30232
Question
{{company}} import {{product}}.
They sell one brand of {{product}} at {{markup}} times the wholesale price.
The wholesale price is ${{wholesale}} per {{unit}}.
What is the selling price per {{unit}}?
Worked Solution
Wholesale price = ${{wholesale}}
|
|
∴ Selling price |
= {{markup}} × {{wholesale}} |
|
= {{{correctAnswer}}} |
U2FsdGVkX1+IHuS+CB36Bv4JtpDwh83JfjuxLJvm8F8GcnCFibLU+XqAjZuIR06pYHWhYTO1YB0yCEput/aoQjovVrK3vdh6fGRxSU6s6IZwySEsKVPId8Wv+ZOPuShrwLUjDTFtDq6TC5b2iKI/V464JVhAZ59gNtr2rQuJv3vR0W9+i1qtZCekLHEnJcRqhoB6bOePNwtm4onxXkbnxobAeYCvXl9kwRX19llOlPpoTai7tVERIQl2wtVJdzrmaw9xHR0p4PrD+jonaV4MMirbrp6L3fby1xkYhZ7y8cMwpxr13ootkyA5KvLx7BuNB+1ZX3vgJz/qYSy428l0Lxt+cwcfaovAY07wDRbbvd3l63H6IqGLDlFZpQ3gyfOBosyaH+Dzz81HIgqwE5w8iQWt1zXf1E1ttGC7NBZWUk5XUO66uwjGR/i7qPswr8gQljddhVtdTS4FZrcu5duspclJqIxdeterilnj/tN9i5BOuWN2oRG3sdo/5k/IhHfRELdDSFNV2JBd64tmbJCYq1jR1AWjbNKU2Ma1BvPAymXpAKeGKmX1EdkxrL0T1wVH1iNmx0rsWbFbjc3ldEgNNB6VlRCWs2lL/ptxcpaP54vs2tWnCCSD+Y/6iIVBEj48p0hfJIglhX0wdOh/ZlmVDkHQ035Q/YcEPwR3BzYyDmTjGiGwgJRc2Ervwg1jWBpQzueEouAK2HuKuAsAczdvB7lBwDk7I0XSUyldYVTwz2HgkrzCB4dcyN3jigEkm+aswKcOImqlCrJwQd4VpOYpTEF9NXt2c4ad9bgWzn32DVQtf6d6IWPfe/yPlC3+VkupvC5gDy/Vw+mUKyS5MBSAvzmWFJKvsEoZn4tSNDpuAK/Pee3wINDSt7ezZA5JB2qcyBC2EkLwf+mxy7ohcvXj0RrLQUfCz/izpHqNGMR8STClnO4IoJ19+Mv68wMJQqyW/+K80whBiycFQySKHMScrke6s6luiFgrL49IyAd7NAxNW659R6hlH1s44hM9AAMxUbsYmFIqOsBGEoJkoDzOiv+qjKQ4enPkgLokwZXmlfBmcNoYw+cZ1E0qp2OO73eaqVWrH8Bemq8yX+CUfXsp3XzAbPpPvsRjxQ/B1+EdSHhME8GnZzy3UHpiD3IZC41ZzLB17LQNTaGfGMbepQBi2S1agrGqyED7Fb12KkpHKlKggRjzjQXWWvJDXXemlh5j/b2hMwoJ6ov1YWF5bfGCKsHFDPrexrjs/XwsU4QuCa9gC07DCEcHXJbxKLnnaoMTnI3iyd2EGsJnWVE27Pz7n1xXlA9ZMgFOpEW1R7juaRRfyo/VAJYLKI/+5DyhBWJDmwwaKMMytjyKqM9MplAZ+EoimpueqVgb4La0MndFTFg3N7PzaG6J4qHWZHeRb4iWY6Sy74hDbrGsWo0IqOX5bvzFaQFsyoOqEeW3Njxppy7ox63hK1rx/w+ZOGXOn1KBf0P2M8QAHEQxHwzRHhW26MLpeCmBpxqbH3dA4aTP4m9PzfrrpAnhpZUfHNx0w8bRd9vG1z1RDKoVnTWweXD3YwlRUvGZ/Acnie3PBfL5BC9YQAvjhb1d7fIYiJR2CxNZD7GJXKEBEp4caRmHjBufqyiY4eUvHf+QIAwXKcez959hxSwN+PcznckKLas+CeLhrBdnrpQd1n5oeSgeSYuowDJL+OGtkAau5MGX7yBArbsIxmwDicEf9Oojr4uJmp5IhNLEiAXGJKymiJ8pm+7FXOrpYKwGCYjBZb4qJE8E82m8uno4kr8XeJZsM7RbrSOArYnm9iTl1JNiL1VF5bpRtGEQIacO4RMX670uUv91wNpVEOzqdXTxZhbQMNwW0vQFXksSVeU7dKhllxO4MfwUaX6e8Q9kYB1fgvWyP7pMcXeppVvBvGv6kh5Usr4pDbmWFWzBXTb72EwZNr0+1TPGCbpUA75bcRHdlunKWqYZWSRbaWJTigZa+anRd/n+S7qdlSNUEfZZdymO6GmYBTWLAi2yIZmHwuf0jWa0QSfYk/B0V99ObFxtlliAs4m1bb8UZqVLD1bpM+KlkZivW43lm0Es7Yef/U+WcX5f7FH7r0GeBiiNFj02k7FcuHQ6nysX+3XgNXJhjghEoPPX2z2WijO4f4OFqHg9uSAUML34KhIdYeQ9GfrrXtAB/ln3l47rzeGZG6Cfo/tr1f99TAr/6ykdjw3liLFmnzSslv8O418fWtMijyr+ET7rSCpmgjdVj4EsrAh5RLFPcZYTDtq4OFUMaMeH7EIIav3f3wW8t+2zxjRFl82/rIKGI2RZlLaBKFju4KVbsAZlgtweHEiy/hY4stEgkh2SDvF0UzqnFfzdu0QBNY7t7bSjCtMoVF1uKCglkMNfELpde0RFYUXsoEp192pMlCRujrzM2k93q/Chi9aB1MwW4A1XxR07kumJAjLDjr8IF+MCy72KJsZ+dB+1e1Xbu8VOkfsNs0ymQPSixKejJ7F2KdeCLMy92KiJWioKa4Ea5cM8dx4XA+QEz6ANmf/4muZo8BlYiO/3wlKQcOlFoUhvEOpRzSqFQ99MefJ2cWueVAupvyS7pZ/WaFo4vT4Gfmb7dBWtj2uUko9g4FKbH1+QPwSn4VCSi13XWTOM4KSHb/iTiJqh7Pd+km3dd+CD9tUxzoJNbIFkJUd5/GwsadDAsK1nHAK5n6/kVfkFtU49MX1l0FM1kN0Jmz3PJLW8BUA65WFbClfuNKcT0NMPRChpO4FF/XiZLHdgPkWcLuq21zKlxRb/e1dPv7m5gzYLwar6t3cumyXHB17gM4y/LRYi6R7A9zgGwjgSEmy48h2Ke5UyqvAE9fZTUasYvGDRvtvuI7Zxitif6yltajIcYnMiZKOVGfq+q4+eBOvGil9bOMCEPkGv9+3OCgwPY3G6Jd68D8PfS7ziO7PK4YLjk6rdcFaogl1T+t71LFhMpGhtiJpdHiSJUpSCHdd2QEFvT7GNiLicjDPYCsiT/tTjrnnuFoDaTfALT9In173WKuLPz7JI/QZqY9/QEw3Q9aglrCmAd6XgP1oA3YBMDo+YFiJ8VEDFB0RK/gPaftKfs5MH0mfO4HH7OPJcIlIkPaXbyesuvgJgHmppDtxSsV6WKTGj9vPQEM41tS25PWtWsNU/mYW03NbWeNhHKsp7AvEUhiLrvd5hJE2zMJIOhQh9YFNrvmBinEQuJwDoOHQGJA6JMiSRicVJv4YdZfDB/PKpu6v6xk743RykNRyMr4vV8Y1xrQ9j9qZumFaqUcUyEDgBYZeXvFPlEEIZ7xop7N1ywzkcn7DoE36R1isAuSGT8epbenUr3JFyyLDBbCnDfb6mIZSGSWQrTfH1Edo0gGiAJkEwmbmy6PulT40ou7zhP5Bpyocl0XpE/8sqdtAxnc+