Geometry, NAPX-G4-CA19
U2FsdGVkX18A/d1X3IWoppTpgbuAYsE6UkDsaA5HnAUaQjeSlMonpvS7C8gXX0ova0GLRF0spIQ2NSevTtD6blTznFI/l48tvSTMf2JG5olYcUXmn7crDllc5AS9MQCqx646kl6at/hmsgr1gA+gC6Ua8NMFrWgzxjT/zg468zHOzSJlTRWx3o2DU6/3XD2jUZXHSE+exj7bYNh+m6FH66TUfGsS8qUjUE0cvawfr+pgiAssiD8WYHoAKgIsl3nt8cZWlYal996WSdGm/naZyJXsMuGDlIfU1OL2jyDswS3p8ZMtiQHU4OcP4N6V3cxCH7In/tYpzaVoMmqmmAXDy6cddoMM60FbLvJykIFG3IGQ/z2uTfnb7q11kJVCMqHXmozcPHM1PsK42o/LPJtKm/q7HI3SE516flb5zhvBRpFnW2T4l6FKczyymhgjD4G3iuHQnKtTYUq2V34kCXs4xxijwHUdwdEm89zrFlmH/MG7/Y9rxDop3W6kF0uDhSoZXOpRxeStIyjc7o4bCinkPGoWCQeBwRCa0kFfDmlpOyUEoMwuJCWQ8BquUl++f/MgAP89h8GL2jo7GoRMW8fii+98vqUE8NpUYgsYKYEsn+bFSO5/ZAcuedGl+OjnA0cqM9iRvg9W3k/wnXItJDv/fBRIJI79whLhE8ziUqvmEMBYcrvTVvYdWf9xj4WtQ1S4YfdXl+1Z+TQmPtn7+11p9xuoR9miiicYYhnauR8gBK55HAq9KSOxjFikDCve7YdZ+JO2lNgf5I6fGqiZq87/S+dGECdEBXVmjDxCWdnJ1x6but0rESSzZXRqtTqUW+Rxv3ojr5rpc+Xk/xLHGWWEwH/MQ1ZbMesAJlCn8XCIi/O4pLnROdulCkCAIvtTYt3ZBemOtvS/vBPn7Uf4RA9L1TlbYsotDhAXv5pZZOj/CEBgVY6iI7c5l8ThN85oUH7/rmlSiEz46QgOsrrZSz3j/foM0pyTqUQQ+I0a4bfa/W8sewvKmKXh04mTVST2xNJNB2AVq/LhDfALaJMYqdfrwehEGlVAMB2vp7kGF7SefaSt2vFtNdTJKoCWCNOw/ciBc+plSHxpwFySNBNCDwb9TmufDyh6Eda8lbYJIAQzmGXNeZg6iSMvmqQ6/RtW42Dy1KNkX+T9nsuO0CLy9AkATyWzYs8S2vKMSNj4p7DOPIOxFkzGtDt1XZKY6og6XdIuF4LtmLDB94Zofxqoh+FZyraEpnKZ/Xoyy0hw+xW3+llpGc2pf9jKhYSesFpxV8AeJUg1bmZQ4c1srsowMVMdf+m8G9TnbGtCxccZx4H9mwOgjybBy0B8l2iRDQ6Vmkr8XMyI0JAc/OkQevAW02JO3htI6llg7uu22VtER0+tPyjeWowXuVFwGOSBX5m+fJOeNibmib/AooAN/sDlzORubbq589pmYdegRPbXNpbR7BJsOM0CgPtSHEvTg0Ks1EOxp5Amv2hDNtUXC3myOW4nmZ67y4bf54LHwKJmMZWhG6MaXmScfTYWzS0CKFCF7NTMgZ7gufrRxtLfs/tW3+Z/WOBzg1zP8KAytwRiN1bCf+MClKLDnWL2Qiqccrarq+1bHt2re+7fTfF5ym+VAQ4oUl4DHdmc0OpE+zPXYQbQ+GOtqg79tPM04HNX9CkK38KjkaQQjQ90rCgAY6UZA+JQTzmH3LoiY5SnTgOdZ+Jd+D8yIVVLJc8ZLg+Y9SIRdaFz1MfM37ZFJzonCXdzFBAf4M9tV4I9SFXLOG39XfPwDiEKvzX3RNH1mKX8nXi+lXj6+IxMHMF5d4sjdJgHlBi3corzKGHoPx0iomPNMPXbV23HbAy5dcX53EIofeSUS3sMzmP1B2+HBok8jSkgtFNoshsOjD1vq/UClzh84ZEgZFNTj+sIOQS6p7yIaY9ypoh0OirJbRoLnWd9mDBsW92WO38DJmucRZVIrE4zrL6n+VOUzaQp+eXsQsAnYPC+Oay4VZ0a0jm+G6PJAGlIRS56HT0WYzhLr8xWGJMQHjCoOrGjMhLmJhgD1BEWreUiL9gAfBJd5lKTk/yQNzG03zuXhYg+6fxxO0yYc1XTmp0PpCH9KtxeS+P6oJtyOkVndXtVxt7QN7h27XT4yYn1cpqmax+IAvaevNQBKYPDzxjNfOka5kLWx4Q00lyszo0nWIUGMl+9o0VrHMBwV32ARGlAU64sWaijehzksUCd416XGhRI4vMeHyZi1BZIA9ruSwMsK75PghfDeghKCfeSPvtW8DynsXjPjgsOtIJnPPHu+aaqIMzlh11INfcBBnzpgv1WJLJA6slw6eCReU0IJR0SZvAoWdqJ6Fs5a7sFKz/uCfEeuIiP93NnScbCxgj8WVdDyCNAnmRq6ZLoq1LAXs/kFCM8wKAgjSyjUxRuYmTFFy+H2FLO4ftfppG5NJzQjJjjmgu90/8EwKxAGw8mHaxBd+uOqjZ9JHb3ps+tbVoaQIktWV3y30eTLXJF0DSTkmZOXn/CSP8U5VKoLVyyz/X6DKh/u/FWGOcesy0rvZEmPWxJwxRbxidThuA5UrhhIQswwLKbxpPZWkGg+ZzZCMUaF3x9Vd3gxVkMYqgL4+rmIsPk4sAYfkvaZz0HmgDxTzK9lbHQ26S/ylCg1x05YkCzvZ6Lj/JAJfTkVR8cLKo1J3JxbYlOLZdzIjsn55xD9dLCVBseBR4pVAsU5R1uhhumqp+io4YqgsZSGF+aDN4ejlQAYNTaamgRGqTnWrDmLyFAcl4ydghOW5YB9fjsnpmAq2HHCjTXU36M18s4aqlDioBFRnGMNjd1Fl3PhXLvncbt9OFEBhbZvqtx+rbyL42x9At0/cKNJg9gp+Wgzuat8vzPcLPvSZyULw2vvU+gVy7FKN/SMrlT7Y574NpbiF9lSjx6pvBPts33njda7LQfreuIsbEmGzCl7Ikuqylpgc3gJuLWuGfXYqhVXdz0kLGnEZpqF2+4l6yUmS+bCug0daTW7Ve9QTXMnUZmgFexrpUi4JylneByLyOdcFkNy4vGhlNoxBnA1Ps6A8Oa4VCve6869J2epjI8zGU6PENDORdTrjrT3WNZE7rwWqChwOXNxFp6rHma1NdxnaqVcr6o4bwhAnRT6M2a6FbT7kMJFTqBy5Rhiq63LZQtxYVGiK3c2dCW6rhxMSLWEU9Lt7QNiccY5KznsW6Rg0zR2dYdj+I2YqO0L6IdOZoyCCnui2LPNgxyyCQf7uCfn3bK/cVqd7t1UA5KOecyLPdFpFJv8ovN1G2TTQUbdGDMCM1w42hDfWG1BuTtqEzUu74dfurqkdY9TbPfPp1dx5rgY8tP+2z1snV2MwfQxxhbRQy6knaY6s+j3YtDAFnyoI+6jCAs/GkwZm7GW5zQ4VpzQgclDMjx/aoEG/cPGvMaDJxdb15MRfdUjhppxbh/qMjhyaGXRGza+VcdabvThQaEopbGSQlGiuYPc0OklxZVsenwh2fgSIc7958FikXj3dxb3CQAW838ZbByjWYywkocmDMK9tC4d8bzvR/ueeRoF6amFGqztK6icQCIOhe3mnaAn15aZrkeZs0TWmwQo5Mo8FYbb+VQt071ipaY2qbN7myjDxMiGnI5OFzysjnqN1+RQ7fe3C2UhndYyggnbv8t4tfd9D+oIzYBF7vsa9vaseaeEfozjKOD3OqIPuiZV87PyeghG+D2Js1C4KZXj1Tg0y29x9vF0xntKB7w7oXudBtvH7DdZnvZ0Jq7vp66edNmqI0QIh/ecqbKWIQs58zFylGWlJPp5XR4qTXeSgnlmTUX+pLvtL27gud/Z4LhVniL8GVoSOq+Btx8eA2SQ407guhT+hmjhfjzmH4r977IJMYfX+CvbmtzMN+DcHK1FZk4AyOYb+aFWmsYgc0U9MukosJXOPwRvFuKbSj/0tHnQZy0FFI2g0kZ2SdU+AdZrlOvw0ezGYphYd8sDixaM7wjEa6NEZxcbXxgSwPdBKi+1Lbo/79rue8Dvwf6PjM3HXIzzssqklMAn3stBwJ2zpYUYPZxUI4YCHdw+Nr7LcYiAw1Hld6iAdKg8m5iuQRpkn3yi5ITObO9AgMwsb8/EYREkfZOXg7qiDAbVswLhkHO6BiJwiIA6kSC/hywBBpw5m3R/fvc/wnDBe/dbQKw1fwkZaV+LGOD8VybzaWyCd8IakOOJcylzmYhuNJSDaPXLXeklctwsYQ3gtu5TymP3QkTqUf6HEcCcXvLWsjaCimEEtYdtjtqYtoBPQYtfdVOFZGg9M4Somi7MGVojaD/eJXSOrw42Q9Ugk+TnqoHOruxoBLNxjdj9EXR1IteXvGS8T6iLcnj5/yUK0zumxiaLWxNxUx9zEwxExODvm2IJzZhyoz19cvFp+OA2/Y9xfTv9SQjSK+kKyTPVh2f6Qmt4Z1Uy8JmReJiPI3y9sOS8BL1qqvtUUfhVbXNtg4Tdw7ICfKZ9sYNiZxCHfVMVjGoDBZn7rtJwMC0K2NvtvfBpIW0KDFqxfzetsA/UuyZYG0CPuzcjuVclUUcG35e8OuxtSGyEVXFWY6GddWjMdAfHYhqTuGf5ytUnZnChPGTdoy4cEgbyBk2koQAFTzy5Smbo5CL1/vqU5UQBbeHk6EFLmWDUXTt9+gdsda2ZQ8rp1gJo7OTK76emklttIDPt3L6dRd3QllsB9zScqavumPEaVME6LS4znmtOaelbjRGdVk659VhPriA/Vq3jZDRyMvs25sil017ep3Cl+0J8pKxT3qXg7b0do5YmY1zqJ55rdSGVnSPT1FxrqIV3pGrBQksh2WWq30q67Jfx4OVsaOYtLS/GsWGiHI0g7Vn6j37N+Lw7jw9baEsvX567eSza7JMRrvPtDUErq4xyKV+EJ0/9bMyFT8lVLpgy7rc3ABmE51j/LCI2WkPXmm2dRvFPuXS8C0HM6wdkf8xn554RtK7qjCvzwoKXfVgnWyQPifn2UnlyxKu/qjMJBL9jox0xKzEexLxHCdgocIJIygcisBun6mJ29kM4JUVfoUoxCVh0KpGKiwqjDbkK9A7QMORdbbY8GUBcTwxGyFQ462tINfGr85666/SAzF5QcDx/WVfBPPdqAlE1lY1odnF/WwEwIQAa0MBMQuCR1jCFo3KCCvwJnh6y7BQ6Csv+sdj6Sw8+apdLhoYkuF5vvHt9m6JKH31+Hv1pDms3kJNu5Mg+nxlZmTFH4YPBolRAXOyXYCdQigWXV7oKcyLAI21W1vtuzZv4wZTlqu/n6kZm+lXmCMOoEhYI8n0LfGQ4/DZUiMyvy995BHa3fGE7d1ormsibOOjsLyn8WexEp2mAxcvL+KC9A3WzdTA6YG5VvdS4DKCNo0raPlPb7gVnjFs6/UpZDYKlLX6IKAXqm9KpnNqh9Ogvbuyu0K1PfkFez1bAPNx89ax2RkNiXdeoXrninZWaJd4i/152PwqXOVmUjOzIcYFeeA2YZdrKMc5/D5bhONSF8F/Ilf5mUjbeo10pJAQ2Sla4tp//vBA4JyOwVqPo3kdnm0I6fqjaUu9t62RYBRppH+KVYysOJl7uqLqQiBXZ8m86x5MUelhfZTti6brlYH0JHbkZZqC1ARfqy1MNryiMO1M3P4KD100mMZFVwcOBX307k6yOkiCJGvsWKbR1uekuf3hvZK1ZJ3dh2RYjWyr4fZfS3JWpnqz5/cC+AbetCu+gSu0mp8owBhsmGnwHWcopu2+Ug3nCCjDh2ovmHvErpufNCs5dWw9i9fxlBH14lJ3h8z3agLZyDsmWnZMtzV5SWITJS39lGt37fB6dYEWHk/OKx2wgui91AeU2WCGbNvrucQYL0TmZXJB9QnnQ0NmM/L1omTQphSsPXEPOoSGPfNXGCug4YZvuC9BS+ydV0O5VrD10D0XWI0HTyeb9vX5kyKV9n54giSQy1zZrqZqnsIDIyFN0VeGz6m7MYbMMkOhP8+w1GTTw+aU1BeuupOknch33XsNEJgi4ltXwS6U1mXrlReyOTEaZwZBCU5uPUFlYXW1yG5eWQexa1aeW2ysJacEWws8ad1WiRtjCvoDgmUEig04+/z5MX7AxAlOVrTjcOg+oWgA4ass3xJb2x632UP8cqPwCdgtm48ixDYf6qepzhWlB4g4NMCfWvwRLHU7XsxmVdvW5gDHNqdeg0ohFScoIc3Z4NwNMc7ZV9OnGQ7i/OgK4mjluJGgqDXWe3wqpAZtKqLpKjErjRqcJtEreIglMq549l+8oUGFCYXOK8Ouu+E3Dp5FyiO+MeLRKE1/SxN/ximnO80hYOMgxFMrRthG49G0IA9/wGBiNdKpljLwrTpT9OikOZNV4hVtE95wg0YlFiWXP7QKgeTkHF5vcTaYozaYwuIJhPMWuLzA0r6238fkNg2ELdt8i/D64MxXNKLXb1SYjGLvWOn1V7otDBHPLo5/wf0tEdO4GVTn32oeb928P1NjqfFEgOaDGYFzmJ4UBrGYvWnqJ4MOz4ccxHevcoJuWAu71ohfMaLap3g8QAPnXVK8E7Q452BD8DTr91ypTuS66u2u7EpMXgusg4W62jV0qYJVbyYV5TEQdaIHBpjJ+E4LNAwbPUKf2j/QojTEixFMGFTWlLmyzhhVkwlBshgrdY1NrOtwxWIjoRK9dwxcUUZrLIGmMYEN/Y9Bv3+aQ0GFHOrWcMsUD+Dcx/uWA2bbbRVjGvAG6MiGbNAV/kJbrunNPS+xbTLvuhR/PKFLLfmmzT1rM4GFfdFjuUW3gqqRXtAcBbuBB+DcuTJC1ZgypyXqN7Tm7rMZ/0/uCsBsr9VON9VubmAY4CS7kIFFgGhTZQCMNaaTbg89HvPBcy15wx8IBCj5KdVBl90WJgXs/zpcR68Yyb5EUs01FAFMNpC9R61Ce2cakZXX6WeDaxHycwWGwUoN5QdWC+Ks6O7BBa4dzKTSXkUbv+OmSc6HVKN/1P9aGeasIHU5D5ZvCsiZ/0bTQnfbdy5yb7rvFC27SI2mjNFrsEhYVwShoAk5Q+af3uk7QwTuTTJ7wDw6SuMI8w0DtroqdvcCY3EzskeiP8uihcfbWDhn8rGOYnvl/P9DBMUT+ZLDh8aKJQP1qtqv18XwAMQww+U9hMKqubtWI1q4UztpejVGFh1lTsrum3KBn8yxuZqJtlNJPRsLSoby7AFaUOHQYcNfRlzyyvfIwk0lkVxq9ldGEeTeOrn2BiEsQmDOr1F/WnVyVjSg6TPsmXSSoJxRfS0ZtFXYSfMYdhy0ekJofFHHiwyfwa8JApmdGTVQ6TQDV0DA3s9U2DG1fWYa9BbXYw2Jk7eYRUEBAOdgvzSRwfjID1nxKA386i6qobUtqvtBqEFj9PciBhjI2HgPyDhK92kXE3OAEDIoNcz6G6Xl7Iok0juPwajyVYxCuOlRkquMAn5m/oSHLMyO2Tzmn3pvua5Obl7uMYw7109/8nl4MbbxQ7oshctUMsJKytlGGq2JbwjfsLSAZOaU9cZLqN/UxA4UNs5stwDgwQ56lMKmuk7DuDH60UhAG0uCSMc/xL2C/F1AwI9FNt20kUHYJOA1zDdk5fAmchNXOTQZ/GKGJ9lN/rUgnytzISOUtfrSHX/2IxdyE424YeISZ70o638LfIKdLPA59RtbluGyaIvbH4gb5LvATDEeseWrUAVW3MfjnzaUQGgDzTT6rolICB6xm9m/Cxbo9H4mEdjTJDq1lr/jSY/e+PJtjLlZY2AlUizBjQFiOPNyzw2vTdZlLEtfPzFqqRVnAHM+QYIGuFeVARy3uNrPRt2oY0nk8D2KmG/xI8PZAlcJwwc3fKwmUtMepiOkuI/8JiyzwWvw6mySM/5vCbS+mqMCyv2jbcAtamiVFTSEzLT8O+BAguBuv7WB40ytJ8astor0jwEVV45JEv2wESGcHqZAFcQsETu7z6l8/3zRuhZVokRyT5Lf+LNuitcxSY/jJrec922zyyzJwXsaQNvJbpM2RCqRBAy/OTTysKNG+jhBdCGGpS54vh+KZJyoxWlhq4rKTFQjtsGMreIw3ZeTh0WONQE2JMFLHyp+6Lc3l0lDni+/YT4L/j6ZQ0iYx4Ca5yRNWn5mLHkGJqx49JJDH3MYrH8vHtYEI/ZwS3gn+WP2TwuuW8AmvkC+ftgic3tpW1POVts8Vnp0b9JFWSAtKRmFY0BTGSyn5mY98nRxj75L7n66iNALhEnmQRIKSdL7H3nPnExz19gbVp7cA9Q6Xy2gkxwb0OCncX/Q/Ot3L8IEG719vvFjcP0zD8QJIp3odloypw4zsaVPAB//j5vwo6VKasgHR87/+AdaT76O9uTmJ7FwQab66f6EQMfaqvXl6xAUi4eq43IH6YL1nipPyqH3NxuvyfGcDi2JFI3wwkwSinX97vcAxVxYd9GIgJ9f6sLC8923u6lYOD4+Ks2EuD6OBnTHELcAjwWsRCmVmeZErBa6Ng+tnzcny9a1sHTnoyWr82U76aUhYHUgDxoB3wOIsso/8ffXzsU8qSLUK0ywdJkOxGMX3ubn2/po8UIFrhI/a6RMo7dyor45DKNcLdce4pnUc4lhkB+a5E3c8jWfVl9z4flHR/iaIl2y8p1YCtA/WUtuzRewt3hm3dA5SeBGlrJYgkXIyFAUnaJqSFfPyuKiucbyBUkXn6tK8L31t0/Yh5wqH0wTOYIelcsnPgaGaLRq3QtHleDw+lg7EqmdCuyYZ7z+vrW8QNkKje3nGnhRCdDSC9fHNVCbQUpBBfsPkHZDD4vkLLUG95ZJzhtFVwlybGZ4IgZHo5jt+vQzBDpHJoC2kQWY+t5w8VkBCl0+HebC6OdzsQQUbpLqLyEYrspAidO2MYnqpsYn5jf/BCRKROCL20UVSE9T5i0ItM+6dR4TdvGFQS/yHQlmT1cOkmMgqwa/jsPCgEtdu/iid6vs+wbJCJqY44vf9d3T/N88DEiI4RNxPr28YYbSTo8I6XV6QuqJ3lhRjdzOcULmaVDKG0f8Vkc6uQXKIEhMi1DDtHYIO7mVuApCq9RjIaitlhgRXnovJ8KGE5rnIyPDYZALvczH5fzIol3/Y3T0Qz9drm6Rf3S9mLjrFr9LXf/JvAt8OC1e3xsAKBxlTE8GkPrtrHrTvsPD4ohWn/4GgyJ+kke7WnJ59G8AEbYxZN1DGTlXGlkU03jOJET8WQ1f2tQ81e4HzBEGX+b69pVSaNdQAcgUjwpXx1/oW7MZcsPHL/oN3zKPVVSp4ARoAE7urpr4gH/B745DsQCKSLDydp921XQ/tWt4Z831EIH7VWn4eWI0M42Wg10fFQZpU1imH+ta+8OzKv3mgi4PAy4ymhKLrisAeXv0NAQOBtZpwxv2LqVvxzfciuSYWxqXfd7GOoqKuZZYVaVCuAQAQTCuOiB7yv5gbzBgy1v4aPCeip4bo23vdHK63i/cVl/Lei8LRWTkn08Qw/rFQev1VaBG7lEYd6ZGouNVHmuqdAPfb6C85ZUzlYRXPZgzfzV9SRbZz/5KYKoj1qGQlBqNUrNX0UoO4Ct49zprRsAtUJss8m794E3y0xHTI12YZ6Ldt5onDOJk+i6UmGZWQAfvEmF9Kq/ee1vc02iMdK04vpODvPo7ynkoDvRNnC+c5GzLiDaVHhbdQ3bU2mPtjItaXEvD2ukw9reWLJ6OIvDVP6YqBQN1U5uRB+UDzG0mF+LioUwK7FIHQq2nUYX2SGeAld0ey4eLCIGwKAPH5kv6Yzm/evlY6Vjsf1JG9mthw5/DaEMy2ApUbuZgZrvykxG0762jP4fMvV0H6x901e4ZEyP/+2jHRizWCWXviZ2xZ0klyRCpmHZd/cV+rVbK6kjja6Lu4LpItj6gXsGTx9NL9m7KijZdFaCNMLW4usi8QKMLD4FXGhnp+mw1bJ8NvmMLRq3zG9/J0DNIK0IZcKfyneA8z6M72yemBpi23YobbOAcFivs6ANpsuKB64wqzYqOG/UQc1+uN3QAkyv4DtLQuYgi8Ev6gGwivjUi7JBS+KS2urXMLuN1scnO8thAGMbWe2GzLmgv3n+yOIu2qwMOYOhvXh6DM6R+LKbLFYkFDst8C98tfcNOGgXJ7SxN/R2yGgBz5HH3fCxFjxxTjq2sj7527GSffc+etCuLcOE9XSzUDfBSrc4VwxvJ4IeTrFKZmSBuQGeCThVzRR4lmMtX+2mNhmpdamWT45R+jb9LhMNbIjfXEj6ZuId5KNh6xK3uCInTJt7rP9M0AtzJmCa1JCShFFmc7UwtjMM4TrkWayiqHow9cNcd7XxBhnbScDM+rdjDbzyLIN4amVOvXhKiKgxxSDr99rhYMZ0DRfQJE+ZfgKaRbs2SEtg0dyP+3Z6LgRhquviQYibt2YFX23Z4Z0nQxVrw6TekulJgePWMBwZJLvSOgnuQlo+7U3NcptFqgYrY2/SP215lMZT7AMGuxjRq7exyROwq4e4lTi292EPggDbuvxDBqcurMM0s
Variant 0
DifficultyLevel
685
Question
Which one of the following triangles has an area of 16 cm2 ?
(Triangles are not drawn to scale)
Worked Solution
|
|
Area |
= 21×b × h |
|
= 21×8×4 |
|
= 16 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which one of the following triangles has an area of 16 cm$^2$ ?
(Triangles are not drawn to scale)
|
workedSolution | {{{correctAnswer}}}
|||
|-|-|
|Area|= $\dfrac{1}{2} \times \large b$ × $\large h$|
||= $\dfrac{1}{2} \times 8 \times 4$|
||= 16 cm$^2$|
|
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-G4-CA19a1.svg 200 indent vpad |
Answers
U2FsdGVkX18xfkrlEj516pamO+0M0MagGuEKKCxflER5+GnnC0JkcwzF8SbwjGMq40ePdj8UK4R+ZjMfed09iug3qr6H5TAOhL5TniNDrv5X3vVwGUkTEt8M/JvUQUlndjwpm6NsBm46Yfafm23yP3f6/hnwTJ2/dfhux9z+AVchgQbyyl1GosJTAZq1n64uHcBM+5QE9IOnaHWRUthQCeO/HJxQx3aq0QO7/VaLEcd4XD8Qik/XpJyIPNBOLR8+NTD6peb0048E4q5WyT2NRIkqyRuXn2YAFhxpQxbpMeGX68aKLL0/x2oNeavf066pSmTOQdddU/W06zHBHhjiEZnxiWp1YF+ALs1aSs4gDEuHE/Q7VdaCcjFkjGTOG9ab7m/PDAJ8T8cGxEj4X47F71dicGwInHB/SbOYdNXwWv9t4ZfO4NMMCaPvRlewXEviM9AJ8ip4nM/sP55B2rmEfD+/ZNGIaOQsQkCiWF227FCc5+/u7hQphxpVLzC072tiMs8b+ikP1qxsn6EzB4vFpYJR4/wduMAzTnV7wXCoVIbnUp7z4rtZKax9r4RunV/YPea4Jbd44pkgqSC6S5TazuQf3PzHqXNaSpY8g/JzC8mzDfH1DndulyoIMC5igoRYaanTPNUNFl0bKHU0yxdYUE2c6hou/5wnxHrwAPhbTcvMPCfwqcFfH4UaGFryQ7dt8U7P+JUWaumxc3nrwYnud9QLylUbkqd6Y/G1NEKf7Um0DuAUma6P2LDYYqMsCYHZNBAdRPrwvx/MSkfXnJp/2UDPBRezfENmlkg+lWB1balH6Y+aXhlmE3yfyDPlkRYsQcljV6F21AdW1lKyssuf5rvSaiOUcs7EpwW4Ji/cSMrJNdGY1eOOm4O9R2hf6PDGkCG5lY3drwEXUCvpkgWw4c72yWdUAcbtg+Z05NT6ggSGgmtxqgqgTJ3zwqB1aXdoAcd/ILAt2+DxfqWdM1UCZLzah0SoCNFBecpckkCzbxTtTa+3Psf2rRqt7RMN029ggI6Ucr/h1YNOXRbXlYQHcny6YHm/yB9vD21RpNmwT8uldzTjwHIXWecUU9ZNpjszLaHke63K2xtq5phF7deNu9Xgbya9zYn2JslzevM5PJOBw76+NOjUI+qa0qg37LEv8iWJ62yxmLrqoZ/6UE7XEVA5bShgZQozEbdL+jNNvIZbmNZd8dLs37APV/Q0a7KijRXOdCp2AZ3e6kpee2XouAku3EnBn1DtLmBEzs5pv9bOQ+iooNK1Coz9ZZ4oqo1Q92qJsmNjUVCFNN7CrnQQDBiXWot2LBTWcNy4YjjRAAf5xb+WNvNIWLKrV50ng0Y1D2gVDKcfD+1+arXaxdTkAK8X3Z47hhIyOgtTiCcJYrJfoteAqT1899iZbQbNACg7a+oTgITVs/EjRkkXoUK7It338BKdz17EUDQ4o8UZb2oJ5x7WiB3nPuI9LsPBNgdo7KWG0Sw0DtsTd4oJa0Q1+FReA3u2EHTZ7LembCSZGhxeda7yIUUiW/MJEoVN2SieoRe70tU4fS0s9ptV1Cf0MXgljPV3bkzvOW/39Q0V4g8nwFRZOMH85l+xwM4dh/5ey+nasAmUva/9FumjdO8kg6lEx3ZrrzzGJUWi9cAmkUYOwK9P/u9IeDooVvK8CjVUFsmBsUBgY1PGLn4L/JG3k0xoz9GPmtQz592NIpxgNKdMhomN17RIYcjS0xmZvE63WxwOLWOo/OOVNa1twvwHSpClBzShPYCL43hakLJGn6xCu+TIG5rZ6sjeKLc2h4+2WsStA00GdtGDghQ8kaXwUuAgBbWXQdfWUNbCp9WkhRlB8FCF0kHPBA1KMYsRGPiQd/hnQuXOxViqsMhEQts9HgoSQlOYnXWYtnRnDKpXW8xeeQES+/ym5WJHyz44+brBwP2SRlNKvIKEVcsb48rNG7XDfziRZ+6/cbf5cf59mNO5GMTO77GrVR6Ii/OXzmr0bz8Fwkox7CWhcuBJcd/VGciKGqvpngjuTHChR81TlaYmWuwoi43HMPNKk6uFqOG7TZ4d9v+QV/nfK4omz9GJ3akmB0LURkQXmA5ezEqu6oy8njtKDtSpkMqxBUc7JqsDqEEtdCeMAUU7P6QePX0zg2HdaXxhr7D+j+VFEOVRFgFW96pw79ShJUSrtfb9EmtyjBo2rHrhYLYsOeyyRrjllct/cBFY9AANgSg8YTdXo2ntR98Dj4xVLhEffXdy7wnIK/9rBo8v47OjJG0PUe19IM+ex1dZ4bR3nOCCd7GDPRIw2vx7L3DWYFJDH2xjuHBd2J/5P8N0zHetxOySYImph3UHfSSHsrrrB5WlBIzwu/lnji/4ei8V+i+EVKJ0hBdAYEN0QVxsJhwi2ra0wHkOw+nO2dLY5Qr319b9uxgeQxqugPWozFx7nIzIpb9xFB/IwOUvbl+VbQ2WHj/IJTGrkDq//8PS7Of50qWRfKyJfR6KBFrU+ohu5M6obuqVZzx7LfZZynKWZRIua0vv8Y+MOziPW8ogy8HYYOZ1lS/qs/QxkvzFgBOsEd3UAfGQkG160tiGq3mp7HvgqdEO2YURyinsQ89xen+NIzwi9Z2zqNpwl8FFviUfVzbG23YJZeA8SwVJ7ni3ejhJFTtEhjesy97X2kPwoyBc5ZlAjTPO4k4+KTPW1FB8/1BOLvdRNPiocJe5FX4oy2z3Okes/fRZJNsmAr1ZeW5xngtE/ZZLb9BpAMi7v1WvaNLMGFkkTDRt4N17PPZibO2DmKV9Iyh4N5xjVAXV05SJ4M7lB1ghHNVxLq2/achQOYKvHKyOJVpSBDewDxtBjiIU76kwImdNTrOm3+inqv1p+Wjfs7ONPP9T4y+tHfPZ30xCElNjxG3IFs3uwnoG40/X0t3XtVWYLcuxeP/1yNRNCNEYf1U0wtS/gnYd8NOhsMIKCDgu//J9QQRDQO5PSzBhzhnY21giyxso/0RhvjDzJC7d/lq0IPuVI7jxcRdjOWSH3cBXY2lUj72STrHq+3oUvB2bkdKJAcZJ+E0UJkYw5zXMEAmAChQraFMewg080kp6Gcv53KCzQPNhPIJSIFcv+AYC030fMIuMF2WK86UyiV1VmTLZrjzUY3boRDuu3EUJPfpYaPU06Y95EXdliXmXWPcFrtEynfog65z/DJgfmAiolEdEmsXj7khNHmHONwqppG1//9djakorSdpdVAW+ZDTWcGNlIY86v72xKd0Aiu2JDYUIY2LEM6WXyVCz3kEdzSY6xhjlqnnt8gpGFU1T2aWF529CetQ6JLi9ZVCB4jTo4VsxUggizQgqpp/FUdECH/9UUgHiOUzsfzaZsiSGGLddmFGmRj05ntFnVsAQBWg1YL6/nV9Lyrdyg+5xIGlqflNK5nNpeT1/hkpER8V8eYwuwwnxy5DHQy2ThjTNIwDEjWsrfVl9Cwn/7erPjSSAoj3oDycCQcmCe5HRTWjdyBpA+oIumW3gd2ka6OCgNAPS9u4Op38SQ10/cYcyMurFBlEtW9c87Sxv7abrQSXotP/ce7JHs4i4zMzy+P5sSV3W9UX0BX76oyGK3FL0nEzU32NKuiGBf+BPiuVgv8lIcrqxEIsVZqAUXCW6UTcXWqkJCSu+1HgnVz+yQTi80syWxZ8ybFsW4Q0zAYF2xy9o0XzKYSpwU9oPHfbtJaONan4/rgAQYNEmueziqwuHVrMJ+NFw6d676JMUzO7p/Anh4b6eLNkaiyHr9JX9FF3hb5XVp3rwesYsGah62dUjuke6qYYj+Ysl8M8Wpu50P4srALyIVf3jHRQva4Vx6/fNfV4OeGozJykzJFHkKUgHFFGvrCL7lmvlGeKaOVgBpLy/LjjUHwMt6rCsZmjg7gkZahqoH/LWwGhyAkLhFfrMSuSnrlImsVJyMJuh0+FQlEBfV+OZ0EULXH1LtS5e14xj+8U/iH9cCyFauusi827CHS8qQ+dZqPOs4xZkFalgwHm3sRNpYrK/5yxn4DGckuc/FjU3ibSyYBHp46C6E4A2Nkl3rf6iGtW0jIRh7k4jqllN0CYr0UNbcI4d6mU/V55a5c6IQOwPRr6K6pAT31+ZaVv1ZMDkOCz4WWANLO9QUSvd1C0jz0Tchmf9xJj8b879FpPsSUZNOXdlIXp+wSB1KL2RnazfrvDAf2+xFcWj+NACOw4/xNfES9evGUUJnvFTZGUNFywC5vaTmDN8wYhzIQiNeEdSuKFFpiPZjU+UUrohSe95UaChEbEF5YmI5Z/ByKYBVctw9/Ioj8nPhvkv6Cu9Ybcn3sjEGlAJ+0fTe46cFQty6tU0fdm/bo7IbMM/YR6RkczPbeAmGuUjd4TGlifsI3ikpe65iGiruaWfsh0YURo61ueGGTsarAALxaczBydDci/BSLgKdl09hull4h9IWV4PeVOfNMMSYk3LP/taD/3KbP14syZrcMJ9RjQUIp20Q2hFy4cbLrRKHLdPgcWpoESthMSc+wsfCrNsSluh1AoG9U6UylvcW+L//mUUPQ5XYSBf+T1FVNi9r4gJU2Ovo+/trdvpHs0k2sbjKiz4xXSsPpwP93vfFwlXecn7MmOL/pSfSA9PNpCKG3bFJwBE+wy6JhdfPt9voOuGpINsqNMHC/teaLioBQAC7Vvsn8UfIUpIEjKSkEW/+k8LQ2f0FH9nfDwn3ZMV/LOKXJ9jXFZ9cVCd/flH91xvg1oBo85g8YqdTVKrbKZnEwRvQWHnpCNZuCajEXMLQoWxuQxcVR/ck2RdQVMqnmG4j0vOWDN6tZbaVkVHt2Rjrlqx770q8Nm4rSvwsEf+qdFwod/FYg9O6TPt2M9564KkpG7t2XwdSmkMkBbm+O4cG4mc+xes2Yd7TXWgDoo1J2ny9H4evWrwcFhAp0Yxmasq5jOEZ3bstNn++UzMutkYkWcJ7DbEQieo7hNdyNHo4cwzXnRwUW7c1k6w8IdEYDTtolts40wl6cTyUave+WvseXO1efDYV+8Pu0rxR7uqzBQ23et8tp1VW/VLjB7WE88zDBpUJtuqXZgooadvU1ui8P5cZFQ9dIEViUvyu7MMvmX5wJf6NNGvO6e1orlKxFiCr8PWQfca55IYGmeABbXuO5RLYc6Pq3voUKWsWKOXHWz5LVdWaxMvR2kuZL1M4uAWhidaeHZLDHNXwK63DmwtXQkFeqLDn+8VCmFW0y8CPIe2+V9gnlDhTYlDRXAMi0SH6T7UnWxax12qAZxrZvuxT/aGlxu5MptQUIZe1ef6Qx9OZiU/sxwZmlIW9M00Vc9kabKXHTYmZxNVPEQsKWpg0ss+StDW9wSj3kW03d1PZjQik2+CYO4X/Dg1wNWN98Gs9zPJk81w/I+1iA9xfAF/jf0iaWLBr2bXkTSdG8xGuJJcjFJHypdkh4Vr/3xUfHP81zCZPnqanWgM82dFzqIaBAfdANlRyEJaA0oVTwLuoXHNjhvHS/lfNOCS+DeX9RgSVxhmEikxwYJIItnOv3Gc7eH3kbov2I7w7s+HYTkMNsKq4w8AifjSORWxlp7rHC3U/TWWt3q6mPiVmi1qWbvcD2MHywskKAeCr4SBVN7YyVxvF9l62pQ/VPQdlRTzseYUOWangc7gdt45jOwu4cITaJExbAJHD7tmwOROQOQOoylMkG/JskZPJwlGxZfQ3WCZT0Ljl2t7qsE92XHtoWtfHZM3UMUHHSFjLcGzvjnBBdQDJB47ukgf8qbt84Vu1ONv6nVKaOdPZRqLUlG0VelM8npiJqcXlv4ta8RfaXW6lSeQXkxdVdHaNIWKwgPUnTq/lPhQF/2cpKqBCn3dB4YOrYtKhSWIFx3nRQcM7282jBQKr2derat09hlOWuZrLyScbrpKrP/2mZmAjsvv7OlGYaP40Dn6UML/PTqyNtFCSTKx8mlzt23A6lvKPFszMvnA9t1mWQVg6UKgkWm62Sj06TfItDxaDHofMN6y1YarKc/iDhXEct3kcGPbUt+B5f2TeHzuNZKvmHhCUuG9eYCU3mPQffw1tVo4awRJlpGGOrUV+C7uGtrSlM50hfA+tP0ei9ccWHwzJi4Ee2W2peQ1fUpDmSlBqbmKA157/kkh/Az62OD264seG7u3aR4gndCR6V8iZsqawyT8gnB9QEVyrgytrqDXl3CiilO+h+d94PBNJr5YHZzNEUR0nlQemfzKggXtvA5oYuAlueA4OzU/PSJ+/6/LjJaCPPp4qkHE01Vy0dnuu2dQxV8SO2zeE5qk4TJ9pWiiSKMbKtStk/R/W13jQZP+h5Qw3HzPtav7RlKVdk2x1Yrq4YjcBcB1yU9cymxj1FxFFgF/tGXBQuIs1Ctam7WgZuhopLAt+DvKxj3nDCUYqdoVi1yN81qHKjWERoC58QH7/3BSXulzBjkek6iGuhsHE4K/3uRBetX5+7vCQgoDeGZ6jrSApCTDnqVv4gCnFchpbSk2oYcB4LLoJ1sFSMzT2B4CrUZ7eHZrjKYGdiY0RcRUOjM7mS/K0kO/BJR+45/CzgXIpyAE9L89cuL5cSSRSLAHYShfaV+uGG4pl0SvQf3j+h7uaZowxlo/m5+303gsjngkDCWqRP0RzA0SsiX/mXwaSXS3FNdsgaJnkHt3btTHttzK+cxPHgIX3d2LNiWQtmzN656DAvbWvSp6yhRvpyvSigSVGkea3kenoHGQNLIn0ctYLaH/nvRYNE760hrxks70arhMoMue4HChNCL+mKgMhainh0GqaKLO2bLIBLa55pQEGDh3ekdBk5qkga7uz2qVd9a1nGtWAvwt9TKR+ZGoZP/xC/ZUy7aCvxcjs3sfKouz1p4TP+R2zqUeskqu5OpPDbPIF8vNAiobOOaWsuKQcKA1a6Zifha3F8Jd0JlBiVeC8B7zxoiuYDd20P5PdN0SXzcHvzSHwXyjh6ROQVDAbtn8zWVoDKQn0V3Rafzyl9T1H/pxBMLWQdKexMQAgw2CLmuDrttXkGtMeL0HsELAMr7NrzNeV3khLt9g4oGFpfn1bHoT5SwDHDmpTZwCGgRhGCdVarLNO/RUKhEYo6ML7x/OeLTKE+0vCw+L0xvrVXUgYPXW7oyemdoph9xvtUWSDNeFgHy5uAQmV5IySbPKdTnYCvWhQBskqIPGIHflxSfn1BskArVOYDPPtjVVK4O8+pFRXSfqE64tccSIbEVMBzIhJfnFWI/mYvIZLzamVRmMlP3Srb8hE8zfP4HA8GY9sFNvLfYh3bFLvZwtTfT/oQNOln39mcogrxgFdAwkie4gIgLzikCZuJmO76AGjq+Uz+c1IZNlzvlWlRQ/Sg3kRnzL3QGSYCYWQ+p2Lawk8LAKSYNfyWMDyiDM8pvlz3LbQkfj67TS1S+UyRR+t1u/mOLhuocAB0abggQhJ393bGCcblIG7OV1He3rEJo61RyFihBZQulCPjKm/nU2hHejLhdOvPPamftMl7keDRid6kKno9xPy2qZpVWyXSFJxW2c+QX6/fIqEdnY/n/MaYOTA/DdcC9hiM/rM7h1NxSHZWpm+3xUTeVlL30E9GqO1pqxWTs7+CQPqhOhyKbU0UT9qVftRnrG5LEXHpAOM4gjMO4RJPXMAEk9K9RTDPNEfY2aztUOcWi+LB40U5uSKlenjvvmJqcyIlerjtqcdt65sq855V0UUnQJHgwFI1hseswO5nXm6/2bmQBkJzKE8Q/0+M+ebDxezzoacacy0fPlhxCqSYGionUUtRflo6jESCoLZ2TGJpyvTBQKEvUO/f37UG98FWHgGV83Ub3kvNw/9sZ1FgD8xy6GSUxNHDGOk0YFrrFCDLwyznWj+hi3aMexyV/VW8fAS+uprd6NgfojclLzCrx7FuNE35iKEl0haIWzSk7KnXNH7uMrdw2JRpNdJCrUcJv+CsIytfFJdYUDtPc0XAOcrONyvl0J+Izgzmj84RaJHvrcdwTPK2fVrql2EuPYvXu805L6JVwZCIBc/Kk4QiRww8O7Npt7rodfOMB0BFSfyvBavndWrb3RT5xz6QNSuiusR8qnXJ/ZjDcvEO3RSgaFc0IP2McY2u+5Ag2MpVGFXToZZpYoVvT80G28sMbyxY96g66nnODXDP09relvpNIk+L7vQdh33t28UpmcWKaYpitC344jFgyPF+1WCqZk2HCK9kEyZDDCg9BBQ3Wt+DH8XG6w2wFzCTvkAK8KO9XuETiUBee4whU9zgcJSSBLDsJKTskZuVJoWMwEsmcyh6VBC2G7HRTJe6ejyeYuk6SrcCXUY9j0Io3zKQaqfgNdsUv7EnShOqmBKKek8ZwLp/XfeB39+8jWxKU3DvQaGVcWrMs5bYle5vwK3VA4QXDzfJ+EqJi3YseIDfNKr+T56QL6ATNyfVK2O/8vh1S6bfJVAr8uC/sTtmzlAbWrd2t1EJtUlbWzy8vYAhJp6eGMDxMKauNcWILSlE+fm4FD6R8rvy1oZNpvLu434FwOlHQfDeDLO3tJed84Lv3aO0IGTcbn91nBVG8dGMOlzk+207Mi/BoUVjZUvrCcIN8FbauKSYbsa4/5+595IgJRzfpikT7q9tWr92wwGliJG1Vmd0rHqCgHHVejZSeRh1edp3ofN3gGCss5gZexHB2TX6Bui7UMoTvjC+Rjn165O+cnZvW2Pmx/BZMljc7ytTKrbKA5mJ9KO/1LWWo0i5kuzDXz9WfnaagE4GSGkYMSk7qW5jzWnzlRmnbOASfte1VTafuCSbnCK18B5uOm43YrM70c8F35qgnvuDsrOsSOjFHqds7c3QpLtFcq3c0bjNMurabKQI3LyVmtkT+mi7jwlQw1rEUW3JqffMGmklEt0PgqMcVcM9IZZgUN8eDyhBtNI2BXD9hwgSWzIVuxyKraUbb3WS28aTXjf1I8nEkmxyKWCR2HLh+YmBYC0h7atHyViVFwsJ+TBteXnrOu1pH7G1XLvpkikw4tT5nxdmjClanYxOp6I6HAi4GQNP5VfZ4spxLhVqEQgN6mvVor0YSjqeF2IDhm/VRPR9zMKKGU8ogFnEFjeN+JdcD/sk/klLkeLyAzDR8+VqNqzEzCB6l+clcRqktfg3/TpcfkSHE3m2xHfOra1XIWSM9YzfFh9IEezmwtKg/iZGUhULzzGHJ3DXozSgVHPJbv5PNgvXkVi+he9DJUezlsigXez5Xjr//TFc00XXGsyVzaoqf9KW2w2ZjbEKb6EbA8Ie/7tECt3GVrI2kdqujruaeRVlkvGAW8lcnOjmQlkcAGWA7cIw4wmjYPD1rv36iKsNrJ5hyooNMet5XSpDZWHA3vgO6IYkiYwkiPfCxQMwzylnEVrS+Eg92Zzf4HivxqBGS6x8u36YscWTje6ZE8ISQFntVF8O54pJI1QdfCIN9FaYPR2OhTJxn/n+QJMDXxRh7WVwYQDH+gMa1TrrTArn35H9YREgy/SF6DWMwwkEaq7vFECCqjCOwQk7N0GZUYTQgRqCej5LtiRZv3hSGZbgBX9LZkfdbAh+LpOJ21YJKpy97QIfFGuepgYa408olCFRyycyWbnQMcfj5ikIlGefJruoXITMyE2vQe9S/elwKXZTUM9P2ccvFIHLjIpb7esxtLGbGJudKjgv3jFlC8Fs5uqSHu4/DrQx0LJIAIf18YxIFbPqe5g96mU8/IZWqJcQnWFqKSEpgYF9IlXY4ez8JDatnY6ZvLGYN42o4k0of7gyfSWgq2amDFWDeW9wSZGzJAb49tvLwSLmEixZCt4zlhi/O5FgkKf7U8MMj5/4BTKIoAfNEkImFPjC5EuJHXtOJ5P0nueYStqztcZ5z6YXzO8rxbVBj7slRxPeyDpgkt0TgfrIqcIK6USmAdU9K4uuAn6e1VME/cj+zB5lD8Cq19kioVTNQKB63fJaTi+e+RBzbLuFhN8pZWeksLrChP4jGfx2jW1n07JNVaFAGv1nUP3CyLCYPsq4Nvhi3Z/vw3n4mgPRtUzcPB02/EhHH3wyt9g5Pk5SinL7FGPw7wA+Awgb0YJz5p93F2INNb021zP7wvBSBpRBaqXMhwTUGfZQgGlFh15nEDKIch2eUm6tbTGAB7VBjS17w7TPJTKQrNoQJw+3zvx5HkGphjp6809WwwyMY9ZzFXVvZUL3YzfKN6YqKO/RwhxwHED0+wlqD5hUexNPKeasg94ysmvm7He6xsqomi/wBJHHtEJuWcRnyv3ggzdt9SmjyxtHvPHaHkNmQP69FdVFpSK4u8sHKc8I9i1Tz/zDc4PN0JQOQGmNSqSpCi1Z8IK7qDS6yQNhqRpiBaVBi28cim4Wmgm8sRVOqWCP0f119sp2MMknzJY7mEeJLWxOYv4L/GRIvQPc+d1i1TjVnwmFLaY4sXpqiBnp1vzHawbiCi7GlewENuXoExLOqYVrov5BXZUCu3ZGefqDFju5CsiTUVA8jjMDnV8SpkSQJAkXaRSGNlfgCeuG/I9ETnKNjUfl7LolEqv4dG8t1fMIW7VX6LiYhaCz7UmRppoc73TkdeRsc=
Variant 1
DifficultyLevel
687
Question
Which one of the following triangles has an area of 20 cm2 ?
(Triangles are not drawn to scale)
Worked Solution
|
|
Area |
= 21×b × h |
|
= 21×5×8 |
|
= 20 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which one of the following triangles has an area of 20 cm$^2$ ?
(Triangles are not drawn to scale)
|
workedSolution | {{{correctAnswer}}}
|||
|-|-|
|Area|= $\dfrac{1}{2} \times \large b$ × $\large h$|
||= $\dfrac{1}{2} \times 5 \times 8$|
||= 20 cm$^2$|
|
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-G4-CA19_v1d.svg 220 indent vpad |
Answers
U2FsdGVkX19myXkV8MM6AxpMTDfhNuzQ4/J3/mxS+ISOZOxvnZAGZatrEzt+PHwQBfpOzgF4BItCS/XWkK0qe7aF6VrVmyZyPmC56HOSni1uy5OF+t9S5FImUQ3GqlddUhcB/ED8opAX7qugPaXNJVud1PuRzlNduh70xX0slE5Cg1Jp5VvMqMzIghD2950ReqAti1DLwnnXx0Ys87s3xwwX/xdJDrDvYIgbDzXxhPIQLru5ouZ3oJYLIKFY59apMH8xfPHEaZ3F/4bjBJnr4oYS41RVavSSMlhZZmvf5LLy8L21pgddW2tEjdUc7fqODCp1LaJi1iZ3Er0+CMBrZnyNg1JbAuX/6NDnwy1vLCim9qKTGmxTXho95uhMLD6ILAMwPhXLUoeQrH0lEtJ2ZrW6FmyiGPBe6UcnSIs3iNj7ysrgzlDLJjcupkqQbWiJIO0wKy1LHzqjvUiJAfqpMoqfUGFsWpDxJTYxFG7I3ctjJYnXV/AUfWF2g81SbSCTcJsm26OMDRfRzJ0oMoP8aT48q0tU/pdOFB/gbjdYGbN6IhH9AgxDIUsZe4kGGqSlUTelgVk60zN54syaHOjYF/1JL8GPNkIsepThndFA8w8rtnQuNIuJWpK5Ki1DHbvarReWMHklFRVsSSVBCPLfIhjBQWM6UD33n8GuEGTrYN37JUY6PfAD1SDVpAtgmqH5d9aWOJVd3dEfYaBAT0VPvYiPN/M6fEB3pRm0aP+X4bUmYctrSkiVTC3UWO4TkHjYAz0u8epDRz8feKO76uT+gt7tj7whjS71PiUqppSnZUsNPpeC+Y9piWshE01wyFO2yqO8KvstlEz/JeWuxKF9t9xedGXJ76d3bETN/L5cx9oDIvzv+CvVUpryEM2lJQrKdu7zpQcvVkg24LKO28hVyCMAghl6Wii/5kZxoEBcqX3MgS8vzfeI6CID5zDXXYjVoOCTLifhZjxoCSxNtDDvGBKcD1WSLSC6LGCtGHfmV5HgmKmeuSoLYy9w7U7+0wws7ud3wZ72WGD0WwN7KgRpKJ1pH5i7EaHvw4vVA/olS/sOLe3LRFoDCW460XtfcUczFe2JceCoUCpmdfe68j6nkKkaQaAjEd+8evLZDxhr2RMJK2akojIZIWPd5n9zuVZCTmvmKzpK5Wki7GQI1GSAeF7oSIg/4HXzbuTgq4JMVm2neP2aYLSPL6vO22tBr8UZXNz+CEBbQLvlcMJ/fbCKL+WZnmdhRKVTTf8nEaGfPWzYYMbsjeRSY23P0ruRYkaD6eWIssHHVGEA5Y2/dekZe9iyzD+yXErwgg4rqTUiAQzxksvSOVLUFgvASM4YqCmsKJwckoeVKDXupz4C9AcrUoNOOK39q46HwgWWOhz0BQ68gjGqcA7j5v9iX50Wgt3X6pVGZ/aUQIFyGUCu9XNi/AfGYn6bTJdSc7YxY1mPRrhXTBUo6+5ULftuyOEFpvA91BUgOhR5vciqJGTgaA3kXvAoQqICfdg+16CygsXwRJ1IQ6PxbSPg+H1gl5TwjA8d9FU/oa4z4P1WUQLe4lqyKGxoVeA4GIRmLe1mbnMC/Fz+FEAPgZ8pal9IwGt9Qzck959wBuPiILFLc5Ane4gDTHRd1oNp/RT0lxA9tkLf4W/o+DybCG/vdfcxXSsMpj+pN8EjzuXr+xDJpF9RlTM75QbQcnMmhIpKWa3A1LbHbpF8f3IFlQmb5FC67inHam+jeKyAfKXoGgEIAYrqgdEM/Zqxg4ketJktVwA6vCL2+eG/4QxfFDlKAzuTn318oSsoFynTo2qriECIQ+d3gDYEhhlVXC4Eg7bl77wVdllElAqJHw9PJ6fbJLHrGBQXmFj90icFZtpWN5CvFSn337yKNXfdA3+FPPHFori7P1AUigaqL+xomxeJCzymuJpvr3scEBzNN1thGedUQssMtzDMmBoi1NKmBTxfPF9mYT6Dg4zjrQjUxijk/iC018nM1iIwidxXco5NKWdB22cLG085NQrWlSku32XY6kT/ecdUwiUQasCAYI2XEIYVHfxTKHTKPUjWF16cdGBQQSRsCr8QRVc8Xn6TEVWL8Srn94r75Xhd5z3saCFjK6XZMNMpGJFxXNLpF2/KENUdqPmd49p6ubZi7PNkE6GpyBKBRTJ4lIkTdWs0q97Hutg14mNSbkyyZdnSC7pUpWQnOiqwpp5gDyMQIhlBchPztiIJbQkd8bO11Ytfbv/TIUH6VLN94qME2WlPWpUnPYyrqr2uyUkl11oIgkaCWETCngoXrVkYLNy+HF+ADs1zqLcBlyIpebPR0b3HpAyu1ALKzF1GWnUJrI8I4ymP21GrgK0Jyx63TxK4NPHP3rZwqKOcyEoC0X0WoFta5Aw/ZBo8W9dgX4DlRLAMl9joeOVlj9A280tpc5Ckq+nIZxjHXO6r7LXt3X4iD+7oIqNCLYV6LSpTXdSyFVQELoZ/IQ8gM5aMZ1e6lMCRR1RSkLQDsfK44BKx9cOSR6E/0cGnI/2bWAccL/oY3eAgJUGiSwuMmEZPqQhjK7X7O23bpmaTbg6FLoZ9V2X