Measurement, NAPX-H4-CA25 SA
U2FsdGVkX1+g8Eyx/QyVW5iVZJnVUy3lfkScgk0EjvOf26BYz7c03n6mK/QK1pFJThFJuzrP53cWncZYUHYGu8n7Qrv9SsHCFqFFIXCwXH/eT6hvv5WzKyRWC+zCND3Bf+B6ULThreYvgUAO6jaQNqNGXLCVNlUdm0N1aNNeJW4CT2KLyDnjwjVXGRnutT5us/9YWvRSzeDdddpCtOIvCpYbHJAEohkyniUGzkhkbZRJ1m/aTj2zaRMwQ/uJUtyJRU18G/yyKimJ+iXNV6HLLqqBEsU0VrEPESYZJeZ9gYtbGXkYgZaPHcklA2ij42csotU8bkdgh41uGcLSrWngW+b9Mj3wFKpgI/7QJaNnhpW55DkQyn+v7OrvcKed29gbL/gdVfJFrNZ4QXerVWxz88QRsikHiheSN+fc7PDKhhKSOPn8qZSvMGWG67atDiZPQME9eUyBPqmzOuoEEZlZ66kwlFKafJJTdyAfituescxS8OxEdESTjAxeXUTZIsGlOuH3UV21iOx7k/hpvFYdPbwUG6IDXq5F9QE52Lhrgb5NzjqOcuySECnPdbvEybQRGCqH1QQZqzkmWLbcBwKfto+ddY6iwHLMjV9FYJ4U0oDtbkXFaXzgHL3E1V3LBiNcrh8SMG0k1HSsky1MnI4Jum0q5RKRVMMqLcGtKi/LR7iGPUtBGIMlglOo0Q/cp59l3wQHqZfWamD1UHaRam7cnYy0/40K7+ZK/kxjGErE9xpKPRVTls03RB8MjgGbsKl4HWqD8m12O4GtuABnfFcguEmecez2ENmh70IHy0Eq/2PfZXQEsOsPEOQXmXVPc40jP7rI5wSul8PkyaSSwQeDnVRrPLZ87sIeOWFCJ8cegGcrOAJR4sO8F4qnGsh4ykAefBieBsKspE5NHwPZ6HqLzXLVwSMb9d+eaVsZjr0A0c0kgHm+NbpOUI4sezej2fbqhE0AgMnV3qnpxDqABVsPqW1z4sEeOoue1K2yAIAudQx7OZheyFnyecy0uYE8TzNl4jHWaxJie07aLNICjkFxM1oKi51BUTY1TIFXvEUFflmEcSF6Chnbr9DaAnOFe2yRl+Ln7rNq6OqtBeRh96lO40ENToUlRbbO3g+ScuaxwYBPMVflJTTpGPfCPiwJTfW0XkdyEPrwUdOU35H5b9/eikPm1PMotKT6bp5gaJ91atiEDHMU4mJrzf8PLoF3A58iWWIy9rFtOpbQRenlFrq+sA/FwmXTdqi1x+cbnlwjBaaTrvYVkW9LBr+RiU9AuUn1mteBqvOJDK/IzKTA2WGHRp4s2lJQO2cOdbvGtzoD5w4+fiYKvfX5frKZQQ1cEl8eJzD3xaryNQYD4BtBYb9gT9Co4gvVIvg6tfzaRmCqKkfcBZKK6Q1HO74r2OJuJzpH7r4FiVk0i7GuZCbtE7ri0G5CLyZH9Sgney00JHz1Bg2i7+ldtwsYKRtsFfYW0S3JhuA9DGvSqoCaVpSyv2cOA8kpvAeV10xG8a86rex+1QjWm2DGpzCpOeO3YULouAnX5imlmI4t/uBG/Fx7MA53fIzG0SJJ3UUOmgAkvS/ahfoBoG5SwiAC5ycRXoRgHdxCYSmJkqyqc1Q9KqPM2MOtvWCDyxTcGO6/j7cOUolUsZOBgxkMpqleb0XByXPHMIVtl9UqcWj+djEaW2e4GMBEHrzbCYd8ZwDo64gMQ95aBWHq8KbPGoYR+Hf1q2xqteHT7250pOvm/qBLXGkGEJwRtuoPfyue57PpxzDltlJUtsqMCmLJeaCuNK6QTwqLCf4BSaDE1UBMtet45F8r+vzcSYQ6b7pl3Qiizo1DPaMjztCcY7xFWsIheYWVfyCwdaZKZSndAl1J5x6fUfF7ZSRKFV4i5PRAi+XgcldFqFa87IHWbeRRtWLsglXx24ZDLKsHy/QjbIHi3xmTzi46enSOMulXaF2vCsGUdFE24orIzU4+4ZXGhpDT8l6qBMo4eJKPMK0TK4OBuOdyReDkZTkKG6/Sm0WqZJk/r9dSzcgCBSSCKnOewMnRmlBZtJyV+JWQGO2dFEELa5Jz7tKlRgxktL7bVIBxlES4FmlNGYGVYivoVb1M6egrfEYDIRHy7ZFljZtReeSUZRDsQ9K9rYSdD5MS8NylDi0kXZb0tzbADi9XbsgYXbvIk7eHhHaX9mRkndz0rBmd9APuro83hvhVojc42tMFRHIdsK9DwRqtsqhCn0cS9TLWQAS7JZIGWVWAuC2cOkQ4GjpLgzMM0jq91yzn23s1EGVcFoHzXH4jf0GqH43NCT4gBbXtNOE2zlejmzjlynmcTk0TUROJMutOclVBV/ZIlzJXLb0HDJX23Ym9XpQYQsMVxkCk/aDh8QkgGCTCofCr7TFwdOf2K1hjb9DxSUnaZSpP6kFfcLfA0Cgb7+CslHahc1wamXfdSk5DfhJMn3s7u9kypqahGHk6Lrr3VIvYkpJbP+EUHyehpTvPhhpz6zgkNwBKS451Z3V0clIolEBqExEZGIiD7IiEae75Ne3vMswCSd2VmON5ygtjjL+e5HRPksUKvbHGdRZ2tK+fusMDw0aCC9nYJbZ0sKQZrY7LS7JLuuAS5IiR9q4K7hnaGBrUmR25xLCIM6glKeV97cJyADm1PxNRpC1p/JbamNW71iLDmeLHStw+Ds1b1eQDUFNajRozkDWbeTbew+MaEw26+cr4rpRdr8RchVkeoj+sAxOt2pB4PLyB4L9K8wzQ0H0RtN/u1R4dwQwK6+i3EdGCT33NYjeZtHCBBXUurz+llT6a0wKFA1yhuh6F6bz5T1OckaB5VSGAnXuIhsrtVN/OByL6iK72N32HxDEZJqoNxHxKj2zIiihpdjXUKohlSg4uO5AYYADO8I9sBJ52JRbm5gchoChztzzUGD/76Q26Y50Rh/EI0RAPQ9CHQ+4ZD6OI1vwFHFeTDlfZIw2UAnBrlo0RL1hWu+jr6qS25cGG47WWs2zUC1xoBLQ/jIlWbklu1bygGOhLMNJ5sO1cbfRd6mRJ3F0+V85tGiqYEAvGogbxlwdWht7MZodTZMjX948HHqXJdyQsVm01DhbnEtwEujeU1WHlICr8QmXl9eYb8aFIhsVKJBEkrinMUuEDVuiyORdHjheu6YD9Uj+o0A3nWJSSfqVA4XhY5YdzvXV7io5/IBhBJPTY8AMgHjmiKc4SnPe1qnkw6uCXlgG7ZjAd4zLgm0RdLEWO0xLdZEQ38Ocdj/FsQXiWz+BtWj+d4JaArGyaDuEq7YRVtwYuynQ/UJBzROoyw2TXyMck61Qy9nUIdbih6oy+YmtQtYOOmtJBX7ZTE3S+XjjQ28yg5x60ZnHrppKpLHFX5Kyal6WQU1r4zerKmGJjpkfOckl6LFj0mBDGJdrObQexyZ/CNE9Ha6sNEQbLIVO3+kP8lzwPmYBGTy+yn53fh6iWXXIhnzfxB68AWAWA8HfPvtYt9ZerYV5ZmswPIuwwYV/9CVrwEoAUpC+tdPdFxG5U8tKevNUeIki6Xc7c1C3qp2G7imQ7ymU+tgh6rhTkLNuJLACc5ODFVpF8OZrSUbf3CRsFeh+F+jrfylEffDKWfZ+TOnqNFV1BY4o7Bu3aWL5NsudxQBVe9C9FOd4/izgSib26ZsFhC8aygVMLeSFxl6PyutauEhKgL7PB90BP7G8IwKxbSTsoeBHj3ewrKO0JE6zokG0FHQkP1mTs2q4HT+dEYUTNf5hIlamjnF1YRq/FsvtjBXEs5vvFQvzXVhIicNKBYSWLx+41cbXOCrGPY4c8BN/mmlFp0RvKXdVYf3lvg4YXrvc6tgbPDFNgLuCnpZqRR7WPD3KeP3jaIKf+TvJkmT2TiD2vf/TGaD/2Ttn5fYjNd4iPuFGFpbnPSq3wXBwlSJ4SfQVKtVXmgvlIF637dAZTkctrsPoSh6rJoZl95EzE8BRurZH1Dhq1rzwZj9CzJniHws/hwTTgmC/NwsDIOJA5YsBo6Y5hEhx0xWu59CffXJ/8NOBfuIMI9PRNVD8+PNXYaoFxzjR5d2agD5i39UDANHEeAh2TfoBzhGC0K9rat53lW0NWRrL2zRy/eOormyrAU49GLBD21GWjB7NyIqvbWveYGDK88avbckTeybthgTSDNKKf8+Ez5hDw/aIyDswXbQgSUTOoFGX+rYrglSv/sZOHFWwLisYkFksi+eqAyl3TyboCqr/7EpMSwx66AezoVHq6PsSKe1hTuPxdMPR+sSlumzqw1KyiiJ7nzOO+HgyNJwc5nfp2nyo2Wv32YHvzMjE20U6Lrmlyk/NVvxl/Fh4YHnbbYRzAwZAJrmHuV8MSftkDKDFqoCq4/6iTdDi5PfqQ/GXPhX8O6/gCIMlt22UIFJZtBTAA+yKz7LtQLDg9SYqArAh4rhAQDxl9qtbHXJbJoCSic2J4bbJwnSs5giybJ+L08SUjyYTnYVHIWS/rRNxQisdcfuJX8ZGi//i8C9IOU0CyaLKf6pNugIFbbji5uqoZJfj9qivjjGmcAno3OPVumkVbKU/Kzkwo5dxdPwtCyyBPlFIw+X09RW6WfunYMCkOxcR1K01FMWeu/RZD9x7hux7x/e/P6jkGcMjGCJDHEdem2N12tN92yNmdk+d7pKDheCk9LlcU0IA3srEauONuxNd/n/QTQd9D3EHf5gF/AkUS3KXf7danOSAxbjCXUgLmPSoQ8Q==
Variant 0
DifficultyLevel
706
Question
Rodin makes a large sculpture in the shape of a cube.
