrHk7vX7k+km32Y7NWCHX0H2qqnle0bhvDKkkw6P8c7tN41jRjvHHCR/JCCsIrNKMTDEyV6/LlZByG2bQYwXFK0tBqF09e/xv6q3QHDACzKFBwFiFYCvCLD6qHIYq/OuC8qDSOC94tLWzPqjImYDSvVMH9J0yzNlir9RPrc5Po0TkfJyBn6+05TXGGGtBMo7wer7Smblnh0n5NDlCdCDPTjgNjMT6n/KDzk6uW/Yluu8k7ByQLNJN6N/hB/W4cFM46bhbQUMXpip6o6sPTSpXoZ/b5hcFDqdT+hBCgh2lFM7tl7s4qIRnutArsZF5X4Xg15qpjeywHZLA4YUro7Dvf28kFnYPrsOfR/xtn6rT/A56qA27N4bW5D3zVuwim29GBIPzNocZAGE4sYppHJ46rR4BR0BnwBH14+8O2rWb6BJPNB1X1GP9onYcivV4AEmn13midPvXE2JaVikED8eo+vf6kJx0sY3I1yp4eaZ99pWscLswRi86Q5VdAlevPiHG7YnNkpR7rj1HsCjEbVKyZC677vjd3qgbIEcHdmr1QIgc2J1AW4HXIvm90pUSTAVlpXU17eU6hhAb8X4BUEJVETBA+EjZqZNxgL5YzROqfsQLUwY2u6C/3MwlsIqbNaYJthRgly4TS+6U8zR7Qp2cTa6tVV4YUqh6Qyqtv1KGwmLy1iHOthQ7AGfwEPHxY0BgLjJhn2+i9Yeur1InjmAQheM8HNIzMZci9T6ceudYU03h1GjeWzuFkyYQOZ3Hu3MyGWrIaGroZKtQ+EjX/eXZZuJVYsEeAl1a4EPN+jA8Ra0g/UJ1e06fIX9d1/VBQvs/0vGOTbF+OXHVE5eqqSsmZiVdzhXQZ51DHodYfOM8GgXcmYBaASC22CvAi1XcrLT4+RQ71p22HdX0Xc5C1ONH88Yf4/ewpVX2WAVczAkN6+iYE4bMxIxpgJCZi78LDUNgPI4sd1dDA8dwTNl/xHFLri0wfMHNVqyGBKLvKvTl8EhCdCQnXyA9OxYVjdgkzIc3S9/5g21t4gb86DLNh/caMz4LirPJ/Mjmqcc8x6Os0c5oKcAcwG4lIGa1LTUb6STealNWXp+AOg6xJpuWgaZ3lAAHDU4+sA/VWxOmBPE5WgQhEH2sngQiY+mOGQW9WDKbyHzqOzoduI1QFz5QMhsgXBl4Ov2L10hMPYEvjCjBA2V5R0XjD/w4/JEvgmbDn8GH5RSdnfSLWeqR5bVjWOQ0Q7JSdEPod5IKRmJ458eAg9rFslYpaXG0iw/5Tf/ne7H+MVHwyAUFuVxZEZREdwEgLMzaRA1wf8WxLdE6vy6+Ytqzl7zzaUOUkinOTrzIg1t12HiIPZhgpcWGFkZONVTAk2V0sBeQBZa0gKR5TbupZYzWZdQGq9yDrDDE2BfGrZrAqk68jnGjIqOj4T26C4p7MZZ6L1u509fgARVONKBlCRkpEIA46hjn+FgvEKsGNCxfYXu3ZnOnrq7vPwTnCWMLuYtnuAgOsEGm9qogN1w+k4RqRYqvjXErlhtGfVzhZNn/NT/kCPJFNNEQ4zfiiZBUe9DJksZU7bcOhQSbSfAd94pkrNZioZWpvZCL5zuJcxk0L4SPViAZ7aeqqBqVDwNZ4fOQCmcyza6qEWZbFnquWFqWij4IK+6923UHxUYTL/AnCO74oH/hR3ZiyzdKRasfBhKS9LaLCos3i6IPSTICUxm+NCNqGIXcqILL2V14Sl83JQcfp3vNDFSTOOF8o4onIDlgEoYMSWbdId6qmMAyLk2AK75yi3D4wDBtZ7ylrwrnZ196eCOqOuLE9RkGDOC7XrWAl5wJt7h9FmmwJjCpPi8L5Sat0taK7Xrs+yBxCw+v3RhBJfPSSAPOvUQQfl8kv6ViE/NS2rOwcFBUIUgq5NAF/46UeIA6DJpURkMOgrekPV5OA7h7JYOTskcZCxLUw+Rj8OKvJ/jR2gQwwLzLroQLAzwMDl4lYO5dVOw6SZiIULjetobWIIRr/rwVDvwoSeg9Wz4unF/zbRxOwix7Z1RswFZ1QV6Hr9uDgEHxXqF5TExUgdG83eeqgkUzDchN4MzBVMFLAzZjrQfi4vG+/LGm010QoNu+h0QIRi2NqXulwxzz1xnX0i6NXRPZbpvXkwW0fE+1LIGy/ry0Nj9RCC0pieIq9EPs8dnPnzAe+