9AKze/aga8flnj64vspR8tDu5AWzdpirfo9PDq4iT2duVIugDGsFvmu+GGOC5SFSkIyYWfvJvAO3bWhzpCXtL2bHWHtVr0ET3eVVEiLlhCfjqRD93a4lCzQduK5NiEMB/RIZyEXkKtpWTsGwA45igxF74sU4kFR6Cy8lTbp7fOMTj0AjJBpqKvTdm06J8Zr/YKHbOnpzGtH9mIs1MzzaOL5Fdtrighm+FcTdmtR/2X3ml0D/fISn8EU/6qujkUYB/XPDM9OeIIrAmVUR9Bx/GFIpijwijd+xahou+I0IWJ91773k/IlBHjBf4/kiw2Ilv0hQu3JxiUk9heGQba8uNgfdh69WEtBmjqbgK+ol4uadE77kSg0SzR3FeoXKSALNyLrMcGPP5KGaWieZzDClGcxZSIMZn/406cTObnx8o1LIr9o/BK1f1++i6CqvB+CGzxbYzuXZfUdAQl2hiDqkH2bT/H7Hdun3tmxkCPYSOsQ8HBEtpqZygtg02CDeOYgHa/WOqpNxyc4kRt5pQsZCbo88xq0Rck2Ti7DbvpmZ7IrK8dHmClD0Eurz8TEBf1WdszoH6ZxgeEgEtDlacvMAhCiJGnCBflDEgO0QrdLcS0kcbdd81ZADlHiy4x4i1wDuVmdVSOurjygdJUt7nTycgG/5Azaygs+WDGjtkaHcnv7EX97mnUzFavpMM2quhEkJ7zBY1eV8A6tzYK4hvHrF9ho8DH/ojAOasAQMwEAWK66GaKY/RwMknOfIyTtfpN6/E+P+VZVQKP3b0GHGqu1xfk65rZ2bANxRyUbtBs9a4b224IwAVEG4viaAwafljYJJj7RVhfhC/xRu3vlQuzlrcUoycTDSDnfb+iWvkpqr+KGqM0+cBafr7fJZ2P4Sw+ay05dmOq8Q7c7vbuPCQhquNJg/YFhpZ+vw6Hh1pXTWNkFw4oikOpgNqkvjp90RSivwYfZL+vkkogwn3Rv20zC66e7cJ+ybI/o8/4F4iXA26GJFHGU1jEuJ4iasnpXecxhZ43zjF+s7P45ZEc8f5H09bq5ebOpUQm1CdloyZdLm6YEjmhEgD5N8d2O3AOMxMJ9Imfp0c0fYoN1GKmdTrdMXumvM0ErV8Cq46hHUdPpLzcx8xhcpDMnaAURez//ucyfC+kPa15gHxQpNP6nF61TBNIcK0iM86ACOqLWmRWn0m9a8QLvZdeZNe1Vds1UfWzfW1u/45VtQwYVm1rO/VB3E3jQ3AXm30p05ESfl0oxkJ7OeMN0lB98YKB6UIvQfS0nF8U5qu7QQI+mNkFunSR8LXh5t/WnINBVDJ2wSfoGZpo+sVlZ38nEmRxD3gTBPSAPblrkKlk3BZXLf3BrV5aHT18ZjGl0lpNOScK0Qi32Oxluq8QTt3JnYzPFTXjgI3Vh8KQ5mByWz8AGr/Mz8ClydGVznj2xeNdcVc/kSnjzsPyPLmyZXZBbFaHvhroENas9X+3OSYmEzR38q+ntYIAsiWoK6Uiseaadn/drstvrhL9qFwQo6VUmU/haU+uqJmvY+85DdhAQx4Q5JkanGE0QLhfEIk5Fmb4XoKPIFvWjb3Zd+FQbEVgjRgZKIyEjSTOgNH4+dtAu6VqBbTOVqEaMFC8nw33+v2/yDnvTWDRy1U8T4IDD5KNQ+AeWIyT3w2SPeYkJh4/ph+/VRw5odB3Bv3PfLbLDauOALjtN6YxqP7laYZSR16hrUmOkeq2ND4eDSOxLFV9Ll4JaC+hvWEY9gmvTqrH+UK8IsV30bygZFItSFG1RYrPd+NFZm3hTwwc4E49SFwCe3RduHEYbwQsYIFjvIPSqcl+jW/ClZpBHnkRyQQ+9CO2OBimxzQJfpAuCHKqOSq2d0fqaBv4ZvSMOZ4d1nR2aADI1BuU+sjfdjRTGl4ZXX6V5XTcwuA9H3+9GZ7cUUBt3pVJzpHwj1Gy2cM3F1g32zaydWqv3kolnWlBds1LwIdIFKUcrF3oZSQ8Jvh/dOT9dol3lJELb6f54qeX40auMvOohIHxMR1A5xYGsolRIH/9YnRp042Cu6yiA9n+RQkynA00Qce9yRHGWHHsqL8EQmHL228BpqYjTDAMcTmHbXhtNXxefOsQb0fjt31E4kBwx+DYeMPwI8Tbe4YsqOG2gmXaGtBEbx1yVJURYI1ukRCmoBPM5qYd+F/g0LVfLlSes4lLiZheXiOrTz+p0FVuDJVJvb7igNk+bqW2ZHhx8pDpBb2BfSiUV21bEz5IZo9Qunf8Y390HVGCzPqrKas2QTPWAIKMbRyfCFnxqez6wmbSXRGV1YmNN5Yfmlk/p9FYptQsXMIbiRxJ7Xue6XQDnMG03zN/RMTVew4y4KeiXnuu21PvAg+EqzGkg1ULUrX4XiWbx6/BcTdN2Rl7h6u9EI97ZcBwRu7VXrJt53Eg3rfSHQSjyCCMXaVRa9m/3qa4U3uVG0aA+K9hkDCjBzDMzLGMZrBoSg8c7FRnKSDUmbr/Z2BA8aX5JZtLxgwV6zbvh0+3hpKSFx431dpFSYgtVyC2JFyKctKQHxGITeJvqmJTPzjnvga5tWrJ3Z83/SZhK+puKJJ4qwZw31H5ZfwdW/Lpv91kd4303HwtC0+SKZZQVvRvNg5ecODFd1jIU+u07bCXMUNWmtu/J6BJ7Ok/Vo045WvaMYsIAeukr/G2txYml2pZYOklWBwShgDIy8HcMhz5TSmobNy+aGZ6YeQMWCR06psYTjMMAUDUYZU/7sJWSsh+Uv2B+I5hZcGQGb6H+xLpkkdRu2QGKVbNUfsOpyID2dIKQiDH30L7Fw6teOlxBgUKq1NL6d7d0cmFZX5tAK/Xs9l/x5ryzThSVWwfzVXcxPbTn/hhby5X5IiuUof/Z5x/Y/A0nOZoNEJZPuzHH/oE0iXzRxGvB6WazCPPFJXirxOaI2sfBlznbf1tAJ57Plf0ijTHAkvKmqOv3bDaOUobaDz3JIbwoYA1XYIZ3d7MLH8jVZvWpuqULLN1QerVLEqJyLc7wPHe5uTikQgy+3OF4kT/oi+I8nlI01fFVlv3L9VDTs6dzfzadq8VEKzHmSXKZ4XPSxWx3mj3o+xgoJzznFq9RNOt8mhV0iTj/rjZl3iXu8lJX2yHzrYV7Scw22ma2gpDYF/uDr/tb0jF+87cmLvwAKwldnLOm6JDUWPYEZ4GOn+rHPEc0eWUUrgeQ8iONvYTVaOXduISFuDuNzR29Ag+Q56xRFufcTDrwvOgFpfViZy+BA+fnZCtB4KLeOzRt/oLlsFyfQijUQviC7fk1F/FFtpCft/qiPQUxkX1+ffWX150Gma3XiR1UmqYDCTRdJB2CepYcX3l5pAcJeQf8BATCeIJaNwSzKEAzsITwFPl3J4raQYPA8XazrkfoJVmlDVkYa1BAZsnuL71Zssh20BzczPJWk0OiR1smfpSRLKR/iwBwWGXSzX3RGCEYmUSdiY9zObOdNc3y/megmKIATd6+rthkkSUnaxMzHZAsFvZTpSzEp5H1sTpcrrHE8+6lwfq5x40o1oQM66sRMb0tKwAsRay4ht7jQ9Pde9LqSswo3mPJ6YrwSpfjsWgjLJm5J/8N7bMUnQQQji1QKGR0U8r6wUdmdfoNvSeC7PuRZl/9Pm66cvel9XQQkAPJfEpjQh1ECY7MicDFjTujN+eovw+sjrK5LtoW7UZITmXcWV62q7FBM6g6BEp1U8Y4th6smdMpa1a3OMQcBScLMWiee2heMUFp+IKRThC6QDkkBlGLgP4okPWSXafzabgV3ktj2ShvrFdSfea1rd4ru+Io9hHOoSokfBFH9BL5ceRjJN+RHQNbHLFhUXum/aMAdvVeKTlonq6FLqH+fyWxiiBuN3vKR6SIN0SddWLsU0+/2Thda6eeIPZtcmFI3rm4g0kg0y0xMHFgaYoOUiiJH1eVSwKZNOIs3k22Dow/T62Z9Yo9yUYqiLRAI/ufQS6VwvxUF8hIuVnek0nD4MPRGFJDkIszLRIUB264N6F1sse6wgXygClw9KIYpWVgE8GCgDpioBPg0uxsRvL/3kt/w7WsPEUHoRt/NYPA5pMvpcK6gryk2mkJeiY1SOVeVj/gRIZlttuVgQiDZHXBhuLBiqAI1Q291GYZtpwHVe0jSJx6hCM9yOpy9iAdCsvsFhVBX8nremmlaYe1wkqR/oOwNvrihSQtLbRCfGMNhsV7VblzmIWgKChdhyju8oU6K8mxQ3f0H4HKA0x6mNuyd7CP1hZvWWGlM3ay4trqUuUQ9LCAjEBpD3GlXJMtj5hHZDGhNu4bnX03ST8JT4p+8Yv3t7PImwkLiLQJ2K5ygkyQJFF3fU1PiwQUJJQZ8ukk0ls8C0p1CMuZJGeDS3ZAi7VOfBDJxeaFEMW80SjEKiyMdUCyJEqI1Rh5iEYKsgZoViEyoGTQRZ8qoMOTrDmMrpPUnvXep2hdBGkRSpgc9Yh91gJ+3qZBwaeIQKfcrd0bYZD1uA0PVnDgZIg/SCaR0g6ZFkwg1U033Wa2gKyge5ADSSnBU1rFcK73fHhTamezhzEsikyfhPPjReD5JVP3Q9DYyFpizqDDjs0GXMjFRvZ31t2R06n/2G/vF+fZd2ypbqH1a1qu/Yjht9s0ePJc6bzNi6o7y5npu90aOoL/rADeByOSLY+ymrsngX/U3QAtgTSCfirM4hZcY7boOMIMGeU2+/SQIo94uOX7AyUXufKDnoYXObwC32Cwx2rWp9EcU9jtwxBKHnf90ejV6T+oGBC6h1AbsfbEBSpLbt7L6X5CVJLk0og/UD/Af70pMSJNlkmbPWwuR8zn4HJ4PgS9fj2YNgsXNK6I/BoIBJ5EBYGInZxHO6miyerjDVlseTdy04oz7fnHpHD+B3UbF4QUWgemOZ1FXUNaL3OKF9kE3yRA/r6BBXUiNX+ARFbGs+OCW8fDYcOhe2HEaqEdV55QGwQb76j5obwb7vfycDDWWFvMiIWBwjiqhway/HkI5G1nGDxkkt9VyC14TZ792bvCxWOCSLbD4NIUZfbUWjKQk5jtORY8IDCJsdYnAHDH8vmdVYW9+vcKrHYvwK6vxguGUZ1DSed27BXs65DdnopU18256DVD3sE3necw2d2e8l4WfS1Ss6PRB1OnWHzkkWCLm9Cj9nHDuBzadfFRs7ATNHpRjAAiruHnxcLhzGEZFuKj29VvOwQuCuR53cBoDZTi9evUnFDKlW104q9oYnbiHEosPuZy6FFC7ufmvB/hv3euTZsGLcwClG1eQdiUNLbgsL9SxPF8/3Tq583kCduCtNGFbLCeBQoXLsVD3csQhDhfywfsabMcGK1N51SG/XspRhJNxfxlJLN1CsCFAcQVoFUBeIBC/PyTtsLbG7Q8i3xF8EZP28mB7TlMlcvwFPBIgqzK6SLTDeLddVX5Az5zaRPMqjHaJPdyTKcyVV8m1QuUf3h6ULnqo8OAU8P/nPaj7O3WtnSvWqaQh6/GmRvKiBuetJL3VXetYnVdMy0NEPIr5i5eteX8ybai/MHGtwPQ55L+XdP6ULd+/ozelNs9k8qF+lfIXkdFrkusjijHvDQY7AXv0V5JAySw31Z+ERh20fw8+Mbz8ZWXu6JA00iopdXAJRjTNfsSRNUXHH2hqV9LbpTOZPMM/8EOfj94ilDpxOBRryT+7QLr9FKwIB7yMEt4S9ybpz+V4pTL+mK20KuF+hyNwS8e6ZxntbFvcEBgPqINIqlNtvrz0EXZof0ReX5HgdypUpbVby72Dx1XMc78OyLforIZXIFoYpKy8YjsXow2KzChG4LpZAESKND5fDO2T3C9+dsHE/XU9J/8mX27yQ1oqvuI/LhTprptwrUywzvBHPYMat1NmPnr07tofVoFxaHsYPGWf4YjfM2rEYMkm2QiuQGYxa1+5SRvaIiXYZjRNc3A/8oqQsGy0c+kx/dte6C9yEEJNONnlnRZi1B+Q9zB8Rpr45lIPA8YbgmNj5sbSvOxJmcQsShO3TqPH0ciDi4lltLDRN9l5V3an8O6raJZMA4NN6iunSiTAhHm9g9l93O16HANgftDUJfmPw/CklRlDKS6eDzpKXBG2wdxoZPeDZbxbKNxpJ0oMnS0i0xHMfGuSSj/6oCmLut6sFbVM8QcsOXhuNKxuNYCyMB3xMANZ4+GARvTEqLit5vre7Xq4aY17lDR+mK6joYlTcZweGrPI/6WdIBKjd5VY4qX+GrwkB8/slQzzSyKbJ4KSc2bIV4J32WSavLmsiKgsJSd8ScElzyqaq5raje1R++NxGek0q0LEU9ruVjkG7sUIJmgxW476OYIEaIyAViQsDn/WgrIgnI8RucprCvit7W40xTc899Ht4QmJMVDtHKd13wUwjsNY/vH4zzZ5H+5hWxNwoOfTfcFkELISBwEQyZNBRr9/yVz9T459mrWpGJM0vGmIW3uwFuk/68d6G/iBLHKCVhGHZAhj9eOTQICXDXfb4Z9pY1cxxlIP81lLQEuMlN9AtLJWlGOP+S5ozVfvZWhOpgvpzoM04tTIcDAu80fXwf73WS/w39uHgL3f0tzTuIG22iDo1EFbYbuNlgghX7uON+PWEvSqXtrORQXSpD96gaNBnfj0p3rVSzMW2VJ6WK9AlTSsP5mAfDSsHt7z4raNobTeJ9S9gqzM4yx3sbdLKwjb+JcKamva40AiO1cEFhdqTr2T8RP7zb6fktwnm00YpP9+N/k8LPikSz2gsXd+wKaCxJRZPzfbMheZGD01hNEIcGkqG6WGOAyjdPx9/YSyMqXUuYBBo0nvUUc16PrbwawqwXu8sTS7vbd3BwW5aA5uZnBgOvx8sXmURvPeLrJtNJkH5t893cs3wiZMOoVXfRciR/7WVLEDEUmil8LD7O113X3qLp6sqZ8PjhuG5wV37ssqAs8epacYKzBtE75jwl4pvMyY8Q+R6mnRG4hgSXBUvmWJNCYUhzdv2jx8MCwrNCVhAAvqUoG6tVD3N08471xbnQxFi/RE0uShqnfnHyg7GDni7Eh3UCWow8OGj9KnPo+S1PL4/RKgqpzZnCc0WAMifVVL97Eo8HrG+y/W1LRYJ9npdLYEWYa3NcJys34GEk4Fsr7JyVMP5SpvwbVSSSUwmzZ1YCkoXd+uxZ8G7Zz6XecFCGp8mXAPIOCPf+tKYNzPtUJMJdJpCmc/SDhxXDCOgOrA6q5jNVRzY7qajjri8syVjGtBTVdtYR4+tmuqli6fsr4q8KIBvUgkcwXRSb14gtMqpY2sZM8uTF6Fw0AfGlKygW6CNDBSOY6WKK2FcAMjkmZoVtkKjVQbaD3SS81QcRCdKTKHVouiKB5dI3xYdYjkS2E/xQR3Gd1IqkKe/oh/1mlW6Y5zMlbZ8uN8MktxUbIWXhVgEm9moA1rTPKKFzuU8y/X3KTCYIo13NXe5QP0UCbyAqfzpXUOMupaZGPLL6l9y5fAfD5qbATcnmn/6p3qc6A78NUFdl5uv0lZi4w36iiF17RXhXBVUWfJz6JLZFbvhc2S+CYF41u1fOXc0AEm2/2rf4rj8MXnN2gh8CoZHm7p9TRivQDki32JFnqbGfOvXxJtAVDs4IIff3uoKb5H90HvHNxiBRXtI+YgVYWyawJc+vOBgbXVz6j7Ud5WUDLjREActCoq/R7gqf/evdk3y7Mvv8a/nVdngFLRzvmIovL7fBQLvg2tNf+lSDFhDUd458t2u/wNJy6NoAjnG40tha424buIAG9G+NCyTIEJdfR+65dUlkUz+znsMw8Pjh2luZTrjSokzRald3VNIR4FC5kOa4/MsU/+G2NGKVdi3Abx20+OmGyKtSSLdzgvJq5B2uI+QEA7gQ6Q3Nmi1i44cV/6aDTKV1oSbxLjwTK3kB7AeAFxuUhLrTC+Noud136H/wPh5e5lnRGfz2ZgBoSHJ76suT35vEnr11g2cLImcZDv+CED2emE=
Variant 2
DifficultyLevel
689
Question
Which one of the following triangles has an area of 10 cm2 ?
(Triangles are not drawn to scale)
Worked Solution
|
|
Area |
= 21×b × h |
|
= 21×5×4 |
|
= 10 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which one of the following triangles has an area of 10 cm$^2$ ?
