Algebra, NAPX-H4-NC13
U2FsdGVkX1+jzbf+ZwZ1R1IZc12q3SyhlPuzSyM+3syz+S+tZ5ck5d7LVamqXggS2bQBEADyCbmZhBoKyPw3LNqcoy2RKqiVtKDbN9AlWz0vDZOCj0drzI09UjUy41a9X9bDroLoOXG7yonpp7Iv0NzSBKWqNSEhy3n6w8BMsOP62iflIsYvfs/r5SYn6hocwy7L2UyLiyMeng6Ilh2iYcgYMXwEsV0C+NJSvgpaRoDsT0KId7TLVquvpPHEaGWhEZlzmNKOVZ3m2Sfkk5eqOZz9AA6BN2Rq9ViDmpCwFvufuMsaSwUm784vM94hRcXGA9hlPSNF60pdEfxMSFBqpSskhASyJv3XeNDTp0XWsHe4ZKKDfZwEwjGacva5NMwS219vvOe3HXM/cPd/oeEyDeWW4m6nQdnsAmnGQNCiDdpXZtLiAfWtS1cFuvpZEZvlcoloWrEJ7XZTUP+7GaaXcvXFXPJ3pIt7K2ny4LR+7eLUKWQN8C6UtHhNk8ns9oZ8JWvsG8WeNxDIc/hqpKcjUdtgF1GjwplfiXgycRIG4WMrQU/VtGolhrp4BWRiHJFVRptxRV5IrLMtGc/w31KfT/nvLCi9LQlpSE5Ixl0MKXg7VodRyHfWORUYQpy+nBVC6rHpo+S3ECcq1ruPSyYdWs1wclNe+ImOPtRiapt6PqlNrvtZZCYXKEJkp7GJo8ansD8Ge/EvXi4zlCCvBRryYcWp1L/+RuLXo+24TesRBXdAvfQ/WMZdKolN8P99kFRvUU+gV6tMYjwSUHzJkof/GwXsD/qA2br1SUOdCwpFJQQWzX5z0Q1/W2SbtZInQzlF6tGdPw2AAP5jpd5iP2oFAdB+27IeLTxZbSBl3WMq59V8Lwtd+LzkfiAV8B38BPJ2jIywa6qE/XokKAc7dWPkmzv2atrz5zYXBkM7sXemaERe/ll+hg1hQe0kWKPq/vmgIul/w/E4FJP+L0qc2FC6Ca2ocpg3sUlkQ22egmbXyWk2e0XMPJLQozRgW34d+wbsLNc9mD6DPsZ/zDzzdkinoVVnpJ6jHHWNKTsUWVaiDjA6lPOUG/Sj3UtNFiSwWr6oqHqOzq0bZOaEvc1yCfq8Z5dkbKhx31E80dRkn3Vbn+FIsUGf21Sh0jmmBTUobfLYPgza09XAtaHFmFYYk1xZ0KBVPCwCmnVVhEMSU7s1/Wha6hkPMlcrpWpPYWsuBvYWjidi2zL6tL9HM+ehwOou9UaGQyz86R0pvgX92A5d7E82RX+wptFJNriee5PITjYVty+IAP02ep4oS+bpltk1aA25cMVUzZul490vhc88Bwbnl5qkBuLIR6/Kit+fLHte2PNobPn/nG2woQLP4HbFhXx2vetB3axp3cfMZD57MkHn85ZUh1xJNyeL6V0GlfO1hBr71VIqDv7jddydPQq83gdUF7Gr1MjdQ0iYCk+zT1cmuS2Wbv5Pm1IM+CwS2MZDyNoeaRq6PtdX6qpt30pY4b/1LMSXseggo1mZ8LA0dkCrQy/3ZRUIo86vAZb1e1TEQEQpPueQIKdw/lUyCnHEuGDEcFFE8FgCyzf76rq9oftXUVm8jbxMyNJSNPtGfT5bmOXym9Avoq6K6+eKadK2WdFpMc16WW55FekE9xWyIscPdh34C1OZFFzHfyA5sGlwGyYnqodzBsYrehxlj2SdTZ/2y1gKKAI1N/SBmJQHVXKkychjU2q6sAx+g1840zEfw4hjc6oD3/RhIe1a7So75HwU6xOj/WI3xU0rJDPGnyp6w4nRP57y/kJOH/CDqwVpk3GRpyO2688uDa3GtUY+WCViRIO2R7uO27YT7N5BWk62aMNzYeJB749jV1loWjfyQxa6Qz4LZFqTAGHH+4RVN3/TyoMOEN/yTaBGzbkn35rnotultLNg5vE3CLqMwbaymTWm7a6v7kyRbhmSb8bj4yYJ9XEoJr0X9FIDKQX9rkY9DbdLY8/U+DkGQKCgqURVHjAtka2jLTMFy6PdhPR92N4bg9vBrl5Z4mVlJcdqgcXx/cquY1OSKv5JzRsmjbOuvdaa+Lq+YBvFHF4B9wACkE/W0O5Y9ZAPtulBvvI/wgu6z+nEm2cxsKNViXETNnD+6goxMUnxWKu8BunuMNKSh5+8j7zyoDd6aZeJYsEPpAMWEAuCI7anOHyqJK69uiw+NFIdOPlTMM89BiOBD++qED9Fiif2u7SYCnunqCf0lpiMhDsFaPx/wydZ4jLNmBCtVnFE0Psc76k1k3BPyLG96kbCR3wfnaxV6oRFdyQNgcbO5mOZ8e0sY4vGsD5/k9IdvDjFkp9cbDm2msYJ1b6GBJu8FBHPYVgFaxuwWDtBQY+V60/9IWNIbtWB1K5gbAy3SfYdMZdz3BfmCljNKRM2DCSv5gcy0ZNxKyaYfEFk2QGTjuzfPU4uUgog45pipoM0XdlEb2/EkDzaV58vBAjxgz+pcsg9DZSPCunx/01XG5QgnO5d8ze7D5zoiKI0KxzSwcLxWh6816rjWkCBQ52lVV27FqrcTtUaK3x+RwhSAdht8Zh1oTf8/jMvbfZ/E/KhyeWlZ3X6ilbHm/38S6fe7AmlOHQUYvkiIcPHsazc7+eJG7kOmLN6+O93Yro7K9Cxv1vk9YXXElmpvBXQuNgvquoeM/PUQDxubrJeV/DugxXDu1pan9tOoHmLLHjKP/EbUWDs5hW+vH6Pb6K7MMVHhhvOu1n/AdsLYYJLoY46MGG1ExOl5Npuleg62qb/Kq+J1gURcx8ejqZC8ag5tI2ujrkV1qPEq4MsF3/E5idS7CU64Plm5UbmFr3ymV7U1ePIDguhAkMDhyesGT8eUcn1egO1tVWNvxioDnvy/mpsRLHwKR5/IvvHoi0k4sHVSD40ZM7D8S5qnUO0pJI3eq+/tYD7wr9tAqzbzh3Xzk5hjRslDA2AcGr119BWgHbgNaky6z4NK0LDfpVeKGiMxx3htDngDReT10sSUOqfhvPcTq8JANmGxHeneEe1PseTsPGSoYG5IQaGE9LTeQmBOwxpZlL+1/96naZDMbtLoJyfnX4Vnqqj4Ge1Jsm98NwHG2TZmCcSkHnWZR/cF7ZEhw7DokgaFTQOtGORuSh+vZPBsEGI0fQNJm89q86k4xCUmMk1fyMORxU5lIV1uZprpuO33nP+kNwZ1GV2lzrc2I+cTRMwKtiG4JRZsvCgD4No74toL4CD9FwTdUWTpvqFap4wSAy6tCfhAzi+8xQUlxBYypZRVdBhhodza2eEBDfu+JDl1BvuwptIGZgH6dssw8ZeZ1IIR7erNAr2UrrCiPMidzhfQkfbMXXjJaxv3+afS+jLOQzsY3Q7gxaHURugyDxNoWSv+TZnd0MNa54xHRj/ieYPwG6trEUeaxfi/nUcfjXXgP4t7IyEvsXeQm97Vbhm4RuF+mCtJCePjStnd3DVS3O05MgYVkAd+Y8XMIwBkMNRCxpNYcsr5NvJQsYHwkQl7D63elU5ckCdjtB2Ycw3kKfajZZg3LuebwXjbYTp7vQ4Sbu4ah5CIXnM5Xma9DjcVPEtveeNrbxBe0+hiJyvnB7Plcm5g/HNnbPqeOOvsyaonwp6igZF+tyo9Tn8v3UDCeD71vqaQYHYml+AK8SpztP8C9BvEC/L6RtMd0fy40ELR3I0vOX13YzpOy67lSODpykZZPSgX2H9tYaYe9OxddahM/cCi5I0KerJICrl+/zdQRmJtWfQ+PLSmEk9xxHGR9mD07cWs/CrjgHYwDUB2Oc4RtDVkHnw0tI0WwwC/NwPrDd0v8HNMnWEe5n5WtwLVSjRm3NwPdPnZJ0B6iWXKowkdCHnkqZAAbzvX8f83M1RK/MfARWDn0/1ks8q1vWZzl0LeFt9GW0/NhoqonF1j8/SUCjlx2eaXXqHfG85RH1lH1nBvoOhxAL2x1XFioc48j3TaTNSFpniauDy1FrbETU/M0pJBskOngaVz/gP86ezOgx0XntFwnRVV95XWZ2jMS83n4rpuhm5lyNE5NQfLIj1U+50Sad9BWnTG4R/0g1oFnLGY6MTSqzzmYneKnt7QwdMN20KpEEZGq2HOq4hFQycEKhUiA99/Hz2IRhNRi0OuFFh3zOjO2BgvAfohy29L7maAJCmVnwZti8uPG6NzvUYBIj4RoMIMn/uqQn9QUHAPXNouB/b2hMz9tx3SfAxYYEgoG/y8nb2BgJJ2gjR7YREb/GkUb84pkt4zWXCG5VUiWP9RjU8b+xfZigFBEBDG9ZNvQH+shiY4HSmuIbKoJMF7iX+UQ07X3VVd8BUMYnceA4e0z8G6YNhqoKASLbTknVj/xMDxDbgE+xuymcT5Yd8WjpIO5XizFOlaj32UY4uMeLppM807/+yTnRKgtUOfbqy8HyDKw+rHjRQZ9wpZYkJQR33jprsTn/+nwhLc6hSznv8xBIlzbIbYn2vtOmnjt/nN4vVTT+82SH1RhRq+LKrAuEirkbKkjYxwnieAJ/NTDpaJf0gOCM5T7j3kmCx6oSrMyfnw/yQIo+ZGvdtrh61/cApJM2OF7LvxBeZHD7aLDmCqB1C5zEnlcNHjvGJXvNj4hzUGRtA0vbfsY5NxQwUn/nktNQhiTgqxKI/qRz9DH+2TsLxjagmvTMc+fT7BcTKHirmfJMQK/CPgUUUBqWTLMylz+OniK5QCYtPbyO+u1GtJzzs4IsaTciRCcXThMLLkrpE84R6q9IfgX3EqNRFZl/h2N5aVBE165fSEnaPefk+OAEEuRrO4qvY3Mc5qDwHUqnOTfalKDpR9j4LivNlATkwJk2ML/FnkkvBlKrF4678wjlEdm7jK79yZ+RSsZQ8idPSoePzvaozpiPv5ZuTQLDx9molBMZFTjKsGBfTb8U1/UfOCWPM3wfMt6AX9DSNTWEudNqmVxTxYfFo6NJeEght4xBHXWtQcHtUwktMCrTb8k+UBctZ1sSg/DkZ0BCpz/ni37Uxv0hVpaYVlRw8y6H30qXjH/3YSpp5NYTCOcn3J4FWYBptp3MA0q7YKj0sbaelG5O9O7/Gp2nuBEL61F8SQEOBbHkSa9PghqZjebh8zHu8iWGbyEshnAix0LgmGUmB3fRxoaCpFGcWeoz0NAU+1TUmwmAqWSbrmEJVkl9hXgDfLYX2Mw6Y1KSWeqmI/051M65ZVKIl6gecGyqQt7Zac8IqdMCp2z4akYZ7173En1/RVbytnGKOJX4FNQXKnHvarXFZa5b3UHNEQvvAflKnuVrBltnb814j4+R5EvZCmq3/Z+Xu+rQYv+H7h44kV+DrDc4QbA15erPYEmqHNpdDDmKJAIrR/F5CkP0MUwtBZsxLRhj7J3k+h/Bt2q/QYgfZ97F811Xz3DyBqB33BA3VDIL9XQu7/C0uiKSODRGbGIubNxQgQ+o6sB2kQNvujGiQWFJ7y95N4nDiE3NKseFI5KaNFaBV0+wFwE7/Ssl01ynzC2Lfx1bntHldsvMe4TUJANSINvvg0XDuI0RnoJa71R3OrtmsQLMUFABJeX11Ucn+lPyT+yExUXfo6rWaR7NjP+l2RqzUEBHCmWBiqZ7u806rdok9k5kaxv0mEBw0C3e2WQn1ywrwa3n77oPC9Ygn3VIyAR2vazmKBUlxu50QJREnAPy1fhIPNpstcGVHgG2Rw5tpEKmBvSeg9x+xoxPDKqFXhnUG6Ag7pI+YR1ksiw7Anx96lXvDAML1gix+DWhXIF2SL/+tnXo4UbYNKAmQ3KXsJFwex3hHT5KMqcZhb5YpqZ+e5O3zegNnUiLYZcb4yLSWUqq8pBkWKq2nGumWfhlJClCIhPSeUdzCMF57pycMZIRsucaFTngU4IbJ+0KPqfRnGgTEFgykgSUOnQt9y7W/LdgZpolZSgi37rEWGDllPS2oU4G+DGDytey0EymLnJsfvc2EELDHNuajRazm40dzkw62LTSCd8rmRzC8MGLMxuUrflHyzyrQoE1no4+6l0sHOMfA2JpWxXbVxd06r6btTSd0iCdFNt53qVQbqZYaS60NQhTaUKpkzs+JYiviO0AC49FM9zYwxJELaAnbxk7ys4eWOBryY9YD67shnzVvE54OWs7RbIhhZ7EyK/xUq5FAkrTRaX5CGf7ncee1w40CcOQgQm4W1wE8fgazjAOs1OjawRux9C2L86PZFpqNPjm8d9v3gyDwMya200aDf3w8zlWMhXhlNCooDEOUSioj856rVk1e7Exm4PDDHpRXiI3BDmadHM1vv0pMgyaulnoJF5+vibh5292c1vtD5YW8S5x6KyhEeR4cXHwAgwzsVTPpZwvut5fd+G86fBTpXYvGiHckI1lfoMkrYfbohrr5VHbP3lc8rDMUxhUxCISQ5H2fm74s