JI/V0k1jXDCk8Zju2OWf+RS8ZI/UnJ0RnNLeasm8vxmISSLQ+/Pc5Pw0kMFV8bg5+/uRkmFM+eoqPT/EaDmOjU+WW8r2gL7lSDbm8zNK7R1rzwZZaxK8w7w1/3/fhogRpw2H/ZcBU6fM+AU9UrDjOx2pXZ/9gSTSSIy/QC3JBf9Em39RMu/P1vfVgXxe7V8ygnSCNQE1kjMUNb01sU02q/oRItPTEV5zWXsAUuiLFCk8icIWWloYyJ0B/eNwXNy6SS5Ml9KDeQg9CQn3urBnR6Rm6eJJ+N/8wTNfupD4Q6EPC7e8d9+g0iWA3+8yn6Slnoo3S4ZLp04IZ0sqJQ+xAj11WIapzkEVIGwg6Xq/zaGEDsPYTI2PAUyusZJEWbaIEzT+wGxpvsJ594Dfveg0BmbZ2pjvwxlYSH8bwTxTCrMtPvZmfDtpwoT0/v840ShkLYgsDUHb2d6jhHpNAX3z875ga8ET+BBSYwmNB/hpPixTwxTjRMaz3sqFPnhBxWxW8bnNx1bdPZDmi1cmDz1KoLEGoR7rlsigKtwYcSxiIY3awOnBftGOMj6hOt0s6s4VSIVAcTewAPuiV2pp1lBbpK46Gs3OU8mqhLl6ES9ipCQV7gK0hFWQI90uNHSeEf7w/16Cj+a9PDzDwkWlG83NMF2opRdEalMf5CFYtLERVXCAVPzbgQeMBhstRho9OHzKrs5i2YaVn3/nvgZZQIxqygSl5Nj31ca6NmHpgXcc1qekG87u3fZJdSrFsGwlUbOrUYIeikImAlGvyW8U0NVHHwY7yqUdHtbpbJC28gT1Fu3MFFxd3FVz1TA6LfndCdEUYdu49O846c45HUBGp5Mb8yzMesD95MuBOQ7Iy6G+XXpCx5nmIDxb1iiVhCWiuat6/gtVQMCyfrEJY6pLn4HQZ0JDJ45BcLQg6oR2driJbvM/K5leCPJYgmsxGzRS+IJvI2S6nkbNWk0aPsze45ivgu2r2YPSPN8+j7G5t/m0LNzHCPZOtIftmT16BOoP4ZR0s+YNnxecjQVdyKgKmDU3KIgBMt/B4P22WSXQCil6jTO+MwJVzUipfpE4QI6baNxlaxLTj2GXtcR8jTzC6l5motUXEY2gFsW1aSwLKn0cukAwVHS/5sU8iJPA+umMv2j8WmXWzVGeFQ3xO4SiDtGY0Z1LbmBxWz+7H2p+yOPaedrTvetIqGzPTa+EghjZZyltkO7A6O/WLeBd31MGBglfVqeB+GTdqOIXLN1F61CHV1QxuNeMTD03mfbchnES45OvWYiVZ4XXhsZa3av5Kj4E3bwZslm+zPFaqM0cnIXpsQENz4Zv4tgu7E19ar8xk/g58WvfFKmeUzOFdT7RS9X1Z2+JCPjdEpW92c4Q5owBh9SknStWeomhFRPGMWOXdmUJH71EZQ5L2Wbl7UBIhxSauop/FPk3U9aZncRgbA155UwQdAcKHJ53Ivjq7dkI4TgEXrpKKDgydHk9YAXgf/6UvsOpe5CqcdsTFi84dgttxR9ei5nhfWuIjDY89w2Onb82EYPBhFaBp7knNno0v0T51HVbekXpVzXXD5MXGPnTV9YHP/GmAKHRwIsgwvdBjkvvAxCDnsOyD2gLeWpiGmAa9DurMNDS7ZKtWCbBgvz2+mXDt6L+u/jJoYd4qoLXgtFmj5IR0mMudrtRdyc+HW8ILnORGxCgmKGTfv2e4/WkkvupZEWRArP0tRT2KV1J4vl3x2flbaG/b7+kzcbMYGHnC0JCgofi5UqdjlPdfu3j6fsU2s7QOEXzQ9pEAl7kjA43QNQTZeBs2r6i8mrMOt2iuaLt8lw61/yfNC+QImdcHbQW7Vdq7pwS/kKpS598jQMGWk2tkKWDpGLkn5rtVORcKIOjKwW8njN2gnYEDHY3Titjv8ZH/m8caraRW+tPcABxqGrliuIVHHTyR4Ryik0vlt1JKnJDSoVeuG4a8Ut/UW18fxMazoSJXJ+oFzfuh1pgDgV/hx4NmUqcFJAf2BpHJsOadxtl+ZWf+t8Ed0RiOXp27CSvbWx6aKdisWuxKCqo3WwZiEQ7lS1k2DMs8CdulGM7SUVp/7W+Bbq+Ye9nb4hd95shaH4EJyy4gD2YQCmA/4p4BGOxM0hilm6odCogn05lTNGLR2wrXQjlVeI/dvVeRF3Srr1B71SKWNrRaVo6Ob33LSh/08k9qVlAFrD9V4SHJpCzL9dA+2b62BDxZJM7mn1FZfFsLGWO4hi4n98O47qfrApNxehDv+cXO+4YJNsHZk3IFM+ilRwGi3qaFlT/twSiStzcn9dden5G3CrUxEQnW/ehhQRhbdPm8+GdPtqNmwfnErzxn3ucgOwLW3Z+ceumukxpEI2J5SEV1fg++VSmcomORtqsT5J0jFZMcAeE9Ui4lcxxf1mhMNjwx4w/4SWIKJ3+VG/Ix6lrdK1mgYN7LDrPK+PdLan1SDxysqTr/3SKzi6GaQI2oqFSNJbMQU68cZN0I3pnOy1TFeJyjeJ+uIaukWiecyvm1n1yU3YhEUdApgtYHNydzPs+LV/7LNOZx6Zc/HA0V2ZYG3IjNk7VW5mbG9AXKJ2+ockNOPan4NN9r5XEq+hRaqx3R9NG2O/rWw9MzdRp3W/oQ8mgo0zWmw3Ldy+mllNo2CGYkAoP6IKjj3FslkU4fCl2VT3NV01Lt64bdxdCccgRIq+X5Vm36W+5uDwDmSsYGBCXTkmLHxf1H4ieL4iiAU2pQesLWuglNMtw3oES2S7R993B/gQJr5gypYTXthkz7cqB6+koMFnh+arfsc2ou2KiguB5lo8ROIRNKZpIWuSapFyK6NQ6z6HCrM7I8pdr2IdBwkyYKrbnZDxQYGEqTM/l4fNaHp5amJoBUWwdX+ATUTjacS+GluK3KEUkrAFUkwV1sDKBXtVLlK9dyWfNIbEkMy012oX8a0qEsPG39zb3vm4hRHOTfF4026d7ATc+FEmZ//ZqX5S/nCDiuQVEfo/8zjtjdZBs9ipem1YSV8yyXZXLVRmlGE4VW7VL64sJgQMgCZ1feqEEL2gjwRL18DLaEpF6zWnexaHTYgS7js9qhSw1tC6xsgrQOak+N5BaIfutpwASKliYbzjalKxHAxPl4T9i7//CsWhm04K0aYuQo0I2/8RYZL6Mw8stfPjdxGMw2S4Aegr76vs5BlyL3n/OnNycXSwXiPM0O7N8dr4ON/jnOS5l9I7wuiNMCrgTMI42wwaQowWf5odpl3arpS7IKi1q3ox8kGgKXEh2cUUIP2LvuenqzFS/Vp1CKTyUipj6Xr/YYxaX3yGNag3L/Gy1VPI59zjJNMa3VyhpN5YWd+QKhk52JWyEMFcE+k4gMKjEhqQsR9fleXFOaPjVwwIrOqTSNE8c1EtPuHV5XrM7mO7dq/9XRrkxmbiq+63XdaRtxcV/6HAQl5uwQxh85YuQ6UNegsrOwi4n2cW/OrdLRbT24Id/r2jpVDf4PkB3CVho+8Ccm6AiKK4gPha9IaNZFGaGUqWmm/Nf4TVVF4WRjiZvarVlqrA2iXEtYCdBQIAvJeUrFpP/cYfLsq/EWoRY8yxH2KO9fypHMqcOKOPQlyEY2zQlKodEI3a1Eo58C197Y1Pn7V335XXjBK3NrXThN3JB52ir6XJpkde1VOnlwtK+NqRYV7n3Elq5FG8mrI9og/esOUSzCsdNZmF7iuuhENoT0sdwN31yMK4hwvNCitMtMR5QtakRjG7vFFDH45Vaip8+/ogysgd82sIaqVTp3KmUS4JFzDdYW9ZtVEvJveVfdne2eHvVh/6XM7Jv4L5Z7eEiDkSyqadNa12/AUx+5XhLlyYxBScDx8mgCNuLNGhDg/HJ+FktqgOOQiIKJ5POzwrkQ8FEYNXtm7hnWJcff+DK2QFTPnJJfXZa/xghw2qHyKV+iCvxOMeWGnVj3lIecrCF7vOL5GxftOm40Jbpm28DVZT1Uhkhklnalg+hPw5JVIL9i22zMalpic4yhCQWqZLTQ6S3K6YhNWarF27LrEnmE3UmJADF+gMpb+c6wB+sKmzDLnvnbJ6nNH1+/0QnqmD+CUcpWJhkLAEge8P8nJbN5fwsAceWZ/rplDPB3V3XtADdC7Bfxawp/OOugZdm8eT2Maoe+qcyL4BPaqdbHU7VR2+PcC3BU9osh75LqFI2hpuEgpTlCQo/UvUS+PvrL0S7Z559KzcT2XnyLzwwWHQ7aCztGHHKal32vxJ/3HgOJIFZ+bsTy6n+IkHUD6RU7P9ykQe7wWizdtz1v4hi8zTYvt/dffAJE1MkvHRpSVluAXojT/RMTeTz408mSYgiGhMcT6wU8RDbmZZ4pD/bwN9DgLinSjGSwDkst