Question
Eloise makes a sketch of the playground at her school.
What is the size of angle x°?
Worked Solution
Interior angles of a quadrilateral add up to 360°.
|
|
∴ ∠ x° |
= 360 − 72 − 88 − 57 |
|
= {{correctAnswer}} |
U2FsdGVkX19ZSfGNL8cDVt44WPcdY5u08RxesCLggGufFOerbuajQ2xUgShjVVc9bSIu2kLacYQrGj+cCaSOoYFpl8NuDqw+4isRoWbjNPa7/le/G9gYJTvdRGujsmDPLuaMLt5bPVvaXAu0GV4qX8gJ1Af1rzea9D/0U7zumrEESN8cNsg4IBJEPF7l9FxxX9p21S+tH01Y3oJiS6EzfcdTCNzYEilFCsUz2GQ+NJKauwzNXlDFADbf43dRT94uGgf5AD4T6C9dSO3Oh2e6oEFNkw+uTRCYTZ1FeZY0u5ZLHxBj9kNnB6P+DPVnG6lhuBqkvbfKbH/WA186qJ919fbvBiGeCWt+kt2y7qCiCaG42rMuThM6c2HncYTSxfNYl86s7vilatb5GBQl2FiMaQSo8EeCR2f27UFaAsyezt7oo0v0leB8SD9uphSIAvx6PcADX9asJfSe5gp9EL0HBhhmfxJom14xTyibJuI3TeWGP7w54SjHzjuTVj0iTZx8oqH4VOz5i3etK8IZOgHy/m/VBRPwGOUDgvW+YCVDyzLjdxC+wtSc3JNqKcEmXDgPJE7QDwKBXMEol+QJvUDXtMK3d1C9ODovkGqHYwWwDcGhdATowKdIixgC88/0lsuSwpTTYuNWsRREJ13yOo8RVEYaCxKWB95meU/huYw7n6qtUuaPFYn6I82Xy7kbvoZd0zJ3+hhzE5D6LQ7C6ZEK1dNR+v8AEK0c/hxTMfesMg2Wgyqj1DEp1XuJdxXNppgP/g9v0ThL8sCChmIVZXW5w6VCuJ3CQJyK0aB26qnmDxU+D0F+DkIA6CK0lf69lWZalgiOGJkFU5Y/oOzmHKNoVB7teKFbgWu/pE5/C63n/HyWTjjYJcFP2EVQMnG1kllXczb5Okf6pV8ElI5cTR6MFmFmloU+tk4M3PzqdaIajVRqYpklS4Tx/z0ptqGGuBlZtNziMvlt3hn6z1YY7xz98p8yOj5mLhY5ScKi/ijLIpE6QDVRaMHzH1gKH1JQZrsQ3okdRb8sSeI3ZWdQsZ3Br1Fx0crOr0jhVosKwfoUutCn+XuiN5DdK64KblrsdALkRfmDYZVu4LtwQwerRXBnNbR/aGiaMpv4IJSRTShrDuzYD76LX3EDXyjJ2pMlJxQnlAA66b0XcL1pcoygLVeTDOqg3xtG3Ti1NOS5N8VlNsSOFLkeHqPxr78ZGkjOJp1F2tjjC/gKiBCws5WqTI0G7X++NTGwd9wtTRYa/YCH7n5odc50DzLBMZfD93k8Dsc6P+3xWAk5Mc4zTPcLXM7dnrZ12alzz7AR9Q3XLmMB+TKV/B64jccIYz3QEfkWkCJcJ58YXqqz7i67yHCnchDN+jzVH+GkZvW0msUWRXZGc/6NuDqX8xgoNYWrozhEWq+1pkD1T8QdxoRFODUPDEtZ70ANllYaOAgiyh7F3JbsHmhRGCxTlkzAVRMiXOqPU4OTR+SX6xrvgwqFTiGusK66uZeXHNGfaJ4RNzpiKz/gMM6bgmbH82cOwPAbpN+gZx3QQPAvjeP46wSUEiNhoZwFKlVQYNNCL3IdCezDRqjaoR7/b5xOtwGDQrgKYHHZUDSUciQ6lFJ5GcRDpL23KuMpd5LfgO+DrHOf/fy/x8z2lKZYrvv3hYkXfSIIxk05pRyPcggKXXp2seJaj83jgcy69cvIa8xsFRUmdyMtL34yRLbDZNz7SyY9hxwMwn0ALL5kPp5bdWCK1e/wgC8mnuhTWL4lutURIMtQ1Vb/l3ViE8G64cCmz2culcD1BK4VtvT4fgYOkSxXeiV4imak0fNq++jKI7SPyMnOMW3+PtYG8nTyMownzF/WHop3oGtfahnfImlr7SDMAZsfvjZEV4W0xVLY3b6M3O7vorGSS3J2o4FKPwaPTdwlYlPdNKkFNF7eeSxZDbaWurNRAKuvguETSRa6yTl0k0fS1WfFdkUyrUuHh5VfQQ48UpLx7XgW3ziUkYfh2TKTCFI5tvlCM+WXe6xQ6+YEYUqFOqgygy3KGQ4pRq7rSjSt/NkpIKdYVptQovMbL0hlyuC0j5gmbav68GUpwwSg1VLPXgAqDg1lj4ipyBW36Ba4c0h0ybl+e+RtabMn8ucZ7t9opIQepo2TLtan7R7e82jIV772XE/3F8NLwA8ZqTY0s+vmacXyglLFBCKL6dhg+k71dDMVwGyd8x01Lq84w5cC69zL3R/Tr1W2m38YCffSQttRuk7HaWgNDEbh8ihKsPr5Msph/Ryxa02jgBcl6HLw4etwamSKfMizVIhy16E9sFjNIMml+ndu2iXNo+RDL6gGiCq3gQP6bdk9QjPnxv/Pz/J13nGg2kSGfTvbkXJKO3AIZBwL4VdAuDFEyy3HAw3gSH1IGOXl1O5h2IoKDj4hIQbz/B62idJ9CulWZAwp8MRlzxvelrUeIW1a+EN14W7PCw4GPlGnUohIr1gyg32phs0sKiC3dgj6nbPi111npP7d9ceydcEgQjiSh0o4GdtevaphOzXdgwoWfbYHvqLjgLZteqM6CyZuvHm+ldicfSNAGK3dpBWImhLZLYCwx9XILLY6qFU00eJLmJRLsff/mj31OykuBqdn/Mpn20gqSt7zGxSJEwMlv8Yx7qflJEHfusCGJzB4XeYaQBqpgctDqwtj/nGt1PQFSm8V4N2HL3mfjO8Aqryz+3IQPMKQlh1B3IPkJhXdpk/xaurFbSjK2jWt+1px0MFrVTegWWSK4JisJNi0wwAUDOqxjgkr4LrQrHTFrqPub6Umhtqhf/ze0xdnR6OMK+5N8AcY0oy/4gMR6iO/tgSmYipbjeDZ0ZBMEajTFrBFYuWG9pLgCPLvNppIDesJ3Ocvse6viuTg08Z9TaQxaH474iCqe+0pdUgq7vhy4lKzFGwQT43ZbhjBFAjGov+54BbBbvdtE7Gu/E0+0zCxl08hC+Zy2m+rro+6S70GnY6yWYnlpT62Q/T8zPtZyUsmtSTQaCXSlbDPwxjeOP3fO/9rq7Xixn9o3DZjilaexVTnpwIQtHg7prGGPVf02ZlMwNiAkWSXGLS7Phn6VCKevWnoxrpmi89mNYOylDIKRzMb2fqOAHx8ASVJvW28q3gDCK/u5cnM8mjbzwgoNq5M9TNEbPy6/RK7fs41ncQC8sBrAc0Jn35j3uLrPrrCbWcAzXoHbSQQPxY6w5pXIT1hTZ5c1qlJ5ue+7ID89W1CR4U4X6a+jrPISMZHmNpap0ZsbIbZmAwMJ4q26pp/vqEicGXqYCRPOUc2iAum13u98WfIabP0gXaPwOXbFhz+ShH5gw8OaHww1Q4L+x/q9XjRsHV++Aj6RQP+yHZZjpFsaIxqD7neBSLczcqf3uHKDWG4y0UUbfY51GxUVNP2Gt4/MhNhiYDiPnCVlAD6Ne/xykox1ayBxKwHeaNrfF9eBrbZGfu5wDLCX5MBNQHZ9fs9zK99XjagI6kxo1enw+BTsB9ob8MCM8l/G+NMmYWOTLBfCLCqx0GK8BHLQkKWYeTzpjZzS0kyuxv02tm7DYYMNW0q6BAAwXsPDaeDShbRpCE10MD+hlITIxQobUJoqw0VWT2bybqsDEUKgviJPzBnyIDLldjFICksHKSfh9I9EkJLCo2HewuMIkpetkY6LfXVuQNWSgIOA8ap5pyFPb/8wPH+DvXwaHThldkISd4EUZ6zkzjZSvR8oaoHLZ3BudL5/2dun8/PDCkE7Ng3Ary/2BS/REeeSbAoZPTcR0Gnj/Dff1mj6TMxP14oBS5daGC8mZ0dDv0uu5SprdIZat/6Kh89fybgOxJt6EzV1k6CfGlgBNZjBI35OWY8ef9GeI985ay5zgbRMyhMoJmYv9ORcfcVVcMSTzMTvUDVX+IP4oQpc72+T+98SjTbqQnzV+PL6YYWkxd9Mkkd6UAANDJYOZbbP+DK2/M6NAMAH6NGHLaXx2ui0boZM1L4uC5IcQTtuD1VcIBYETONvgwpPAs/hOH3zkoY20p6aY3xVa+LnAIFPd13H0OOUluSB/AKrCB3C7FEKGw9iIjINR0DK9rn0N3PpHswoHJ1SAf08Fhq1Eak076es1xoovDryG14oWX8y2bz0JrUgSAO+OhzAf5gDX3cg89Q1w/aa/ErwD6mHrPh1kYcSth75Y3HgRA0yYxIQKoynhyny/Y7dAalhTUn7WgL9ikZ+F800kvqera/pWsy/9jkUMADDpi9ZDHKmrLWRzw4YCQjxyi535cXJfeC1RAxE4uEdiVPzVkmOAsUjpwQKUCm6CkoNvG59HzEyzeBoBa5DUEwKJGJ22iTN8c2BCmznkouwj/Ag9XC1umCImVya8SJBP3XCDRUSQl+cI0iJQ3tRe7v3f+02c1ADtwGMXqbBcBT9T8ywRrkFk3TZnGU2GG7M1A58HScbLben6BMzRaxV/2dm0u9Wccu1MI3Whl+unz/w1FAqsQ3g2vI6f/zYWW32OYe9Ph/Oda23pcXkN7vWCb7J7zPm8d/9IYT1T6wu/l1Xzix9bdeTmqNH+EcCwoaFDnWnS9fccXk2NEsf//YgUjE2LyvAydDSjPzy/Jc7ygfhGZS9YyaGPjmv9GfIU0OcFwIIpEhZ8ED9iuoWiCrNWMJx6BkyYy9hgNFvQhXbI395LiiDBOk587GqIEwA7rNYf1wsU3RcF9LJLF3trFeaLLUQXHgkaVFHJaP5JwsSHjGU1sv4p2+rN3hVUYwQKiLL98OZPO51KAYXDI9ftqdFor7lB2O64HXtyfzglWo91etlTVIYrfJkr4Tw/cBj7b11PKCD5T0m/t5V9e2PuTFd1Os3hASxsDU1m+6pF48R9wtmpEFlRPEi+2XNm3iFJ5hoJBsk53uaPBpOrOu5FbRrCOYqD5law7AMJhsfjI2K9mYGYkwUS2ACc8HJilk5MvtnP9NbYx1XJdjPpGd7TM2k8LnXLL9b9S4nslCbt13m0be0aCFthRBkczXriZ5xtSKp5FBF8RQ62zYhawFQUtIKMhekqcox2qAqv5nsffaPHPvnKhLfZRtQjt8wRuGS9dv4oHRj+uhKRswXZ/gsw6AFLMIt7h0I9NhjQ2BKpuOu+LU0FQpLdNzKdF4/5r26JHcBLWDZErXl3T4tC4I+itr9K4gWZu2FrKKjNlZDDj5rLL8LiGvSMrQiIjjiaP6ga5zvnm9NbD6C6uXk2QRPwjtcw6ocEiuZswc9Zo5yB9WuGpDDmuo9bW0UdlmLB/wE2WOE5Bz1T54i