TMd6NeJ0b6vYWV4gpq/EcysHjDiVD5PqrUuSfT2vPurvhnbR2jxoJfgqSFoJu6Av+QpEC3N2P5Pp6L0bHvo8mo6o41Cpzk/gi4pWSyiFQ7u62GO5RS167/GU7Ixdljk93GPYXvU6OW8fSphFHPobWkeEkA5+1YtkynLhe7Pj4aSrIFhzbTOHGPiRxIx6S9bvUeD5zQ2Z2/w0mSFLA6f6+RX/HshAfdbxFJwALeUovSmS59G8rDAWhR1BeHbWRwbJ2w0+2qldHg9+ORFhdPh5/EjHFxyP2LPx+K5fYDpn1fR56yaT1mLp9yx51d8x1TBsMswCDKSkYjBRSN3Ef/9JkWaTET5K95pGpn7LMfl9R/1huuYxRgY1G1UxdYgE8DGf0xJ3I6XtVpJ+B2vyGxsHSaJMhmFRVmwyzd4K7gbBpDV+ARUs6qJI6x44jxpHGW9fa9jdfvO7ECWYxcm51wiTCoteyo32W0EPiqNWva8inh5b6SRhBy2EHijWljLQDfJGgyJxmgo4IHRIRnOFmd+mUylZd4ckNMQMayoZlCKWVdhrpr0sT/WpG8Sc2tPioEK9e7rPWaNTjjF8N1Y8AR7BtX5jDQoQ9ADCFhZRmd4MxJ8yCERh43Cyei7YBOUTk88rX5mQvoB4yznKRFpLa/H2PlyjMFZrhjEOpIQiaRr7FHV9nG4ClNfVsEnNHfqBlmDePwAdcxHh+W7dYgoVnWYU4PzpJcGV49yg9ynltxp1D4zXiYHePGBOQk1NUiKF7q/PF1lEjUz5rh36sKUL5yu1me9D/FQRTqEOwDzG6JDnBaSqaLo6E6eIeyZUp8BImwsZg/CP2VIXMp0nvtLnVCW0q6QOl5rkv5h7Uccr8kE0e3vjvASTAQOOSPaQUUW+vJYZyUs1SZpZdbPvZVYlmw3+1FyjUnAlPGoTBsLmz6vwJMmgq0n99GDbddwkMMyKsUza5KLAulJ7c/sxGbQyklabOCd6VFpLdUNYyE15pA4c72Xxbd/ooTBIHqvY2wJ1QCa64qJpq5XSJuwouOaF39F6ZHrPdGVvI1s+WipnxOAHmTcxqZvlah8LnWohpypq87VQ35u0px8s3X1t5NKtt06y48hBRmGBHjleAsldP0z9yLuITwV7vM/EG/ldm4ZmQA+PRGFw+hdr+iacfXnBN2OVeIc+cV96pHRk9k7AJ7w/oBPh8x/pJmuXMT74DoCg3LKUZTfv+wyz2W+Uch9F+cF99hklmpfQ03c2Z18idVV8cUgNKhKzOaKVvzUeitqkh/vUXKNqzZiWcV5YHHCu3UUCPMORqIXmTbL6RB+Ex5OMje+Bl+yLo7uegCTbvFU2fyJZZXuHY7OPxbE0gXNOmbiD5WQln7t/Y6S8dKSofJR+memn6FAMncJjotJDLTrOEpbT1c0tlSPaVozFpoDyCLOtTfAC2XFtPiVrKWKYHq+wz7MRT0ElVm7E8QfSLr9EtK74UAFUrkZkack2ctrsfFu4nStujvdy4+9aequjeKg0ifXnfRNRMd+AkwS9yIx/7sVcROvhn+gwW9XJC81g+O1HmOJheEU/zWqqG3e7T2RfyU0dIJDPorOs1OxtSmYtOQZrWzGNFw9s7ChADZV6Itxt+1yPbpv/xyt4nE9POGpfHDaUfH9Tj5q0gIXkEI2xavqD/Fm6jN/thp2jMAc8aMQKFBcdxkHXhgMpn3SK7Spn3hsBaFVX9oh5l2QkaBPQUD4kx84bx27iBu1H4V2LWgUAqN6UHn+l+M8i3c4oJdDANvcGlApY8IGkjLp+uw8fhIJpCeck4fIogXqArSmieqvkNCw1I1o0YpIrmb8UVExrqOtXUXxLxI2IKBoRyMFF/WS5IOgym2ow7LbpTJNUz399Mt+tgo+zDtZ/RUiuCr0AQWYlOuG9JosmgW6dyIm657UCuMmibGRenqSQoUych26gp3PGN9h/FiNPobPdwhzLFYALjIRhmHXBFV9/7Sa6MiLCzRWxbydRDpGE9/YgSmOsjPhg98jXNytL0KpjvWfnbtdm/pwi/kxot7nxJaYxaestvi03MbIGDTNasIFcziKjAnmctxgM4xxjbuGrL1kO0cPC9Zka3NyPK2Syu+n46YeGQBY4TJo9mBCn3xjhjdA6qSaG6vQFVTnNqtoL8OoOmC/Z7pAgTlKYHHoitdhaF6cOCM2dpK1+PdQO7Lhxao/SUAYXnqNyIR33SA+f1nsJlwtSJ5jTCtSW45zN7W+YlbhetK1WmXOIOveAc+11n4e573u1JpAyFzcPgQUJBEUGFCy8ND1qUIaGwfgWrlCMNx4AuYWJpXkdh6LrfC8FY6S0O2JMWT2M6Caf8Ip5oK+t73yB8WQpLdB0NLBx4E9K9ycuxx01A0fp98DIIruwGUx6agYc8p1lOQijaQ4j8cHW+v2IURqoKXOwfrqXCUsJGnrtGWJlpoawVPr9P7HSvE04OMbsFYK9o7RjywvM6KBnrZWYsNuipjUSbvW1jvSNAQUQKUg2zCRv/LBlDQuYwjMyY6rkxlO4V1M8OMNmBvcnryEWOuLIf1maZWBsqggrhtaJaYbKzY96wVpUCko0oN4x1uBNjD54yOMn2nkiT+YHad0XHo0LdQ9RBlvbU9egNS4OlbUZbyteS3owiDf6OKGk07ld3QHUCdhEQOje/ZrNURwGafX8f0vtChuDghuPfz+fBdaTgUnmR9Uq5twT1f5N6J61HZ7HS/V2VyefuC3tiBp2PI2FUAm9vzd5So44NVSYlbjzvYE1BhCib2arWmj6Z6iib58k/jpwsJOC+L39rFjXqDktUh21tw/2XRFTT4lmY+1Vuaci440ets5WQKNRR/vpBEgQXr75BCyLiocnnZVqUgKgSxhRVg2jwjQWi2XEp4SY/TLhU7JAOWnFJrvMcGtiFOpmVK557dLKp6oeq2BAOI01cFdAONgwkDdicVCVY80RJ+McEErVTbCr41GGGc0dBZ/xcHp//E9yKJ5b/8r5A1PHKm2sqaJrqw2AJeUnbj2FQOb2C1BUm2QwMCaWnTltKc3Y7+uLuk45t/KXg0fA2UPgt0OsrIR5jfjinUKM96h+SNhh5zqMEk7jD6nv61LffsKCXVzB+gWh6QNRG/l9kQ6nqn5aDy5N9X/IsziWe7F/x/v7ObYh+orUqH3vmxkdkcjdNKlhLlVaETEhNJAQxTQp2nM4x42zmSo/jYs4xYbXjsCJJ+ejDHs3wJRZY7REGSLKBR8xxCApZ9pquhVz0kyRzQ+7KA2H2YmmxFqcZ5z5iw9z1Y3segKq26nJ27HG5mK8QUHfuXmM75XDW2aQx6RqMqVUI560lhzIn1eK76M4H/FPOZxFkWSWPbpKpFPGbUyknTo2jn4tu+KBfGPLGik9UAjujEntxc/gKQzxrkoVEktIcXoIquu+4dAGcJBY3xnXOht7AJEOSZARiINwZnDBmY+SjjgsUmouW4Jl6AX34BvWfDI50D0gGIYhVfL2GcJH3b6Y5cjsLKjbYXo0RWCSr3ePVU3fuGkLSTK09yaHyv73+FlIkJQ==
Variant 0
DifficultyLevel
576
Question
Earp Brothers import tiles.
They sell one brand of tiles at 121 times the wholesale price.
The wholesale price is $26 per metre.
What is the selling price per metre?
