20318
U2FsdGVkX18B0KDa/ORuOaWwBW/TBXfBfWOJFavyh+9/bHlAryIDvEIHje70OxJEH8bbt+Rk7wI7YFZmV/TDYqQsQtaWUrimEiABX6+m3ZGsvQKue7X0gUhGOsqPvoBZjz7Xho4L2p9jlreuG3LL3ZrRNcuA6/D24PkvNmt3yXyXKQoxTZvS1qWqX+sgdkbRc4VB/qmz2vmogurXivc6jmku1f+64rpXuOxgX9NvlKQtD3lyiWftkGd1kQrZrWkdICjFIe39VvkVYfpA1E1HkATfgrJZJ3PcidYsMJXOcf9yAcUKpUJdgWiYJuOLSt8oRui4c1zhr8MS30x9DwUX/VGTPm2uM4P9d9cYcgIyBsytn63rCRrxedkLcVtLpv6SoDqemAcZ0xxecgiTilD+HvA/ttmCU0RiIpj6gu/O4A7ZRVcNBMZWXT+Jwpv5QGKphyPjXBA+1URTqMmBwK4UEVGlPhhyyBUpcNu8DL6et29gkARxnZ7sW9VhJf2iW3rxXB6MuBI3nhrWbpJF6VC0yeh4mBgvYw4GJSPtyZyGOc3Pn5aipv/yckd9WfsXIePXeyB3YWuZ2XShMsAZ1RgMFxsrNVsy8oPb9pbAHPydiN25+rXYh5MvX/yuplzZVHw2D9oVQaO7d2p49v9T2ASF+1DI8J4IQYY2vfyLnpSmPQR/u8lhP9OJAP7IRZARZlIT5lIsJGqUg8fu9dCJGEIK0WzchEOmBzRBuLAaUgBz0kh/+/hpnaUv3Uj8vbhuhFRDEOrSBoTY3Hffav8iYt3g/DJ+lKoac4o52JKjntqRCgaLXOp+rmQCjvzgXTseK56nizFdnPVxUYBjINC6iU9p2ph8NX/t/Nh1+7v940YAf16ynoVZvpi8ko1TunImUIjFNRHgBKIgRFUs0DumB5IFRZZ78ygR9Fl3mKPYOB8Fpw1KZ+H7vJ7KKdcTnP0Ai+Vt9gL8Y7oy3ruXvNCzgz/jV9VoCQbEi/DEZlurVKir157xr5ty2guMnOc7BUQpJoKr52jaPnflNFzWr+QAockYoZUcA2VAR+oEFibklbGnaaPbfhfOQdH3Clrykh6FnwdSCuZF6eQhsBmrvWrw1wWe0tzrawgKaLRDLGrFCepTrDEpraWf/7+etoKNdxZgHyp+/s8x+1Ou6Sr3HJ05NFRC+tnOkhWcbGB/Di42ooGFU+VFLBK+3X26IHhC0Yb2KHATh6NRTVEK6rCHJXYxBWPpok7e+OTLOktBf2wQ296pw4voETPhDPrINPG3ZC91bLnvmqcppk7vGCgEmfaDfxpeLl5vVIsZvkXmA4rmoQscHsDMNedPnjqM4gHlanv65QsKlVUAg9grTkfqCJvWobU5FeTXKmfXLsCN2M9oZM49ZpdVirdpnLvDp5po6Py35EO6+64LOprRWQmDv6JkLuTeZeNqjaN0s4TRhUKobkUlWT+4tuO4iFCQXVF2OnVHd2oEYg1j5tzVJvlLCMtqwitBrHb+gUug8re4tgb+RGTa6Yrlcr+0sijqNAN7tCVINRq048YImWaawmDMom6Pp1wUI9ameGqT7WeQ4iYPrIBNVN+LXvHZcCdXv1Cml0l2ZHe5d9pkuHUpfP9XobPx6qJgjV/4jddaGlX7B7ri/D6Bjo+rXa+CHnSm1uuqxzI9Pbyvo5D9Mv+N/ZntmDDh0oZXvDh1HCLvMRwtcZu7vAx69K8tkcwsxojqLgkn5Q7nxBupg8hwA4cgNjUNbDC1aXmaVYYJDEmXl+pdyiIBK/KfWGKvdXJ23OowahZ/GAl7S5z5fkLyS9SMVwGQk0V5N+VItv73UeK9X2mu4NBj6hd3j8PlfV1bHZgQ3ed/i+Y7rxAHzXZ5zSi//uCPeewh21EVJPHBiL7DHdYlQiZ2kS+e/HoT5QqFnFY+nyLGWvlPUibdUrRgHE9j5TLnEKc4dI8tcKeBVCPlYlKVCqsxIValPOn936qjy6nQDhr+iV//1bJAODNh2rjXjthK7xp52TA6b9T11pj/apPfJxChaU8hylE94Z/YtKzozxUvaQjh30i5kzvi4yTaW4D1vdCo36PMAZGr8HrCw+7sW59bDzGw1HzeQ5SftWGXkVOjykWIgLS/wh2dfOHGcmXfx7ZxtT8DSQQIJqOLl91fOed1nzq+7CE89Ezw5gBRB9QBPhXb90McKUy20QbBkdjJWUR9PjVo5sbDciUvq1cT0ozKupZVRMdBuRqn925EJwtS2EpKzJTqDG2VClROlMgzVNDjrJyqCXwgVkyfKTePdMgj9yV+wRNx6VJpDrRsEuDuAP9VVFOex37N7ga+Q8qZ2jS7mTFG7vlLn6RFJF8pzTYN5I4NqBpO8AF03d3bhTamIEK7gBDT3nWgWJLFkH37/sExuYeer9cv5gDhavbTXhcJE1xjMDcio5V6w53AEEypHJjD60fzpbmopMBLofm4Smtryu9j62Up0adQt0ChwuQjLswBRgy9TL7UR5Y7mKfiCvTCVD9ElcnrF+zyNCZGXEKf6GNuvlvGyFM3v6c742VnonFPhShMD6rRV9M0FlwRaUkpxrDJBS1y+u5D8yf5vdZZMQIxhzaRGeFugw2eOL58OLFSeC5D2XWP1++w1cP2h+GSfkPdijRcuPHNMm9kNJHWT2EALOdLvwiWalm1XKmBaI6KcmO4MrOf3jpisGEvZ142L/NeD99FQTj1bgQfyPywBb/q+Q6VcKp9BcHlzd+HOhLB8JrTc+sIXQ0T8zjJotXB74ahLIFmQNNSrE3DKObY/rWLahb/jHBqSGvDsL9HRT2xawunxC42oS4JLqOS/vIJ15n1Itx5sPkELX+7n0o3DS1ga3skS5V/qDD8loFJsOyAopE1azES7Lur8g1DC1QcxzD50lbGF9294PptU6f1KFy/XN6g0p+FvZZoq7B4WUhK0PotcnUJi9MO17CYbZxqsNrHj6CfduOAB8xqr9cjRKAE322FEjEDYmD6N7Xz6YVMNdWjwCVRaWwGJoo9d538dC8eZMXMr+Z3nwe1puyMBOiCfq39mSU3jIxawEL41wTIFoBCnNOxRZoiY7N+W1Hp/z3sf3IOR7TcLQTQN+41IkNEkBHYevZ96aqqAjpE48AEBa25wHh8p+F8NmA0aI+qeLefx5t4bsfXSQSi+U8nY2mgqPOdkBq2LLSaKan2AD9owatOUA9ypXLgxR3U2VGdY28DznYDiNOTPLanslzjIwkJUtOEudbXKhA4mYh9R+ZIH3EOpEsBIGflVPqVMDSU1ruACg5Oj3o5Fzq34f9jo2p8aNcRaialKv9KrBZyujAZWOiACYI2+DglKgGwco28vSrKymZXohAgx+PRIXzRxNELiidb7vX9fxrw8/ANnxx7uYdhwnXDCGy4NNiXCXcm6oUgDNEtZpUdtDYYrLUcj/Pu/IrCmkz49PV+UA5bmG04hZt6McWwVOPYK/2Fnetterlqd3rkMZCHtOwABBPNa8LnBTQG88Ebi5UR8ljx6t0vnKWIdPCEXXP0pcPFSwLFSuKhS1UE3id7CG4peRfZjTwHJC1AJutiRU1VWKLU+H/ltWCjuI7HI6X4Ufu7C8gbmbgRW7rHTJ5s1oSMxK+oo4OKdjqPF+6Nmhhr0g++FaxBp1a8GlNjjA0g889Ct+cfrKW2jVcC2GhBTwveeKzmMgxsp04/KymkjUkUmQ2sIirq4pSTz+7pvQ1iWqoAgFp0pFBJgrL1YDgLS8PnRLak6cu9HMUSzh2FJiFg/LMAa3gbZtfbMjUf4Glt9qZD9L+DEcwU849mUsu1E+Q5VwZNN0vqpEgMhSbVZ+TLn08f8s0ilJUtrV+eRIhJpkWS6PcMxxIcc7N/7Q0lCx3hSC/hndojePVN0UvD8QCflnyqU3iux5ro0ImwgAFq7mzTgC4T9rlGbh1yEiJAcXXJYcBsvt+MXAdxEDT43Jeckh4L00IWYxVPJe9h91eFJDJGz7oDr7p+rUHR6pc6edt+ME4V8fSHR0nB6IRYeoapbQBYOVlxYcqNPE61Y3INouPGtlIgXjSIhMTTtVHeKzJLiwbzhebUJuGJIRwl7Ybmjd6pWIjb08du+S6AxsQjNUrfIzgXi/GUE/sM+RIJaJLHlKziWTr1B6OLrxmvRjVcsxgbVuKjlsiTjuSCpmzmTH9ygsun4bAzYm8hAqdnlzFBGgWk/KhqHtYdMclVFRrDO3V9b08jsmNkLMu4c4OW7bbZOtekvGc5FYfQW86XzmxvvzliTogXQYEkEIzshX85Ah70hZEHtxoWkqLoUbd8FztXzq4AxU2Qt0tRcIwaZFClQceD0Emwc8/7IQk5/RqxOb/opCvznWkfGGxPBhrI+SaI6jMs1heN66hAzv6vuquCPqJF0FilRsYBJhgegPtW0xvx0hggrdHJ3r5KJVPcAZirKJd4ctgsoJTHOA4Lpu+4tS187nkkMuANDZXgfyikgji/kAqmAbZHtG4I+lVxhlsbIT59mtpfuwZqJiaxTR19zH15O/GCXmiQZ0g44AVf/tdCtkz2Mk/UVOfNvPgrcHOxrZ2NG4tJqR2q9Qy0YuIZPEav/P9ZOZ7t2iNAd5vWlQf87AJmcbB1a0bfEcPkLT5kHxy0EbqnASG7LRgSo0r3veFfOvYLE+J7JM1k0qAjSF5AOtUZb1VrluLa83Gbwfll4/530MctxVMu9Lx79QUQzcwxXAu2Np9Q1CLun+wFpTHLaCkvrVkMuV9iqhD3a3ck9ORbvrx5AJt0HmrAMKf/7zN8DORLVZotDk/khZmmyE4v/vY4lNXPFmdUN+ygS7iuIReFKOqgySesa47kmnRCP/6FNLWrkx/YTeBqUp85kqCVMPRv5qMkfxpvpK9Y4/NdeYuLaZsuBq7CuoQQHbJaRYy9Z0whv6rRa/qca7zgqOL4S+fM6C6sw6NAfEpq8OVo+EQYCeKJ2h+Iu6ue8UTct5Bl6szHruAi/8wmPqFJkbzbCvlmwHryIhK41nC5b5RHK5bTjIbq6TcBuBs9GWmrUIDOe6JqhuuAjUQOG1tODOrKPqpb+JWE0XJc0SMHa3MmJqPkopcyqW4FRS/K7/KHlQuvP5y0KGau8Naacuj1MjJ+KmRqFFz4Y/BelLOgbE5IXbkHkBPwKb6scszGTCXiCw1HaKEQDDzgmB04MrhVQ/5nHzrvFuehPudSJN9D3BLmynoksMlUeemH1/rLxmQearYCGKCwqOQeMfMBv45sjqgLUtqUJv2Lk1eblu7IXvfCiaIw2YVx4MxgxKrcqU015Rw+QGFhDcv47yXAvWOv96C60BFa6Vc0P1ouTTc4LvfMp7gfE/F2r8sHCYxq4qiAjp4qPlN3TQEUZ4eUUuc+vJK9G0Snu4ZMWSHY8b7OBFFyeom1vEk/v7FHMkIGvfE/2Bqp0N6YcBuvu8U/YfxjikrQ0KMtFAHayjLmXFaJ0pKruMX92kjmlBpjGEv0tkvPHQGUqFfCUQ0rVZFmxTGWvkf5+qBV/IV/joFLAJE7EYWLoBFx9FON6t9HlFuXsCwIgcwE26wTTV2wCYHu3svM2u0jmNmMvI8iZPXn/6HqJkQU9BZSZXsz1leUv/esxFJltA4CBSEJ3QodmObkY7c1G/SMJqZ3FDM0ZDa4ILz3J7EP4jm2xX5leW7TLkqYfdM5xyhILvV7SaCY71ij2FSmxusAF7VYHOaEsDxFWkd8K2gdR7VZJ9arST040Txdi+ToIQCpTlh3tT+XbI7fT2kkv3uyNahXKaGX7fPe49lAU/V0/mhzx7zEYmqrwjLD2JHMbvftC32YsFk3hjm0A6sZI1uq2Vz2UqwsTMbSqmDjOYelUDRIF/bHBFML27iW8nVuU8iZh/c4lgWS1JpA083tWLBKX9cYVl6xX3/J3tRzCec6NCpXUeEVreGCdd4BZhpf46ekqqqKVWWHAcCV1UZnxARavK+ImbhMFJXLGIMCUpVQ8a8h7udTRnmay2TIm6Ajt1Cn2gZs/HR6XqdZ6MgFXWsekCa4v0PpSYpoFU5BgnpKmEY+8n354d+d2nvcayZTthZ8ExbkG+qcyrDFj4fe/Zlz4ucR4sugxtUd+r5PxRJhBZDmwJhhH05kwCcn15TpIa/n20lHKsV8eUvHtGD80/zMe6I4a7Pkejc8KmjTmi6zxHtXGyrTC4T42RgCmF5wBLZDt9w7noxIzI31oyl89dVM1f/uQMy3jdn3ImYg+zyuWFiDzmXiGI7pGNT4FW5/cRdQ8slhiXhJQKlGK0VCkO5qyATFgrrNUyki7FhUMhrQ89uVk+dVTS60Z0B5VaSPBv9KxyHz40GwzwfEwO2MilsksQbqH6RPw21/Lz9wAVAauvrweWB/p4myJPlBGD0oo++UZsAVlfya4GbgpvunKO5YI9jIldpv4t+3XuwuuZhO8V5bngNmt8p4n1xZaQrdsi54mgGVZ47oX3bMgIBEcb2tOEoVdC+vId1krurXSPTZ02InKAZJxD78D53VWlGzrhcZlUnVt+XwdxxpD91iq3gyc3q3FRckJm6lHzG36RRJbsW/Q+hEX/CV+dRkefEerOh5KescWxjDkyaSSB6JzQ/SDZ1dhI096EFJbrvnBTm8goQahnO6e8OaeoPQikG3XvO/sD4obDa8FmvwcKafeEMflB8zWsSQEe9QufXlP5PNy5UmkwTbgjnpw2R6SXfzFITfQVamcWquZYQSObDk47uD8+QsM7MRBl4sF+L+9FtruTecgEQ+CTG0yUEw4xnTFst9q/CZThkDkuy2lyzobjbhLTTUUC6xscVDGd4o7DGrAbqoDU2U9AQWdjgUF7Ko+POciDvbpDcvZ1USH4FCXTrEL7w6fFfpw9d4Ql/IeZ5G6mUPfiESoTE74GXZ8Ii2i4A6ArSCgrybGX4ayRFiS7iIY3Y93btUNyuRMFSoXdlfsjHTNDTzgXTvMXf29s8uvlsmZ6VFuzjdHKlk/006LJjZv9X4eMA38VfB/1GeA4KWeeGNy0aeHLf/Br6pONRcitB5T6+Ma/9umUA1U6dJpaaOjlA6n9hRR1QUhSQHs0uh/5Ou/oDZ/UXIgRrmUbmwlrZ/iWKA6UtfJL1DAzuW2pIaieBHpi+rSE+YBofgOX8xAzg1a0AMW1VHMkgf0iSJmdOzTXzCPmOa2krjQ2ibjxzqh5+NVKv1WY333zXHnDFCWCMHASTvtoU2jSEtnmUs2zbmK1meNF3IIxLT8VB8+2yvzJl/7OmLK60IjUp+1yzPR5+ZI9CYX9DUevRuPm5GTK/firaDOHB5Ye2irWHvaENIfakUPbQLNqfi+pOK6s/2Ugr5FWC6yPw2Za7KZqZW+JQek4i0if7pj1FHJqyICI3N8p6E/8iD3TRmZYESTEinaU7GibSj3iRu1FUkO5BP1UfNoIAaRHZyvIWI/cr7YuoV7tuoesYOfkm2m8fIdUBPxylnPNXUBWUKUQq8+r3cIxCOdV7UHlCEp314X7DPiAY+e1l/Bab4Z9VEInQwFMpbrTiFTVRxjFpRVNcyfdDK2B7cYPO0K2xzp6HON93NuwRzxZp/7YLVj1JUWp0z7c52iT8yW643wSX4RG9XOzTO1uf60E0Vgw3ljLJ36NGuuLv76SCSjHn+ff3/miADiaRToQM4NQkHORbBs0sWZnqQ9qLFcV27WbFPuZrtRKa9l+GvgkjsfBwkpSGoACcFW4PWKQTTsT0PEMrj2+TDc+3ZiIURGbQs9sDatbVX1IIOsppZHJSc7dFUu6c83kMgLPIgJ9o/H4ijzD8DKUa40o6Oj0U2bjmlHAGr7wS9XcKRDFd+0Ld3YD2HTiWQswrHTFMpzbgflK+U
Variant 0
DifficultyLevel
521
Question
Ken made these solid prisms out of identical cubes.
Which prism has the largest volume?
Worked Solution
Volume of each prism:
Option 1: 5 × 2 × 3 = 30 cubes
Option 2: 3 × 3 × 3 = 27 cubes
Option 3: 7 × 2 × 2 = 28 cubes
Option 4: 4 × 4 × 2 = 32 cubes
∴ The prism with the largest volume is
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ken made these solid prisms out of identical cubes.
Which prism has the largest volume? |
workedSolution | Volume of each prism:
Option 1: 5 $\times$ 2 $\times$ 3 = 30 cubes
Option 2: 3 $\times$ 3 $\times$ 3 = 27 cubes
Option 3: 7 $\times$ 2 $\times$ 2 = 28 cubes
Option 4: 4 $\times$ 4 $\times$ 2 = 32 cubes
$\therefore$ The prism with the largest volume is
{{{correctAnswer}}}
|
correctAnswer |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/12/NAP-J2-31-v1c.svg 175 indent vpad |
Answers