(Triangles are not drawn to scale)
|
workedSolution | {{{correctAnswer}}}
|||
|-|-|
|Area|= $\dfrac{1}{2} \times \large b$ × $\large h$|
||= $\dfrac{1}{2} \times 5 \times 4$|
||= 10 cm$^2$|
|
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-G4-CA19_v1a.svg 220 indent vpad |
Answers
U2FsdGVkX18ltRS+R3BksZ5qjq5I1OQvjNA0+MuLJgdQgQCFuEQ4wNAFJ4VSDx1gxT9i/h3tlaSsdebuVmbCEMbsB1vd8L3VKKEAeffvtL61Aq9wRTStZr7ofKBi2oHWOH1+mhKAN6odd/OlbEGPpP2wvDGEw6vV1IltU7cJPLv1TBv3QIH1wEba4ULXw3AjJILWum1Bvfk36hllvGNqmSJhSuchA9THuVduDAYxJKtTXjoKrYz5F3hnrD0Qr4IVadKs7vX2pgiCMd1L+fVHUlKE+GasKkKKWcAHtY/gbXhMfYG/ZbisIT3hho19VYZmRQ6OsaIvOwI3FtqBuTLd/a2EvO7vHXsOlgrG2ZnG4ECbiPFD/244BakssBQlCV/53UtRkuM1NGUZgGS3qwK57WzbQEw9r+PW77536xpGx8k4f6Ue5QcHHOZGhFVTxS24He8pIzDrB1MRegir+IWhFr+nnsK3d7KOyN9ZhsLoi/iAeHeUfBIIzbHagvF8y97J0LP3mGqWHV5SNEKlBE+UenKfEg4/qp0DqHLRgQoEY/mlSkxD3bjHk+xRiO4pP+4yVUhRy4rlWM7bCeiEyNP4I4o1Ian2Cz8Aiqoxj9aRiaTP9dP9V+a37IS7rL3mR6sa8EuZoNtPHvQVMjVQtpu9jN7JO3R18nRk3FUvClimiXeYjJmp1Rats0nwSiXE/OdlVX5dhJsjWzVc5vIRGhfnJoxEuoXGJQ0Xi+eMqDqivJnPHg3v1y/JWPxMwuxZQrorLdoDNG7LgbroufvQLU7U7gGfq3dbXbuN1a5GNTTanJnt/lpzHF7/9DRav5ZuQpSzzJQTo1gUgiG3auKwcL8HWrSiVMXsmInNW+Yl/o+9snee3prBvu5upot08lRe8fFp5BQvNkXT9No8OTdgojRznvIhHjQUZ7GN3xWhLcCoNTWdljLcMANPSSof0GjY9UN/ARCgoSYF5GhYtdaTBPOs6DyoFJ1LWY11csT3QzzFT9lC8vMwfsxD3jowKvsv8/XAVzeZuPS5eODs5iuBgPgb9NV1ZKtzYQLSexm1yj3FyvKSD6hOWn+nahuHWk6rc8sPqDbdHMk9bZqbRXqdXxSYmQJk8kVNIeVrLCbGTJmKBzW7pZMMm86yf/jWAxL4g2fbVh2ezUOUqLWxcsBSj2fJ6UGxUaxW59nrODicwe2FXKQlQAu8RcfDulk5QL+tUO4RkUaODkXZBNYWecJw7dPtQxOsZoiS+9TSldqdigiKodPPJoIsJIiP24jRAHjSpxInPe/8gDmIjSqbT1GOaxvpjMuEJi39zOa9jcy4E3Ni7577rILDKl26PmdH9QfplaBPEbrRY0ZPrxf4/d5kY65l51hiiE/gGMrxPWYuKjqreBBsaYD06mMTaLuefEtq7JZ+CYf93PzEPIWIhTjhFDASAh+ePbWOW4g3uVtn9L30tinQMF4vqKNTXVJVM/9qe25cAsnx9XBtAE3sszehY1OJqMZWu5pFx1Zde9cLYOOZFbLLM9bm/v7avxtep8hhv1r8FOhtD/Pp7a5WtqkfHBMyO1J6/DNm2yBE4d2Usk57070h90HujdsgIRDWmIl80tlYCgVIp80iAqNT1GezFoPbwEMHdRGTL159lAjJ/TxnbDzq3uTxjeudUsFSnuk/IWMIUcYfZUQ2j8/XmxnEjr7OGY3nSFgQTHPSpPrg+19I7e4LrkHf+pow0aElFBP+sxtFw6byH6tppONJkuqaBKkHY7bcvk6pasAu9zhcj1Ycn5c73OT2Pf5ltXN4CjGl5MCXf0MfkzG8bN23v2AkWdviHzRCHcXrVNxbYeKCMymVf1lX65yjaHhQsFV4F93tdcnOeq9OoK2rcYVnfigfrfoUrycJaTMRaP8uQDOimnK9toC4xPIdko0TZjaEyExVjrFNogyQD6zNiEfcbtDKj94xsk2aJD/SXzDXlgZ+JO1sMIkegJtljiFlrS3Dx94ydEw7pLkRuhoyldxwPA92o2238dBcyi67Xd75BeNie11ELqk7/sqESEnZnDWyu9l+SjsEzPVg8ChTN0ePqd0Vw4g7ZLVU3OwlDCxZDNgJxnl+fDOO3ObCAKGbN6NGHd0x0B1KRHhopOYnYa7OMJzseZ0uTCRav1Y/pf5j/xvI9FUOH3hqVcxDCPcPax53TL0JluiP/0snS0XY4Av2VwxP7mZjnmyG8pClvtIF15TTMR9a7QjPjtCYjAkrz0gI8pEITGNmuP1y56MuZIMVGo0tUYaD7fa0/qwB3gPNUzIaaxR3q2xDGzyWhtO4j6c87cf0xbVFuWaLPIoVRXO1AuRJfOnNupQ7VKqEh/FxWtXgucbSpF7thodnRZa05DYMU4pfNP+Eev417LCNSVzkAsEteVLxDv9KlO2m9Xhet2D2jdmPDhxUr15RlI2TVDp9Pqr9hfdADPjdNDrj8Qtwa/Yr5Wx+Twdfv0WuFN/9GubnIkRm0fKlEo1Vx6eKLunRaUldSkq3hNhZ/3mOyOzampZIuowbCfvsGXAjVoUMzp9UrTCYJ9Xxh9hPRgamaQpdCZOe/hg99i53sQM7cgJ1dCpTSrdnV2kyVW2x4HZ6b78B/iyIu2rV0lNWOo+HeLwNXsyUWTQbcrrxbfHUf8bPxz4rOwtF38EIf0Kh0JZeWVN+ab/i2AWmi2N1ug6M8r7KRiTqYMuPr/41tl1ew6QUtT87f4AKlJxzDEh21Byg94yGfVikLWd42hcMLlNHlNqvsNHPJUVV/roVQihzOrUeBP8MYjhJF7oyFeDET5UKg74rPfKsgaFr1mV6Bg/TD3wevRn2QAsW8LQevvDhxXfR83QU7ww+gmHSbjq4wTof86aGw/7fmXeUqapDyb2VmhUtUxgkFaY4G5DeCncy8GSzZqAIzBJFs+sApLmmoBMC9kqieStk8tDL+U32j0QgWO/jhuBPZDE9ikdJWIMXKZroTFZ/+40WIVdUZLjhrkrs+DtManx15/v95MWZVUyGwXKaL3kF6zapsI4+qVKDeyjgbleo5i/6PYvHrx0o/7YrOZDryNFg+rCrq+mID/5nlftAXnqNiuXdoPl5LFNYYoelCq16Td1jcf+DgYD6rIDluv9Q+8CCVNZUUzhRwZyvKQr4xfssNHBDRjMoAPEoM7DRkLg3VZl30gWDl6o6l2B6u9XxTvTCxp6mlB7isrfbWeaxNEa4G372CXHeBO2wNFQvgryukvVXE1jEra5Gn3hQ0MKsmUYLjIGTnH8ypJkFcHOUiWYc9ZyPPpvaCHAbj5CDwh/c2APEtVgTmEY6a4q92L6bZj1KBazwBXi9e/9jYkX/AoByOA35noqjzS4ge5yjgtvbqH34Le7bsTjUqV7b834WiyEpu4o5zW/RUBrTDptPu+9vYQtB2gdJRta81gvERvGvoX+HG19vwd4TXF2Yu0izj9h3saDo8p72rEEe/jTUDtG2YGu3XcxZG6BBjXIMrtbFa/+5MXW719/0Fi/+udSmSWlrisEan4EflVmWIio97ztk1834f/M9UmVHudJZQOydRFtmulKjnTPXCOfmn7pqMX3Ms8ffpPuDJRmu0Fx/r7KJ9bKw983Jyry47ZMAG9cJakhOwBYon0it/I95dLIp5J+pjMSDRbNuG0QFqZBjT1hkmQqB4l1jDZ6DLiCBzzlMWFb1HDzCN368hzO3iCR7qRvdzm/HlZw5E2OGvCxlcigWmq3yo0ajWmigwOF0Wb3bsMb6oZfRFL91ZHJlv2MZgKfnaXaJj7RJ1S+cicAzWxDzM2oJFktB7bIlU5VmuruJTJ1SKydk1RDONtoc+d4CgYO2dxhjNZMLErugseSF+JHxRAIEiSE0jf40a4+CL5jrXQYNZCqeD7Cw2t6TWuEwc0eWjX3LT0eQsbq4/k6tkYrhrqv6ZzOW7fFIsz/c8KD4x1IgSDQvaN56ieikpO0ACAvYklz3pLX8sxpkTizcj1giyYRoQvt5+EadPuUApb8KtDE1Ou2KIqMPVP4JhrW/EsTk0f2qqBA8Nq7ZmhsSLGYYeWR26I0tnCkwOa3eOZa0+JVG+NkkNEjXGQXWqLlc0ryjQ0/cLwdVo7UJboEZh1FmCwocES1PduoP/Upth/KlprrO4OOXl44QxS2zSrn7oGykAwK18LgrXnWHvajPx33xfJQ4sJwlXVTmKlOP4HDK9088GEbC2x1937pVDIL4LXctDyMhTgP4g4r/4NjmrF88tZa97hcCoqq9jLImvENyXP+xT1VcAjahRSP8azQZDA+elAg25DJPRZrWi/g5V46zfEjpfQ4YNoSNqlGGMK0RuuBPFzYJiMCbwEtKxPcNUGaeJDeWKe+blHqgp7KnfpThYSL6FCCv2b71g5i+sLSbQaheIxGK+zrIvStk3YKmPjF0odbX6sM8B8HaJr4H2H+Uk1zlRSMg5AGBluz4dHmeoOKrrEawn4diLEsJAMdlXsjcJWtlieWkT8TVK05rYV6fq5zGhc6ePhHD4YJMy4BQha/zMisYNnpbdzsogM6AvLDkoBiUVo5P7bKiGnU4OXsU6u1iKoP6O2NaxB6wsnKQsTku8sPd1rsmz1VWqcu7s41uA015QfECnGNFuISeYm83O5BPEbrj3Z3p1vE9cSszGTbc97HQCfdr5Zu6vMZTnzygdb89cs5OwJGzP1lYpRy9Jc/9H8/vw/fEiemThGfhrbJ+WH5YrTAH3jFOcoWsi1ePILMp3DKjskgWrxYABSG3AJBub8D3zDROp3Sm1lqgmmENnioyyhOuIgj6nmSISg2rZtBPjUpvIrMoqlb4AfiI+mMGs3kCWZRp0tK4NvJvQ++rQS2p54UtSGQLfhZxmdFEhjwtVJeX+tVMX101838VfmxcbRb1vVX9WttF5d2ieTxrudb80XTS832qhLSNz8y6TW+0rzznoz5lHNkPCqG9RsoHKg5SOBWgU9VfydNOEpsqXme7f/kfdd4iopGeieEvbSEF/faPUHn6LQ1eHO/w0deLYCo81GnV1wWK2a9MMhxpnifv48NI0Kc2jsPbXNflo+W1oQsWyHnXfunK+bUsr0I3G8itUZPwkkyanOS8ReiZU8ST4LRXPq8uVZI9hiLwK4VxH7SJaO/mbJcHdlrQMkIdvupYRSFAzH4geApGKAx95kg0EF2quwTN7/Zdo9/+8IfytBHKzwGhN8NeNYPYG8kn0nmIF0RsV6oP7HauMJ5QyOSsvAoPPjhHMyUFugsZspYP+F2aXDsIrZjojADQyhFbiYlu0LK5sGbOsoSBcs6iNbFuYjAGNL1nHxtEIvsqLiVNMNgcgXL1GfxNvpxR91wB2J+rhJVcZPj0a/3Gu9Z0OpZ0BI2dBbrnF1y/w7UYJwZ9xNSrcE6wzIa07kBKHRM2b/4GMW9YTKZAryst34mI7im8SGPmfN0nnM6N7QK8LRvDO+76va0XCJKUoSo4N9ULkgC4cKgHhyZCXYuk0ztMdx5f6eW9Pju/sBOv4cdjhnBj6M7KLVxfb2s1YPM+sA/dvWB7IqKWPCYbRbjFVE8pvh11UtZR0dWaK/jLXrj3v8oCqwTdQ7ZAXRLYS04qeAMlNW9Pjip2fzTGTgQI4WrKtEW7Tt84Nx1rasb9KqAVE642PAbQWi4uMdEso6R4V57mr0YzFGxDJZZ2Is1wGp5AbY5Pjps9UIsEid7jDYDHfoQCBHd7rD72HobxZDNj1LyxufXpb1Fi88FgKzrLGaIgnH8BqQfhN4nzb+y3YevnY5NhNhizvJIgyfGFoZpe5rNwdt3L5ZGOj+STUxarkhNQfJyf7HfapaIrp5ZhwFSIdlz6X7waa6OBscRLFRSlKwz/RiFc5sdZvNqUfl4mUQS/LYxVlPHphCJFyaF7+bWHLAXXDZ9hMfl4v6fEjC2vTbY8d2YHgTdCupVD3pAwcxSRvgWp/7Ow8cnS2XTUsZpTpXcPBesYREfdavmqyDCM9Y7UPpPAA00wO82DeXyAkQl2rqGK0idozmYB23vMajqWUSq1xiAmeqQGK0BIixRMRt2Se7qdmYSKbC7wib8jyUw7kECTihirrXAEFgUElOoQmceRvElKTVfpeYNiNGs7jmJIdinpMOIqPNrEcPwlA35E89DmVMSk8ydcUbN2yEMFNB7OE8DSnXVBG7A5VLtXU3jExRFFpcdRWnXaoHhQDN43YKvFNq4a0XoQFWhxk6YTCr1Aeh4nvNIEgcmoTLWx8do44RkOWZLmclgh49IxI4H0SIRul0emtmZ4Qp0uNWZ+bya8DefKJVAGnCa1vW56DCXA+QOvtKN+BILAKc2ybAymK/EqAbqPlS8dvpda91r6QS/MCYU2dEKJRQuVmVIcLm6lPoa3sC/ktNbUPOe4aT7L5OZBkKH0cwf0bAyoPBh+hCiaenmBIDsbpIYx4mj/k2xIKdi0TXczjcc4UjLMm+Fea7Akah0w7wb7AW37S823j/jE3zBny6k4LMJG+pdt8XYcUa6s0TbTSuf88hbWLMASqSUEZ34ecEhmN/XOQI9tzRhlmGmbXT5inqHohUAZ2Eh6gPGg+Eekn3rhQef7Qm7c/OK7zgszMuXhlaoU2GDdqMnpeKKu+VzwaNzWqf+s+DKYi96wBLldvqwa91u9ScIF4BhAGFCj/soL0nA0b8ATQnz7PBrmzuf7NPJfPSW+j0bBFpcGh5wCeFqfPuXUqJV+21nnFpaEBJmiauIdKGcJXNAcChwcvhztMwvkaBXBXnyoQcqrFKHtp5xvJlVCHtB4kDBMKQ4UAYMRe+qYk6CUtknJQZ7JDagkNhAG/YJba48fbgJzqgJzPBKNah6XlrmTx2EtBhtCzrOyK5xry44BVhhkHX83tW/Tg6U+If2MgXeuUuJ1tQTzVFKygNJaKc0MfoKSut/YNxkSYVLsNTCRVfvxxCYcHiUNHaQaOTZKxbmbfdeOKi6eePPYgX80TApJse5UpSIC9s5xSBsYJPI0enWvktaj8q3gUftBYmUEGBWvLnYEKSH7KNpR8Ex+oJOU5fywBHQbkjS3SzrEK2mZLnlu5zm9J/QQlf4g6yyEBMyrh67pi0keoPrtlS3Z44I50xrdAyiVrJ4+D8cQOEzOajXHxOQxTEd1WR01JI75bwVsgne0s6RSJ9ziNZC/Pc5anRkRnVlopbIy9KXr2Ha9Dp5JnCuVj1BF++h6OL5GOv0KVR68ZDgWNAWd69LvoUukzcYxTMJrjDlhS8jdxguQsG2T68GtAT4Xqh1saPJar6mvHopeLShdNU+8+Pxxx7FHJqL7qJbsu2paFW7P2Uy9xI4/JyUXRQWYv4p8HTfYvK0svfxhnWjHKiFZLuwjrMI3eydRsdBUVTSgL+ArXn2zBnIeZ6d0EEGiSRi3O9ircoMC1WCwHCKEwQY+TUMc4Hvei0gtXztvZcu1+WcEU7Uy0+adlQID3+QQ1Qb7cqGIwHKffyGMgI4ApmkAdjmhyYvUXXTq+9CruWdo/SWBtx8b84OzAgbz3AmLkgMg7nphsPSAd27wmaFBWcJdaxfr9qbHMhMw41qKEErcNBosGQYFT8R6rvGmx+xQk1A+0ZXGt7MItlGo+2xoYNwWFkFxAXMa5WOZzE7hffMoCmTC++GW6l8nZfjbKjY/eQ2BK7+PEed80+1QPNfYRULPVzeNGz73YaycmiXCpSdWfCJ9UC0N5W4wAn7h6wJalLpHDj10oDzcqREv7pnj/dprWxmr4MhkKf4DKBZvYmY9JrR/q5nNDt8B49cCbTe4j/oD71rkMycoOInLcwlErpppBc6CGOlMmF2O3dIvJEPCd1YpgvSJNPc30SonaIS1TtbKpWa/JokRuAG0k4HCoNuRuUNpb6VDy0yeM+OJHduVMcVEUyeLhcgLW2JY7qQLuASkGZk7RUzd3oK0He/q0lbP9HBN9dwgIgN3qJyJmc5+PKtw1a3o/1r289QgRFwM9HSDUZUYGHoU+xakJyUimMxLSgTspHMq6iyi/rkXLCg6Q0AHBI4wh5xCjyCXYSOH7XjeGNgnAtQJdcauJochFi2QynDELyFjXiE14AEEvP3PV6htJaVGGHvz2Rq1Hhjq6k/1X7/t/NiY5ePQ/L1LqLm9rys9bm6EzLVSK61MpL2TIAKSknzCaph30lMEVLzINrrXux5U7TRtIttKFWT/NnEcv1x6Sj6fKugm+baGDLX7tGYmWkBvf1ofCD5Mg8tvioXjJCVwxIclEzfxI1oMEtyRUmzNwX6K+BuedLCPI23FnuBuL56uGwde5P42Z7cOmAlW7J+Dk3yO+UCZBgPmz6uWSuXU7e1P+86jVXQCRTWJw4y8OfXBrYnkKC89izaVPGPZRfclEhzJyZv8T6Jm/UGIvLZZ0jYzBKY2PPVuWfE67FAReYB2B0VIGaC/BUUTT2O7tKIQNj1cwC9Q16t2QZB6z0Zs+uC61VZlQb40VCL055Jeu8Xwv/piSGoEsxTgTkntXBqwtH73s9g2uyvneThHgmtAxsde4Oq2yZGiq+dewId6hWB+56qrQfvppHx5oRzcEcTwfIu1/A1IUoj+UziqmjBrkY+2D5+7fhWsIqPzt39+j4snx3i1+6DZSBIGuVJGpxrXEmkufdWeaDMdLPMn2HyPbEwXxAMGLA2GFD3bT8RUBvs63iI83+MpahVdQOi4PEFTldQfJ7fzNBE7FGMMXLcy148+JgRY4kePN2WEH0IfF3EN5IVZybXiuenaL0f/DKFGhpdPnAb2hG/2hezfkRl1LJ7KKKh346XMxTmuyiYmdcYR8YJ/8dbszxgozxTEj1Q2sSFQqBYzwssqZ93SPQIdZvgQ30VNEvn5dXNX2O/dZQgifCzdKU5Ul+vM4uatAN1Z7s0XSGC6A6d/9BEyFh7nb8amXOvxe/pCbrjzU8vXL+nVxjZnN9WtmrQEQ3sJgBfZCGJP/k+H4OdgQiyhS9fO+E/gA58lOgXOKMx/xLIUDAsOI2kcDvQkE0JCl7p1e09lTCSJZZp5tqkq0VG34jdCnklu8BsmpTp71Bb8u8xltdbfHMoDVqYplllfhejDOtxcJR3MFPWRTqY8SUttHJDOlk4L3q4opHeqUAYfMg9SuCy8SVq53a55HwqMBZFJXxx02fMrhnRxuJ4PC9lW6AbmBD/pq1DoFRSryqu15LsfJ0LkXVA7E1YIE/HIruLTsOSrUaqMetomFl8G7S95gAQtUbL9/Icp1VZcpPl4XnvfwntM7WRbOl3EL9BIYoDw3hZPx5pxCy27/g8Ul2KfCBJiGhUqiXMHYfWnMBZAMYmPe9O0N9pOKRfIkQpX3TmO0oomRjvPzg6kq48IG3jOqRbe106JLo9aLMuGsj4PAqK9OxvHNYulDT8EQg2wvSPVslPPJvWN+8ph/UFOhDzzi+AV1XTCmTtmU1vVPo0FOkLY1bWjHQUuYv6vdsMkYXOL+idmVYns+f7iTBDp6atA9F/f4UChG5WNOACbV6Nyn6EFP6k/0aUeXxQE/wVL8+ByD7who5KC9h4i6fGomI5rNG6lv77vl4C4/a9GLnEX7tOF40WDixjJq6K/0UBK0TK5j5bucOhMcScTwN6NcoLXX2sXK9i6aeMHkAgVilhtGFLxR5kCQj6EJMHiNgCU8ip/pZfqwvQNpu2sjL2m9Yzh/KoLzyKOzn4pjOXo8eu2aITXmOiZMjQ+6MivsyilHSzbjQFdl95bcxYqyKa+tAyvhkUVhuGCe6aA040aoiynHGMsoQ6Xo1Eu57JB/6Fy8KAkVLTBWHaPtN+pqG5geqNfinP4P0SdsvzqkrUjcl5ISkUo8GE3OXjgxbFzx3Owc4qLZMEvAMvnUHUl2EDhV9xb4CkDJx5d0Pu/lDdEMs+5OGnuqdBdTstcP/LsN/J+jiSHsgTdY6BmHTp8yegZPfTyYv2m4aNWpfiWAZQrd/PHRmGDNC/tky042LoQ/A6Hi9GlLbTJbJcEMQmDtgp8z1yMsSIsufO+C5yQ9uTTRxmcqhlQXH8E5p742HS4fwFmVHEvi1OXmzIQIg6bMla9Nay4S9gWTX7rW9lcRY+5gzCF7qNK4E4sWpBLMknem7VVY9cdNGw7Hu5YqV3i6TC1vSRLRAOZYhrBrlP9IkN+ILtrcL/xXxzvw9BiYcMi8UlqT/iXxD1yTMjGBfkQERdqO3SuNCNmLFr2iEMjs/t3DHR7KM3X2NE5FmEJ2ij1zUMg1lDWLfCkF/GhTkLcoSh2+5UVVHfGnBvesiczcvwDc8HQs/siCylsVtJ5b703X0cjQh09qTxQVyC5rE9YowysdPzFf18NJoh84zepU4jy1NlmCJqYL1XEUayzjOSlWws9PtTdPUALlVbfY4p7tBQoFJvOakJJ2teby5WETpefYDnSsWZKGqlCQFPfH9/FvNmAmjADJmLBT23EfTQ3rWRriLjgWQ0sw5fCTYW2GMUx9HfIMmzvFtzqhFLsvwh7l04ObmCq+zvQYBHOlb5ONZiBiGOPP5ZX8MaqNlWr0t/+CzaJq7d801jl+bc=
Variant 3
DifficultyLevel
691
Question
Which one of the following triangles has an area of 15 cm2 ?