1+17cOt+Z9kXEHgbCWtfgTpuFpxsiWdkibUUoqPsgePMFDpOlBDpg6pW/gEuvbZQTfn8IFgvgk+ykzCRw6067pJvoBrHgnchJ+nosFkwIpqHLurpVGvHNAtr5khitOz2y8LPzzdSoCELCyEBX9WFTKZmFhh2slMYJ1uKKZxpRRt6t1o2CJEM/d7dgnAB/psrIA7za+T7CRcfKaJXI9C5dKGDtyj81vdnGL+8gdM3OsaYHCQv1FY9trQcvZGNHe+PzxjL9TbP75A3OykBnZRWJvHo9T0f/upnpRznFZlykzoERuyCOWmtm6RKjTgvVS1IwGMfegTDpZOqJfRS7yJoiIwIv8k4ANTFYCNqBClPCTSw5yUgiq5idGePHgSiyAcFL6c0XwbXT7ZVMO5Qsni4zd85yPjJk6qBUAxKy1Al7BMgZ/xc2A4rTHGsyn8HIOz4SbiK8VqI0B/dWxNtJWBgJBLZhm2ELnvnQ03LujSrdKO7cPMSlCzLVyPONeqrcBXOLJnFNZQHtIOIWLgXjwA8o+N4/SB2rrbWG2VzW4IZlP4HjMaQH2G2PmYJkSNnNuPVbMuji3wkLDRiVbGAsKrvyY+i2vOyCvpCjsAT6csxpGsvVAzy3025etrRFofX6AajJaJ+/+E+v7wicbeJqbn0P+llwEIyJArN0QOu5MgyOisAv+EiCTfRqjoF5On64IIefr9ifsd3LI3K2FVfIJV+qFpvu6G9nriQqyV0FKZpSd9ap5kltc1cK5iV9zpzkDeP46qtEt07/WagVbso3p9OEwVCm9b2a0R8BRPpuqq3ErOUp2g7rGRNpriM4VHWUz+lnVOVg9UxpSIipNVuzZL3vFDv4F2rXmiIJauqjpFqJCxuYh7uzdB1kRqcxJCKzG8xNiktWngNadmJbdCM3CtsUOwZjqichN3vJ6C10TpB2vON6PGUkLmR9h66o45W8GqNuD+N3rbFnys5fYRxBDdeWJzSw3MrvG1T1L6NknVyJygoyXX5OEzKU/cAeFVlWLnQTvXm0NwMJ9+6eE9VR9x3r3JDLslp4WC4KYCd20+BOv1YVt3+aokm1zRTJ1cR08vrbvCVv74N+2p3o8MPrNZ0ZWnS0b09AMgDi7pb90YVIOGvpjI8d+g+rYTsBwQV1JGFZedI7TfpIYhpZaE+MDgWZHiWprMUhAUKXI4fMuRVZAVCPoSHW5odyFRGvG92nIbzx5f9kveaGdU/L40bqQGHgTGV+jYR2+D2eZUSH/A8Az7t5UONwJftU2V6kGz5NrdnAO6N76Z0KMyNdHcUPFzYaFA+eii9l64JfkCKwYU2h3moqTiDEUQavq5spGR/ejhGCEG+4iC2hKxKdbepiKcOLvzTAv9iu6d0uqL8ih88UWh9IHVE/IuYT6Proa/F5xXd7myqx5BOV9h8EcVwxmu+VR5jDbyFy3RsHFBHd6MBkK2aHAwqW3EijJwR7hYwujcfcF3m74cIS9Jt0Gv+9d7KRKKWkilu1/k+vWsGmKqRdLInqwBKAOETNAHsSHImytW1QWmwPcdFS9xgCbDFUY63+UysP1U1OrKIy3yAHApmXf536wlwDSqgrC2pD8ZZyHvWtq73zs3FldQ3syy8UrmT8yoK6nBT5VdrhFGPvSKDQKGffNusuuqwVeG3xOD6e+uwr3kMy19fto+2E9TBVdAkmXKpcvnW23H2WQhzK7eNMyg+5UY9SegFiVIWIswHxoevFSv3JxKI2xHP99fEKNkSNnlM9+UD0cvOc0uB5pcu9YcwryHbaoF2qOzzEWBshhI5c6gEX75Dwv22OgZlFCJNuO37+meapPy2uSnKzdPkM8UPyDnMabaGYw3PfovJG9FRTvnOUls9j18M6lyhSoZElShYdif3N7F3HGOUWjCKm8cVvIHwyCG9jcvT0RC4D9kJmAdnNg8pNg4CMHgNGNLPrsWVvoMLAosFN/lMyBq7itkYnJraJzge6wG4iFY1PGYnNDFWR6sOQleznW2IZ4bnOiPDoqMyfE79GEA7/vUkfpJZnGEimi3ZRxEomhkjm2a4K7NbWP56dpPFHBBpd4Jip+N8cNVm1x9DPJun/qPOH66pRiMXWuKXcGOwB+1/Sr4jYbprxhKoL6t+ix1oV+Fw0A7pOobps7/5LFCiewMuf5DVwBIk3R3ybRJ0Ke3V5