1XRElpbaNjReDTJcRz3Gm+y2XlzzsXVjkGvpSKJc095AHcoeE5ueedw9wG3JG4NQBUJzO0pYXi8+LLweZk/sZIXv9tyF6hnd6mzqMbKh/PSpR+w774G581MdyvCgyz4HYPghwuLe34W586IxqMcDEhOBxNaRxGDYEsCyvV1G9ZFK5FiD37Vc44JWmqFsfZAM9BHR0mkVaNmJp8JHvivqIYtRz8Er0knhJvSePVDOWhdNZEkZK+9Gu020h8V7hMjGgwrdT/6e9huk0umKUt0UZ/PtoHtpC1zLQVsAnNcITTnuSUAdQsXkO1pK1Wg/PmJBPYcTiT765c3hj+o/vdqMlXvxJvfEYlfyw0rkpBBC1ITtFH3Xazet16rJ1r+4McHxjrnjnw0z7Sn4wI+ggVT3P54KD5J/dv2SDGoFFAupnCFotSnjqTvMM6V1S5/bqcfgJpH1W6nAuE7KuDt5bTCojmh8MPsjSgJBfFiZKrR3s8DVT0Xa0+ri1NMG24PelQf6ZPvPF3TEPhmd7ghV1FViQEOwvyAxZG+ljlX3mG83o552jZU0fw9Ack2LbjR5sb/3xycGgbbu1hCdUt+weS2ZNU6voglZn9qM78vBsiSGDP8cL0DaFRevWLfh5K6ZxJnGJ1mzzNj12n5SeE88qLGG7ZAohSgCDU9/IJAq7LxrVE+ZUqD+N4kt/p4XUKbmhxw0klGm+MlzWuJCHMFQ9IZf3oG/yHhWZYsMonfgADKW0fogEPYUqFcnSidKERBQA/+HTNsmON45LufmxsIKTc3EcYBnGT+9Xg8tTDesgrj9IAGrwKwE3eEzGZHwCSZ4vTdrcPUxzf/sTs/aRVvoGnx0yC7v+pK4r6Nto8TAKkKOn7TLwQUJinjQSAb/2cuL2wO+PNhnQN4fkQY55fg4oY+UC1VPbP4PtS9VPoq2g/dxGX2YIRyV3Qo4UBwymY0rBCQQXlH+OhW90MgITDCTeD4f9BTMPC8DzripTIHwKMAshkwdqpMK+TPA4TeewjI4hTpOjXndhkD8UN0yNmZfqWWl2EevMFkUN3jbNdivrn2grNT3Xqk8AFN7isn7IlykBmTnjTBZgwMllvyAvocg7pI6DSVscHvTQBxGvTGbtJuXO7vlIeo4ewqzWN+chH1pp67PhfPSsbvVAhBwFj9o15HJfgbrRzIYcKfsLAB/JzxAcnzWdebtbep6VSq1gdmyAOXkncsrVqBThj9R6B41abyBErZxfkyjsmUUZHW2oFH1754+WxheEsVZ34YTeJwUsa+N58NXM5UghKSj72iqlpShuzxiZNzzBl89a3UtnWVzdiYcJ1juVvj1zVtFAJYy7jbnRhdYoOPgZEp43DR4XWmyDRZ8vbWPQ2PCmbAF5TfssavZRYrAmUddPSnsUZujpVZerUYR5cvR8vgDxlIvP/O8973vHeniALMFcDSVE7IcdHuTO2au2taLSSMzlWzhKq4KL0EhA6k4Drbj5E4yqgiNIXRiiSEXFJnJ5FJn7WqPZq/xe3XkA0HxGk=
Variant 0
DifficultyLevel
563
Question
Eloise makes a sketch of the playground at her school.
What is the size of angle x°?
Worked Solution
Interior angles of a quadrilateral add up to 360°.
|
|
∴ ∠ x° |
= 360 − 72 − 88 − 57 |
|
= 143° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers