20357
Question
The measurements of the prisms below are all in centimetres.
Which prism has the capacity to hold exactly {{litre}} of water?
Worked Solution
1 mL ⇒1 cm3
{{conversion}}
|
|
{{work1}} |
= {{work2}} |
|
= {{work3}} |
∴ Correct prism is:
{{{correctAnswer}}}
U2FsdGVkX19YlZyGts5hLgFm39kWdnpKKmCFlyOBFx5AKvvi6528j4BpnARafI4h64D8JgUBHHmbuV2ST9tBR5Lo2Ez1ijKlIgQ4yRvBz6hlpCvuOY4mCB6+nUSMlc25zV/PgPo4FseHPzWYN554du30d/ZcNsrcisLGdXw1HMkVbrx60AUC58wmUVuvr4OQfHlod9iFJGixNrg56joPIwSOAUibZA97//qcPqmnk8C1UzJ3ixR2C5bnPKuustQoRVDfMfEpPPRMplMRKdkkvlKEzWMFaF7Cw2MMoRz+Ht52N/zagOq6B72uZbg7zBinnJxza1A7vI6CVbuu8VROSwnlz/ZSQDFskObRe2fVLAxjgMtiHs+W6to53MI93a8eUq/ipAvceWiyAMnL98o4deWcuEA7aSyEgF3hKgrFtApAmrVqczbSMO+P5RreDIqiakUYLHHmeUd1uGiNcdaay+RlUV9R1f8BG6ZlzkDNdvboTuEVI9sY/dgU/eRzr3HR7uMIqU5mIOjhzXgGMp1E9JQNYO7dakA8zEulby78IezXBWvnwl5t/TspvmP+2quzwUkWGvw+efj2XTpBDGH3zAgbw2MtqVRjQBzeDb0+IDHmSXLHXYVKa2fltol81EGwaevfgOSzTAyCjnpl1BhWNfBkVFEZCNt7RBaEgCDqtLUBZO+0q/Qrz0hQa0iAIzdT/ZIYvfbLKCY4bJSaVQZ3xeI3u4bOpFoozclGj03Z6XikKau5uy/JobNpS9kvVHi8xgwIpQAkmiP4QDUxhqDmx6QBDDDilb2kUd7f8/oM1M/6amltHI+qkKsID5QZbyqtlAawSvOMog9YOSJQKM1cZHYTQArVFwZ4PoVcTRD8suAAKDD41eAblo9xFDabvPAEDh5DwacbEOZuibYneAlet2+Fu/tHXJjUKtl7/Xj48wzCWIfUabdQz5sx0705qhb33nZM1a/KoSLqda/fPdoBf0WmrQUaP85OCE7eMnOyluRprc3AjVGtQyms6I8ubflCEc0MOlnxcQHbis07Pz9/wrSahmqBGw3Jv4EvBwsIjcVN+WuPp+nUQaky8+Kmt0aKCeVHBUzSrOEQwtTfM+sijS0r6ClAOs/040l6O1rFHEFi4g4R+zC5yToGdjFbfVIv+08LuR45s4KozQ6e5qPGsyzZQkWbdYHeIge3yJDE77WM1U4A8h3WSaiyOtkM63D2SBu4nBhW038WiDGYin3ud+GWvVgt3xWrRM/YCw0c6VzgKR/YHIhtUE97i6GVg0DkIchbf+9ptk7CaZianjdkfV+1rAdKonxVuLCAovUJnAMcZHjDw2jtw9IbiQ7qf47I0bBaRTZpNPz4VnniXaM/y7AtkK4zwkKZlnTpoaIlT81fvK4CdjfeKekx88wiCVx0zuf7RPpxKK3JmqkYM7XBLM3NUr6G/igG/oW4hD1U929lcJrUf8TwQiztpY4wupfsz6W214rp752O8g3k7slKBLM+CmfCFiSoIJtt14OXVSeAHjvqBUCu9GpN+a1StDmXSb9CiA9MntFAjdR/7cAVlwCiq4CiVQphN8hWlQNnVAZPo18XOGAbMf/GADQGhC8nO+8H7u9HP+uSZRjwvMh+gE0/UpVc7lmuDqmGZUKvR9KxxKi0SAYFT35PFP7OnYdYr9EYGs8Gp5Nm1g1n2yXIjCRvfS24FD4Vrxx6JYfcPhgQ+BlGIu+0s1cR2okVvVpv7UXdy0rl1mtGYmztWQUfvEQJKYcCi7IH7wHjwc6Wz2K9d9WUyRqhYVIyDAF6uNQwCYZOPe9PTjuy1NXYN5ceQ+qFl+e372YDwSah0v7hub0EbEK4d/Ga/wwheeJtU1vzueJvaJUruE3+RkDkDwkfeTKF+pRX+rF8/wr2N2KpxPzjyfNNO0EEvLWmgk355DpjzTGB8OJh3roN4jCFDdsau1aEv/V7IWE3ndW4OqmWtsSo6ocKRXmY23+4L602b4RWj266tjqz2Dt0+42vUgTP6znL6firNEUF9oOwi3/m+0MH8lqR+bvYuadP7EpIQy1mUcAKSc2YyQXN0Ag1LS63XO396kGen9Esf47/J0bsD8X4XB9RMcSQPpF8rFX4Ly26xYrBZ2X4TCPZ6fxYcb2qT/M1FsDywVeecZJaeqJ5FtXo/tWSlvxgcPte9OX+Gw0KNHgSrGRCzJYeHQIPU8h8+/16IovfjOYrfPnW43yomfTQgNbAB+lPwwneJoXwHdYrH+9ZOorAcP07Tkdx0+3rIFhjiOjOfVyV9wuZAhBmPpkKCB5UjJcU+VxJDvpBhbyiyR2i1nPoRPQbjqjjm9JGNW+WkH83WYo8QR8k0OJ9XOZE0LRaD5r7PoPoLmJqn+IgjUtfKNQRoeJlk0uWRCnOvPDolnN8L/I/Z1RMIxpHEXEEuzOHk1yDf/1RC/hSQY27c4/SEfTNOpsBsNCCplW3maRctGnowz9y4RmCNvHN8zTpeT+o282prI7FmiFRbSoren5IMzIvna7q6V2OzcxIF0HqyqEvfxn8tvfVm0Ib7Axd7nvcS6jwunjpWQxYtgXDv5bs6captK+FEm7UdEuc4O6yn+qsHYIZ9TPJefk/LphXUJonf+uBi8rJk7ZzghZd+A+IARM95pkLk8tjDKXJ1kk3wj4GfT1xanO8dJAAQwHNIIX/oTvS8gLpAJSafNp0PQn5QQsZh7LNftMd3GBJn2rDccawwRJHErhfSKNqLsN9Mo/Y1nsLbzA5sAQWZJK4Ac0SFK40OxMyl+jFST/fL0Y9uBO4n7RCOAI80+KJoq3pokIU0BHf+EyAEZn8RtIuNoYalp+fs2bst8FqJZDVzbmZHUWpMzJBpLc2LxNW+XOPgwPbyWn4vzQ59a/osRy6CXSsNbi+KJQQQ4Efpmgi8gw5MckYDR4gpxsbY8E7ZPmtvDYnBZfV/gKe5LwSGms6fwrMM4n7qtK2aoEXrA7fE83A4NwBL3hjwsZFu298N6VxdHILWNELf2xWDtW8wbXuTqvBxVK76PZoRJORZvpbOUYGpktt/f+jTS7TGQCCbXYk/7UHFI6ZnSrNTiwHNSAOCf91/VfZkd0CzLzqpV/h1k/PSIcuKH0N6TvW3ah2FdteG2ICTzKYbbt06YVz6H9EkUsMxsWPjWYn1yrVYWXbUZoT7+r2Y0KDRobSnXp3egA/vU44nCspntunvZu3upfzTBQcvk5zHzsAdX6gr9mSuaD3btzGqYet4nTcyDxfW2vppQfNxiy+g7Nk0YhrdF05+k8dluejKmP9WeNrVGNKHbcnkHfttGPoAt0drSSESUSfwCLQROrRFLl3K1DpJKMarDUHezSkCAgRFe0KX+KB9k/D5pU8MT23zV11fyuBeoxQWkOWibzvHgYFUkqNOpn89b1/Wrw1QgQXHeQn5rg4Be2BDeK35mkjn/42Vhb1ybY6ygAaQEzCfOt2qWicaLk4+V6XyLQ3A3EFEbVJetWF1/RrjbE7OwAtMUHsxVBFU4It+79R9imxpd7TTacUmZ/gRmuvlReOFgijrkS7xLCR6PpBp1qSkX87sye01LoVlrtVg/jOXQKwUTqX/OeUXRE818S23+qsO9uS4KZpKf88K04UHhotCMjbBzn7w2aUB+Z0nkFHjanTyykNDStMLtaXTGj9Z8QtCrnv3fOkdL7uujKJDcriZ2byEDp4UbuNcer97r5JNTVg2/YAzYV5PWXprvcD0nposk/KuXydCyQ6SY7ZVxHnFlKm79OOR5deuodS05n1Bu5eQT6W42VrQRSuTTMw2dAuyfGgVh1BLSY0Kq+jMWl+PaKZmZ9FEJflXSCoDO3hcnIdX/0jQyi+7iaVeGpAA/Ng2wWrPaRT7osjLCR2x2tqIkZd1acnvSEGTyF/KnLrNwmFXayRIH1AfWhpN835LMUrerdbU3eepNyepUPPqXaCg7oZ8mdae+KNBu9/S91dUB0R/1G8Uxj7pA99I4muPz9qhMGShEC5ypJBS7R4GMGDxQWy8XFfUZ1KbON4RBFGXzKLftXv9O5ulZVciYuZXIGvlpBhzTj3OoZfaaYO/ncgHT4048JSV1aTPzGKe/cLaLAVOqUIT9EjJ6a6tyrKzPhp7IYLw/nmgc9S/cjDAZJS37bqtj0qEQlXYQ/xVr5du3YG2LjFiW0ICqean+4KQmGZhDg1eWSBE0lm1+4iptwoVuPN7UHnuO+atafH9stXbNFCnjIYEvn7ozINwglLGM1nbFXd1CMoYyL8W3RDz7VJ0RfKyviy+8MP1cMeHeI0buuQ+xQ/yIzS6DdZi3P6SIjLMOfG5jJU60riaKNOFF9gZZ/lgig6YArlC6VRrjRw2g0/DxwTDfJqQh7dEnXKcX5gubqXQ3IPyTwCGQ+ahQ64kjJWueij0A1OiQ6xsya8v6NZ/R+ynrxWBTzpcN+QOLGOD8RWxiSNzz0kkEB6IlXgma3D8eZx+LjrFbhnEB9zDZinbn2QJhXKu3qmWXqrWRXbOUI+x5lTvDSABJI4eBo8yUNQMeyBrpQdbPnyqrWk70xYvhpMajM3NmOzsqpqwQtsSPzFlMdWUOKTHPEyBggr/7ktcdGwOvXWrRl3gdHcRHthd2ZQnJjiW/YRWEw0eJQqQYhk1g55VozdfWJlWiGY9HXtTUjg/9kr+poUYNAb6R4Y9xa4pNhkYypLKAeTZqDUDRN3h7ot2V10oJVUH1rW8ixgUoI0PD4WimDwEPMnksIDt1Mwh1gUVLu3JgMwsU/NWvr2bKwj6ej9Ob+zUaMU6NzpIvWm10k+BCAAC5KF6yf+f83Foz0g1z7zJ3SbEWHWtMqSxOTMzAzIRByFnQJ4EK9ofLL0/3wvQhdc5SdaCIp5xj6q4gR5cE0wnctcJLxoKgQTyh6HEjTl6PjOeft8+HvsSV3IvZW+0fJqHUgL7ZMdVh9t2pPpnIPQw1Kpw73xRwfT35MCcvsxaNGBkAhYpPKbay1YVLtNVFKu8jVdSNBeX5ez/Hytu8ASfo7A9iVXhrlfRoTN7/S6eE8aj5O6UOd4a0hSsLMuEBToLPpun0uUmIYpl6iwAagaHpfraPgKJCmqKWYEl7slKZMVi3Za1z9ADmJE8WqyzbrQO2Waww9F1pjvp79FxkiR5lZEaK7RT+iMSFawpzDreeGZtNojnA6grvQx7RJAw525zzU1LOojHCGi0w8sUhPfTfpzxr1vQT8FJmJqmBltWAlY/VlLG8Qx99I1AtoGkqhdDECJMWxlvrp3BMIqC03c6cDCW6NwNBd0GN0GSjFQm4tKsaWqur+PqHoxaqtrkOlF6Ba8GdOsLHyDp3Ce7QkwjelWSd55aS7Y89scFwDfzCpM6FIppJeRrJQlQtQbnMcVtR2ur5Fz1II4lZRTEMeyi9KTyHhc8qXm5DCumhJZwg9UA0tqcaQ7QUPkCHrektf41ZxmH904MOFO71uqdFR21pU63fYBuOi0vLE/suUbL2jN7GLbdhmLvp2uy0PcaAji9smQ23NJIiYGMCg4vqNQcw4qJOHXnLYM7pTDuIsJgWj5RxRlXeCxQFD30DSeBBAHCzhR9KKSyFz/0SZ2SaYc+IUJokNtWWvGX/g+bq5E05oJ43TuRBXK2w3g0HpmISCIFuuLz+sf0z1VBYbTie0S0vRsEBImRfcqzeoGQdVysmtDrSlow6qWw8+qO94uhzZjCFWvhzmoyMsqjJ298LfQwZEmg9fffqTunsOCqnaqgP0y3zhlia88Qi3eyXWpdLwFTSjK7oUy8VKQg38w5Kb62Ctcqy1AEDEQsN8tg+NAP+OF5GyQRCqj+f3G3juJ9wBErNZ6jpJY1YGeRv4tdj/UlDZMm41Zi4j6Llwion1+tQ4FUSszBGrT+005G+wvI2BDImSZplqJTZOVNKP4qF5i94Ovd3ADlYLQ9yQId52ELmthaU0XQyfittcsDN3WggFtMl/r6dH+Ysb4vFkVMrwm8zI7FJMn8m6FrxAlY+Zw9fxtCewMxRgcE/b+r17ClXxa/F7tKyI7V9H/oJciPvDVdivfpd14x7PKkcO2PrWezpXj26EAaQVJ5smjqf5MZC46ahAl077peKu5mIWtYUv7U+E3rYHq7gtlAzLF7KdFwree36P4LIWKzlSdL3zkqh1pxV1WdmT1Vq34+Mvd7MdGv/IPq0edQga6vr37IrcdWsebPEMWt8+gS/fkg7BWc5e3/O5YryR1L0nbQ+GtvJOQFMASGdlKqhEqyJmZVYFA5Jz9yG25sAWkGulaYBeW3nRADlyvsA6IZWkctVCBBHxJUDx5OrzsXreheX36puNVd9FzZflPSs07qWs/ZbdiV70Du0m9WweNNOGS8E7LQUmjPWHBYWSmpn9xFEMEZwpwStHWWfWUkN0gjyc/4rBipDdeJsYjsCOU4jMHkOa7rT3yY2kjnFH3Wypzjm49H7PcXNFKMwa85Cgr8m+gT3VHc1QRRsQy3JNwA7ECfe6JpHb7KFQkRqQ/zNooBBUKhdx4vZqMqP0A5da23ZZP7u4Y5o3n/l1d8HL53oniwV9bWh9gJm6CVt1yA6aKNuZDRTVvZkrqjn7Kbu4tzqHsKLdVizel2dZrXCzn/0rZqJUjJy64AmcOry41U/lPNl1roNBV8ILhyg70sT+l4mIkUku/zxCOnTd/YiFUeQSwOYkVivQP70mpcQPLtcRxJhPstXK8O9jOPlNrgFwnVRGta6gARctaxBKOmJL94Fp4pp5GjxWGnE00nHO/caQ9Vq/g4ROQ99/IsAhyD+fj7tFX2usUMuBPyV/lzwTGqMXc0sbG7OLzGSLnZ6V/IpETwYFiqJNJvGA8hCl+pJ1fND6yLt/qzYQlOY5uDKpzFx6mhUxFAZJV66ukklzXeKx221afjgM9l2SzneuL6XvNWM335/7w3X2+KPQ+ZXQih91ry+6RUUIIbXfqwFq96nNOmFH0MBcfM64jDoDs/WT4R11zuloeRg9zPL1Y2E5zcgAVvVu75pmlBGHWVkOQ8UxVV8LQIl3Z/t5jYsTTiLhJI9TX/ZxrLp4N6+3d71tPpW0Dr6A5iXgOouP/zFEly9FyOd5N8V8Aj+t0UlriLQkoBVn5GMqAyVd05sogb6aERiTGRVzWdN5N4vjWfSH5OF3uaYQLXPVHjZ2VihFYwmpDl0kcaAVIn8Z9L6kexvoydx3h7sLLJUlDm+3VAxv4ACy1yDSsi+EHSLcZMpUWUYIPw9CCxow+lvEWRLHA7wbOlu342ozTXNtg5lbITx4aQu/97TmYmvqPBtbmjSprQkfLuNvJMwIhhYpXiReY3l+gRBGQKxFFFMGBaUGVhz7zfQVaqtlnqhCL+82uzw1Q8MSookSqEZHt28cDuL741nWBKr5TyTGiO1LUH0ZjK6DuXcC+Kk5NEdLNBtSFB9Cst6V55P3KqOSA4sAllFu3OnEnr+zw+eojz9BXUwmH3ogJeKlSNJmZ9lM2XfbUsoHA7l2z1naQJVWcD8RMZmyvEjQIGeT3Qk3RbkaMVTMADDqV10QprtBEX2AdmjCkveLgovgKgTF4t/gwhF0nPbx8jekptXLnOCOKOO0Ta2B0LfDvxrxwBwv/TrfvduTqPCFddQ49xeijDlwWyrwaCEuRrhbPJ1CUfw3wTEHpY/dT7hORcyDRA3t0WKrudMBrqtii2nV5NJ4sugjkx8oj03En9y9Tzq+BufBeKOTyu/WGreLxJ3Lq5xpdl0iOPtdz4yALhUBMvdJPHKxRkDcN2kelXRSCUkzY4xf/N9az5J/Mh9BLkLMP7nW5m/8wvPXhq2N2ZjYg0XGKvgBG+Ke98XurQDKlZ4Viv3GvbVl4vHH1M3nlZ6UIgbL5l7wr6li525NOXObE1Cq0tff/gQKJS6Hkk50mMKjGA78AbFbviNIOT9KX0Tm1zShUWa1vg5JL00h0de1xb7cp/749xJy2CyJnbk646Yuc1inWD1UZevqLN92zGFNKUEusNQ7oEK8OW1BI0Ip6lVQGMTxgPLcjAslRU0NFLp+5zlk3AeE12caP50R+YrXMOpLyJMtDVZ9u1AQfbaZZog50oeEwc+HMikC0QMnqSoxq/0jgIpqWftBbmWJOZHdcP8Tw75TpsM6qRmMiRrTK7bnCs1ptnzF/twysYtTauBjgXGe5rcCGr+//VQ+5ChOgcymQrixiJSngIeRmcLdDrIQw/lHAS5p77i5a+oSAYqyYb/W0LN5RHJNdCYHGVCAjY6niL4yMGHMjp4a70sn0xhoWGso0HEligVZ0tJXlS7778+2aJwbsUciOa02KcpC1lqUDxtElouI7s5Sz67VZk4Z3uz4Oy0U=
Variant 0
DifficultyLevel
600
Question
The measurements of the prisms below are all in centimetres.
Which prism has the capacity to hold exactly 1 litre of water?
Worked Solution
1 mL ⇒1 cm3
1 L ⇒ 1000 cm3
|
|
10 × 5 × 20 |
= 10 × 100 |
|
= 1000 |
∴ Correct prism is:
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
litre | |
conversion | 1 L $\rArr\ 1000 \ \text{cm}^3$ |
work1 | 10 $\times$ 5 $\times$ 20 |
work2 | |
work3 | |
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/01/5var323_a.svg 100 indent vpad |
Answers
U2FsdGVkX1/Wdzx9a7jGKWQ602Tvya4YEBfaX3NmYhzdJzRdMMrkkDDpzsxbAttVHxE8xunBpcV5e52NrpaU0U0CQBvJlyZ/Jqd0ShyG8aV/AMR0AhSUysTsC8SdKh+Nbqvaf4K3NRk3ijavx7bLImhUsrm12+Thqma+ezZ1D48V8xgbost+pXqCOLh40wpx9gd1xc+VvicDPbyP98zB/TbP1i7O/5ZQL4IT8SUSRBPABS3qy468N07TkYNRQjhvFcI4vvbs3WdL/rxWFhD3IX1OBebpYwCBqntELvd+KoDhkAGYeqxVBaRaK3+YdZL8Me5Wj6O/tZuCp9QjAXDrgYZFpk+rY+eLWsP2KR9GLUAT5COMCNXH1sn7x6keKoDOH0AJje4uGdmyRq/+TBHElwvnU2yULxkJOUWpCYuaxBXCCxfELVfjobk6BTKIq/6Y4Rd0Fms5Nq8qz3fv6/Nh0VBQVPnE0Ttbvkto80D2oa8cGnjqqR4zp0JpDLcWw1zpvOw5QdMbZnoTnJ5mUeUrMmGDAPHvkj3S+tlx1is1N/793Tp5LbxfSWKucmLWTgVqyS59nYXpYrVm8TLSfODOAL7Frgri+gT9UZmoJtYlGwkpnyBlwH1ESit3ZY5m2sNDqw6C7VgO41pVMSoR0VkUxfvacc3Vg14NM8+pmQp1ABOJ1rQmSpKubsh1Jc0kL3XKtUwAa6jdqPh571g6RMwAgYdQk1zhFjPde4SSbN/CtNX6FVbbQeBeuvBSD7Qxpdw7XxM/54bQQIQDBxSsMyT4OtTt+xnUCvgMUkthHjxvBxTysY5PIAHhCl8V3qZQlSYDso0pgcXFhmwB005yPqc14Z6oXIax1P/9R2fN9k+IZgKGpOt4jADlzIF9exp2xeHn11JcohUl4sKcC1x7MYWpk7w8i3HjlwwPvjuoDVxonB6RI69uDsDtr/nhL62vV09XS/yRrcaVI4hrViNMy1HotEBl3KWW0YyoS7Hkak9VHz/KyXQQIHN45FgU3XItxJXhhxvCqFCA0MNrQJ/lePw95ab24+Hz47+yNSdx2KInsae71S838HyFeW+2jlYWKbUgN5PWmenZgJ9e3N2Ugq3Cnj1I/ihr8OLXn/R3c6fwCB7aKYXVb0uxj/01fNvxzCE+LqX+3brN8PQsfgahJXKYZJILJsHPwPz8G/896KokL3BKhg2GmaLqtTEIcdrA7fiFytXinCRovXVdSfVzMg0baeLWYE/IzEu5fZHGz0XNB3+Z/isBbtGHgFDUERqTGVNxacrmEj/JPIi62/A5mIcdUZfPcV6fTFA67tJWxYYAxwjiGDUB0hX4Oh0WyvGSZBXvNMIkVhXOLVLpuBMRgxQlGVc4YBxMSgc4+xJClOr9apaXKRc7mZFkV+mIBwNcGVHZLsP3AbqEMKQY66X1vC14KB0zNMAfC2Vtw0T8kdyiUvfzFZ38AX4Ni8/1MivY4iO5oz99fVmXs4cANs1lwn2zL/ptgNiq0jTY9mbId6JtlQ0ojimeI5bqVL0UTwQofty8dG9FLlR4iHmQC1lB5/3kAu64rmxbSwAszhx6GpZU1yQfyWlqEN3INDc61xOsyrtAfijfi5FMLbGtB35YNcUAk8FQrQqH/ts6MyNQ2MkOz72gHomi5Vd2hWiq+jgNO6x41/5LLFXko8aUeXpks7XO+S6mHSG/IzgKtw7PzpMTciLsLqoPdLVbnb1pwAjoT7GTYmm1TbXG+VWGMU0FGv61TQWRC2auIaPB9JoxOCnLvTd/BBxHm7l28i/GHQgv3v4DAE9Z4v4vL3FAOi81MMpU8mZGQmYgd32riF/q0+s7pRPXu0+bIF10zTtc1DrqUgZM4Wuvr+MPW7c2aNIa3pjErN6bWgZt3KoLy1qvmYYvPrSGN2a4JRpWdfqwvQs4Wc+gIptUdqyWIvodsQsCTpEz7D7m69pRFZqTWy3BxVN1ALZWHRJaCgf/C/5p17AK8NVFDMUJSC6tWkY+tlCfharSYXpdV8wI4e6wFYRQBJ8SokYpABuoH1Q5mS8Uo/g3knQOjU4ZKkV3fg74DG4ZGuAjvRrzdo6D0bLJ7JmBtUpSm3RjbXLoPNCj1PLtPvgizmMzIDphhdZqfOHSEPuFX/u6HJmk5TcW24H4f2kwGJlMQFiJniObsclbgUbXETRrYO0BVN8hV+X97cnazquZuLJfCY/EltYsV/9Q8ZEhvjekWo6pFnhgMuWqq0DJl0y5JIPsZtIHw2nrrdCwig8OfwscEa3NEB1cCWxthj7sRfjE8jl1enKHHeYi7w6SLJyjJWkfrgV0oDmZl6t2aq0LBE/jd5jHafkrCXLjsHefewgwtutqlmYOqB0cRHGKG2z4Cn9izLFsYZqJPsOQpVMSsxrpLtj6kD7awyEZdSIBDfSdpMacOaR62+onQKPLuhIDiBlkDm/xFxg0HuIl5OScU2WntxxWBW53rgGHNXEbrd6Ck9NHWjv4D4r+K2NUaiIYUPwumPZFjAefAlDJGxl75pXdevi2W42Gz2a3J/C3daQBJYuhd52FJAVn+gIz8i9hZ5d7izENUthG6LVVF2kac0NFZFYXIO3zJ6eeiIaC9m4FG0sHYrn/r5pZxY54sgGsCy/MlAzabEUfyB5e2B2OtCtIq0YVlMOkxKB8rnIbkOxnR0vBL9qR0KIwDX021/uB1emBGyMGkVNYMpEpzbm6C/LNrXmB2N2SGYFK+ro3+ZHwKEUgAb8AxjXqmeVZi/B1H7vBIZ1OfPRgxTuczTozO1BCM1p8k5EdjYOipl1x+AxRxJNSEct9g23nWX8DK3IEiXvCqLnYquWgTt+InsiClu52/K19iUKgQhYn8umad8HqPv8n5Pwi/1xwXVihjjiQ7s1ypn7oS0IloUaRJZJWwguqOB2nsH/JoOOb12XkdG4KqRhm3c7TW0LnM0jcjchMzNgMoOYkUbctSwbt1cmRsgmVmTq6EzRklVrN4kSTVyv6lnidiT8bk4eO/U7BJmShh9nafXehJNegeszAsf6zDC/W594BaEd5JpoQTMrmDtJFX/hdPh8LEouHWYvkzQt1iTYGvdQb/CR/cRiVvzIlZv5cprX9sCRNb/jlSgOwgBegX6TeumwAMDmJ8zkoL7V2hLTMng3grifH57B2rzqHR7GBHYQCaoaSpKE5LlVUjkF9m/XZMgIQoTKwcnqPN0QEp50ljiuhX0N+8QQyx2QJamePSyiFYp/R+hjlYObhL0z43h5kkHhS/Y9OCaj9PE/EiPgNC6Kup4LKYlvoLjJuR8A+fs4MSv56QsU3BmhbJUIrT6qXZm6pzZGTX4LnZ5M5oUrPuxTxGEtYzWhwIoUTvQ+ZiBOLktN3EAii4k/w0Pbgh895O//Q1dGuoFWV3EJ8oi8pQK4cIRwZQe+a05ySJ1RZT0mb6yvP0sQQzCtLELe7Fvc/60fB50RkURYamLHKZjU1DrPslSrHzTfIJg/JtHnGkjluFe7GEolJh8WKBEUq1YLcLhsaGkawNgzYZH7mXM5bHUqrv4PnIUxAUL5UJrpE39plGVJScZU7BRtoWtbfsgy/xjMOdxfjEtFNR0iTR80I60MsoSLticgSiFQNnXLgi68mvpH6fE6tL/pqVvv7uK78Sfjoo1ae2u0Gd3MlJ9AllXWZ2+zelhSF/b8J3o5UTqZUlmucQOK+0MHgZWcJSa91dv/ypGNNIMUpW6pHC+D3aBNZFsvIaEhVfS5hgXIJCoES4gOhO1B1NGapzWr5BCzXVCQNXtoFrIWdjV2MrAbePRBCh7xBQ9yC9LcM3cJrehC8N+v4VBCFQrI8agvKkMzJlWf55QhevqdpO1ls3Yn9/+4WLr9jcNuAQm/cXIvis5eGnPvf7HaCiKQ+WMdOW4O+4MpG2o1KvpQ3G0HYCpLQX3T544XQKcy4b/G1/mBXR/6DM9Pejeup1fIxMVRyi5DtejBzaz1vdv8shw9kL+yWHObZtUqk4Tj1LW0F+qzap1rx/qznbcGHLsYSjFwt4WU7YwvtDwm8/pSdL7gBBjd2aHYMhibIkEfphWRIxmWP4gzRB7csFe8DENZ2niPsF5E7Bld7E+jgiWH0z8cfBAcHbNEJxVWVGr6x+w0gpQWeqPfjXmYi0X6lgaPg7JtWpqqwLaUrX/6ub+P66dCsYjMIC+pH82bk140Pa8d2p8KZVnhwGS+2fM5deQaTBvcgNYvdIA7KR+podzu5pnS2euSEl3K/J61gF/bALT0BOHnAqkIsrrJuPbCQ97OOP/Wmm6n8/sceeommyu9Z5h5GYKv7uBXishXwjtmga01PBaOjaG44wGx1sjLeJE9Sc1a5+Il97NbuimWp4mX0trgla1kpiHHVrN2G88bYBhdx6pGG9htELK5uSo7jS1CKrroaYaIKTL5l8Kdhth9FiIUhwyJQUkBZhT9MVafh/Sk9itX7KqM3ROIbq7OTB5T0JXueiOIKLVwsYJlyBzXxQfBEp8qvFZP7HmOVSjoMuMC/2K5Jd5eamYo2bys9Mzek8P95N3TfpxdMOTfgZHwPRKnJZeb5+UXB5Qijy0kVwJcNH6+b1ibBPxvFgy1uBMmcdFP1Ll0FFQwprgvLhK7U6iEXDaNicZXnzt51UhOlq837qwKlAMlhCyYLG139sCaD8+2I2pyLLr0u3DNS73l0i7iJ/olkISMrhL4sPfV5ApvbBTF0HS3TAxQq6IxWiloW7qcxdcZySvhpzEzamwXlSWdYLIy9zTq43/xmMvDrlcPd/iESgVeKQYr7soistKUycSb86SWMtWP3bbha2LuvEN0AFahXwGdoK8zcw4jv9mUAqGlMkQdtNRUPbswxse0q4AEG0z9nsxG5jVAJPnpgJH+p4I+FUiRRANs9sCJuYmI3qdzF9bwKRChMULPEJ97x4utThO4TtAuJlqUjR7lvwiM1lmdzLKIgDK/6hlTBqDcD2/J//71CAFb/B62wDERZibFXphG9Nxyt69Hbiz+rpF9SG2fQ/vJBlFMg/JjpBaVtXf3MZ5q4xzk0HNOGXDQprwrSxmCEqpF+fFVK1IGXbMCzjS9v2nozHkW7E16PXu1mem5f3LEFHLar672NVDrLGJNRFISmpnQOJXmI42vhLZ4tqQjGXSZf2bkyVmXpS1aoUlYHzsj7LCizw5zRL1x6JQ4FUG1/1GJMCvDC7Lm2YKKWHndDFbXePvM3MBNfIfd9o59O5CqSrIkC1bFWQpT3jPQu3m1R28gpzVcGviP6mqEgAT6tnMRXzKGj7+Gfismh5p0mLxC82VDf8lAYDgkPHAvZpT0srBGQH6vRK8bOERTkA/QaMgTECMr1ePYyrW7d4+YeUMQlx8t26aUvqQknI3REmkovls2nzMGJvVklpIajeW33snlSEGaiEO9l9HqZ8bFbUexGD2YqVh7svr2QToAnPKOTc7vWAn06QuC3yhGCTTlp+tL1x5TPOJXFMhmfwCJkwF6l2guFu/T262kwkl1U53GNeCdc3fc0Wf8qhBs1k+hhihZU6os+Ur0hDZ3s9bR73oRNaekbSp/AGwr+k19wHYQyo4DaMKBvp2KYUmw3ykWkIsMCxxxo3WLIthxARFICxP12/htdD1Wh8HhwkZ3pV/ndWdonNl8dr9QD2Cv5e6lozXNnspW1FgWuA0ahe2d5XDpNnWUNHQ1ih4S0AmdgLpwoDx25cntEDlup/bfsiqP8cnGYXvlYllzhxhAmrcVimENpnWm7TQdHC6rEgZMrhNnb/HnVAsAnh30KrwFm880doEDeKksmb8JegtRIPa5xhYnHLTfqzLTCQn4F747tM4rTqCVNGlBI7+G1yF/LRjtxhnwHV7t8qEaixeG/R9FTB9Xw5sYjuj8j+6VZjTw7/3cTn5D1mih96fvxaYhtRfRA5ZXI8FgpwvwEetW/mwPb4fGLTSE14nZ2XFJok2+WaOsblzs3V0o3CmgUAc1GYnN50hZA3a66BEthOzcQ5b8oTjpUwx7h7Ong4nqQX1K7Ypoc8d+4g9/4dCaUXCkqcr5IqPgQoTh9wRXVKu3MhMtteppEwBeE94JsNAC4z0cZEyN8gP55zAWzKVKeypF9uGIhe1F/+1O1a2uZde0qgbI0Hn/S53zc2NStPu0eGnCZS/X0wfyM4gLU8z3Txzn74VTkyOkfhiYmRaeOk31RtHH7RYt+mG/JGxhQfacBdzSSCipQ6Syw1d0AZrKSErPnsCMp5zo/RAGXHApaNK/9VddBK1lln9/rU/TjovJj4xgqKOaQiUYyfaFbbgEus7pmtSv4U9EuX5SX9ggoKx4MkoNBOfwOYMIo0NkQimSdDyqm0E8DYZSA1fetjZXV0sGwwoS5I7iIzvgAyBx9CZz7GaHRDDRfK8C6XSLr5HJOXN5A+lFnGLjh7MPTUch4RzIalgETD2BGFPg4siSovFsFlSimomJqar6Yr+qJXc75DOVmwBA4uFlmHZ0niaXKg/6MePJ/kkTGxq/sLfIZYPdOKuV5j2Ac1jBVNm8XCGqZ0Rjn0rl4M0WavmrZoqTHml3N2DT5ZrH247khCmGUm6PEX86Y0kZpqz5u2oHzrdaNrxWmgkiTRLp15q78CLIkxjuaC6S2g7Dw3bXVEb0K8hzH4xY/dPZFqChE9G/qf5GlfOvEJW5ooN6eZPfLo58nLd/BE0d6VU2CLgta5qbWzq79jITG5PUovqYpsrk8oVEPYFculoIzZ0iCh7rvSNYwsdfKC4tYKntWIr+pAU/JN1WRUoVPlxjysoBKMS5lxlRseCJIzo1j4yNPyWENkr7Myk/1LZkRN6XsE2eycLmE29v54+LAS+CP3joApGkgE+te2UvJWeF/YRchqTRic3D0ySjnglYs5vIAHAqPRbOisFzR72kDohu7rUBWgqEGXdC08TJy9BSHphXrXMZAJk6q/zZIQyjuZ1Vma0D1Rrp5/SG1YxluiP5aokdC5DREsCwXhG0c4QPGWOdFN9gFQ5hFh/bBZo8z1AQmXaHuAplRxE9hO1wotXc8xTKylCqxsKF0D+GXo7+GMwaPDQ3MEIq9moxGIudJgHlS0of90XBtXXzb3VlBbrsUYHvybX01ymi6YyzJl3xdSOj87Bq3feQjcdYYx4TJUeBf3o9wtn7ObErGAAfi5MtFNRJCf2PYP9N9O0hwQsZ62aAFRE+wNkvJASMpwWCZ7Qal1jYazuwZmD9chtOsxNb9xSMlmRwwBd74qG+5+NfbO+eVh0YigB+J5jZwFtjI7CQMIBnGtXURLJRMI47Zo4t9DvPYp3qirWsH0L6M3cHfJv76Ysmk1Xvqys4NqUKoiGXIcqgK0KxjTlzswKFEeLMCeYN3tUwN2R3L9wn+ZCcJSArM+qFu5+IHL2toJX2mAtQR4FMaPDMPmNGjNSBksjmzLfkM2kupJ13mXa96jS3rixaUCkWG/7e6esiARShcWtudBfl2HupNEfL5QNh1pkKHex8pQFruL4iypU4Dao94jCaFa3HouKrP98/ZR16RsRgoFfOCvomTPfc/ku6azdkLpoAj7rBRVKBsjwQDAReL+BScM1JIF/eFy1jYI/BznupYkzqTv0j3NfTStUFTxJqyvqcisIgh742KDEq9ZTDY5n/5OXjpTJPqsl7rbySMNUNlD3LG60dYCdQYtOPPKqdJfXbYaCBjXxdYu8C9CktCi1UGcBE9ISscuONeOZyDxaJaIYzz3A6RZvPirR1Z9WsQBnSkvYnez6bXsEu11gqPO1uhh4WCc3nolMB/vSmOzlxSEIKRZN8C94K1HsYiEq5+KGOQ7jQYkvisgPoFKrD8LEivSo3opzQl/rJNLuRat6NhCzJVh2QBCGXq5ieXcxlzZLB8A6vTdt+mcBiPDySVXa9HSHhERAmU90S3ngaJ/XrbPZEd25Dkjd386+7B3NazMJhKIW8uh9J8cuE2YgDmMpbUBU+wLmiS/jJ3lv4wwxLGYOGclrMexyQIJ02P7Ef8/mXZxwIsyTyi1cbN+mQ/bKu3S9z8bzHKVCq4z6/Mp5Z/8L5nvTcQu47bJgKkiuzcW/4yA1gWAb6hKWkxd5B9/HcAi8QvNjg6EDzOcG896FSwKrcwj6T94PBkBU42OE2HXUvfw6X34hCLrzoGafNjPYn1tNUCNhz2GAQwzk6+tkiKBDlqMiPqVS3WvGUxMey2aQK7a9Grw6I6FO6rtqaRNdEuXmazU1CVJ/V4xHMOf1U2i9DuczrVWm/rZAfIorqVTu1K23Nw0aeEvEVeGW52zczFWqiPYRUS3P67REwFMoyMgKYSJqUxRKL77NohLRtyuOjwoX24Lir8hQW6Hy8=
Variant 1
DifficultyLevel
600
Question
The measurements of the prisms below are all in centimetres.
