30032
Question
{{name}} plays {{instrument}} as a session musician and is paid ${{pay1}} per hour.
A band is offering {{name}} a new job that pays him an hourly rate {{fraction}} more than he currently receives.
What is the hourly rate of pay the new job is offering?
Worked Solution
Current rate = ${{pay1}} per hour
New rate=pay1+fraction2×pay1=pay1+pay2=$pay3 per hour
U2FsdGVkX18xaH0EnxoybEdfdbCMcpCPktWM4R16zZgI8Rx1ljb1UuG8Q020ZrDeTSUQKhjD/LQk9rcRfiXaVJaqJ8Ha2CXSXg1rtYkRRbxxk5A6wb04IXqmZzo3uB/7TXSFIqhnt/eddMvP1y0Rtc1JxH5QDaT7txLFXGAv0uTJLomxY61ir8G5zNhq8p/mEK1U7LB3U6kY+kcT6u7gJsfrRk+4F24Uf5DgO+7UoH2ut24EzKPkJWM4udJAjRd5eUv8W+ky+WqV4OuCwj+coBrLwhvDmfas90qpGj1dCzEZ8gqZAfJrmnFGb48MSY/PQaCV7xETtLsSBti4qo1rhD95360162rRiS+tGKl2L7ZDG+skpOPPwMorvVxoXn9U4brZjUVMCvJTGZkGxwnPTBmqD5wqvEdDt0Poo6GY3gVld7YN6in8H5y27DLYBJBJNynWppK8kRAOEl9Jq1VB5guwuCSYhx02RBvPnBH3UxEA323eMbRsGHeTHkprskVcEri/J2PlsfuTkvAj7VW4lThnfVfqCflDfXZ4xkCzrpqz0MC+8PmgTmlcjKfOqp5GXHuLpsHezp7+zrD6uvDcL/Plqw20Wmoq+S15+9KJ503rR6Iy3aO3vLgok6nYi3YD5Kfnz0IOaM/moQQhTvLulimBw3NmA78hqbrmDhwOI//41gAWT3NFBwGQzHQYTvvDLtGi8BOpaZMZKnpwEz+g7pznv4uOcvdYgpFRZdUnFdeoZTqIZBPKTF8Nr6LK1FUj7to5G32L1MJV6DWf4HDBC8+HhTSKorc6iBdDj20aBWPNpuNmoRyHBZ+y1Vksm0XfR2z1/SFftxLPAxBeXKHZbU6EXhiHIYKQzccf/U0wHuH98FNsKMqUBH4Ug8HwsDze8usv6H5nRaHKuVvtXEQ+RNJAlV0mbWatvVnFC2oZhrQeeMQwSfkqEqu6isgufM00k5DhQHmii7hFvCD+n0aznp9ZkCi6fLpU5uKjnzG4d8G0+9ENibRGQwkYAKlVGw3Jr4NYP9xFMoH/zw+RxLfHCNYDFX00edyAhiGCUuLXkM5H0xy3RQ/qHNJQ65wQeZ53Y0PxTkPFYSjKkDc7KrGQDYoNn+uN2okSm+w32ZjcJrxKif5U8uavMApKqJHEm3Ta3eAjBC5SHHjihKCnZupuWZesB1h7tla5BQJb4EuhJ6qFeAszNC8dTtxMIzdRxJKrfbDCw/Rrfi0huyg5xvBPZ1Oql5YSS7JqKW1xe2uzlFonqIspoO1mTrWhsEJlvZeL4drN+P35yWH0EhsA7bZtjdZQK7BDfYr1vaCr9iT4kAFvtnKlx4EHIEtRZZn/5Gw0VQ2LKLCckh66Uiooea6Wp8C/ciuOJXcyL0iMXZvWguZFiuNQAxjZnJgkD0znqw/mJaK6YFqqE1Q84gUhkneM5zvuevYDAZVe1Cu23NkSubEAprP4C6V+NR0fV4BjEhwM60Se6GNFmL9uwjSGIgc13CiGXcQfzGZ3MFv93CovuoV36wTWi7CXwmGbASi4XC/oYRntKBlPToaJvDsmNMfy/ujTCQJhsykVn2J16Y1ao3KZBqlWi+WMZmuVFHm54dqylQuSo+LIaPtdTxoG9DhUD0cJffOg43wprzxm6mZDM21GcVYc9iKLcJasaDpYteHjKvaX+2Nq8yjSLpxIsrEd5InsyOcYsWd3lUGQXX4VYO/2I5LztmcggZFvw1EZq2zq7gsEdSoz0A47C33+ne2d7I0A7NQCeskMGdTo34MDz8PwW2NSsqyDpAX0+NDQtPp7Yp1WD05TFLZPRaUOd7M7sfH/bKXFUnoGjLpKvBI+LcJPcX3nT+5v1mPi+LPm3zGFMAfVIcHlrrerQMI/ZV/3j7Jpw+WjXXErF7PJT38fQVxmq+n0n659y2gqEWuYvvzrKYT7XRQPxHRkukvJm5KakeqPIU410GpPP2dXxYafOJugsOTsYiDHqIrOs6ZNwfY+nxFGPkFUGHFBg1lm2YlWoFcYB949rBgnbqHT5L1+Gz9yvRSzaDaYDV05SJt75pV4Xql5Mt6lukr8SkxwYsIlWA4kBMxNyMrw7HyoR1XVhDhcotFoJwuamPQy2TqG+lByDk2PN+f0XxUww60tuzzmT/eFT8gZ2KHEhyRLhk4gypVnTOcgj1WY1529z+UO2CQAnR9jHr73a4+HlLD8FYAO8hWg7hoiUD1qkFxojr5edHEcCn2K53L45PJFhusFV8A/FaPPYjEQGCBsJ4t4gVoo9uQDNnp2fErEMwbjFXu2X9+J1PdlWytL9Asr9whbgXc2UAIba11538kh5zJBLTJmDh4sgB5zr7atedy5D0YIXWJQnBLYiq5HXc93cu+5/GPdP4OvfiVQi8nzJjbGAgy0pTsRekTs7kUtlgWUk3PXG4+QkbS14jOyH9K+CSktS385iugDtFXYR+FT9lcandEL8aawPMW9DjITgWpR9VsYuCYRg+FsuewEY5mZOQED4TNIEHn259pMIISJj17L8EcXSkL9JOVhjsL+C/eRW2W8DdaMUPoCjbIHuZRj2XL63DXZw6DHNsYFwktMHh142hhyKOgr/LXLYEel/1xZKimd+YOaVhcpWr/prKfMbPJKrFEEjixnkV1zLSMbjMUiEjaCGBnDzcea3eOuGguiJ12y8TNiPaoTLM/EY70ga9sTaq8KgUUTDguzXwKaWIbXjbO+72kj/KxkRnrJqzG4fKIVMr0i8vnTZm8qpAxx5zW79I5dAiDp17NgE7IZIsaMhaYqRRi1RYArZtDLZnHnJ7kzCwk7eCIxq7Kj5IdxmrtuPHYY4UdP5xZCZasPZUpdmLQsvi6wSToURUECyaGpDYihrTE2WQSqPj/EJQaY1uU1AIEThSOnZD09aH80HqMAsyE/pbMPS8PIiZ+97jT7+NRSK8CtK4O0r9XUSghiQOVHs32YJO2zXM9YJVZ5szz0LasOYPz4uDBTYEdyjtv5U7gYykFx4ic/hwzp54Muj+a1nmL5Jf6mokwJi3dwNRT4gaIrOwzMdj/SQbWRCKt9S6ENOB32H/WbKfdeL/Z0FH0mtwPmBXFdZun5L1qRE/05iir9I4ukggAR43fKZqjZy4C/ZcIM7M/0ou4W+dsyp1BMoGTbcKE0NHUOxMsv/FUm/uhQGXQw2O077h7g/7MVe518M/QkJJR0P/+uU1446L72KwKEXSZilYkS5G7ZdXykQSqppVBAAsu5Mmz8wX7e9CGPMpVxcK4YS9lddN8zy3RM6keVBqMFNOU/u37XRea/8mnBuLI5cTEFlrQE/03Zg3hL+MnWXWPCRxxJUz7nKJs5uSixnBbkOnMe+88nk/lQJDJg7elBDkchejTX701RoN98ac3J4n9/hHCQa8EO8lrNBwjKCOwBLQSQhe6vkMPuVfGkCR39yvh35h0d5R6iO9TUOMCVjNLH/MAmV96v6EoNw82Bop5Kz6Dv7ZIdbhrVp1zYNyOXdAw7zfxp8PyBvZolYxSpnvW/uuiDHIoJ/W+Tt7znkpYUEs/Z6bwoJhBU2mKDISJbdTOLD3bhYxla3CbwuLLf8C0mEGiS2f4ds98FxUrAJKhrdgfVVLAO21jV9S7DbYOg+KtY5YOi5/QlhmvYLI1EWZi4FrwNYLM5U+hTm3G3Qejc9TReEXq2m1IddiTh2Ob3JKUTJz6zads/J6ovdk0w3fS0JGbAYWNU+ldmbM8tP//rZKwsmpGXaxM2uROyS3MQDwCHNaEM8/CuGti34EnOHD+aJFeHUSunuDJWEfL1Ur8x3bsfKmcs2WX+toB9NOuoRlm5A3inD/WqYAkrDtotg7FtgOuKZVUY1YXLyGGMAjXBxO6fl+6cCq5c7IEwtXGZ4U3hScDZu6yyq5U+wkvjNRn//CoVF4n820BFyXI0zliwauuhiP29WJje1OK8IR2IpLZMJuUwhkld3S5Z1oC1fUN7tY/xBejdspxNeVinejJMgDzb16Z0/YIKtD95e94iXxANkTiRmGiqOr7EGT9ILq0oxqnYOIBkHWz47PSzWHqvfkIL+BQvDD2sFcOo6yVJENzGvdqdlf5pY4wVIXY3UDkEP+uHKpDYKcpSn+7SCmHj2QH95RxRVe65Sh/f44HcXLfn6GJqh5Qftixep/Ki5AJ+PYmKw67TCjZP5phIN23+/vcst0eDGtM3XbKigbXiLqvdrq5uKhelzLD8dYGaCdIvRy5f9G7vUzWfbRed0qeEEpCVpAyLh+P5TxTnDq++gi3piEkawU+iomkRSZ7rGCOVSPPNuyxNe3i3oxToBwMAxEzvF7WtgbmVu+0pRiRyj/dwCGWQ/BEMp26GXK+jLBc87S5Q1YYCPQC996Z2R425FNC8AIXHRGlX6UfsWWp47pgusmz2fafCMj9sNccA2q57PfrCqjetMumcUs+PjuskQocJ+IyLkoAahBrUwlcBdLaPNIzomjBOCXK32CXwt6dXCGjzOz+/UBlMS+HfPi2hZ6kebhBf3We0qjecDqdHZ7iA5BVhb5StYai8TsXp2qOIL6Sf9sYPbDrAi+NILFHY1eKFYKuUfwSLMpYSxk7I+HIBwkb1ErlWNQEeqVWRiX3Wjp0TtuuKqIH2AEUkSI4EFNh06mAMhRcFBN4QL2Twd9XMijtIEl0Pa7b8n9yKEEiR1m6Vd/pfQ2Be/Q4rlUGnyis+aUrP4ET4Y/j/5aV7ROhbZl34JNm8S6Ef6CoG6b0GP4SOooT3/dnGEUwBC4oOl0FtjvTU42js0BjMOfQdP6b+xJj98ZzG/vx6btU1I0Ysx/6IrtRuXi2dsQ/B2ihj6s4rN9OhhTkgmhkzHiAx0BMauZVXp6wB1aGgEficHvn/nrKoC645i1QuiCqtHa0wwjNgriKMB6jnUolNJq6LnljicexA8Fx4aEg3fIVv0iUsIudkQzNYDY6bxwaGLdBVkBxrbC9gqbZ40VfGoFc3vibb3JPEJnsURFfaB6zVtqzKTk2ezNi4hXe20D/kcYMkk6P0+602app/0onEI1z65cVB0iBUvXbuOpxnZjstP6NWd5v4E7kVjFiz1eaSiT5ZG2OkmJCA9pbtWq76+FEJBLSs5xBiv9NDlA5WfWC/yQCZQYIBrUtPVaPwfcZpW+LwAUf1nfrWb1TzXFbVGyCq9kwqA3xTW6RVaVaf7ntikqwoTaAI3J648TfjXh58OPy0GI08m0iaYVztfv0cYfeLEpoyhYL6Cs7l1mY7eKGo4kLSRsCdZ6Bu80TpvE7MQ43+O4xgHXacrqk+8W/cMUZl8WhgbhfCYxlUmjEHku3V40GVtU3csja4rUcUX3h1GyCAf8YgbScbCx04CF0cv9pq/Q0XGExqZibZFXg3CYx82Zjed4EMiWJLPyEL5EJJ/CZ64PizcNsesXDJ07gLMEpFv4CHX2yxhfw8Tm7km1eVRkIYdQ6Oo47WLvYuA3x15yurIWo3pF/4k9UbFoe5HLeey2B2t0HIvw0NROxBGAnOMI6sxTpCjzmmf72Y8UJjMUxMhReg+U2USUfulXEneJ+nZmvzNZj5QykICi8HIPehFJthWUeUpXM5e1IdgE0CaMJqjhJqHhUmVEGHtycAuskOUpatTTZME0l60JKvqjsgrw7jiJHMmqO0T+zDTZXZ4il/Q/08PwHpnsTCkZwhytFFM72e3qqwfwxfjdED/uHwCVmXZ+kJgeouYmictHzBMsxVBmMq7KYzTtGN2EbWEMTJIqTfvDuHFNqSVCAVLZbAnDB5Vb26eZjvD79VIN6iEQsQBwd/bFtenY49GYYJ4pOntzRpGkPtZnv1FAJ2GWzP6qyiFysjCd6jT20laaCLffuRji1+1mx0GAk2+I8tEKkrNC1o5su8aonkwXD6Xcg5rULSY/v18/y5tvrw8k+3vSo+bWsIsZ+7gFj/TnotGSmmMTy7WwaekY5nltl5Sm/3HHio3juS08NhwiJS1jtRp5O1eYpouppyIQToA80xme4y3Y+rsdlM0gIwy72hXsGPyOnB384MBE8onHHgwsunlML74Q0AjH4SQQwAew9uBoULAhfCGXAvI/dwuqrHU709/6KLeOXNFsCv0WgIBgr7JCQQtSlMJQKusYysxPUpin87TmJQC+qxM4lRqZ1rGxfCnmrbAwmBfePiF0CXJJPsEOfO6kU+hee9FVNjOo69l//eXhAYH3ZU+UPMSM6I/6zHlKaGP/IFZZ+FG397JT0H8ZFOppJHbVhx60KqcWbY37wQP0y6YVg1Vy1FTxt63OUT03d5qnJee2LfX94Db7c2+NKX1XSVmm/px0SW7Sghebxxkeoc6HAtWJsmt8qTwfy7eU+i+6h2NwVc8/qdk8MH7fWfezVKO0uINE4AsxJT1RifZenZCINqJbDzMqNLRb0zlcNGvvL73i4vP8IEaSwATuqIPpZyty3sqa4lPks2i2y+2YNSydIAYuRYDQbR52cEMaqm+wOQwNAeinAIOAM8i4QgVrgLEiWFM55IGjoewWJp4Yo621XW4RvKKr21ktwaprhFB731wStbnhRFxwfbykQWc76aF30YIDE5ylT90Wb2RqZKXPntd46T5+QIVnbbELL58nMTYMr3NItAMUCqUWPn4bo1JtGTiHkcI/CNJlq9SF9Q6jiKzmqPiT0uzxsV6Em2pYLQSyDCOU6ALzvRdY+9dp8LjzSmXqDZqEvn5t0O/+no08zgaUS1NWR/pikEPxkyKrq7TaZH8y9g3G6G9OtdK9koQsSJrpcXH5kboevJOoNAFfe2THVaKZJ7LdqFGlSXQtV3GkNhk72W9xQafohReF0eelt7MZGQK+L28sYvlFA3s+UdXvunhwFvMHdsk46EIihFp2wbI8S1eDCqGGgiYLI2Dm1FWX4qxtguR7dtebBOf3IT3GvMvkxk2NHSRvUCctsnqS8UqjJ1Khd1c1Iu6ECZrB/mR6RHGgZpiff5fHYpcnyM+dn9xWkfj8zsPIkbQCvGD+neVAUwJDHVbVOTrI+Wy7I2QTbHh+44+OF53lyleUfuDuqazc9XsG163ZP7WSTmNoufjg5LN8sTQddQRMQW7UhwHfpwcmOMEhqOqCwTAbMekXOWVF+TZ95HAZsRT5HBepWo82ZxO7MCreDYR/HbY2NDdu4N1MwBcLrx1UTMpGuVpzerky2nUifGZrEGBi1B+5+xwgYfMHjYjbqdxvlOPLx6+55lNqm3uXMjR+ypZdpiocrNQhwwJ1CEK6ezup98B5/Y9EPJA1TEbdrQuvD/6enRm/+Hc6eBQSNU54iDMI6u6eBLt9+dt+TSMtRqNdtMaG74iWznNwoOYcCpcZUUYvwqVHy4kedhnWSBiRoDIfntcxtuhps5RTs4W302Vm4Zg2XXXThh0DmcfQfT0zc1DfLOugYL0bcThjmLnSXJoR4GquGej+FC3oDMSc+fizFS50pvXJfpq7nGcho2EfB3VCkkCR/zqrhSs/lTdD0cWTti6WkmggnKXPyFV4pq+qbogobf4XFDg11fT7tueCZYQFlaIbeM8SxHhVks1ovkwDpVfkRZpshtHa2R+w2Mqvk8aDsXGhIkT29rjdGU2U8ilUBstLpmQllEQD0Z54/AYUYOQV9ujbKpqpuC7ht3xqtcp/1CsRW0Fqap4ZcSvZDgWw/pDoQmQGacPy/Vhsx6oIHiii57j7ru58jbIaG2oWdXl8LGUmWax9CEc9cve6n1B0k9vjO82+jFLCcByZGntPcjAeas6FzcH0Qfrxh/CKal0DDKJILGL6h8TdhrfeMZV44hd8TgSsOTRXDYgjooA+cWMYscKP/GbJAm+ctdJ3paRxxZENOb3leI6KrjRFQLJvYDhytHrYIY+pvcaVTkVDMPj33E701FRPEuB5LEkELT5NCD0eXMr41B/Q8NBxaT54cmYBiXW8mjv9WGQi8yZU98UBQiXrIeR0bUJ1Hd6DTrzEtc2u0lRZLZ3EBf219bujEn3BU3iOUvKqeLpG2o9dXsogI7wz6zfk7feRurK7L8SUMxEo0/Mu2CHBx/19pqXWrUPHgeifdwq83cmGTLYsakzub8oZxA8fbx6waO4oE7kGZFOcnICHvSEr3Mqvqu3cQMyvEmvb77iY5q2qTjDP90k2Ho0HOhs8BLWvxRQUy5LcCNgNGFSsWh2bRgR1q6ir5DUDL6HFShqoy/1vsmUw2di7+X4dZtVk6N8kzJvZwFkR9yQqsfyOihUNOt+rLZ0cDxtpwaBBFkcXzMAeVPyAyEjGGd8JCXFGf9YNMJhT1DHmGfZdAVKhT/3GGP/2doePT0j5QcC0GW6QC9QQbPvdFAIMC2wT6bV8uevxRl4CKFlEPSxL/PlnoxQNp7FK761EopHHPOvJLoReZEmw4cACFXx7eaoDz5VQn71n2E6MGBBpou34+xTAbGb1iRHtT2lhGMjsjh0ssvKJMY620gZY8UnNmoXxceD6ah5DvEbMzprIgxPUYI71kad7j+ksNdiLf90zsr+HfxrOsLv+jrWfYvScLKs3YkbxgVVl/RTu9aKLL7zli8pL0xfkJgN88N/p3lfLYSBJ2IjaGLhzOxmTjv5yo811L94fyCLiPrYDgg9wMSdaVnWSsWIllrYjDjjBU7fv1RpTG1MEnHsV0nDlDslwPw2kL3kp9+umXa3JytCneeZRh7PdFc0q0EBbutIBvUOclIHZtnyQmnMWRzPKtaeYiGnn/puHC4oCj7R79K6CaX5tPXEEz304cyEhA9Aa1/EUhwoe2TYgvn0fvpGdYYy06Eb0la7srYO0GKGtVdWmL2BGsdilBGvpgXRkzbSe3L6MkAUzDy/3WMVRwLkUv0dCij2+inQZU=
Variant 0
DifficultyLevel
556
Question
Prince plays guitar as a session musician and is paid $36 per hour.
A band is offering Prince a new job that pays him an hourly rate two thirds more than he currently receives.
What is the hourly rate of pay the new job is offering?
Worked Solution
Current rate = $36 per hour
New rate=36+32×36=36+24=$60 per hour
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
instrument | |
pay1 | |
fraction | |
fraction2 | |
pay2 | |
pay3 | |
correctAnswer | |
Answers
U2FsdGVkX1/OIijAagS+vGYgk3oeEgHeWM3xdvftOvpuVh2R1gpGcZjHUouhgMrjxvraN45chCtZVFkPOCtu5cUEI1CiRq8bPRw+8GfkTiy1BP/dKsUAJ1QtWGNrbfU8HqFcXwrWTwC4cOoLc7KcYlLppEGN39Nwk/7Yndybsu5QbUegOa5F7sNmBHDuO+sbIZ7zs0WCVVzHckCdRQqwA6T1ZIqkdnjPtCRcROw5JmRmIKnYXH8x9ZetZo24Z4L53Donk+TQwWQd8yzBGWjq+T4J+YboX9c+ZcdStio73fW4iN48632qkt2nXkNZRdI+DzL8/ra8Eok2qf1N4lOvdu3+9UQHFRIfZfDO5SjBLer5WrYTirzrB7PNmzAqR8DKJAR10UnHYWAphi4kbu+UY2RUw/hV5a97+rLN28SzxkswTfAJHnbDjCf8Q5eOw1Sc5HQmjooIugk9m6stIoGt+EDqZXyXQZDUu3Zv7IXQSdqWW5RqbiUiwcrHRYDUKBuzarBDYlvPbazlddrPVtjXAqNC024W/3YKHEZ983FCyNm2Mj/joIqmzOMwcBYzUw27KYFUokvoEGdug44nEowL1Ej1RusvcJ9KhPEYCOOYFmN1ueD3WUtRvKYyNHF/rn96MBrKX3qhfDTpGkXA1IIoW99v7OrgZbyjWzC9zQ7+7ujk0fYzlUZ+sObmGydnHuSy+P3mSbjNlIbblfBIhSfUcnphUglP9122mRJKDB3MwhsLBGpT3uNe7MXLMtMQXKXyVz2CtNXbn2n96k21J7WZKacqtMIAyfcKGaQaH/Gexvm9LKQ/V2ofIEUJBks6boyL4s8Q9qUpqoTHlWgxH66BQn5Bxrpdz82m8GKEwxEKsJa/Wp4XVQRo8s74drzbXv3g3L7sZCIQPXVzbXaSoV3JYw2qO5YuxTlfLIokNbe68mQNSsslxLHVjnOimFjaet4TYu1t7vAv0cbCt2yOeXjQKlGTI2bPU+j/6Ox8D1dBwmptYktCLeSgt6vXyMG3kdwhf+o3VPvb8BSBq4uyHoDQUP7VF6le76qzT8Rg5OOUv5turhd7LEA/jYntfY7Nss5Meq3wClwIy7SCb5OBwUjqQJKaHjggMqd1VWRyfoDREGh/CZgbNs1YkJeacTqFg5OS1IOz0MgXSnTDugn0kKgXrcHd1fTklUtqyqh/e54BVxTRUVMYEzELtOrDabpp6lmQk3XNfhFiVrx/cry2cIrJM+0SHBKhC6zTmSUz7V62mEKlkYf8szg/uBSG15wi0qW3J4HttUl4WGraw+EyzTpzXHcdpAmg5Ck6KQvVp4nifqYYyEKHwGF8MvhTeokMH1qfId63caKheofhZvwDAQXrCqR4U/o0bFm4WeXHBFJTMC4NVYH3tZwXmt6lnDs5XaZwgctHYel/TF6UgQUF18Ldp9Z1m7BNnsxFiS9+Xk0UKKga4WBh0D72jMBa0CNGu4RAX4BjZIYS5IYcclEQQCP29phYVnasI8zY0QkrCCen7FygsUmgHd2PAdwF9Ua2xAmk3ZtfZYROwUsfLoGNDLMolLRsoF/eEDG/FF8M4NOlPn4pIXngKUWUwso3CmqwN3DDHgVhLKwSGu+irT60OTlMy8GnOI/VISc6e2QHYxtMS9SJg1paHiKqBNMmUMiYLy64+tzlx6v1ySHpZ9tx0kYDLIa6rWkFrm8x1dwuXOiVAcfSYqZf0wyNRCIqcnmVRDmtYMEp+D6rMep+d+wvBZPJD3glKSE7fbI3viNGOpSj4PAKrPDQuujJkbmaV5z/OdP/hl7m4NDpUphDVHvobxivhzgyWejEcP67dGjVuFYAi3DHAAG1hcmi4OK6BHmsyEqktXFDAGj8+7d0cf0oIcuxjhF/UD0L9uO8NEHWlf3siGGIY1956jEu70g5XHlBW0xHr3GQJa87oVsWaOQLtKvSr0rIGIrFrgJiiK26wDIbiRgbnC1lrzfT7baYsBhGVdFTDtHB5zeYQEGeA8u9IA+PngN92sDoCh5tl7+xD7LIDy3fbZZudY7dEy4QDlgPAiafM1px5H+fa8f3cfXlHv48dI8ddOex0uP10TVNpLjHMvOwfbAywhsu7JEIGNt+tQETaI+6QwyLPh6a4f9D14r8qCcJo7SO0G/WPlDyhtSkTIUNGh6Nf34MYCvAl+rJqT4OyAS0DpVztMn85bRUHmtDkmZKG9+Kf3gTRSSFa9ofp5rWFl79waStQ8oKcfw1fko5IDHQoR5MXL0qfwKyQei8Eqqb5lM2pGdxLIgbKc9BVNGF13E8UVQl4f3jOamt4TAPqfzSS3pBJzG9lp4/cH+kccjdBiJ54tBHFsi24TALhU0ywK+JDdxgrwEncvgY/xopmmiGL+hMmT//3yzwbuS+LiUW/I6apYnwXqnQYay7/HWYLiUA7JzVWTm/J6HmgtMwxWrzIl0ctT5gie7xmW1YSEEg8sG2i7tKoQZHqazt/Po/TdUqVEojxsrsmf1XnglMyO15f0eVdA8ERZ9RASxSBQnEwoR50/yD+GQEpMl1lNgKlaGFFnK4zD4b8GXywNE7paF35XvxIy7whjeJuDBJWS5rRmN9ux1ZTvs/H9leDJ+SiNWuousStkkZ0JJoY9muCkqsr2O+MU2iek9K1j2hBrec3fIR9mKmEgT3w3dO7644G7JC/ivQ57XSKv02Ut9fdhOCO8UDcblN9fjeItdCmhQ1viOvbX+uEfjddErFIshAKE2sQ+ZngY5jRMtEsZHK9jvaSos5rdSZlUXG2kU5VATofvpP+Sctsf2bObLMRfKFppEKSGs7GNuEch8k58ffj11KgBLqBFR13SZyrgXI25rUxqx1m/A6yy0QtrQn3XhJxILH/mSXTspoDYmfotTYNKoFSLdi+Ku7MH4xXFEYT4FsfJ4nvAlDfDJl7/nnlJpU68rimCBim0icgylz7spHES3Nm7itP1MhCppfYLS26yKTrqcwxaAEfAeXYb+Z/Un2pymuSw0nD1JjbyIiEwgq4c6uBLJQslIe+vt0/cMC1Lrikq4oFTWKHdsTQPaqaH64gbZXLmPk1UyQB+Mx/vaRYd7x8Gw7o/lvmRVa95TYZywbSoNfRC9SkAOzUUtOOzFvFLQg6iZvf67Hw5YWNN6cqp5SyL+3QgYPDfd8BW3OBtK6J5jccy8Z3XulsXg2qv314dFipQBPQADD6AIaEiI5Whf9+CzrwfmaTWOAqolNT4BOaAwmk0AQLUH5RQsNIrPlxsofb8NNgN8HtetMLKIA/i33dqlx4UNsur8HOmtetryRQoqmyDjNxDiiR8qRTC5l57c5qm58q2sq0EHNyvbdW6bLwwa62yEN/BreTNx2+MoqgBRI9LKC3yUd06ntW36uKs8uompjt5LBSOBqMoQ3V7FXv0UbtOdwkW/JXn1LpCNhv2d0NwwNE8imCeDdLiuPTKNZq6tatIfcipPfMOJ38S9pg/K3F6BUtPVu2QdCw82sbXyyllwqXDeDMUeXSszycJzXupH0eeHelrfre51U0m8bprRDUhDE4cVvo4wDStVpoADQonvG7ZHnI+2nvuPaA6OqbMscKKC8GHsW/nCsw2oiMEuQoJcH6kgtQG3l3+LZMRmIl0pj5zMVYm2cI65ls4lgG7PVssBYogRXo5BKNUiTcCSW+tfLevsuSPP9j1i+KQD8DuB1sE0+0AAWntyc7G+4Gh8WA0usEyAQdDCNDcPAeSOPKyXPwg1qLaIoKf0tcQ7hMIZJYm9RQnYvYRh9P0LnlaMwEtqGDoeB5AChgifN+JVKAOxeL1F/h3kwFFcZixUU+w24ziTj1EUvBICy2aC3B5qT3m7aKm6C7QVZRoD26/MXKk4OqQ8qgrhLJlYoOdrD6w4bBdFuXTHWn1jQYBmP9wHDrYi7XEeL1wsBiCXYzmPf0eDK7mrEmNJH+Vg0LOvyZ64WbijWFEOeWSx+W6VspjBssugmIWjHymJlBBXZ/qApaZllrbU5j9fzQ92mPAfDPe6UMlKMTtUo9jiRJ/1XobcMZNWW4G6OlsGTr1Ki6ks5lH2QOkojYOaVikpaIKNLSanja9/kP0zzjBoH0m4iYGUO8wCk6ek1PH063E8YEh3i5fooZFpVdQgFK+5Zqcyl760QTg0hXSExxzsupM7IWWqrJnkiIEHiCM/08ddPKt6Av3KGXSLBmm+BRlzMUwU6Ng3MIgoVO8PwrvfBO5AhUD4bjF2qcd9ey4lpdV5D0Zz4yGXlvARBiHEZP8ipHhckwqYEUd+8zw/8S8FkioF0p1Cp+WfKsGkR1/ziY1AH+J/7e3ArMnT60ujnjZrOxjlExnm133QyqXBXNAbUfwHHO6G1w3Y7nX7yB5W81OWKPJ9xicgsTNqhVJEdWgtMF+13nwfKHSXyn5mjBoLNM0cX/zR+cEu/CBDhgabLsYHAFtoZfjJWfgoOwEAz7zd4IEbIrJqRuDuRiN/dfDkG9T74jOp3jNsV1mVvfUglZXiYfpqsR+Bg4l9Chal16RB2WzqGoDRSKJ0ZqfWSpeuu9/40uZg0bWvf2k19x4CnQfOlV9oCTlIJkG3ViGjvYOavWbWN4AYYISuUosyirvD7uctZB9y1dWBlQtMIYQcvZtsQF/aWpwxbj2A4eFRzhCfPiyodNf4g0Xfa1e0SuIDl+m//ZnoU2X3CPTiT14RgiSeAZiNlkBxlpTHu6z/4wErdLB8xlQPFxUXEPMtiSnj+Sxd1vuSTiVbI9L3j293gBztiZeB58eD+C2R+3u9vT6wgnxQcJ7Z+dx/A1CUTbOQ8lvpsIU/uxXDOXtltayxvrsjFjZnTI8MJBX9IyaEe475l7jmVvCINaJGrBaJKEwrNBqT+RqNyT71ESiTZGemW6yiXTb069MGm+b4x0U7Wu131z4y+aBd7csoIAjck2AMvLXk9pkBAmZI4793gp8/aWynO66KQUzqU/ZQI/AHDprt1jMYAN77UqHHPOHyYa/Jn8EAzFydy2t+MVGt5165Vu063K2+ycms+dpS2KJVhzV+bCTI/i9bzLSNc2iaIIVIVttfF9UdtCnx9vO1f3SVM8GQfcw0M15J37IvwN6lLLbhKXrZpfCefYrMGOOib6N/cA5/WccQa3q8HD7c/eNDFBRDGWmnfbhT4ls6dd3zx+PYOYpyN0otOhuCJPtBVhwgqbFd/h+Mg3hS7aAW91Qvr5og4Uw+s6FnnNQSyupcx48wNls3K8fcx3sXxAwvUNIRBM9dilu9ZMMKt/v6nEgIHVSlLVkEjnzBGAk1QNmZche1PuDMHZuTeaxvv8oiwRA8Ee4hWcibN9NhMTzYStX5FtgC3ilbIXSnyyxiyERa1g6iGRJMQ+bC+Eil5hggypJfrUCSlqiksciQn3nqNm+IuM4DzCHIhMYa7SQ/MIDDQP/aeSvgkl7uztNNnwUHqbg1tZnq0NqujSu/za41gf526N46VvbQb33eWKQ6CoBXVPkR+MRkoV4nDqqZL7cV0LcaJPXr3EQgVi0mnUYghTKJczvJ/y/+Cjo0H9G42fwQJU5TkTKJiyVk0X/t09fomgeWvoLVhO8o0kiOb14cdDrhC+3q5nVFMKwdAl3AHCkCbqMA+dpGroSuDwMQ3yzm1U2W5fvnA0vQkqDLwTXaOmPmstnSlKRPXPhQ4o0X+LOw33H1kjkqN+3jd/enMhCvEX5WI3BZCAtEKQpPJWQXvLLcoj7CVVstL/0kWOFPknQ8q5EU08AP+VKkpus0D4xI1um8NcFGwJC9+3encUYAVMOJFS1Sd/VWJxAoUmBNBSdqL6lWgIJhhFXngNrSaIBWqwrG6U5JeHyR4ZPu/SGJjI1Yn5HzLa3tKYugBaE+ZO82Ne766QjAXVQpOGRHTVqYkAn9XStH+VbdhFmClzyFREHgGHSS/kzln/U2bxbU3YbnwpshiLKAxBpZGY5yvMq0ckBlTvDI2pypOQ/fa2G/GSUvAhNt4FHgTkCWOeyQsKUHPI0ZGQr0lkvQltCFSavSN8BvChZq+BGwwHP44ssiuq0sIbbec1y41vym3aPvroLdo+oOM2q/Pj5BJjmiST0xFrjJl6WdACoE44nYiYraeiBPw66o3zbxYQGA3ezSPdhAhRHMu9U83nkWZML6oWmESy9T5u0kLHB9Na3fj1+giMiSG77rFjB7SawMlEPIcD64ONzvsX6o59aB9re0IvxgYA498OWQ8klTcPMjOBpZEgCU/22PRDKQjTuO+DboJl9oLGZ54WvU1YXZxN7WWAbnm4WFm9LuZQaDYye3EM+s45rV8szewEf1XZWLxxHOYvHqWa2sM97pY1ybK4BhcKZopayHZN2Syexp0upjBIch8DW4bWS/pB60egGasfCrOzjj3G79PwyH/sztGAcRtnOLDbjpfsIfKhJy0ZomobYR+KCPVOfEeq2APHLbFDyBtojuxo4oGzU2J4tbHifT+l8JsUdkac3ig//p5uJYN2ITN3KEI1YCDp/m12wXib5umQrDdLIiu3QqUbyudjacsGYa6GNFFfNuJa9U0t90MwOWzCtGhs1QYMXB/NQoN0naTDJSxI+0b9JoxKHv6QN33An2AJY/lQxZSiBr7dv1SQ5dTvY29AKNhmdINISEB45jowDQ6zSZIWDLtiNyecrLfy8IZ98U4mzOORAx3yIv1ThZO9j3dJ1Qhb1lVSi9psncTDGcMYgDdFEByUQO1aUcENjxITPPyX157gdEG0gjjo8NqA4QwotXuA6R3PadY+iQOezkYUlUbcuVol1J81xOxe2uOb2PKM8ZrDJ0AMSCXe7NpundB31rnFT2cN76HVmenkQIcDRGqGlA+vIHDoLytUcPABONddHpBrg1FI6VcFc4cxy2cw0V9bWTWoJ8q0GAbhAwlqdfqpFR/3KAdzgAaXPXtNtHh6oGNIYVkwvPYmjD7qCPvdMOadYWhvjf2Oq/XAmX8wTVwW/Uzs90WsMwgOzRnSKAnNChpw3wAAQhQyTBFAlycseqUH2FYgl7Oyt6RzDA+BEtPpnJj/u7SqpKg6cTeU2nYjq7cmiVDhgoQAwM54o4GxE1Z4G89BprUR4pLRYDZPJBNhnQ8HW2X3mMZQw7MU5YYCnLbLBJJwXWU2QidNowoXlqznYA9VYGy1x9F+picN9/bPtU+BrR8tO6Lj1ehGFeClJ0HYa6MLsVkiCkpunsOwSOkMIN+00rQGXqbsG/BsfI/7GKuvbbvZ3eEUC9WRdWXQjZrqndQsMMCzMKNr+7r9CD5ye1xmSGCLAG8dSAZfwyczy8d615kIBKhl0m3fscLeNSC2hOxS0wPD62akYO4gdJGcm51dmOnYB9Mwk7IzPJUFqbvwwKDxBeqqVsf7MgsZI2hVYl1AcohXWCg938B9MvzBcmo5bRm9aPZ15Tnrw5CDnrkiBZVOqcbLqOiMA7Aw831Not/7KWwKV7Gpx4H8hf4fYNJFRlDhCj+dpDMRntoVIn8Qc/aAkAU2A75lkbTnQdzr8qkHV30xD5zQ0t8iG2TV6XkuB6SlAZhLoc6TMSw3EISz2t6lKSK0TKpNhS00mvrgGMCuattsYr6MTS77Yt7Sk5Aifow2p+wd1V+3aKxxDlDMB8V+BeMmIdauUwZXMths2TQpJqNBtOO5Jcp6zE8nMUDSiBtkmdTje1evyenKJ6vgIID4jVOSZdcPMxOJYt0WH6TGQpRMC6nAWukSQBHahPuLDL8bOMdbODjapjcovfCVljE0m6oCn6CY/K8wSgrDVfW0H00FvsvOujcMByVeBtGFmmAscf55eMNUOCAOFgoEiaHDA5zKfCb1Y9jdqVWF9wnf3ZS2TTH4d1vE7DMw39AsJhd9pKUqr5pcLFtnXgLruzK2ApPvZ8yhV0fb8VRdmtRkazPYvP4Mcs9LWe6wBTP8n1sSkpBC6sYuyRo1IFtLNx0SyCx/EiHRl8pChZBATqUR+TZw8vECWby/dasV3nzMO54q3oO3S0BLgEpOF2VsNqpVQmK3N6lfjspIyNrnG92Q+5WHzlhsKqhLnzWbTFSI/Ouk4s4Vl0n3HfaY7dhr1BvjhzfpvdMt+38BZlQKnXxKgxBwqkuirFNyO0DfeUczF4QWDzF1HusAGga6Z0KTecl059Rodj0TLdMcAG+SKZy78yWKbRmhINlZISt3CTLiU1a0IzjwMJko56uHE2CO25w5yMwXyG2QObgNJxo1PdaHDBQFjAwrvEc6tdtc+wAPpsKoTfSGjz3RTncCuSWAVd3fKv5/VsI1LptPCtSV67cBkU/b0XFiTydg1KUpsKcE+tNyAON5dYf8NLangbhGs++Ok7s0xTjl7XoTFSZcbYr4aZnpjDuFu2JMUy8sF9ma/CIP2CaSl4zBSafiIs6tQYYYzId5w/enG+H7Qhmjt3yJIikN8ihTnkZQziZFT0hVkrPihTM2ss51J7aKF/3ZJyqOUSyKLLnIQmXjc9ut2SdH9PlA+8Ymu4AqQnWp08RS/CM9Kd1Jst/6Q7ouYV21c21m44pWPMrLtTSRPOjnkEX9Sy1J5JYJZhDTlYA2GjSPz/hsUP0OA/bDkyeX+n5S/5biOuLdowofQfx3rjikNGL3Og/LSsi27/wGOvp813D0SsQ6oUXYmmpqowSde7Efzy/kwMOPF3PflenEYilH/2b2PA1vq7YwoSDF5zLIVDZRdg9mMQhL2+CMAeNhjTneWrtxRprVbzU/Bfu1H0Kti3AFtd42owyQ/eBE3MJaCAa+TzFyjLn6ZgCyaBGR5BTKQ5/SGViYywl8ShgSPwHt9kEKMhCi0kKCk2PeVDaU5kYJyoe6J7O+3e0ow==
Variant 1
DifficultyLevel
563
Question
Peter plays drums as a session musician and is paid $18 per hour.
