Algebra, NAPX-p109760v01
U2FsdGVkX19cvUvJgxWHlt8xresNwwCg4n/5wLEBoSQwjBq6Q5MhAZYEHkBGaMaZH7VXTDYPEQsky9SIur8BHgYmr5t1Y5F8jovpbA+I8vAjpVjGWA99lI1BSkpRHFLUGHEtH6zOCQI4O7H6/3WUPJIJGLzP69fzEyTWTT2l6Gg/W7dqMx15bv6+0a+FzNRG5TivfzurswZYX+mbn2bmK3gPDmkSH8QSLwPJ5pkf0qK1R/Y6BPdbXePQJicibD93mgZeViuudRG60amjp12tDrTaNTXRKsSbAd8WnykhzmaD7H7/sSrcHS+489+56dxEYk4cXYA0pZTx7IFT3mJuiE1a4ZnTMaoFaYmF0JGRa/8cyQomx0Vpq2JwIlR2zbbFPRfGb7ekft/yRgFQb95K/IR0sptbxflPP2BIw5lYBGgCsgD9RfcSnyUE24gxpa/pg9R61muKIk4whAcnNP+4qJyF3JPrf2akj0bCEgpuJI5oPBleoJxT1Hj0urP6ebqM4bhF26E916LkkpC3q2IN6icUVda4YW+Pi9RYobhdZpZcCS4WqGATvGfbd52uaqkd1YElk8J65d24tCsoOzxc8fOZy02rYrDOdIjy6FvSMLf2aLODxixvGq5881CiKjoyuZOjF7uaYvtbjR8sK0sQ7KKSjY0yMsKJKG1vs6o3q/mBS2jRrxjcZu1SL3u89Sqkiiqb1xuTO6rPZR+4/sE9ptZCsBBDAbtWpAfniniwsIOIEi0KON36WR38NLIo3xRG0W2h/VyZCtUEcugtIGUB74T3V5if3cFUgdZeZVXBCnq23ZVsPUgUelXz23at5m302bukC9/0CoMj6Sjr/Mlld//KYCrj8KIIruU9kXfn9IQhXWVrvjefxySJccvapisV+caKV9rlthl/CZfOUfGZzK3fyfN+CukPkva0T1It33c0MzHuijAxM/ZIzZ4gvLVVWN+Lqkb/383XV5OyHUqfiqyF0syR/N/mrajqkf4SXV1dveYsJhfTWtrCmYwYOpsIfN8/KYhyJ2oWTz3STxTCZkbBBV24kqP4JnciDHJjTbSxp8O0It4BK3yt+PVGKEqguPUjkUpH1J41OnIR3ttKCcqDNPOYlU1uK2G54nxEZwnfh8Kl4dIYa2ITNvT9me//RvctDvvE0oFbeCo8OfRCydVAe8+PBMFZ7tRh/YW9i0r1ZFtxD9hAExwrYkX4dEccG0nUN7qrCqUSOc/9mgSQpOg3SJW9W3btKiz7KSpXNvzyXhGHW/yhQcM+Lm+RTNdDczFBtHDtFiBQc01oguvYadOAK0r0JubSjiNdIZpfadmmXX+LsOAiQfefs+LKyxtdGua5XUptm+Q8iS5Zv7TgrJbYefS5n/bAAkLXbMLGZa/vhXeMuZP/lqq+c87SncZips+J9ndk2kQsQLBwqHNh8stTgiJS0LkUC6H/dQarxGD+A6rQGYyU7go9q00FWOd1B7Ue1H6BoJA4TuzUXZOehf74aKHa40hnZTG2cpgoes5WUiL3SRH5FC6F+4Pev95/meNc/i8zcW/ibhzoLoYrIfZJG99lPeUMSyAh95OOAx6gAGNRU/8gNTkW/4PECRT657c79gAb56+YknhtcP0pC1PlGJEcNYmHARWc+P3NDKtsGP+95ywyBghE1beGsOUt7Wzqt1wE7oto6BfdF80n9Jas12WFL/K0f6o6pSRgFm5/lWxGEavKtkhRmCGqXEmk729V6CXIFqAKuG/YT2wqQ5GY7nWSOgREjeyOOhzEHiQJIeWaFZzW3qJNZ+PnZcm7ptE2dI4qZVwDL3hdEtVT+Th74rXsnlDx6+gaCXSMZdfmJmJVJ1DnW2DTQNo65xEQTV3SFyc9KO0IMim8G9IB+te0m0UK7a63DBe+ewfnS31iDwRvf/EeBFbvGvAZBqOGCHpUe8sj2qJK5sO5zFuedCUuh80bAFdNgiuKMJg8sEDm9SMycKIlRNTScNl6dfBQhOSv4+lxzY6OpIFOUvJZ63/z5fCpyumjBnwcR2R+1CPIqGfT6nLW9xKd2wIjp2ongwp4Gv4J/jZma0SiR3SSw4o+iRNbWq7e5zm4p9ejSif3TBYk1ExdBjooRbXRjsostgN2QIITAgL5ybMg79/N9aVoabI6L8ybMeD87y/V3AzQn39VlOWpGVK9Kg9OAn19PEkHkdfU2zklSRTNlu5X4DqUZxBW+tVtVLfc+xH8ViaxRL0uG2HAitnV1sLvvdZw/ecrek1Y5sSA1c3ux9I43vDJB5CFMvGJ2eiVrml+lonsAk70jIT0kzHYx5QmBpYkIFuMAS5l4pe7o6fdZXHmm+h3KBf/hRNFIR8XcjzIGRehwqf3qcHT1WsF6BwcglE0iYyIzX+JSgyfg11axfv1AoI1ig4gfxUJe43Q/9yI3lQAW5jdYP0QfRwlh/gEOfOGuNbGmRdpcluHdZQJpvOo/8xf1y1ptV2bum/atrHooJCdkfOqOmgk963zRItuX55LNNkvxgiCrlr55T9k1G6/+KNT/lGenrKn4tL8Rg5tjDJqfUjvMkPzvXg6HqUoJAkpDlEpdF3aRZ9bWX8jIWkdU5szVyUuk04E3MX75Y4dbxwylGuM7SIvmh6mu9uqUHwJEKTQQrVCse8Gt0hsPhHSitUjDjCt+d0rkAHdaVqtkkerqgunY8PRIEl31km/VZz3fKJ6MucHUg06egHFVFHNDBBxyzKoYuxgI4YcNgR8Qw1PnAGKviw9YzeIJE2w1YQGnlPhfIgk5X7jLmIBsknOItDfd7aS+ZbI834zoYxwjur3DHOIFoM+5yALNSgeTChuiUVPH1PBNTaSKUMNfaIu2lYxDhAA5ISEkQmbBRujA3KVL5Iz7CXpDjzNXLKcFgFyzKVnW7/1cYmt/Yv1Op7GB8h42J1XFd4pZ6FZXnqwNfOqCrLrLcIDOTPf0eegJxNWJh17AYe7nkvWDlqMRmCAV0Wo93S1dcVjyxwE0hfzrQLo8Vv/GaxYtH4QAMycrGNVhPJDazH60A1mNjbY4bxn99wVmUBbLVXSyTeljI29SbC3frP8W+2kgsFCT8iarEZVUDqjy/SnTV8QGwOLecesBZ1YI9gv8cXzIxe59Uo1O9neeXNXPO603RhDSRHaBO4cFztxXOCWczT+xDboeA+Jr0xY1REbsCjC/20fRE6ZKStqSttbwtX6D2gJlS6hyayd2uh7B2C1/lJgVKCy86JQ2xmtu5/Qc+i/2fcz6i6CUBdCzAAvyKyLQ2gzuRPYJpioicaQwlxEnDEmxgkQX6fSsfpaOL1J8fApOjEWT0G9WYaBLgOHJ466HJr5sm0TjtC5pPvCtHMT6h3WUy/LGqxegNboyCeK8++T0GhxjpDFkyxjBPxIMbiwjtApYlqse8U179OEzEOrP0oYvLTsZc5Odv3Yp9nwhc9T8W0Kxczv9Kk2FyVKn/Hm5QYQUW6xcW1bOFsIT/c7stCKijcgw2H1HvkoKwze+T6kS70wL5MWQV+BM4JKLuuvg29xKg8+sz8JRme1vqBQlpmVgDgO6eOCZJ06OKTJ+qFuDfcCQLMw67VE/77OlxYfoUyDSrmRDqYo6sec87tHlZNtUwbIMeJEkG/tV9hW8VRdv6Lshoua+5Tw6Bgkocqu+uIrz+A9g3LoD8OxjlQAFS5pXKdJvorvnAufjGHsmh28ysFy1vLgvUxKVEpvfZpUo7a1xp+xHfH/n+9FRBmtkZicvS4Q75QGnvUHKt/UApw4hXSmR5rV+cHCPHAN08/1eCu+b1bQE4V77V92XdMP+wp5eOae3Lt/lv7hEQQq7x2/i/tgB9AJMEV9XX/s4tmr9YT91BIK+y25Ar4iSwxhyzTe3SUj9iIHK/Eg8wPcsJygdAYM6oXeUt0qlbfwIwnlI8Ab4qpMJ98qLEOSj/sdGQOxrQ6ituHvZPa4KdM2KM5fp9dkNy5myeB3ieLUCUvnCLsRPvocBHiUGVSadGpBg0c8VYFfje5M713NG/qkoUOapmJxiRd0J0v0Fs5Eofz8QJFM24mW+HusdeyJxbOvlbYDyasR8BhDDQ5zMOUDQYo3vUwtY1IEesUNOPTBtS6STLRgb6CmUdMJxJO6t/+OPYkz379qgZSuIUyZC2eta4psZguRMWogQbxxu0wQpTh6cKLOrESBTYkyNlsbE0pUdGy1nXzR+hxjx0DZ8MHeuD8ehwJ2Cgw6PTCuvK6FIIfxQVTa1joX2hTJ6hwDc+RVaB9OdVSjafSv319c6aEuaPjA+Ur+bTDs+ToQqRM/Zil92WV9sTTIbRFxZb3c+hgc+SNtgARx6vMaXB3SVOOmJzwZOF7FMAnoyjzstxBpS00KXRy069JtXIgSKOs0xlYlqzEKYllqyux18L0FlmtszUwUjH5H/gM9Kh9qM7mjwdMblNHKL4zglYzzNnNZKcNEhN0S8/t4Ko04O1lZdQLg/s6ibIeffqa0UgzRZUha5vRUTeg2gsMKfg04a+8jUxZ8M+XJLKnay9uVsiC9gHwdhfsx/jqwkNpySBi9kiKqerGZMvIW6ocnHvvF+eAYw4kGbD4OupfAzox5D9SZ8Uu8ssR2MiyCvVCDxlciNEGAbKHFh8EWv70peZSQs3v3bZdCMcaQiqR4zzFZuTsrU2ENnV18ySCJTmqpXsGoERDhe3EggnvfPCKX+crNCp6wtMPhMXdLht5KeiJZXURK7I/9ySQ5maU20aIYzQfrDrRbk1QBbytaR3OZdu+eQH2DiTo80Kykej1cpasJRlpzOKk3f1NZkaV7/FaXymf6EOfpJ6pKt8g2wB0ZiRk3AIlA5ufh8OY+/aHz7Rz3fuXEObD0R6grbdWPA/HNfRxdQg6vToBSoi5KozPJ7jsQS/m7n0fRYud7MJS3plAZtzCbweC7k0lt0/W+7wJ7UeNl13kG+WN+jHGROnoyrViMzf1CTK1iZR8Hjh8/4T7y645KPGexl0dbRBftlyJUooWhJLON5tx1ri+BFv/ClFEEQipfctHvcK3cxtLyXW0CjgSyX0wUfcQkRmAI3CmFZl75Ug7lueYbn5wlSRMuSUwavokkxvazu2SqQE8Zy3YbyGm9jJ03eo90lj8N9xcSYLLBTW29DLdq7gr2IUoTUKcpLKACkzMrmFJxIeGW7RA98IXK9qbqb4NF8iMDphmVMarxLRWQWqCLygnOfN9EFZlN9iK3nagbwx44X79ToWzhao7QIMX6JaubSOj/q64Tks5Ism6Gvu2u4xiynkDsrIQ/eNgu41g3GK9ZwjcbkVujX8RyJ2Fyq/feV8TiGyOPJBya42aKJ0lF+41HKVNxk/5iuBVLaI1ZvfqGCSvOSjIQRBK+6k0rxIzvsZfWOuQyqGBPpVAbC3+BqN0FTxC5iW2scOsKXq6ZGCQcsG8SeRvoSl638NOiCt2WIfR3LCZ4Ae+6FmF+6aZHMtjsfxyER9d1hAMWq/jxx9nSwcmDn8hVc2DyMSAJbXkAEPQ9BJ642aC7pLzesy/JNZtPQxc/y5yYK4OFU0Bmr3uxZN2J2DbHswBoSqyytveTcKTedu0BuDH6VoF9Ob+J2HZu8dXilY33K0ohXqU7zBh1nSTu/0cTEhF/3CbzcUkNsE/nYaHIp1bfZ06ikK0H3XDrw4eYavDbMdetha/OiX8ZHP6xv8rIStlNgkF3r6vmUtMO4A+m5W+9Gs3D+LQWd5haSdKKn/l6lmIcw3kHgfQJswQ5mPyJwhFXTMz9l66+vn7IGudkti8de5xtGtbwU6TU4Evb2AEOpqllmmZCcd9wLyw0xTl7z/2RrorqqYk/zMygVNiLC0qVEYlIYDWCcxZM2Ai3Pbt+Nt3RA0/QJH4v8RdDIrAeATDgYnr2YKcPUxVBjxxPs5tQBQeq69gEHoeUb3DBbbfl+zIwT5qd8kVgaABQ/bs8IgYp6BZBTvtabfL5/gAYdMJDs4YarPtVel9be+T35