Worked Solution
|
|
∴ Selling price |
= 121 × 26 |
|
= $39 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
company | |
product | |
markup | |
wholesale | |
unit | |
correctAnswer | |
Answers
U2FsdGVkX19sq56d9QxWPnM04QxQVl/D7mI8AF0bfjgK66PTEeGjnf3+GdO26JTvvbJkmWHNkUsDuLNEQeompI/gMfbhSUufkXwLDIgjigtqTxbJ+OT5YQxN92N3b++17eFeQUV2G5GU0EZCgIckvtgBeHGh6AnF8GK3GFgtiIuXlDG/TMRRiLLz9yFEngcdmG1Yy+aKube0HcIPuiV/8eQPC+9gtwXILAehtkZtIj4372JqVxiUnRQ9FqjNpMkvhfPGkwARIVFc2sudlrHAKX3tRqSVPA7HQvq00fyaSS2XptIXWdaDbmUlqFYL4xJSndXqPayoUEwA508e4SAn6fZpp24m+DFSRtSCP5P0knP+OG+fjJL3WOuCzBLcXCh+MOxU8Oah5Q4yKZPxN3efmAncY/BTSXcaaVw+BWLvWFutX+MbqTdnUzNdbP1sCojyKTG/XYkzDCOV0LQTuRUz/uIXaH1gG971OAspmuMvrfZSoLFPPtEKxrEjgKZ8EZ27qujMFCFgJ9OEEfEo3qUKdxyfvY2d+IC8ZP5S7Jez/gic0moEN/yeclpAtTWT164vNt34km3RgzaZauN0Mu8HQL/4jdk6NLGiAwQbzJLVtf7N8r/dljpQktmIluMQG2ChpDd6CrgNORvaYiRBGI3p+pGad+RlmRZJdlGaFGifVviTDtBSV0QEsOcbYWOZ4EA47zf+YJ9oZYZZcVL3YPNuz+jxOlg83H9YAWKHwkAqSboMqPSo2z6ewjqpRYolH7m10Uzjw3wF088CVIACm1LBXTqEYESwe37jOSjIxMKK813lROnVC1xekBU61ddVEPoKju4FIZcSXI5MJMi3pOJ5tGQ7jzT58bZUB+rB2RwG0TI4ruKLKoENRJ41z6O/g6o4cmjc90ejCKouqAE43QMVcatQKbQbn/2z6QWJ6w6r+YJL5HLjJ0dp2FYP5cn7T7Mef1Vne4FQjxREfROLA3xC5Y4Nr3gMOWjMcVFhl8UGJcm9UNWQcOGDxKUG5dLLwkO73XqtUEJxme6T2GJZjKGYa5e5NFkN/wokG2cR18xWGpRaum7Y7UWbgqTgKEbsqxBt5DM4W98TwL0N2FBU/vmZCCV7RoUdkC+X07kbVqIIAV82eP6qhKwdbkiYODniOzHxpXhnuG3cuoGK8HHDpupqhOrjSVGXyiqeLuHsrtjFtzW3bnF/PBcMfzZY0ENmqjJdCO/BCwg+B6m5Ca18jIldaFHSA7E00VYuBOWjT+F/jO1Lt2RPf7j2q3P3Cz2WZWbd6jvkWIiLc2hqpuDUfh0/KAar5nu3JUWSNHdQZA0MUq5V4Gzt3iGO9HwlWu2HAGHcomecDioyZ136W5P5PauQQUyY5+w4QRgye1Ck0mNSvchjI/XXE3N9QOKpl+4fvAUnKLH9mKTqFIXRsakSsyjv7cP2Dm1D9eQ5gtMI6kJg/LhtbxTBnJjdX5X9q6ZUzg8KAoAo6oRQ4xkp0tqc2M09lF6mwdIddE1p+fUZPpxuoRXuL/B0ZgWefaizSW1hm/K0w/ARC2DP/5IOU4qlbEplHHoUqkppXAo6hDMQjGv2xR2Rp2ZwM1GGubkGph94RSGbdU/jCrTLh/cIPoXds9n1GoQVGyFaY2KiOZkZkdkBs4Ix4R1mxlNmertd9/lU25whN0STvw4Zz7rF09mA+AeATFF9hdQ531Dj/9zNQOsDLcDonc8FNyIvopTgyutnJLIS4iBBj7xIACd0FGzupsR0OHcv85ACwaMRyFb+j54RdeE1lAKU/BpHx3Dqufd6eFZIQIyc+QM5ZzgO8zuXsf3sn84alR+lYxg4WXLEOavPpl0nNTP0SL6oGM/SPL09a9D4Xlc4/MvShhctbWzZ8+RTiyM1tmqQYCZeAQDbzoUV4BFRB/sAI90Tl/zupjlPj+nRCqIuJ0mO7Ejw/dPQ3c8B/FP9VYWNWOTVfkry7Xr/GGppaw/jMc5zC0+vnlvbFmRmMNHBvUdBQqox8UboCanUnQDDua6ZcPEtI1gWG5J6YsY2dTUASBorzgV3MjD9IbVuL/7XyKWTPtwtgVxvlYgy5vCGdBxZ1X2pFtU9uz6AfzK1w0TFN5c9/E9YhpdG9H93NruqECt+juoMk08FhXRKJcdOmr46RDCMT9Vmu4isXHGc8/RoIY4g+xVc6Iic885UTRQTmCLib1HRfYlufiyMf5epoytT4aT89M0Vby9clt3wXob6J8lvh2yeJ2Z+dzJ2Hbuzq3ho2b7mt3/EuEI1S8iG7DzmKKzxNdWmcH8Bqwz+O2f7NpR1Mu6qBXHKmy1pqbXzDNQN4ftACWxkNu18FyW1gk3/xC/mQLnIqSwrVrtmzvVGFj86hPNXlH1cM8y00lVCEmMT/G36YkcIQc3P2NHNOYIAED7nTWYwt5N35n9vYeMflSCb3fofvHzLWRSsRSPxnUd+ifjvq6MMRGm5F3C7zkmOOgqSNQUuuKSUhzlfInQiATa9c47+GTlKC+l+zXhm8b6FuaP6W74U+TfUbtD9aaCGy1u4OOPVSZ9tb4WN/ISJlQa4mQ43j2wXtBVotNDP5evBcdLsa0cVSYqmZw1WeN/1uAjSB3iQUh1KJs402Nmqujl/c8N2X8dinBkN1XulvjoyYPuSbpFYNCBR8gr6zAjiIIDnXAUVrPasV9H9Rs4S/qe4tq9qAhc1+6yFLRmOgZCZXqVPlNDk3y2+erjdxRLTK7mRkYNfP5nWogLw+ujAmi65SU3bgAbpXyVRJWrhyDotmUiLioxiqebhpZzPokmWJ92gmYB3PLbOak5veOmSr2Xkgo5HilrQ8Z8Fc42ItJBEN26CHo0jfXJEtg06C9K+Aa/IJ0K+0MGhcW/67IgbpxmCAbXXXQwTtDEhc5RdLbio5WMs67fdhyJgG+AArp/EhX4IXk6EQMaQiOUER1mElrNyUyD17tVd9lVmL18lvmQpFRmnT3NPuRCLm6GSwsZAbQCG84Le/1YURCyTssfHO5PYtEoBX2f5g6v8qiqvQtgliwc7+UhCUqrhM0dmjaNLP4cfd9Rt5NYJdefp3P+naKxZnZuE3lnG4DoyTMewZQg728kv56XxSaR3alMcJVEdsVH8FexeGrqt8o+ZaJywQe3XtxgLKog37Gp3U6UtZaQhU7hNwzc1AgD7nzuvitef5qpesA7yrBgumfjkpehBRLjMIEnhlTYO7fQyc0H+lW3nPWk3awj8b4AA35rzm0KIo87/c3638eqS5xuxRdnhZzhLz2BoNSRuJPoRjf1OGFtyOkHjTklmrEhygYWOSP/y0N4Q9EZW9v8ZuxxTdZ4fsufGy2BkEOThq5SP9GqLW1eA8Ove8c1EPZ8q4DMOraTWlVSbOBaCmrozwszaKcDcr1DvzI5Uw62M7Va/CuzQWVY5EMm7yjc04qNqhkQoN9LOtmOwGpL6a7WQ7qL0xzQHauds2PMxtK67UmP2J+SFOkQT8UB1p3lzqEalKiLU7hf45re04vcK9ziModzYg7vHtnJdh1FX3vlVifECzsYfe8bBPD15n7T1c0WuN8K33yBHA6EAzXdvyfap/ssO5bdxcJIRBdUBmoFuX3988vHQ88EfZ9abWzgDOWfm3Uwfyy0lkxyBJeEzVGWZDRuVgn+ZnUIfwmxpmfh9K+FN/IMFxkGFZ4FcZIossAHst9y3T4/oiydENBSh/wazFsJtv2319ldpplmqrxoJ+pRQtopMcDuZT/HPDDtsEfhCxiHJHB6SlskwUO5foiIjB6D9T830F469DgEHxgAD8s+HfudEZCIjpeajn3FTJDOrsuu3YZPGB8nmZNcLGoYvmfRCg4EV07q16e3RKBju4S9fTMLCcU1NyU0c62zBDWGRY3x2XNbLpGlmPjn32f3s4jFq+v+av6Ua2qRBvbGkubY9MeCkeQIlmrvAEofVMgWmvm/VpcVmL4TEGM/bffP0GfyQnHNwz87geYPia3M+u9WfUK8vboOAZFoVPrT65AfDZFdQrQVBMjkWg6mBhQfWswotm5tJn7QUOc4kKjA0YTOZRmlDqTbgwJB4v9L78T8gMo2SO56NAMyUxvSZPZD81WdgwfUdFZ0oZYnHUjCj2Pq+la8z8XY8LhVbrA+CZ6AaYMI621HqDtxRaAd41GN0YJV+djRDjtKbHYRzp/MdqecedhEIZbGR7usLEBQLebfDhM2vG/955Vinx/CyHUyrG2Qb413/+vEI8eKr3AhpmhB/l3jnqWV6M+Fl2+Yj66jkVFldsuNPkD5pTXmYP4EwDp09nT72ja8oxeOCMkGak10cgIq+LRAI+XqU5TtO0BQN5qU/CtboS47SAB27f7MvNIcf27Nf5Nsu4K/AqXOeED9kQb3YTslLF0TeI0TimUAj+HGDanWiZb05WmXo5Do1H3p8jVMFERiyWxazWs5cVk0cTh5KpWBocKetlQOOJjG185SQp+CAnPcyOVBK+FaAS/uQuiXMt3rQaBRlDQXAbkOeR2Ciemn1B2KS/cZJj8QcsntUpClGiPegmyraTUKrxW6hVzEnXPCVeTls1n93eyPL/TuXInaBnj6oQhePS0WRpLMO/LHGEo5qG302Ol2M0rDbJz+1ufZa5kh1wRrT2lD+x0eaEb33RyM1a4Qw5TS+cGgFcf7WEs2erBCuWvtBolAm/nNiH405Nrx5TnKG2b7Mzf2atZPQVrmK/UvxIbPVUiqs9toujemA4tJBHoyzc+dk0yDVfxlqqe2Z/UKZyYUeOv1Sq1jsTyeUKAF7YC/S7Zl+cUdu7bTl5w9YwYSQwrPKgrH88YDldm2kdazSdkgV8ylueyTrzPfc+UfGUugnO2QRBwkL9fcAIIgh4AC8QoFd3nRbH2lC/pGruDl53tRzmO04fUoAVDeJPqg8t4LhdFYxhA3MCDJaEYcOXfwI77n2Ia7dzmBFp7PuFJgPs+CD3d32kNkxVUW9YrdDZcgP0o5DxHJ4Z/OfKCy2YSqocLN/IdDD77CFxEn1lmX/7ArJNNBRmtEHE3MBtQtWj5WQP8U6idYJ7wOGKVqqgY202m+y0hg1IbwX5Bs7tcsufEfxbPJkg47jnbBl+G/9y5FIkcJ2iu3qlVAhknRMxOnyxninFzCWfxA1wM/hGxLKKD4XwEdJBqIftwFKIDXI9zvgw5MGzVt0gqp1eB8mKQhN0ppfrGhZFpPloFjvNsJ9FRKFeJ2joDYeahUycpbmlmZSl+MTfamguylabss2iLWLOyMOVQ2jH/D2QZme5jHDzk5ovsfyAYK4dNgjoWMrQXpt0r6/ziO8VJniYrUoZW9nonvGwNYpcGz0fore6/AFcJGcBJ76OOxDGckTb9rqWh39zLoZj+z2HyIvwM/FvSvh+Kxu7Px6YmvRJjdmxgtaELjUZiyRTQ80aAZ2r/nAtHd4CnGqy1oji1Gj/Fhf74O9qto2cRzEvOl2Rz6htjQ84sEIJzU9pXCFO3O92wYtSmaHqnGdY/SNtc75MBHSPy16uDTMqcDqrYPabSy8J+252DE5BF6HBhY8pD1UTwJKXVTd4LmfIJPqpXa4gFndRtx/rhntVuoHlarnXYBvGAYgOv5lUUKizVwSOMCsl5S0yO8+AEq7/9mCnCnIXQwLcJM32NacfLU95Wxai7g5TLAjClD3yn1bXUJ9zsTdcAVKZw4qT5d5huCnH8S9lHl24ptJaxXvIFpqW3uy1UMp6w8hlH2K0Ip8qqs9MLT4VCE4qCbpTzY1x1o2OR8HLqNA/wvwqU7ZkIEREWAW9F6dLtUPkCdt0vgtN4FkWFoKFWbSQ0UTTb5CBEuxSf1TANfUw/Qw8GVrchbzmUYeAYXrHhfwddUk7vGrwDLxtYx5jliLXbemYaNiSrubOijfO7SyeL2laCfk1CKlwT6V8eU7jpwEgivfrRDTqqBHiJH10Bnr22TYPWw7HoI4YNQidbInEkq86CaN+YZVqzNNykcJOjnru+grccZIftlIatdEYkQRZb26ibuyw+6uraBtVZDuwEI1tsaGbfzgNKhYy5tTu9N/0lf49MIXI98bWZcsiYYT7R+DIBPCmg+/36KBzyjZRH94tuRsn8bkY9qEgYoWPoAL8OvynlQ7aaeryhd2MXZdrg3rcwVszEfSSp4SSPdrHT/L6caMG6Brb7qod6k8RJCpILmCbAjbFNq2lc5SVOrr0u12xfy/9g4FFHMva7DjaLgSDvCFJuEbzxCGBOw98sMabXPROwzjgjl6CievdWispO0IFMe6whEHzuMIAnKUzKJr6sCdX617nfOQkAJVXLRC740yZUVNakXza3r4AcF9235qzO5Gp/+0FgtbW39OKJ/AjuLZa+hXGCrFMx1WmQwWc2VYhyRV7FSvQh7Hq3aNhB+IWSmw48Im093rum4oGhs4YG017zH6SrArCG6wy8xnVWyoVRBbM6VOm8aewPePuVaEvUGZ6cU2YRevqj6Dg49ihgV6ZynLuTIaa7oVXNkgPb4EF7MgctmOiidEg6pthVTeCah6zUgnE5pDeuH5wTkz+n3BlbHWNYIWtBZW6QCOhZEfv1eAvwXSjkDdl8y60MXlFb+MtLAv04aiya+nXuKZtXF0jOABL7okMhurQi+a6xdHAUedA38NDPEmik3+rlJbJ4j74db/80+QnoGr3VgBmQCR8VtPhK/z3eB648/9G3JerEI7d7lrRmZ6E72dqBEa/cnYSJKxlS6fMoRAYBi0Vn9Pz8q2UceA05muslqITstpAn7C1u3qnAcTk2YMM+MB+kY5KT14dTHQIrdZmO1b92wWmMIGdmcB+3CkJdNIpVlmYu5VW+JpbqdTbTSqEbWsm5DCYHhLRPY0wzEqHM1ZHjfMTSHMIT2G7HDCyWWPaqCuOMjAdmmoLzol+kpTlITey4EGjPe6/E2muX7PHOTKO524aGJO/nIV8yuKtDO4oDC8zbru9LH0oE2SYFqhTfO6G3v1/EidYpiwzzNDxusKUuo=
Variant 1
DifficultyLevel
574
Question
Cleaning World import disinfectant.
They sell one brand of disinfectant at 221 times the wholesale price.
The wholesale price is $12 per litre.
What is the selling price per litre?