A band is offering Peter a new job that pays him an hourly rate one and one third times more than he currently receives.
What is the hourly rate of pay the new job is offering?
Worked Solution
Current rate = $18 per hour
New rate=18+34×18=18+24=$42 per hour
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
instrument | |
pay1 | |
fraction | |
fraction2 | |
pay2 | |
pay3 | |
correctAnswer | |
Answers
U2FsdGVkX1+GATVKudqfMZGKPK3L9fOIILZOFW828MO6j9zmddttD+5acXenp08Dn+60if9TTDW73cfrMF//BOgO8elM3njUhNz6M6rs+rGKigW6WJyhZnOqv3mjzFm0v3TGzIL1k6r4YXhNvSVLtp8ToOio2kfJBCWbk3iQT/3eGFJdbqpZLbIIZJeKNqdFVPnLFjgsFVIY8qAQhPppJFzsFZNzKFVqL3qGiJ4RU1nqbKknuRCU3ngTVPl42+ZBmTwjkSf7Lpm7MKrfdN27dKULhCtZ9vaFCHTY4YLLwqqW3C3n1Ylfz9f4zxcKMcukJUwUYlXdT0Sp41OYZyMiZUVuknlQ3xiobomN8p12kdAXfA7sNuwr6TF+FG4M90kwq+Na5gLt+F/6xNFYf3Vaj+62RUMIPQb1FsoTQCezn/Pecenv6M8R+vLiPOySIbBKFJncMaEAX3y5v285nCHPWNi60wYEm+5JT9jluj2xSuoy+9VSOH8rxIygavb0AMUAaC/7p8qNAer02Okma0WTuGVIaoqavuAHUG2S3DtbiwXKd8Bxm3KSJwwDQq/Tm06KhdCL+kXEmCunv+eMmFhKU8LKmWOQCZ6dP3tueIiaKNMQpVTdfTLrcQ8OKO1jnX5cnD/shvmZQmZc/fPDGjXfMbsLC4nqBaD6qP/1I3XPxU28FjToAW183cHVAViVTUTD2Eg5srEyZNUUPVz3c1RIySuOzXdJ9RVKC1nJhRnXacHZ8S/tQuSiWnPkNmKLoVAX/Oy8REkInMhJvHi+dE7PHC1ET94+a+cvFVirB8A9d6NavmQ/dIPYd4MV/gnu3+58LAbfe7Log5jYJOvTXttSMwE8x9qDgb+hiFzIL8xJEIGalhEM5KZ/1yNp0CWE/VxaB++5tvWNq9yQZlQGWen/nN7Ei4OKtL0yISx6sGYcVhL2vVdoS9qkkBUE/mq6falJZVZwP0mIbxBmTsUklKaTN4WSoUU55mtfUUp75eUpMEi7BH8fZMb1+1mVg0xHFhVyZTOeh9v9zwIcL0ulnbAN1bO+jPO+PMQQM6coUcRvaXUm3LbGLuJKyfGTwmabZIH2l43ni6cK5u+iiLAqnef49yvBlD010rh/R0mcN7mhp3i7QW/TS4ntO2fvd4OV3j5380fwlQM20dnSJqzICU4DWmVKV4fvkW2ion9WsRzuGgRPP1tV9RLHiTwva5V75fmzMFGrG0zaCtS8MH4MVF2NL5cT3icu98WohkUMFdfKko8DpnhuxTOWdzGKNORsnGgaYo6wwEfVLND4Dm3r9hpKFE93Yrav3bf3KEPMKTamS/8ew6KkBB3/w4zT6ONQA6kSXBtoLzNNT4C9jZk2RuuKDoqZwi6d5SM9EEI0TwSeoP3SepsG1gp/2yq8Y4NBJ3XN36oM47SOZEmCW6sPYy3GtZyMm2dy6UPNxQrIZdMwSnt11cUaMooGMf2zs35d/su1PAtz4yf/06+qOoTYHKSlf3NJus+iyu3+Z/4l8lj+lJZh1yCO84ZRzrNPMKkMgHoalacr+bv0xpG2GrrKSswLNQGZ+xErwxLfTT8ARQQFXiOxV5Znd60Tu/7nYamtUf3nXjKFsm1t4U5SVeGI4+46LxU7k17GSO9h991D/LS3fDxPapKr+sTPy2SfezL7+VUpph2mMdOBxuu7gF5ycXottKUjBJbKY5tOqtT5fcrI1pdjU8Z0+XcYJTQOo0XuupmjMq2k/bvhcha2BMLAsPHz4yfrpU9+SzRWvy3DzYwfzycKcayzdz9BPQ28IduMO7a3NAi5apxYZ2kggtsEgLHtH/oDe3U4JUw75lo0Aubsc3ImEINJOS7joTKln4g4YsMncg9YFofZ9JVXIrF/RnA+EzeJBYZ3/V10RQKwyTkbyilpdJ7VAewkf88LQq+cxCjBSoj+nMmsMMg+PyqODoCKY0hFqxuOt1DKUpa0ze9J+QAsK+0CAAaLARCxSn9tpI/UaRQ9aK+mJ0A7NHrO3XPc8NHSuq4dVqKcZ39j+nEHGQQSiv0OiaIyMQjRHMrV/Kt+RyDGTKGlqR4Mu3N64SJmVqUjvby4VECA4VIXcrTY+0U751TRn7WzlP5v+cvJd4xjoRxQa9bvE/J5lrn9wzhZhVjj+3fLHZHw6WJ1S4Uov0NaoPX86KyCj+OC3xhk3qrQXUXRYnOeTOWoVWw6t54PM8AgA4ylG/eipElsRB/5u6rf6fMQbMRxOfSYDetOr4X/OemwK47E58jT0hfyMvkwRCWOgD9pVyvnh+EtVar48/f+QIl/UhdYB+jDQQ878yFq1ZpvI7lIESA4LIBWlsX4z7cdM705x2tnI8aQ0+cbiaxT2eTUDOqElvJdC9qxEWPRZluKfVLlpL/vchRWLUXK8Q8QlMmbAhNPLVFlmBQPlb9pL+KUPD/SPp1QACcA7y3OQjxjSENl3rbjxyJe/Q4Dk24Eq7dQO9p7g0w3t4kaRjhfClVMZzqkUE2qcUITGMEkWklcqMd1gpi9FMgBBN9/GXbXsxysZ67HV1fqKfrukVUk1qViFhx7xf42vzrB9a2BH54RvSoz/QPBeXooDbZIUqhqZqyDurgDFmIzAV/4caBqgYO4wM+0t5E/3t+ai3Vj6DVAip0ggX7i/ji7BGiaghTy5fLt39rLXwAOXFrF8mtEe9VxZT9xPp0MzAQ/5g+pwgojv6jwqQPhctBR2JjAjUTxDevnA7c7kfIbzObwaf4lJjeBv4c4UioKYc7Hceeh7UCvmuv+H2g3LeWUqkUxky1NCIHys6LpfBa+gnGpM7Mt5Ft9eroC2KF76lUMy7a+hcXMDHBhAsdP4aLyZ1O2kMBQrpvXSkxZfnZVdvIioCIX4P/hj0Aqf9mD/ge300AadK4lYvkqnHyhuP254olc5hAugDjiArAB+Fwi9fawV+yeVuB0Liz5P3EZXOHPOrygccWscb5cZPkVLeIk7CrrTc+qkQ4QuQZfcNdWrUXaMvJ8G/Eo7wQH84To1zshXP5iByn+c9hi+6YDIQ6nXAdgwb/35RyhdZbdYtHBcBOtrlkxYCa0AnyXnVwI0u6LrWraFTIFk47hdknnrnoTkWfSskdC2rkdlCGZBSoT0S3dApG/wwdSY7WYIKr0FVTENRHXSPrhOrXgWBqP5uEtW9zpw7yfcEnyvCi011k5hrbRUqn97ebP607d5FqCtZ30yLpItXHOjsakj8u5erlKdNHI2bxBU4Pr5TFcBTXe4t4VFP3mchlYT22mSC8BwtsVmZyLt+UhM0rpoIMFYyzE4vr3GzZ9KO/zwl177vN6yQdskK4YR2wg9YibZI0g/5mtYSymW3SQcP1jgnc5Aj/ibhSckUQOu9rS/mIs4iI7iEg1G6Jv3QodAwlu33PFoXqh7PGcrblQJlxNG7PcaMfnc0eY7BEUEFhR52GNsUINavAvUk7pVGg9+zre1bfHOxsCe2RyRXElpOFbVjVyViYxAk9EvoIJ/HrLsFlIhs9Fvwlz35AG21H+urLst/pGqWZjtNiMnChkRq4Dgb8kyGmdGCKqGubhnXoMSeCHyMNuiShstKOonoV2pKY09CM21N9tF0+UeN7hfXNKwjHUP7MUwDyEqK9bvvLlgHdXgRgpQkldVkg2cXTEK6Otu1M4/0RvPitRA9ZvbwcjomXGO6BI5QzVBWPQir8JIwnBjSrh1JdshIlEEad+XxhszTfuwAXVSctQHkTEtfHA4PXVW+8bkgyVq5re0GVqQwA2YM85VFLt5Ue/Wfzgdnuko/27tFquQHOwBRrMAbSv3RDnMN2+YwWRCwDdZm785JrPnirSozi1pTvMzxp9POKlOLAnsafx0VHAr5NMxaBUiHFqjMHleHQAg2s1vpQm8QfYjcIKwlwovysO7vhafY9P1KhddlQtSOCRhRzNucRJ9quwgGAx5vQK2wZmps3NEiiXIC/IBsklNIknDcn1gl9+eYZo71EQ3Rsz8UyHQ2eQyLQZ0ioP59J6njTjKZha5M4Tz21uJ4aq/sZZV//QtRX6AY673B83eIHDTtLe6AHReyuMJz1VQQ9B08FL2wZ/inYdTgwgg0UZSNKITHwFpDYHoZq7NkWwep0uaz3hGYYyTyCpwGHtmRZi+vJF0MXapE3ySKZa6niXneIKwZ/lyNfGsY9t8EJ1RhlazbTWXwEkzylW3pD4SAk/mv5oM15Fjrq+R7lbFiCRsmgsAPQNZ1Kk7/ug/GvfgWSAPamwlnIs53lBfxrBhsmesejwaH/VZsKvQbTtIm/aI3yySS15MGGP+F4mARa6e0fwKLFPWuvwXoxdoi1HHhhpnMcmm5mzHsX8kHU0lAWoNqSncItPq7fG8pp6wGbDLWAztp+mUH4En3glHG9NJRcnW5RLrRc+SDvjQlclbhXs2N5zFOAVBQx6QpZizU6cVTmEgYjqblDcKPQPuCRClkjWwpmPNR7VbqSyfjIrAKg5R2eLoD9M6P/Ysf4GwWjNaizg3HegwOmdt6sEkJiva6cn+hYr0vCtWND5I5jgdQgAidjgItpioSkbgCsmIddvZMJ5gBDQ+my0or2fTbewahe3ZQj41BefNvYbRPM4Rl19wD/DGIjYcqrwg8eO9hYViQIucx9OKoaB3qEVGWJGblhMxDga0dDln5Nv4zWXJWNK77HML8pxBXjNkrdQNXt7TBK5EaCk2nnv/YD8rIMt2bXtCm+BVGa+khTFjMRSWMzP3KBxK92KwjYRaAZXQYPdcfGr8u6847l1HmR73ALr0Duhl/fKCFFF9/pt2SD02ZVRu9ScUAkTMQDDN96t/rQWjTOKs6+jDnlFUduGrhG/N+zrPP7EaeP9V+Y5kt6sE5qsE0CQvcRq11/UI3ZL/Ur+6rg51UJu8ropjs68uoRXuWocWtea8T+eH3gUnCkmDUnQttvDY+WeAtWP7zus4qQhjTAyLalPoXlgijagaRS3OyfyzWB4ov4nDA3K2spOq/RP+G008XOlB+Xz9fgSSUsVkSDN8qosmk5g4jgXFTkKf+Ba4zVHtWPBuDJe2X/dm1FN9xrB97V9kuXUbbgqSw1jkOa0hPKr7e3c+NHvEJfrTbI3nGC8QHkC+zF6NJLzTPplPm0eUb3VkqzfyQ0znux4IWPMLWf9TXYzRBg/tfMulFNQpZWiQsoJuMWl6IM6iJB76KfAmxxLUeEpaFyt4ZpWZcCYZqH5ODviC1ggKwDaC/KW5GockwO0PUYlK0hXFDky76kYy8D0eRXMlQuOnus43kXfimkvMP/y0do+0tQo3z5dlrRK8X94pHIGq73hurr1+a84uSIl6FnaDlHhfTPhsOVajnfdkFuLHmcBywJCmoUVUrInDWuh2d1+uR+5DpBswDGuCs6RNKVritRp+CyjSfoPP773fNZ3LQ6fkEoH24X24ARkusNGh9xj6f4q+7RSlcwYy5PyhkKb+Jwp7lIBj88LFlomlB1YiuwiG5rlKAtv0gCb1AF1QCV0TOSKGCunT6vKYH3w6YHpKvwYX3Gst9XTEzqjYQB6PzxHjFgJZqz1CYmYU1FKURGBWWy8V2GSFExB8HwQXVS6jf5N6g5+7baC8HNLnK4+5DLC4VP3SD1q8Nmgyx7IRgkmqbaGDnKq7QnoyV7YNNvpsgrljVlfD8QcC9pZUeRv0g5WvbN+y+RPwa6V2edvo2ou1T878n3hgW9FSUpikZC5Zd9+/6/VIQ1iKDX/asgLXdv25zMO8aiSFksrjB6vf7XM6jmWiYMDTub0WhJMlb7SMTL4j8w8Rihphot0V4jQ7MeVu8Ild0jSdQxeqX4d4ci4ckRRFjeFKR8UPuzPFNhfLpTo27a5alP7T1iuJZR1FEMEFH5r8DFjodQk9B1q7Htz+yS5vAU2lww+OEfiE+gKS7EaKN6AqYjkfQkpve5bVC5YZMbdi9SXv4AXiQFM8P3bUZwCxwxiG7Rafkka92CkZTIVYrW2x5CdDubJpNc+R9wO6CK37YBR4cwmWRHwJwhsfFpfcyJFU/pCxm5jT+xJiwktgKwI1KUdFPAeikOQJtb+ICxJBE9dAGpH9cd5q238RQlRdd/AoQ0SKHa+lRkLqW2gZ6sqax6oXhFL3McVbsN3dtgV8RtbJTGhY9iyryL4ZCQQD10TQbKBRlg7cmDqlwSLWRtHzXZFUmwqsybyhMeTplO/b63KzudorPxFKoEnwyhPL27qmmHuUYYmyaw55Ezjldwa+jsQPfP3ddMQtEO/Q4zEb3dIFNdItwoKu75IBqT7pWOn0FlRQYJ/f1jGcTO69eJXLzj1sYIYjlLyeCNt++1YfvPYaR7kvnAj1I+VUp2dQGVNqFJ4hAahcRMnP9F5uwDayqmfhhd+axjmS5pD5euuHfzE6+XBiCHcx78BFDCC0VO3X/Upq7Mb9dTjB020B6nZmbZ3IHsdsrlIE0lIEQ0LZK0FPtgaqUF3k+J9a+6t0TVAIXYphRoIRYphLm6nPKk7MZiDkmXNugWdQYJdlhD1WU8YAsTfsY01l6PM/JOBy3IS05ROPq/N+rwYLul6QXkBTqhz642bzodxIaQo/7YLeW7fpmIPt5sp36OyC8zqBS4P8eFW5xG90aTAtH3whdDvfH2RfKq4fCjhUvNzsK/HtRLcrTa8FyOLYm7h3g+0UUqW9tMKru+jDUeq3gK6KX/UlYl+mvZJ2zUzRyEL7BQCTYGaQhVzSoj770Y+Oh7JMxWRs7uQOEC3lYQhHpDUNUz5o8jFC+QbEMym5Z8OS+lDKCaDvrN+O7IXCEQJALUjerJNtpKGITReoZ+4HleenaS4p8U955UoQ7/VzNKk5qpoKtP0ay9mdGmxWCO9MMhHfcxSq28dsjw66j0osSYmmxel3cwIPgLEL6YnsAJpEBzaRf186fg+eczDNiSpm/Uw5osGgUbnd42zIHT+Tx8y0vwjYtPQ7bnm96Tr9TEBwVH32LliBnN75Ki053dgYIYP3/T/8iKPHJ0W4HezMF54SetdEO4eZfl4NCbg4tbvZQGa5bMPkZplQ2ZhKUb/F6xJP4iQfQU+uv9mt8Egi1JA7eD0zriK4n9Tnemy4G/l42rCgaPx9p3G8Gae4mOeVPFyl0iXiVy5eBkUKFRB6TLDqA9OBebo2o/HNXAZmNuYzhHXabso7W+X3a+2ml5Wl5133x6O4cnlYCOpz7iizSU7G7bHfd7iDnfOJzBeW1tLSiYJJrcytmFgsmve/WpUer7NSWRT8cLKtLL1KRcqSohLgMH7S7zbB/q1aqle+iwR60AjFlRmLNzKEnlTA2jX0U0cDmbi9Tw/gmcbszz2hFW8zXOTfSq//9doxm5askYY+tW/bEwuvjRfp2OQ3JjVsWuVlkj68HNUZlj0zlSeC1kiMyHemew4zDlD7lsznG6uMLQwsVGM/m8Z76zAIT8lVEMTVYfiPE2AlY5kjbdLj0B2hcvApz65eoHeY6u/H3DZimgOE/c29eifhH2BlifoYPfQMx7ia5qc9xVbADPLABBXyVr00aDfGbrfF0796NMnhusG1AHYRkE3M2hEmvVA1qaGoUthac2/zRyNRecTfVUXughsYvleaBHlqsZVUzvbD7hfIGYKh/LhfVbpQ+dawIgULM6sny54skdWML0FIcYlAqsHe+E56mlbJ28Fw8DZcXtz5vakhf9kUktCS9PmgSOY/T9ccbFK9quPi0kKRIO9A3De6JK0HJgTWtodo47OqRvVVPvRAjwQmPg44lbm0bUX8zgNdERQHLxYWxGo8CC4fjE3JfmvRjjz5CdDpUv1r0Q2tVstrSjT/FS7qBLhAymgyJo6/T+j8xyMPuAj1LcTDManDMd6L1GWljTDRqSg8w+2SRYwYpC4R/CxUE1Iwrfjq6InFhxrf3I/1WNJrl/ho1Epi9CI0Ohp0KDh0foQQTta88boZUikuuDWe/EBaf84J6Ayu5KREHIZCP8iLJV9JJFuagpLmrspfVBYIfM7G4OkFFBKYX38PyH13Tbefg7Rso0X2HrWany6y37tsp4f2uD9xOFeACktSYG0fY52c+GM17r2njIjQegFCaw1o14C6nb4BoDh3FVyJtaUaOZleo1dWnWm3Qp2rB2mJex9khJUDxAlZosR7c9DS/PBTsdxf60nA4/USCh+Dudt1v+LZWVF78DFEpFPVXMAgBU4djVKu3IqQQ7W90LqQpYaUkM+ShM+Gd8V4fdH2/ULWkyu18aHJklOggHlmpMjL/edvZARe0L0/9jNT2jZUv3Iic/ZIIM/FGbK3wOJ2zt9mKihWOO8jyPi7DgOUTT/sGD5Tw5RNOqmzUOqdBdqmEOht8Qm+yr5filviAlKfy+YmfMazdRBsRTJMPTi7edXWyDgZhZEyIdsvQxI2UCpNf7h1nDJOUVU6p07Csp7Y9HgPDXnWTqmuXANrTYIhKGn00PiVU3a+e9pKg4V3LMV/m33emMR+RBCF5kA/rZQomGizllbCDwddQnd8SWQXuoz4ItM3TuqNf1nwzp+4G0J/B9ldM8EaymeYmPWEjRUipOyRe/G2zW+Zyf+9/u1i/wSrlohbyP6NUgmmkgJNYdJKv6hy9F/VbNcutGlC+dAc6Pxfe5aUP1dCYcLXQsZxoBXCrcRir9+cEnkVwnnF2SYWiP0rxFPDjUwCEvhRzcqJX38FI/uFh6gncNXuy6YGhRGB+eNnFtQTV2/6pdr0C3r6tfS4M3tGJIgL73ibg87tUt+EPdeSVNgqANe1N8flnOCXssjUXppTp2WvZ4WMmewy+wQwtJLVqZyhxKjUCLDe3jtO4qMIhWcAt9t/SxhVilA6/77D3k3+TmVuA==
Variant 2
DifficultyLevel
562
Question
Adrian plays bass guitar as a session musician and is paid $28 per hour.
A band is offering Adrian a new job that pays him an hourly rate one and one quarter times more than he currently receives.
What is the hourly rate of pay the new job is offering?
Worked Solution
Current rate = $28 per hour
New rate=28+45×28=28+35=$63 per hour
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
instrument | |
pay1 | |
fraction | one and one quarter times |
fraction2 | |
pay2 | |
pay3 | |
correctAnswer | |
Answers
U2FsdGVkX1+q3e8zJKDFoohFaGM3Q7s1unaQj3r1zuFX8KfuLGbKWlEnRinScliGFnxnijxEn5a76szjzMH0zRXKnOs7bdEvOfp81MX+rUaiDZc9vDAc6p5lQb0wj6k3GM7RPivkXjXAmxOauBWS4P5LEF44el4F1kAemtck2dNf5w/TaaV+4bdtsDFFQAHxddYZ/hhf4poV4enHGPbskjhHg6dxtDCUrjPTbM5lPKcL2D4pJ+5pe8WPVyppRxZF3xzXo3bslD5st6pMHvoAotop5S3qSsP6xK0SzDRq4RsTMXxX1mv2MszkdXsUWslge13TqNmsXNdpoanSG99V5kbx3EJzginUFuw3JSF0creW5OJir8FzNMNuvntPJhPyaSHz1SOjNaIXrXqfbR0CnZUgQiPOo/Vln/07MBf7opvMd5KLvoeA8DiZtl2h6IaZoIr6W0nvYPCzDmBhhzWwVhP1TA+iNBvnhXHwkmabjLaWrh6AMVWeSY1UJJ7+f8p5kUrN3IFqxhjVyQQstBK7RUIp/MrX0coFy+ShIsTHKnM/a7PyL3Da0u9VZuqRs7J3Sd31CYiDdlGAkLBwnX5iLwaIG7ls9ggkFdyTFWAa3PclWU1oDPmCHHzALiz1JvYxZTO3v5RAqEC+c8epCqaIsoZEq5D1c8mZhDPbZaKTN9eH8x5pv4YRpLFWSeaIOmt+zlg1+kB1LBqtrKFruGPhi6IlIROmWZ9zmSTP4fZLewz616WWQAoQuLCMz8MXfULp7w1dDJBVbeZ6KMXoCthiL6OVZXZMoN9w+0WMKYKFaVzkTyqPLtG8n30pBviPXXQhpVCngs7waoyw0VHYjv+G0mezL0pIbEl6Q/QE5hkL6/JA4N7/DIHlU6PLSmeJx35h79J6ygtIKR+bVKKBZI7H4m2HYCz13WTrQZXeypXwP9D8cTgEMkWwL//CTVevfTB2TN9lNEyAdhiJOGhtO3mE2yoP6apo/eOUsZxHRg3vwmWP8kdbGN340eeehiMz/6aRc/r0r7Hv+do9tJ6EHa5c0qOvvC6v/a14jfG2odIuZq/BSrrFw15BTrqxkQrvB61KS911qCQ791GDQnsj01TlyYyj7m/5MCIJWMkk05X/4Xt2CqqXTcjlDefbylY+7jT5WfOzStKkaG4AqMSYv3c65T4teqKDCHNKl8ceZwmz5yfUyoRpKy6aoQ6obeWCG67mV8b7Nz1aCnpN1eE/8y0F7MmN+v7UucRWoYGLclk1Knyt7E4kUV2UnUNhQZ9Fpgrh1pTKAosTzQNaPS9Oy3vX8DFb/x3qjUky0z453S7UJOIsooEF1KGrIWTG0zCAuO/75jZ6AmUEMPNxOvPmGthTARnyYG8qq8014f+G5eYN5VGORrW0mTo+6yq8qQhTV4Qmg3Z1IcDPome+so1zLJLRYdCTkZam9+0dvLC79yqnkYgmD0I+x0qSAF7KaVO3Nz0D8jdH9pNXVxuyL87llZ9Sj2Tj0ZqVUB3pKSqrO4ofVe9nKNBtV/jXG1xJGzLaT94E9zvdxm+yGLaXlrTLtjjTnen3NcjfuS72hvDjmI6aVteFe2e1rIjzLa4Zezry70xAxaFAPQ1CF02xWDBX9s+FmaLU+7LVTbhOPu8nSpD8hvZF2ys5LThtCyw4TzxTHnw/bZkhUSv/OUAyebTL7blJuUbVkda4GZU/DWkyaY38bgpC0uiwFL8of/jVk77GlCt4UfYOxc1Afe5DOWF8a5qD+x4IBsXopVi4Bleu6COgzhD85ZrG5HhLzI09uda37ijs/efklYjA8+sc6shLrcgymdz15Y0BkOozFfEJPx4Hy4HHSEvFQRCNMqT9g8NA0XzuCHcknTCDnjtyRtN+sj7lm6GjM8QhUeaxfbn5oP5dzxGgossIu0gkfuhiE9vpSXK8iWk84owPdfL1WRwi+7YPflmSq+k4MpDBMjjUFiX7ZqCpfQestJslIv1rl5D1Cz5MhrCnlfkpxhnUhHK0jz1+joQQbPBqTF4TDYWSpoHGm1tsjsu5W3IkBhFZVAFNSuLLMCZVGbGKRWpjNZmUuX1bdd/MiIBGnfI50ufYKYmy/ZDiNlKVSqvKX2ekMGZVZxQc6GDFEzOB5YKcrky2oUK7cT65XFrg8pivKftQHDLSZE0qhUXdZT0bct0x5FohvwGMfOC+D8VdvzMxmSG9GvE43Q+AhEUsxEiLEsEX29uielH7ZZRoef8xM/yhLsRsIcbonvYAhK/mVPaBYJn/swdNVfH76+H4c/jNy61SdEZ8cGoN8K0B5vMRoT9z8qik4/MDU8gPlasHk6QLLquUkGYPMMAyp5Pq6kNjXeb1ovIvz4nkeGWfRZipb1iXbP7Kv9k8IfiuMOR8sranlYNwCJ8vJ/QTpx8tBU1cLaeT/FPobMM03zBhZWQ37rwfsKDdf+GikmWL5padBjuxintScW5CfTGm7A4WmGOKK9eNMyJMG/JtsJa64bcnGcBCwGgygAedZIPx8IfK+rcyy1UilykArOxnWoIbMHMqHPAwtE+USD+EJJ/DQaCQSXDw/x/gZoRatp6mq7UZqnfwNzax+raC5ZIGAoS9j6/lzfrWv+nvxtcngE2q43kdPCojjfossmA7MGPCFk+UZxmM+9kgBWexpPUNuSJ6BGYSd9gCoDwUtLICZ3wLoa054i5XdgfCDMQr67CXDb9rF7LfDTkODxan1imvZAxliwfsjPJj8qUxlbaH6J/nR2qbgx81BH1qNu+bRiz+NTNtZZKdgPribLI6yPiHC884bo7QXjE3QqyCLriyxkGUEQRNex3EWJ/0z53ZTcs2PoeBGJgN8xsThDbijsxiWcwBPW5pyxE9nrjcMA0agB8bnzwihND3iVJgx04Y4ZRKaqTOgHhROYaQwPpF+ItNXoie5ar+0M/sKEvfiDmnoCGeJouarKlCX9M2REKpVsKhHRwhlNjdVePZmWK4f69cIWPsLvfe4KhXOMBBuRCg6x4Jpptkuwa/WGBEC5a7tYmxOMMj95FlsCmd6yRbLtO6SUAKn6rzavQEbHtY6/hF9cXhbyObroe5129twIVxlOaWslFESfDvORgRiRyATgWb4e9JMmjmFR1AAy2cVI1+bxSTqTok3hASti/E5WtpJWOuoFzoCnR0WrpwfFtw8bXzkQMIRnZlIbgvxODIx2Tc2Iddr22rBo88VrW6Uap1f0R4QaDOpKZIA+nQWqztueUDBH03pk4C3wx/CmF47GN4ZoH4fzDJap1IuH8wTMJIqygfYtOny/QCK8Ah0Hu+oRybO+784xwBPDHqyBujTsSOPUGmE0o79L1nEOJT89U9SC1qIme5nHHQ1TlFsZNmZmezl7xlFr07Wcpc7hDEyG2csSBRYMwgJg+X3qbEK6nqLTAhpaMEQ9PI1NSDozIaebgKX4oGdL83B/Gud1Ya4mR1/BGaUQclvQN3tTl+IaTUYkqIysxD9BaE0OOfUUqeb/nPZ7GAsrnuiy3GXGeHBkdWm5boWe+4rt+Q6Pc8A0Plm4HDguDeg1s6ul7v22Uf/RYo8TCFUQ0CDzuepmkjkiX0oi8+AIK3cPE3hO0JIqCZdmfr+snTSMQhM2uE9DVZELlPXZdINSCBecQ9JKE1CwZ0IKHzWdNuqqhs2eWWwWP1FxVZfyVkKpqrD86c+Qm1wOfCInyeRhIBbxrMd8gtgi17R6dcfByURvIXTU+9kX1zE/XuU7K7YWs4O+JnvrjzfYoO4ZmN7cfOYDk8wiSvPHe295SFvpxq+Fk7vcnEDNLL1+KorVX6HAydK1HzCov6P3VaZQr9ubWDLakTW47Vx3aktG6Vb+uYcW315VH7YXqeAUn4ih44r3O6V0FwJDcuTjm/oMCyrd0JO1nnsCr6XwK4R9FhTthANKp6mAOJPVURhmdpi2MwqnypEwSxjPJ/f2M8tn/+FFMRNG99ZiwF/OZnCUZnQTCbt4xbUGx3DoNQOykf1aBTOeTeOyAzsGIhJNaVbKrk5tLRISzxHAa0pGerdFlOdjeqftuYHogoj2zM6hmA27gX9JdTulFtj+5GpTDMCleycD9dNyC7Y92ZCPh5F3bL+NcKOEysYHbP84Z+FfjKPWkQDVzKxOetcbT6QEg/Gr2NGzohWohJJAUY5vpbyFlae62v2UmkCauR1hH+0to+hGudm6Pj9vSk7zKZ6rZ7CeVHbKLbDf8/Mo0tXsVFi96TAr7wRzq5FdazjbGpK2wK25CxvlJeIwtvqpvbOeQcDE+2kTg8KnfuASNG25SiCPOF0irm8yJ+32JnLtW1GmetWutzERJSELV46YN20QFfNrG+LiHpEPboTg3vebpRGWmoMEDu/f0KNqhV5dBmHfKh+bmaxLK6+3p5bCO45IAZAZB2xp7dpsgdC075CO8TJpgY0V0NOd5ybF5y3L0NX0fxXFcIWP/J9D/LjLcr1+0FhCiqE2Hj2vZWzaYU8PpIztUWNsh4ZW/JUlruu4NJwanHRPN+CZkSyJEy3/vcMepqx/VbkEofUz6thU8jAhHCOxfXlW2xnVqULiTiVDznt/HVtnT/CsNItetPhUt24rfyeAOHWDwHNJd4lNVm1Hqw1X56L/b8qjHAR7rY7zqNRAODpcCCH0oN1JXbbtGn3K1Ca+Ee/fUDSlFX+09CDxi8/iSmBfV8b7yWcWd5vYcdbzQumpx7nscXLH0Ov7MAi75gxu6Qdf+pqN8cD2zBFoba+nhEL1987UXw4TLEcXhLWa7j5/KicecTd8vMDrFDHU1f1U3rrt2FooEkeo557HEqcUk4WTmN57qetqotC0Zt9HrkMrBKeoAEB3iXY+GAM3NpJXcXxYZgSKDAI1ClyGeYr6l/t6cpGCj53/MSYU8f5GzF55bKFUfyWSVG2mdDkpc84cE9oF3ubl6/kXXRuq30UIoOgw0dnupUzi6E8iskmHafLMKoBLDcqSfabypstoPcyQHXgUXViP1MpFuEkZpt2JHGJUIQMYkKefFo8WBVCt8CreRNM3vOYaufmKMqo/+ttSEDZN7AUN8soCaIMArhqrR5j269t2ujKE/tsIdwme9vM1Wnt8qmwXAtEhtiyMN6HdM6L+MZoN0R3YNmgnUYYuxEOAKccZaxBGxrC9Ge73fIKt36zI0hyhbpKHB/bEXSuL0ms6QndJ4khxXl+IRuj3BnjkZCbfgCbHHuiOP5NNGtRxu0Wj/Uc0E4ZCC5+Jd0TrvVvyVSTULfU8HIL2tzk3CKOIrS1QW8FI+Eb+27cnYd1AH/Fm3cwIbO9PKmyuD+1IDhDvqBfmrMRAEqh8nUM+bjn6hhHgzBZ0mUEsWncmMcJbDjPyObQ2a6Ij/0JmKdCP0U+Ot2++Tk9pVNxLnwrRrRn4GU00ZCo+fG4QhNWb/+OVQZ1b1jsePDUxvc4gJGbhZWgC6xQnTKKzOE+622PeFnq/ZpLZi7xMKf4mDtXwSx+GCVdVvS4DhUXapX3s/3b17HBPftpmiQykTzP0Y2fB5ZhULQWKkSIhhGDqL1yVs/zo5j95ObE+L3Zd02NfnGX0TN1zCaE7uEgC5JJpaC+bAMBPLBCyu7uA1dE5qTOrBUhM/seHe23lIETuOgCrBipl5+mMNDIuuXOkSLRmSJ2SP/D5CusacgOyzFt3ereXpk0kcZ0RQr2j/0a87ZFaQdqALRLFc6VGCLaS209eD3q9OK4Bsu6yjPlTmF27cX8t8BnymXUFpjAlokz3znWGzg6NlmsSzVwz/87pGF15x9A+iKFAVlk7K/3ByYyYNuMZlkhg+BOCbylgYbQ0pyHUkcde9liCAPHJiVb0/WpAeCNOU1CxbnaVUT6nJtDDtTtgXbYlc4Sq0XkdGyuP6m4C5ab83LejnM823w4PIkxWTl21O1485gDyUKVdahVI1Cf+E6DhmqV/yBtiWoWAq33X1P2jX9xzcbVrkbaniamnd51l1meuq/VltAP45pfqUKRpmzzbZqDwLJch8iLSMNYH1/88UUEwqtVRjjZ0U3WEoFUB5gKXtSHKsoVNMPdsth/hf8KqZtfxgjIA2Kd8G7LCh9DUKNkwuz8MBiuDggOeL6944hcKFeuQ/ULA8fLntCyX0GRU/6R7Z7rmQupsEZlwHZ3+pL7f5aBjdgWZ2U32YVyuFlfzRmnPIPrgn2W5R4o22eIGH9CJhwwMgeH70v98jk9E4bK49lsi7D5oV8GdwQtqteq0IF0Rs/vTcVhZG50P0i1upn+MiUZyqoiknkNewYnbOEvDVAFcHFenQ4LLpBIuG0lsBgXQuXS1Qfz70RYJNLWAiG6epE4cTdYh87gTzxj2m1JVKD/fmmkW5sB24T16oQUuUn/ZQbES0TSPbTXEJ+ZqlEvUhl79C6xzOl87Ua3af4Jaqy0XMTIIZb1FsM80FiL8WHjHWDOv+d4mrbNq1LfJn77a42FBZCwsiKRQxCrIZzF9iLGJffPLXqSUqKHe0zAuoKAFiCFFGcuXgz4Cd9Q54lxatU5dRdX/x9yF4h+o0b6jyRQDT19TcREe1HpBVWmwyhNwZ5aPvnv8vV5bXC5aRzXqUTi02y00ER/d/zTzr5ex34P+gIF9vUXXuiG7UiV079Q7wRCU+Y5Iigu2QslaKN/FTFdBWLTiiqRGsmyQE2phiBzCYfYCo05t+xPIt84Wiwi7Iwh60wJK0f+ecbJQXvwSaFDQxyYeX7xv37M+PETBiQQt33YgJqHD/dacrjf1wo3jFLmogMqq1FO8qbFENa4mGzXAxOliizyxuTTzs89ssJXVUGVHG+oJMbEabrP8TkNPQDprKZFmLjDEcnhDJ/PQL/0r6JpFZODnJIjN3JczCqUfBXdRrmy7Bvu/V2dkFIeCNx5Yi3aKzA4RlHitjL+u8QgpgfmHWGHuHesmHNBHPtsNe4oGsiF9VytCMDSarl29eJn9Q6fn617rDW7qzUgpQBTVXuCkWEt0CRhrqggVumb0DKx9wEqK2c/dyDndiZIkNgAHkGfJjZMLWP+zpFO4kA/PgqUijSY/pU7rkA7L6GB3hGNfGKScnpyJMLebITp36evm6Ok80BYm9o6Oo0t9mKJ4bQSEKamVyEDq51axnp/h6lCpr4LxHqcCxYbYdK9ZPHAqLQL+ZDch372rJx5d+IvpNh4fmkwkdAo2NX9l3UfbLA48cVLWU36EXdO0DR7/OHuGdvMioczuHhJdobUJ7XVLPbe/i+VwdyrZ+W7Iq6Ai3tOYIMKI6NUyqAi6eOdBi9h+plZgfO471XbYPE9cIGDc/Z9wWXGH9qMcG0Uri1kt/z+5AbZAyooeIUGXb8f0tnIomlPEJdziHec9o/zptdDSPEoeYu7MM9P2Dd4dtBE5cA46vayyOf78YFlsoHUfGMXafptvcXGztgjTpSoiczrCgrKbhQ2L7zLag+7t7bMh4L0peEnQEyLiJbOgc9k9l4hYd1Vu3PgHN8aHUWEV2BhsQwALOcRALzsS4gDp0G+O/ASPmwWW7/dNckI5E1OaqiJTPAizpnOxU1wSocBHQiuQ5cB6mrd5slZftC+22BxNFxCBw3vcHbIzdF53CHP3Tqn0FKD6hTPM465J9CA6k4j/y+wRJwrel6XUrL7OPT+y/5irhFCYQLSQIo51k/AKJVE1JLz1N8d0wkaxsKsrI16jcPUa6X2AqM88pMXjYj4iohLm7k1dCgwIdL/FuUT4vFiY+v8uL8G3K155+hhguAUg4G528v5oMlBCNgETpQPSb5j1GmxzC46Kn4VRTaiRdOAdVwzNUFWXlES+8M0sE3w104DgCf7ooPqu3fRKQjMVwLubVqrIVlKfjycRo7SHEEV2u0LX/mxvl2sVGrENBGuHaR7p/MmCrmqzhPRuBpalE7lnW3e5qVH9IkHjh8WX2IeEJR0m6T+v3lYaoHH2HXnyrQGsLZz+soO4cSSVwh6X9g2/PInNl4zEZFYHjMSChGsNuOq78OSY5X4Rp/+Vdsy72NvZKEayCD704hQYQUpmZoECAcnAUm5kvagGET5wGutXCch9h55bdoZIPM+m4flGC6LUPpvV7t20IzlO9WiGLD20b3LjXd9BM4Zdme/Hu6aYrXe0MW0vvYsjg0+kPH0JfSfBUEIuU6OyNc9jCS+pJb47Gq7pPYAPSVmhv4dcQhvo05SsADO0FFKxX2gyo1E0aEj9bKIXe27ZruhTAEnUuFkXqDfx365UZO9TYB10exNpJvPKPHQ8rzV2PHENKCrnh2K9voc2+NT9CcajuFHj7ojxuga8wl5xC2+jq9wyAYMMBGZ1Lh2Ji4j0QAChxBh9ykGArcnlZZBXA3kafwcS8OPjGca5qC/8v0QVnNsg+0NvOm3PMNoU843LJdiIg6cA36xtNLjTpSyUXIGWqxHTs7P6Ps5jje9h4Xe5NNd4Vpi+KqPhs2ulbdQs3LFu1YlCYkJI1ENsTc50jEIm4nCwwE9Iu4+YB+F+HEeE+GBOyjr4Q8hXZ3OU+2YZqoIoai/jLRKl9TBL8LT0BYQvMC4vXB0Iqz0hAJX+sq3awiF9od6+L9uQmxtXXTSMbuwARanLHnzEA1MRASUY4LewQ4en2phkwLbwaT6LlYpHzCVsFvIECyCH2KGHA/maLE9l0Szko1HqCu1hIt9A2FLdFTMdfG+Dfm3rE7wTCuRGSlWRqb/P0UnrHlCBVVbLNsQZmMy0/8uebf50CNA2BwioWM4bCJDTTxsYhasYY0WjWZlranZfW/OuStFyIcB9m8ZSpdpmdIPQFMLsHjRyFnbHGLgODVafEaKxC4iq+TZzFWB7K5BGCpmloKnk0Cp8pbE031X/9PRNVsXpZxYGGcUNFNvGooq+72fYBQ3rh+DAaqf3aCe0mq7x7C
Variant 3
DifficultyLevel
560
Question
Bill plays keyboard as a session musician and is paid $27 per hour.
A band is offering Bill a new job that pays him an hourly rate one and two thirds more than he currently receives.
What is the hourly rate of pay the new job is offering?
Worked Solution
Current rate = $27 per hour
New rate=27+35×27=27+45=$72 per hour
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
instrument | |
pay1 | |
fraction | |
fraction2 | |
pay2 | |
pay3 | |
correctAnswer | |
Answers
U2FsdGVkX19JPpHmXC1bv2pQS55lINETs2KsGyemFX1qbOivKFFJiRcpKulQERKKV3oMT0daMMO0CFBIFTf+Ju5BVD3wpSpbR3EJIIJuksKuCInn1tM9AYCC+axxhjF3W4RkXiJ1yxUMirUO2L6B4ZN5KkvIgEJSryEqUzcM2KTVN0jkF3u4MBXNhbmlTOxbRH5Hdi7iMUpqsQPGjesAsmJy5V6gEsA/wuFh2zyTX8kmgQfnoA+/FGPkaXe0GsDGRRzIbqaWbRGqpc0ql7Vx36Ago6bcPLVEQh/HdYIIqZlKVjWM40oAL4zBB9HMKGkz4JWCgizefrB70049lftowIKQ9lV4sGoMaKaGiX3EIENN0t45M/HBbFe5EaDONgW3x012PAAHSsSGSkcpWDsl9qtiTjl60MZstczFOK67C2HQ11MA7bsNKGvzFRahcNVDU7T4jihoZbai+5X/sG+z1Ffujipg8kdimAE1y15XVy3q4yqQ1uMD8NPflrs0Qp3gE/phex+ninlLeS286H727gI9fOgOJ7D4dZrdhGC6mdmHs5O9/UgYevTqHVNjc/waph/F0mLoLUOj402ZCCwGtSvb1c9x7kXboVrYNPEV71sGMCPYqNB7xTZaRq95ScYmk4CCuocjwDTRMm9M2CGgsLeNkgJlXTSrTaIiNjHtquOp2zZfDS9lvdjhrCgOPGqnCLgmXzdBzO7SNcmCFHtayJnm6dT04irnZLnz5Gy7oI5nZLSqP5TCldHDtXhr6y1uwKFBaFchSCsJqnvWNGeNBuc1zv4u05xEexJ6hxnDF0EVGjPXL/CY7woIoRLM3lnL/XWTyZrzhjGD+L04ji4SklzFoTjg6U2x60tjdV/A5Voz2us9XcIqIld/MDNsBApJnlPFh/No8L2Xn3NVy2dMiCcClr6rayP4+7EGmULCbczWM5Qr+s98UnmKgLxs+oWgSki34QzH69YjnUOQMTbWuBU7pudjvzUeTkj/ntNuvhhtfeYOHoBdDT38miX/ixvBlGDNF9VaaccI6Nzwv0zirr9MDn4sj+moePoRFBo1RcR5FEZE+JIQvg3PlUY5/GdbaRaSfOIKUe6CmARUOc0NvtS0VKbf3piZ6iMdRXriDrEcZDpWggETPDLtYZkL8KKh+32k5OsJa5ln+ROcKwRfzjg/5s5OiVE4jg8OMnDWSYODdETxqI+PUzMZzYoxE5RODtWW76ZtSNfuWWF+EdFp8n+GchcSXD0EHG2P9yZmWkCGFydplBoJE6cp+PMWH8y/8g7eB/QmzA8zHQwU30a2GLxYqsS0k9OWEREefckeWwzmYyBOqsb+yWA3QRQFjfqbfft66ggld+nxvgz7+SaUY0oG633zcz9CghZG+y2322ml/tLAKWc6K7Ul2mx1lbFnaMtqClYloH5reRc5KJgyPISvmf4+1h/9RyXst2/pCeuet5Af/vNGNMyFl5Fj3AkXWzqbpJypHL8f2SgnKkghOTm40mDFJY5fjQKyvGTEcK07bEIqihLvwj8dCALKUKI1vREUl6tMH6uj1dAXQLmAhjznseE1d2DOnuRUVbHnQhAFqEhsyhb8gW6gaIFqyaO9uVjH+V4js5YpAcZkc0M+voVkXeDFK7XWkW0EejWNeV5yX/u2TdoQXueVhD4E8KsdNv7C8WLkwQdNQGZGcJ+/cysoeC1wL14G8eApPD2EeglsCVbeSFTLFTCh4EKNCXnUGIiWBkbVsRrlokPUGFHR6afz5Yr2JhosLGcKU9Tq+QgXkazROiw3goCbeah44tSnoZIwM1HNsjniIxt54p1lnyIUdQqAwBakcNx4kuyp36ALxgdecPWze0Yz/49b3DrI6amBcdpIAe0LxtO8PCPFos/Sw4ICZUzcLmhxGp+/chcSGRSkMP6+5+wnGe0+d0eUpz3W2aqJiRPL7Km2EpXnMBDVc8rnRpfoSMcewzpCiGVEXz5TMFwcH+s1EbwjwVvhjULyCxMUecx/XVzWnqedjShZyDB9CBNM0uEkruJhIQjL/IfzS5AUEitttnIs1GARUN5E4nAeYZQmFE2LEVMjFbEahHLre4nZ4ftg9TO3ksx1nT/t2R+VnefdVXjFsd9S/kjJs3TTbwD0drEvTBavQ/Lq5ej6q+mamLxpyiWwRkrvSD8TeCXWzdVVkmcdNV6Mctg/CZipjRdCxie582y75o/OmFBskuH+mAgGlzPP50i+UKPvebuJY6jgaOvoYyZYxMQHd6U23kugH5vMIXDspW2kvCdNQcDPARibGLZB01/POaiCYaXOqhdAkxUuq/hm7458EWib3fKxy2/L4qQxzc3xSRCVopOZ7Sosn2FqJbngPLKPW+uEWVNdgEKvQsIycqM2edHUIsuajL1bfO8LJD74Ku4Fr4NeTRvBm323oeNCDcjJJyXeXVLFxRfPz8cUhGZlKiMCgrE9tqujMp+wQwRihedK0ZRd2K7UuKcPZl5lhLnYnvP1D/27RTWYdxcOmHLhFLHCGLC7IHyhOO6/gXiBgVA/TLEyMS6pQoc98pzWUOtXJPIUdVuaFaMWqaid/Ua8u+CYpHLZbIjgqRATH/aSj4R05n+mZiX8//pLsvhOzk3xCdIk9Qzn5kJTbQ8YNJ2Xlv8u5ZG22fuRfSZ9JSs88phNWyB8bq6LoLFuIZNkOcXBMJjTo/YWNN5sBgrLSlpNX5r7GRVWUgp6cDrUuXZxm0ABDVw1Rx7+Z6de/7zE6BwQM6bANmdYin/JAhKncctdxBh7mYJNRY9pcPLz4Bk2yiDVMYESzLVmzSI39hvZ9KQTYywj0V9rgHsokX/FraFgJdquh6la0zhoxOPT0oWu66GAQlNLAFbRJDltteO3QHDbGkvV8YqUUEFMDeq6z8BW1h6dcNdKy5DHXDSSnBBRf2UtlsbQ9+SnwNZQguRI57tBhZyjigVgB3zfulxqxOdfYst5RH37e/kQ9rP08yewCrwiF/fKRQFTbnOQ9XCRVWNhMk80GPyuIoqdVcW+gRyet6yJnw4T5FH4+wKdM3X+kwCvsi8xHubCYYRdUWKfmeBtCz8kL0v4Iinrmd+AGbxkWqUJ37TJ9InzIYBYe1