wPgGHgiD6z6Vi402mi8XGjsLFsNzgtled1l9LxVI/0N1zvqVR1HZ+M99u8bILVRq8Dw+o4tzb0QKKnJrQ0u+HNMKynY5Yl+JShtB7HEmwvlQAbTMqAC5MIgWJr2k6GlUFgjNoWQA4w5dYrGzsyFEKiNzGgjfzobhvbsBZ5jBqBoBaARUN9ze+rfBpNLw+w9aEX2cc7L9L4QiTJ0Of/gx1f+oSVbMn5ufJCo8CGNfTUV7usUgLZ67/+EJaKMSYEQeSKLzbeJ2VEGqLU2E1UepNXyysCfr7iHkkiK5BjeiMEufCoDgBUhnhrRDshj7ufs3dcEI6vAbIydhCJKwBSkAx7AMeZXybg+7smy80K2JFYZNkgxFDYN/f7URHJA0lkOeCDhH2oSbTr/uw8jfdoPWnJ42TJS5KO1DbEccEQg9OlWb7uC4ZxsevqIdi8VKWx8m2cWHEKQraOc6/tEPkaEqCG4VMoKVmokGUU9GvuTLPCv8MwRtyMbE2RsuVY1pC8vIK6/4BCeJu7S77bCIbfqw12xsmtJoHkIzofjXL8mwv5G5dhzx8uOGrMkRhMMQjifFprbexbB+MR5ITg6Al8hE7WGwlohzpq6vEsGyabGgwZBMTg8lNbIf2+5jpvRSsfSDkgjR/54bCYKz8lQnQ4zgnSmgXuhcqR8TANSuUGihDrJx5hEUeJPqTrrzJNtqBDBYSZxEdliGYi6vD3RQFGUTHKm4iergm+FwyEZjfbByWY3+QoCtwoKGG6RpDnhLr2VNCmHj/rLe/MSOQipGhwFa2AXZ9kMjIX2oawnjPT9Drc9xnPHV0xlgnktlkLFem2RabgyxHTkNa6bpj3HDa6d2DSRyNcV4pwvr4fEhowOhHzW5MqsDmtZ+Il4ANHhs6CkYPvRZE4DXQl6tJ8Lh9jqJTWWIgqN/8X0BtAypG+5u4eSM1U2Qel3FmLAAGwq9zC6PWJYjjQ1X78UagIA5g39gzevpSGF7u2Wt1WE3ajcvzwjtjNc1QNJO6Uq0vadJGLuPTXz/88qUfCj7cXge5WsGy12uZASjOC5IYIYnaj2DXcw9osAAVyLZx07iSmJiiOe9AgPzEH1+mdsnLPPjWwx+mjppvZR/QW9LRLUBakvnUQG5G38dvVpg3ngEMyUxNqmWFJhOvGX6FyKnmhzZUuoqy14GX3lgp58SPj1n2cxVQ5yy8U=
Variant 0
DifficultyLevel
591
Question
The corners of a certain parallelogram are shown below.
Which point in the graph represents the fourth point?
Worked Solution
Consider the top left point on the graph (– 1, – 1),
The point below is 3 grid lines down and three left.
Consider the top right point on the graph (4, – 1),
The point (1,−4) is 3 grid lines down and three left.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The corners of a certain parallelogram are shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/36s.svg 350 indent vpad
Which point in the graph represents the fourth point? |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/36.svg 350 indent vpad
Consider the top left point on the graph (– 1, – 1),
The point below is 3 grid lines down and three left.