4oxYkKlSMlx9ioSIoOvBfC3+G2sM9iND1I8oBMJd66VPLCOb5CRYFpgFZc0L1d5cLsSI/HusTGL040tTmVT3fTz5gn0gD2qOg5Ab5lp/RvzJfZnyjZRkbF1ASfvER6b/a/q0K09a9x6xBi76jpt6mpoen1Zh6GaEQFleXf5/YskRz49CkrAsSJ2+zk7xmptbu97HuzoIOra39AByJ3vGzhgXiGmB4avw8l4TXeaYn7+1kf7zqFMdhsAK7PCyL1rlg4DC+JyQqLZCpkO80gdLGDlY9TOXwPvaFQF7m/iIebg64BYLmWTNhs9MKA1kgWdgTCC1o9u//Q0SYzTvpdvQyCum63/uDAhCkiDfaSlCCn3FWBeZwbhOCFlIdKSYCrF0qr1DBLsCm+TLt3vXtDoIL9RYehmiRWHM9aZHV7eYpCnp4m5gIMFNIHsAibp/Ieb0VLri6LvcAYidzqUg/DMJvpcNIPPz5DgdXuWlSzP+A9TSvtyEYdx9+R6PfM5cfkg3JDZSoiZ2Wu5m5qu0YnIVIT3PhsMV518gEl1+Z+gJ7/IVJMdVKHRDKhKBr7c4sdp+0a0xXoZKoW2V1cftcrjTrfR3UCDraW8l/ZdUdRn/Rnw0iRp2jBZVwk6dAvD4yl7xNNUBLvkdtY1PbQZdsvD8HOvw8DFXuK+Wqf9UKRcIu5MST39K3EeV6p1M3j8nVQRZuNtx0lQibHV60MhXee8RrHkdbF/w5XfK4F/T0dGksLlfLe1Cb+uEMgJeekifdAudLzUYkr882wjEKla8T/fXrK8hVIhLBoLknnoDCH52TwiQ1zBak2WWYcrkAGJCmstfDyYF8wtSOe/mXA7zeAAAVdELHcc6lX8CPx4ANy2Iw/dRdf2vr0X1RvE9V9qYcKOod8ozHbhqq1VuR3qs2tof/0qH5zLAC6mobMLEG+k7fvf4IVFlga5ttNuMlpy9mtuvPP9nI8tbZMZQiKZITtY3eDQVjt8BOq2PDaQBIL/3nwbOcO2JARg+TwJhjB48opRIiT/EVwgjB4P/BT/+pND3vRgWCbwrrd3/0WgA7VZCfIkk5RMcbI/154u/RNIRtUhXjJRUoFoNBBHiqlmdMunBF0MtCO2+6tEjd11l41I8fCuhBQAq4ERfgGWW70/mAwqjsMKXBhBuBUbnh4BEoOY5DptgU+SXF7R9kMxxbqyUOiNgKK+K6Z+C5MYCA7lBspoEnjRX577hY+Jzkx9iXVtu00/T28j8SQY/BmpUY0JfoI6Hk9ycXGqcqSDZZ56e0JdM2snbU6sndIvmihxQdCuyJuzn6gAnMe3psvBYyP/1okGEfnxGD1D0nm25vbqzpq/wzvXxbwtkkp9BZOBOCUhR8ojpcHiBiV/6jV725zvnyyq7RMV2D+CBCzyHGC0UxVXqMFIinIWPOrR7XZkEcfhTcHNGmGalDwFBBsdCfQOToBvqyRAltda/HRU65LAOCuuA19kdJNF1LAAs7V5j+OnWzJ7bRNUHDPHX8EyxpupG89bxoObbGX3Uf6iaqov9Br5aSiWpvVW9sxkIUHORUnaDAC72+aH9opjjsMHNn0cRUq4CW/je8H04ov7ryoog/As1YEEpmZR6oXTouTs3X5dZdUxaYDw4gQ+/sm2LW1diX9w4U35tuc3kbjBPU3Ke3No3vMqbnznhzyeh7q3wo4S5fCPfehPrp+NUUhxGmzahklPlaVyHy+lTwbkWNnhsieQfpndpNfM2TYVIUlgp+0uZ20SElMdlFwQ9qW1Ujm6LkAJ6HH0WaLMft7d2ZvF4Tt7qkmx5EwQM7Wlu+Bi8qyenfqdDUq1mpxs4TLO5gCZb/4UVzedcvnIqQnnq8irGX1pNzxF3oG6A/FUDrh1kwSEG5PYNVKnWfrH4MpRUKhqtcu5M1gk5lfpGPqxPtRqlxz7uD5jtPRTFuZypbCBtKsARhZUTtjj4befHkv6jurE54Qw5ffGhVjNaDWGs01Upz7rU6B9lwvLaY5Dhs6YuutukUsZQRqsdiim22R1tyhxb5tkXLD+dfk9MBZtumBTaz4FPg7W9/9JIBfWN8QRGrEnRwCJQ8vTFMT+OvM4Nr00BW/OYUdQvdXornCWWHoBqFE1Eqe0pIrZZ11iQFOcK1ZS81XsctAo0xt438Ak/H6/fVyQ86omQKNM6nqQ6wlKqCUawCjU3xwfQc6iEtCPbBjIo8QlZJHieLjBTcFbATm92R2ZRJ1nU7D0cTi1jbmW479cn8EHZ1Cqcm8ldJQ4EtBhuH5Uw596SXA57+eChp/iuJwyysobPfi9a0WWEuyUjzET2wFBkli+kFn0Bi/LFpxGQoCDKNNPvaRMZGJVpDEsbtI6kydif2OCeXJFNju6ZdGHI65KyucUyR066XfvvSUo+F9YGyApbju74Dc1Yxv3D8zbtGXyUbNJ5y+re7/EXEFtTZPdUSYGGbGUFO0i/NBnIFOJEP6TA/6dry9uOLqi64YAmqQ4majbOEoJkrR/bPp+SPnaRZaGaqXuT+IfCNsmfYqsq3q43kZGt7Zwzf13iL8dpHw/wyGaA++QQjiNzFMzbg7N/AXze0Cw2Zm9k0xanjwHyZbzyhQkr2rg2lgTjAm16/Zuk68Q7N//VC8SRXbPCeh2kZaoI32h6o4z4Crwj/n/jYYhpd3aLmwcHx679ox1bI4GxSz3YmpoQgSeE4iHQ6k4GPpOJHuLslB+mxVnGwoq1CXEynh0WOGGVA1BlQkEzBX705pN9nx3wUgngcyGe3+RCePdodjREn91aBjAxDpWZ11+dD2mNuuJy4s4O8vA7d/DyYJYNAsUNtZf6z64w3z+Wt4/9FsZLEo7JPJK/8m2pqn2poLNgC8ozFW0T29cCkYDOn2kO3XmFxz+KJMwjWt71wMoG+MJKIydtlXDwsAvNmvQ=
Variant 0
DifficultyLevel
601
Question
Which expression is equivalent to 9x − 3 + 3x + 1?
Worked Solution
9x − 3 + 3x + 1
= 12x − 2
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which expression is equivalent to $\ 9\large x\ −$ 3 + 3$\large x$ + 1? |
workedSolution | $9\large x\ −$ 3 + 3$\large x$ + 1
>= {{{correctAnswer}}} |
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
✓ | 12x − 2 |
x | 12x − 4 |
x | |
U2FsdGVkX1/ylfpTOxKj/LcBQ5iAFRxAliEE2v1F1AaqF8A/uxXS4dX5rA0Oqx25uTrr0Bcseyqakj4ipp2Qw9Li4iiDDWpvZ73dYMBCJ6+MSjoio99tjRUjHNIpkBSpVZAPnqW2p4MaV03k/kAYH2spSfDJhy39rjz+P4A/k5mb7wmEu4B9CnUrpzIlBOuibBhCslOl2ifGslRddZT5XqGXmoLjkEk6zU2IVrcn1rGzvH15wvkUehOtfJXiByVkFtyx58zGHiP8b/TMGJLCuSY10Vp3pSnXMNbRl8W73KY2qGPMPHBRZaahi3Jb7AnRC9X2XUgAW/HEKHWZQDdvP4zVK/+R7VEtQmQ3vIfZS0ilpgl5y24taGsATdp0UcceG5hZgwIEQjdTzDPeQY8w69t2LiN1yRCnf8Gl7qVEkyH1vDy5xxqzMcxT/NDN21D3MBSYNUJnZ6mDz7Y5QCpR8eWnFXby4BSoe/JyrP2ngOfbqoxfX0vFJEt+cFgXfOK6iTPz0bEydqux/pNzXPzIWcH3nh7/JR9vYbIQdcTp+pFZ8P1txB2m6Jcf/2LM+JRbrkPXo0wCprTe+qS14biv97VjRyzvTubCqVUI61ZeKo2VNHRJfCpoG24MGq7yINl6SElF4Pm8yjVqme85KHH6f3+r6sc1iiG3DcZyAt5vNU/EsS4NDeRJ5kXp4I7tu3V2Tk9BzXah+KkJRrRTp4dpeb4R/Jm9TaJ1X86aMHDfxRxv8HHa6V4O+GIJ1b/8IBfblke2iny8Ow+krUW1UyVKbaWdLUWW6B2qCG2LdhMH9fnJFKLf3W7ntKc7AQ5okA2UIC7VM81jcTmHVQiIjgys9vwflBxRvoZflog6cCCW7aPWu18R0+F6qRK5z67XS5FqLdyCeI/BVdJABwhFxnp5QLxMYD0lQMuy9UPkryiYlnkQpOCFj1l6xgfzLZNXhprduyam1z431Vk4G+Wl1jAWSoxhgXeEWsaFbcj4SLMSRZ7cDW6Sgooq3laCWyKW3mZt30PJBdoTGqrgCkv7pEOZDu/A3Ta/Nt4/cTZ04xG6cjFn170oaSBg1DiD7gl9swH2XP5p8dNPzMuGwrHQ9rzbHOyA2oaLJ2gwC9fG7f4Q2NvZ4d+SiOsGTRalEA46yGYqEjwjcVBJMAUrYh3nDLTyarx5V35vuIvlUFhxmKDQoLgZleWTXM9SFYV8EgpRbDN+5W01ggnND4bfMcsfeDbuYxtkrEI787xX71afLdqmsUVQTjYxxCvmtK8kcGRPUi3UJ8l2JPjbj/7DkUCSyqLrOFkQ8AFJQF+nIrNYdipTmOjHfnoRqSgBD2SLUpsyQauR3C8FophoOYfRiTvJSJU1LTD6nKFpWg6rpDf/AXjjalYB/KSkY3BIThZ7f4WCE+L15WuMnhxPpQXNibRBThOlvc4a6aVQ2l8/UeysV6H4G9meiCDz5KO5Sj534gXJQQqjgJqZG8CDRxQm/x7x7H8r+51lzZPJTExjE1uINPp7ktqoefKKa+vlZUXhRp51heFI41QIh4Q8po646/SVbWxdgQtGIvIUy6gZsnF+OtE0P3hoHlUDhb05i+X0VrcbSmi/aTyQqILvX6abCpok7ytZ3q6DwKUJQ4WJ3wchxvgkBZDKMEsefLS37bBgeUDDDYzCSUu1ZIv0RzprSpn9XjEVRJnWlYcusaXP9z7THgZRcsIMry/h9YSg/M8iUpQrbbDXbI+kmdGGKYAl3dF9RAZ7Uv9H7hXeQQa5CZ85eGEuBpJKkaWanIuh2WV8Kb4StyRiyPsXJZo74xOT/ftRjXtwi6JT+T/kAjjhOk6lhYVEIHohJwYNejJGgyXjnFfJmr29FQqWPyDvZnkPgfL0tfBw7uP1pCtmt9iRGWZ5VwFLJKpbwQLdMUUaPzVQyZ8lksNVjspVn0S/kzSuqZwSVGsN5p9trfBVWyUBtR5UsBW+qtPXDPUSqJ0RKZr7+cpXGFBw6voft3eN45sqXgHZzCe3Zn9nGsfCiBBeBXuTacUfQL6utCPWD9NxgWDukiXL6JbZTcXGMlm6VRiTstHQueWM0fq4An0Y4LV9kxQkXp0D1ew5GpeuGD3VMLPGjmEMi+ntxcCnyxRAdUE6zv+gZehtPDjkBIMvUFdkQ0h7Qf9RX2jhDnJQRQAJbQ5U+NUDxPaYkDmNxvqdZMK+Kmbkq2/43Ex2VAePXbPLW7rG4It7TiUL+x31noYd7AJMjvO9v6oVFen7NkxRP07eM41mu2aideGsYf3ivZWTAmBa+Ehhtr2z/hVO3ZtpdWNBdBU5NwPsNOKcgTPobXRs8bqzpBEC+8TEBqdgOKEBbfqCfoybusObjbKrQGecXAiuLo3dAxOym9NG7L+V1qDoXHePfmVRYE2Aw8Y0jKKJIipRLfDm0zlodQwCPqePbELLdFqR7OArpwN9DCh7nCD+jA1lppu5zUzpa5CboydH6EoQyCkQMToNQOzUANv2RrfpsNa+c8pbN19KlmnI47WkFrk3Ttgvoyoe3oZp69u5QAiU45ShboDJSqyOT+PDKAb0nFyvGewQAIA6vuBfVUPnDxXx/4o20SfZ72hv6Er02qgCEH8qyTyDzxGSvd9pRBTtezW2mtCxghafi/zX9j8N+ksFzxtsRx1Pj620eaM/mXnCQPBmYvBfU4cVOGJnGrTvn5+3+9BXWyIu33m7G18DnQVs9gXIf0P9JrP0OeiLo4ENZ5faZB3CTpTlyU3BBvsAKWJ4EYi4EGvIk/VvCN1fWHGlAQZNPZ11huR+1xYe8z2wkxDQi2UQs0lS4KiN5+grfvVZLNFK19XcKZqFa+2DxOUa+cs/XSMt6e6Wvarmxy4+eaEZkQKojcFNwirqXMRBJvoYnZB8HJ+JXZVkt6a8GX6r7eI5erR7dlp3+/PYYLYIP1CmAHd5jifY4pRT10aZ9heJM8r/PFfv7wp72b7QhKLjLwtZOrmtKBE+p0e9WU46tfaeapjtz/en5G+PCWwQPiNNLrNv3H59poCUKKFxegQRsePZt7c3FFPZ4qP4CwJXmEdBIy8bWzxVCw4BYpZenkxmSZw/mrfPqMDHVFWMuwPuoP/hD6xH/br3f5iqwe2VzvmHyX+ou8WBYpYnMSPFGK3eNUFfUAwM1TXC3IpqmToSxWwC1dtXyYaY5okDoDpfxLbv5BWDaXhhM7R1TFOSubFXCM93q/funxyEiGqsy+KhE1LQocPxzA+HWjHSQz3aloETr19AdZYikg2V0sHxac7Ez/8rst1RBIad/Lzx8zs+y/MSFGv8PrDm1O4ipE+2+7DQevO8pTuGSMgLQ/2G6o7iKHMM9VSAsK/CZ1+qpxntOuw4txzbP99lsOwurrw83MEMgC5aMXnkXzrFg3WfH8W6nrfbA5FtiQ/zsPkTktYSesOOLJtiK+3+QGcR6qohGDp5Oc0JSjTEcL4b+v6HFg2IITjfdT2hEnb9NT592m407kRf0WxfMb7UgrJ3RfBCi5uTpMgtkyH+h256hKWGxrIUXhV5+VtcjOXr5CFGeJEJMhg5GzeFTAvWZVhmOl8b90yhSz8HBdb/uZ1R401uv+Z9ZVjINYU3gbyyCx1IEK//AQ8Z7f12+gj/dfilXKPRuoYjT1ATSp4Jmn270dqpyjAgy6gouxQpbsIoFjaWSAh7LItR8EHKDZrO9cJMhkENxi/Imbx8RIy8ZAxkUgrOoCxCUYPGpXgsZPSDK8MOX1qDCQsiTSgPbLESD3BgMxoNmaGPhGBowwsUzpmz9L4dcAbSqQnf3B9sbBU4Kw8qaFbPv1hXWTH7748Upt/yo8ImtFF0y4HN1PqIZhgbA+NII3Gw+/MJdMDJTxw0+8vATR2seDepzWH2NNauKTw6S2cAu5rl2+1oOqpKKo2BkX+fqpt32+dsrnCfZIe1qaITCcvXYg3CuTWbbSPgsa6oOzGsOidCANV2dVBumqvy+HKtqZBVwhBwH+zBUawhkH85vxpk5EmVQuRJp41CC72qylT50Ejkj/CNSG/k8kVXRvIh7PfcMVRoEBq77HfFwz5BOE+XTNxDxIZbwon0XEVvu2O+PF5X89+ayi9UJhYbhEmwkxnClGcPCa5nJyyMttxUOb31te4PPGUJ5pHesCKRsTqTT4cIaZdp6cX8/rAUKStusDL+cm52T42iozOnPUlJjDIMtLz5UBM3H1Am1zMZ/NzMy9lr0iYIfeKfmrmXUETPEltUWgTR7PNwbcSmf34yJ8fxu95rZC0RvIksgmBusjX4VYzGs/EObZAOq5iYrPrOYl/M8X39kLQoPkOvUE2imzjKK6efTeddfC5/s5Ygn94C38eSSLwDNWgKr5u5zJXBamdVrSG4RHGBJZHPv8/jLiUcgzToqLYh8GJGmU16x1/hgnF6dnhC21a76ELpxrrzGw5mkxqKzhNyclW1Z9i50x+soM/fLyDErQCPIuOvi58j+PHX93g4beW32nIKAZ2UUfcYstg4vZD1XxXOl7ijFbrFIuU8VdJQnb3IfJkcWz11HfnPjsnAVL3mqdnOoVqrLHgUvRdVIafzv5Ty3xz3nl+L/ZEgd9qNFjwpNyjoZ77jEHX0ULiRUaP5X/RTQqbK1ZxnOtJNMQKjS+2WBMDFQdVV6PR4bov4Jo35S//CRz34HY8NCsQ/A2eK349Yjg1JX0Kr5GSeMVVrXyaW5GcPyeEgmJv/rTcjRyN78kYdMu7LnG7Gdcu7hiUeKN59Hw4zUQdlkGZGMJlJuCIQ1Ghzq7SLrpfEa8rfIsQXHV0ca+prOGgY6jMM3qu3Dl1QSCBigkyuoQxQzDDbCdiKPgKIaKC5Bib5Bli6EfJb2ayULNqboMf/F1UZGecrFrGTprZ81Yuv/BojOZAYUJIw0AiOlifYpishXBTRfqKXMndd46PVwG0+9ZYJGuAQWdkfPhzsOKajmwbJWo1VMiYyZl97DmdtzTK7lEvsGbfAacSyTVOUUktLAkU9xH6Ew4TanU1ACX4Cw8FNmVRDksA1lE15vIf2OunfpyzFVnvv9Ffvbp1hRq35OrmdFnbbgLfoBHf5fKqc0/uf85KyNdGhkfwDwatzQLqFHeRoy1rcdfTGHkCdXhto+mEzEdidQXFVCZ0LZrlvF5mQzjIYo/a1y45sxvDR7z+h1VrsTdMetFrfWuJMNTFTRhQdt2nl++wn8fh2VvLihFxqAd4PeQOBAVwU/ld/G3ZuQ/Qrn5da38wjK2SZstTZnpLVOBMW35BACIyr7vcwSRfHPJ6kHuNV4fmlzVkYaZjIdIrsyOISoehK97GkdjPfI4kvVyAMBaBe52TTLVdgND4q9BvJF18uvWPTbp2pdKbRpTpbHHqmIDdaX9UltcHti3U9TxQ6ESolkZ219XmJ1Shg2mgldMdLRLi6+8dd4ebKOXqhiuvIlEETDiXmwfVmKoPZZMwqTErOBsY8PTCB+ud9KT3ENskEpS+dwV2wqYqOTzhlm/4druUCtqwwRRxOBORo3Olu5D+5sv1i65FLlAwMjcrVgtlSinpAZ6R8iyhkywtwOqIjr24hno3YqJi7AFJSeFCMCp0n1uQgVONpmt7B8qT3aKVBXcZqdLS78alWqdmP/89oF/+80Zh4UDHDugYQplZQEyJjcpHVjBPusosTZBEq7H8PgAyDpi/UBg1jCw2Bmu8F7SS3o2wi9HGtehxIGnoaKS/lD9To2wVLe87uVCNdkQhLQHxsWugLbJ4GhNx6/D3SZ7EX0+Q3u7p3cv5zMheB9NkztIMHnj27k7XWfCDe2DoYGcmji4mEf89i/LZusJqn8fYOwkY3/3lUJp4LsAX8LE9WKU/V3jFWxuK6+4SczdPkD1UnsLCHq6LWR4D6YREMWF54TlF6nNP0jIxvmwjQOHsBaLMNTQp3Ld/eInEHbbleFpLRwossQQaQNJNJmM/pvuwdH0yIWtbr78HYSD5QhAekQGIrs0C7dfyE6iJrtICc36ve62UCxak7GkXOOPTLyoQWDsMTcDXkBSQQteroI+9qDBlSSjVDQ+yOe6/yPdpcuyGwG3iy567WjPRxty/++4ZcvhaghiHqDNo2Uf667CSefK7+aCCBACLXz8AqDStNmeGnLJ3XZAqp0nU5CFEmJ7MJaWoTcS6yl+EycFbpQwq9t0n7XRjraajjtuFz8Z5xliyfa0U4LydJ/VG47P7eu9e0Su6pfg/07pKSa32mRCGNwGPLbgEDMZMMSbl5TEz60z0B9TKMXsOsjbRDNMg81sppgLq9Jq5QQUyENaoXRwzrdmz65lFYB22hz1gbvKvpAU6k3zZRuvwZBszeAN0E7LGrZQl4LZLm0a6XeOMqZI4n4vl6rA0d3xjIseSHdyTsqXCMcpf5LFzik/NWJq1+txBPAlbgb2cXei6E3CyDUnugN0ieRYq03mIEhW+JKW9gzoDlI5ThsYr+4YOT6osEvQLQb0BpkVe6ra6F+q9vehuJDjipJu0vGiXLM09A4536QRuDZfiWqeiklTwWWlj3PLBqWnq/vgOTq5nIrM1vQmzLFXDSQpzjmO7Jq4Yzpy6lsc1vr2D0zJo1MPLCzIDUiA2knnHfJuSaSTCf8JtuK4iLlgS0ci98mMEpHUC7pm5NpUTylA1WLwNTswBH3ATxO5oPAlGZP1RJQ8rTs2ytVkv4l7sZ1ZGnZgJGkZmB2u/KLkahOqHwjTSaodGuxZyh5k+spQQAksd4jdeOA6evXcJGzwCYvcEk8HgzOAeZq4DOrlVqDF+reMzt9w5rg4KGSWzMs1YD+oQKTtJfmAfgNDcwN/3zuPQwNVS83sOZrngHKDsydLYZHesfqJ1u+w2FM03IYq+6DdGJUPHfRQktmd5Dp7OGuEXOaUUphSfi4JF8g9sw145HGpmcizjvCpEMNj7cb/NB0uW8Qc1kF+DY86CkVH7Atij/WCSjc9Dmqr6WgX2AzgJ10fG4lbL5m0iYqeYsK6B/bCZdvwYxbPDB0lz+8hvJf8ZCen7j4M79rCB9duvCXZo0msJ/rr84bbI6342+HnSwBsMsTxqzFVGaXNGkn2VPPJ+Y5Eyarv4aoF7Ulr02IugqlLwqPPj3zG2IHLbhCSkvDYD7roG/od4iF0TzJjjznDMy0i1WpcobfMk2wdRoOHIon+nfWIcDkulUysbdvZA7QigmPZQVzp0h9xMaXkK1DfO0IUgNTOuzoxKi/rifaU6GOLeeTaGtVQbajiyn1tYwHgL6D7PiLPnKUEI+JLu7edD9oOhIXW/DQSMq47KryRpcFF0ATKrh1nxNmxBql24S4tLXEVLsc5nsZ5GSw6k/VHKMkStxLmhroKBwWD//d6J9qs4z6Z2nWm4OOGx1MYUNhzd33wqq+mfQqkd631UuIV+ik6gJx8AXVL8gM8349hz1ph5Ybn6y6gnce0DikKll6LMtk879+09hW/I35SMqw37/8+C4FHOo0Fb0QONfW9B3XkGAXdy7Ql6b9vVuDA7PlrnToZRD2pJNhQ50Dy2MC1q6y0dWwcM4bnDDMZOIM/RO6qGquWbL8ZbmAydtYpobaDz9O/JJ0rUw5rJ/z+Fo70vIrZR8j0h0aW2RvT7B8diukm9wrZR80dvsYqjzYlfRrXCp1LvXnN2sTUiAvvdebjpoZps5rdCOa/J+N2QBpSlmfpBswtvXd6uQ0xkB4uxIAlQcjNNrqxr8dgb3PrQ/+UG0aUCMPRsqLy/psxynv3BEqtFPIjNp5Xv3NwmtyLV8bVfsjTaaZdWWqVdR9XO8yetb+BJvNmV6YmgOfk78/2zxwHx4DR2SaXsNLOHRFTQL3IYePFSte71y7PjvKRTjKM1LLd1t/+QaId7sVx8kUXpZjrIxLovO/+L+SgJL0hX1KGi5CiaOkfXHLJd4S5Su+QFqeV7DUXOfoKyNU69+OgrUPwYEkQg3vvQvmI9fdlR596iR0xKnxq3ahi9wGGMnPAP2HSWrZIo98StVmjuvgMbw3G/IFj8Zf8pf8TGOyRoZeZcXV1u0VG+6YXly4A24p/3vwBjOZtlxD4RQq2lqqramiM0B9f97zQF0kttGUaBh7oF20ZIpNfmag+1tSfS45ilTaoe8SApELzCLoTVgu0ntw2tjzo8qRmLWyX5VKT5kCVeoiIurOruyxy0a9L7Vjh8ZBOSkxM+Z2JtFCEIWhn8ljH3Ty1W5pqP4ks770g1I/MM80WtJ8Z+sJ4942fP4ex2kxztU+JWLEHNiH15Zm6dKJ4AZMTUjablcVxw1rFEtk/ErK3TFZ6Wk9dIw3PnHKRVTHP+obyuCBRtXFCSttoWW/H3str9HexaZ38M1oE7iv2v6LQMxu6ba5nsJfC+OtW+ScCYN3q24YhWDvT0II2C/P5HsaMLceCxi0n7HNM9paOxoCQInzL/VKifNUxw6JilS2kk2BBF4aXX3rZXkAz23+pS8gUPletM3dub22q7DmHKXrV3WLlEe9Q2iHQceJiARilZBAdtViSnHP0DkTcWWknfqJoxyjda2r2qLIqt5h3Fv/ina9f9bUd1zpULqZ8CibhU+paabGy4VfOHO1q3yqmtqoUC3qHcrOpu35KnDOZGmfQg/nYTC5+5/yT/13oqRbSsHHFHUycQ0UXL57WwUDYLd5UzNfdddl//oh6aoaWCMHfEZa0WnjNhBBFZTzJsGDTmHw1kHXQTNxbysVPSwAzx3npGHL7NqGz3vAzeKw3DDojklIcmdcA/x26DA3vJKsSHmq6LTa3YiDFmR8nHe58tZjjjl4/GxOwhWPm77KW3Ib/LxIL4GZyUGBkJk3IXBUSbZIhNndgqih7seDhNY8GtgOHdXfE3QdfugQ/i/g1oXAh/lhpAiKZXa7rRayfsyLYD7n7L5Xwp6vvJK8XlR+IBybzyXCvYBzReoMu8Xk+LtJ6xTgQ63qfjVxutu24NUUUE40ERJMtVwZfFWci/7HDkIU9Y/0aFYipeOAiMh5kjWW1iQQacn8hChaXQ8u4BP0PS7Sj/5FISckNiQPNzWyKBPd6AQd5RKsCqAwPJe7AsREc08k8d3BvloHE2swgDKcgMKT9omrQUL6DmgLEnri9kFNwFHVtrffQlblB2mOKeWQ9j6kP9YazTnlD0l5cmaX3zhlYHcfBuyxEBhN2ZSZGvSA9Ku9CJ0iJ//yO7R1SY9zZW0Vgu2F+tVbJtSpw8CE4laWxcWkw+1NYLIpKfLfiGd2i16vovSshBoxRaSUH5g4pqbtz/ZizyrFGpQGOVC48OvezUctxFMasOUHTOrU/2rwUE4X8mwj3N/ov2d5KhJnJ330k1EMMTU3kudIxTZq2du1VnmKRy8JsZS0POInCPB3lDGFvNOM9DlO+8gt352sh4=
Variant 1
DifficultyLevel
600
Question
Which expression is equivalent to 2x − 7 + 8x + 6?