bLqzJhUL56Dz6FH4ZswK30Vu+aELXBaozfLAqss+WXXrSBc2LOGW4EwfOEykhLY7SzeOCoOio278BeFvXNnRCHU4zUcqlcN8p31jp57bHEQqq3fd9uMqd1zQntsgp0jKoQQ7OnliRoyqq5H80XBqCsmhP6x7pbPx1IHAgL4aMs4T20zC0LHhhetNebxSwXDPW8ewneQTwmJuVnX/CQRGBztIFCZEYpoT8x7Yu0JrNa3d/cmlEgcJOLXAJNpmD0M4+WwU3ADEvIbxfU8y7lX8rPp1ho539zLYh7qE0pcnmQbB2X9NJTtwY8tSAOGM8AKitIHC+SN68E5KpRKoPGnanWS739m+VOAIKYyg3oIP4uwO61ZYcKB86zFwpTroIsfihS0DrnR1FKWiBJOH55+teYrX2L81o/sbI4JYmZ5XcHBFb07kTL/sUtsFe5xhfrF9oju02hhkJP3U7FBPl8KiICA0nhCGSb/iOuOqvOl/HDH7YkA4KzT5IlWnnILHArsvEz3XQNNQW4txiU+Y086jj9XU/JAvHvPMivmGcg4/UiA8fJfFPqJ5i26XUMMoI/ptg4PNoxA/5/6on4JyQyTaj8OhMlIcI3QiydKbHwkTg7qwfhuIuPjtDY6xejb55IvWeYY4pEsMD2Dpt+0Cid5psNmIzhZsxG5WVR5XpRMEdBqNYqAhXkna1fvrDJZoKHQeiKoVrvRQrKaAViDLI8jBafBGleSeC35TRcxFEtGNyoRuUvf8dj1mLPJrSQrq/Z3TKSaJgPJijct9BxtH/j9f5uRaHo8gWvwH5FqzSse86Npj58HWDNUIfjuIUkJJnKr2qWvY/ibotUnbo1G1HQehLtycapN9ndWcGOG9L47nYRhn25EOP92TlBrqAuKSf45z814yYwDrd9EVDwH/U+u8z/oCH4bRL7thOJtTNq8bKI6mu3YIW7aP274BL0FxY5eojjPIXr2yElU4kDZlhtbRIGQivRXfO0Szr9+Rww6qIcaZ7JzTdHgS0xC/HZUc6n+p8gFmxjDNEXI6cfn1yc4PbOyFRD0mo39yavb0f7kxur7iUANricWXbSYRb3PP5vbhil/OGVsB3mnZFPy8SVG1FAXkXE4r9o9thco2vN96PXB6HM32ZhdlfX8+cHnfrIenPqeEXU8yECYE/9up0EYBPe6Xnr0VoBGYbPUXZCXEIwTakBXgc1EAA1B/QxR3sXRlL4TPdWtg+IOJqaP1uR8xAxtka1rs6SYF8Y3UPyYrIEOXho7hzfhZBCEXIeGpE1QKrZJeyJJF91JgoUWfwugyVwS7SSEIK9vxJWkpHnmkLaFplNeOjBF8pXqamYj1ihMk65LF9596dsoyeHNOBAGRfiNjLH5LxCGMlRhS8GgUY4AhCQe3ZNjk+qL2bYd0OPTQSzClxHag9daKMA/V28jEKiORlcFqUmr+r+c3Wm9IXIFhiZynhbG40jDQCCZ3xyjv/WaYJjQ37kALh+HydxoQDeNip5tcqEaQTNjJEyQuoioIj9tGkqogVCmDPSD4331yLJES6q9magCnF5lb5iO/olKX3kSl3m6TDZGipzN5LVXwB1pt5iCGjgM7ZYmtwmdl/kEkhC5jLWK/NRwU/p5FjaSJk8CUpsybP+2WeRCsmuIgQQB3flR/ap3jIRfZe4uUkuFhHRm9T8Ftx8FX0v4k02YZ6iAXoyCim9zhWkyDCK1x99yeHsiWlr3l6kmubLjmDesLbhz/5YHsc/0jfEO72sQAnYUX6zuEjEaKEcB2ImRYeM6Aw3ObNIHo644mdl1jELPq++Kpkwsnw88tjfJ3VzobYtGWo3YqeZ5E41QU1psHZ6kiPNAhr6WHh2iadwB0HcsddwIs7pY2BZSxXXUzUuJjRaz/fvP7W+YIN/hDRqBMn9ZeGtQ4MGOkM1fCBiggOBtijK0gwDhYbjPyqg/gspcm0rOgKWKotuAeR6kwjg51lGX6W6U0wv5Z4J4Vz7fBCqIrZu8qdHE4G80U21UszUy15/6fizSmeVU12uZNAiesyUBGS1V2zvVZWgy37bTCMbcxxz1nnOiY3TcWyCVJqfvmuWb75w3WozP1M+wBjv2kF9IIegKAQw5ZW5Sz9S9TPLoKG9mpNIbCFfm9/2/JmeVQ8jVWl640jDW0eg3tlnt0RXSotYjRrOwOTxQVchI9tiH4TjFRbLEDj/FPh6wyzVVFwEn3ieUXWglJwbvXNbFrF2xKHrAdfdVPaBM/Qxrp9vWssU4QHmyghno98sd00c6yEfRaudNqtXaMRwhUux7fhlMzTg+l+iFrmWim+b7sSOoP3KZoRWQoAeJqi3lOw240jK22Q7ucvH3H61XPOO4Eu4jQgOzoostUf1RqQyitu4RyaRqgPxhjPsLktK9+lCRngg8CVq+c3cg3LSsMCw9bWl0mZhKf6KxvZWCR8eHdXJxIwalqYN+tM4LeQzkBP/IInvNLpCoeaiVg9qQZws/cVy3ycmNZG4OpJ6MrAdUJVgPmcOVrA+Mf63OyS5ZvD4zWrh/FtzSgsCwVNFKUOujLh7TX45btioqA5Vjey8fDBsPYZgLXu9YZNS0Oa5+ZkFEy48Lx6jnhqUiEhZPIKdWzT+r9EDr3fZ+v9EbAGnGmfcRrikRi1dpueIvq/lJslH9FmWIEdWY3aMt5cYl2Y5jXJk2jLhc1HPAaEUhZgHAw15S5lJ/h5sdw1FGaqgSVBm0lq6krJyDp03YS4vegCIh+b3AAeGQy9vEDx01xJuwQG/36Nxw0phCv/Rg85Q/gbq7hdfGfpBVIsIUATpwaJa9GhVSqWhLs32aMM9LVaE7W59h03wx4WYCcIEL/3PeC+pe4PPYNs31w7aMdlHagcgQ4xA7mKdbyDPrkKq3C2CMntwbndmttVfob5wql+iTb+5qThspx2yXyxi4jJ/spLdxToBj9F/zbYiAGX5tarwnM3xl4Kha3Z8RtyJ5lHSHYsPBTdW5P1vS/yP5b+BlyDxG2mCx3Iqmam4Ml7uY6TkxqCmD2KPHiZWzsPJoASXu73OdOBBUEQTtlblIifM5AZFzlOW532sfdFGdHxpUW29auoKlsTHViS7RN0Aprd8kYjxQGEuRvl6nS5UZdGO5uBksQ17+dVbhZiyvibDDWNPrwWEEcAwKQCvNC58gmv8h7TWpj76uragPeKdU6UY19bYpvmkXW1KkKt5rF8R/32BgH0JSKvhmdRQnyj7bXmUnCJxeuJKbJkRcDmdlEpOJ5CMHcXq/elxYIs0g1WcZkA/3z8IzqRnd2VKp41cQGkyqYu7bN5Hd/SmLCQCjAth0Gz85fym7CgmWsk+5LYylgQcAI+DiyC54JYQaL4DvgMq1VBjPM6yUOeFsIxdan5y+lzxVLqyxZ2v0KIrkb2Xs9LwEaYOzxrF8geF5nEHagsauzDJRBL5ny+ISs3s5iHxOP7ZR8+3uyPg9FU2xBlrR0/4Z75blgEaqZTOhDyY5pUZu5KHR/wAGs/7SyjkDo2rbN4eyWiEoQXHPGaJcbMwJDfplMuNxZIOhNtGibViIJLhvMQyvzioXRoK8ljLeegbGcrUO951OBjnT67wpsf6EqLiMP5+zELt6VG/vhLuwobS2uoA5zvC+B1ZMDOhnkPRiCDJ/XymjB10xfFcKtUlTvf3bk5BUfXYpRa/l6iTDUtBbxGas5hrd3TgU62UbaHAvIei5saGYZ0zjqwHi9P3YS/wTTHxfu4ICQ+z2kjswEVL8e5vh27w0utS370QhIt0yjXkWNmfn3MYqzgmvD+oz9GmNoH6oaO/9sx2bB3JA/59hZK1dFJ4LxSyg8yG/S99a3II4Cb4/DD0pI6fzISSK3k+4NZUatMGb6IxwuE8LtwfPUjaqWrBgYNAA7AzwrHUikO9AsjtYI0os+zsZ7VRyMOmixiSWnIlQS1APuNsIguXsgeGXrTK8ofMhqXtWZnXD/TEXJubO5LK60LUL0hEyYxciOUDhvxPPg6fx5yS8a5tSfZntp24L6tBmr+ml+gYttM5WnqO0prS0J95B2WAxe5UULDHXPKLU/PCb4Qe0/VjJGVJE2K8yZ35yGuaQ+N7+UeJIRsmoz2ZoFEWKgjCwJYjLAsdgTP/a4ijYn3lZ1N11ze4ZvXVSI/Zhd11KBfjM8dS659nrHaFj3nOe5TubD6iDHGBJJqolsa7U+5ujnDWRu8crpd7z+jTRnefDKjR5Qw3v0jd2xg+JhFlXc+PF3Fc3742s1NuxYMATmlU84NCmHVykVJQ4ZI9WOApspaHlp+n/bbJkOG3l3IsI99mcrIPtx5o9h4jXcc0d4NVCqubrK8YvIalFT88rgfEZ7n5FAkaAvTx/3+a/mqBNnzFe0BGkk9SUoGYBeEIBPB2JLpUIY/7ZFIYlVxUb01Rqqoo/RUqdfA3O5qakQLrhuagMGQc8SLxrQYY7P9SRYzAAF/rGDQfBHWqKs2uRZCit3d4IPnFsyuPo5nNxQlhNs3ZoBIJiN9/brC/KsBblzdWpWWQ6nZBpuWZd+mYlNApzgT2GZci2CbroDvMBx/J6B3V5tr6P7strrCYGTaOSCpHtdtzAAyEWhec73HZKw1KFdpQbBtMmA0vbBDqbB0sasbxR2owKx6HYZBtYXiax6NhJg+I7NAZ90wc64w7Cka60AKhNWRvP31yiQBHMSPIwxboOLoW7jJXIaZo/mlmgtX4A1/V6kdJSibnMcLSON+2oJcvSdO4CU4QT6AvCzC4i4tg3saIOBgN1KFMCng72XKc5C554TuDx0d+1mscll8y4PPTuaYVgX23pBVtfFNxFJLcIOIFHI9ULPo20Tgu6nsbN4rmsWG4bApCRxT7n45Pf8pbyWsDGCiTfT+m0dCOMY9rBQlBtkaAG67D7NVOnwAFwY0DiDeea6i++uoCnPapcxUNkVLHHgmFKgG88sBYLu8t0iWXlwiZMrU4x+7RPrewziB8RRNmNxq+RMQhLsKIIBIQyKZO9v5HlWKJ8CEfWEOvnhPQHIM08MKY/btjNLxO8iMco6gBXH0odyYXLMkOgXtTWaVUCRlTELqVXs5vjtSSvc1Q77Nl7hb3vZLDgPttqte3BodKGdoR3O0udlWpv31sTQZRr97V1qHa1+n9/M3u2/6Y24hx8dRXKX3gw0VU2V/RneuKBtkQl+63bcKRQ7jwu1zhj30CjUSBREq18yK7T4tNxATxy7k2mf37bjAN9bZ9iQ0J12vHDFBXClI6QTeCbVLIy+fzB77/RPXhR0k0sohSlx0rB0vnCjNRUcvCy4+22hEdzFIcDfGxMcABOH1F2zxefaOeMHxKKa/yiYEYn4QLy1AuAxn8EuUxBp6wHyYJGZh5H7A8ZtaPH9bvEj+0Tsih/Yn8YpOr2Yu3u1cvL6RnUIU3LbJgPysM5+Tl5WATc4XNkvByJL7mg8K03Q8gvOFqtCEzV0LgvYWyE2f0n2FYrIvC8/QGYcP8BOmtMMlhenfEFVfyRFQyorR6wlgMIRd0fspXofNm8GqmI8IOnqw3Sl0lXjAcJmWGeRAwqEiVINHzNtBmykwAaYsLWI2tioLTgN87DQx+LUM+sVHzyvW/6pqSRbrTgLSxswSyxI1Rh4Cuae8g5yB8gCAF/HVNZNj4LuGzefwPou2QPIXRt2X4dwmGF99Z7t2gYwupwIhPQ88NMIw3Rinau1JjORI/yISHJrB/GVYZ8AmX2vjGQlM1OltnwqariHK79ss9TdZKQeAa8/p7hfD0Zb9rgu/gScpB2oXrtP1vM5f6fvKaMtg3Lpd2S8LFcit40Mdz5VuOwWSBN1GIQMo4lqU6hkTB/pj0y4AJn3BzsNez+eSk76q8sw==
Variant 4
DifficultyLevel
556
Question
Jimmy plays lead guitar as a session musician and is paid $32 per hour.
A band is offering Jimmy a new job that pays him an hourly rate two and three quarters more than he currently receives.
What is the hourly rate of pay the new job is offering?
Worked Solution
Current rate = $32 per hour
New rate=32+411×32=32+88=$120 per hour
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
instrument | |
pay1 | |
fraction | |
fraction2 | |
pay2 | |
pay3 | |
correctAnswer | |
Answers