The total length of all of its edges is 72 metres.
What is the area of one of the cube's faces?
Worked Solution
Total edges of a cube = 12
= 72 ÷ 12
= 6 metres
∴ Area of one face
= 6 × 6
= 36 m2
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Rodin makes a large sculpture in the shape of a cube.
The total length of all of its edges is 72 metres.
What is the area of one of the cube's faces?
|
workedSolution | Total edges of a cube = 12
sm_nogap Length of 1 edge
>>= 72 ÷ 12
>>= 6 metres
sm_nogap $\therefore$ Area of one face
>> = 6 × 6
>> = {{{correctAnswer0}}} {{{suffix0}}}
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 36 | |
U2FsdGVkX1898s9d5W+6XM4x0VjsfPOfi9Ir+7zzfCKCwwjFNZxcfxaG8KyqpcMzCucPSM/XTjJF0ZxGt24MKVTApGdDLX/AFZP4gpcJIWdBLq1+w+6e84EmUx7pdg4aI0R3Gt/k4/xIDkMepFAME9l/f/Pi6uBygqA4gD0t+Jtj1S7cdcdL5Tw8d6bPjAFNxjP3y5u/uXu+jzDk+iFGKXJmtK2Dwg7sP4yjMJ+AoRPanzQUUjUqCjXMD44Z6AsDFSl1rJUp3PNuSWGofc9rA7lQWqfaA3EzIlijOzM3x/tddSqUm4WQQ2CNw8wFdfnlNp4bnzg//lscoMjRopt9zxD+rfekwcb5c3VycyFBZq09gI6VBAubnB5rClIBSCFYmnkTobftHFeiUGRgH61z9sjzQhkDGm8PSoVuxC0PkSJMmUoF5iCtSXowX9poLQPMjD9fDQ9O3ldV1XiCNl5DyeYSwypTWP1NhUp/y2OcbIi9n8jM2DsdzthUBhzWFrKAduKlARltwSx6bQ2TpG8wCcNx91SjFeVbP9QpMOQpBqRlmbjM4qv/S40Gap14MGwko9cXM/2BorsQqH7ppCOn9sQqYgTWJ8p288HERSj0vYUsdkOBrhmSr26+Du1+mPaQp70c/ie+Kvo2txK2Vx9nExcMFnEzR/jnkT9mKCIXwTuJpsmKWbxZKPE1BJRBESQm47HtA+PGG6BifjenQ2nn9/4zV7TLXCHi1S3TdXX10RJ2u1Nd4T574jC1UH7z6zQ67QObJbQOUm+ErZg8+m2wQF2DU/KW8Rh7/O8J0MUOVDUv/bRMuNbojsRbh3Cq1IDNPtRY44cVbnnfCArv3FZz6PxJ8mBHNhnfwOF7+0A01F0lffQEUpWurbQO0rQcZZjmFGEBYKTPBRgmCblezxzR7+S58lS1Jul1n+0uD/cHhcBYgcdrVIjw6xctgtYuXVY3790gpZekClQSo2mYdj+d3rDUqNKPq7tm8C2ChzcxwYXNsdx8f3/iFTygVvyGqXRW58ktWWouwXJ6h7huGg5YW/z61MrZpMukBxCOxihOa4JT/8FZpzOZZ2Ub7CRyvd1V0N5Vt8MO7K9KYISJpxq+hMoH5jLu+z622eHQXoim4oWg4nYQJECmgv5iV6SQ9kPBM/WsDx0KE1gQu17V3zUD+rhZdidBQh3EdBmGb/682pegI7q1RCRmzmKe7RuZaxKe15oV117dJxMJSYsDjZY+Gkx6kkDskk7E6jWQVkSugSdT1NWYkUPsbw4vIaEhzONB0bB+pS8YYugADYLwAR16MrRCIfuoUq5KxqvnTZU2NB8vUU+uR1tVew9v6NhKc7Dg5Zw+hH/YzwcTxP+iYdMBohccG/P5p3rev37+c5qNiIVhEquz4CM+4jPzWcFJOsel7BdqBRyekOBdokfgl279ONV8/7DJ8vl4zfagOyajhATE0+vuWsCOkpVNLGYQrGjKOV60MGxTb/c5GSp5YynEFVWkd8aa9+0nJhNvIGjXaspBrVLNz36qP7MyPt2sS1ywegH4Maa7ZqUjWQNW9v/8NV+jyMrS/OibQGSvIPW6sJbsnJSsFK9PfIG4kmFLbaAvSc4aHD+ZT+M8j/AMGCEV+kDNoa63AYmuMLv63iyCj5ALtSXdjXq2acU0eEp2QlljvAqmSCr57LALTPThG0ECVWpZXJGzGVZjn8wUF+SEKzASW7Wl7Hi7ICq10IDb2OeNxRDzAlLfV9kySvYJmwPEvZ+ZT5sCec46JCqRP4/WaU6Ivir8i8Pa3uig4u00T4dm7erIyABt+YgbXPjUhCvBJvyMPi4kF5+A/dsJ4r6SXBigB+USN1zfWRZnl/+5eChNUtv2pArIePW4aGzDkI6AxwytQ+2iFbUFqPveWriib8Gn8MJUV2tSQMABc3uWL0qBRC0IiuDd03S2FH7rkNu5/zaH8L33s45WHw3Ng2wC//NBT9czna5UZLpY1cq8li4GplQ1KC2/8v4ypqqwQXZW2x1w4wNbqOtBBIj+5GY8HS4VCRd+SErIWSqvNGLABFT056C95SJy2GMHI+XmbMkgaI9VnNVDg3Krtw4wielRwTGnOY69irzSg/kfc3s+dIbKkg99RJy/iM66V0yVGUgU7Ckg9V7owXDKeZpCjs/i/psfmaRYc82aLssX2mErNhZNQyUb8WVle6+rZH5eJJYsd4rG9gyFxiLKegwDtlG94oIn/+vd1wCKaefjCRWqfKMiMeIAEB71m1TsUgCznlDzPmpA7dXnLHWTDby5ITreZFRly7JZO5mTVLQpDhgAuK8EnTSxQL4cIw5DCl/goyyXc1vtaLQnQ+fcEyUkWTjtz5qKH+WC2J4dL/HfL8eD4DSRE5ct0l5PqCgHKB219vYKtAnK9pDdBcEWcSFhCShrcstBU1V+CDEUY7xU5GyObFRtqWItv1L88saiBRDD+pbBl75Bx0C02P6ufmHXo/ZZDzliu2eCi85gL3j3JJkhZmVLrxKnMk+ZZmidSL/JUoeY8n21wQaclZr4SCbRkEvgXxTdt3Aa/+I8KbRfwlYY91ADCKM5HPZjX2d5Nj+p7YHmx6WV/2JhmUEm5N7AYlcn8eJKfelJT4HDXvEwoaJTu4KhakQdM3UoH9k1z4/Vkud6KWuVzw/c6Y70PHO+VH5gPmWV5UYn4FQ1TBNhMw243nCetdMjVgV2Oq0PncgeJkVqBzLPwoqgBeoNdQLT+uBDPYPJw29yG6hlhrHez+dwrxtG8a4Fas06CIR7pze1rMJnPNaa2q6n/h5dg/seFVBWAY27S16ziWu17GNhKCEbJf51gqO8uldVXXHimTQ0fnlfqYBEuVIxUW6QXDI8vQ2b6kRGpj6uAq3E1/x0e0ivYtON+UIxHz7FWqrZWI1Prxbp228FiVb7YqEJLoXuQOWB9S3bcv/OupvaUQK8hAFq0WFREb4wiz0jZGLWkrDiwenCXyqhkKExZTcyEJQb1pfZ7AUXjVBT3Oer/7VhzTd7oTFZlNfPmdAHhszJiLRbQP5IMHYrdGdbxldiV1zrfnOpDgo60TT0lMojJxSZ226UDuAIfHtCmE0Ob1i66kAeXGK7UsaMEdZDdPA5j3L5Jd5wgdkEkPlTkqXV53z2xHOZM28cYJIYyeFmUk3CerVwhTEvgQLa3S7LpW6gn+eP4OFfK5t0EgdzgjSufJLf+WyX+MWm6973H7IbxmvZt1w/6z01pRBdKcMWymjIQcoRY2uC3voE6IuVZRRl0V6Ct0E33dgr7XAfoc6ah+c8ljAS+7AA6gt8zmcHxaEanA8exfAB1RxQzIH4EvGe1rtel+FJakF5KU2pRhDxXBZULnuB5YHJnMFsJlZh0310KG1syUeACJCMsGqfBEQiLA18645MfbDJvDzYRickvp18kq84jZEO6zX8pTJFTtpW17e2pe2UeTgNzxqRgrTZEFtljvnOZkIs4N9rGdN0lQ2d7TJiBOJAxIH9ZfnHqsXBBoXnmAl7zSUz8Jz17XXQurUPGhhQM/Q1JQjBy1bqabfKCShrSFGhKA5nvkN4Ha5+WO27gZWseiqo98INPD8YCb20MAt9FGj5lOjtNPNRGyJPEyDJNhUCUfbtVGFjkOMvmP5JbFvcWT1TBRnNvY4JAH/GbqRUushgecCTfJWD6RaUi6qaK+73jXN/2fYbA8wqI3Q0TJAnkLhuGecA5BRZUNs//K8owoopQW0z77f9/zcANTuLkq3oAGWK1wRmv84b21VH1ZDnL80VnkPElYsd23kzfJuqnvRXA6sBnx6hlL9SGMQfuRfVrjVqdLHpnPVISFF+qMkWYZMHpk2AZsDZFby++pjQhKshFYVMTwrGRyqAkyI7vZdPMGN0mF0dXAenqiAGWrl0ZXL+BdaI1r2sjmDaKK8XBgraOLnsOlE1r2hBzuiaw6BCd2jVrWkHGd41EWzfwAVkQmgBZUpXyYpDLHGQSu9sbIzcKeicEgZ1ZcCT+CRlYG977lo+uKuBXSzM/PzORxdrPwsprUCnTBYuLmIOsGo1K8WHG0PO+8XhFEfjVPsRslEcAnkAhwmdL9HuHNtMwYQGprD9j9QRu7u+CK5eSRFJRsp3MUV8ZN/q9zoQXClcceZEcWVSLWKkxbN2H3IjLMxdLXKWhc30iVjamisyOHj7GDZUYbp1fH+NmxS0AWjrEAob3QgmYcYatpKI+3dkg7q9yXbXWLxFHL9zCnBI5r5NGMqZWPjFrsfTGpTFJMuiEaJLGNZt8wzNWnGiasbemNbLRl/jbWuFxIAm0wrBKYXEGNnpvlbHf/a2r6UyqFLNXZRSHLAtFs9nMcE7d07H74EukOsuNWGAwuy97EG6U/AlcGlIcCvN4WHkC7y3wgYlLqBRvxpLhtHohu95wXQZKfvu7I2hE8cYtbEVhJBF7HFC5o23tM5VbEP2aBsN19cJ+D37swEpKrXxuHCktCNMChwcdHamdWU6ug79sm+Z6Wt/QZ1ApnktnsW7GKDVXeQeCc7wReksmN2/N9jBPNQNm//VQZq0MpeopRGRjZpG8UtE1JFbOBznvyzyI/14CJGVHWOcBM13ZeAs515RpsVNbIPRsSgwq9zSwaoc1Xe5rEejpza3xMFqr2W6qqAeVdSgAJRQ6WP6MR3m1nIZ89Ltb9xQ7CcVp4N4tr8xZejFTHHppfIT45RPCR4XLtYHMZ9abMYhAg==
Variant 1
DifficultyLevel
707
Question
Dwayne cuts a sandstone block in the shape of a cube.
The total length of all of its edges is 48 metres.
What is the area of one of the cube's faces?
Worked Solution
Total edges of a cube = 12
= 48 ÷ 12
= 4 metres
∴ Area of one face
= 4 × 4
= 16 m2
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Dwayne cuts a sandstone block in the shape of a cube.
The total length of all of its edges is 48 metres.
What is the area of one of the cube's faces?
|
workedSolution | Total edges of a cube = 12
sm_nogap Length of 1 edge
>>= 48 ÷ 12
>>= 4 metres
sm_nogap $\therefore$ Area of one face
>> = 4 × 4
>> = {{{correctAnswer0}}} {{{suffix0}}}
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 16 | |
U2FsdGVkX1/W+1B8Q0+XArZvpO9jEm4iknZcH4/NdZq6YfrKhLYLcQaIiTvaiXHOhhUO6Ar0nvN2d3eucV9Hl25iKpozCO+YjJc4gfI5XikyF1DItpxLxprgMMeA3iHA7g5IM9Nm3ws0C12lsLh0FxMnEdyYubNK9yfCdyE6jahIZ6RLUCTU8eQI1V2EXkkHjzrFEITGvnpHYRfAK57MsEjlnxrOlGb6f2618LT36VWE1WxdQW/mZUZV0HM2kDvw8jO6Df7iTk2JtOvhEO+lJrJZjhlPC3edJcWYiTK+PaUDkrCo60+wCtBgiyixKLLRisAR2KbrZ+ByjkxTpuvmouX7XkJabuwM0kgipgSaHCQV1KBjdflhDUwjZ7irvjEcyjmTamBoE8vDJZeSrMeHCu4ScwOuW9FixVhh+2rkBu1PMwP7QjIVV5C6JGqw3KmrLNs6Igjw24rmnYYFI/+VQFIU3XFHuGkA5/JCsEdRRY3VUJtBiDJbMzTyHO0ek6cMtoc+5QhQo8Bubw2DSzqk6g26fcV/vO9If0PrqwpjpYKHjyol4pfpjBBoNZbzgV4Uq3A6OIYarZqa0R2m12TzBSurVh0wXONiwIeqInOnnsFgyUflyIBxg/JFSwSGXCDMJRHqcu/MBsq9lhxYs00wNA9QhD8IiXDMfMf4zgjqsPku3XN5i4nV//Lk1XFsjb/lwXyp//eYBgw3GEweQoKketBZvoLfaMC5Pq1TajHtoTgCXa+qrt04EDV5/f9Pe3KMj48xtjcQ5ALH/1z6Ja4bGC45tJ2f0y//ABOrx+khm1G5BJ5HpS0IsQ62ZqFfk6J29x6aVLp4KEsVJaexju2Gfh69MH6Eg2WXzP0SbsNJ8RX8Gc5JXampEc9b4T1hHNHH4RmpapQLMuJUKNtZBCvwBN2a76VUOZxzDQr66CYo3sBynYula/Qw+Z/5ySv8m4c33mKRQghXBKF8PaoTsW/pmB9zH51lLhPxSxfPA52IeaAieUYA5NaEWTXF7ymTM38v+gpdPKupj3y9vCn4pm5RHbZuiegb6N7+72obRrJww7PPTuhFc03sNL5GvjHAo3aXkMCNHWp9CB1HAP7xfBk6oVEhAQr5VSmu+0MQEuUsjz/0xHaTIJlT2XVMea3SaW8v24YqZmSah5YsVAE1xVG3dxRJhCMdIeftjP3NaaD5+KeCMcQnGMR5IrdyDWPERV+1mUo8DEVVqlloVHMVP6kEDdeqS+4TuLGVIitvBSIepSa5c+PbGT2MyDXad9USr4Y5/mRpUcUXpTSchLjm0lsoBd1zUmxfPpS9+Zfep90roUyUSaKx+GVv7yNUpHxsFwAERlaD4jnt5Au79IK3u+xc43RrNnigOvKXh1TF16xFaiDTauej18R