Worked Solution
|
|
∴ Selling price |
= 221 × 12 |
|
= $30 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
company | |
product | |
markup | |
wholesale | |
unit | |
correctAnswer | |
Answers
U2FsdGVkX1/R5T5yrthtW8vNXAYluUETVAv9h37DdYEFBNtYPAH9cqZN1BwXkVGVaTflAMimFc1OEEwMQvegcr8CyfwbV4FzwnTWidpCdgeHXh5ZjAekCDoJQNb5sbfv9zNZOVrcJ5otxK4yH/ddeRn3ykfy25+4wOkAFWH7vkxrVuDRd7zWSbhUkJv6nQTLP/ezIUjkEm9WQZwUK8ZPa2cxZoZgsoeIKZ/zo5ib/28loXMp/N6YZA00j1oSMhhSvNgyQ6SJ9CWw5ZFLLgzzwRh63HT7BXkRc4I9Mf8VPlyLHHqMstXHmD8bCiaqJJuVsXg/iqmtYnVQ1eV164DMZPZAQdJp/bWZHWoMidHBz4FmIkzLtPXls/0zg2BLNe7oD80+BAF98Znql2QWDUVgwF8iOr46pmYq+fi2u7TFCG53yGP/yyf7vzNJbeuUDBWnv6lsJPqaBEkiao3nl+0YUMH6hZLgDoYdpRafIGY4KRrdPd66RjNRU6rOIs3aPf/Czcv3fJgZ8IFYqRhzmpatTd0tlV+Jav9+uNGS7muYGR/olw/GHiMTn6ts1ODqPsNo5BU4ZrrJGvoLFhZf4HremOLD/XswHl1vRd4A8zquMHQ3sNL0T4O/57ETNRPqs4NndkcqM5s1RvviYd/nUcAw6MAlo4G0Q1xaJy2qEUn56AaQQev1Af00IseMsx3onpPCYHIrxKF17CBt/VJW7Adavqj9ElXfoyeD2vSFs3Ad0F9nA5pUbHCYzlEar1DSWc6rIYkfUSj7AGGFgS8uMv7f2LAs7Am9Yi+S4+KxNtRYfOJj5GPMzHMaoZRDugn3HoF7JI+cJH5zrlWRqc94yRaThCVNManTMP54xHFEo4UG3yBSW0D3vWgqk0PeGdFS7aU89bq6EBZNRTckeFCBiRd/qFJFCtyK0Xim4wrFknjLMojCzeoh5Bsi4X13QHPYZJkxwuYzF9UaXHSiBvgXsmtDDpMogISGX8lqSXx2cI5HjxfMxM7/zfabL9BWjejio8MeIO6pkXRJfKyQbiU3Rj5vEJD44AQIRBSug68GQAr5q2kjZAj4PiVTI1Vgz/5ikskej8kHXGgsN8/lSnZeOtlz9I4jl9jG4LUBo+aMqRXfXhANiNwlBxyyodyf1nWxTcgO2OcVX6M7+ZL4OAhLws1uwajRoVu/yhiAXxAMiqTvOTeLwdGZDKhplUygvT5xYZt2ky5DRUtDvo7fi7DMKvDzug5C/AIwMgLTlSfUn2qR+UrLNA2lPfYUBvisYU8wEYcf2Kqh5wWXovgY57NMvK41mkfGv3Cp+XXy4z2vOBIX3Mimas6FypW+ArsXOJT5F9PZ+6Y3KnS3Rh/CKnfTfEj9IvQIl9bDRheWjMKdc8AMQ0EK4/Oekjl3zr5LDqsxA3N8WaJisXOQaeBEUtl/EAF1CblcOG3xR7VWWjzw7IYLRe4mJd2V+n90WfKImS8m/4iWWXzp45gV6tSXIXwIuAoBYRJmVHIKDoYJ34qQK1RSMituGEFFd5jabGkf+xHyvd1uJyQe5zTeP5zZzhXIq1u5auVEXYGooBvNna+K9Uo+KVf5Ij7lHZoA1tIEiBC4qtS7md52zq66dMp0ce7gbzI8aO43v0A3gi5CLj2TeFb1I3202FbX/8hlx0FJZtNBKhVk4pk/FxuGRopmjtbxJuBjhjBTbDSS+tx4m7hFgfpz7WgDkWzBSu28O3sSUXelDk32QoM+zUyuYwzMX6nCXSBCXRlrltx3ypMhaPEapjwwlvLiI/+5vMhegmWkcpdfjVVXRIW18Y4nIsXjM7IiwScfKzF8S4Ai3UbtnLkjBcRtUATkhFttteuddXfo7On8wyCfPxLh3Z6yD+axaaza/I6tnT/czvplINrBuosAKmczSfnCXaV9HjJ5u7Hi34mkjuKaeMeBB/Sxr76MdG19vfrPjbjYuP7z5dUSozBnWvVMPdGQEmAK4L5sohSWthU7uE/rdwezVqJNQ6Zcnz3CrzbQw6ge/3mI/6Qjld1yQ3UQBGAmU3Tsg7bhs0xMU/lG+KltcuXu5oI03Qu5KomX5VltbtahnhI1ra9coSoGOz/t5Ec8jRbaJ+7zYQBvHIr5mb0fMQAbXkj/oYhUWKXUynHDtNAIRTrYYVS/rGTWWctUhRmllx6xM6RpJQqGUQH+9v7qSPP4R8hy8vZBMTv0AbBUAakjn87OtqLamkYEF2Bz6PlXCDwpNUmu/EePSVCKOcLy6GKnzW6ZjKVCyoHiQURQw/EqarVTE178uokBA2qa6VQkMSQqlvQXX4UVkKFbn3sFWtwqEa7UK1JzrH0OMfMxdQP7bnz5QL24EwGzzqXTOreT2D59aaz2dmA8xKXFL7+HiBzm96P1bqeTed/MolhEN3ScpWUBwNmh/sjYGU4xG9j6WP8FXQuAI4i69D224LQOws4WNP1E641UDT8hui2Bsjs+oPD8i1/3EpCV0jcpDYw252olJAi/YlKR4Z5LlVc04jMnBoD+qNBPCT1GuFw5q4bttR58lbbkLJU+xTmaZO1hhcI1Jbxgb9J8K3pOEuiWkSUu0DvHRzbvAtY1jkW1jowcipnQAlg8nSXRSuH1ddUXejf5eU+C12yTtyW4tocFJo/3l8Be6S11VvyHlegua7JLlEJLBeoVhQ9yUnjQn3ZMdCcBy6/xe2XGOKGkyyTcpIWxH/iIRdMpmiDlktHtMCn1DqMTjf4Hz8o62KV6oaz0rJukemBZonlV1z7nny3YSmWpg+sKHkcvh+JC+RaFtotn1ZRPe+eB897xbicElG63Z7K6lws/xz0vZZfqQQYHvXDbmN9HUWoyFHlpKjg89EH5XPnrpD30gfUf/Kabi8W9L61gHxTy5TVnOliCVgDyQ+zFRl4VY/r8muvNafe8c1HxrHrP6xULGrRSgwTithVKWHg6YBHhAqkSVxexQacx57/RIUaKaBQf1nmtZwsKbGl5LvyzDySHQIiFcc9btWkA/JISXiaKuHGbvAFzoXoU9ctOBWb1Hw8ZvI1VgFL4XQxoQJmeydBA0DorPsa6J8su8t2/gFcpH8hv69fZTseMZ3/IWhlUsVIW2hbWiC6n5pAn5JuWnGuifa3FDdOtV29b+BuMZoSrvf6pBOuS2raIJLWHvQXcfu9YGY9RIYby7ov00o4Jo1jE9OBYMOHsRnKOKfR5HQYAXx11bqxClNG6D5QdsG/DO6XdiUty/l+rBL8U/C7h0vuRX/jSay4hf5gazSq4VLfgR57fJQ+QvkDF90LZXL0Mu17akuAjCnegYybi4AdCFErCj2WC2j6+lF4V08puCaipWQf3m9KsNZdUwvikKJc5idq8l2oas3zxMrAqB9/s5iy7nke//zyZocoBbZNhWscnQsVBVG9aT/rDYnkNjj3RvIQlfaRAzjTvECDKlhyS0tMAgaO489284W8OoxoZsbzL1xCN7pDTGQqDTNUYh/iItKuTIv3fWqRiHoO6sKq7nbt1C9cgUHCFJAVmAbLh1bsyW3A4dIaApEHX5AxML0mJTG6UVz9+AdNyapSszMfw7K/zqN/deQVeo124A3oBvXl6DUX3Db/GzcqwA872ioQ5dJFz4IDcmUUUOMMWxMbhF1XnCPtAZvaw6JjCLkEAQQUkHFZ+y2S12mRZHGf4XS05Fd4i8xXF7nBBvGc9wB8o4op4ZrSK/rFPJ/9cqoLppWjJcFO0IKiCMmNKqVAuZ3jEWYhOi/GV06hXVplvuo8cQV+ITo4uEMt+MtVyToVTKB8T//mekfa4fY3SP0v93hR0SeJgMaaqvLhHJvI6ZbTjSDjQPIrtfcN6e3EmlhaL4JvilF96CEYSvezcxZoy7vIX0CEIXQBEY2eA/jkSjLhuxFZarDiur7CCwWaP6+fzliBXrUweUc7uCEOoEukU4vwyNAaxOw9vIcjUSe9D7BbvfyVPMSy0XOolNVWYX2XL7v8FBX2DWAaCFDVqYGMdkmKgNhyJq+phbAheBxLVl2beN4pFAdiTajE9GrjAWniKzYRCv8vGWmqpWPr6URnJQKqTbC76KObpi2rCNbMyL8/De7vUYQusUk3zstrpIGfZng5JagUEsobbJy54OLi/MxghuDdHHVItfcJz6kbED5cakAfWAqBORQACSSLMi/R/n8eXTw3nALuLrnHEFw7arXtVSo3CdoRT01JUn8BfjkGcmbKb5G6XyJ4Jdqn0SHBnFb+DZdg6tLdTTCeVIBSvRzdSGEPtk8RoA4NBTltdTEu5yO0/DagTrtsHdD/astVIOIoFBguUwf4nWvZRHM4TRd5S2zYI4YBQkz07nzpJ8OoM99dQITrB2U+OAgsxCgoAwq59Q/O8nE5oJSVR3wkb+WSoqIaTIjz0rKURRLFLJKwLgEbcE3k132FC2NoJCE8nhPENchkwbMaCyhMF5haIs3TQsXWmJIRG+GHGmr9Q6NMqvlSSc0uzjZdPLyROJEd/PnqJx4WB8yzyDBYAikeTVxJme5Ee8VJGWTWKMAybEBGUQYT83V7lrl6bNp0j3np07nBqgUY3ZALqNtY6z5gYpNXgr0mohbLmtPlEpIpq0dv2xtYzec5DxB6ZwvTxuX5XQFnSMwi2KHNVBr60pTYBlLoUtuQmK6qr0fcWb3rDz3ilJnwzCqfwKV1yGLbHrY7liXz9d6yrgggx0gmMQptLApdco7oVTXpqh0HhsNd9EC2RLfK2LNBeJtq7VQ7SdKngxSaen8uxUEz+m2KwoQRUnP36he8FSGwSUU5DgRoXTXUJI2YC9dy867sxE7858Q3s7peRt+YjOjYHhQPQMeeQ2GQTZjXjYZsf/L9q7L8Z1WcetcSqHtk+6/HyAT+OOfv6VXgAbEIh1II10aIQzTLOWczYkZ7xXKGdaBpj6UQZ6ApXx+PSAF2p7ntrXiZyBaY3EnPkXopYCFvT8vaW0esMtaRmhCyN4x8zpDDIOp3RRQ5HblBWS1Kqy0AX8SDqdbkhVPr0yaWbSW7EQReHmKJnyBalfpTsOjfZ65f25e6Nan3S7r1hYS7vAcESUeS29UVsTAIwHkphK9YAU2kDJSB8DGLTESYMHi7VRfjxq+XeftWbfCY/tyj1Q9KA1n0n55GHcMZNCHo8DYSJ2GhX4mMHV2gPqCEAnhekISMHWyZ+iFiusqeFLX1MvAdi+D25tiAHNO+FcwVs+Fu5CpMonk1ZmlJ+5joS2ldUWtQIitBJm6OGLBnB6cBRK/NPkLs6BYurCMjCAsRoqQoDtZtdDoeNRZm1uIO0kffCNzvdXV8tlE5fRQ311FzYfGA11ixeLqWt2mFkeN89Kzw0Mw4/70h+Yw4tpiP9xLA1fDM04h6h75mCx4ml8sVlftdE4+gxgATTK+tnmBShzRyu9WbE0TTB+3+PZ5txeNPJsWzX9Jchl0YGpXHe6LS4doa1GWbpzLiYxcv8h+eGifgIS6zrAGsQ+uz6A8CCbhcz16zXqSixIkUI1ev/WeJkamdQ4S4YSLz7D3VJqA1/UvIToRAlP7Kz7dmHp8B365InAj4SUFjUar5Juk2LGmS8oTyEdGF6uSTogqRHqZgXmo86U1RrX92kga9mYQNrCWrwPih/0BgvP0T7ek8OwoJrQkbPs1gG1T8dCe0KIo8QYGW5qe5XcMgfpES/+7ncv/0yP1QD5JBIqp2F7rSut7f6bywk0kpPN1zE0T0ON1jBc1M4Pc2vwi6tRXilWrCL/atQtSktwB+azEgH+0AMVBvLd/3nknXa99Mugz149YaGxHzDVGcVVfZhnJvFFc2LIJ9Trczf9vRPHt8aOFSt+avW3c87rTvgVVib3zpUwDaZVw8YGQYYlxP3035orduRmgWTUorHd6gw7846LDr3/pGYFvdvmYZNRtZDXB5c3a7fEL43w2whXXE0CJmywig7YlPt4XbDa+XTJ6Au5XrUyHTuZhXGhS8fw3Zye6u0XtQLgbvZSLKwom4c9hqe3ns9k9zZNQ8yYML6UznD4i29jmOVWbJDT7r334wAekM8l6xzGPxujDRVD6VIcQlttGiL4mwDK0izLqLyi1NdW2L7wTNpUlKiomFA3uRKOFX/GLa7qytiojvuoMqlq1b9RrD0oeaHlkV0dSziCLJFQVng1ROwYFK/AZoVER6Gp+/OnEzlHwfxvzzg4VPcbA6+YXq77mvxaOPBpHGDH5XHaBEHzFX+EePNTLVmFYwyiHsygcdSUGCs2n7GeXW8E/krA9PFZHVWYd7EIF0p1iL3/5PxXWhVLvrwlffDiqPGUzcrkg/1em+US+JqJlc1orx8lVgyM5ZAuyAxtgDweY4ygN29aAXdwHn3Qg5kki9/TN/RaIKQHfplJBVY51ur5A48e9Vc/gn/FYOkzYYTJhlrKTSOAzmCThVhKXusA0w1t6ZB4odyZkmctWvbooglfAvbc+u8fzhit2TdDJMEDfJpIFo/nF5MIFU7Ad8zuCe0CsoxCHhxTSyQRabSC5E8R2fgNM8NYpz50Q/VS5ECIQcMN75pCjmAfgWG1C+KHaXYNCwfbTYzPWpYLG2h31jfIFuKI7fwMYR/of4LKRhSTg+tOqZ0ifFIZ07MqhGqu5OLp5DMf6ujsf4TzHOr3AazbpRgXwPFtDq8Nm1/oEjprjbOSNeYmYkfxYd7+ubmTLvll1aQYHHeHl1naANYDAuTSv2Aze+k6EUcafvBD4lYpzsmK9XSi9A98rnCSmbr4lCmXoer8jA6TeFEs4hXAUCALBhz0a0FUcS9WrJ5rMVvUlgStJhFRAW/jNGwyicYnHEXhmbVMb8LNCNyotktNYg+k3rDuIvRPZ3QNmr5G6X4kV1A24yiQa+w3ySjlkSQagh2NVsdf80kNma8zcFJjWuoz/8fC6g+rBHxjRtVUdW4v1bUn4t5DKsHhqmx4RZ4VeMFuolSbo3K/SngLXRDLdISTCJwa5TaYaMpiOZbWw==
Variant 2
DifficultyLevel
582
Question
Meat Inc. import steak.
They sell one brand of steak at 143 times the wholesale price.
The wholesale price is $36 per kilogram.
What is the selling price per kilogram?