+/biYvzrm54TGuMCZsv0HtSPffO7VnLLWo28sncOpXpCr/mwmhIGiCowndC69L2Rmv+Yw9AjbPuP6hvEqoWS9VOoEuMseKlIV5A4P7By94oP1gasxfql7mcjlYSAseKizqpmfcbpmBCpKuVu6a0dAvjpuvLHyng1SA4tt74JMkmQRcIyaryruG1P9xCdFBg0TcP426RTnuM8P+7H/lK1/A4P9QVmiihM852NpgaWeej0/upkq2w5tiJNP26/VAO7Lg0iYcBqbAZwgmPOLEkcKUk+35Z5r8rYH6AKqGytqQUX7WSJXoHe7QOgiVnEPUVcWO6oOBZrOiKwCtqb6poXX70415ZeoNwKagj/R+ntWun6zS/rr/jt89WMWHMO/wr/NxBPlefH6CyhZLRr4QmtJAPjmqMTSPRQ5g06YkZl49NDKyMQp6uaoKSkPSe32g9Qm/7sLteIwr5D9rW1M2mCaum3gNgHlfiYxgUanhY33y3nO/6KPAxQcXPYlkOFE+NBn1hca6XaNYLZ0qkLMUVrrpgXk03CadnojTA8TFjszbmNAdX8Z/cw8yUCl1Bs4PjgxQmCpVgHyBBWRMOR9jxdSFA1d7OYlGuUOc5ArH/0+NOURKK/EK9ogzLM5E/IanBP43Bo1TqAoTqibBzYn8lgDwYisGIrD0gmQSpGtVIjs+ZTWys9k3BgpRt5qro/iXipfJyg8VaRSssT9OymAnqAnli8hetdPo5vhfwnwPIrUTzeyJjBtLRcwqCB/2lm3vhUkDuOB0opG+Fh8pkNagb3hF7Wor95XUf/u3giYV4DIK3Or2zJjls1YlqXwLgw+TRgC++RbBZpj+5YpXXLn5L+updeiDDsztk6C7aH9mS2m5WX3Z1KhJnSqqEwfU7AoA17cn8buHjrHss50OVsUrrmOQdJX1KYBL960lnPPrbK9zxtFhi5baULVwxv/Hf2LBIRsxAoA1UGrIGi8QujCvWoHJfgdoeq5AXEYN+kfNlriHCbfGEHNpNmyTE0mL7zqufJWRU0NLvrX46wPmc8Tgmk4VGQW6yWGDCO/d3ejdLPZmaighTKzop3iCLQ0nVjwaQ0MSnGbBCdP0icA8jGIU8x5TVpSLw7m+Nhq2nC6U+NL88ItzMXmL+AUZtluZ692C0od+YvaBI6RoBMnkUbTsKCUAgCU24c8NXDv/OxB031tFVvm6KWbdSrwi0dLacVl8ylwdtagy7TYMb93T+/YotUJqnvz4YjCyErTvO2AvxRTM762lSAm+ZhOSSGKiynLKz/XYMu1+4iUf5GoDAdEN0QiNzgVBfniSp28zt8PJeEdc1wEBD7nYNHLjAkcEGnjE0gjt5JCqzY/sfQBNxvgrP4xdWcyTsq7fGBomxh+G/kjbfshSNv7Q5baClht3K+Ro1UKCruZ+/d9F94HnGeW3yZ1wsxURxj27VT8MbnbCKIhjfekaX49dRZNR09kj0+U1j7bh0mWnCQjdrE6MvTsU0C1dqsVBDVn3mU9x6bk2yabw3dIQ/JvB9SIHB8kG226ZTTRad+hjGmbPNFQ80Iqpr9S6srpqlt+zrBDbEr1Q/7+RX3Mv39Q1lTq3zJprfXQL4qDXg6pfNSHLGZb4oNtLhlr8kYF61xyKdNwRNSIY0PiSGYvOe0F6nZyYRaJfXkYPelxvPWdgmJaR/JWdouDAPHIQstY7MFqSverj75hrrcRsqtj8tfBZnJENylzkGfu/yZlQFXqPKLCUjwBc0TJkrOvPqQKhlJVtftx0tgd2JD/JnGjo8byg4JhIUQzjMBM9dLd1j0mrGvL9JU3W00cWYIT6/VbkFGlO7mH24K838k9qJksy4kRb8kx1zBXFQEDs65LdLS7TXSaTl8gR6/vCojrfFQKGKx1KEQjMY9BW/jwKQvqxuDavSDJbgEDEiyzuT1BIAd/2OQxRrotZv2BlM24YFR2njgYABrHVqkpVhuFhrSbttpKVuUV1AsLWo4JCeLWw5L0Pl8PF26TtTtpvzk/tperhXFoXfJOvjsNzsqnPrF13nkbqQn5ewnYv5zVRk2wDBBl7E+wg9bBurCWCtSDw29C6FKYEV6/PFWpIwTJo2S5VA+RdEUx3FhUITgIGa04MGAfcSlfc0Z8rdongvlO82gRKTW47G8wMdlsBqDQf/MmuHVMUHJkYoEJRRxDgjveN1xCTqM1TWmOgYODTIaNBztdeC3Kej0g272n3ZRhwrWcALBSSw71rnUoAVXAPyW1Bc/HTMsZSzXGgg3097kW75LRmRw1N4wVy0AOq3V0MmXNdaknhgQwqa354FkL5DGc1MK1mHNWmJuxy8Dg1JR9ySgO07iji4olrhpysJf9LjFpVpKRj7NFpgQQE4PZXICpp0TZSmZIUUHsAilEln/1HbG4jmfnWjNRWUMLzgSrCPXvCkfu3bGlSBcV/8A1uMd8MYN1ZOnvmCqtNNfuvF7ZLMMzAOGVu4Mo8cmnEPH4aJQGO0MCfh3VHkL73sceknhnrvweMR1XAE8rzKw7VdTqW7UYyFWJ3urzxnGnQHO20Hm0V3UtItkjnl+k2BAaqfnksmypm16A2+t34VMTI57qgFOKqtNPXyu9ysfGwj81BHJSUeDnJQ0Ch1r7Q/wn+Q11Y3W4Q8VL9vJNtY7v8KCF99mRk3CYMUYDsU8a4agbZYH3xrjOi4AI843hzq7mtOxoanMnp2/vF9Sc0SwPs9QJlRB+n8qc6ITJjFojb/6kVI0NC4ZhL0geZcAPH1mTuwq5mQE9V22JlRTOOzaHAkmRGVCcPHxXgntVZn03JHKgbognpfipO2otZhVcHlkkebJSPRl/MZOjIxeJcOwnIe9/G7VwgMnQPeeKHRBhiT6DQ5JSBn+iPqzK8ELLO4wjUetIBICy/WDNQW989usBd8IfcQrguq6b+Mt4pJMjKRxvD7gTm8sffOJubG3YGpSoC5TqNRjvpwtm0namKA2V3WOJmMJLhS86znLhRnmMtuGSR9nTzy5HaVfWPXk9mwpLnCHmrS67M4kQCL3eyWyER+igK1UeLIa5lqLUHI/oZnFXLmBuaneH1P5mZHpw9lKE7UY8JN2Sk7v+60VeK/ssWmnwdtmt4SWe5TO6WYMxahVUdg8+k2mQeg/9xLx7MU++hIU3y5J9l7hTu4pph16QWxNXxpnZNKzmj4mf6KsAtWG+yQEz6Kf+4Y4S21E7wKN7bhRLoIFRX7zOBwj2oHAnGLHoPfztRKYyIL5YHqbrOQ9n+byGxjdHJwtXzJEJY+XhMb5mo/Uv/z1L0AMj3KOQo4JCX2Vj+mMSb9Wkk5s6eLJns8B9t0TYUyy3mC47P+6HxhJVrPbSOZNn5caLMf6eBBX5VrdSo9jem3a+omHXHAiRT3mIMC+3NMK3aflKbPXoNNx1LQoThJhRXwxBaYMNGGy2cGRtzQ6cX3gOwMD19JAsv45SuMSvhzV1P6u52Wm8GVFLUfKmSkhtX4jQJ5em2cbhp61WkvfSeOuEzZK+UUVE7zZ/dtt/5jiWMyrD75vWL0o/DaiOxUIlMMIsVhdoJ/K7A65aULb8GxvyRi2nFJD0A9/SxCBAai/Q+9H++H4jXJd8MI5xqwUWaANOfxpANKWZwycHXHzV7g+nxACg7Cb8sFE/dLvTaLyg2Hpy8GaF6njEUaSjF2qlr2c23b4m8zE9Cp/C3L/T2LT78+2sfbOHpDX9+X7UE5vSRUD0ufTe5t8tJ/pwQjcPE2yEdVT6xi7wE/C+kKlIpiUakFgPQMVWl95kACt9yi5yaNuxfFGF1yajyY/DdTpHNbE4BoKnCakRsM3SYAflzWtwvodEpooCTur+WFxqizyGxcNjUilV/5OXj6BN6Iu/lhyQvAmMMhaIuED1lD7/HlSOD2q9vfo6nFfZ+8o8e2N+PSzotPr8ZHYe97CBn+FxhMQtVZpqJcaMbodZBoiMaOtIoHr+v+Xi01PbDtU+atah0FCplLAEmnd1rqz9ydz5EiZ0AgZv5+b5uvId+7QMTGe1zO7ATSLtr5uWLtI3WctFQEauWTOykWCchTau4dBOpFSseBjP6doILXmLILeGf5q3i+DUVgVDqUc7CMD1riy9J3wPoXQyu3MxovH0/MwWlvmDmC7VqFyfbuFYPUvaIcmsCvLH9rALI1D3n8zZOF0qPK4u1uAikElLC+nsBzYrkfCtJA3AHoWVqMZU67LPfmhittP/H6EHpdYF74Lx/l9V+PCGzht+zLk+IfohBHYRpTJcUYCYkZL44goiLlevW4T4qfb6bvtfgMcOiX+ZvYN3AZiXgAvTYfZ5oC7ewx5v6zZMhD/NG0alzIEAXGGIZuwddUv9HSrST4nljjabFsmxhFmqnh482ooG5nYxkkbmb1HxdyOhtWczQ0z+uaJJUy+LWOEmRRKE2X0k7ZTjFNlMnN16BCijeMesUO/QdDfpcaBukTaXWHtZzJWRJnDNivDh2TgN745bToFRAxqOwhHarMo8dAmu62REdS/4Pje1F0DUFoampX/PtNIxtVNo3q0CzG9FEzn/dulgaFieMtGvewTP3KVK2nXMaH6e4O+X5GduE2t2EqTtU4frc8pC1B7ADJovbSUCIvetr9sv+cNrWD9PeojNWQGRUAaVCVbazI19YcPKGPFsXgejRJA7q0aIm2n3o+4EnitSStCp/F3+YequAgfRjwX1oalVY7byMGtVRSnFirnSJXwmZO+MfvYWiMAZ61u39SB7qPAVkEgwN+xkZBmZ9CFIqMIMm131bDGdB5V8MBFVtEdmOi+56vOWEUQAlsGt0yytT4VWnIpfV2yDabu0HTVGieRehq/vRq0awGaZo9kkVLeE1rYVblCrN439T8Nmw1tw5AIoPtqqYDEWG2rIQYHkoSVae53XfPEDzbzM4725WrQdXaYKtop0IrridF/XzZjzbOzpIIKsspMvpZ5haq9jvQfUOovpGN0/RJ+9k6uYMmVr38Kho5zz1t2ffZO1ZSlTVjsh7KfpKI0pWKVn1A6SAzsDaXRY0VcQCQUWnOja+HMiuLErmaaxiANRWjh5rFXA0gNLp4fA7fdX/2UTdoJiXoyWBtm4UwbjPngw7yLfadvzKYJqXCvewVe3uSqZVHkpr92t58DJnCSKusDu+UjEcyQSafzenZY4I5W70JoUGRejljBM+XskLTZO6La1Mh4aiSf4gjiVDtoSwHsoSdX4wEzqzEMqf9DThIaqlx+v7VVeiKSBxgf5dbC6gca0SVIVcTjMLZNmouxkeFi0JB249P4DBwp9hA1+c+Vk2Fp/oKsqovXOuhrn0JR19bofKI8HyZZTICz62HPjU8hwKzu3oW2iiDXT8Q7ELK54CgbGfuFwJQOF4qIB51YL+5lcmCVRlZ/b/ZMaHXXNMXGh3/D/gyj6IH8fefX73E+KI+VZI3gKTwLPYYb5V/OzcYtVecbe9C/ms+9T1NBEM2FaaNNLC52ePFjcOM36RIdFsqu8iCqMoLL50yhexYPMC03haZHjnWtuuqmgZOD0q1BKzBjtvKTMPgb/4ljpU+K7LjNviC2cmR6yz1yhmq2Wje/WsDUrn+ivDBaQtK4QgT6O+y0SFn77Bnc39GfXQcqt64bSVkIGo7Yq2F8+arELUlYbZQccXlVNNZ4RGB8/+3bZEXKfs/OVILRHIEQEiZuY5lnI7/F0B5fNL+jFaWqGhafUTZ06rENIFGtvUtyDWeRJDlO50yQ7Op86CDX8oG1gexOClKF/O3/FRlbf9yWMMlmjuiPOFQxIFbeFijce+cKwMjWM1te7nHQodXtdAsaBiezgzXm1mt47XsreP7sSGwepnJFSOgFhTHpAFV+eNl3SyfB/ItXn6sFPq7wbIjdXqAScb+1o4FV8A5ICePeQAfkFcbUsCbjvwhZLUM4A46P6N576Qrv84kAGmuu6s4Swthg4gJcyR2H5WldDWtctGSJYitAM7wHfryrQVK2jJEeMGs9DwPewoXXrT8dOGtODKPfCzTze8oQDmgTPgOm+XcD1ThPx3jKCA5QFk+D2eFVH/ovyolkbRfqVX094yEkFgckmAl7325DTrPU3Aobg01lFCVuZE16PUfnC7/mxbKVLU5Qr9jkUdT3iUhIVPB7GZ7RZ2zldPToxuGfW+GaBdsoFnMnQ2itzT/AGer8AmDnZPQh824s948W5AsWpv5kPTGSazjkihYktPdro7i7Ew92d/exdZDRgW4Qvsb2hWbVPBx/HvobVFlFp1LY9reaQ2hvDxQXH+nJfcJ8iX1bZ3NxHSovy/2S7zxr4tnACfXORKOt9XastL3qBZGFXASaDG/RtVtvnjIo+SNpdxZm7G9t02lySN8ojVHSVROcp1CEKimfJB9h48jX/ZZcDhkI1WKrFcqLHVim1+eyT5Rfkm/BlNoCTRXXoKA4epRw3mS8KTzgg5Ex+0A3qLLyi4eYEnVR3x90ILU2LoKoVTTP4J/OWqMQv43E3yDjTfvlw68rrezqWqgYKe38ZhuDjucuYukurr4tB67yOFD88llDWRX5THsy8zXSZOuyMB2ftOVDS37uSCRLf7rhqM0oPpd3UrDCIdVC4eApjzOPMSVp5HpVulFi5JFdkf2PE+cmUK6O4tDNAcQlie+a9I/Uf+/ntPO8qbm3tMxoNdHegccINKK9HZP2rVJkOd/YHa4QCfHTGVBboVgd0szoab+8gMAZWgdHWOPZYIhT237h1cg4vwUi3XbRH3mtY4C72XtwqWqBb3GWXvzj+npXfQUzfzchZns6tHGzutVH5nL68ToCMF4tTiY9dsbynrQxb8HsToKtO7cB/+gY4XkRWkJaH8sdzoavJyHq3NNMoabaZEz7o6zZmcCaItTSbvhDY7kf0nKWTz4lDOUZTxMinScoSDaBt9DPjG7DgvscuU0TLByojyH4Mgml9fNDx2JulDaIUgB6OOd9sfqdiB+e3EylSDHXavleRn7c+Z2ihDDpRk4AszN/HaJOD5hpQWaehPoZ6f4scPmoDn0ObVvzCvV88LRc8p5MAiZWdRYeiVP4eM1BQvLObbXv6Xj/twOheCEAcmynGLBB5M5zoPlsJk9Wspiu71pBQ30M2bOAbWENI64L/3ev2ooVbQrzzqNvJRq0R2twPnIcU1H1O/FCiPttW8ykKsVrFtIN/rp69b4thUEIL0FCMm7KWrbHiohDLtfyACLGTvqRKmlbgLyIO6R31A9t9PbTTcNoFw5JJrID5bU4NuUWLbMuEAjJc48HMOJ27PWcMYcTHSLf7ytV3yM0oRFDR2ixao9Nk9PwfOgNhOYkajIcjQj+Oy9XZUemJsrHvPHBzYwNln4iUY/a9qgwAx+ri5RGDL8LcwYff4/BtqH7JmagVmD4lfP8Qz0EeFQ+GSb1quUlnIBpgc6cwxEBvTO+wjCdt4knxffmuH98NhpPjoGMe8NKprl8qLrZewtJabIamIO32sEcIbpN2uCx86rN0vm2sCSqMnyKPU5xf6PJHyl5Z9T6Hb7WAuameKC+nuSi9WNuUOZLXX3Di91RzVvfM9jrbt46NJEZtj1gdN1W8RYnqS2PhDw/aQ+bQGlXiw+jIGUI00RXpB/NzLzJ+NmvGOn+AeYNjGJRh4uSdOI7MgSMYvdM9TqodUDM/kRnxgGyLEKZNtbubl49ouyzyxsF1T5pHaRWnT8aeIf0HXJIHb5rP3JRnL3/sifcOV26dDnQkTArg1pRhfHDzai0K3fro10bfLDmb821UzL0WlAcnxeqMSrcVHhz66PGkxBIRLKlD4TUBr0hfJ13mnMCpha7jKJibIJfEN6gxF7ZocUq1pTvLxj7R0mXqpUTdHr8PGUilacv/Cpg9HEp22sgf29LH0CkVpBXqwv9ycVYbpyrNpOda+hA947qjW8J1kwzDVur8F8lVFN3lAPJmH3as+BBsTYStca5SGIDrozT6Ag/ffPMNl2Oa/3VQ=
Variant 5
DifficultyLevel
587
Question
Which expression is equivalent to 21m − 35?
Worked Solution
|
|
3(7m − 15) |
= (3×7m) − (3 × 15) |
|
= 21m − 45 x |
|
|
7(3m − 5) |
= (7×3m) − (7 × 5) |
|
= 21m − 35 ✓ |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which expression is equivalent to $21\large m$ $-$ 35? |
workedSolution | sm_nogap Check each option:
| | |
| ------------- | ---------- |
| $3(7\large m$ $-$ 15) | \= ($3 \times 7\large m$) $-$ (3 $\times\ 15$) |
| |= $21\large m$ $-$ 45 x |
| | |
| ------------- | ---------- |
| {{{correctAnswer}}} | \= ($7 \times 3\large m$) $-$ (7 $\times\ 5$) |
| |= $21\large m$ $-$ 35 $\checkmark$ |
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | 3(7m − 15) |
✓ | 7(3m − 5) |
x | 7(5m − 3) |
x | 21(m − 2) |