4rePZzbXm8ZPPjw3mHKOdJ3RIKxoSYdlkwFawUOvE8OF1D2hJqoulmOOhROKCJ9V9Hu3gNyNf3GoWOM3ZetzvW/GHNK+LXNrV6D6ajJPmgXywOPGFdY1hvXTOPmkmAZJTyJNFMRTEOT4WsVMKL7lXIj/5OPW/mjPi0jF2Td4+dbgSlDtSSpmsq5aFDjypSaIKhlw0zwlqWhlWhX2JYNmqF9rCbx1yys/q2YS4ZQRf7o/l2FDV5xk8ML6rbfM26S3zQfwXR3HDxWMw+LzVOSFWKr/DPfxLN0mz9cvXGbkXNVoYU24pP8slb+GJ18H7lpSvtX6r7FSHn5J6TxFcm+ylorK42P1+EL8bpqalbOuXd96MMWDtJsvGLwEnGwBzmD8iOS1Wbu2aI5vJnyMfPH/54rWdN5RVTyARasQzjjshPV3X7q+T3yFGSadA+HCTfyuEqwMQe2ZyRZvPxaKjfgqo8cOW/vgYt7/QmYWun1w0FUMU0R9QizwzzVYqY64NsBBOdUZDodjhVxyqYKJwl6YMKbqvBBGTsTRaRvVXS7YnGOnSJ9UVIp7dwdBGoAC9HAw4+gVrTDwRvQMnRRHk8QRFURO7U9iNbkUdhVTcVGeB226eTyUCoX28CxhHjl/4u0Op/lRsJfOc9Qshps8cpIiQTgl40HEM0y3U6Dmubq65yIFbBhVH1WfSREVgvlisl4tuGHvAaWLmbetMIOpOG2ub2buteHbJ3diF16fKkcmJKFbg67UL5xWFTwvalDsmEQZlVUsFdKyIUPj8E1sYl8AflcUtV8C/DA2hRQxYUzDqh3IMW4Xi7excUOksUGlOEBB7XhZ+l9V1DGDHRAgQo25AHnmoaxq15uML7ATHUsnpSBpJ7SgG5mTg9urj4VtMGUGps/S+eQjOuMOpcIfR8ztRFV/hb00yuZjOa4NUQxSdmnaSo6CH8DMk08koypG9IN6Tvzsk60a7Wz4EBlesI8gED/F2YhNIJIn6ZD94bfq0UQFned8l/0uzblf0ibtnmdWOWm+05dsKTR7bXfKub9HjemOMWm1meblPNn9hIBLxO0HVgQ982QEF8vt8bxfbpj1vZtbDlKjXWwEYOsOR5CRoji9NrCbBSMVeEocOZpzwQxMMduiSH8gNhph5JOOpsYm81wOdrPXKp2koRPGDPbXhQDpp4Shyjvjl43OxXgE9SRijPrNLkhfTK+CoukDzqlej/oorYEpDbVB5DTPqaMNCHSVeoACKIjaD4QrH+FXG9z1O3sUzJO6ZIQmwSS8iW+nQVkF3/OmB6v+n+vO5Kt5TDh6nfxDFH6x9mhGhVefCJEg9ZrFvtoqC1zZ2orWrClB3GiStlgV1gUkkr1oco+6GtQwJgOdqYAeTtGePp9LCcBcu0wDcRaRcCPpXNCgcBS2ETDyV2y3f3UlUrOm7eyHzJe3QAic3CC9lMZGEVrpoIjDOvGLgvUlRZ3Q5vnCiSk3XmNEBy+xFP1yIvbAtl3ratrJKJXrBVUB+E2JRl1z7Vn4K3XdyFz4V/f2iKKeWl1DSsyNpDGWs2nzsdc4IdJEviTAkZ47XGJiT86k1vynH5Ler9ngZpt7YH38G/UW/RBW3wbRJLVmirzhAMcNrtLdGfDO9w9od/3Qec5V2ziY3OFbdZniOFTlOUdGLJ1OU4p1TBdFltOJAKWcNiz0rSH+KODTvShF5E/WTKlPi2AR58tPcNuEbnSu0QiwG9Pi3xazdrPTWeAFOMwdVSKunJ4R5jOKKjPuc8c3uP2Nui8sT4b29px+AKOld+xvVFuThM9P98N7j5JaHNzWmpcZNGRTdzWmqI32PcXTALIgAIJtBhJ/2LCLhIcJDDQNoQ8616ZqQ4s/+oCe8MsetXprgeZqq4ypH7kQM1ZH4WxcC70Km5x12Uj4yB4WF6V4XFUossAxTvdp4bmFrogPi5CbNYxdFYAUoDNREK1nYqcIWq3AQy7b6XY8SvqIhhSs8KNWVkmizOrPNzQjLKWo6Re/6UNva9c9F+aj//98eqQ71/b/5mcbjfUxqa9BFvpRZ2w1eJhAA/OlOGGu3fOPD+ikLlAGCtLg5V4eOSCu44sAEYuey/sJD1y2LN4B0Z0qI/sm8YUEa1HbWN3wmjOZlH16yWJ1KcgASGQjYJVOwFlGt3GTBz+2G1nw2uZFaFgwAcq6vE8U84YLdnXWC1R+eTTT5p+OTwBgO0a5hAx3NdRwSgwawAmFSOq4qfuUAGJjPJgZ62Jorj8iYaRuvynmzd+uhJGUZV0qDfMLQVZv4izHTzfObDYjnhF1hAW3rRkrlHSDmxL3yPeszwatel6+AXD91SsXDcZeoeiObjhxz8z66RphBUlCs4F95x3v5L4v+odN5q7WUMWl7+q7ZP1BfHbatDd/A0Hcnzdc3PTX6Kj5z39mWfZ+dd4eIq6hN6B/8ofkVGPwPh/3184Em3pOpOhKyj+CFfRcfdhm569xyiHn2HPPmTJdkvC+047oiIdlLjgRICkJSqR39lZa2ezNjxwwUgN54egOsGeX5PEtF+9pK6KgVWveTmmOk8mLav9jNAQckpOni7PwNktVEOvte2xLNXQeC96GpVXvetnQLfcZsPOODMxYBKqL3EQFMj7XDlMxAkhW9jZfvT88EUKojm/CE4C4VcPrDK2z4nQbudVbkJzTSoGh70aU+fR8p6HId6cUhv56aablQc2dpuu9SLWDQ9MuyyqH3PNjflR40UuEve1+JcgvL2l4nULP7ACm7Ov6AZVnoFnHqkP7/HzFVBZ48lAjRfCmLXTrmGQ7RyMxkrvcPPHThsZh40YtHyr5m+uCsY7L76u+0hsvmpFBp0LGmEEESDsesopf+6Nw48REYYS3c4razQVNyeMAHhQNHi0MFc8EozYy/DYLtfUOQYEu0bTVLxM/qMtSFcfWYF5tnx4+8NLCvcOjvEat8+L6MANz8jJQ3SvH9wc13CRY/vH3eh1eghjSfVgxmm6ss0JN38iMiVKtM3Kq5y8dxbRnS2Wer3+UeOL2V0q0giOM4ilN0ZEnv65obKDiZGxGT/wVRvZypu945qixJl1swAz5izCBmnM18epvNDePW+mEcsMAulF7uRERJAQZX1A9iZOjycyv/dAoPAh/dQ22EhVb6PjzNocFoSKP5DNdTyxPo9mvrAlcl2bmUdce0Z8YkJWOjSuW9titICmQ/EXlB0gUE134fVJdEBfwYYfAU/3l5dk5kosvl56l7JcKv3LJfsX4x0WVosRQMfhKu3riwI3VcgdhqR++wocCLf6Lg6MoAdzXTWM32u/8JN8sN0kwxyQ==
Variant 2
DifficultyLevel
706
Question
Liv builds a climbing gym in the shape of a cube.
The total length of all of its edges is 24 metres.
What is the area of one of the cube's faces?
Worked Solution
Total edges of a cube = 12
= 24 ÷ 12
= 2 metres
∴ Area of one face
= 2 × 2
= 4 m2
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Liv builds a climbing gym in the shape of a cube.
The total length of all of its edges is 24 metres.