Consider the top right point on the graph (4, – 1),
The point {{{correctAnswer}}} is 3 grid lines down and three left. |
correctAnswer | |
Answers
U2FsdGVkX18hla1IzQbk4Okhqp4CojesklLlWAVKK2KAEuu7UJ/W5/5W+YvSI7k9FlssG2/c6opfC9z97mcpX7dQ7bU5J/qDl7GpeEix2FW9BE/4/JpMxPBY2LtkmIp6TTql50GkDoJ5A9wdbxQVOPq8abQWnNujuDELeIqvWd/ySqi2vApiy55um7Ks7TyLR1dpiHVxMoQNUVPbfj7IEGTqRKZyfFnw1bHHyZ/iT69mr2rCpobFnup4j77rKgELrYTX2R/iESARmO6mh4LSyiB/S27oJf4oFEYfKHu1vXk781+4WZAjpHaw+GEtJUwV4uAa0q2+BPfic9g+vWpI01PRpGHqVuhu1Y8694B+o3Rrg9ap00A6x0uR0LNIshR7IOMYGFTKY8SDRjm8QewoBBPLYdn7Xv1qFXqjcCUM6giXKnbj6it02ArQGEIHBOSnPfJVmyFBURLhcXrFoaGZiN9ja+p3KA7S4QLpBAD4XrQkFIQkdYjM3L1X7y9slTu4AUME8Lwz/BV6lBJuwJ/Qw9yAQe4PFxDzSARdWa10QvrijdX0WpvRz/OwQXWob2/+nsOi7tfj1rGt8STjBnmH9AzoFNBXpEHDt58r47dlgKjbeiFKJgzNpguG1GOPMJUG+rOkjrg53//76y/FAOGLIWBmEATyndsLmW/5qmPVrR4puXW2sRBDTrndzfoHrJy/DNgtx2bqnlmhbibRUzoQzm1gx4OjeoQEGitTshBHQo8N95HijdZqKABiVdhy84EGqgZO4Ih2hq937+xPfpTblcuE6BVZAYPeQdKPLAeN6HsqJcvo/3do3MaCh0vcn88FqQRfiEfXb0q9H4eyJzFvapfksvknXcZ9328VRIWcGTPdalFCwAEJuqMXrR9PO7Nn/11Ab9QOoeMb1bIc9CTG52Xo9Hr2K/hS+UYAINzeRzSAcvJqKakLc46q1C16nsdtNGylz0tdMYEQbB5gbxe7LMRLFPZqKquvNlbeZmj21OrG+cNUuJgAVF5V1Ywrryf+d5K5IVsH42NMwo6UhrRXpznIdkq6RH3tPJDzhMae4EiiLmYyVgKaf9/b3PSy+CAKuAXYuGJyL/M2Z4fA0Ov09LzDecVUZcZ0LZ2iD8GBNZgSA7m8QDBxFgUxSxi2nRDQYS8UsP3mxtH/JU334bgaeMjq75IgXbeVdyMsKUcytbTadPQ8sDAlfOuKEZIRSkFdCOgDlnUKgcguGSdjAkUNQUR9J7ip3MzeKixfTB9CPDa++JIZvIdIuDRi9VPfi+tuVBS2S16pN8exeWBigywlPNjhKkaZnAurV8RvxIMWiSN8tv+CQ10YxuD9ngbKz+7wJV8+I12aOTa3Hl7g1bbhQX7t/nkV46IiXXvuV8ZnDMQj2eF5mBL5ARDu0ZaLbzxzjf587XAZJvTJDRjYtAghvO0AU6JE+6yIBWQBXetyc6bs0r2eg7E8SMqsfU1ZADBqmIZtRSsoSR1N5BvpwG7lHT9YbJBwjxtXAx/02Ixl+iloCw3ue4LbYblfY/G2DQaChWJbn9JxaUh0IiZYsI+KsUOkvvoA11yqzF7U72fBds7EeF76sq6PLWl1HGCgUT7KkLLnvF1UFMcWhifDiYLyDjSbskQ1QDtmR+3cnHcUw6gGEYHMWYpc8p+2dMs5AcSqzg4uYuoVk0BSaqz6LAPthPo8/IF/9F5HW+85PFlHyw0UHouPg2Dz7Z26jdfOFydsQ4mfe04iAHf93viX88eYVqpiUHptjbTvvGA+0qdk/IFqc3WlGGMEjouCw7hlLf9n+yh4J8iTbveXExDRtuN+nhB9EWEqB3YHFxYNRT2rLQVNUfcMUFVVA1enbfzPi0RkANpGdxp2qb7tPxYjUxZrTxmLYwhCtX36tMNTzl/mbWgfOekczRx477QUE6Cza682CqCDITUqpD+LRQ/A3vTgUe1YJUO2ibTc2ZlHVoKL6yXuN4pEy4pkBfG4S+CaNdyU+W9IRYeLVoFvDFS7p5S0FYA/RLePpzvPfJeJBdGMehGu8cxd2xRczJDts1+mo1MnV79PHJk3VH0OoJyNzFWSHLvrFCFM5A9GlvjcaHmsRL1ypNM4Kqg2S1EZA6Z2J8FpzFPzM/Q7ieljxFiSETeka9qo+0FHZpbfM9p1j4UXhSpQ2+ebEj7+Hkzc4wUi8iVnveRFOdQADlVpPjVsTdVZHx4M+tquJTD2LtZOXa5xPgWvn+0eRgm8NWMUSjoy8cbGkzTxO0YDYQhDLt5fLggqOj3FRUxMlIPIf4uAGWD/4463rO/z+h/MfqfitaOpa6NwSk7F+No8+IJIfD5ETHqU+ieMdlZebOMIJP/iaaezSOQEKz6YyiRiuqRKlvNNZOvrFGndB6xu8YP/gesiJuPcueOjenx8HgsEj9zgA/q3lDATBJDG5nO+ZKDgHIHMIMXRmZHuJuSZJsSr9OA3LHYASeGG0+TEXfggyWo712ANbxRkHBMW5PdekKhFvh0/+8HjcsVL2IV//2NkuMvHeaqtXWIYVMYP1Eo05JYkU1bK1XsBJyCrkJDc8uarNcmQahefUyDAaZYX++8fwmT6ASltB5b1F6Kj/Qeh7SCD0kv4UgKSxEKy7WRC2wSoL8WIqXwHTPy1pud0gDZA5JLH1Pv2MeoG8QaHAfxfE3mTiKoJEuBUPYX1meRJjnwVQSsywy/35l9zVy8dppnmxCvHIU9NfzaCIH60GT6y/YOokVGFdBpWh8OqDjTm98LZ5nqDPoZUoo2hWK3ucRmtgwFOccSwD5aNKDklCKnzxE+FIm0IbfDCJ8IrTBARPqv/chwX1zk0+j+hu7E9ENqFg0DKFApjQIDxFFuUqzcbCI17aH9OVdy8RG1NvI9AuWHnLyr8DZ4tITCizlp7wbZiA6UnN1JTwJuarkYWS6uo9azkLFnXsTH5z5cRAwiODeKc+1fXmcwJxiLEOh9vCQsp/kCZHPA/SBVb1M24R3ujiqgp29iaxiFZb0cbsN8kgsHJ30EDpev0yXSDrbQa+ZsZBideBvuVgEum5SzGsaN8HNOt9dEwGzNX4OX7w6j/AkvfljtzQH3E/gyRefWYM46R/C81d8PYt6kyuCT4TZAg+/9cQeWDNDjYwIA8dOat0ACPfbnZ2VK965bOWYKODWGyh9jYhziHrP26A9ZOEo0WyKbkukJbEtcgP+g1fTSRoIEMNNNAaQ4WEcCnkSkhx2WAN5VjRi3ph+WYEijFg3bNDsj06ZDPCQ9VcK5lO4y6ALieX+BGh/nL7Ap+kJm1dqf6IpY051rFPcIHl1AMrKrDs/Q6seoxL21MCqGp1gYEiFtSSzHf3iqRAWJguJz6PAtOrbb3NjZy5a5A10LVM8hrRhGaK6S4MfaW0nNPQjhcs4gfQcowrNEk40wt1MZPGIr12MX4Pvcpf2EDFSsEHpD3SIyzsEn+wPpq1JV/6MWKQVsuFRUh+r5cbctVsynHbGeC7LqacmmOJaknbLeVlOxBrHKi4+ZQghgsqYFTZNDSIG6KgdHC/vjZk3yB8wGjBWRIt4PR9NIkuD38sSTryl2j/hKEYYRHv/y6trdFKFBIHwwAl5SQsLmcqBpLiJV1zLBLdoYLHmDP/UMisq1YounPz3NkOKN8uxSAssAHIBE0XM+uH+QaN7GoJy/AwZZEagay5Aw9jkvycmV/ZvDEX1e0FSdv/IY/8WpQrI1u2jRcPvxtdSYjT9t+/EVRsHuueb5pb9OURKLnHR/NnxMyUCsajx2BHeHspHoIxlKqFEAfZ6uJi4M442thuvDWBDbc3KSCNpiWA1/GeO0R9kSv2T/wtiK16HzDmAUbmvVfgdwuLl8SM0EEv4NThWsck5EopergxSkojXmaZPcNcNbtncfxliQMH8qEjTlEDw+gWUfDgith5vHKkbnAP23SGwte7Ah83LefJkftBsGNTH5e8j3QQpcnpjM8iKtZNfGgIXxxtdAzE5xpJ8sLJrOWhFJOnAZBuhiS2skJk6VXiShMhRDiQOfFgEpOi3gyn4zOyAU1tTgL2Bw6UyHIHRHTvZIfk/CuuM1E5QXstwY8N0AkoshKVl9A7ahoW9Az/c6Qndn+shXmflhKhKgucsPpO+DIAN5MTm6VmgF3IIXnh4N6usu6/OC8xk5wH/Ves3lzZVM6G20hQJFU2CN34j5la7VmgKkpfd8sYADzagymd0QtY1r2H65WOT4XiZS4CLDE5zttuJP7NKBjYWyn7JH0CMZcUCXVES4lxoAfpn7PTdV8P41e0uSpX/HyZFbnFVzQ/k0NOPgFnWk9oUqM4nZ/jwhqbFrkpfcEAvScxx+HKr2jkmzpLRb3rNn2f4+XVtK2DDPhAVLOroDfY22qRS8Uyq8e9R5f6aqrGtSMxCglg1/DbWa/UgrQmZehaPPpErU17k8mDIssmUe7cqI/OYzhSRbuzlOcNqWqCWgLClyCc3/CeJpeGYlPZwB1SWEbBCcvdfu67gUdaGngPZlobn8i/dC604P7epMCCqgQq8D2xnV5eQNruTq/e4Ll+BxCldIb8jhKkvrp81lfjO83u6QFCf+yic7lYVR8SpvcM3XjJHukfXm2nQ8JW61FogXMiZoCtQu6NFW8VOZehDJ1/iKD7DQDJ3Bvdi/rL76zhnUuQpbdG/VISJ5FUhBFnMvoDfdTio85PwbQ5HwBfbKYG5RjMhUOg8qedgAGQSAjWRc1tt9+CLr+BXLGwxdiy0lwqaP8nicJhxxx3w0oy2QXFWwaXFXiXgCjL5b4Eru9ADSWk9uR+1tVRtg33i7umxhLU/EluRYaKViXkM0fNKZh76z93cfl/NWiDZqntO8tE2ypWrtMtuxVem4rPVgHa2OAehHMy9AhgrJaoESUAovk7WoeiOY7vBVEK0oNbpFGDm35kHRv51Kp4v/JSR5yJxVeifktgpMYhcEifd7W4c1jVygjQP49V6pT4UO+7ZiuthYPkp1q4anfwAGpmdzcGD3oTHRQJ606sGR20su/q5bEB/PfkqARCqWFTt3mFND6zz09/QmxJXwkPiM2DZmvtI4jpvdJ2fx4MqvPH+qNwF1fEj8IgCulAL5zZ8U20KhkPG6TnwE8hT/JdlwQ8TR/cclryfqpKPC40iicvGvABxWA64FXqXiwkZPS8nrTZE09HThuCmv/33ObROmnzXo3ZHBu97Hqy9R3j/Z2wadd7w6RpYoCQ3CzX9HeurCTwBlpsrW+fMud3pUhmjbSsp1hV2CcmPHKJ3WBhxXbV1F7zLj0rEQUi3iRhc3Wu/vJ6UIY3DXFeJY8SBOAZ/+wewdAbUC4wSZd1frCYEKEH+O7IxQxajfc9KMjVTJR7SCHJaWK0hN6m6vrZB+jlxdpt2o/lTEbwpzUeRhhzI5IVrHsmVTr8kMAmrKHmLUUHhzv4esvTbNB/9APuPaYxoLzQNuEY7aYQTSxlgoKPxD8tfoUmrVnA3LJIWpe93GhBEjn/uJZC5oWQEazajpzhS7q49pXwPCq61v/YisYLdpgnbloneQLIMolqW/2btmUcAEkCjjBIVaQ1e82y6+JBy8JqhNzkQj/CsqxGhO0loEDMHSeMYdVQxy3Ax2JctKreuH1PESjCe5XTBjCmuQzv853Zk2IR0uHHFWAaM3m63xgHimajCTsemlcGiqCm06frtmJpTIHAdAnPnpzZi39qvjnLtnDiEUU/hc3iAmcxbf1ST/tqrPmRUEuecKf6t7jySHn5wbycz/D6ThuB+72fL5BGLlVx6+2qkTCw9X5vMtt/e/+jZG3uRMECn0nT/0fl657cbTxEQUCOdN+2MQZp7ZzAjsHJirbfkprexC2OF/d4Xz2I2sqSEdOqCTfhqbXvFH6cGroau/Ft2wX5mhhhY6lkmlZX0/wwzX3g66tVbWCSgX4kvz3tejkJUrMncgRIkn2/PFOImztzVrsIW5Tk0uiN1o3dfuuLwz6qac9Ifc/IAQxLzA6FuU+fw56aho8Ey7vLoMfKRDVxXscj7yqzP27ssNcNOz7IMmeWcxM3CnubO6nkwESCo78y8B751GARNST1phBy7GQJx42wQeGpFekrZxJsRKu941u7eO6CBD6a5RNmJsKO4zQ2zeqjBSzLz0Cq7DAyBgRogS8gkbSeKT3bDuPxvGgskbCaPX3cLJ2glyrSOuRzoIFLqBBJQTFuT5EEhTShHEjTwC2peqGo0uHfVyeK5vS/aaM+Srh/ygkUo5UwVcOzlFe9yDjHQUvM5YkFHFEwnWbXUoWIQ3gbo8Qt0+ay04qAgfZO6Cctjd66XZnJsk3F/uohBYaQXVaohY2dbypsaU8Hzga6C2H2UCW4trlfkPaLHCXZXZXL+Sg+Ki1HOhMR+HbO2iU9b4da4tBKk/K/jSrQ9f6nsf/3w5/u8VF6DfwDY3x+85mtTO0PlZHFegH5TD8Ts8jR8UK+aYKzbuGfmCfXkkhOSKCf94jFr4bn5c=
Variant 1
DifficultyLevel
595
Question
Shane is drawing a repeated pattern in the grid.