Worked Solution
2x − 7 + 8x + 6
= 10x − 1
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which expression is equivalent to $\ 2\large x\ −$ 7 + 8$\large x$ + 6? |
workedSolution | $\ 2\large x\ −$ 7 + 8$\large x$ + 6
>= {{{correctAnswer}}} |
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
x | |
✓ | 10x − 1 |
x | 10x − 13 |
U2FsdGVkX1/dj4Z49g+vXJXe8q1Yxv2tiAVGwqA+VZMY6+zYhEspG9dJwsgoaXb7I/FFZC8SfGITD9tfYaE93/R+n2ADffIW6ECWbHv6ceNwMpBBujsOgbFBBxSepw9OAHnnhEX32RoohGouShlztc8Ss8+1bkPVkyl8HXBw/p89rBTbhHDiu7gh7yJEF0yjRKHhEbIsfTeEIxDKoYqxehXVhUs1r6NzCrQKt+jLhYaGuBnrsDIq+XYiAcaWRGxdDIxWifzD1J6epeJWZH9OCbEzp7Iax+IXOb2XJkXlQC7qruP1kRz1HOsHG2OcBFSgPlmS4QHdoPSbh9NU0PGCHxyjgqc8eniZ53nI9OVu89tqI1vkxUtJwWGylA7FV0K763x9mDmL9+hl2wDFr2KSPSKuhkiHj6XCDlSNzpYiOdTiRXy0pfQwBdfStUT2Ya7MzNQwaYxOHIBRLkQmCZXfBxZUY2lDpXuoG0LNjN8d9KA0GeNLIRwuHzpAlgPwaNJetkO/v/EIsYcEG9GbXR/ISMYz4bHTBFr59FU0kTdv7jyylzdzpWVIuHPDyC2bqCryq8VaCS2h176dCtO1nDwR71KMdf0sOMvU/J2wNbZO6b1D2Wqgbe6sDvZYoWQ2qdJ+VyG0fxjb/WHZGYbhWO8hFS4ZeAE8S/mRMekUM1urDd6fGnZNAds5kSRC1Co5qq1/mPh2U2bVQgGCyxlrb489bQBMe70gI6UX4uziv4UELziXxvl0A/tncgdXut6gFAEQQDea3/9jUeE7X6Wcxmva2zzktICoFrANuE69RzprGuRWMO4nNXmKJ+XmRKnuriGqwiTA6BRG+68qEGb6CXdKgQ+lWweg8ghXN/d9UukzJpJaX5Ga1U5lAIFD2vL4a9ZYcR7l6YaT2MpDvX9ABLBB94G3LsjykXNyBAspvCpW82Tgekv8ueMvwoWMPeainrIL0a+fthva8g7pyAlUrJA70Z36DAv4VkFWoW4+ri1AmI3RWyM7LmAhqcr1C/LJqz7PB5UcqZAsy8H1BXMtjbcFQFKN2A6pL8CQFg3V/2DrEVZfX+c3iVLM8GGwzdxdSouGD6dPUDHsFWVTYpJKKNStXo3ugZGyTWFk3Gh4cckatmXbWyB0dFXzIi4g7BNrdeFqlt9i7l8wu177RnvJ9gDO+rv5GvghDKfkMe1go5whWXUWZD0Y7TbkYkd6d52hVcpKdyCjWYyg32eWPXlEfmeGivEZ7f8AbHPJGV8bMgUz7qVj33CbyffesC/P950If/eAYdUx1/v5EWNYDXGhwG5tKjSo2v9DobHMmgZzdNrvLFDOdHHLSouCgFl3Uy6EsSJurvwSbNFmlmOdtJhg5y/tE9/xcj8MGBmnN8m2uJkATg9QuZh5lYocryFCPd0NAvK2V9tcZWBO2Yz9e6HFKNTRNkykT93TT/nO2k6/epsfjKw838a2enTQPZ2SqGtEMCUaPgYIjkuY07eGXsVUz4dksAqYakMg06/d0iDxIBqME04zaWzHSQxg89ZKICa10gVCf9OS9r+OdgwLaaE49TxmAKnpAEOMi+o6sNKu6X8Z64V+UfNUSjQKb1zBopfEUR9z2OXyJ0awpMcYglMdcE2K0YMTqq4SU2V15fLW7NUIueg39Y8LzlSxv7BQGsIQ/7Fq85HAVgY+eW5Vwdo6TJHq1Jgde/iEZMVIS9boxAA8739h+7u+ZO2L4+8pz/hbiYfCo1nBP6ucE339AyGoYXP9TJugi3xVlI54xIyW0oLhyP+cz5yFsqtTjda4T99yqcYAD87uyWy2LRt109rFhGG32jBJ31pjqXUNfmjwVsiNLvidSSvROAUka5fz1wPexwGs8su7daJ6MHmrrd53GgDINhySxyzWSRZlIMPcbbRbXjlK+OOPxKJdyHeT40Ra9qpYRBER1UA8NElz7Gtz0Mbv7KS48CvX7O5LPpst0CysDoOTyx+Gdyxb6zIoGJ5OomJZHIV5IX/aDrX4E3IEhQYjvgCHT42DR8dZHBiqNdQmSEcHHMBNDMFP5Op4OAcWDBjOZxROJnZm0nTiBBxcR+be3VkZk9khk5Ehya3WuZh6Y3/0qMFOASovrzlu+pm/DeT7XDZiIp0eJ8Rf5KM4vm5aGAL9UgjefNLZ+pQ8FgpOskS9vRcLDPXKXJvq1GivEwIw9Q74ek9a3iHmnTrdIpprBNtYsAfWqjjgUTA2MhQZcbLHg6x++3CtNWloi1JfIFmAGDpr14yXaz2wISUF+Vmhsck8YPf7TWVIi1OW0rE3x0SUd8ko/nZJf5dBByYnWgQeUdEV08z/in8X1wHaROdxQhEVAGPYwpd4UY2oDghHxlesCQouiH/ZuHkmIaR8KJCwpZgMtmJvlrfGi1rSSijDsJOISAp+0Lc4N5bLPAJOT1/0YinEhk/1vSiUJNWryQjhvjYMlBkBbvSLYjl2VZn9lbUT946Naw86h2F3KfKn3xlPlGwtJrsN814AqjzxTayrhTaz3GJhplOkwwBJIC7vmS8BA4LqcFe0AGy+fvmvFkGHzHU9C9yoQHbepxhOXOHTUb6V2xLJqW8KEQgabtFYIIqCF80LIhDv2c0BW5ByG9DJHaAAmAEUKyMHX+V6rA0OtiSAc6htfhDfgm5lwpV/n6f9yofsxZHIOnLev7ZeDBnrI6yYwhDchrQrWnoZErXhHanrfUPvR0D9EQNyu9lAOn28uWsSsTDPgFINm4kBqjfxJphvwsiLPNj6SYJEWeDsUBLpR0nNNApABVse3GwqoT1y/7988HyjlJ6T5/SNEjToHC5ANKPczUnVedsKnIWaKBG7Uq1t7z9IGfBQ3KKDWjpHIfO7P6oPgbs5swvfyJmE3groMj5IkLaLYN/TafOFW/gbjbREPexjG7eQb/7X4nQ04CLi46lIKJnJuT94K2mEEsFQtvxpRgccbZD5RFT8imJlizEdjSun5jQ+Q9sVRdyIUJ6t+hOT3iZzuljBZ9FlPLJb9mLwf/A5eeSxCsQJxTy/sQCmcF2UFEfKqGGLAW+0htJWbtpoD1HNIz5AoCK8/iQ7rcV1b0Cx163BttdPfMAwH24J4JYjtxJifRX1FYYJjeghKw1Ei2GLJ/03upw6acGLO6NxlG7V5Vuzfh+uV2pzxHE/gg9gHRcPf+kzrkpWPESxT+GxDyfTSwyHr5IXR9Vo4OzSrFY+F6ITibHcK11gZmzBFdCRMnsxTyELKfrLCAzuykpPTXmw9TPJhFnu1Y8NTnTVh+z5zaib7USNUJ4y7grSjxd5V4Dn1/9Jlv26GVgeNMJ58U+sABdME79Ccc/kf49Gg76oonGmbFe4xnp6QOiRT3eHZNurR8cNhlkWn2XPyqWDXbVoZRzF27o+54xuaJoEtjbzvkaV37HX8nzTi8vJllx8x+KfVn6MPwsg1UwzaRroeAfyGKYbcWiNC0TVxVyWYY/WY7sfG80hZrBan6khEyd2xrp9gz4AbuEwabOCkC56V+W/bcXg60t3zCyCsdFCOyLtiShhZ29wbRcuSwmn1WKyelUtTScfHyw9zlwVJMqbCNwJwJNpM555OwrOVRh+JZd+igmtnf488kSOQr2HawlIRqgxEImg9DfkkO82cYhkqBF+LQ87NZUsxoBbNWgSgt/5F5A944gNy2huissJseFrwc6zt/TXQkAB4Az2c4ypmAO/H6+YvYqMbxa/lgz+N3G/t+c9ruzt66Ee0XOCE/OZtPWAowWWrR+OyUf60TuUdXz9u5uuQTBSWZ2wqRkeWYcOkSziHoB2R7NK34hIN4eZcuZzQldmQEg2ELBUw2GdL2gVt5xjGQimvVcB+EdIcxNCpu2gWLT2XohCSXdSYbE+jEiRsIHpCyuBNpvAYA1jeVTWVVcePHu6MYppx3pjXZD285S2PzjxgQzjTyc/fhsrjJA9FaqWyXWheu27cAS2cW1js+NkGFcUsJWMqrniyzsrP6yW760sXLbcs7S2moyvJwuC5KhUkGRJHLCXIcHMoiZAS6iVPY8jgjR48KS/g2c3e56e7KUanfc+TQy6ScnaZxKGWJOIriI62AUxFwBv/DSJutlMSiB6h6SfWe1k39m+mZkX2cyPk9gSonEbm8QZ0IVhyUESkCVmVlThQ445LgNgAK844s8mWU2P0bHOWHgupdgnvv1f7n41mQLzrh2liOdnymujQEmhjo75dX6cB6d5fnDJiTf53F12OA+MjRgz2mOvb/vvjMR3MDqf5rtt21DzUU5SSFBoguK1abpACWhmqyFfbWcQezzdQ5lzAZ5P56U4q9szLqTPK+O6QAdUYsMPi2caIM0r98O2SLoAJYCUnIqPR29xgLw3aRdcyYDmhFn/ci5b6IIpmMhHcK6bkZE15o40mVFVzg6fF8yzyusNipiCEH32p/DocinPw1s4D+ciPR4xhjMuEW+fc5BH2sC1XdXf5r0EQCHw5o2bf6Xv3kQgY4hZQqlScImXPEoLP2Ex7HdXoZ0U2ZkhrZkYKwLxHTx2CsYzPWD1SfKWEOxI/86lau+aT04A4EakVl1TrRpLJjrXPuIPHZC5r3YbDQSJ2oRP+F+F+DKQFCh8qdCaMruCK/PdsbelHqKlylK72HWZZ1RrA48Qhxjmkh1vEoTxJ9bd+uklqIikQTDpP7j3CiUomRUtLePe675NhTv9mcHCvWn4F58g0N5zfIyMcCceY11Aes/Uy6bIp/gHWj8FwigWezGXJKRqRIjgfOOVp5rBQxIobfvFvDHFy7j78bYAbJ6UNyXbnyHNYAezLfFAv5JcVLZsEtAhhgwP0RTeQ2LqMdY3HFGSDDKHekxLglZxZtfIPWYjE6y81z9dmsPOnPt7gVKURU1nU3gxD0kgAZ+bKpRQnQ/gWxLFl6I7nBWQTj3NgippE3TpmQOi2x09vOR5sLdaEAY1Oh+Pvf6ehoKPFUIJArk0+AV8bIZwj5bSXnoJCts+pcaRL1E5lnNfpCSYrAjKMR3nKIYoqBNXHYDzcDxbI7mLAiWPgu8NR9Vl+954qhUR1ujE4Qx8DsCWxv72zs9hygjK7UT2SFjMrWo65WvV+Yrv4o0eaSQBLyofCZo44agqLy2FgTlMb+YYxPZLxaydhwSx7A5DcRiLxydISTFSHzEPI7ahL82atVRTYPQBPL7GxcvEB5jSd+VcBosH48bY0GSenoj1UQ7gZhwIwn8LZJCQRXZy7ADlhPRE0S5bkZZgcPpBZjYWvRS3/t0UXgXPyJVmibIy2zHCet5br6fNjUDkhXErlXnDP3t9MmwZcJvTKRjUYb5jEBXqhkolAsuXfjYEaall02qOzUKUdvpYGP/2xjVdYLPHj+F4nmVA8ZqQ5Gy7ca8476gSYWAzzMAUX5EjYpMvBi6tw1qEpLZ1P+OC1sN6Qx39wwh+vdweSaGO8bRMBXtvyCVJdBNb0CoIB1WnCOhGgwJo+2iQ1VmWacIoJPuttwzsWMfIRYygZgtI2q7s0UCz0wByQxWzRe+/Vza8a2MX7WirwIsxibF5DKEkSrTL7ocmZJ26P8CcPFcr9YU8Ot0CX/YM4JwJcTNnmJS5JTis50QeAuMvfnkJaGxosZQsvFrcN80oY/yvviVrhAGtsl/yJ1rKyQcs77wtwqKjUItuE39Tc3K8ao5Octt8x02GGnM/v1Bu+a4mP1Y86oKOJYRytivYVA9OE5yv80+bCmtujZeNG8TNzswIRSa4y+3YDXWrwyZkcbtmqZ0ty5CE0tEwdVM1gLBrBWhnkLRZ1Vo3iuJbBqx+Fut75QPuR3BH/FRXBb2leW7OAN5i7fOYpmWrM+2t60AUnA7faddkwfRCE+I9g+kuRl+2pn5XsKIEvB4PKGnEiVy4fTIc0zrj39XH9tv96LE8+uB6ZiRujUm6+wND5uyF7zny1NbzNZ+Gn+kHP7Mg8uR/OgAYwM1jXzzOu/vrf1kMO64W/bKX/5iTOgmolY2UfC21NxF1rdXOVoq6hHBtE5rCmgjpjQIT2CqrGjc0DKcYfgDMGNvwsNaeUJ1uSTzGYhdZ9QYa8T0iMKxGMat8Q9fGbhp43ga6+C97y6VFd6jh4j1S21kMiJuf8ssk93/fmbLM0ZwzLSsvYjQQiIRFoWs+Sz5XZbqsN7YeIaNUPwzeOLEh06LKlJm2oZBj7Cm8NsmDoeMFudRhYgVvLDwddEdwws4pkVqloLNDnvnTu+FxUVbHZ4q/LI33zkVNOVNP6JFm9Ld/kVez6ZB8Ubn0vk3mO/laUpmu3Ey5j3PSzDLEg7OOVXvYd2EhL9hiQ0K1278u+mbYLRNzxybJykNsGebwCciOvD9MdtwVtCl52fHQX/e/duP/Iz95afD2jCass01sw7N5wFssQnVdiYTv44QzeCkZPyVlAhaFkzjDVRFhPtutrXNqV8aFOVJExvvMnS44YAZSY2Nk05uh6yB9ph1RK0TqVvGBNJiu+Y1TdUy9xonlMsl82kMzt7M1aiVpTpkBUJkbcrpjr2OlsDzaDaOIZ0Nnas6A7NzeOQp0B5k1HbIhHX80kEdBgmeBuRZwSG7st5DwbQVHHAy7TqGgTGnwSkaoBI97r4G4r/7uaoffLVoWE1E9Y8IggVN0r7StzYXl+s+M7KSHIt3t8mhYif+THcVpB3UYuarWEDPNHdYTrG3m7BCfzVaQm5V4DcvmXfIsqfqMW62Vk39yWbLr6DUxUPm/NQfqfnlzoGtfrpiz+6n0+CquX0Zufwrubh8ZE+ePN9NEjnfPPxnZxhZMZEWU0q5+EgfqCel4Zt9aHqVl+T3J+0m5KawXoq1aEjLIQi9M0zZ+SulpNMEstebwOCFNlskoa1AcxYUGlY20WByLQWLbtb7W28U4E6dqIfS+eJ2uphFgMmfG0Ox46L4gOfoZy/778qWlrqVxFdvZN/nNYOwMpHD6HoL675t7davtvF6ItcCOLflIX6q0cqLA8Gbgp7Q4GziyU8LGfoLLkm5J6K8oahLA4XShUBhy8fM7+azXEJ7QMvts/3BStt3x+F9/u99Tr1qMtJ6UEv2wcUYaGxntZOryPjr2LpSrvkuC0O3EmlLZ60AbJAYWxcK6Jg8cY1SBNE1J66IxONARfq2F0TDWPxk+oH20E1fxsDIUv5xV9JIC9OmX+gvYaX+7jCsk8aj/SQnJ+Tafna/rAjgNdoO006MD+JUavez6BgUXW2di9UVD1pTCEQbMyt+oZRTR8B0Kxd9tOW5G+NyrpMub0pWc/echYtx59V8JMp/W3QHCGchNFMsRAE4nTYC7RfHPkbmadOqI0XSlHj8dJe238rMwtmBOGbWliEBd1Ud/UHJRndJ7XTVh6ELJTaKvYAqkSjUtQS0GphgHQUePdksBQ+VnJ/7Xm13H6WlgU9uLwIek9xqFEd3sdbG7c4Q3swzEocBM9om00A/c83TYm8bsKmSZOirm/HqbWtc3aQNTZ0azOm/3fpBDXttxkhRGjPI8tnZoPSa1Sbp2bkPkc1Wv28D9vZAkryiirJ7TwTU6dgm2KmtNE0vXOQxYTzsNp4TnYKRdjwqfuR4lS5apSi7Yzj3n//X6OQXnzJVs7D8qb2hdjef9UXSWNd3ccBhoKtY2jzvULcfOkg3EXTrTfhFNelSGN4UWw80JwnIcoWmTciZEWRC8CXJUwb+UcgAfTEuKDwMysxQrm2P5e7a9TdhmM32JFfim9HrpZe7yaJZsrcfPAjnmXx4GzrRuG0f3AQgVIPGQ8cvcbdJhymSJze7dhdFhUCAWmPa5W9nUFTxwrH07qZhF+4ani2UXne7p4+9dAfmGS0GbtiAxYSMD+k92gefu7Kg+Rh8P0os4UlsikhwYcDUWOUN78011x4Te9cjROukmLSFpKULeJQeNz0Iy6uhJtjK30k+eicrGIZ8TQ5UniAAfhtUZgyCYDRxyLTwIWM7l8dES6JTeTIu2dPno1HjaXfNf5MhffmEpUyyjvEPFqNHJTm2NxLp0B8vObPOrRarr0fa347Jhao58OcMFIdxrhh0rvmhoMcospINyBXjdZODpIchK5bgAwt/4sIfaC5WcF2zB8IC7vyEjyrVBzsQaCzKL3OgwP08wrpCcyJTKwtRyMNgu628z7nN6CyhSBdiPKKWqlShHy6RSCYXB8875epFQ+O07F1GFzfuVHwOmQlbR8999N/m+n96G5JLtT2bLo6nz5BF+FCWlzh3VsHSYCkQyxy2TgGSZj7bo+pjy3840imeNVb/RWlD/fTBqzLVmFAfpQGJfSpKuWmxGSIFKTLvlb5sjy/cJU2VQYVaRTQrdptfCAuzUc+hZrimCCmNMtFiGnBdo6iYh/3TCNxnT1fBuEhh4L3Rbq896mnf9mW+WyNrmPXimV2xXkxc6YYHKP1Fc0r+lAxagC2qysLz1ChEXa7xB4BzQQhXQZoSk8zM+L714F8J37FqS+Ps8itxwtt+pl8Zohy3o0zfYtXlRTZLMgrpvJ1NwuZZVLI6HPFqxgbDWKYfrJJ/s7nZMOTo8WyGEDn8veDLfwzaFxwr8nfhGOFYV3zMo9WA0KUy+Pyiu9N/iMkawJzjcgmZ/JMgCxqjtrSemscCAA9wVE2lDj9wgq8Z1KkkC55AyDLxCd4TMMfkQ3f4dFKxegQSUM9NddBv70B0CSMvz50I5+5PoEl0xKicJqO/F4GCHlKNO9IL1BDJKf4L8s1WlUQ3DSzfWRUdxEmuln15BUa6MSORcGO7ewvB2u+/zmRBzvUaX0DlcZKBxHY0Pg58INM3B3EjjLWmlvlGNJgsTsWfARxL6E/6qMcFwCyf4HItjLF3Gh47WI4FUND2urr0pxP6Su3Ac/bLYF5empQuodmzwJML6+tACfLY5KTQUH3qYqKHQs3j1NYCJ1R5uQfX0eg+qLjOIkHI+fMfQ9SQLD6MRcHxDXUaOIOgloVyS5b5Au71iMwPuwM0x1pkYBpKBAa6UTH4OO+l0wQ4A4Wa4CSyR+YY7L54nI/IFs4dZDv5vVrkt7zEx3l1c9Q6PJXgESTZupaQDiGYr5UR8aRUQfJRjTMWnYMDV17cDCf4duW3rX5XXnau1AnnqMwxh/UEns8tzwOIQBBvt2bipIk3rE6rDxQ1BY8okhqUbW9pNKSRfQzbIiByL9fx9Ms2DFD3UkmRROYPflw4useeG8y3swCSb05K3r3DW39Ih7jq0TzN00az+tFdPvHHkvhycxpCGTtjMHM/c7sPeNVI5lRJX4p8x6t0=
Variant 2
DifficultyLevel
603
Question
Which expression is equivalent to 5x + 2 − 3x + 3?