What is the area of one of the cube's faces?
|
workedSolution | Total edges of a cube = 12
sm_nogap Length of 1 edge
>>= 24 ÷ 12
>>= 2 metres
sm_nogap $\therefore$ Area of one face
>> = 2 × 2
>> = {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 4 | |
U2FsdGVkX18pmXdYYqCUFWHf1YflBRNA3fE+jayKwUzTReakIrVZbEUz1oooSlrR+EeV3GuonRh1g6rODxxyzF6Ngw9cwm5Mbxmjv00hRQ2SNeaXY+nv4BXjVdc1kNvV+4ocgo5CDkZes+SAiNbOtCrocQjmDzRQTCpE28jwA6tMg2qdTobraiIa0Yk6VUhP0Glig6sBxD/pFFbOVCMp5hhQWa0hVbmTvU5LT22jeB4vGdasmZklhyDRddbg+Uoj0zx82oIVpH3Ug4LSEf+QENZjh0/Y0pTjNkgx4bdfkHaleGtZCyAo2KedBQwsO3E+j3gO1qCIvaifMLMAK5iwN7b/AY8z+tNNir8AMkfREaGTv+a+Hz8u/aF1ljgeyJZZJBAow8H7FxmUi6oo1TDIPSPm448VINCWxyHD8keJF8yZLMtgs3xeDQap30fU7JYazoUe5CGF9zo+z99hA9apnPS+IhSp29QiBUeiZK2yeNTz70QWA1Ilh+QfnME1jPWItKephhp4h/mfvNV9elu0zaQP+Uz5iy3nxSV/SzRzVM3qg/nNzAGkxMqRTA3B72DvSsev53xm0+bZMkHhh+QKChM8RhUhG9Vt8xR+M37Bfmw4SS/GpV7+FP+Pg1XkPXLzA8ZTJpmQAWd7mdsE/d8I+Gv8BGwpt0y/dnHUCTsZbD8OSGb2Zo53Qh50syoXOHPBnWPIeFFNtudvYeHBBSxgUExyEW2Kzc6A5DmMDuY7ITI0EFhRINWlApxmcgkQ2MoVEsVULSdvuQVcsSm0cWO0cpSieZsGKAuFponNAZ7K2jbpsGMwTnB+DK0o6ErWBdUd6RgIuGAyZ9Zhx/GYrjrGTcd/CJGdntI7JlGB/YVASq424gHSHu02Oua8Jcg+FyfPX0fzPnTcnUxSxljHO0KQ0VJWGbUMqnreciyc6ygdKtFzL4T6uNfcvRKyeKzptoBSLKi6mIaBy29+yI7bux0y6ZltqQubQxX8oNAC35sGl53Kzf3utdbt/BeoVcSsNQwf7I5EMhX3MzALVQsqLTFr64J7tvDYbZpxX2Y6ejeW7fQlxbjg18acyrZ6zP1f/zKb0DM3IHuHxB/8SI+V1ftaPhSbYYNtBwO3q15Wd9aBBwgHu5ysd/5VWP76z/WHArjbyfzG0IEmcprc8YIeHroUWxjt1L4IxwPPytLCngfpBX6UvB1qSnRKDgDXmA9Cb0c8Jyd498Ex+fhaeUB3q9e1ut/qxm9gaDSDXC/D+k8VXvWxSxtSJxzIgIsvPwP1oA9kww43G/+HWGgsn+or5PT351dnaivCqTafBJuoJYI3gGp0n6Tyk+5ynaYtZg4h/zWnWC8RrDFMxHklwOx4V8208RRp2AoOIbrNr9p2oAQ5/lqLshnoY2T2uW9A7ULMKlp0UBk4Uw2Tq1lrlBhbkItK9B6X1055W87NyKTNoGS5DwuNqXxBDNMOAoOSmqP0gxuf/jzhIpoyu6m9+VyFyn0FJxC6hgNxRKKx6mO2OUZASiaOQPWCmSmVQQzDc/8wfBv8PlNjr0RH1gnk58MWwZ9lvrxdYHGNJrzIfCOblT8TlzrlW0G6iMhN/4g0hbyeaZxVjy9x8qUDlbwQJnLjItewCwA6vfJm3aoC64525VuDA2K97XIvNdmFjAg3YC/eJsdyxZ1bORazA9jn0kTu2g5B3H+LrxdYoYVWZ0RNu1KWHbZSzTEiFkNSRp1qIOn6SMy7ZDAkE2ZYz/8XsmKcq4Vf7DtwBKvXjxsOEVTxZHJu5KxfFRhp7G82bX30HkpHSMGgfjKOvbwf9Pr3DNJC9eTG1JAJtawxFqYeYJn9auDWGTMG690JbfVFtYGpEzGoneUzb5PVE2FwqSGcMpeIxWE19i+lMW1o+exeSqzAFiHsrf4wJjQl3yxOY2qafwY3gcxqW6MLCIe15cw9prPaS8QhJAWS+nCHEOppvy/r3Gkhy7BWTwvR+frF+JdZrM7zaBYdODLKYSNAd2fZYYJ2EoLw+8RZ1JlHQwYh0a5UGFCmhDpJIDg3aXk4+eTJzfRMkUT0IGsSGhk2UfRDLQGa3nmp/7e9GlZlrdmxMLrrBXe9dmyxcQx1lK/1P0XcCTD3GUp+eG+EmI1ny/+GTO+djLbt+J+4MkMWtZaNh6JQfwBScPrJNfrWVvoCzOPbLFBLLm32Bp9b8fwhDtiuDRdfv4zgiVO952KFryVTTYkB6RIj3xFGGLC/Bc0ckBlpIbMGKu0OoXva8sD6m/vvy0j1gY3ffovKmtdcGugBxPiKXoPbr3SIjHrC2sMptknm4MqLUqPu0Ot8ON/C7BzS7oZUDW90sNwskTaqYQD7L8B0LJotB9adzPDBpUwcYqlsPWIyFY4o9W4Oy/ebz2CsMi8Vk/1AYntPhtAzeV+Y6ZZmkTb9B4ZwbFjxSDnalYFMnUDqcKAA0ZVPMTH2PiHbf4NlsqB2vk0hixWy977bgkeeC9NzhABhoWyyrv8CLSsP7MmaIjcK9V0m5rhGNbOD8FGEdqZ22L43Fdho/ZB87QP4rkwi1uIRb8r8e2qwW01jgZYurD4RVeejFIz+XaIhNRwLuXY2/sjZR3i3b2HIrKo5bXC9gDW4HfWlqrQMmcUEH3qCEq6hbyiNm9AS8jMixOMlo8M6utK502AMuPslJHLkVq6VBmIVaK+q+Gflsh29s4dzIpc2BWZKbMmmhThm2O3VKSaK8B7dONNF0uBbDi+okHUKhUsDzbaGbCCoPDHHBy7t2xMTjcMcLWAxV9L3yaG05/RuiT1c7g059vtYFN6w0rotDNk0lNBi/Fl7J7gHzOQ1rXN6FJ5+XpulxA8UP8stZMnMZMRAeggt4CZBBDP5kbLlYsmYfuK50QBn56Ri9eDWr5ScMRZq9oxC2rosblMNxi1rFs2D57x0ZKlVNVU45c4QIGSzdbtUxn7j4eI9ukZsT1aoS8z/ww5YGQAbZY94RnfT+lCgH6yTQBb4lc3r/PsOBovKKB6vcU1mLluRNa9bjlAB+A4mFtMrMvm84CGqcV9NEahlnXN7ET31RnBGMyTyieayB64qoqWMNmyV27LVPjctKLZX/Wfdsgh4TgpMOGCRgSx9f3iP4N2JeKR5tWn9ZWgztBGkNmV6WMj/fZ/S/7AGXdtfpSSfjlK0fJVK4096vTSKTLDoCPJyaAbq6cyT06JGa7CtWVp3nIbTL5cO8RYXN7o/UxHS1+3v0UJp70SiDCUPjAVBdd/5qUTSAgYAqiHhqbnTZYrEfEazZJG/eXaOkpGyGlyZDxVYj4APbuyhpkHHgrHXsJWZ4EVzn3+O/IDXWs8fURDeWYhXVbRdJ/fPpEJ6SzP8X0aHKQep+qdY5QoJqtDrF0nFvUBNL1pADVuZyv81kwFN4EtbUrgjULxjoJICbl6FKMMiXkyaL+q18gFn/KjhcH2kBR+4qHyEo+uQoz5GQWw9KC+wD2/8PKjLT3wajmZ9au+IqHbI/g2R8f3I19myithSDBRbLgoWryaPRxvUrz/IGLxxryQlaUUIBTOK8hw/V8VUMUw38/AzuCov3vm1cAwnXK9N39A3xm17Xi/UzPhjq9vVJ8zTEBdmpsUnsVsEZeAajiM49SRYkKriLFuFfS+SHA/ea5VnQWs8k/QsRItoR5oj3d2z3NN6up3KCchCUtDuXEHa2EFiS7JGssW57gMTU4h669BCQz1RvDzQXePad9gFVrzbDGopfjPYPL1R0s9HxTk54fkJc75HMpWKwrSiwhUcpkqqaG8Qjel0QyrEV0eSOZKT7OxMbFXR2O0nPjDgNUhaoPFlScwWNqBWZWyU79rDZe2XQoXr0FTyJx1W5JAgVSevSQE/hSQV7gNmIYvBrI6jC3B+uC4NFgTtOIBnGm46/L37znQpIMW8D2vteyhY325NRSWjryWv62Pf0ZdJHS+RnIUvBUk80IiP+N1PPOL3hqNniH01h8zN11EO+l0xoiY+43Pgp81aJFHhpCCwmlmpW4TqIX3q7IkPZZYuIyGbraUtbckdnndg/Nbr97mebQsKaWTBaSQDEJjmFD8rGyGMuKQL7wDJyWIS9+YzkGmPpx/0ilDooqxggN7iWAmxoT9JIltd8PQvyMHuAy5DS01F1Xlf2Z9T3LyyCu9tcUrLvMvrq6MIDwZmvvTKXeoKk8QGFsYjMbZr3MyVcF6ebjB4chZogF3/dxMAkTRenU0o36Ev8dFDH+YwPXYZuXs0vptBctue5yuynSrlqqmVErQai1kYB25IQhOMonQwd69tBAZeo9FL2ffWO2itM9aUTvbI3cB0HVLPHp/l+5wKAZ6ayCR81wncTCpQY8zbECIc2e+NCmnh8Im+KIGOmuwQvMMKAplEr275wVdujYfS49aYfJRCNvFScKj+bCx85YpAZTAD6+G45CCJD5d5kZ4Ow74Q8tUw+sktvLMu+TwVCBbRJM1//CPtKhLMUHtcH9LEZ3aStqAa/LHakyyNDJPiRPj7P0G/fbcPoOf+K8dF+HZd9ex9TcGCu4dxlUX176Op6s1HqYdFm9kr7He3nZYCj4UVPZstUOe5NaIqbPBC8O4K5g6/XT6TvLwfRtzpPi94GKyNg9bTXBVaF6tyD/V5/MoMIW030eCVdoGQ0KiSbvOLDW9HAOcXyKWb8yyTWkHV6yXOPfHajBjc9BrVlm73V2LFM5XnV1GOTeR7cMhpkc4SSLZoSQMBW01eyb5Xw57h5jB4jec=
Variant 3
DifficultyLevel
712
Question
Levy makes a birthday cake in the shape of a cube.