(Triangles are not drawn to scale)
Worked Solution
|
|
Area |
= 21×b × h |
|
= 21×5×6 |
|
= 15 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which one of the following triangles has an area of 15 cm$^2$ ?
(Triangles are not drawn to scale)
|
workedSolution | {{{correctAnswer}}}
|||
|-|-|
|Area|= $\dfrac{1}{2} \times \large b$ × $\large h$|
||= $\dfrac{1}{2} \times 5 \times 6$|
||= 15 cm$^2$|
|
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-G4-CA19_v3c.svg 100 indent vpad |
Answers
U2FsdGVkX18KRYrD1EreSvvpyy6AA1fVLE5Cj6tag1CvgcAeK1H/F389xX4kQKmkxTgtunkvZJELMq/1kRYyrPVqOh+L2DQa5Qjg3E02zfjiLCMwdfXQsGDv8Is+zKFbEpCFibEp4J5FCaT+hDa7SJRmXFDdD0C7zq+AzuWJUsLfkS+WxX2NmqubNpEgfti3PICa08q4wtvScJDDhZwJhWhsYddtIO1X3dEi4sW+WkWd/UGaN7bFNov0jxYRUZeNCsN6rb5GEF96kojB/hclnXsjNs/5N3MmGe30JAX3olU7GZnOSC13U/qHcM+EtgErO5xj+LC02EsnmIXIiKjYEGYg3GsI1Ag7YlNHGYkGXGsq/JE0gt3TuOONyIFY2nkkH5wXDnRPX0al8uWfXMryTW8wWz5GhaMxyZHbOUZ//KDFxi3SUp7VqJXTCNnbglyj0QGBAZ0RADJ7ILR38Pl0p2Q5NHn7YyPrZHWZJomTvVauQMF8CkJF3SV9Ce9Z4XzzdGTlaNjV/Y9e8HKlIRuu47JSVbNz9hSaj44wE/eG4ZWstMma74P3Ri/qaZxwGKtQe+xk3jBig/Shf2x+0wVGofxkeYejv79LtNzjOYeqBpOcIzjJPKw9PmoBbht7H68yiETeduPx1uTD1r+MNLAQSitbcR3GxYg5yQUPTXT+IQO1oNVRcjZdM2RzRRwt4gzcdMmDnLSviWJLNe3gXfIHWx7M8CIKIJFLVApT909Zx0S87VTJ+Ps6gQnmAH16p26Y0sGr0x1NfNOn8DQLXM/lVJZ43LP1p2ec+vM9v2X3uCSR9zBGshy3ZNCS3IiEkYP/Ni2n9atEOLCUqpsZLpTNq3M02jFuiDFDgwGzqNNT9FLgyOXmF3CM+zNnrBVyq4vN2kep6SYhYZBHf3sj1uJ3kQyOm7e3d+edBDm0fxBHR1n7uVX3LgsaV/2wbRt3+eArKPaWLOEFVQEFW3K5xfBr2qVx90Bg8lV8FZjUTCBV0B4kp7B01JrHY0gfAFiJYT7OZKhC6/cDxYt0+0/sQJzfAoHohfNiQSnD5bJH6poi4NDZVtMwU8W4NPDRPx//YByxQJgCuhj0TSkJZM+bk8uwtZYFNZ5vAuIYhfRf9udl4HMfpbM5NUUOTi5RTpeEF8guwRBT8ND10khWAnPH/FV4VM/Npu7kJt0gxDT2bqcQaSfPdwlkB0+bMAkpicFwEbizcK3uPVK35HAmTX0Xyjxj/cRp/YmUoQquwWRcn5XM832gX4n7503LnHJJF27Mhrba+lo+L6mRE9SebaEPj+Bi+sSeq7qRdnIgOxPsRP2BZ+uyL/Kab1eodxJ9yxirRmqf6fr400P1jtO3hfIhMOM3enIpG75iykYVBZQCHo5certLPi/Y1cKhCmFnAYUF0G9RF9dYNAh2gh/Tle2NRZIR4fWrUUPwhYdxJvTN8agijcM78lzDbeRX7I7sCB8wVOLL1R6F6Hzj4B8ObGW4SVD0IvTmmbpr3Stt/fOq9nUkOp0Gabh4w/JdBo3iMDmV1gWTd5Vgw0Ejb4k7UXNZ4IQ21AwdxT8MoASC3s0qETbRhc4WUQg3873SQhvn6HJUYegGWNpZRpJpNYs32Sy7XqZX9u7AoCnLr3NVRfvh8BNMrpQD2xE7GxTteHQz3VHnKmHcSMO/TT9MvIAh2OSIz3bnqIT3wYQEwp6nPG83CMdfyqZ7mgOImifxg4CLvc3VHuIAUl5uA51b5iXIGKzaVcuHUgwBKwFOD3o6P89/FpmM5ujPtljBnKwdy9aXz5mbgRzff3/rjz3lCQ6WztNLBHvSJfFWQ0uD0m8dVK9GWlrL7UYWytqNqyMWqE+gWJITUNll++lvybYgO/+Y80GPF7rjGJklvcWQUp7FgYNNX4ooxUep8alAzN+YaEEVa8ofUcZLd62cNHKQ4/o+uLztA4fgD4DWruN9OPrsA3TVwwJFSQ0VNvny/IPHRXK+CIdqGihn8MFWmw/3POpTulUy0YFnmwgjrQTY0BluCrT2vh9n8UCC2bX5+IZ5Z1PfCVd6ZGwRmodBxRu41BqYYE7HXshlrw+SgAamm72J2i3JZYTj66xFbIqd9OgF7Fhfz7WCaX3lpVnt1NFV5A0GD0/rX0vsTqddHOqKTHPwDSVuJuaIIu/eFKPuRt/NOBq+qpYCFKbUkEgiO+gGmfklX+FWMEhSurOHMYPANIEeisJd5wC1Czlc/2k6DfuX0VaVbSsCkX0a2zGVvATn8Ro17zpvTkTdbU3LtOuYuYWIVmWxjVDAsClBDiJj/eIxPlk/Wdc1N1ojktU2/ruf/yx85Hftt5AnFfdJMVnIoXijO74MzBiZ42taMAJGqL23qqpTmdVjtucTHpWqb/EYepN++SFkrca+C7GUBAba0n0j3CDo0mp4M7M9X4AHImzk3gMyp+7/QvdzT0DKJAS8xRmdDg8drzohKvP4lbnp8c1H4AP/KjYdTQ8+Ty15nBnY0gBy969vjvapDkgPG53FdQzlcWCCsv8e9B+xidt4Hyj4DkW4WRTE6KwNhfZ9yvoE71X9IROSUpZrJ6iKw9ctR3xF0c6xweU1+Xq1FRFq0QAm9JMUs1oKhZyuHGf29CAU2go10B+jJnt1OXrESCqQCVDQqnE8fNaAOcPlPDrRin7rb/WgBDWhWlp3E8Ywttoms7Rk7IWkG1/BPUhF0Pw0x+sqnjAbOUoB3majo1u3ol+5c0sNBbebNm5C8kXPl3DweFK2nPDTKkXN7koPw1rKfHU88NTIOCZfe34Gc7LWdkMrzuBAIT0+8lqoklHaHt2cLRYs2nlnAHr9I9Ibo2VYlQXDtyWhJRePVlYhuQ2n4TEJfNy2Lfou48XbNGt6aY4XnohTxr+IEmOzTi2Oqy8e3ZcALaL7C/zWXcx6QSPB5PeFBl0Hi0OcoEBtTUTpn5F0SW299dN7+dSfHr0/BRdS3DKmIs3t+DUkbMcy4nCFdy7m1xWNy2n9G13ZOoA5NRjf9xy0JoYcz4pYao3QF91MqPtXzhR1UFkvCfNKGZfjA4CRMSOtoeF3e/NkLn2y3b5SJYpde0TH7KEkP3wln3RPHWWYAxnydyRUi84pFpaX1aLrYXNGJhWCo0lFpATQrqzafeRtB/vQ10zOHma1wapV4vNkD8KDLVT/C/phWOSbVt3sEGezo+l1wiE67xG9HR43uuAZWQXf6dRGPLS0Zhi1fEi/1j/5df6HBQ6pyntqO8vCShyZ0ocNTnfxX1N0aPd/YCYi3/h9vsJDojdi7op5qst8ZOy0a15o7RTJySHJvMof32oWYrvhX+AV5r0zsxn+DmiAQfCeJHKclLlwV62h8eXwL0JSk5aKKHTh9yaK0i4bK1zaY7r7KpJ7ELW8aKlEFWtjOjEemUi7ZcU+N4iNWV9g2yMj9DyPgfbM1uUlMfewlwD3AagNpIjSqKlbe/gH2Vj3pVf5UlKc6x4wO+ool5+Yq6SrTOgEDGGtXwyF85dNIC9q02btceMJhi1UApGdQLSR36CV8HUcggpDW7Jm5lH9ToVvWDCP2stLpA7PKa2LUZO9+J0mEFaoclywegbS8CyZKEUWaIPh6K5p8MHfxR5D1wAE7Zta3w6aiKo4PzIHPXYvBECqq43+/zaC4Ua3a5S3NQDlE+FCpHWxwlEmJraNnC0eat5qoBxa+zxNw5O0Ibf7dmVc6retfqW/u//T7HLqDzioFyKHnvyhXG/KMps/PKd3XX3B65/ZWI3R3LkjtzrI8A48m1j/ssTj8sDtVkdXmH05teFD3R93otSOcalOoFT6MDwr/SEqIfdq6DxgKb48arCzZwyJTsNaNR+NPeG9BNUgsnJgvC6Jw0StO+PZmExGcTeIIIOt4r7v5kSS336hOs+pb2r9jF4GOyJtNGOICAZoD5XgWhjuhALiTVPV8w0i9/i+mTpnXEoLtpu4o+mOdJJEAPtrAjNkJdE60HJVoCBoRpEnsPaI7OVKHceCmT4RK5liI66JcVy9RgBGXxy2iiu4ym+7o8Q9r4D6POvXeIKEEp2wUkNQQKWI0YTaWl+PHXE4MGmHRkkLAcFH1Yt+pWJy+malnzjJ2BD/ala02ja7Q8j9eWCbhRFP1nyM9zkS6GgsVBkceSn8sjRN2LmfznovuVNChmTrAHYp7CQoikj95KszKpOsMj3EnaFqwhA5SGgMCkcDj6QM/bTJ/XoUjRcEwT1IC93uhCtAVzkx1W08/HOoPf9DhWN04+F9P4LYLAX+3jzG39WcMXFhtR4yCtMcBmz2du5saNdq9YCQHHJw8XhkEB7nRVsw5pJQFtxz2ligjQtaUPPiUg3nIlrECKJh4teKZUlv6h2Cjsd1HL38SEiGz7BbGIibCYE2BSJWvTsBIwZbyPkQxe8IL1voEsR2OhkRXNJyhQdS1tqg7wT4nXYvcRtOUoIwcSB26+UHjlwZnbpljzNLMTMFH5i9MG0C/UeyUZDo9+d/j0i05rbIya+mkxwSX82JZlSgaYovgo0LKw2Ez8cJwzUumf6L1QCOASG7S6M5eEmjJnTtTHYnJd3M91E4qXUos3ydTAMzN172VtiycPvUMkD61tLtbPfhOMIdUPcPm/RwWh2ypZzu3nhpnKCGgpI6SVAY8fwIzMlxirR4V+qGuFEV4p4VWDuBy2boZjMG5xcWPK3Dl0tHSBN22c0hUrdMGexa4Bi/oBXwNdxf8cjmBTInEW0PBxBu2LI4Uol3oxmE9wiTc2lFBEIx9FXgaslFvyrNoXDw3WOqr79rOW0wdaV1KsMKbq70+KKWkdwS6FS/6Dd53IfBuHedCGJI2X8JinkqG6G2mSiZ9vdRwdVDcKEuD75fkMh0k32n37zIhdHrkSZkEy0+4+eEgsr+KXyPMV5VrMO72+uFzdk7QZgkKWjELyeXBlgesuCltFDJ8gA3VcbvlhXt8tSwI0oyAisjUWrP82ZCZhYs6j2beRiXBqiDI1W10VKKegML4jYnY7SI9wnnU+4SHe4owMIj9U2DBvr60nS/CLgP/xWQRxPLFStlZQ61swFXQNMSc+92k8uxAWTAV7hb7eFAbfMbGMnd22Adm3urf5qVyjLGNPh7Z5s8rojUcDofSMgznKpsdPQ7u9bK8odZTOE9gC2+ADnZUJnn6E8I9LJPRVRlPQU+q8GiVSK899Yz04WH2A91FqZcFFEy6zNxCsKt0SKLrxpKpYFnLo5Bnw9i+gLilYoaRprhwxpSbFrNILwMnioQGv15FBcSZMOux+dURd+W4vQLZsCltAN6LdyI31Y8uR8FS+6yE4UtPiAD1RtxUHyA2+R1yNzrCw9GMh/L3hn8xprCcLK3Nw1xdQEc7m/IdDChQT5CRjvmJ08efDiJ3moEjr0VuFKmmtVW+EBGQDuWCpPoh8ifrrCgpCBuDTsKdXj1HA0FZS5sQY/LGvZERSNvEHnjtwQHmK10wsGF/r0tLiq/6RU266NKlnsMbO5sd/o6ffHVEnkarI/naMGikVsJFcyjHvAedb8+2Jc1kyzVlztlsHf9DFXBRoAMz6GUlZufoGUKE9XO+zT74YFQ8UAQha4i6hENHjP0hw+BPzpvn6tE7EzDr/mVJUXbM3nb6JFyzCehzWUrvrzfvBm/SOyZNCGmtDS1S8HPy9IqIO4CDB/PSuKp/rjopOkgD28BId1DcQM+wsc4IxnjMQrKkDMMpMGlvvTdmHfTmqHs7pWxcX+VVoqIEqWClnXPXgRHcGGLlSK3o0pOug9ZIuDjEk8ut1v9kyn1FOlPD/j2CxH14KaNtU5ffnpkjpjeU730chCJZP54LcxObDkfXM0S8X/wmwN33FS9Ozw077ff6qtLrIiQmqZMLfg7RFy4UutlKOKYArWn1ZxfrB3wU9bsAs19oTq1u+rZJdfK0MwTe3Ko7BACDSnaJKsbBKLP/LUeiBP8g4nZA0sg2eUwmbB7b7yXdlWyUiuulDgkCibQ27NMe78AJDRRViXkIg2vbBgEu+foivhUjDnf+kTQCmhiSYKArhkK8OyShDC8ePKOhINkoF9F4e+mf4dKBV4SSv0t+/eLfA7LsL4LMKh60CFz/XFFoOVNtPBlDx53/EqNSzIC8xY8HrOMkDfsnavJew0dfSuIWwkaki3/ye+2V1jKfjX5MGt1Gr8ndGg46tURIMqx+jqkdgeaWNVktlqCmXPW1hGA5s8dndEMZb1HyqKL9zbrjzoyyhEV6IPoPk7vRYhDEFcSeWZfuOYXLdz6K/WqxeB2qPU6J+PiiUNjRMgNMPCVTu+ybU5Tm6HtH1pSToWAl6rS0hZqtLohUqqvhvvSrzo0Zfb0pd2Uvq47G3Mau2R6WQJxRNIxrXCyLUvKNimNSu3aoFFcduOyZY3kNRHElx9ibv9fhkqyjQalpr99mSqIxD9vodtZJTNOSAydpsARLgp5GSM9tU4B8VjEr5nvraCwuCJNqChjlCYPjfQ/FC/THSGqaCFlKAIemWrG/SAqVqSohfgmdUdfk6GrMTqHjuJgeOcdaUkvYesq9AqzJGoWDGnq0p9WyYSdZyttqW/MvVfMxzfKbZxdoQoGdfXgqFF9qx3vdiIXMT4xKfVYGXJL68nQcB3oWDPTzfubeWiMVPNHngD/Ile8Sey2v/LBbdvuot3TK1F3qi2VycrFOuFSExwXnHJIjeCswvPRbhRGi2x6Fzq/QIJOqvAqcMEADnvNLyAmK2XA9WD46ZRQPuNfDdLtS3lcrrL8zTdROdkoh/ilynDAoaBOG2cgt19rFQFAX47aaSNsagca2DpUZDIqbjPSZ4+Ml0i/1RsRjeDXI9RqYzJ02ClcTmSP4Yh4elmQHyYuZ/0ooiJuRfg1GsDcUmQpChmQP91ncuV4ro+6PJOsRuFeyoKUS542vLH8YWpjEEKk642jRH2NApqfPg+AH7wUJB1YwUKajE1pNE4YqBk+1qyJ5yXDW02+ceFocDDvQTKSzioZMaFpI0oSUOnM/IbKTIq30yqvoUPWbnXpF3elI9QTGzip46dgsohHQGUAoVvkOusHdlZg2o2SAnJkZrp+PF/jVUfq/9YjYlhA92P4QmXD3AEl9kgu/z5Ob//Z64xAQg3KLF0TYvsCtVZLi2JWPrDhH