Which prism has the capacity to hold exactly 1 litre of water?
Worked Solution
1 mL ⇒1 cm3
1 L ⇒ 1000 cm3
|
|
50 × 4 × 5 |
= 200 × 5 |
|
= 1000 |
∴ Correct prism is:
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
litre | |
conversion | 1 L $\rArr\ 1000\ \text{cm}^3$ |
work1 | |
work2 | |
work3 | |
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/01/5var323_iid.svg 142 indent vpad |
Answers
U2FsdGVkX19xmBzDu7kDaBSDar2GwBePdUKZugQRnaCecjplsaBBGDl8K7irHRjyolPNWGZvkyZKOjUq0Pv6mbgOR0u9YBFAFYiwoAhN1mmDsTNYr/eBaz+S4dDpZmyRmstive5Zs/b3eJMoSTIn0kHX1kP/AXHvuTUIrwnBTCnUqqn+XKIza1uZ0kBBceJv3KOe55VDwmfrXVunN/QLEZSvyZ5Zn96N6sVSXjgXtcDY5JziM1ciCi/1SP5popmC1ZJfoktGjUJbBjiS+sjlwW60Y3PBvyYPeJqB4jQhQGYlAvz9aSw8L3NPQ263bVY1GNs08y5Z9KF5552rZz3a2hXg+Os93pbGJy03cIBn+SlhrQSHKPlMWXgKknDSc2/laywva7TtHdJMpJz0hHUeoAkprQVJcN/+jEWOtsn3VcD3fPZv0wUtFwhJtBjBDTRzooTfqZgD4lD0pbW5XCuk3BKibGU42S2JUoA7sLz7Fmupzri9h5BmAl+Y3/J1fhucJlQlykWaDgRZmzYOy8Rv8A/nqSoo777G6tMXrzIP2NyIFDqI+7aIC8M+d8HJZUeBcEQnM+PsLYouI8q5iORvbU8dfbazAzpWuw+5UlSJ6CqcBai3sHKCwLQY+I4GJGUiFO+Ve1w3NO8V1lw4PtDh3/r17bW4gdPS2wSj63jxxXRLQ8U2gWW1tfurReVUWGenzZE40c9RCoej6pKjDmwcrPfUckSUZKGSqln5fdMp4xaAhpqNVgxpjQ04fGlECp5Oaz4p4uDgxMsYxwmC02vcotXmU1QZV0R2UdLE7EPBYNi9jTh85K1KPEsQ7wtCZ1dWA/I9m7RmX2K+kohJTiljUNv/dR3dzE8tVb/jBJkytV0cILr5na3NGxBbM7rFSomm2eYWYWhQ+ozrs2ihe4Ci7Bq0A0VVvfFzs5g+wifSalqNOcELbK4UtvqYNP0N+7cdb1Sk0dJR+KBzR+rXLCpBxVTw8Ntkd5IkBqV8ysuGQYMOZ7l9x7mQiHt+wlAMB5LunuRUu6AkYFCWG9YguTyeNMdujlGGYDNbpzRT9FZurMYZDRIB/ZGWR7EIQ0zXOkCdk9OFeig+6VBmB/BjB6oQ+SzZtshnPAZgPs/MtDal+g1dGuahjDtQftiClhuG2FvHly1C8ADBpwSfD6PJQKguW92Ud8zFeBLI+8y6JVw8aXdt0otuQDw3Q2oFoNI7f6j1R+x2rYuw2p8HJ4NAseh2jxHcCNweJLdLFLc1oYJqMqeGGVJLdHP2RUHI3w+tnTgRW5A9VZ2tImJL4XU5nnQqC6hsV/79lsQyTnhJaWvBaUD2F7ZH8R6izJEGEU1vSnFa42MvDSz1IFQiK0fu4iJuOOVGOi7SR5NeXWatsHm5X5/owqCklE6jCvYJn0DNaM0yqU2uzk3QRdOSdbZTcHEGdA9395zoJPZqy0NnK0NsGVo5i0ixl3vDm6sx43q9FcGUi5n4iY/YowNk2qD2HdhNO5SzasISwcEmdWVF2eoLRWWhltoZHYBB1QIWKL/iUPXFhJvYqpXA2KIdSoeIF/Nl8A470lCTZjODpZIqYtz7A9bBb/QVLnXvhC4bdLM1JteN4KsuRAB7iTzoDgQJxncd2FAaDUX/tmBP2FgQnXhznU7ussSpr5I4WXxoyHlzTgu+CJPVoZtDQPXVn4D+74rpKwPGMrwFgjv2fAFmtCIFJo2gUbeYs0zE21LP0ZyauPY/wSHtmdENLrKBPkep/P8EfbXqI8q6PW33X03cxSCtNQUudVHJTr0sUVS+WfrA3LgjmEhesZVePd2+K8QJTTLrIYdjuM1HynabS8l3ZNz0KLMK8XSBSYED7Qf/O+HL56ycLFpFJRAdGLKzbrNRCJk1lt0GQmjqu56vdPk3FfZTcM25MjQFgloHgYXC5KxyU+va0AsFAcRwXlhvb5XzpieNK0bGRxEgaSK7yihKRSQPavukwQiTy4GzbQlMgMD0eIrMr73A9KOXSolyq8fSXHJyUUD/aTB3AM8MJ/G5D+MJT3XhM6sC7NOWa0mfWCCX6krwMa73Kyt3DBDgxKn9MApSmkxAzG7lvnSyGDcJtG5jC6dNmeQMRHjf+m0PtMYed/9kwL4xyZbp9FStDQ2IojUuhnsJgGqtEMW4rYf56Kd84lTkhKLQ61p4W4SEbJ6r/OmT5JGnC7i+p8ec3Q22RH2KDFEUBejpzD2bD11l1jOwkkocMeiwVg/5cULsE0pkYf/t1aqF0UO0a99wsH8FcFZLKRJIqneSe95w17rMx5hA7w8NOElMw2NDYez0THpqw3QJST8rJhWNKrkO4tmRqGYfaf60Z0YVHrmUKjqWT3i7xhZnuH3ua6RquaRYpyfsVioTQZyO7D5G5q2M1JOg6a8ZWAQ8EbkfMzAC+0twuceqQ9obqv8YOWBQYsIR9yNab1NlZQDpICWHfVRfcCyaBpt+Y1nDD2JTWyPr/BQJkeRDFMg6unj1Mh6d7tALcvmd28MlTJjif8ZnQJDQGdbOn8omIuvJ6ki4H1jjEWzNyT6amYtfsDd62gV0QDynFS75x0ViKVeOU4BmYIs1eeaX4fqO/ezgNhINz64z1dZQ3UvgraYMh2VDCNgQcA+VVh4MYb7zI11Nj8KI+F3JlN7scPMfXCXvAUDcbUFUSb++3w0nmXR8KWBw8+PbVHN7FCTWiVY64W+h4s7w2ovSyQy6Vy2rcWo/Lp4FidY2M6wDVarDcWvn6M9zaNXzVi7GZ8i4ODVABFOUwqVNlLc873dMbyhIVqkmpc/eoBYVufUv74MlrFd92Cfd1eRGvcbTGT9PzGBHs1Zqa7oBT4R1JOVIK6vSU8edP7BxNJP31JRgc0OnxiMEQPkrzpCXs9Nrig7lY2EySyiWLYlytwz/EE99itIjb2RD7wb5z/3BnoSck/0Xq0vEB+l66vlYjT8arBDYtagKIjwyljhnsNkuRw8vjjDdZKX7UxTgyfpkMsmfkH5Q3OwfLdo9UsM1tpuW8KTUaoGKNvajtNUzZMqHMslvcjQ4v0Au+eJGfu8gIyzGnoaqQh5hTyx6tYdV0pXrgaIAmlKJklFo87JJ7cEa/um7lZ8msgJYEJioBO4l63K4P5d8QzSxo3kvsAiTiDqcfqh6ImV+FeiORfyqjQBzaU7XfCqgjcm8dDkcGd9+r8E1G5cANSbeywTlPTukCZCkiwshz6Y8K1EbTjBgSRcUIyjZYGkbv92ObV3039mbmYHkcRqO1/VkKPTCpA6qBjSkdFPuaHLC2DQtN9sHecZP/evWCngt4qOzxnIvSZ92SwqVGVx1Mp3rS7NfWvtZzUMVYgtULRrxIAe96kP8hmc+vOHpjbpQoleANLUNJncUIP/7Org9CJtCpYkEdfxWg2RAkPHmfXIXlhLni/LO2jO13bppoeKWslkKOCbAuJ14MhfudQQjC8vKwgFPwTFnr/0SW+AxwY3I9fe4rmWwSxxjboap6dx8webuLdFIz5plg+e1+97A0Dw8ahL4NpXT1qzcT6wAYRIvKZOjjAXi4yb6B1wAtSENidPewFy1njEKi6LHrW8x6eDjsnwjyaQscAfoC0QbUvFeps9qS06bQ0O6V4GWCsEymQOUlR3tvcUnzFCody70gkdRVZHmf7pYpv/oyOo3GtreWcMxI6HLfgE7VGi+meQJ8AyKJdbA6PAkNh0vEMRs+7cGbqPr998Jt7NrOPynnFlgZMPWyCzTXsm66aKnHw+V609wrLXCnnrOsm+ayqbKsJHdvqonaoY5wtH8il4ZkjmQHvGp/a/XBw3bs1V9IraRXC/WIsBapGqbr2VO3GKP2OdZFmdL4nlw7Ofv4uhqQokh+x4dWEjYVzcPpfmqkqQydHg4U2zS9GH9gmPsVFiWxQ1V/EYpAO+kJksFu3JsZK1aNy1LFyoaMYnRiSBJA0w0ZEoV4VrggY5SHyotlRgq8FyC7XQUEIUacctRzmfrBPd9PB9ZyLglxABI/8k5Iai1gOiI8n48ojYMSYLp8h5j8bJiQ27hmZxR2kQ0JxTKELH2EhY1RygY