The total length of all of its edges is 180 centimetres.
What is the area of one of the cube's faces?
Worked Solution
Total edges of a cube = 12
= 180 ÷ 12
= 15 centimetres
∴ Area of one face
= 15 × 15
= 225 cm2
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Levy makes a birthday cake in the shape of a cube.
The total length of all of its edges is 180 centimetres.
What is the area of one of the cube's faces? |
workedSolution | Total edges of a cube = 12
sm_nogap Length of 1 edge
>>= 180 ÷ 12
>>= 15 centimetres
sm_nogap $\therefore$ Area of one face
>> = 15 × 15
>> = {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 225 | |
U2FsdGVkX1/OCSso9MYnsUVh2dmfEBgwvKNpA7xiqCnU2VqqCVCCG02lW2UkpVQe326/VSeooGWKM0nM+PHrDrCQRnH9KwYzRZOFxEYFQdl0WTEL41QreMkE+6J8Bp8vVJBkCytXBqUpvBh1U7HjF/1QM1aZ6vFheKFRB7G42JcFb7zxlbzd5rYjuhgm4pdR/jZJSwoKxFTn1AVnmol04A8hjJFzMy3lHc0uubmx/m8QOqx1HszcRLbMbMc7c1ojrcQWa8sp3iW3PzTuHfltvPIf+nSHj8XiBuG75UeedcDw98EC+9lgno9XJzm/mYiulXTClU12PBOMDpgi2LsJLtsBuI2/PHHOFBMZmYlEoHBNtIGUA7+4x4qPZTAOdLMxmm6luIkm9D8uloaF7jIXmhcS8eszD0LL6c1c1Vj1h64M4KBtWQCastxOvvAltFlpJe9wUIV3BXOUuASVVRlwe0+zxjw5t8gOHjPzhm/RWUTQCEyADCzMK8oYgH0DC38Jxq77HKAjVhotz5kQ/rZ7bY+4/TFLTHHBdvMjJLq7Ua+h4+O+4QeYMwpP/DHvw96zpPuJVfLH5dKXU226+hQTxpAzNb10NYZDezW0pQNa4iaVWbhq9A+5U/r9+z7MY7b2OCixrboKh+Gy17j2eyZYd5dRMTZRXaMBZLenpmvE+tzwnRBxT+AOnYWmSI31UFhx3omvnb3PftTxgd07q9OMLWTs0lI/dkwCUn1/lYTnHlY4AaCXDvIaTgjbBTZsBmckNAV7siCApZUf9p79TJAnezHOCzkAnOrxEJLv20hClb0WHWfD7k0GiCN65AMc0CKEihIM8HpN6HumlJ+Oc6j01Aqu9Pg+IMh5rMbtFLVQtDH2XDkTZhdNpRQlYTJfESA40yP1E1JoGBWa92WQTCf0CDKxTLb27urdUcZ/uZpRoU+g37DhsWe3oToaNLE3zbvsLYpPqFi3iAt6JtiimFnUiXchyX9e42GHppa5+UMSg+4q+Kof8zGOZljNlYKwV6ocANpUhQkdLaM1prl2V7pAFJm44gg7VtLXP5cb+c+5kYtqofHWn1guh0x8NV2EgxP1qYS5fWT53MlBF5yNOORkHKN4zHdiYDfuxXz64U+jpKtImfpWGXbcMWCETvdVXXAaB7BtYECQv/FG1Z3J37iuLi9cxeBOor0YDFZbwqG1OF64ITRF+sn2jaVSKw2EZe6lBxZI0a1CH49uI7v+EN7ZgIvKqjbtMJVLhae7KsTfFPZiSMfVUu7aF1/JjihF8SB2p5MSN39q2AYunau21/j68syCOcvEU9pwmgOdkFAl9hDc9xF40+qFF/kQ9n/Fs6vt+b4rmm1C3vPl/t1G0xmWl4BheMnd1PS/vWZD7m0S8aUHAuyCxrszRDNDvLDdv3GOn3HzxNGcU3WjNBS1GIKa9ouiMlHhvMos9XAi4+R+joWWtUjWLWtTWdFFBFwPYUiYuGmFo1gAZnychBh7YrdyhjHEajusSYcQkK3HOVm/AN8EEx9I/kf37T6imXNXAwtZe2G9bYw4hsfvnD6csdL/epI7ejpo8YtbVJkyKtQxu35Udw/6VrF4r6O1dSnrHThwdk919Q2mHEHSWrnGdgRuXEwFQgEb4tbFOiyHyw7IPmaFye2WIAgEBv1R+qQS4DwJQ5Mqb0YpJIJ2BM79gJ/bgwQ+/TD8O3Fuf497MoXYU3IjWM7d2F5ci4X90xGgaMHSSsDBE8sxv2DA119qIBRZSuHS++0AcBsOdLnDaNQOaJ5vT/XK4sAQ6TpdjcHpEXA/mC2N+j4evHEMYPda9nRXTAgSYqI06XJ+OWwTWX6OiZmGNVawSqXgh+Kj83r1ALYFbTg0vdSgmSsN0jagQw65JST+V+Bi/dgp11e3yHCI1NjLzflr6b4a6COYZtfCt4EgBxn+669+UCZJLqToIxvjrp/2fFfMSBMPsWJlvZXo3mmIPJWneCi+d0Y0d260FobueuaWNo6Wv32Pr6ptF8KYCwZ1jKU+NdhxY5GveS2SvE4TrLX6mc2T6aP9k+Bgm/o2jphUL1RcWGr05W0jjigja+LsiG+tFTeeKQNk7aIlDMy+xbsZ/ZiHBdOwJtcplnrzG/pXGZ9t2PYyo/yv4DpP6Rvqqq4jK/D3SeJONcHCS9EGHpOeliWS9Hs/3UbLAiTCjPub2CS4r1EJUDQ7qinC2p+vnb/s9qBULQaRQRkT1MNEB3Lu/5Sw34JYoBLYgCEr9wx4boi6ciBrrk5XqLct9UaIStrc04eoOeIWxB3sdokqqByQYnvTkTu9tmvDVL3iw9unqeTNX/aOnNYn0P6Aq6BQ1lAwh3hXrNcKQ1VRjwsLiVli+PwMv6QFpQCtRx3nNeh76O2IQpazPICf7kfe1j6pzWQepEZQYWb/SdEkNhe8EQJdRuKvoPXBcDL4k1OCrDXf0TO4YdIBwg7BpeHSBQ4H9kUO4Pq1BxS4PpiBqoSvKOXgV32McXPxTt4eVgu6k5+6sKB+2S3PDVWFevvBCpD64aakTLG9Hu2v1RGAFEc5dDXM2oieuzMFrv93vg5cshcBBhWV/wBawzVxe8wwlpWcrJoZgWuyQ3rKXbOjhojEDmdHcNDDmho51lK0cmlm47WQxrfmo2jhsGevEHU09cHQyupVaPYSbg4JwdBvAhC7HfQU6ls1ZbxIvC17QC9DGAzGjALdJebYIWC6kCGG3cHZwkXVPILWV4vaaCPcz+fZyrovyJZDer3RUiZZc+AG3AokrGjr1u3Bi1C+CUVBLyNYHO3ncG2ewqONLmuoS7sJDF8NXzKSYm18tCSjV8T8eKxSY/ce06LKDC724ofG5TTtndyGBoUScH7QpgHQNNv+SWENUcqd8bLa9YjWPIY/i78z7+FEHJyDYIAbM33BZICuLYPNenky7oFsUoFWtD0uQT6gvzS8Of6qWFeN0bNFyVGyi/M97LEX1Uxjf68MMFG0z9iV95E4nqDAdW8Zxq0tj9l7iS6FtcQrnmalWtAeryyc5cft186vaP+ANwIUgdMS5J4bKClSF0HAi2v+AnKFSnKuzSuKM+iZswS4k/DEELXSvIUAV5i9pLV2Es+6ucGLtrdmReiKbuxI4Io6hqhwHlGJoDXUYeCLMSQb+qaIKVa5VzL5zjr2lsQTahIEWA7Zm7F3Tj74J4fLGlW4KDiD+mihxFkJCqFI0VAMnAzpQCmkqWR3MR1YlUfGUyXMopV5fU7PJMnb9+Uw5NbRG+P2b1ESoSUh9SJzsCMqxEx6x4hfEP6HwP0t/00Wo4d/C3C6TS5BXz53byK6U+0gk127ZcoYJSExWNZ9YmIIZ9/EVCxBoRwJ6y7ikjvY/CT8O5DPZUQrdTiGriA//9zdTnkX55ArnJW5kvFmO+0Os3AzaTa28a40EmMbJSmsKR+RfDeWe/wo4CHPImCTkwLoVp8zFUUwSb7MZPYCGAk/My5s+cPQGuOxKqF7jmzFHKuXP7UnnMykMTr1x1YLz50lQAtmRjpR0udRaehfQ+BGrYOotftDPx8khf5xBBmd6TCpSyyGDrNaG1rmUCl6U0wjPbrUaGJ7lC0DhimjnFB+WtE1Kb7gVv/HOLv/d+kL05ZAX4azIUhTur99u96ydSOssBXxXWK/vWW9veKPnVvbOwVkc3mpX7HLCk8ok/VudSzD2P3BJ/xh85kk7FeEVIruzoY9n2y5fj6KBvkuh1gBY+DiHJbt+DH+AO63aC1/WGuAv7tH1r+vj3TAYS94MgnAa57Q6oNxF2E6DRRoYQ3P/wB9pvSMCiio3Lcp1MF++ckMl+M5Xu7a387HHQ1KJul3oUTFlgXxiwTFjwvwBYZ59OW+5dVhGltxBrshYNF8ZDeuVckvyOA2SkIYU9IDj7rK/QNIogdUC71HVkl7Uifvn2o57+gmjrAG/xqQyYqQGWeYdO+nTHX/OCl2a0KIu2W71YW22LSPRtTf9itAYHgSQvlXbsBPFXT1IZ28fP3xrjWms3HXbdNwP6VY55XTbHLz6TV5fYFAXzvI2eKQ+WuK+E44qKZeca81ZDIObGzMGSZgBt5TXLKTPzyzW6voFLEu/nrVkSiw8jGIf/d5yRXL+X2wC5rbGF4LhkGdZnwSyfWG+/2gsT3VTXlpPCR1kRVusEQxSiJiVTr/9+d9DdW263ON6DOYalTHtZ/mWZXwgD3cu1A1WjAoJ7KuWgCg2BKLtu7DZE/HOAGbgXAjOfKnp1TX13C4LYRI+9MxnWIn8Bf0aFlxipa0SdK7kpG6UMYyLDSYzZNE4UEqWDhAefZ71Hil1ZZg1IFRCkvBgn3GO0xYRBINcsAwJnxbXnF9nI8AznCo9Hx32jl99a3LjiGiDJog+3EUI2bM9SuhlPX2zcFQnf0MDMejfUwnGNkBhWleMawVQwtrOGSBwB/1guN25SpBJSKpGj6hBjDIpYUxsAXhZOqBrA+NzztFbWiCjzEARisas70DkdPCuin5oMHSyRk/xQJTSGUvfjvyruudFAabQIaaiFj+qtfX8YOfIsb2JVB57/406XXLF6Eg3b4Hvc7k0h3bc1ov14yLye9hwKWPD/OfhtqlV4SLOzzYDDWB7qWa2GawS/2Iv3i8gs74SPBCfx9GQbs8ZJftOAvYA5N2P+HRJVw9bFrC0KlOoMEKSPjlTA/ySq1Yfwv3ro5Chybm+m7sOYAHpXoZ1a/2zCCxjV0QkFCwyWoHUmCRu0a5svk=
Variant 4
DifficultyLevel
714
Question
Mishy makes a Lego house in the shape of a cube.
The total length of all of its edges is 192 centimetres.
What is the area of one of the cube's faces?
Worked Solution
Total edges of a cube = 12
= 192 ÷ 12
= 16 centimetres
∴ Area of one face
= 16 × 16
= 256 cm2
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Mishy makes a Lego house in the shape of a cube.
The total length of all of its edges is 192 centimetres.
What is the area of one of the cube's faces? |
workedSolution | Total edges of a cube = 12
sm_nogap Length of 1 edge
>>= 192 ÷ 12
>>= 16 centimetres
sm_nogap $\therefore$ Area of one face
>> = 16 × 16
>> = {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 256 | |
U2FsdGVkX19plGRg9d62A/sMYQDS4TxXKxXsDwO5XL1Za4f0KbuOMD7J1iHepQ6ebO+xcjKeiGR+ZLL3SEwuN6PnZriXmtrX8kHI7Hxi2/ucCTEsVFUD0Oa2PbMskXwrSsPoGio/KJv0YV16S9IpB8PXWon/qmi6jTG7EE/O6dfKRKQzOsKYVdYfULgRbaOcR4HgqwNDnSW5usldUbGRCeetDzV0qrr9T6n3JOFquZ96H07ZSCW1Gcpmo461k52Y1fO4kyBGKKBCWQnAUWbh/6BFItt6GUBE0kU8bORNdoUzEwwulLEJIXFglZ0ZVfxxDy5fdwzDKnlkM+wOka9ueuHh2xcorROzNypfho/8S17NCeTEdLLvGrROtmltVdoRgIRe0iRMBLJyZZ4puu9xEjKPBhYcVCSsi/TPyjZVq1mFRJm21Rn6mOyma+GOJi/ZWBxlfkl+W6NpZ9G+khhpircosCAkMVAEHJRCXyGAjI+Bjnn7+ZazaX5fMi0b9dyA9/CMUViGqV/HiTDj0ShMej9CXJ8nZQZEDFq6P4U45eF+uhF3/XVaIG7AKX2qEEXCkuabMA8APSvjMosvekLvlxKbfsT+yo65Grqjal4GXnX99PjXQmH14UyETtZIezTd7I42rP8EbYNPLJaY99X0Gbkoi0YjzfLAC5EC45w2QrsnXqyxNPeWjWL8SRVV9FoLMvN/do/7zWcZf374jV9mEs5kFbJ5Pn3rZrYx+kifiAizCRh4PWy12Lb5WqiEQ93Q77lerUUQ22Q9IHBYeyV21sQaphE62t3iRqe1g6C1c2dXFE46PWMl4dSkHYDQ4GbrDrttQwZVkU+vb8JC5GnMSAeMyntHKa+BjBj1GCH45GFBdZsXP4HArKma7Lt1qAAClWNksXwoGgnD3dISMTq21JORz1e7bcTJWSx7Tir0xb0cUT/YsAqqxl/4z4c1z9M9jEZzjoaDDAbN1h4rlGvDPLHl6jJsRvAL353wiARzGWEKP61hY7Bk365Qv2yiMSV6ORuAGk5zgZdj45hktsqoByVsOx17Ny8h+cDOmjkHy/0IhdiaqeLaYqxz+dxy8taRI5+R6ZWlzxrktxuZDmnlKK6eXzVtqMv+t5DgKMIhu4kB89jnNW4deidfZ3SafOWb4AzBHopFQSdbY88JjvjdFpNJZIRhGGcX+jaoTeBXXVAl17+QCKRS0RXDYBWTlqJYOcIfD9izg1ai8sBJ1TixLWgiIkoemSoXMkRZiE6glA1tskqF7A8cXWBmos/CjDY+Tc5BjNPXz1WUc2LoDm96Dx5nA0ky0drvJlBY8/gToGhhOzyrEZg6qLF/nFX8AhIvLDsEALY5bkB2XiUe2fe6/QrNOnjR/zQBOErTWePpeYS7XP/r2B+3sSRe7Nb6Zjo4Ivla08SD57iW9MB/0o545wxog9yNrdBTC1r9BXkw2cp9FX+vxoHnQ1mWOc98hNuMcz7CND3B6vZUMy/1WyUbtd5cyPpHG5KrpjfKvh+FXnp0AdyfT78mmJhhsGl3rY0xUjikboSuInvYZdyaSxBMQqtN3lcS4ZCEaH5ynDUdDBpIvtflart5KbGE4D8hHQ6XOKQ/oEOMyx68/aPKDzc7CfWBZQh1wXk4gK5