Worked Solution
5x + 2 − 3x + 3
= 2x + 5
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which expression is equivalent to $\ 5\large x\ +$ 2 − 3$\large x$ + 3? |
workedSolution | $\ 5\large x\ +$ 2 − 3$\large x$ + 3
>= {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/byTMoUvRdqu4FNB6ZzboWK9fQlmigHkraW/XO6gEyJ2/pjtfwMSpRyEIm1MCHg7nz3Qz/fZc+54otK/Py9FNZs/rcTqlu8YsCQ6TyHSLq/A9UHk4saXZt/l3XfIXroTucYMHnmO9cAHIX84gXE5o/y4MLGM8b4N7204AuH+KY0c9e1jbQDoL7f4yHoxlbIlmaP5cVpb5diZGxlGltpRMAjdBUTAlOHQeN0JlCLlSQp9LcmGaNFyH+vWqwfNjjqIwzAbfD8AfbkrlBsacerY5zY1xRNUZctgsg9JLGOvgCaVdm18di1vxhnt/yxXrHsOoqsjXlOwJcPYH19d8AQb6zBPwRD7p+jfgXA5d7WqXVRCzrvP+IaZVggDZr9PZ0Rn6F0isAfHAuCn4Hx2UdoVy0oIr5bZ8Hw2ltbMXa3+JyZcFsgF2mPhh4jrZR2DwV//WQy6e6cjLlBizca8drh3X6BrLr24kq9hoJsVuTo5vByUBxbyMSU35/ex16WPgIXePqz/9BdGrxoJ3Z4vvw82+RwMilK6o9jlm4kchBtnkVGeC53lYI/Jmz1e5oc+9zHLt5UhJXFasldhh1dzw2v4khbOhBJXdgs9SlQtoog1u3M3jwWCUMpeTk1HclGpo7NZS1wsm/WAOpLy8MHH7w0OBBpucCkHr1dzzNfEmrPKbygzvEvKFQTLj3qFHAqIlMPue0gSs+AFF7jXaWZdkBrGslyBXRm/dv6lfKdKxqYW8HmJVdPw8a0+J5ZEEfN5yRdLtYOJMuu+cRE0uE/mNni9gfF2T0mY6ddQR6FbcoJdAr8XgK9n+AHrWm6hQIpShZtK9/mAhaWRqMWPe7DikCAtpJz9soxckQL3Ogp4x3BR9jYMUzkhc1+nBgV/bmVT1gQqa7UGsS1PWGhFK5+mXoXo+I1eDe335CxR/gQy21s3N1/6Jg3l2S/32eEpurwNmCZ6uSR9cO/U2WJIK9CVpnbQdWBGjdho0/0VzWAXPbMcrCbLHLsyI/s+OPQsGom3lsK3d848VGWtMm9bdXWB4Az3VDYx3TPCdSv0hOIMd8pcBj00GUgTM0EYnTQE0PsViJ6PYekZOOISBdBizorj0VOqeCE+eWB1bcRcF0+65Tg8R2sQPjX6OLvWGm3/RDmDkqJecVsDcOvnxkCfZFZV55uKIPMN9g1P/37Lrbhy1NEgsk82LTi3IPcF5+KJbAVlFsGiv5osizM2xi8ETAgBtpbukO2SEStDeeNwn1KpOf0El/nGFWoqfK16TIcy+v8T2i2FBzDqfKO9ZCt1bj3R9tY3CLX2CAHhaVeHqsVql8YLPyDySZFGwhsJ3ExZJaxKB6lo4fEs93X86DoaWuafDVKJpmliAo6oszKyF3v/3VMs2QXe125j+MSo8uS8p3mgWkj+CyN23yvzsyNQGKxfiJ5ybA60OFID1QeYYzwtSZVm+VMFkoiIIO1RbQZ2vNb/I9RbmzTvvyqmMnByHg/KvLrDFm6SIfmit12/71ztl7qjU2OaDgB0LF1g7bIO8j0TYKFZzdn0qfKdZENtM6b6HujoNE5pmKyse32Ey6aGyksmNSQTtkYFI4Db1Z6pTsRVj17R/6Gks09lIcOkXBGtOqsp05LUTIEzwJ7Pquhp6Dg5G0f/Ohsb8CiXmAMjqunyHTeA6121Y+TgKyRvmvPO8ow0XG8MQt2P6YYByPgD5fT9wBLvKfF2gXV6JzbpKDNjoV654HqKC3mIzJXmFh6GwpDlgrmNAuzoDcfn73BKvwj1OD1ipXyXEFUumP1N3PHM0q5+TyoEdfHPutmwtPs7WboOQVRS6S2mfy1LWIP3ESq8OqoTtJJzhfL+5Xoa++Au/b6cWEo4aKOGD1Dh5MeRchTI4TS3VsVRPMzKf7DZ5wpPcmrDg0dHzYKJwO76iouwCyJuuzyh8NlGJoB++y7ZNOtkOZ0V8k7oAjchIh3FmIDQ4gNhinCzQAKnbHrJ5tm+8zFdHPLavokHxwPPn6t1LOPKhqZ4KkfHDpGEKopX0Z+AKxOtP0Upkt9guhjv2sKrYGo2M/ehRLEVcPces7sINcET4jsKmNFJCO0Tt1LUJu/zMnr8MY826FWaFy9Yxj8x6OYY7J7tNslH9IOpulIKdInModGIH4O/lapjNgZhX2z9Q+QA9k7vgnPOV+2tKdPpk5hk2QUCEhOKTKKWktrGmOfNvA+XEHa0dcEQcnQIAXVBzlTw1qCJMXrAqenwuo8zHQ+ehzbfeoZHwTozaVGPWkRP4SqtkZ64S6lN5BRtpKH6GNxIjN4JAiv3yUJzHId60GJic+DcNKWhyEKzDpw7HdQhGNVwconHp473XvhqSgNm94oC5jSlKp4TiwWniRVIClfvJl54cFauYiIJrzWylWq9zXGeucbXmbBs9GN+HwS2obkyMT+ANWtlrkCMPk8yjKbH6kfh8XIbvBXKJwrq2tsJ9yFFT9Na2nQlJMMpP2KlDMBAOjdhb1pYZB9TJYH+Dd9I90NJRxlojMoy5t3a2NgjM6oltSeDbmuw+0jX7L14CUREW3tOGLDNuPPmcbmepE2HvzGpkaNs4zdlDDjMA+ypCbnNPkqY5KfcO2EMFi9h8Jge30jVC2e8E+S0GO9Re2bOk0ae0FM8USlH+lBKiC5R++HbebrVUCAm83FEce6Q2YgsisYMYqBRafXg5dPfZADBvvI2eEnMsw+Lno2eKWB1f6gsbnjDI/8mo00L6nT8nGcLzGq9TpMIpnpYjCZoVYLn+uwGjXHnvRE0Sdn9+NRrWxogTQyiU7Q4/0AhXDUSI3yHe3/cScLlPI4D0xt/c7G2epJ/4EXiiBfP8cEq0YqwmLhY0Xt4wluvZhqJutt3s6WbNxiif6C71e3VBlx1+xcFgqgvFNIgndAGYAEMeVimhpouZHotKVumIxdzV0p7jxehG0M8hJ0SOHFO6fGT0hxOwyPuyrSepCoPF9260F/Psknu2pefaivdWkLNh4uVwCBdwh3qoAcXoXKMjdVCiagsS/of7xZoqVEAhnstmmgjinhZixAl+bbftebJxSVYc3rxePgkreYRI8dTnjmnR22qB1cF+tZkIznLDm2yaMoCkKT2PnL88t01RHV2mTZ3T/UjyMksmbylNPIboJ/n5sfqYIykWmxS8htc+CR98++dJjqCDbdKhOCRfJ87C5NCpZ2J2+KLxf3PoWL9gDxIUoPZO+IyZfj0ifTfsLvenp3g4uGue1/GP0gX+mI2PvbWmEikMHiRPkSeGxb+WeQBsUUZTPU2Y+boGqPHbnJiGckI/BeHaMM3klfU1nCOpjO9NIK1nlwu6RtkpJLNIpoVfCNIhztgXE6h7DeI23jAAcBv57sLqetCpA1oxfeFFy5TT3tKssvlZ/Wl6Rm7Vhq6XbapQ9l2wSM63Psw5x9dhxMGXBV/sQ27YLzRRU6Saz0b2wk92zf9N6G8vALfphSBgVKb2tEOxXw31vjUTtCYpfTSb4G/3B0sGdinI0l9UkZ+vOkYJgHnPjZrAdZO1fZhEBhfiu5RZHJXYyOLmT9RWpK8xMpEWR2rEBf6l/C1MGOv+57vuLN+beFKVXO18W9E3/PQf6vXFribAJCoCYo0uMZYV4DHnKjwTPo+jmcBTHwZMmUi/eSFaMPG1afir8a5BFdrZzPMZJSQbfayR+oKOH7oP52ijLOt8aCLUQ04nLgl4g7gDFCf3tknT4Tl2ijJ8CkFWJFdgfBTmG5jPT+pf9UOHozcdpNO0p66WIJ43eodkdSW7V31e8W5Kw2NcdwtBwgt8hiNjdBTsOalsT06iWKOx11v87SVS1wOuRTreOXhYtLcORzEViqFkqzN9rymGTjLTbyErlfjORhChKMJT9soi+6XdHOFnaaj0KGoHx38OeFoxLP0Fp5uKNRBdyWw7UlZqeFEcCqogpP1DiYBIUW7snPbjXuhUL4pBEBxTq5YyeMGf8kn4OHb0ADYFwAuV0Mv7cXol1HME2UTKE9TZoIIKXj9dGgymoZGQJ4DD0E4knzkKDcsn0qa1x/OXVISc7c6/8Mzm4KWC6xMg1TXECs596BvT6waklzlo6bw8i4djq34Sy5MUOT3uvLm30+iciStzSqTUNyW6tgfYUY/0ahSP/bFcoiHreXk1f7SDm9BIw8N4g36fpGSaTKm+IlEW4VlAsRp20/XD03xSh4O7hg5L9wcu94L7SBHqWGIYwW1/Qp9xQFcqia2XponrdBmI/z+juWE9DmQB3eJL7tOVn49tFqM3IJK7Srz7x2JpWwLHI356vrQu1wKAYJr8B+I8avB9OdUHvEZ+9KMYFLQV4K2tRQcancTJLZDchc+Y92bhpCnFP5buycpFt0XZhIxGPFaAAU0WD0+epiAhobD82EAgnbbmYQKW0deOeSnDp7kDtbOOW9boBogE/FvETcXVCIgMYgfL8bGMDFtfVLG7V8SnuCu1/B4DiVcIEJzprXl9AIMGMhD6MO+sN7HluvHAcix0VC/MgGiWLKEp5I5C/Zze50ZVlWHsmiCx6m8f0U3tZPdwrOOUib3AQXMCHwfj1YvKgVNMLRKRnW1yCnDsNAMScivPuwnbgIyqujdcAdBcEGauvZEZ417/WSUBuidGKAURLHSP3/YgkLuC/dBkgtGw1CHfCahPEODsUx4LyQD+W36nCjF4jkCoZbZUCCoStTPA2jbyJ38ABcbjAUxSAtIsA2C7JQFNRBkxCaLQxrK16MQRjUYhn68YZ7fcaMV57BDKVPIqyhbbUMW+XVr/ykZJjJaMHi486y2lpWZOe80+fdN6ZORkqBXi5wFpqItnVR14RL0AmWY/UG9nQetj0d4oib8yK3xeBD85Upnetd5pEi8GAED5cnqeO40/VwUTKdhGDtVQwh80T2A36NDj41vWNJYnylAt8YhGO2HEfJ2RU7el5uqA2/VUb79ZU6UEBvlK1Za9AA8PNiIqf7vuiyy+14v5h9j+rclKJtaVWAECViUtPkvvP6tFjuVD5G1lGL9fDA5ccgo6i8OJcpLFem/sOESCtWe4+9FqJXe2feQ3UFraPD2RIxXjj0iVrLFeFdYZaLEnacdE4UYn/neOzxMK37dbYKth1P5pTZq/Z70EavHynSnra8pz9BZ0kMtN7JKx2Qfm7VFEmb99I8NYiS+ooXQC+dXnd+aROYs0Q5cUdthS/LXybJn349+qmYRP5s/rAUc2HCAph/uBflpsTbHtmBmhZ58qnmLzg9iY9SSw9OMd7P4zG0bc0MeD3lBa4Y5XghB1aE8JxU0360Fjp5fQGvTYlEbyDHIfcxEhiVqZjKyWrYABkLCk3bM2sRpvsL7TdX16RMTZ/8ozTlradw7PCTQvXWIA43Y4WB5OvJqMFC1wN0eP7i5xzf2gFGjMXtEdjDSsGnjoiiJZi9JqczOtn2AK3m+WupdYwbCDiSJ2