7g1MdH/V9I3oG3fvJoJvXo6/gMNlcH9nkFNo163mhSGDY9hrNv0jDh6gYWmpLvOeHtqB8LciOZBr9iyGQsuSPySfnrJ36srCRhYs73wTnJii4RUWy4rASsGmmY2xT9b+tC7JCZL6EKwmncOQRyuUgVm42R2nlQCMYyACYlqyeiKB3zicqss9vMJkE9ig9eKj4tR07TJRrGcebi+WhsBlKUAbRUUuqfvGRhaV33HaXLISNbHOcXUE/SKq2y8u9PLOLJYJjifAIPMvrlrI7TpmIy8I+MqJBFg5s/734LWcGuaVxHhoVtpNsY++dJbBFa8qsbSrBQdwleDvaIGuBTWJ4qJQq4he7sU2wi4ahnkb2DV+gfpFanP/I8Z4OnnPjbqB6byL2p0ZmzF0ehTCg2Vk2G+cj56nmtvqOAnpM4MVQ0+6aDRfyZ2jz0PlPxiWLest/0exxiC7ZtlF+fy2+qXnJjWPbr9ob/+wiJOBGR8sZt6Wx8HjSbPEGsWpnEfZKoCm+O5bsYtHwPSmVNMJ1FmIE2Q44zK2qKNs+UVxRRrWkb8wqysBw42TrLwRX99ckMPkgIMV/yEkREQljadwIaXo6YQA2UtmTjMkDVTkgDLZeagTLxftkh9RVyXJCnD0VgIst+MFCUeX9V0drMGfRiGIG80rz10LphoirA6cJLxqkAswUPlSHFLsLQwqnZyKQn+vpceM6tkrX4D6SQyesFn8l1q0uARncv8H2jtk/4yC1wqOdn7V1mK41eG1KiKcRoKF+CO4Vr3zE5RuBOU6LQxKcjNCeHHKLQ3eyLwon5AhSeqEABrljSLsqmlJ0J6mCBrG3s7iKdgrAlEB7KXwXadK/Few5QRuPdn2aRpNJ/efKKkR4DQ+4pQC/JYE9bPRRQ1bhBD0v5WcTvt0b914eKARPKsqtBKyZdYmixuPB4Loz/0k9E7Oijl8FC35nRwEml1OKzax50zZyyHnoWxBNjCZK4m+T5c89f6pSr8SwROVGhqPwfdQWjxYgZDr+5lyjZM1+6NjOYjLSUVRcOXlhmf8GkoarH1OpF5Bc5AsTLw1kPfjdO1TlCyW8iotVpHW1MKWlitptZDf9LilTITTJV5GR+poK7y0z+uaumOxf9KMgRAYQUxI1XULifkfcZvYHBRuTFe6BHLSnx7VQ4so8VSmeCREkz4vadDLDNN6naH2fdjG8XWOZfR/ycMAYH7JSBPCP5WLpBkXBH1hM/CZakcQCY0IpAKL1czCzZ3SJYxlk96dygLAcF3LV/zQ3zQFDXqVg/ZiwqrVqnjdPQ50/o6zQxEq2ye5cRiIxC6ds/CsYN8mviXjIajJZUzs9UT7SFrxsiocD/bMAb+2X3pfgUxSbA8iQhCQDZohgpWVe708v6sCUuKkOOpp0EoT+w+ZSPNRToA3mY3XDEFi6WNildeUHwBC6wXgaBx6JghOf1ez+hCXZ6Yxi6MUCdNKUTuAwabz2jLHYPIVJfkkuPFFIJ0pp5QGLoCoAEHapsCg6wDwJFd2jQra1X0bdkXe5xsDOzrIrHejVkA+E8m3Fmx+18ZQdDvxEO6TdPETITim/vfF/OLmIQ3FMSWcbmYKo9Y0rclmcj0NufG6Q3fiOpBBpDkjFhDeCJKIQFxLNYZLqbiYjWm9P5Jd1lce0o/MuSt7/sFR2Vwmk1q0OfcgTnxp0q8Kb69kyNKETwpMsvL5mjN6fl4KM8rhG+3OAWnDBzab5InDyGi8ssIROpbpoyNoY3RkfpOEgEfFse5tKtA5gQkMRTiM4GcZjcyTPQE+yWfIoBbdsN8NXFxWBV462/Tdho8nb6CEA56Cy0I5/lYDd5S6vnF7yzI9IhvWDOYovKIqPQq0vLUl1KMeK7w9KWkx87SlZCMmmsEMWa1rZgfGsQHPP/2TO8mm3wUjsvNWjkpJA7tPe7DCIIuUwm4w+Gz9o8M22CxyNk3VJWD/pbN+pKho0uNPrzp25/80nlrsqiPOemZC0iIIZbfRQo97MMtRyX30hK2CeV+9zbD/xNGEVO6PipQQeh21GFlTQ6YtZmPxCyOpeDLkKfUjj0DCtZYxPuzMwm40RLxaUz52U4LSVj1IlrU3wK647lHYJMImPO5lEbxhIwgrMFn7qCw+iu/hOHlQlbTxFXC1+RM8SBPrOg6tAdEMmqFXcY22Pemh52RlPShO8CNLrIDhTGeYRNYftykBqMCYCJpy3EY0TC5rV7eH8a1GaOZsH6t6heuuPO6mPQxPs0hcXORxClYkRBLlp3+nOJHPgfU8D8M3KC471N7N1O6TFoTKOzXohjHd75uN6m4YM+yiSqtaCRZc0vDljYVtzrOQ8dvQmAyi9zrnpuu+2dFAdTO9x1lP8IGO6hgPvIkWDC5pLvKRGqZNazykR/hoDE7y7rEZU3m+MMKeKt/xJ4L00APn2M9G4aXu83Fs0j+Gh6snuQWPRuq9zAiFZoPU5cKgtgU/CrJ6ukdjdzfDRfYPa8L9ADyP0Bp6xyVEnKYcYB9T1TfjtKs0XbYaMKIstgSVZl2pCVRlOExbU3pdF/PIf5Wb2dpe68DMbPpQHhCC974FCnXDFRa3YjLU3G+rM4zNuBxsSpwRdOMINZW+bfb2p/098xlpCkpIbx7i/tuc+9FuKcMp3t1z05BuYoh8Eaq/IopFYJ4O6m2QAK3+h0WowL+ncU8goKCRMPZ7FqdOEDaSU6xkVkymRhpTR2lzz7+ks/fA0YUyhSAbbnC3NyJV/wizU7PQyrGl4rq7bd0v4B3lEnOTa5taQ8CV6/8LFB2/RjwD51TJEk6auxQLBPYZPSH/2kAVOstEwZTKjKxUyacOGqvRQRU82a+h2dfGFc/RjsO87EupNQa4houHP/3BlwvzPNDUiflseYPkqfAxWNg9AWY2v8vfEJfzGp6B3fj+vA9TWJVjrDJeLbhyxUJTiJtVqTlxJsP/4Vux+8Vp0x12vp0Y8jg35xFUbVlI2ybISAki8Zebt4J1+ZJDflzHsHzi9gon+I9QSQVmxuQHOGp2h5w65cT1aVDrCPcSUzK9QNqdPSWmsiu2LfhYO0TrUSoQWwg8TVUzblQMoIH8sUD8LgcWQbblvTq1YC0+HuGwsEl/sSFo1snfjjRVqB1BBY8JDYdVZoPJtNMZGQ+1Vy0O4Wy0npK5MzhO5TSc2/f1xzhi256THKB/uqclPBbLz0da3bbhP5LZlWV+adqpbkqOBKkLxPvcNpX852KZ5sRBBOzpQfuMipEnajQruUqd2qoUEHNJnsrcyxb6R05WmOh7LtIpdKSSnCep1OjLG6tPgPYDMu1Bqj/rbqw/URJNYK7+uL7EIwodu6ERdIdWjuRiAlgne1C7nMl0aREEqXa3LMxohOLdsukkYsPjs40JKv9p45UY5R4ZCKiCBfc5O/Kkh01IJYgaYuERKd8DB5Ws7H+nClH3q7j0RN0Cqe0C4htUVSPi2D8y0KNZGmyWiiRwdQqnmsHng6JP+tZ3wkFfneCWvWLDE4tJSi8HAdvzaPPG2zW/DdUMtvMBr3KxNfEfC1uCMrFim96slptNbsW1l9OiV0CyQhLWCWfuQ4QdLcVgE1BhpfuCcIxPYum+ShFj1nxV584CheKVtzqlsDwHYG18cJNAKIkqYBEHALw7UWhKxRxoU59ZMKEGnVr27SkH0aNlWTvxP/8LwH246fWRNQmI+Jk1wK3uJ6jXizLbQwMo4B5bAWBj5FEdqTkrV9+pedR7HXbHYHjwwN8x6XewL12eBz3dg7EawFWeslWhOf8vjtN1kxPUcimIf6Kr9XLAvPPWE23EeU7CnM1K3xVzMqgXG4gtSarlRng6F+CitUnaHipefM8LkL9TTiYm5V8Ewd3CPInRT88v5N93TSJH6uoN6+pWwqiJDRnESujQhDBC9SnBR+hD/P7S9kFixAmxOPZn3ZYh+nWdkuzI7VgF/F4vVEenStSZ3UblayjMJ1BCfL5A5v0JEM2DFfHbw3MlwYiNJxpzDL94JeBGGkZtY9RGuo1K/aH1xCTPspN84BBoDoiEjrshYUBJkQpeYyNUQVaL58AhIqTFnd+WPTRTawxpP5FYvtOByVPgATh4KJF8te9grvIRPTpJiXENVrmlcrkSqeaEsrRNnmN3m0WSRd7Mebsj1P597aYPpy4yDSwLCCYwHRyQZdeA5M85AICpjx2c9BTLCZi/k5jsa8qOtHFjMPLEqfhL16yK4k8ruAZI7VNIAMVC5AmRyPDNODSjb+nO7REtx2OrSN6e48t9hEG7nLWosfK8lshTbjfSTOVC/ead31Zi
Variant 2
DifficultyLevel
544
Question
The measurements of the prisms below are all in centimetres.
Which prism has the capacity to hold exactly 2 litres of water?