CV85rkM3I0EfoZ30m7dCd2dkZxNXqYi918WiqRWrO9u8AH2tAzoTDjFpQcPVnR5cpR1Ndr97qjxrQcf0O1JYb79rKxCxzd7VIU8YmSy0lu6VRM/dINwBWgKWuB1Q1cjEsFoM14BOePAgIymu5QeKnfN6mN5Tu+/2DlJOY5elslbcL8KlrLOZOS5n2uqM9cc1mcWh5n42QHfH6NgA7e6hQCHHJH3Qk493/dZpaRycdV4RDk/ZoLEP8yIqH01fabVT3RyGWCIXLHz92q/BRBLQw0LyoN9rbJr4jJKHfuCCN0MGV4rrzHtOix8/PLgrdqzrtK3sI7IyH5ZoHqQ0rXxQtrVO49zbhK5xQQ8giETmGe35/QsI7Clpkqct+UTBHuT2aM1hpU/l9PKBCh/3ImyoGtUPka4gLfchcD3Nj3duQTgoqveVw8C+sCUOtAS4zVzoVgweWb+5543wrAD9j+Sw/BJ29TytO3ddVZaVqyHl8DBPZl81a8ZDoLznKYwFRYWGvyDuLShkeNzojIOQF2fzKZ6N5TCRI9ewf/Cpa4GtTAKvuEtZbDt2V/W4hnjELMjArbXbyRcpLsxVH6fykDurwdpw8geEqTrygEOhbG5vwiz3GwtyWbIGEOKBAmlBAJK/QL+Jxi/UKUOk8e/kw++MewEU4AvtlLJawnO8DuHlpExbPlDi6V67Tl+3ONds14aKkvWFCMy1tEu/f0M2X1mMqkGdi2LurPkZeAkNa7K5k1cQ0Vej9Rsz5sQ/P4rujcTmB7EjhHHYVNXOblncZYSbUmKHrSDIxCUY/d8EpQOEx8Xg7SgV4U1cBxocoG52Jv9yGDFbjUgVXoCHOtlKqUHU05LEWsWaRs3eXmR8j3WQ6szyIz7h3fXUNpT2qKjlB2Sj8K2CUFJ3+IA0m9OR32xS+YCYIlY51H/fpKuoeteiepXHU6fzwLQConT5T7r1916ARikRHCuxsUHcAtN48u/NHk6brVi9NJ3LeA+E7ce94uCthjJx3xr8BMBF47T9AUI3JrPieFxyt92lFTYojd0sPUxalFuwz+e/yhJ7FKZWLtc7cZvNRzl7GR/CDrj9UyNF/BpWzdxUuWGTCIBNajMHQBlGBrX/sZX9jxFwSpbOvlWqesgbaefdoyFXoDgLGvC58HqgMb7HrWQMwdQlu09CjcBFfa4N43RVc1JFl/fyaeY7tWpS+ZBN7b0ckn37/qMM/jRzP/00RQeycCdVCNkPEUvQOKisN/rHAKJSRsvvmvhWJVpnxQdg2qE6cIH0LniLjd1U/48P+60Dh9XsxHih139QfxcApIVDhdBRQEbaLwvuy/Ov7PLCJG70LMJzjh2YtQuGbBFJuPA/s5Be4g40vP+VrItdEgdbrRm0j24AwTtUFdEIH4wjH6OdkxdE5CvJnNoYO2ZhQ0S909jxv8K6r1PGvKA5IrovUq6fxQEPLjZZMmut5xnZjeuP4JRO4EPxlp/B7KUfzEHH2pqj5ccqTX7/GdHFsasSoVIX9Lzjo3thE66awrtE585IlLJZp8g1NZrIdXTsZZjpstGYJWTSQkJ3sUxtLYfFn2oMHmMTYNAe/ZWqkLBrJQ+d1ris6/afavliDT5DpveKBRsXoK3/h9u+uf/k5DO8sM30KCridR+1opETlU6Z/e3xCL9VJ58gS/PxAbZ9khl/DXTzjrYjDQRiZfon8vPPd6l49Tnw2YbIaJOfWmtVTDNmveJpDtMrt7azX+c1TnHYjJggzy2L/DxYu/I0Cj4MoRL5koPxODlB2VcSUEjDR7dywWtMDx3G4LrezCKE4/ylPoaoZXVyV8AmXb8GPQA5ZVRtaTUrhhhf95YwTr151882J21TS+IsXsS5NBZUpDps2S4jE4ySn/ETxNfN9IGIXSBprvWKBrMeeqT3qfqgDuCnBKO+Ev7FMWeyTJDC4z57/HsEqkCYX9vBq37T51l1iYxgvQeaOffVpyGaGon2Lo321mrXjFf/dWes+o/3tkrAhK49qdiOlaO8iSygbUpdZQ/nnxmKEMEZH7N1RimKxwHX5rUASWktAEGdfLVzGZZMphXdSeuYcHdMuprlLgeAyuzzwSUVL9dXsOyzoKK/Wcvp01k8lXUpyZ2haMYJu5w0gQVreLUAhcEYj0iBzJYUAihULGH5fVWs+I2JYBp5ugmnSbmRhL7QjjYYAsptwOvpwad2SGcRXv3aaAnT0F18a1ic9vnGfqdOsV5l+eRYZPvFfZWU+p8CkdVOVNyqaa3faGUf5fJzSgYlJRyjiErdxjeLbI1+EUccUOnpZPJjjIvJ07O2gmgUzJjj13qhjOW0/kQWWI7Xo0qkfZ3CjxIs+Ff+s6nHdQG7X1wJfQM5b+dSuVNY2RV72ZW3ftpoll6KVndsRj+5B5x9lyYhQ/NfUrk2lnW/MhTHVcAH7Rh+0KhMzt2V+KMCv7UHdm8rKChVw4oUS2Ti9S3SBPwDDbcRyEkFf2DhA2Y7grl3fNFEL/39QX/vE4Eh5Qye1twbZ8xDCdPoQtEF5xAQUrux3eDFrpgoXaZtr517luHUzHPAgFMrnuwtoLA/R8c/pspfPuM8Nai690SH0kxvnSBesfZtSl2jhvO0UHx74oC5OS8w619AxN4inBe0R3rp0MUFvvzQEdsCDsP36iP7YyVsWgEWJbQniRjnnepGi8iznyiqMKkwZ3xHK6zkwDW4DVjyCfeHce7eFHaTovy+NCCeEN77XlpV29QB0IeEv0BP9ZGAxs0A/Gfis5QnrBbw0LzdgjfdHzZkKB3OhboR2IG1Fl4ZxXMRo9JxwWWPLZlta9GTvl1GOEUyD/jE1D4vhvKVBbqI6gJja3trGIzgXx9nDp9zq4C4xoXQpT05+7KCk/cjP0sosV1pMkZvbv8uvGcrLF43pV+vMLQtCSg597wY/XXyIjtGKjRNVSMTPEfdWcj7TJ9SOEoLd72L2uckubxqGL+7esVX05IVBRMZVbnhPDCwlG6EwoCSNiAb8fSeYdUgwbpaCO4LMgmLwL1bSVgXBfxKYeSVI+R/or18X1urg2dC72LJcV0ciGi1jrqMJW9zutC99i/kRpdIKQ4spBtSB+btVZeBwkw3f9ZH+4FnT
Variant 5
DifficultyLevel
722
Question
Anthony trims a hedge in the shape of a cube.
The total length of all of its edges is 9.60 metres.
What is the area of one of the cube's faces in square centimetres?
Worked Solution
Total edges of a cube = 12
= 960 ÷ 12
= 80 centimetres
∴ Area of one face
= 80 × 80
= 6400 cm2
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Anthony trims a hedge in the shape of a cube.
The total length of all of its edges is 9.60 metres.
What is the area of one of the cube's faces in square centimetres? |
workedSolution | Total edges of a cube = 12
sm_nogap Length of 1 edge
>>= 960 ÷ 12
>>= 80 centimetres
sm_nogap $\therefore$ Area of one face
>> = 80 × 80
>> = {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 6400 | |