9lwLOVS8aPKo06rzDzIp9cDCPZtfmEK0aRnZ9b+FlIzzupj2/unvpiMKbsf/OD5gGpCLNEFsIlVqNxHmuvmnOEt/ZCkc5AOCKf7y2RV1wdFnrQTJFd665or4vSF2d1CTUiPa0jmT2f1rrNBD8aOkuj4S41pvAcpm22mxxUJdEEO9K3+Cct5j8WCajGa9FTo4bUFk8DsktFtLzXxLWJioGVJqoDl3tcsRV2D/11fMVH5XZF894wTA9+avIehQXr4Hh8YKKhXGnA72XAoQ4IDx7Aqm3IbEPQY0rVMFesysCcG+QdLGvOXvRlX8QZqSRTzc09BqAzIZAf8ZFDYt+VOC/zCqEK2ybwDnMN0jpduGPAKaNAwEyrd36azpR2fm+vihllS3djrAmTfwZuE08Z9an4R5jHsepHrqKmPsQsm84hyaqhzbhBrWsbJB5LJuVG8JwMy9tfgdPn+sjqgNIzvxbPK7lwdI1u6MwspAJTqXoPtV7LMookwI/l/kzY932LsUd9y9aKxA3dQf0BeB2MiGAmx98jNZm/U2YspphTvVD156VWDB9hIBLkntL0TaLVgwjfnHlYeX0uUy1NoZbaLUVbUb40QscJ1ndB+z6U7LSgR3vcQX+aPRK5SpaYGB2LCAX0mgjfi/XY1vIl87E6op8hmSd0A3omgpJsYnzNGCMWC7zNk6dEVejRDUUTSWEPRhBWShHFEBz+Vhc32Qg+ULZL9CE12N9ABy6+30X7RzFH/l8o3nMSFQYarwMPwypXngHlihUb3D0zm3/9N8ltTC8Wqazr7MhrUgPVHHzyWO9fCWV8JKNBNAkf167LnFjqDV1VHGz8SvLGZZwfTqqt2G9pY0L8/zIlO/mhD+xgizQx9nFeh47pcDTKlUBz2x431rCMAU5mWcJAIPda73g8DLAGeCXDuooSFbPjPDy2DbniKUGEUNCVNhqDjpfMcsVDCffXx8vz/TaD4VCTDXOgnmMXqYWixABwCYd3hSzZkCLh6OQtOd1ac00hf3iod+Ee6S7cYfo/r4delIIVlcrKUqb9TiqSDaYRFh8v3DVCnOqSWCGSZZO/Aey0ta+54oydbnr+kfJX1wuCnweszidO+XSbqwIuWwZRCHDJodzpFidgpUbTTNVXNwiL0kxNJrYf3EX3K9scwlrIuPWUpnP5xst4DjWrEObhbR27e9QtklgZ1iNm2Y/oZ9Gu3gWOXEY+c4hCTMuDSOlfGO7adFoZErCb0qkTdcOEo407CKYTi79pxEjfD82yVk4gXW7dbW3uOj8vDNyVyR5dyhrNKTG10qMzJJqPYgLiqZ8gINuE1lEkTEtS/qdadI6fnsMI8ePT4xgvNSjH7wlWTRXeiddqM2VNAdPmxXMsAMcQStiTPbWfuMAwLTz5ot2Bw7jfQOS4ciE9tcb8apPRfgfsL5Q9lon70A2kcR58YlE2JUMnPHtQJYZqefVYS8HMBZayt0pXsmhVNXTqh+X9ASk0xzksioBubsmbJQaLIyUKs3WlXTTpK797jCOcS5rKwVfh/NJsQ5oNMrhQ3JGxEoffeBHInqui6IAWKeo3fTKDIFJzpwFfd+HAc0QBH2/rUdNKl4BAIzKN8QNospKUCDQ/x70vT7T/xqrbg6V1l0lVKvQKrD84pYp+DRFStzHgbpQ6mrMswIIJNvlKgwpgumxuNKw5QpLHk8oJTuMIMsqsTPsN7UumWFlRT0aks9gpwCw8AjMVikO9vHp2FEjnfuV7Kihge5YURY9nZvlWzK95I2c+wf99mx8rmptJTw/aj3SviHTRvFkgncClmRUsiM4p0j8jGnvWXsBx+MB6qUIcEJhXxHSYU4qiZOsCJWzwjo+wIh8Ea/c9XqoJc4dzkNKbk5E3lVqMrew/Ei8lPy+h8m4/BZv+frrGBv2n7FBYJ9ke7itdP0aDlMrxVQNVYw4+jnDvtY+wHskC6jXCqeS7+1pwWXKpkD2qJQA+YoH/muWzEBvddd6R3Ns7aFQMWmE/MV1kkcvDOzlFWKCrPz58JFbPu+Od748ynS8mNVNoM2ptEJIzW2munPZ8mKa38vawvIRJOTE94zJhBcl7+YkoXWdr+LqSBtcDs4C/+H27eQjofoXJOoyqyozo485puTbwJla0Lc16N2iwgeHKhoulYFJbd+kpOW8lQsgdpLmJCKhMsaYOjTQhMy1ewg5HbWEtRGhdYQF5Fsvnz+775mKiucRJiJ+mG6dIz2YnqrzntsnMqt7GbjLIYjVoY2p7RgK2Al1/ZWHD7KgvmpWF0cMmmV9G/4dfcm3ZK71Flu5yBRBEl4uGdy2ZqVGopGfWSF9ZBsUkbt2hHKvbcAkSwJnZEMueaglL6PCRuPwW0z0hhv95+ARtQfGgpwh1O1p/zwkSUHiCufPhl0fH0ZikbyHAnBaILX2LKEBc5yg4TQ1YsAD6Ul0akfqa6i0/ylZKaoBkdhxch+ti5w7CX9hfei/NudECdb7ZqR/aUiOThws8iN2aKOtKrrMDKcYGJ0L1LS6DQXx1a+B7vBddxD5M1SIPiq/03VOOG7CIa4CYpfpniqBv9Yk6JCmFMISOiNN9e8A+R/2XWPLVDkbvc6m/YGIX1aT3HUKRUaM8Ehv6wqKkWQMSdoQcoF1u5XerJ/gX/9CmW40vn+rCZUGKCOa66sdTtj1qa+bKUF428pEU3fR8z55HKhbejAYOC6yYqINeFiOcJYcM9Gxe9YFleycjuQFFVbGkq+p1QR30osFyT8Em1kWfuQY356boFIWRZesdhqInLqGMzskoVg2aOn8k1S+sjK+2NJLVYwf3lYvebWJolvGpzS/ECLhRtrsPwHjK8BzHRJLfduElgonVKcGh+2kCPAyhFpnpCrfnZZq5+y7RAAghhrEswOMSH+mpNI/koT9OSAaj/tLvEb7t62tufUzBsHfn8p8do98gW+S4glT7TEFZSb5bXVdTTgCGeFetaObuWXABO+VDZHl/VJUKMXcgR/BQJxrV9fMCBq54A1df1kBwgwgrSIHBCCvJ44G9JeOfKZiKOLa5M7G1NGm5b1nJJj2WDsNDJ6njXcwtv9+nU1maQ478HgjuEpZl3WZbdwt/IPRJ1+C4jp/nRWf/5z7UONd09ViUdO2tz5sYKDitKbhYyIZLUtd+V2DI9sW387HtnK6pIlccaxhcC+CHRLHK9g2rzT57Wpm87YLPGSF5cqbHYLrVWsoJbThmb89xjF45kHCESDTLz7EpxMVtpo2GU25pgJNffm+SYCS84YwjGX5FxBblj75NlC08oEfzwB3E7R6BHqtwNijpRyTTs1AsC1+W+sOtJh15d4dlCbMEiaAJ/EFzEUwSyxOfX8VlI0+0tDp12TWuG2zTrUUKuERJNlioj1fM/w+hi4JwriSIaPBisbDcyN1RfKgz2gtyPa6l5Y9oV3yVJYyQckQ==
Variant 4
DifficultyLevel
693
Question
Which one of the following triangles has an area of 12 cm2 ?
(Triangles are not drawn to scale)
Worked Solution
|
|
Area |
= 21×b × h |
|
= 21×12×2 |
|
= 12 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which one of the following triangles has an area of 12 cm$^2$ ?
(Triangles are not drawn to scale)
|
workedSolution | {{{correctAnswer}}}
|||
|-|-|
|Area|= $\dfrac{1}{2} \times \large b$ × $\large h$|
||= $\dfrac{1}{2} \times 12 \times 2$|
||= 12 cm$^2$|
|
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-G4-CA19_v4a.svg 240 indent vpad |
Answers
U2FsdGVkX18Qt5h7st+NSy5SAD9uslJdZTZrCNVoR62C8UB25T26fdr4q+gOf9hd201scBl93R20zAtp+SgDYB+zccctCJyhP9ImAZM0X+fWhZ8TAMxTqrhY5UNuaMWwWjCgwiHFLknqV1ezLmAIaFuxAdULdCjSYei0i6EGzE+hz1Ks8rrgbhNHXVkFiEJJ6pSZ95BVwxehqoKrTmyWt/VK2SlkwJdzjQyI4KWJe2pDF9NIX7b4sP8+dk/EtMsFcSVQmQZS2f74hs5JYy7TKhBYHBTNQleJ9DA9UQ+4KIRwUruKBhXXc/4zEODXwAM2MTEDlN1mvHUA4PfC9ibz2PkNvtl9QvzSJ3CRS8Q0MuOYf9LVqR2rxOjlTHF5jtfTTzVq/arsLW9h8r4/VyV9Epx5fmDWF9ipi60KS7Pc1Di+8rzrRTIRaxuggI7u55X6X5uMEmqL8BKzRmc41uulLwd8eAQuSywZiNkrEBm27DqcKUF93VTCqwDneytIm8Cuv4gekLjf7CzQysBqr+A8mmMz0ZD0vm3vB63K5uHQYAnvLh+E/eZZMgo9JfOgOSj2QYWh61OMuJrbK4w6wu94R7DRn8f30HmXYzV+KcYTyZ96OBDo/wLjAfsQke7pF17TUMYe3WKT9LwXavU8+Q2yZ9+tMrGYDey4OUEg7w4hiXD9FeXT0iJXd+7GCWPhVH45xSK2PfH+NNFhWX3bB+UiEbR+59pz/FGG5Jw2CF8UT9SWvZ2npSetilJgc7OrOWLa+vfugq/p5j3LQj6zDHYp+UosrLX1JWUrZYr3pl5jeqzCJrP9EHGtB5SfGbVFeOYHqfga1hUkPc+87ys6EWKs6rOhDSmJAv94TpQEg+yFQDQODpvU0FNcar/bbvAlOyytz5HE0wbxYkaPLbez1/UjdSt+k1845migwT7XLmITu2UyikIwamNtvrHMArLqGd9/6gI9Vc1jv4tf68uFifbCtiUMbpots9oK8bWozdplv2+++zNVHutTFynPT0t/le072doL4hZMzRJHKHvV+nv5hVB+0vNTC8rQqSXWlfg+pPETOLq2RrcDPUFzNwyWRq9wG7TeAv6+I+uZG91sJYE3Elkvfd15H5em1QXQHvev8sjyjH3YNgUmWNS3bvtkyvuyFHgPx4j1BS3Rs71/MDIIjT0/L/FEp+WRaYEIAtowcC9Mi9TkqnOtkw2N2/+Zym7wqZa9C0eRCHQtcS5dV9hh3CJqkOfzD3Fg4TazAgrcyAdF8hMhJJHtwQhIVCwXFAWX9+lgvemIMO28/5dGNLeKP1dKQyTUPcUZq2cbrGlRx+SKtDd1RS63rs6+x5f6h3Hyg9KrGDpBHubVi92MhCFPT0bTQWdfi1COkKsXQfR6SZkh+wSxD2f92c4EM+lx9G4n/92wB7CR/cs7gEaFQR93l6RZxFmz3QbPDxtDDThAnp/eza+7ayYbhHDyFSyL3IbnFNTD4r3hH0fmQCuTINv/MWrIp5FelCt1Ud2a3Li7h6/hlSiOuZXgcE8AN+HS9hu0M6lLLMFTSB1Xp/O55bJrHoSpbWxBt5d7bFWsmRsoLWVruieV8i4+k+DB9LG3A9Ov1YCxZLwJvtJwL+nu/QL5WkkGAPwZG8/ULRTm3Jv1DLsu+WxoAGSTIF0art6SW+ZgOUAuhzJ1IxqRr1YqxKPzwbsKuLNUPm6fhIhR0kNsnQENmE9tyEpZyu3pGByw5BO+69SEznpS5kMNVNdyxguLgpclM6+MugO011xVuX28yrMMQkoCH7lZtuGnG36BKvTpA9jdySsITt8VIg1gHZ7+yvS3u+IPR5xKVjeNCTJ6P6wCbhprvOVfycUo5ZeSxssZhJnJYzTlw5lO6u0oCcoYFrV80LuTKt3tz/91rksPR/7nicyPvSb/F5LsBkrGzMoBgSYe1+2iUH9ikxVnWHokj0TW1LFtaNDDBOnn56GRDFgVgSW90JhNcHySbbM978n1D9u/zoHHQKnGztzJ8H+7sfUzzf99YU7/rHWotbrwYEX2+HBvyBuDT5aIlvkLj4v52wQoIhzNkwvJjeJctqrMTvvPNH6jUY7jVqSxLgHhtJ3hLik7d3WWk59Llko39KNgMOB+zRa4vyAzl2tk29IotIEtwSgdRTswPiwtW05leRDh+SORW5uMimPiypZq6cJqHmVVEaz+xWm5PcvQ6HdgHHk3hNVhwQ9LqyUzunHZsRDoW+YZ30wJjC1yLHc1RmuNQI6a9gh7DaF5oiQWrsf+z1vyFqe9xl7/UdRoJu08t+Ta3QBP4C+db0S4K0uh4j6Ks4pWf5YHdQkfSnVnzL+WmAnF3v0m8FTrXHHkffqBkrk5U7JdqqWolZQ09qwaG8pvoFcyCXcTTHMaWPjnfDRq1M8d3Vc5dcsHzOZoJgMFZu5DhP2Y2HRvbxxg256g6ClU1SxvRuguXrAYEJuUTtQBDA+oUiBM6WxPh4UWR5PxanbUmtB5AVB/zGC4bujKWpk2lOwNpCMLPeaSTT8tswxvNlG3eqI6CAU9cA9QfzhAyRgZnXgTWH559epeANNyTwsvsJgNXnUqv6MFvLscq6DjBmsddD105fvVct7m5SY6GmoPWK8tpmJec9tG02mnIt33ecH4KDxLyZJlrRU2Et/bXzDt9WXvXqAumlDQD3zBMapCuVd5EG0QcD2p34gM7gBbx41GNfC/ub7dP9W6y4e8edN2M26J1v90WAUNRmG1SjdpulPRFLGFV50r03BfnPosLvTvlrP7f1cFTPJNDmNVJHzg7F72E7qalZRhw5HeRfFSUICBE8VpggZ1OZDyBtGYhuEXklbLorHNkLJbaZokd4SSQLpjAjnOKeqinUQP0cj9+8SIA2c+ZbNHbo4AnICvhLD4tzqeWneVF1a3+eS9ehjc+jmq0N7WwqsJUVkHcb+EembCt5TNLMA94kKsdZ+gJMq4NETa5RhEMP9djSAVvl+3vAo8ttYMY5mfD1/mWWcbiBZ0yFI3mbQsq+61N3p7fH9aQYQx/KXWvlgFvc+8ty1NbLdC2Esz7jTB6yXqxOYi0uJyWbHKHqg23Ldg2RXBzAIo1Hplwwuc7SYuErdXFhDJMOJvEWEAiVqszR8Jkz5MJb31Pz3ocoUcYK7pNEzei9YIosLKf6Q/AWYVaCUWKx1FUgM2+sSWyjMHi7OvjgnPy2+xVa+bufwxOF2xxrzbLrZsm4Wsv91ggnpEql22cxvjKA6/RlPykF/DQ+EBTKNstNsgxru/ps9JUpJEd4lCIJ6gPhVBW6zqwApGkm6y/vX3qawdGMW0TzTsvj0GiOGh9N1+QtvZtyqQP7BJnlPjv6pEwFzDRMebJUWMQY4FoOQ2/4F+SrOzRbrbqIC4zDiQk0YBffIO9r2RXDNpJX52EGkCLNAf8uPuQsSO15HIqwotn8OAg5t8u4rs1Midpjxezp25YmlCUU18X7yfsRNCdqCA6MGhAvZdvpWD2tYOwD3P9s3EGQqU4oJpW0xqgoYFEb9aoHKHGwIrFhTQClv+3L9blGhE0PV9dEMjR/8nX8d09+jHaoI28w/6wHnppvSKGh/IHpLdO/jBGngDoBLVanA7IwibCxj3/j8L7weIn5EtsoqZ2oAWOYdpOE1IgWRq0/CRBTykPQ5A+7Q3l0Gu07t7FR+WR4PPCE/sJ8ueLE3IMIcZx5Hen9Pp06aN2xBmjNCWlCcGh1fC8JncI8SgHIKymUBA9QUvY3EF3cJNLcifxWb2jwKzqaJZC3+oROStyGPnmUz3x9GnJkNcdfWdzUwe6xqSXJDojK5jewZMPCwn8XS4LwsTJSfE/yjgS2xzLhadRBYqjITKVDUHAcQ8E6u0bHEqHu/bIbuOWCtJpjs4lNfk9OMb7VlL1W8/9Rhgcs2NrWf3MceO15KEOHrZLwc4lknhWBCNvtK4qApTV10DARWUu0oUz3Cs2w6tzihC/yBrQ14N+x7ruaF+DIIPSCpV4imOqZ9a17DugdFqLi6UY1dVP4RN89Shm8RGDU/RJo8DDeqBInwjL/iFp+LkcgOl/CUS9D6aFUfSI0yXBKOj9iLOX9ZsVCMyxER11Nar+YJfP1tqb1uVR7EpXLMkzCBXSS7RIX9T4qjQwWqdu1ofPgigXlNC8tc9qO0+NNMMuKIuTonPmcmhk2/kXViy4qhpPZ957parAdl6w2h/Aa8U8RziV0smxAkf+SnMP7F7w1yOBXHFhrvg0PggFLjRej7zUHhjZcE1kqkAIdunWZ2hbiCY4h3+LlswLdAN8HmYk2Gq7t60YFuCBYLV+swwKJgS0cTGDS+egD6hjsn1cIfZGx8h0CLRiPAtyAV17EutN3PViMOwkCMR6kf0/7CVFgs9ZpQKCHz+6giDo+pP+rQT1VLbACiN08hCNEtmsSW5cT2JtVrknfoAPadR7PHTIFkPmXAclPCLGdk/LdDuh2GQMKgbOK4PbTVJ8lKP2LATG0qPPG7caEWrI9Tq3ZL9ROKHvMq0b4xvAk0c9d3xdZGQxXzOAjrP/j5r+sUi5twTC9lvqDY0odn6/XgnGqVjOehB5QbLWLhS8MkQki/Y7SlARICsUy22nQh0Kb2QEq7kemg+ZZLvYJnCuQPnlY1L69aese6JDu/d1PxhB1Ak+HAHyz3yDOMlgFQdC2Yo4iu6vW3HpKsJabFVl8OdOlqZHssAnksOC/OhOxaXS9wualkiTi4yZQ2uxn3YlvEQHe0u37bOAfkaEQo4yuYrCwo4nYzVG5+UW1EZV80ESil7AWKDysnecPGLZ0pDW+c2GyJ0/tjR8rfQmhiSGnjQJpYVacVL3ndaj5ZJN6ca2pRLaSevnRE1ZgLij+m8dXndOiAXw2TSfodXHod9P5LfZfbLy81MiE1W9LrRMm8094WsS+7s96SOlIAerzmZCw+/8lrONiiofssFpY5mw21AJyR2VVHX7YqKUYzwrvc0VOzg3/GQi/leNbsS2hj6qKGX8Gt89s0ZkxePckfYE+Hj+gflCdilrZyWrQhIK/aQFeG1W7lLxDJuFLVxcoiUEqhsUQG/Di3oaaXGRxgeOPmcpO2DZ3Q3cpXFt9/p0gPGjcyafUhAr9IaRrrbNoZFqt1tf2ARHKwt2xnKNQcEPSOOfDaETo8/gYG2YosaHZiFeq+XTjcxeEZ/JJVH2LWExd0dINX8qB3Li7rDCf/Zaml5vQqTL8lvQy9SfKXgQj9efMdHRjhVKNFmyFQkwKvUEeA26y1Vjz+5h1Bh3t1yhaFKrI5CJPNCni0105LHKcEV7GzHTJTAhydMxnREPvHWYLxiCkE2M4Uhvp754x7C6ma2B80YIXWiTtvRTy0JisaEnuVwhZWlzJ/ZfyBcTq2GJPzy5YPWjC+r0ntyxoqKoN4NbIhslY+umfbfJEwWAwRu4RivY8SqdfGwGRogLJOqMMjfd9aS6OmmUAk+Fyptj0M5JU1MbDMHnn/1S8Em+lpKLEjdR58fqEdYqbcFQzNH4Jbrp0SLty5hRfHp5D5wI7Bv2kHhshDIpoxzetXasEOOmUUDCfkNWckXoosKh1EmdfbqZO2qADApX8xR7lZAcaiHoT4JYM5ZTeo0oEi6bNYFBJzbuHPm7kQ7BcxMom3CnpdMFmn2lE5mLCJq1zUW/4CWtIayr6I/IjiYdD0gTlUkpIYBHTTMO/efsHdohdzshVH1hEKhUTtZ8JfpTzQPFFOYAoDmCsuFwDlW9s/EhovxbOwRxGHaBg2FM/2F+fA1wfSiWmCcf135LkKQ0mVbgy5k28EK4szoQeci+UUKdWKaPNitx5ArMpDb9wP7Ty/mZWZlj5WpwScFFhRWh2W4xLtmsa/l3gkfm/QJEx42hkiESAjsXl27Uwgn8zBXsJ0k1eG93R5AKkolEzETPZS7HZpeyCJzMHiIxnmbhqa2TnGNTC0xpeZafzWmhCPYuFdkGTYIEQbZPKl8kr7+2d3sAk6vaVdURJnqTI/7EJsIPXcr/mWiJwlJFeC/mvopn/NDPa4PaqkwLQ5URSY3OHFcwEn9epox498uugAJ1e9CNV4lBaNp6GA7bX+bsH8FHudLEH3slwFOwHmWb0s90Sv1VMciua2vEMf/k1RaxQ/qh8q0IMQkqNGCS+RI1mbpw3SZD1ezFjr69fkruyes4/KPXSIxzFNOH7rwq0ogyG+7wf0f05joY0a2R4gkQQWod89Obw9yxp8UerBrf93i9aC6F5rHEb2QZ7KJhGlPc+FcmZ1oor4ptSkoT+KG2MXORhIaGUsy9+2TzxOss0tvKxarranXJS7pXNuxtWYzmNySFKA0Qw9+LK+XUxWBzJWIjG6hkLOi4N09hzG6XANK+CR9DLitahweYN6Sb1VBY6fxSK9rOFZlzdMeg8LUHZo7wI0cTIK0QDqm0jZ6PljyxUmyUgZ8Z/4RpVw2YuIWEQ7+5e+hiU5X9mPq6pI0deSlsB0ZAZ8vS8zxRljSrFeQyizvl8/vKEl8tfieoH4byuFWBt3YPBHk0vjEWok2bP/annC/4b3b8J+ZCx3lUf5CRRRSQsLgHc8LotZWgV0SlGmmyXIq4I9QlMiYePt5KFISdXFkoox4TSDlv/w7b98JrgRX0v7SVT7m21BOXvrA8aStO0DaGx9Yvyy7IGM1MAsADEyNI/JNyy86A2PDs8zcWGdkZ4BOn9EB6fDYUw9V1ckQm6j8G/l0v2MKjLnel34n+x8kD9Z2KlL8cv+FWaBgruEtFA0tkxdANp28NPusA+hrb9B9lPJhBOJbL4uCz24sC3n0Equ51BJB8Ktzk9c0El+2hENFGXxC84y+cHntLpbSPNdybOKDrbphCAKF/qqM6SUm5gSQJmEHpTFfuhJgHae6VzXHH9SK/d3RS2RFsCTzrzW8ekg45PNCsrWmcag8/nRMYgJEp3NvNAa6zdc7k1+hWUa3pRpLU8eT4oJe6Z/bqt44RISWsjSg6m/0yNsGNvqWzy2INV/GnbmRaeRJFK3K9FffVLWnxo1zD70Y9mKesfnRbTnBWtzx004SEPDurRAyEPZPYy13MI3Ur/H2399/PjMOMLutTH2xgmbCc1/XH4qnJM0twoPvTnP9io52IDaES5mSq4DWewqDSgp5TrU6yHBgB6eTzN6QWLZVhsqlzgDHCV9uxSfZYZXix586j8xFvGMNA20IaIygi+fMqYhHSnbyjNvYABiM878fR40Yd6jCHZ9SDgcHv/NVn/fO2mnL1/XnryOOQYEFjrxoxxMttI0tVpF9BsScXLsuIh0jAHRKPVQtW/ppZgm4xbb2IkrT4lspWGi6VEi4I7mN90SbqJvwBBQHB9xIL9/sIR4O1fiTN+8a3wdw0VFJ9DUs9FaIJEkjUNyYqj6qrwHsp+gS4n7eYChhroC997eOwHWlcKM3tAr8GQ9oUalktbpaTbdwaMUGGCgqh07tedK5ipqH82VMsueg8XP6trpBT1m6vNsrknK9dguNqGKzmZOXAZV83VbjXJnnegj+PbFwfekja68FIrIq+lUTvAIwA62XM53qf39VeJH2sQABzEDu8gZMn0pBXdeCKXdfonrZ2PKc1ZJswW7LcWfNHF7NyRI0IUmrmY7W9hVM16M56FvbNrrshPh1qpLIBNPC5xjc7nqAgFIEFNhcicF4LMLG9eUv1hfHPCw8sm/nAghZ0p2VyyUgigZnaTSq8YeE8izW5olWQ+SHMEsbh3LrCVwZtKmqkgv+7msQj5GqfbN6g9Mr8ZrxKYraJOTEmucGzZ+irWY6DvYMfKcIV/pCA4x810w/TAvpOTIQwd6/e1RK8rXejI8fR5smCzQUX23PFYb4SnU2ENGEQHH/triM5nZBklX9pLiAzR7ronU79oGfdfx5vmpIALRXUbUX0dfVmS3ikIq2lC133y7cxD+5LQGywb1a0BhiCm8rljBBDp6yN8+3wPRSrISCJT8Lun18MouexV/tMpzY0zJmkuE+6EzgWbz5/buNP4e8xqlP6qLELhn7Apwz64V0J5GFI7S8/bY2kOXi7Pqfmrb4x4+lXzgTHvFBHlhcJRfw/eHczujYYuCQVXrukVdfEZeJw+BeyX/OuIFirdPeOzv2BeVeBEnuWRrYJ6ek1wDD+Hsb/IbJaZhfms6gZTs6zobiuEaE3EihRGJrbeDZlcfsZjc3w7U8l8LITO7m/gyY3EbPxwzTXm9NsXGq7PjiW6I8506FYvK+GVcfbPxCBgcKH+AS9TLZaFW+LR3Xj/MYR8UduVPA7og/a+TiyqNerr6CNqqyiPcxKZq2vCN4/e/7RRRwu8wh3EwhtMiAW+pv+uZmvkVIlt7a2QXBbQUwPrJ4iichtcYMMIoYcVCSIit9VRVyoKOh8DLIKa/LDHtOIZwbuVIrgC24jWFKyV4jZuSHEqlcWbuKicXLKoJwQk6/unmfvYuxVGouyVRJPddmF12UBCNgwsFq2qY8tICDBN2hIRULk4C87FqqC3RUOm5xhCH16jntnWJ8K5OS2DOk1I0/gxNbTMksQX4XYQz6cvGeBUbCJCicx4Y82q/EJDwitDMNro/n7EJru1U36R5d9GmO9iWdh7q6jWJ2Xv+Uh0opT2nZe2uwbMrz5e0sslwUDq4hlqSO9lz2HI9bE9zke8Oj7Jb0Bg80Q5zuFwyfC+IiiDUZNYaF1qtihBq9R84aNgFajzXRXn30S74TRVn2qgSiQ4ia6hd7BuF18UM5VlrO/XQoHc1LKmoU5vms0Fl/w39adOLhiYrS+O8+riCjl6jFyfUHJLKfrnMDAklQ1RuUd3Bat+tQXh41V3AjFwMOmzmkGckQwdkaYXU3oLiZWKsAvK7nFZe6MuS8FurovSqQEAV9T1wBEyyxMjttihfMqfmrkuJ6OHGuLl+Za8yyrQEjflNtxcprj4AeQekNj5R64noshcMIwjjdPdspKyvvbt13rVprdlbX1SN6imCGPAPcfWZFvdCAGOEAIvfr+KvhxujmtMzWROgtLsGpbL8RMyAXZqquWrTXm9HNqMplW/m76/w/3pUg6ftEcWCc2QHDGyppO0SZ922K2yIMnTGge105fYAxN/Pr/yr6g3WSJuDSn6MPRPlXFe4EdqJsV0n/ElYi+iXsREGzrf3wEdyKnzxwAyIAOR3598u1BpuE2tuzVAU4Eimwn9gRs46CDYurKydZ2grBIUOmZjE1p4SdSA/WkFPnnOLFOl+scpZKO1m0vtQeZpoXibOoVzAzpBTysbl2P8Kkg/CvLTxbJ6kILgxvqptJVrwHMHzI38707myxVKCp3MVMDL8ECiVfWqZHf7P/Hggz+YaFoArWOFm/DLmvb1GpNEZOINChJbbpL3LnGQh3uzr3fseMESTXz+PBEO2GPCrog+7wZGaoZP7J1hlkCNbhCA5+xL0CIno4p3BRgC+Osc8mQmQAhkv2JYRSKF2gVXkEKAXLWAmPkAKbGLG0huYLd4oyM1tC8WEw7/oa7fdP31IUWSnfCWuLCe7QamrA2N9+SoxRCkQFYD2ksUGyNJ/DirmTd1c0LsgVWCOogGZ4pkRwyxVwdY81fhO8qUV5o/NUvk3ahpSt35IhD9D5TXEVhOX52uyBpOgi2TaTF0sP/lXXeIc8lYaBosZfmpDVN0wpUoqMGJoWDs8RIzyYa8udY05MrYPpAVtpfDMesX635uvqB/4d35X/0iyOufqW6TMfhgxvs+5RmCgKrdthXIZHw5JMzgwugn9V77poGMPrmj1S4c1xpK/hnpuKeBWxRsaiDEKIlCmEJP0tjht0dWZQZ7b5aaFaRe0IUKiF1xeiUgfyhSilZFO19NwpiNe0viKQTfmG/bfAEPZedIwtgMR/SUExxZ/uRJVdk0SA1GPwcmxm5M1YJ1uZk/aLGEPHJSfs00p33kiu6Q8MK19Z45/L2+0CdsbYON/nQ5fCzuX3QLhBQTtkEqh2dzMXmuywypfI5nGTdxo5cbR6lCwOptrUqITFfPhDdCoMEhDDyPLmtKm7g7+turp1TFTNMY9V0nfOtPwIzq3P9lUiVrgQinAzk8RWzp73yaKKXX8UqxLDqWV9INHcD76qj4cWu4MRVQXHRxd3R8AQQ1arpShPsNf9wVj+FOl8o82mYPNentL2KPr+5HFQ0+eU4N/ep5PKxKINIoclxy1yt2J4t8nM1S3GkHo8FSx33XpV8Xhv89QOWJurd44jcqPnDdMtwTROcyERJXdcfDOKCvCbUqjHO3SDAlMLhVCC+sV+E0eHrquwVA7WrJytuGl/OS3M06Bh7od/n/8cE9h6EQgIuGChT9q3frpPj0w0HCelvUiXTjNcei47xp9oIxMNh4OsmHHrZdIZsxhI65+vx9E57dZdpuRpuRmKfaNSYMlkQUJwWNAEUofiifhBXMAD5J4btvi900vSGE0RKz7nqKKSeDwtPbWGsrAg+8T3YtMWgH/aF/gWmUr5T2JPKDkatjtxCcDvkpNs2Eka+ddnejF7NMstXwbqmMi9dF4fbAfZpPthrrvUpFOxXOGDoRUZNQ91k/kXre3xhjxWHmTa8+FPbmxxSM9TU+Jll//QR0eA+WHlGi3uxXEk4paDNExI3XOHPqfTW7lur6ow1gPt6a30
Variant 5
DifficultyLevel
693
Question
Which one of the following triangles has an area of 100 cm2 ?
(Triangles are not drawn to scale)
Worked Solution
|
|
Area |
= 21×b × h |
|
= 21×20×10 |
|
= 100 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which one of the following triangles has an area of 100 cm$^2$ ?
(Triangles are not drawn to scale)
|
workedSolution | {{{correctAnswer}}}
|||
|-|-|
|Area|= $\dfrac{1}{2} \times \large b$ × $\large h$|
||= $\dfrac{1}{2} \times 20 \times 10$|
||= 100 cm$^2$|
|
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-G4-CA19_v5d.svg 150 indent vpad |
Answers