Worked Solution
1 mL ⇒1 cm3
2 L ⇒ 2000 cm3
|
|
10 × 20 × 10 |
= 200 × 10 |
|
= 2000 |
∴ Correct prism is:
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
litre | |
conversion | 2 L $\rArr\ 2000\ \text{cm}^3$ |
work1 | 10 $\times$ 20 $\times$ 10 |
work2 | |
work3 | |
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/01/5var323_iiia.svg 132 indent vpad |
Answers
U2FsdGVkX19j9MQ8Zy75X/7V1PDLp5KKMFT4RqvCAbtD99BtcZr3GCvQlW1xV4kR9rBvUgRFtvfwfYKqpJnyfxm1j7E7xSOFa9JyGh67exuWXW0ILXZmD42OWjJ/dBqXRRJEetd2ZtukKqKYbihNmicAP55+scXymStkX5mI/oWtEmXgKlZ+QlaDTiZJFHvMPbU6VUXr45x3gygWwJWKmv0JW+7N2wa0vWy7bqJgWym7eixEE6EpCdAWt68madmrSUG2U+e9AK/mxGgAghXytp6orXLry6VYGHDSr4wbcaYeEPUowjtTo8ORHDzRYjxyt4H/Xeol0bRm6X/i3DtxoH+s4F2jRAcHB/rOBssO6kOQZrKGcRB5bkIRHkTa8FXl9IJgjPMX4hXjo+bZcy/kK7MsgojAUDjZuoF/xrSEIAo1+ehaRadZcdX3grWYH2fbOHaRpJzTahU4Ogz4SfvaI1za/62vgP1JazRJcyyHpW0vhnEVYMllRu3uydwy86zsONieHEH68OyJHt+jXh44UYNBRrghAXOye9I8EE83Nm7u5/gMHqVHXI0T1Zt0NlA2kgR0UpoVZ1MwDh1D/BhEWNpf9MXr3szQdwpUmnYIXRpBUeFOuvGCxu1Oq/VcjLoHalV2HSwmL9Z1t70ZO9X3cWA0J2PaZSbJMPwLLJKTnkCgO+8mR2rnmRVKfGZks9z2DHZpn6z+YJk6JZZ2lzwmnMH5juRhjfgOcFL/NiGlFfaHIeRHA65u9VQUUqNBSzcL6I/4I0u0VOCOmAJlu+o1qABCg9uqvDo7s3zbdGRmntoJ8Zp56yCy4Ynf6jISeQpyjGJaivADhIQp3UDiZ0XWJCjYaJofcZ8VAKAeTYgQYgReWTVdU1U/v5nHSWEfMUcX5N2m11diTalf2UpkOcrHfdYH0yjOwSSL4o+cxG6i2vXlG+YJPDThRa/w/SG/j0UP7hoHnclI8CUgIvZL5vvkNt8g3jfBJVDHe08/99do3xr8MQbV/9tCRxnr7KvGashECKdN1dBggi9LPsjwtPJirMDtB20r/dUyphiXDrNJlfAbYZvgisZeAF3RSkGIZLyMHrMu80cLBaPFkK+C5FZgiidU+aU9UrfQSL0dHpiPvkWsmKPz/X3EGoV0lzQWppbyAtOGmg5j571aTStYPhiGJhaeT7Y+lafnAd74BCJ58mIl8Cfwi+EMqeGC/mKtUjELPS1306Yj0a5WZ3z8T96tQw3uN8a55HMh7Yy5qsdIrrPGcAP/lMVpmDKicGGqLRqo478xKh/fmxk8iTJjwedFXogebZP2KN0EdUcv8fql9bVqBYqHmIiVi/85RjYCxscJIEkUG8YyDN298mbpuCk/5BeyqKHwD5WRcLlzIsN8d0QiRPDWuawyh/q1y96+O69UNLOow4PdqLQjdafTjIJgLeOYH7Rmn78qa9mSUtuF/AcsS9DKDeUZ4jPO5rM7CQNixvAdBVuS/o9Je6rV1SCKLk8ff3jY0b9so7ZD9KMsGmgj2iIEre+3pR9i8ms/LyuxnEq8QYuG9ByBe31WbgqbSRzYbzaAO5/trC8FMViGePE9f13BV0rhU1ZkVbirrRPYftdtlMZ6M84wV23PT2EFs3a7IWM6ARH2B1TKVLgMXmI889ZgIi27egXP9bQzX9ch36R98ghKEtjNGkpj0h9KEmtUIRu67Z3lG0sj6uk9Pt593URAWNme4f5fKGMKKe80mTE4FUvRr32X2i0LdQIG5AqRcrnjvjUtpJeUiEMlzBkgWCquxbu3zEkuu3wi6Lw43GjClQACAIRYolZtq+SrlTPkkb8bB2lQ1iezHRZm7yFzDPpMGe0fe/RMgnD6BSF0Lxze2j1G752JUKwDBYgxT6nyk3AxUUIyE5569p8kXQ/Cm4LNJgNoCkemD9L+olHybW21pylatE52UrLGHtdfbN6wFbkWLX/l5d4o3i92u8Xzm7Kwv6ycffOXelhwVeINQ2rRSO1HcslUCLq/bAY1PIDMBSa7uIuCjIjycqfmxErDDr6DnhTEVj1VE4uKBFQflx8VBNnxMf/x6JDI3Jo3qESLsIs/EU6bZ3TLb3gk06O/kPTErGVGe9zGMDvOsiGYwwofenQEkR50FdWIJ0KVk87Cg4PNx7dG0EW7zS7isp6sUi1EB2G2+BJAOXgPP2OKGhC37qz6oCMXMG4KdxxTR8+/NjXMQJ3/lrUEHYKYrbCtYlxzEeTlUH0J2NBrxQqYC+rQQpMkb0PwOW3qHfViacci0AQcrMA393oBVnfoXVNnyuUuNGpkUZIInY+NWblHLTBsHmHymdH1zrP2Yz2E+QSsJA9dbVrLO0W323kpdiv+G6OUtlRbfBtdy5xQoWOEGVhaIbwEIFnz1MZgMUaZ8WfcriOgr4ZyA+Cg3OsXylOIFz255k4CDM/tnOqGsfwsdgIRpRGGxwN80SFMASTmvbuRWTWezE7RHXGZqMEWG2rRSHHNG+f6cuyXRIAaFwAI4wkg0bqHNnhWk8YpXSC5hyaPgYd+biZNlB5M/IjXVOfZRctVbDF+9FyV7j0R6TZxM7fTpKIYsBNIkBb193zxf9vbkoYNbIS+iJCag6GZnG0ulmp+J2Uqex9VFMXLvV899PIxgUtHpGf6327K547doJA+BC6U1iyEIbdBwqM3cxcPKpLMnUWrmVewhTR7/2eBwzUTj0wrYXVMVTh90+VKpT4Rt8+2IB4nG5a7sPAcBiriXBTF1SIOVfEe97PFPlbzYv/xiFvrGvVHAXDG4AiTbPpnvI+t85oPuqpCjIsFJTGiWzcxnttTkGw1YVf3BSxtwCvLw/p0tidx3kGdKgvgJfqS150DLMXw+PhyWUd3L8cpbUpArg0xuK6H6dSMEMa0gNT5/zFKYQRKCWtkq6jbB2dxBRz6NfP+j/kw/lM8ZGgW1mLcdPlVeljHmBnLi3HIvpCjOfm5JOn7tpgxzjr5aZo5nIdA09smUS0SDRZW4OXHTfCYPoLLsYwL5Q7f4skbAgbdJkOSLUlFjDF46o/a8V+d+jTHz9q/k/Tiu4wpn2yNxLQY/2O2ucGL9TgE04ceO0g8YFzZqBe+RHtEZhXWj2n52fiu7ks/8d4V52ag2Qzj+lcYH8W18NUfHZ4S9aegt+TMVgvLaA5cbO2/4FO3EX0pr3EsJtiuslxFcHqJgddRQynF9KmGfwDOiIMTJm5GrTTcXKojAocTsbmINMt5el6qKPHeJJIUYrru4Y7xmxZbFeYRvsRcUb5lhTi++ZlehinxF9wR24lvb10sHm6FTN83mDLwhUYEMtQZZzlttJak2ltErpQSh6AjUQfpOn/ny9QINvGPN6rcsmgwdMdvqu2OLgEz69rMakZRB1+R9VJLSB8IPJl+sbljBaVbQpUu4jVGqM6KXPKjJdp0vW2B/GLAfElfIPp+tBOucfmFLcuEEtfQDr6svEDq3MclN0Dbl7orRQMKqguQekXpU9NBJyvXOEx+RpYGRhbFYX7RoH5UnI/kq0jvO2SJ9wktM+XDM+tuc+ArPJ5MV5Q3CkDqQtzEHSg53iosO/y6ojVzH2B2FUoANagGXBTWmO0fii/mCo0zBqzxLEJxMkR/VkW0n4KPfB7HMYkEtmGquGQhXvt0RyPtiaKbXpzjFHBlII4N0MR3y1HS9i45lbJtPcJqVZU5vQvn1pj0TA/ZfR3kOQq4mr9kFlzLDqJA3fmcGhqecdaZfF5b8m60zewnJnuSfIQyjLsNwxtluPqrtU07pFu1mwaf3bT8bgMuvr+V6UpUTkssCT1PDwoK364HfdtziDFvpuaJ21bUNPV5cx0g1PVrXLDcsHteoEycDz17GwprsWwUxLGyCP3+HWkjYXlqE+4RWyvmJfHFouvowatjkWLz+xdTy0BK+o5391f2MhK6K04q+8kNNANmwGf4WX3vfYDvL2k+YUds31oaX73QLjaUj/n+Br+G34fGNAVWaDMpk5loveciR75tQ+uXAIUJr2wBVMqDd4I8rDsLbbkpjXujFQgMrIAYamQNxjnhry7ekQ8uS3jWn0s1SZhiNaArev1nAB45wBK0JamacOyrvMN8TVdnHP/pgLR6NF2CeOiqWBDrNsZ10YIHrqMkXkp15xE8+nT4pRc6N2gNVv2W+S8Iw78XbD/P0wP53XZVHMSBZ9du80WMAD+kFqpXyBIJlxM2B5Us6uDg7y4xT9jdv14rtvi/Kqb7QNCiXD7+gBp5RwR4h2Hlb9PosA8FnMKtQFqHekGkNqmK9Q0HaIm/vwc7rrCc15qcq0i049Az+TSwwWRyoqcEJmFhp8+zAhj86DLoEzj5fNhs7tp7U+DXSbho1WgmBXKmFJMMoiu67qX9pYGk7eTRCqw0E6PCK8HUkEQiZ4A1ENR5SRo8ahOVetc2pR6cU0zwd0YWS4CSSXwCSuJG3MdxKaeORCBoL1HYl5Tmj930UhxVsE7V7A9xGg5p/+4102xJkR7pJV2Cti9tT3kdn51WbrB81k/pMt9SE14u93xlw7/W4zNYMKi5pxaNrY3xOHqRnVo+sHxAYrldj+E4GFe1Gp66yCNgQm56cUg9yLo6qTNNuXQObLWJIBjxI277dH0SFSRfeJ8psrOIaRnmbywmsLj+4C1bGI0ZLOBx02YwajZSeSAGQWlep6uaFT6EOy9/BvvEPxV/TPluaEkunmM9PjOIKpav/GdedGNP48pgBoZ1UpphlCgusEwKJbmQdL3lTXzSHDnKIJB+BDCTTRwFLH8xVwou7g4hJqh7+RUu5yRSnKSOA6Eb0xFbSm2UvGLrB1CzXu3ULRxWT2UzEGCB4daS/1A7/zIrSpUQR7+K7poGo/s7qd9ZZcVYnlwHDeHCIgwWm7nKR26Tnjgzvyba51C6U3EnjdOBzJoSvTRd/HMzfv3Fbhbw6bICK9kBft7fbD8iKUSI+tu9FR8kWz1woefO/jgoV/qwkS/6U02q3KGL6wUxDMhMk8LP9MSkGYawbIYxuC6eSVSP8zkEWxa69YjKYGfAYKPpjauFGiUhiLB3hHjZumqnpPcfdP/y65bGQwqtRTJDdIlwFfi7QHOvoSjlEi5uPedMcgZlh1w9diO2lQrJrN7PBlSF37K6E9I8qY1Dm7ebM28IvjnwJ+DJIyJY9R4tYGVBEbWy/+Q05W/DebxXEr614fsR23QvbSQHClOfpX5JYOFLfuhl3li+1gKH9lQLvj0TNIk9HdOG/O2CjckSzLIDZQ94TcgI9Gt8ZuIrOKjw+PenkBp1gH8y7IhyE1JSxL/beVZ7Fm/tedx2tE/9/5Bf9aHHmPpq2RhfsiWJy4TbyudXQorHtqCsXiP8R/oODBqQ3e+i5JBf5PHeQlfCTAPLvrSw1ki5uPbYyKAS6sQdAk/jFAQuMocUf0QbErBSl2m2uFZ0+QYzl6Pg7mrmod9O8JDsLDUZJZdEC75NHAhRrptR6cFUvlrDdmMKkMQDRm8ebl/pEEdrV2p0TxWgOE6MGqAPMjaltIpNiA5JxQnOkfh97ZFpjmnB+8zhg/6oJdNAUzulR9MTKRmUywL9g30Bqn/bwf045P3ey4zUFfadZJe8rpNRjNg9QeWb3ibvubx3SoyUROHe7RNxOrbAn4Wtms2BS9Iijhvo07kVgajE2U4ChWFifjznKcHZ9xrual+xXTOgWZ+xRiG6SG3ThAS8Pn13tNKOn3BAmKIHjtfhfuO6GB+Km88djqgDxIIANJg1M17VOSzuwT+H1HugSiVFeKaU/T45rlpwjM8B07nV9PESC9OmxC30mJqTBLf5Smmr8z0j3ePH+OTWtOtXbtEE7JM/xqX5fdGiw1tkEYYfGSgtEZirgjg/3Bp+glbsSKJMKlEPryRKA/qeKtdK5IySbuoP7inLS6ET+txosgd1u9xJa7GDXHEBeCDHSPKrv515nFMRYmG9cCWsQVn6ZPmVZW1K7fZIbXNsOvwhFTc6fPWCTKqjtZmeBJL61NcGBDoBBNd9vFnA+FwJwGRSR2YaQdr4k6ppRezIjlKOLv97V66rkhdlge9k9UYrPTsmWSCGsBmqo2sPtAmiNT+b/VBwrXV/RChGTIO8shm+JTprEyA+PXndG9kvdCZVnidAd5Ae7FNyVIxPQJXGta1tmGaq40zl1u0l9sysvRbAkVu34JoaCNSdf9PQUbR7O3hUOAy1U2fa3zBEp3o0HJOS2kWetYr+OOGIyj02PUoGnRieL6h4XbUjnnMcX2IXWExAXdqDrG6n4DESN+BQ74r4j/rSQqFLGio7vO07KMpQCU6+JIOHRv6c/oNHPRjrkv8Hylmxckt5GdUnSt2yO8K8/M8leme0Gp7QNnZ+hDovwXjMkHLz3eYGDCZvGLp3XaiBTlHs/1TCIUqiYpUiXOvNY4AsnWJfQvBIiweBt5rsaijTHn1BA+VWa2KppewaaiRgdIe+D2bNBgVA9y+8w2Ls/AUU625IKaq8BUvjdz5W8tAJNzT676yc5iJGa4anRdlbHyaR7VRIE/Ag1PcWCj0+DQGvBuHF96UixmbPTsEi+0Da73v6QBNw65L923s4r7EVFPx5KaJWW8EkrX1pS6fn23cPz9M+vr8kAeJfn7qK4x9J/jWzma6Tcdrv59lTIGGM7LsKjap8IjWf6hFgEUnA59/GYEJMheJ7hDDSCULMKDsR+Vy/asdGb58gkjCU8BnIkcwrRIy+QqqD4STAYxT+0ubVBmD0VqttDREeNn1q6gOh0P18kLfILNj7idqAqQUYhCUSPUAtlPaFmB03JPLOs1qBFNaefyLXeApDgY+pPWjP8K+n98oCWD5S4Ca8AQOSt6lUVVOrumWfbF/6CQDIGWedfMWcDM0/7HwGty+/VaXgrQfY1knn7HB2XkkBs/I+Sypu2+Hc6j1rtwcTY0cphm86s6D/zmotR0apC8gTt/XHK9ocpY9FALqIAbEbSroGM3z0l9g23Z8ZA1+TIwtn7PzrWJuYiFCv6w6Xg7FK8YKIUhTSBAFPQbp/zCdwBt5LNF7wvzWo3BWfjd3kp80qQ4DK6DQovPznYwJZHIYyLE1zlDTIYOmuPT0AmOJ64aE2P0uWTVVGB+mimWVq7rkfR+8jSG19vOPojPzc3iyiUa5BenS85c0y2wY8SRONONeiCwwxB8uGWJQiG7MBqSKZPzLBZzpnVZNkr3vm3EUKpvqjmDeJPxePvXK5zEdeBtQeH3VybbQNdo5j3iPDIsnMV948OKNwkNp0jLT1LnZHjVWCwTVVGHH2iTkI2WrQptHzJ0tqe3xwLrbk++vL0FAzAvSx1zzEm0h9nEt/Syj+xBzm4jwGsSSMr7pa7zXQKMqkEHlg1iPKb1mnF6wGteqvFKrjTK27dX1j/x+Cwjeg0TtzL1H0aTNczPX834Z7dq88nHq8FQK6vP5qAH0YMWB+oMmG+OdsQfyySCwRwUNS4qW0uocwN+oO86TyGZ335a6Q377IL+Fm2lvxki6giUkiOM2s31IZMccTbI96KnhPRAHLC1Ie6tkSfBBt4Pa2AWtVX9L0Pn+KBi8bEDkjRVp91ukmaUU0zboUeJRLg1gbEDOsygYKe+B8uMciqPsU9I8jzlemUsS7B0OQa12G7Kq2mmWdJEzizHG4LrINFbM2K7oNzV+LVyV3vwJYVixmHjdshBDzYExN2/jCilo4/zGnKw4q1vE5S3ql0abuCkLYQQa67AWVI1/ML21mApQ4Rr2xskzEAvweNwm+nXE9R/yZjiNH2FxEWHCdgSz8h81nzOJjsfU1IM5POzdMplDGCQENMx+oSGlBwaw915emumXL+Df+gXKrkOzB+J79RKhxRsr/XUot4HkaS/P9+LlMQX3XK9H2u5UQOELM1U4nsIkTEvglKj586xB5ysTj8tBaywbQaZIx+4X/rk/bsXgFKkLzBKovBAAw6hqZ5SUYtSxMEQMLDJzYcbucg40tRSHdb4QId3gpk1pDL61n+iMvYdqQnMTkyJukQ58U+r9x2jvR/BJtR9zqso4xzhlN+x9NGkNpL1YVuns/VBFWaz5Hw+FCrCqtQxQvnC0bZjUkX9ASC8E//5SkbhaPDdixpdcFlxTnUaPISfxSmr3dXanF+5W+N8Q40ez7mhQv4WJzLHkucs9PtH3g8en3u+xZwqoWBs7QVhS1KB+ENPs9Koq4Om3PXmokOXJNeiJYc5NL8dgvNETPmH9vLsigrEc88ncI3n3AMERqMbjiQBb0AU69LxJnrl7KtH+t7Va+ckhnFtNv38HGxsPUmYUfRXhnV9ZWeLryGVT40TKnPXgWCa+jqTstHJLpsXcFxtzQGWp8lmh4FwJQVRY=
Variant 3
DifficultyLevel
600
Question
The measurements of the prisms below are all in centimetres.
Which prism has the capacity to hold exactly 1 litre of water?
Worked Solution
1 mL ⇒1 cm3
1 L ⇒ 1000 cm3
|
|
20 × 5 × 10 |
= 100 × 10 |
|
= 1000 |
∴ Correct prism is:
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
litre | |
conversion | 1 L $\rArr\ 1000\ \text{cm}^3$ |
work1 | 20 $\times$ 5 $\times$ 10 |
work2 | |
work3 | |
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/01/5var323_ivb.svg 158 indent vpad |
Answers
U2FsdGVkX18yPGJ7BCyDkwAyyCwlX+Jpl3b3VU9cg7Gaw5TDhzFYHgDEEEMF5jlj0gaBuXo4jxhrXriZPzh6HumCSv9gb1byL/sXpftX4MuLUTkVb+bPFGgM51Ch/Uuhb0xSmu6bK/DRjboMyf2mIKTc5JQadWkJe/u43EO0urpz6jLe2hRoXSqUdt79b2pEvnXMqmbduvnkF4jdp99NsrlWM0hxaKvU7jcguIpl/2H+KWU0KTI0R2fBUxFaMhnApEasKv37p7YuXPBhFkXPD/VSWyrJIXqnGZRddTDPP7go692aX9DJBLqPQhFbjN68ACa1TgXtZOb78Sk91lVlcv/XzmYuIESQY9begt1iGFrUtPtHNMSUmOKkTIyyEU10ZoOlNXviZxg1ZclQ0gU+fUDJoP6O/w/TFZaECIVFp7QIgbXHI5rBnTUKIlFLRWB2Kq4ZADmk/J0gKOkUUQoN521gOh6zk+8B01Z8TYACGucqA9bp2YotMWjfn1L53evSU9t5LCDSy/d9INWQXi26+iZJmVSZYQbsUQsfX8mABYfF7clhCOOn584c9g98w70SlZe19FX8Pew56sw9VpoVkTk7tFIuso/LRJYQ/QR4y9ncvQedt0R1Na+q8KgQEOLWXeIa1XK75m6ILZONxkXOsY1Psyd5nrScLVcYO27TXrc1oITKMtF6tSBSdua6LchirBbjxI61qOn/uPpDB0gYbefReNxmol/zCerNP4jmk0IWrF1jt28CY5SV7Z1uE1YZLYgz4tsmbXy7wK5PuP4zNWcQiM5ynTYY/BakGHBLpSyXP8RcFfmVTqXNINKFIx3g4oIQQcHnfPu3sinLJFFI8sXi+0tHz0G42315fLb2BHCnfRXAIwHrQarh2fFQv6t7JWvoNP8btIQ5W0fGfPVJmFPA0LIf/ZTPSfcbE3e0oYfTSrx/vtzZyNhu4HK4jqPqWFmm0WAYvvXIL0p+Qk/qxR+kWsrnOFsEbzuL+Ic/93UMcEUqG37yXYqe+aMcxCxo0LBFbOtnq0ifPrmEhcuqReqAj0m+A21sQeXCtzzPCX+DooByu15E2Wy8hliRyPbp4TUtR/Sl/dWvKiL8indSChc8PaCf6qfDIiWvlXPN7BfK7P4vHOw+wzschvBO8fvc+dh3fxjOvcXuv2iMqSkV9C3j8r5gBOpSm/Z+iK5oIY0dQnIzQQKzu9KqraTFEYSiYoB8dm64X1Z2LDTTr4uGxQFQ0UkwLlfyMcS+mi/fkcAkQdzzx/c6cuZuWjMpTn1KhEoFBIqFsu0j/KtkHOxScjmv8/igagzr2Rxk829zTVIcEO2G+7Wf0/+drVrkshjRXn4IYoojKnWw61exRa9CT4eLkRTWC+0xfZ4CbasupK9HoCxSrNzqmmcfx3EdkrwtL2SAsgUhvIt63xMHZ8RWnRWLCRRxAG8qT6E9b/6qWgBwXhtn+ecK/KXt3/mgmPGgVZw43JXQGf0m1diGlAdNH/uYKd9N7YGVesRoa1WJGem0o7SAb6hN0yvUxuQu3lkctEqVUW66e7mls1M3+CtccDjLdhIOOlw/4aAE27ZZzT4Ea9rX5ymmNwgZkmHfVBXQ/dG1ugbl0BJ5LxtSUH9z9Ljo+/KXMp12fxqr5ynSHFVc0djRJfgung+GT08elcvC0t9/twH9x1wIRXHOQmAAiM8ZfZWMY2ab7jvxEZRA8L5RX/4HalewDzaab+wv8unh8tAXdEExIrBJXJmv4gpT44PmMcwVdHgDpgRx4JMZjZchwKt3KNX/IhdKdZFH09QcFlapIbsGcJkITekQ7HjJTvpoFTVc8P4gvFRLL+s32iAuAuM9oocZ9BBIfjHGjeAm1KRyJspxZ2UmLPUzge+PK+3XtjOTYCSo9d7fULgezJ0oI7zP5RvjhEfJwhirnDCzSlJbjK+wAs/qEUj64Q52n4Cb1fzEmNhS4D1oFc+XnI2uLq62GK7SjUPkHTWBXaSC6U7xsRjLWWTg8ArNNea5hh9breno99CyFv/wvJUuGUxz0b16OZVquOeVatiSUbLEU4KDJqyJlrC+lT0+LSxrXdjTMOqRuq58QTvR9cxbGzqnj++xfdOB2BJYmYT6MIuXZ1CLb2AIpdfroVSCqGSHsGs1S+RnSLrCVcH+vruZWTTa6FtlzjZrpIhXqcmjXqJ+WPaiA9gYkXehSi6b7gfONR32dmfInH278Xn8bkMmKaeWcTWbngd9DCFq1xWAnavt348YRiyPhRvjG8oNZyQG9JaokslolcH9uV+wg/FWl8lW++B6iOAaNFO3h0CzlFlzcgwhGTpYN23Aro6QUotMMvGoe57lA57Bzpr+RINyo4urKntEO05/Dx2nJJGqbk1p06oWpc1Rg75ZnbENqUE4hQGvo6/lpxo8vuplO0O1p3y1DhrCGlVOdVhO0UIQ3YbILrx42wT0iJlLU7eDe7A4IkFxXaDWOEI48u/3ezf8SVmsi/8Hv4i8qiCkrZJd9GvVdImzZ3u659C3qUwMJTY0ikpiGC50QYJzMhOyC8Ay8tYAOG4OOIEiBbwISXh+bmTStVcdE/Qvd8hyL11gnqJdc9H6ZrGEgNRUnU7KFgyRLAhOqOxaeDzvLSUMrRoZeZ5aYg8RBPTLdXAbga528Xa0kotj0KvH80L1sqGZRQnuFu2D4TQux6LAuhvfhsVfcpEjzMXVfXkrvOYdTHGlK2JUZutd8qZFQxCttBvxw8uy/pxRGSmXN0bHXPQv4kn7BMoMuZz2oQ43qfjlt25GmU0WTEk5TYlskXIq2XKI38pKkQPMfqdAOp/J/n3BaFneCcj4vUro