cCJCEZGT+WSCGdGdGMyWFzubQiJoxTcNibWxSO5tiV1AXE3JIfFid3blJRYo9hh34rqEdY2U36dxjMugIBBKYCApxZJSYuXFwRl/bRMByYlBNCxqGkV2ULuRkhPw0Iz2BsVV6p5yKCxlYGAh55m+njRWJcqfKY4DPDYECgE2i6/dyYC9lj0fiuMjSCD3wRWkzeoe8xJCznhj4loTyJ/bnzZp+r1ZwgZVmdAZx39VO516wS2AN1Bp2lbYIS7WM5lEso+vu6pOW7/GD2U7Vbzlsl9XI+LabbNhTJcz2HXFLNurJsrru2lHJe90sA20XT5cXHUiMYwcESO9BDxicgIGiTykdf9Y86eRdNisUlRKF4TdfjcvRGOf0Pdi96jMGF2RL3kpdrOHw4AqNDA2mAPUvJHyt4+og0LTZbuNiwshq7kZSASAAQmtUEcVLx6XPzcNTxQN8VY34zmtC3u/0CcSMGCvLy5Du2yqHVN8knsI1qF+Qt0BVg1ZrdLPqzlBEZeBEfS4OnPrZbZMaDoAu3L/z2RR6QlX/fde/34cvYwMtIR7TUjU4Uax3C4A1RhML44uZ1z6NcIhjrhZkWgIa1br7Vle7WDaEx2K6yrN1Sw9eTJ5YfanillPgsdbIOw5Ae2KB+5/bEJC7J47prEGWnNMNxDhkVMijKQtCIa/akmZ2GmS26Q1k8vYNBRkdrr0/k33fMkh8PZdzTBut2OIrPNo6w5kdbtha1P44oElkNFRt8KRVqSzvITLiFfJM11LNpIpC7Oq33EGQ+xrE/O+jLwvNeqUZVRzPP869uStY3fK6TTMi/LrYF+X2onZ5kR2Qun0RxKUjQ3eaKSi/IthKiWtPSk9DY+L59ZsWPEWwYJVMUvl4j83/Cl3AuC3kAvIWViAIVxHT8X6N/0w+VzhzYSNrwqyuVtogucfwX+x1sybBTTjsg2TyXeBkd5RrLMFRQkLGKFh3slwUXpECqH2MWxD60x4bVZ2yTfiCNV28yGfSkjixzC0TiRUXvUpYHqa5tb9NutlU86unmKPi6HFa4M6xJ/JVA84Jsej4WtZ2D8Eit81L7+S4BICg7CsNB72QjGOATN7gHpkBP25h8B8/0bFYUTur7WlJoe+p5UUkcpBOqhVSvfd/yo9tJo8lIjRDhE5TW94CwcNE17tnLOJ6o1ahdgyL3ay6n/SuNW1TERwujtNAoPejFTQ/z0QbIj/1mPBzusniiHJ3L+pi4sm2iNqoD5nOQ8xqh2HmDc8oDIOAsbuac22QVVY+ssbOvLyZje7bUOnth+kPNlg/HNZdpPXt3+2M8yqnRABaZXIkSU/AsVoslhAYSGmtqt0/6KBN+elmLj2XI8zg1H+WnhxTRfuBVxJ5qjike4Zu7qlZAgeFIU7ib+z1px2XOZIMupQEL1KjxWPk+k0PDHk7lM3BcXBb6xVijJrUMP+J6uUe6OOX3Df+8kcLD40lyvEjgyAXPA2On6fJu1pafPDrXr2NnNvRu5ga+F4BLfr1Yz+a7JYBz9ZH8TMjESY7iQMrYjUApjyWhPPLtN3TU56bIogwMHDUIQrhJT4CfQ2zHIeLEGEy+0nVVwJIrilCejABT6K9+yJaZDCozOhJ8h0CGQt667G2WZKj1zFPge+1eGhwIhuAlyKwUZ3moMbAU2iHvt06R2a6j2DzPpuL6iJvWINIIhnrdO51P8jE6ZKkhlupLsxsNkt8Otr3X7qoRn2vLNGXhYYdkQpcNGRAnLocaVs0FVHBuq/db7yBdtNHxOMDC0pZebf1Lu0MiPT2/QgYydW5k0N9W0sgVhmeKJnGSW6jp4kekIZEY/oajwKTwlJ3GZiyUi5DTjWI+yJrXO4WaOdce9Grx1qdX5xjdZxBSb6d7V2XEbmOcdlp11W2GSsFbJwZExKkcqyn5ahiw79HMfXbvsaZWnKaNyYzr9MeLLN8G86puOzwNSzNIBe6AC+7bB7iuP0wORQwC5QdrQvsN4ST46aaiVHB0svg6C0w9ePydcxDyK+10ueYllLKS5tc/3VV8jSnCdD6aiwTk2nQjZ5ERfD1bQKEi5kiqfn+JIOPytGsuRRVn9yHYXuCnpVj/I9645s2OWpK3tmT/PyoJe+FKLE3IKFibu+Kf/jClBSgtnIVhJowkhBuI7Od408Xq11r5TB9X2bQee5Dm7iR41e28EQT5DRxuHubIIy63XZqx2zsjaziKQC4w1qmYA4eIPYBfUrz/SFEhenxBIaGwN2SyPeri50RXcHRVLni7ZsHXFs10HAhfHPNWcNbXw7jMO/i0MvR3YolE897QnEhzZRQ9NdbqH//2uQNrf5bAjeMZunSewcgNWklPV0xxUzaoJTpZGJXb2ROaH/kyiY/zF2brqLSmLZbCx+8L1wtQzzpAhog9lrmS3albxmuegEBDwMXf7GLapBo4VK6LHhxc8po4fUd8Te+7JQGMpnguIRjHuXIMccoZemQODbMgUYnupzWCT4PJlETs154InIpxwH+YK305ngbIuU7VN4EXF9vO7IbHPoie2SqiaMNTTnQrS54k6n0gGlLDsdTsG1/s39lHkqo3XJ1gt7zYdVAubWODdl8+3Qz4YvIBoFYQGIRJGE5dC9BwsomyvvkIALr2rk/c+0142KkVK6b2SaXNyi+Ih7ZE+8bz8yfz6KPFfVczBd4i4WIIRxv7kV2YrolYTdxy1A0YAi45AGnWKCuqEUw+Mcr6CmqEqWDwRzAVXRlA+4Y5LL2575SQPrbdJupC8bz7siXhYu2UnASY2aUxrVMHekNg+j1DlXxq21NjQ==
Variant 3
DifficultyLevel
605
Question
Which expression is equivalent to 4x − 2 − 3x − 1?
Worked Solution
4x − 2 − 3x − 1
= x − 3
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which expression is equivalent to $\ 4\large x\ −$ 2 − 3$\large x$ − 1? |
workedSolution | $\ 4\large x\ −$ 2 − 3$\large x$ − 1
>= {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1+lbkAF2/zD2bL4IB6EpDk9td8CKiq8sF5hxdFGdH3apb3b6+6W5DxbeG0UPhsa0loMMbFwInf2lkLIpqmLKUpbQKN5bTe1P2j+UUhPiFU8FG/ptYs+2sAAItxhW9NLVzMBPyOkPn6fl4aWkXUUExUx0Aobdd07iM9sF0UPJvyQgkeBelPJVrZRoGMgwGO88ju8nvBPe3cvUGp8xzPsJS2A+b6MGvsbZl8tfz+uht2RQQjeRBm3VaAPAQ3fl/sZok9LgPl7OIsrC3fFX3+t+SGdSTr4z2R7yVvFFVg7WCd3iJ1jG72gaEezord8YI63ztrgrnjdMsGhsrvgK7V0rH43fOcm/zWAWy+30G7edsB29lWHdBcg7jNMB4V2uEfPymo8t77nYeMnfibqgcLiiv0woxPTRUc3BNCVM3bPkldgs4mTjHHGhN+Kzzqs6M0L3hkKasuhoLfPC+/kuPn+G833ELAQAWsXOsrjmJTcQpUgeDnOzzcTrrlzswLTsWxgckNEujpfrXH4S+V3vOm1ES1+uVH9KTkhyEoTQpifwmP6pSlyIGLPhwKJYHUUifkDGANkzDVMaHMtVYc0lGL605kJSApCEvYM81DJv664imdhZwM8hngmLSL1ZrYYbjKMOGJbO7VaV4FgtUXQjCQw1PXZEkiYEWQ1G+bjn/Y5msD4+ek35pYq2Lnj00hbYa+lcansA4QEnpCqqT9w0SMiY1ShTK6JzXy7AoDYqCFklQ6JR9/2xnprBOkSeeAv8Y/w3kIQxZ/BzUuqhhKB6HZAzIoAH9gGhQ5YKKCifL6zfhDaiq7ePxGTETxGRTdKwyTH1G9pEqkeNR+4uURw9AaEYEJLYgyVBjtjbPZVECo79pHGuBW8u8mbucx9iYpjiomBCxdTrsCvun6kLwaie+FwNnCngaiZ51jpquCudunXFXkTaUDZdFVNqAwxxsUlNxjFJGk3RvpnG/AZV1Vm9sn0oZxug5GPmLYCfygk88aSUiFHpqTncAkMX8fBCu1J/usgIrEN6gbyCakS9NIV6kNEG687OUeLPY3AfASOo5AVROFk19+zC6jKsLdnsFVE5efu3v63l37+1qFgvurQ1otRl1fIlJWSdtPeA33kpUlztksIfeq3rnE36I3frgcnJBkt2CUe5MK/1pDk89M7MPsc6Bwp4ERNGt6fo2PV0nTh5vN15R0JHMork6UeAhCw1uiPRoEuxc7wBVN16Tnp52ZtdFNPpBzCrHd4CY7po95MJ3Ymk4OCIqLNbrXHQSRj5ZpTkE5HXKuN4nOofYQrv9CQEbxp67q2ErB2bDp+TLTj1AF0+ZbdxsQRdw2HB4p5FFLLGxaYiSa43yc31toWDB3ysBgw+jk2kJKn/AJcgu2WWehFvWuI9ts5DU5+HhyPTKa4qVm1R6uYW0mGxuKnoeIB7N5b+YaQB06thG4E6hGzbM8YeF+Bz641/iCL9NGurChwqBhyHh5PKpTF+hFyWOrkcsBSfG3bt3uJHtesUdiyNLm2ZXbo2GnlrgKI6/rN+AWJmjcGq2M4Xq3FcgE9LBCcUvwpggf+HOWehWdJgjw676ALkrOJCbG5K/JccISahF0Fx+eEPlb9QZDvcnYmC3MJbNxrCzMOFpbFEQdVkcXrJPScYNX7+CGFOjLTr7IbnAS+80JeinMHc+NStI1E2lzu9gkkbSQpxwtIcPZCr5a8QcKC624SyDRf6QZeP0GlpfeaJlUWemzf++Ry/ZG+Ta2BW7uNjxr5l22ZhAzM9fZrbmeJCgbRvEl33IQ6OB+G1hMvWtmzbZk8NbDPbx2RB0sPRga25m339Ub3DNkUoaWIavU2zri9Zcb18OGOpM+ShbMaMa0A9r5vRshNKDpwkkJB25RqrE5xDP0uNNcVRZJE14Qhc6i41fGu46CYvAnLlZprmiJg/TFUA3rgsxnfIloioO3V3rHQV0+OSHASA3OpYMeumbEpcKxzfBpqKPFy6S5EPoSnv90nHeera71VEeLs/dp/gsdCBHSYT/jWWO2vndGIRaPrlfSG/cjpgP321fbMOkp+1m5LXFiPiKN6+78hLU/t4QLPxkWYhVP9+RvHhYdUXaWPWyUyYMJKuWP2yHkKVs9PSxpU/m1OwlUzy4FI2qMwFc5+Rm/BgKfZO25J99tIs721EiLgADA4qiFl7Cm74rNDgP6bi3VzMajNPbapEP5MbCPCHOBkqwRans7cUO+gUHXLaC+gjewKlNZPL46QqeewS9bvHahmvdTRrp12tSlAFvnO2wN8GpebNECHP/K45tT/MDUjEQ2gjAyDKYkixl6NDZqDnjG1A16sbnXcyfK+Jkluknpiy/0Gba6x6R46PnAbDbrx1e39xcYMFrZP+H/43ff2up0mnULcFZMJ4Q7yH5Hzu3j93dBiopQ40DtRnsPab2wIMtU5fT53LGU6O7T4jaVnKh4gx8wqx0qm/JARGxKD4jM0PVre22WDAQCCqPLUiPjObwusmuYcxzrRqvHlOuTsNa5DFt1aYDaKkZhLjTt1OxRI3euJvmZW0aWL8ThkEA2CtuGLvYvDoHoIR6hZoydJPqpnNB+HaSAcFSx4v2zBKMEpjyamlxbyAhadwskmb6RppGEaqamOiRFJq9/BJmAUNh95NNURqzFnDZvAMBn0SvgzRRC3wQ6oTX1Eqf+yGecuqv8pOJTiFXcInHSQUVWKMMQvRJ4NVpIyvG3U5ma2PMB39mQTe7IScKeVf41JBzxWdSL2HzM6UAzoBlsM1GhZH9vBVMSVRtMthA+JYnPxCHJgeeRxQPHmN3qs4VVPgO6QJ3Y4TPbx2q/G/iN4U/g60UvAxtX/LQCw3Ti7a9XiH6Dw104bVjpN4sJE+BDVzHZ9lNETttMDdZgSZGhkAMj7uWMsGuK2eWSZy67RqN73p2ACDVot5lKiQE++H3TCuLzK6XX5XYtUC0w7qxq9831PTf7Gf0d1q1b8OmlLZNlaxPA2T264Q4OBvG2pI6rbq8Onoh+LYP0G4cBsSJvM3MS6zD4H235tTBd5tfeU9fk9dsgtmemItGXbo9L+I1ZzIVxWuEELhKHN9MK94+Uo53EBWr90CFL2JS7LBaH2vsMx4PCahFHglg0x3oXmmCI9TMVDLtw49iCwQ6lohDAC3wao8sM6obkqZ5GYj5CQwHs761WiuSpr8g7MIQq4hXkK0G4Q1ZHLOK7LKZdgmzkfG4kg9TUtKEHWdyiQ5HoMgkQJKffZJExpztGBXjxwp57VuoecSyJk0H0XLsRjyNBK04ab0lYlxQErK4OKwg0WdM4vMfDLA2F9u+oAVtucRiinjE2jWhTbYyvIAchVdGWD0kRtm0qzMSwSltMjGZR5a1wIHj0eeNSgGgjoOdGL3aLWTgnmDKtPSEs/FfG2gKnEXrNu9af9O73aHwlRt2/Rj3ENf0WTqLSTZNat1xfIv7BL/eQXEg53juJ8ltAkmsH5aWHcIn93tQMY5ugzeCgo0ddVkqPf5xibZRi617ivWbA7HvnPQnf2+HfMSgtQFx83IeeJdY/59gPmm08xFWV0JL7TuOGaDgzsor3g/mCfUBkJQsr+scAas7P6rcIQTCoq7uiYYI020dF13P2Z97xGCybrHrOvrD2wJeI3SUq5W/RukaHVIOJuEajH/8T7DIyPiu4CixGxRryyso1eyhLfYGsCpDEBEN9he+DE3GokDukN3IoDOjNI118FKelVkiHBG2XrPBJU5TkazmsVS+zBuQNiFNWX1AGyknVkcfCEYmyotq59/4LRZsNhexE+WotUhfnaUk4v0LhKIuNwBkDbxJUWFkJHsAgtfb5xKTxWpi5QT2wcl5IMYD8bZ0m4aML8ue2kESkVzsE1sUJqLGVc+an8J3JL91WgmY1fQ81dUv5xlWoFrQYGy3nYtx7BlcFRmD3tlAnSdHejC78y+iLx6MFhAl1yKyc7MeOx3DH109iVp6qEW0W5MDSCbpCEYRy68cXoj4cWmXdSTQYYrBQjI2fTpSrfrHKb6xUWGeRw3TynMJM/1NVlV53qoSESxlv8/wIdUelUZrKy65ZXAJIpLbMH13BtQ3C/1Qo2JzzFavfjVKz6dhejvQgD3IBZ1dMNSRBfv9P66MIseFgSR3xGIFCjxJCaqPeZTn5WpY7B9rzgjYAH7mfPcDW96JPswA/39BphChHX29kJhqIOc40dn+SDsgTtsZCbkUVNJloiSmNAdoFIM2b3ZZr0Owpt5717VFZbDCul43AOKaZnkhlPt9PcQFqCw+4YAU+wTN81qfGgtkV5WWoZLG0U6rBKfZglm7iXvDz05aN6qRbPwCDodflWm3Ze6G5ImDptbfiQfz07Lg0D4of3TQMRDf9XUvEIKfKYuQfiUDkmw3ydgU4hknn8TYD5mkB8A24e+P5nYqPtGzD9P5Onkx6OfXsAijOIFuX4QENx6VbBvsHP3/7n5BvbjUIarqS24r6Tftx1bfwKz1S8+N86dD+0KNrCrSaMxbF4+Dpbq2uP/7+tj22Sq952fUocIuIqxo51YuK0xhWlvPh0V0eIthTOi20m3qHNymaCQ2eR61NZNQO+sFH3xHbkf+r9Ykr+wZRW2P7qV1XfpBXRlFCESVx0ER9QXFGvGQ/ZevLxGCSNXt6juseiML5sV52/YZN5RHK/k1TiD0aQXOpEfRWEAhL9imeRjS4ztfMxoD8HzC1SBTAgqw2w0jXer/j5ZXHpUnXkXqtx1f6F0Gmn8Bo5YAArmzLVrO8K3j+mFtav1DBzfGctmsVf53xsoO2ebcC2yw5GRLt7NcHQ358zftn7EB9/LSEB9+eXZe2YmUstDKe/JsgxQCax6Q/tkfIrVp/IwCj3Z+uZWah86kd4REwm+S6iDc9Vlyxm9aXbjdMJXw/0gKdlWouuGh/MQXBKFdto1RHK7958DCA1vjv77izSmxZZz4t+eLEpNjHVR9qrVprSfY1LcpMtnaNtjL8DAR+eAmv2qtmQckpnF/qn29+Qj0X1sBL4II+WlBFwy+hCs5NMjlJmUStIRWpIleM3cUglK0awg8KSBq+JSsj7jCIP52wmjJNo3k2tkWWb7Zur3uVexKWgwRSJrFVZzlxWA9+khVn5xNqEIGyI7Yda0Bxbkgn8kb6rxeVTQUinpVXwcrS/vP59uSOBEMM3lTRDGb+IsOl4QzIeyk8gWcvzXzQnL5nM18eBFLiRV7G/OuyiEiuozYBUz0CNarpw7eOeYD9bA5NNyMDUWgm+jNflr+I6YOML5l5/3CYGR/jwtpAFR5kAa4wgB7E8585J6nVCVqRXBqxUFpku5QHX+XI1tjsO2WqyjR/r1NxiMxIQB7RtkIIyndwKdpqsdNjVfTPLAgP0H3JUDQvu8EUv/MULQhSDdwsN6N0+lga+CFxMgCyo+P7SyTxByQwz1oEwxmaVbPUC1I3dsiU58rPvabPn/kWGuB2xkIu9HH3jej0PJLAEnfk197bstd7JqkuPxMt7GlF6zYiXE6G2OTWFfn0TP5Qa7JjQipTHG5u5kkcYSSZKwaq6yMSMouSHb6Hk1ZBFSHIUVjLuG00Aqe3xMjBAS6qCtgO4T/C0JecFXJ8RGk1PXoWkn1G1UHYotNBBTTZF6okdQA1vJOfS53a3RoOnf7vcE1hQsb5t1TEdfrq5+gGLuF8O9nPKFMJ2s9ZM2aT4vRjn3fvF9MwCQ42u9Eh0aZ+rpNS1cMKman6Y98to080CKq/UfD/Q2Kt1Zn7ZbIsKHKkfB7MOi88NdOcp2bgLBkJq9BL4Zvc93Hp3dpq2n84rOAWpxvEy181gmzps7N9lni9ZLPQA8A6uJM4v/s+yzm4lV2BuJfhlRgm86L71s0Rm9Rw1CqfMTT2236e8CINZ9P5au2k/w8/kwl24nNLgX438jdo9txuKpbpz2azdXoVXBUqxoD4OA1yf2Kgop6WzmzzfFi1ZygCsZsqi7XhhEXuqcX888HBsFW95G53zrVg61YsBdSeQWehaurNpnjbcWvCxjwMwq65fMV0A5/fXfd/au4SY+VfwVNiH0qmlbjyCbtY8wwKll5P1xeuc9FIDXzCLbJYPbJwLd07gHznpRIpK888YePf4J12/1+XyH9ijh4FWhXdr/qAlU859igH92/SLARraNq4zigq6RMqIn4nURKkcxEHR51igiwoz58pk7gc70JPXbUNCZBy1uP0CkZQ8BzSn3qPxj7VWFJrAS0G5BfU/0kb/jJIaw1tO7pE8ZE5kJK0a08XruJOrwIxyfxeyaZrbZ5qS8wJg8e+BomG3EwQX4kR2qbuJhnsbKBLi/fGtez7pbDMaW/ZK3FtXnTGU2Ow3ZRC3/CGRh9NyaU1r8n/s0QhdNwvlvUfDLV0lv0TKfOLy9FeE1ji3j7nU2ZMhN6wVEwqh4cvCJwRGB/zIncMZUg75VAzkhN1kR3/89SBvfBruj8q8rA8hzPvxNKSAZdR4/pqZHBxo5sQ+GwjBI2URie4ig7+zJglEQVZmsCSLSXd+gZTB1w6gfegYbAlAMk+OsXzynO4459bptGPuYjG/jZUBBSbDPtJI7pEuHFYt9IhA9JqoGbwTB4Dl+ZFkfY7MIwvk6v9WN3dSDP2pgTuBnY+i0rm5mfOPEL0AuGO5S8+fjFu5pbP3JxmQMmu+liWMF8ytvQ5Bhz4O+2RlkS8LDxBbx3j2oCq0brS4Ul2GeUkcKfpTMDRMiw4Pa5q3j0OaRBn+6e6GlNE6yLFVyFM4eho5pXIhl3bn9YuxEoDl7/YEN9u5p/NHv+K/lBtMNuo/Cx78Y72OKSz3veH+qJs/AtR3PLAQQDbol61qZ3w07nEYUHmtFeG38mnPMPasp1p2jH9cf6hicdgvzsUgK7Zi1LchkZkhyQmc5FFabMpbLQ32EjIMHZwLSQ8XhieRRlpx9HabKjKAEVjg/0Hbx8q4DY+Mn6Crf94c8D7+3ug6mJwfsjXzS9yobFOYq6d9w/lEIW0CKnRT5gIc0KeKmZb6Ie2/SudOGknNNjbuhgbV/zfWpvyfu1Gmn0VxAjEW735mEWrY+tGBMJG6NV20zJadGRKOVwrj5I7fHz5M8WUSJLgsXpZ3CDkSnG4Y+Y9+LFx24aAWkmqyLRC0ZxZyNoIOY8bbFg+motZdq/BD1NeY93sJPVOdEiF46b8yulStbvGG5CTVeSfvl58u0XGUsmm5sU047db5F/bNPhF1DbuYd112k0xn0mm5Noe8OaPC35+SIiGKamiL6VquR35iPs/SIo1jA0TnNVyVpQjAj44b+ZMgIF0VWOfAra49//mHG/pwK2D5z3kzzctScOsI0KPeuwwPcBGYQFSLMH/J/NZza8bVF5csIgDo9U1YRBd8NodRG9eihm0hPyLTH33Wi9nGJhiDSg7/nzs1iuKoMJP4/UvbtNawvaToZ81M/ohTL8WG95BkQuNNfMMkj8BAihMTwiZKecT3ucf1pj6yjTKdU4Co5W8uAW8LebJeGNtXPa3iAlqLUd4VkNP2HHJUB7DcSaAy1DBc7V+CLwMpE36PKeB3YpPXWC5iHL4SzaGbDj+Tv4QZVbOUty/zulMTkvtAKRPXWkh8ZcbOzWfklfsGh0UngWbOhGoMQ4Vg5ZWAN+Wrb+E1yC8DYTVkZiD2R3LlhBFthAnuTxNIT4WpgEMQ2ZE8hE0CJyh9ZGkHktXOKFyDbO6aJVdVNIxsburT9+RHWzSllxR0X2wJVcHGsQnRBCBBzn3BRtespCuNF3zTPK6RnL//uwRDx5QaQKx315Ea2Wauf1Guk8ryMfGKFdtrtt6ftEb3iLADjHrT5DJKJHMtdYUo5YuSw8CAM/6H0Z205SNZ7godIcy8VSHMgYDsnGine6W5fvOqSoG+YQ2vCnNWfk/FkM7lu6SQNRR4DADyjO4GzJsqNLboQcFfSyiclDZS4N2TKk2gxKSUpGGbKr5yc22kqOqXOdXr7qCtBaKeJEAMRrfhdd06yIYQc3xtIaQSDOMs42nDrfojqWBNDX+/tPhIqAEA6AxsN2ZuolMwthKTLVJiIHc/v0e0gr+5bNnBT627vdAgluJmpQLJx6uhZQlKH0VlDw+Mwq7g34MO45fykpGAHn/fAN1tL7Nkf6y3r9/oHClUzNqt1yoX3BPmxgqAbWEPYcA9EBNWN+wYjt/ehsiak7j1vP9vyg==
Variant 4
DifficultyLevel
607
Question
Which expression is equivalent to 3x + 2 − 5x − 4?