Which of these points will be part of Shane’s pattern?
Worked Solution
If the pattern continues:
The point (8,3) will be part of the pattern.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Shane is drawing a repeated pattern in the grid.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/04/Math-Job-Q42.svg 450 indent vpad
Which of these points will be part of Shane’s pattern?
|
workedSolution | If the pattern continues:
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/04/Math-Job-Q42Answer.svg 450 indent vpad
The point {{{correctAnswer}}} will be part of the pattern. |
correctAnswer | |
Answers
U2FsdGVkX199vqAd2x4wlpDvTBtIQSmUxucUPV9JCfxLTzA0+0O99SJYnTldh7SkhqC3U3XOOKr78m6mBqk0E8NT3AqnszW3xzq9QaTfwVQ5/x+23028W3/zYlJ+9Gs4Wt37ys9MKhwXNAfC+bQPZC/5CBQ7AY6hLu15Kv8aZeP13jwhPjAt//p/yjTrXSD6R9DRacgeiyHTmp2xuQzBiaUdGowf8QbkPP6aRPbAr4mPhl39G+MESpjNN5ugYLpRReSSoGOE+aVZIeU5xwaFnI8I7FMKfD7GTzTTGaeJFb62VIDpBMLFjtLfbFlpe/Rp5ywkpDWTr2H6ceNyVZYCtyCeh9y+Db/xj7f4UYTHkTOKSI5N5+O1LtNdzbzIPwGfPOvbYBd572sXpusXSj01d1YQxiUk+Va1yyxayPp5WtNO+GUAyOFqP4b+40hthxIUlE0BoLOgapZlaYSKsx137plGtczoMyqH9meJl80I+bqCDKRnzMMRThrB2W2CJupL/At1UAQXlQOUXveJxMfl4ZHxMsDkcl6Po1ng0/so/mKp5b5uEpgqf+OyzIgDXXR8qPxfBsJDm1Jmar062ECckan/L6eUKwuMIGl/IhFdzxfPIpRiJeWh+LPWTAFot+MavHrOSFzZkSeU+dYP9UGSn+au7MEcWkeAulHic57PKy8X6vVJjx/6quM2TLzfe1qzGjN48MzuxfbuO8EIORWjZji9sGk+A3dGbGS/SZE/Fep39hp5tJwIZORxVKtsgjW/g6hR01XN8I9pM59wA6FLo+3owuw/SgohOCXZmjTqoMaDYJLe1Jp9++YropCUAZpC8WOC4/ljDap+jwMmpD9ZOTwuXMWVvkZDVX7ZLPfZyhzYzxjdjgdibJBrWcFU6k3jg+UMsHgsqHnXwZ7bU+23nrbn+3+hqd1a6MQJJZbaKlKQ7tLc4WiyQe03+TedDwNwhO2tmj9TpZzVpEt8dTcyAMeAaD2DW+YzpWOpzcqZzTOr3YXq8sOHsXV32Nlu+m96Gc7XtxKlmLFNmZYmKXuaKhtC2B8V1w+3idAdD5JzWkM+1Glqv4BRZcqnp9rI87O06bCgeKUT0j6FMO/ONKN0WD/E3DJmX+xy/0+vfdlnVj4OY54I9drNUT9vqYsGrIzzkgjQ5+bwGCenLd/WRs6CasW0MPZUMnO07ixVin2O4DyzQtYoLr/64ajHdwMipfHHv/Z8Ecnbk7F5b2tmX/5HADXiPbBmAtLCKgSc8dgnoQq9r1Ndjtnpx0Mfn5QACWIqZuz3+rb834235O5HOEDDnEH4anYe8SbVzWOn3wjMKWrlXuLS9IOMqVF3OHL40S6TzMLX3kdNN7SJ1PWKXoHf/CYFZmKLiOUysy1ixgPc9hg=
Variant 2
DifficultyLevel
582
Question
Ricardo is drawing a repeating pattern on this grid.
Which of these points will be part of Ricardo's pattern?
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ricardo is drawing a repeating pattern on this grid.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/08/NAPX-F3-CA19.svg 500 indent vpad
Which of these points will be part of Ricardo's pattern? |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/08/NAPX-F3-CA19-Answer.svg 500 indent vpad |
correctAnswer | |
Answers