/hltsmxKlbSCu9Ss2jSflMib3LvpRSlTeikEltgpnrOqk5F6s9qgyyS/hUd7Y7C7ZwOPfCglkCjul8daR/Hvpsve9p57PUitggrFkqe1SrAE0gRzAipmM3qXwgODvoRtV9PKhJqv/pDydsTZJ2eKbBxBBUbUKV2WwVaT+e8rUv93DY4bQU59EynlMPEmFIqVPMlXd3tuW2n88YEPFt+bf6iikHSCml10VO1EJsTrLEU0VBsKydlTyx1qkD3CsPKB4pdBeX15Th3dwjTYGoEpYKtfX6kvkLpy+QkCOWUH89lLXf6j541mM0Als2UIiTdBKAIR5pTClfBO7m75EVOGcS3xA9PZjvaJpbxf10I4oEzimibSA5HG82ko1arcefG7G0OiBD1NDO/mSU/nCKCrxg7ZxgPAfr0+AlKhOIDwaRk03/Qr3xMcIST58WPChp69k4qsF0J61aoxJsfBpA8YMQeHOJrAukTcyp1AvcUykme554oUJ1TDPFWdoIAid1h+cLS/3vZGrioipbSoBxcnG4sMsXtNvpywi9jEWgkVvPUEmpSt4z05hKKSMCZKbwlMwrg5/ryn0qdSQBbFY7ahOqHGkrv1Ps0Dxr1NIdxQwjCHYF638/7DWeVAsen1hGflMfsbMbXFfygILi7dkbRGksibncH3a7BGNxbBlGV2cIC1rnA6mfNngjHblUhTD7dC13z+Bo8v2bjzzHvytGfm+zwDr4H91dOSDcDWJVGQdMU5R+N6nrozxtoKmbYmX+kBinhVcjg8TtFssG2+vUkm7bkniVISTdueGu3NGp02uljrOktOYYRLQO8X/h2RdmhSOw46hHv4Ki4JaG8zYxHLZIzCQKpJhJj/ZRCyhn13JzUO72z8AmArU7HrF6WA83bpf3OrSQ2wwAQuIhxv6Wsy2NFj3jeUJ2b3gkrRPtqW39YLEsRTFKDL2AG9L1Vq1Le3Kc/Dkzk4xiPZRJIPONLXfGcIomAWdb1ngisoE01hLjXh0hOgUoher46TZCCazRs6XgrSx2VcW9IDdlZgmqqhMs4fsCvA8H2wzAZkpitAT0yT1S/jAuVmtjlZqat9//akUrO6ji5hRAo1dWH/MyPSbR+BdDQJ48VWn8HcEPR7UJjl3VTKdwo9vNomOsnpAWleYyXfmbTlCtxS3Mbh9Td7gbzgVk8WYcRi3clk6tI6w50VN+Yz0kvX6zRTDaujiL6IFJCut+SQ6udwKogJ2DVqnAlRPx4yaSjZKHg8YX0ow1r5J3mfAUZgzLI7JRg9nDMNwA5vjsVDNfJiYuS0rRAQwkKHCsFvmgb7/R5o3liv2DH2ZrFkHApRTJzYbj7kkNEUNV6ZLd58/0hrfbL1IrsIlaTrtNak5GeDvfwpu0b7et9YtQqonP8qcNwdXFARzjD4n9meinuZW57u051p4Q10WDmEnYA6A6teHJQp2wrROejq9Uixx9DyFuhSJlCFyntzhwTw/fdYNKb+1oa1hovdY/WACVP1IJ9M3K4wNhLd2uBIDx08Il5P5yIFDitaFZ8FRxfawx9HIQo8jmj0RK06SuBrg93q9XZrFTU8Ckh1urJUhwUy/GtSrmLmp2KNpe/CZcqvCFEKTGq6lXD22tO8+BHIII1xpopB8Sz67c4HrvQs3U8bTrPPGxcdKSw0hXs/abuGKD/4r9mbr2aw20CgBxOoWuWgPfRUBksgUjVLwdigaLXdmNEX39Ml7/wTP7cR+zPYK1pw9MThxiZYYnux0uTUy0RmyBFJI4GPlF6cA+F2YhTScnGrAbVXjNSGDLX3TqXOntDLxuBrnba5Go2oEFH6dvkBgyfvTik9RrtMDFQj5S9GhxuW1fVo1qc/rsiSlOdQek391kbFTtY3jydoaLbP+oGXjmgEjziLPYKZ7I8PbO1TtPszEE+cNn3vYoYzP4ejae3+ygL9E6cPyHoeG3sTHhZjdpJI7zoJt7ndAmGfTm4gXslBvsWmlcaWKilcMvlzsrrqQFpeAVgzShBv2J9QDv8OpozXIsVWFL+cvIwHWLqbvwnHBbx45CEpU4TbTLavFDN/Tzv3LwdBh+5uNI/rf1MMyKffsyXnQY/8Qbx+ETF8tMjh/TM2fCfqtlBikqVAdgu8rG+/en+1MzOQqNA58ooE6ol9LE+XddRl9R0VCEDCiNL4jyv8SdGjby1ZkCMgAO5u7wY9PZRHTcRw04wILWU78mIEB4IhrYuQPwWsc0ZxkgAJ8i0CQxe+A2T7N1FN6oTUtriBF5B4JEpoRoz9/GpMvLzOwag5067/S7dHGwUes5I3pawHpnu2+ETncye7pP5zU5oqWGABTPqksoON30QOLdEVnyMnWToBuJGppTX4kZaImg0WyLZDLhdHgvRPlo/bLid7KeBK7BoHEhL46cneHdlRyEcXW0BQjzM612UKcMlbuhoPHK+Hw/H07ehW8u9ujVNq+rZtK4WiWnKC/0mu/U/yBbuzxfEi6jOPIULkqc5FEA3UT+eICV20Qs5oF5qg20g4fD/ia1UzRC3wQL3KoZZmIFYy/RjXZkORuZmqnKA+NpMHjmXct8/smApKr3ZxXv8xkNdi7wze6CzW9gjnmxXDhkDtlRWpV01dVEzcLYgBqoxpgRXsOYsCn7O6gZxgueeb4awWLA6aVPOjbVo2cilORYg1ukhTuBhDPpWOWnN19jenMTZ2iqD54B3ZEIwtEoHIczhNqvSQs3zNJaSdMnTNH14Sr5NkROkhcsg6uJny05U0eIDjU9mKtjXJJleGB3HrTET6IADwrwAv8KdPDNEZQj1g4pejqfrbSisSeNg3WfxCfIR9uBsL6KkM9b3aQ6fQLFMgI20NK+pLeGvZliqTh7PJn9spob0jCMKj7ZCrw5pSFs3Wd6yZ1nv1/pap2Vmrwl2ZsJCQbG2dqJM7HPONI6KzjSQWHkEITOnG8G4TtVhs5vs575afLIepcRes16GHsM9QCTcvVt5Q/r87k057zJzmUOR70XTUGrMkSjjLQkL17oIdX1C8KIDP08DGqu6zTGzNW0MV58b/To+LyT4wdlgL1b8chYv+w8Sz4kkQ8v2+1+LIEM8R53A/NrMvGR1R9VZUlQn+bRpcoazU8o5GJHfNdr0WT6JKbeeiY8gz+tWMpAAcw5+dYSZIHgzrbLxmCJsH4XDNfmtsaNYr4rxuQSVG+TdB3AjGsQf7mGiD97z+23icyRpXdoHPkwHJtsxstuCZCJcG4xVmXM5yg+ir/8t62KfmdYZ+8lEjITsp8Vg8bT8ljMMSV82sPEetjZ3EGbR5X9tBtDF6M+rQVAUfyGi7Vl8Tub5d5Y6IbB4J9c4uhgdIKWpuTdMMprI2vNNstyfoUuZ7u7FI7Ze649S+4hib4HvGv3O9nyQcUXAZNC9dpP45zJjFKiHKZ9MmTxUxdd7fIBuLv/G9mPu4iGCbDuQid9mvxNHlntBSXjyEXDIiatEDONV7ps8ZOJQRaygom77XTchAIBIma/8u6uXu5agnHWiS016nh391ujFTMJbp6QKiplDEA09b4WK9UH+FsQ+ANG0TgB/uP1aga5+xRWtzmrQY4L5uBIawsuSbTz0JD7onGZE4Y3nZ4v8vwpprH5KCeB7FXpmA4DuknitkzEyU9doDSkW4SJu0OsVSVGJzSwB72dekrtIONzhIluNgnprLa7Aju9BEbD7SbFe13XiSqQU/K+ueORJf9NsXnf41Omrlun3ELQULWVWtmHaiMSVI36VEnCJgJQosfSAdMrZMw8fHJJiLqibWGAnC/9rO4mgHKwCQbZRMf/c2xn4SO5wK09FnkXUy07aDTlhn30ycZLtxZ8iZpfd84LHRC+Aii2UoYalSN2fJTv6OYVhMzobkOMuM7F99Er7vSS227NwKHTEf89jUiL0M00xku8StL9E09w/LvVmnOiHoO/TTaj8vlWYytRYdL8dtxfsubuvtrT1VGBQIEd657v2n3Et7RP8b41f4LjdwUpJt70bT7WHdJNhvr5nAQWT8UjIbswWKa63q2+ldjuqdRPqIUbNeeympf/49sHB/3s+fUX+UMA7XyjMq1vL/9+W+1L5sDh+7YhIiWA1gUJd8Mix2hUNHZlKssMGMTgw6tn0BQxtnTB7rJcBbFQPYADy9tvOm8kULPGZ/0TEa1UR00ZLBHLXaOv8ELsoHvebGso3U6VKhzMU7liXvfIh+j7UFRMsXUFVIH474sloP3f3ENHCpo4IfQMlt2K5J+yhylgCxRMUttVsdDk31K5Mk/PuVTt6bC6+owlratiX5X/Bg9LPMJXTqbax7fqG4Xg65RukfVYty/ZZ5kp0ggXlFq6EJTLLI3gcLLoZklXBz6Bn6BzpywzYwvz3VDLtOilm4W1SPEGDwTRIfOhypuaZZ9CHCNyWRB+7zBdarQaiKMgFxcbw59Df/gV3bh/XNlbifHIaaz8pFyIH3fzlRJqZl/zPAJI5YtIZ3bxvXWv6Mc4biuHrL9ugrYyXRbIwVZadUV1LofbtN4Exx8BNSdTWKQjuKRxSdCs/ROuJkiOG6DFe7m+2JMgK4QRXN6bc8vBlSdM3WcVHozKRmxZ2REP/ZTSp6eivHAmCNKCtJxF64+rmELaY46HgippUwBgb1Lm+Qxrzu4IR5k8BgSclqWipQWXMP4gtdy43AfyIPR1hkk9U88QBZ0DlqshpZcMdgf51iHAflfkuH5/f74zUwfnfkfkPBsqpvW6gZinwRY/5gZ1MBta/tmuhaBX6Flj6CNhPBdEP+1I/B3iMPI/nQUuqJx2LMBkPWACntl+Tq93/Z547JY3LmrAQOihy7RIYcry1zcB2KHW1XlkfljMWeUVJMBFPKCHp/rJpe0luBUkpHq3iGUCoKi405M8/lq+6rPKWGTx924y52e0S32xgyHl/4zF1six7jci50KEA5XG4EUee+dzBar094A6P+ZLRO5iTxLqHmQzVdoYJ6ns2d41UtqA+Xt1WwmAVyDZkeX+kaKYjyzTybqMbVrY4D1gaO5AFSKBXgTtFjEl8aC/BRE/Sg2CigPDEIJqJUrG3lyWUdoKVWVzVoq4xKYz7I0CmopgI4I/yGcIia/cWXbPfi5bN7U/gU2qE7g/EikunqySFL0qCnAB6xjbjKDAQNzdzokIYe4IYkUBRKbY0ZTri+W2+xQONYQVv3A1EyfCzTQYy7P9Jw+y4eEGG5fIugo2Ck4T9Xy/XtikBebMRXYtmxZjolwIo+KIfDG0DoOKHE4h48kfGbhovRBm4PId2nQyI47rPoDA33Hqd2VibjSHe/M501Xt0yWZWCRcEZn8t3BKiA6CC+KpwGBKW2XG9XKWUtMmd6Mf6c8hZWXpk5ra1/YFcUHTNFJIO9D1t4VSfxiSVmue9xZx/+3DHc/7LgjQdk2K4O3CU85E6DY7pqmU07UhFB/pTS25H8z9pQj0Km+U5MbnfXQTmB3NHYtKwZi93M/kqgECjbx8OyDJ/4tNOfKF56pISTkzcFlgYJtxI=
Variant 4
DifficultyLevel
605
Question
The measurements of the prisms below are all in centimetres.
Which prism has the capacity to hold exactly 2 litres of water?
Worked Solution
1 mL ⇒1 cm3
2 L ⇒ 2000 cm3
|
|
40 × 10 × 5 |
= 400 × 5 |
|
= 2000 |
∴ Correct prism is:
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
litre | |
conversion | 2 L $\rArr\ 2000\ \text{cm}^3$ |
work1 | 40 $\times$ 10 $\times$ 5 |
work2 | |
work3 | |
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/01/5var323_va.svg 158 indent vpad |
Answers