Worked Solution
3x + 2 − 5x − 4
= − 2x − 2
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which expression is equivalent to $\ 3\large x\ +$ 2 − 5$\large x$ − 4? |
workedSolution | $\ 3\large x\ +$ 2 − 5$\large x$ − 4
>= {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX18B+gknAdv2HYz508m2jHDd9NfiSEUui3Rx4f2YSix5VjkA7L2p52UQMC7I1Bv6WBVTCLFMkUuZgPLhcmPcRBkPdNQTGh2GHDJoidkBUt/PPdzyjG9fMOq96+0JBgaLKIDClMNntV+xJYuPCaaQteyqTzMEZm2FA31NGAlhpWLyAmo3F8y6ZTvtwwmSqzmv3V1DIsype7CKX3yxP1jcwlhgPfL7k4fNP4auDtYQsuENYxijAgWGvID/CugtKH2nlCTVnY/arUXb+UrTwfaJRZtFfS/NnTTK3t55+TVJiT0DF6FD2ldGJsx7uS7lk2Mq4CcmvzQc1M7k47Qvfg97Iz6FF0M2a0cTjsacl8EYMFQySX5a0O4hpHsdBIDmNIKqU1lJrGN4eTesoOWeP6r+7XQ7BzOql/FpxlCVkNd9dzh1tueujt1ICxBgopOlexuEcdu8dhdS9ZqO+Z9cEIkfk3AEPPXbjHhrUfIPyVNtPOUhLk6W8T3AMJ02hkSCkTwEv2yozPRCwuTPJ4ouZxbl3Y+cd86El/XQF4fKSXLl5yuW2MT8bKI8StFwY0Zc/OU0CiB6Xtv0aEt/BV1BjJELuyBATdH3nRWAEPVFHIV7y0CUxwbxNqyr+yknu+jBy6rEfha4tRUCTwGglTZZiMjAa0CxPtKHWgZBNYvpibvnll6N3dEE4zRJmMBV8w+ZOthICKTskzCkBrSyBogeo/Q8fE5uU8NVZApAFmscXTw44fNzXRE2AKH6p6A30gjcSptYdzX1c0MtRQDu0n6HM1MQ2jGO5g6JZm0xwH6xoU/x6csrQFMe2iBTEBNtk6yhOHp7oxmUgmBSbFud0J9fC3TQ5fyLZVHC7Sn0Tho4IgmLSUonniJ0CUj+vnMXi/FrfOh+pFoPdcrcjr0mMoScpJlncQEJoZcFbo65gLukYTybXw4GJQ874Y/1+UKJFl0dTTxoHlCoj1GPmsoVvr1NNY0KCGOsLmyC/nR6qF4xFJ6SkaY7QuySC54cLYxPwkFnv2Q5tIjIEoFg07XDk/AR6w8m7GDJUMoIkLvgBeYzLrDaY8IChq9C3hzjY0rm01l8Nuog+SNnzM4ZDIPGS4H3GE2/5zHEU2Rgd5XDaPSNioaGmKE9z8Q/R8WqnnIvEXknH+IYAPh4ZlB+jdeug1MZzntkv42Rio73f6SGy7axvQVW/e7LQ+BmMPq+HsaDtjAoBXArOTNhoG0r2g7G/6ex82a72JkcHATbyESB3wi/eDpuO32CzSCC39c0OrMkmMaNZ/jbf5bTUhqk9gIZFMRiiJxV5JgegIRs+GUTvrkmX3u3Ndpr1lOitPgHnkXLuV2zItsRrcz8OsL9+trdGi0XiQtDrKrtxsgPmUwsl0r5WZjDL3i/SyQUSwqnfI2rASUDg+cWm5Q2atqXc6nCjwocfwikI5X2xlYkPchFy0bCZjpoa8S8uhmmdaqlbBiJOmNKEiQPl2YR1sgrqNSQhCedfzs3jx1QpMMPkH/x2xfnv15ffXRgWNiXpiQX+PsMcqkPB9HEy+q1Uin/J0MyxU4iXNFShkBnjaxvRZ7H7cFqX/C6/7cJdtqIoFgT7idCLe0YZeKz+1NVB4/ajKqBYfFkulM7/eDULLviRySPRwflIOwE1mOeQwT9W9sdFO7Ukh7C0z3Jr9nZ2qnf88a4cDPCvlW7u3g4RkdLtSeQ5r14G905GH4iOKe5iSduMV3inlxSPCL44a7MMupOEQhSFvHa4/yJVxWbEnw9QEWcesKhneA98TGZZOFR9WQj2gyTaCGmBQZaXR93WmKq/M/7RFhmTqv0kZk2l4CHcqiKbOk14zptUWby+I4t+Im21LKT1v2AL86mDLThiqqNdH0zpZ0UmvKCwtBbuyi+fZ5ro69kchR6Z8TuGf7Kju+xhRmtmKIL+gaJYsgBRfNVyQdUgAnWdeiDD089WmM+poWwNXb9Pfcbk6kZsA//MwfvAWOBeB1+obCKdAKER4boM6siFB7d1zSzffDrPls4ycH6uxeP73K47ZypY7Rie0efZem1gvy+50cS8pTxCu7QAc/V3IzG+9JnQ5iQZ5uSf0O59cQZsPSuDvPIsMD4LPo4FfAfGdT4AczXHmnqLDFjC8zTLxXngDKGqoBsEtI0aZyfMn1GekB6APNfhDltQlbZWPrX1odrzP1pWK8yULr5sXkdVg5SPjZz6fIIE2lsj+08fYr5ab1EGX4A55+v/ljgimckHCIgIO4L0C0Vf2LeeU5KFiU77099cqvHyiwyE9fZ8E0i87T1VHF1Mg5MXRrCboyhwgcp4VC3CedL10Z0cQu0X0OEBu7gnywT5RkZ2tnbBaKKWVFuZrW74ZmSaokoXbdSPpspucRcceeT2EiMhbgr3GJ3rv/hHlxk4vaIAgwyYaWj2yQXOtwzT4+V6PLqOX2knrIjmUFD8i1mWFUbO7pZ1ROR6igM7At7EIuTEukQfZHXc2WMJQeEZiHYI4Z4yOiFAhBdsHV5rxhTljasRdMlnLciFklkxpfhcyUT2EBiNyT9jabGBnCwvd3GqDzAwn9PuMtxf99sis6opQDw+V+r4pJl+mha/lhLsBLpaFNJdABz/AzuwmwUtpdLWvHRV0DDNolOAE2Mg022bnz2EUh2udEPAfZPAygDNes2RD9mTxKxzxgwpx4sGGb5VEZgw/ODcW3raAxExP//yLBfCEcieisYrcAyDvTBPmUBNCwUvHRwh8f2ZNtJHiJ0FQRO9Lx3avL/VElQ8rMS9zhSF3ohTWY0aCuLTVAG14mFy6nNzb4hLbs4JOouTpocQqgq1ps2dOZ5mXsTqjIyFQ0Z2jrnd3y4lMJsx2xBMhXCAdt5FHRa6HO7u396HSHoqNhj+ti6oDHyKiONL+YmBIKpAIYbC1HGaThqUItZ8T26gaZF+Q7w8ogvB46R/HMU2ZhL6T0TZTwzjomk/ZweOA7J1vRwpjvsI/i7mttmEj/cszbzRoQKAr+RNVgcqCa4/RU40o/6WCqZGvneT+YRiByzK6ObVyOSNpC4Jumkn5deCTWsBsscUst0eS2f6b+pxOYxooU1tZ4+ZQ3KrukIcYKuuQ0WZ0mg1/Qo/e7hNasn/CEv4ypYJW7FWUkLLZBId7CMVZdHGKXahNOFXsYnWQz7fTORUNwGQGFDHaT6yiSiI4CDQ9DEHU3nkXQxwOSj34ovJD76mpuP4aCr36r0KLKj1IXFvlkvKcS+yTMwxApueMZo8CxQIMtlPue9uwB0EB0ojopeBJWbjdenBUWkapLhSfBM+NIjq4TBuOYMKKFrZdRZ35Jpkp22e0ZZ3GYxeAvPx96neCAb+qwPq2rTDrZmCagFyXSCBu3yPxpuwIehUFfRaIavM/EzCFX00iykiBH/I6m03H7GRbBUnUhHKqTRwPlcf9xM4s5mOb699op7Th1/TJSCcX3WDeMaGIXKbNVDt8PnxzeczP0DjYWivEZ2jyfW6cE4DLi0b/Wxv4vtuegpmvlagYJ8euBxoWFHaN+agqn574s1Z3lvoVK/BBA8VNVK0z0jlAdVp9XrNlweu9ykTaW3i5/sU/HTnm3UT6e9uod5W8vfU9PYlSTsXM60P8nmUTb0trEjl2wiSVZwmD0u064YNDfMkulBsHqTkEtskGtfU+69Cq/vL5QomXjiHwx2nAbhu5B5rHZ7gO0gCcc6sFtTxd+h38BherXmAAYgnbPZxlxTK7FLtcT8EVVzW2walye2FGGMJpuUQCoGHG4yxvtKLPO4ETGLGQ9F0BAszDxoYSw37yRMRVidsZYXYMK4AMhI9rU8tamgMcp1mLLL0yyrSYVmpwrIUR2CVziXfKMwVT0zFpL/TZnXuYVEtUZeXYwPWQYrLsFYKbc9o+osm9MKGc7ZjLqs3tMJAtZxylTbA5tmVfqkTuygQx2zQsWCMrxnfDc/gq9KCJNtLPtIOakSus+V/eMihj6QEo4oIKZGJIMwWZhJSF1OkNw/fc8TMYkBOY8PFZUv04yyHIgcJvJKvyRavZ6u+2cAg0NYYBPDeufxfkAob929jmYdGWWYSpIHPqNBjd/ZUyExiT3i6F87ZDT837caUlLUVWP4/13lLaanNqrEobfkNY0eyCUsi48ZPV1Pmui6KjtKxWg2CzIbIkUMiwOWZ9eINA6kkvDv9hvtwProaHLY3e2YqImesv5gTkn8kLzVdg+GcZnq6nNQyHCe4imNTnNgIi+ageUutgQWqB4wXAGgjbkBVuk5URxrthADE9Mej61lrt6Khze9ICb9WpxsQpJwmlWnt01A/PzUsZSUWo6b+IO1yhIGZyFk3GYa0GXdtSOKA/q0zJkztCnOAEoGrPRdnWaTN0n1tA2ZW1xWHQFGy154eoFb3yq0Ed2341oWl46yV4G8PyyaiYzyEvnp9ezfKOQUenu1y1nYLsDzzXJ4sZNmUbdkm1QAZ+0Gaby3jJjSSirM+Mw5iRJ5Oxf/hvNwb5fqCFbTQh/wKjDmzO8TF/2+QNal0Ev8mwoeIyqcXpI796tcbTBqwUGJkdYUTvQLnUfNAZaY2jadXfFLnzphdVn8sfUOtodmWwgBmYnw78CN59gVLtcMcnq7lwx/G2gJ5mzCMhdw3YqYcNwlGB2luAPXHUWGBM6nags/k21U/rr4qjBkWH97fSOIXiOPPMi5dmkLUIOL+WsNRf4t67XEFShIlKe0fbCRl9kDsJLY7+VcGNd8JfJcrpUw8+ZD6ZQfSYC8qCyGimJRZFqZmzO32oEC898dZMfwWW4eRhw1CJkUCPsW0mJ2H/hB1aJl+pk3OhG7ZYplbYU4SslT+oR/fdpmmMmfP9HXIzx5Z+5sUJTxjH9CAXBw9Qvno95uxqPfkYGzQfx1DD7PlWcxPrlSDFSlrFsQocC5wdtif2gP1a1G5sjFrJ0Yzfg+CCKhK3k3dKpVgra3ld/2xjvOJG/98fhJJtS1agbALcC6nSq8Br3h/A6auilMx7R9NsvLYaG711qJIMft089asU516N6ONgBOuvINNMSb6CeXHRzsL9JRuna68FvM5wbruHJJ1DxHOgVo4fHqkCQd+vov7BaFPqBUvwwPHkJUFyDs6LExRSqZKkBX/cWe93Y+I6Ew8YC13hAAZJ4sZOePWoUx/TTTAu38hffP8YAzZ6O9VI2RcP99uzw2mYa2K/pZtnxZAeUbEV4VgR75tDv3beIIp6pVng7sKXhrBqsrhyzCuemJjvuiUo8+nOI12YRxghaflotN6et0BBHVT0ggPGSqc4nBM7TkL9yu6306TaAruPphwSo0J+9U2Ygxjq+XlkbhhQS8UzHW9LdfkrfvV4OCj10CT9twnrZF9FvQ92xCjMOJ0iQtctaZd8bhFgdOp/sl2qf+W94Sdlwaq4IsnTtpjMPDrlM0mXpF32SGvFLz3zsMR1z0yB9EBUe4fOuikjdsUR7x7peaLOmn4QHi6tP+ulWyFXBZv8ffiDKS4RF0AgeKlnEME3TpHAvux43fntIiO6NK3yGXsDRE8SYn5y+gsL5xAG+sHBtPwrtVjq4eWbf+OewbgcDWLk0ES2m5vbLypVRAeiWsUsepUkIp/n2cn6DCuYAyoDYrwsqOH0O/1r4Vk1pxPq6wEUBf3zUyXSp9gJT6+rKfQBa6By9bryPxXbi5KdAE5GyKEiI59+UYztYqiusjEDSuM7DNyz4a19hIR6eoiyFpHQdnC0E+tr9HZdoB/t/H8+IC44lL6oMizi3xhL8lGNyk1hw2p3fE5Y1khzhEdFSAe7n1V+5JjPBZXbjlPFWSJyHx2xqVZ3UAUEoq2oDDouiCe1f1zHoL9MpXo3N4TZY3US8XyuUlEheqXVcCHdXLNtbQ98gZDVB/IhZFz1K31PErd9lim1i1n8R3vD2rh4Ito5m/+dxqmAXmL8v6hHdVNqnBl52y6O3vK0oIsd36y60DfwGyzbJnFTx3UjWuJbJtP5aZuJoPZVUxVyozSOhDWx65sGff6+5LNetFyjxrvSyFF9//scf0zaJpnvQcVNmkbGEAEJZLhR2fXJ4ArpfDQWBL+wyIefrPULvbm7zC7qeE2bx4kHzhfqLEIfQPz1ektG0JO6r5AkLOO0V7yNjRS0xbPTIt/l/c4bsDFEeZOfDKe1M88sCm0v7YI2LkzrVTQl0imfIFlGawTPX0HSOWir2m63WzEhNl1o3Gw1ObdBaxCxBS7js+2uPPHV+t+o0x7xB7Q0JIfzlZuNHgQhwdTt9odDntLkOSQoepQs5dX3eU9n8Wv3PwIARTopcdYZ1umfBPKfKVjbrE9hLbtaj0M0yDmqLF9V3L5lIrN3A6axFLL1Stezyk1Ug3iEt7xK7hsOQLoB6mHqzVh7VbulXwJs7fVligHPaG+iefLAKGx61qTp/nxLpmQbl9VovUTDbn13HnxEEqaUIQwOM1c8TNv0MhC3W7Pyx8PL1bN754CWncYUMnVM+cxwvKfEPmsgK/qAlz0FasXEzVblYhjMjeZMdcOX3mkzN5QVZq2YZbsawiaCdNuki7pf0Iz057C53jwNfBWrlMUPSFV1o77O1fTQC+/zU83Wx/glkyi5xNSd8xwA+AG48VIyMSV6gCOfSE6rQF53cPG9j/ee81x1yql9xqAGknSprhUESeIRRdi4eObx9M4wg8ng9ESCqIc7w6oMPsaSme+HdXLdg3i8lQs/iVzrVfEdPP2oOxPfCZ8kF3LZT4VBr/cPRtCKmFeMBtYUgicfCmMgYNCSb3IC2spcpxj63ZoF2xwsqltPWEsGXajttSQKZj1bdi/Xd+zPJbPPHPnJzYM1WLk/ul67arkfX+sTeh5rTZLis99GNSfEGl5ca0+qWIGabG61jjurhSuawFN7qHaLIMboDYRpWCEG8pGCqOvHqDzrbxDHtKF7U6bYK2lYN33HoiT77rUqq2e6faRm2tVHNjaX9tLImczhtwv6PbLSBeg/We7NLwpfQ+hNDkkLSMI+YaO8X6/SpwwWSUkH0YCig+dQsrvXh3b/HIfGYSV71nQqoURWRuzShktegTeC6sposj7XRMIdUEHXUQUglQ1VEW/x79wStLvDPoTad/twAdP83GfPINaa45bO8RkMSjG6GN9cPOsbRiCvAexbx/n0JFngQ6utcynQpZ3x/NPMvIKQMrwMqWMGFyN9iPnG5Pn2mLPvgF4qgsKH0ji+d4b5q5lpHBFdjT4LMMZvX8pQnaaOBAPZgkrtrZVLoo2wJAbbpxag3VqDIgs8Hh/JlAIuDWu0pF8Em2/KeEwkQUA7s+cnklgExsuN9109QCcxWkySyotxuazK6MYwutIi/QMqyRTFijkUufKw/+OmdG2+zTE3zEIeMP2eVmZznapuFhoqy/fmJHx3xnLyrjTH+vcztGdYkqHF/y7IP1c62KQxEBPvMo88vKYNKDk0oPyfK2Ok1fQJtKa0jAdIGfo089CfPvXWyGSJj6SvlkXds23AfuS3UySuGZoDK6OpABVhTQkoIcbC95jDMpHcm9RyDYuxf7liUXzlzYinvO7G4RM3V/7Bz8fCZ/H1IAyjO1piYf1hoKHrbEc2FFc/cNwRvC1PkQdpJ5dM21aSdz4fSBx3ckiUMMzbLHOEzMDJlDDS5WYUbp40EwPjd2+b+V1NxqwwuYXU5druFSdY7HmNtHMPsFoV14CHVXCZPQRyMRrqFcS9Jp/UITnW24UJ/3uyTsAsmir6kWIB1V4HjxTPFnMDjqW0eeGEi4qgEZiw92ilsZR+Ba67ZXEbKj17wGIOkRJKbIqVyQGfgyem95EIBFARRfbR45+fb009KGsadXFwkAvqwPZQxGWQC0s9Z3lTL4jxDa+XYPnGzWviPrdWqgztbAD7aOq0Rfl6oa1Efd1zF6YZsjxOGVoLj/jfYXtc2tPp7hmjoZ1RnCj3L6DtTDBytw3wJ/LhFIUCl3kqhbqW4HAlaBpmIoTPcSewWxZ5kevkkvwLIUW6ZXJOpzd5RZxSA0EfepaTxBuxZS4vC5jRiry4e5ZnLDO39UQyrPI6Wq+e7cQTkO36gNVqPWlA==
Variant 5
DifficultyLevel
606
Question
Which expression is equivalent to x − 1 − 5x + 3?
Worked Solution
x − 1 − 5x + 3
= − 4x + 2
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which expression is equivalent to $\ \large x\ −$ 1 − 5$\large x$ + 3? |
workedSolution | $\ \large x\ −$ 1 − 5$\large x$ + 3
>= {{{correctAnswer}}} |
correctAnswer | |
Answers