Worked Solution
|
|
∴ Selling price |
= 143 × 36 |
|
= $63 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
company | |
product | |
markup | |
wholesale | |
unit | |
correctAnswer | |
Answers
U2FsdGVkX1+9Fzb/hlWly9si/ROu5zBNkkg8XLK3Y0TuXl09E+stnLrFiRT8HIBZRsbvp614zEnX3qeCpnvKxgN9SZ8U6SmLKuqQXcOgrUQadvsdxbCvp370EiI233ikZXbZ2eFSHRp9HojCT16POmTaEjA5rjQ1IPw2IPnVLDy28yVmekgl/loBP7xkcimOUKRSpDn1jIMZGCEXeTq3PVG7Crn/jNqWyGq9Y7cJdAxGMSCKRyP1EXrAC11tcnHWdSRqUtucurs9Qfknm9699NnNOyr4IKd5oWFhUh+Mee2n8cgF9aeAycmLboR7R34LyVZicqkKojhCGNdp58XdpWk9nnlwuPM8oKwl0E7v6Ba8B//jlzUtZ5dmtnKrwZlgcEcSEGCJm6ngOcszyvvCneDEMNdSdfjqLyTFBi0qFK5eEnOx6HYxQm2UfxwIMFpagzF1JTXML4pVXFUP5yHVxRsAX8JixTSxZeZ7wpUghhn+3vCLHmeEB2lh9cqdud1o3sDvlbCEdL1chO9Czjid39v90Ot2BYxo6bvUSMWawCAOYU9CBtJCkz4cAzPEZ0mI81JSk9o7VuIrIcdMUcV3RsTVn4MVOqedbee4IK8zJ4IwYjdJFpzpIT1Ej93ivroELb9QJHWpT+Mo/HEwWyryLlVAq92yHR15sSZL85ojUqK25Mt09oYnL3LKoO5g4LwHQYwop13hWSXd5WUgO4a67tsCct3FW7+SCQJG6Uh/2rGlIhpW1cLJbfTOABqyPxVxSH8aABDSPs8Tj5t3CudbAcozZJ5vTLt+X8OC7RyDNkZX1Fm+nnVLdJM3BbKo0SxUmkFB2FdvE//28ZRcTJnYBkl3Ts81OdQhBNdAJsDzG/LVuWA6iizR/q6PWxzkxHY9k6tJdC2/yhyUwci4jQpU5dhSpsSql76rgcp2xPMLya1xgdo5f8ZRUoAjulyMGB7d8ecVjyNWwyis6rpWoEqhgdlYaPOjEKXVD4x35NAGYu3Q5F+OYsmUKls+gmBLy5ayxHwm2I5nw2f8/jnouzwHp8VIgqjoT0Ilyk29aEW5lDiB86rahgL3ONrnMTT3orBtcCAlbn+9eHLwJopdSorLTFiRlIlYg6Y72PT37qwXrntewDzTgDM8190BwTvT7ixhzii+awFYlpwCkWnrnvGhTYcBTsCpaD990Bta1L0eCLvl2aeWmX+MVINrtvrHebH3kxIkOcYxBUEsfaVdOIA86XFLkJvzhIMKNdW1KznZzzWHKTAahyrUoZg+EtWTSnHierRdrf/52r9YABIsTeiSr9NDfLSYoAf2sECG8Gq0htTM/9fkybdHMQbawgKEm55yvCeklLBDC8IoBvFVl/TFPZQTQcYVrFoO+kaxrNhzG5LUGcLLW4slCpAq9rkmYWOTNjasSOqPxvMqIW3kv8SpQT3hN6PISQd0GVKjT3FtIL7E/Fq/NJdmjggDHCtagctneyIBoxhhwTuhbhEpIjHJyXwbHMnO969mPuRkO+/1embMRvUzWQ1C+RMcz9ulUQTQQMCvVl7+wBJASOdqDKh8ZsQ2Z4ILuGydkNIYYdmTi9AtTFVujk8+4aRsUbcWHwnXSUjCxtWMnpSfZMlbot/wiFDk9u9alzZXuSauotAwMkbK/iavowdcfufzL8qLBn46nAFnJAkX/0MBSs2DYqHpiJA6sx9cEGU+1hIusgfVGVxx2Xr/da0ZyNL+hW3m3NxErwigCtsskgowrudDTq9JAeC/tGCFeRor3exITNlaFIih8liy1MiPwwN/ffljtMLwGAHccZ0eeXrVm5Ab57GovwVuZo0ZatUoMnFJY1mbaEyeFFT3T/3sieeLi46l8lagdCgwbCc3jsYM14wZwAejDM3St/lzus4weWyvhTSxGmp0SsrzU31doJJxlwspXIBOkEe4R1xT1nSR6W43my1mUzYtfw82r/xWFOOfsk1z8fx0eTbw7nRZcoFHpe+EoTAyyBM58xsGts0y89467nUsyTSNXSejOoQKnkc9luuF4cbTclbMzIDcjhAO+NnspAsstAUHy2CydKXJmdQbHziUuyigzyJYcqfDpRk1bxC1d2+QG7bRsWhDUgQ7XSWsAZNiy3u6bHA9gXJJFuiSUVIK0tknkWLFUl+u8XPkc+xlEyMR1TWwv4CxxVqG+K5SKTiXblhpMHGRwRV32ZTG2XWjTHHJ9DTfrMBUW9drAs/ne3AUsKErqp6Lqucct/KPutQkz57zLABsSni9YL67VxHctfAcVP1CXPzGG6JYO6PAGNaxvLHlfWv5rJodg8v7/oMzV3ReqMt8Mk2DmqEl7Hd89MS0eW+ASagvGGIUbIiFfKHobsyvqGQdhYyKMDPnIRwKds+HAY822M66vN2Sg6/eidBBo0nljEFSXrd1huFSQnq13hfeVie8LQnBK36xGeoNizsr5JktAFM4GkTm0Kr6xG6eEmnUzy2mMdPrmdObltp5BNVP1L1EwGqNB1zzMrOqEvpvlpyBjcOWw1feYFJXfy3MGA9XEClnq+k2aJabqELTh2eghJc+XAWOhUKpUr5KX47lPKzr9YPDNwBZrbDrLzsO8pdr9KdlLT+StRdIwk/0wIypNbXobiXn0I4nB/aWy+2MPjob3TYQgs6XU+WJ4xHZuyle0W6fmp3Kqop0AnlEUfy0KR868GQ+s6GRqYOpfUwG1M/OR8ju+CJh1in8OSfb6gwR2lzTH2tZ8hjMwKTC5s+fyZz7wMnKz0C8+kz9olIkV7cmOfjdvGvdFYYH7aQklB3SkKcey+HqA4oOEKbWqmWRKP9QM9jdsPq364F2pFMYhPBOLetu568XvrO/pCfJIBH5rr0miZNCAQO6SCDCxhxd5pF/FGrWW9GMZO/CuJQbBGnBpd8LVV3kauvc7ci1ijlCD7J9qGvhJzNd3Mqg+W7oThwOQgcwnVDvnJgtirt77Lvic/oMHK9dQxSlyteVW2BPXL62IpEARlLojn6zK1IRw38ink7E2/jpI1au6s59b2r2vahXekxwsUBig4yJB/1RpKM/qdjv0VhwCDpkX3QFcUwCWx5uqs5Y+Nbfb+4fvXTdTb6ShX/l04NzfTkM/J8tQSRzqDJ+l45ArJuJYF74UShLDmWUhpgr0Rz5Jum2guMqURZP+dZv8wD3hvSxs6P1VDCCyIvaCb/GWfy9+u+xAOsKH0+2Rp4OgFP35qXWXevFTNC7+yd9OJNvvvFmAKum4SJNdpFemuZT8Zipxh/TWXvixO3PfaE8iqunAjT9ABYqrh0x89vycV2OwGwKfxv/ml2+O1R+ZOdF1rU2L/d0I+gWRrIfjN9xsQ5izMizeqzeRowweACwp9LCKjZNryHIs+7wYX15/sUqloY+rJ76VodxF6v68p0j0UMlU/Vr1m8RUsQ0AkTyXhAMZioqqcn5vSmxJixjW1/LT5NBBXfR+duThZ0Wkj3jSSZdPZQ9CZ9txOFysdeLiDEczEuZQDOPQRoWsZ8WBMLNaknK85zwB07eCbc+OaCTmw9TVlF1XxyswDGxDcSrK3f7ct7623sCJ4Yn73wsrGNeexFgT2RjXX4q2EoM1RmepvA4P5/MoUz2JrlCFBD3S8fUYQXxGgfpEseq6sid+Z/uDIlpfX5W7Mcf4UXqtGqVLMU+/I2sZ9v9+m+QrJLMmg74Lp3CitjuElx5pIeTpZx6J7DPBML7ZSj6iKmiMiUDkgrzB9XW2o4fak9GTMfJ+jNDgulpu3CkKF50i7gc94VyjCeitRjho7m9ZNKTn6VKMErxinRvm4kt3VhKQ42L3fAUsiDGnmi7hP4THB9ecRCyXOIHVQ/3MdouCG2McWFh3z6f0WlPcwC3dKmNdQWXZN3mn0z6xrw9HR5syuD10jkZbVc3lHaQFMAK6NCB9Tz4xt2ogQOnYoDrq9GxWz236LWl5Z2ynLUIAUXHnMPnI5ebRIU/lwxWdBlWhAAjavCMKmPOE7Faw0Yit7CWYWtKFxFD6WuSMz2ln0Ku7BO8NDR+He5GSmEo4Yvbjod9GX6Flkkb6wxI2O4d0AfO0F7Em89jPlUk5Jjqsy44Guwo2jSSAWQbSV3/oaAyjpC8kwpKm+qbyN+mEiOqt3vPV5V8gmJUbMmhnoZ7zl0gaEHDgZv9REIehi2fd+R+RvXI58kkijoikJ0Oif/ZzMC4Amm2eB5BQMUU2vcHl1gpXrahzXk9aWhMkxNP70t7WbTyRyHjYjU4REiXB+Gl67OIauetwD+EkjGVJuBUOWwqbFAw+gfWIjP35cj5g5/QtDWwgXHf5/M6+tBQ0RgRXyUMu5lcBm+Ws25r01vkNz78Q8HfSgJQOlAC2x86I41ZrSGuAGfY4O+JozoPBNQAB/OcnK9+Yfi3HVgpI1cY2jgqhi268S3Q1GwpdEJ2q5N82ouI1KENUBt0dgYkRBpBuVN4VQc5vh3k8z8JhwcUE2A6B+3QfXZfkfG+VfAW/4QZZBKrx6dv+th7549hohIk81buo30lQNzFgagCTCajInjKfOi8drML1SBF1QWb7kAz3ukmVgG6LcduA4XBMN7PEtWaw4YpnYr6H0BKCjzXGTzOanQFHiRhktfQRKX5Rbr5cWdAtNTvk8rF5F0YDgqAdWKMRvuKud10zzK2YpVO/5mKpkHiv7WrHbH+4RTNH7WbJa9/LKTQB1BS2BWsL/EDC/fEgsu/PRgZrfHpkDZv43EmLBEKGTH7rr3QGt3YfJD+1QxGy/DZsx7kEs6xVklH2PWAlrPqwlo8Ir/1hca9xMSWrAuRA70WanvFmr8YTlCBUZY5yQUv/mfxAR2jP8utTo9XpiVlhAD2lJRhJqFyZN1EkdwBAZJnO+za6J2GhfNhmqFbE6B3rCcKj/dnhaizUvHdUgJlcEkLWfRxWVSR8qw+JbPH+ehaumMX8c8rKSbNGhVfyMcFbPxUIMfL+WE+U8RwNcjU2RfF053KpHnryP1srxmIVuZkUyH7Qcvop31CZru4C+Be7M19undleuwT1xdZXRaG4A4p9nyovVXVyLo9wTVcIGE5WLYlDY+F4csYdTHdm5KGWErq+uiNtmtT8+tUfM2YiFnQq7xa4vbveqKa5d6Os8rc1jL9Yqc837X8WYYvoG5ZRjZoW3i1ffn6Ljg10KBXk0t+ER/ugFh4tE1Cq7SkCFu4PRe4M+cgLDjIYxP+a4on7MIAR7RGtfSOouruEfNhbWegrX/+zmuGMwEyKluy87BLj3Jmd08IAspepyFEUsKCAAmRSxasTC/CaqHq+uwMxnjFfoDTYRq/Ns3yFTAb5lsAXaUk6uMuqzTwb/nt4eUJS19TQTYdLlWRLDzInAcWOh1oIGoVgK5ifmJnfZubvJFn1w+qDiZBoa80RUagP/uM3fDfZBgmzT68qcKv/I+1361/tVdOGuolP+jeI4NvyqsFGN/1c3VY9s+hBNyB5BaB+c7dMsXYjY1evpZ83/zWcnZXdaXCQ48t5g8KCyMvdoruWAAzgSx08jiuAlRkGLR07LXAJzRvYPKrjFBLVQeeYCOrqlLOHVD+rT3Wz5P+aS88EeZGO6i/mAJJikjY5emC91194S8Ds/LFK/3/dhWM6CsHP2nehAf9K+ygEkt5k29Bqa+IkvT3Vnev0MlDQtZXk6Jo7VRCd0uo/pHUDWTou/JB97dhxcU1PrtoyWW/um1rvvbx+5UbTSiYrMSpbueujq2ElWvOk8bn40Mot9C12iXY+Az/PY/6ZlWpcxryyaeqNTkviYzZiIHJn9asVK8OJ3IFZX7EemO5Sq3ti/sIFHV22tVQpjdyzUWsnJtiD4bJFXgHmkZ+wR0PMGOe41F5SSnqdX+N8hL4aO3YzXG3KXD6S8K7+bE0GG9/N3mfFjq7EPaFLCqaAHLMN74iAzv9pOKpayUT29sYKqvsLiISUNfGjoQQWIkJc4/qS/KRtAX5USVVnmMPnuxioFondfFBKgZvKC6sfZxcDkdBE0ZTxd8i0m4irUbRGBmH6Y+JaDG6QmMdy1glji/c33SH1kTvsznr/qeK8lKjhJ56e3ovTrRW9FwNn21GMTbxgt3VGibnLnRP9YmrtxNhB7vY6iuBcYQorrIuuLSNBiwC+VV5bWZcpH/T2igA/TW8cVQe+3yx536MYzdUvjKJ7DQZrCDC5fS2ebM1tc24jV+YJx6UZuFuacNRPG/6w7UTHnxPoSY9t14zheye7r4wVeZwJReDzvBFMEgyLXsKgbyJtRpngNZTjyepsLEvGuZtVxXYZB4thK5z2nzaRG3OA3Bca1fZirsJRYAalh7b+8QjvFWSA88IQQb7Wt5mRKQ43HbFzE6zNU9JH+cyZUly/KreXM2Rkl0AxqhuU2q+qxZDl1QIjO0wvGwvADl3ylOkEqMGpzPaFfal9xg0ejBKILf46ea2jxKmVIfbaBSBmdZsxgTbqKaY9w1Fa5CWMUtPAJQvkBtNrp173B+1X4Pv/R9cHYmhFQuOkH8HOO4Gm2z3dggrir0UNByJnDb7AvZ+6EEBYHLthjnpuQ1kZ8z+W4t39Xe9QPqf9GCJr8F/SJlejhITwt2y5a3806WSIERnm0riFDRZdM1Gw5mo5pkcz4sTkGWwEw48cvPESeh4rfESSTtc3oo9wRGMvxTg2tyJF/JFNrJwZlTfhwEg6JdfPf9lzx7m+Nvuu5Gn0kS1h9yhIJXU35Ts2broP4oKT5EuAkgXsnsdqfFJaYPx+83fhnAqu36lVVEbAMt/GKU2S98qiel4RlCYReqoO/rewOS8ekHZG85+9aKv5nNtCrRmC2+qi9MyEzNgmVdA1+kA5NOdjiaHCXAkv29MJqc9MyaAxubUMczVGGTVDvQkCv23b68J1+uQpe383R0lvImi9KA1oNHhREBDtIyseMVIuYBSQQjDlCE457Fnr5LfKGb0cWMXe1T4A/MPxmyF5YSyHH7aiR+LTCWnHDINVcKZgM/ENZPr9mZIMIY=
Variant 3
DifficultyLevel
576
Question
Smile Pty Ltd import toothpaste.
They sell one brand of toothpaste at 221 times the wholesale price.
The wholesale price is $16 per kilogram.
What is the selling price per kilogram?
Worked Solution
|
|
∴ Selling price |
= 221 × 16 |
|
= $40 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
company | |
product | |
markup | |
wholesale | |
unit | |
correctAnswer | |
Answers
U2FsdGVkX19YjuKtgTay2W3+/1KtR9ZnWvaBxrrEV408255uFJrsuAKb4ENho1Nlhei1Hyn9xFCadMUmkxaixlFrieDTwx0F28VyTvZCkDsuKst1EOGjSQ9PzePX8C/MNjTdK2qJc/2nGdVc3PvaeTftBeoB7qhqICAtCuIpxhwmu+YVA2pxiOe8nqqHsVaOSFudlsq+MbcxSDVb6TpwMwEjnVxB6uLeOlByxuwAvHa3zoGZSws7XOsl0dq4dIzde0Fn7S3nFm9EZ1EdI09XxxxqVEALjOA6d3T6cn66JJz2KitsbKCQDfgj2kf78zSuULpMM/etboj+0px0mgFYA9r9biUhtNoxnGiRYC5uIrbxdDEz5reaRJCWTeE/BKLShAdQs2Ec+M54MPJ07N17oBRKFllepnTUs1xZvL+vrOIkTuJvpf3slO+Rc8JkgNRhiByKyvnppERpUwV+0sDIPlllA3Seh6Yu5ZLRpvxufx2bcgZSVrW5xV3xYgYvZ5v+Hq37slzPHz2mesSRs5kPsOraiDSaURzD5jFiv6ry2no8VXMVZarIpDSY4O/kRe4bawgKMus44urqP+hks/2aWwYhoeaiUFAmD/IyQX4ZmVdeeT0GFNrB509FkYp2Pg8Mp9257OSM1mQJEE8Ho+j3h54AmsuqnXGQXa/ni8XzPkal8iHUYdEP83n8UJRg5vF5VOQhmhr8uAUYJtUp8lRbWeIeLq41qzqDyw8tPkxLu3gWyCksEZUmiKuNiNUDD4fb9FWT52rN91ICX6mM+7cjH6LbhwYPGL8DhRnxio3VxLVwxZekktvTK+W/agggnEENflwRaqMB9cBe1OCIQpkXZSNUCcHexE4Fed7ReMH1qlyfrq+jyqxGoTvv3BEfzEVllJFHgjZwJ1HZvvqLMDPKtITO+XVvWCOLT1ZHha6bZgw41vNn4W1q1UGwEv+xc7wx6wgiFzjwHov8pqYlm0BtjIpkGaTjeGYvbmU5Wf18dj+I8jVUPnqcBeJ/p+YhPRjChgy6+cmBqsMVQeiQCdor6xD1kleKBby4arleX4zUNPyMygQL8NLlevPZaZhKYQBDLDZdPzf+7T4IkkC+w/zJ0KnaTW7xWUIY3Z4AgGIGQ+BcFq4ZFNMKrCo1cq7VZ7bOSemZSxhdKn5eZHbuwDWzkfi/8XZTIaYkZS2umdzjzO6zO4MZrqu5VLsmJtR+pkhrg4qJk7BGyTzjKoFtTrOiWlg1loJtE5Z8sBfV2HFsM1fK+kfOpGrMDCHGvKCUmQp07HwV8okIJ42v9rtzkvDZQHC4aUKpzKFKSTQzO9XTSht9v844GNXczKjhkQU+03V5aU0g60gfjQJCf+pwnOcZg0/csj6XdIg0gQy/cadjVsxCoTnvUDGWoqyh7zz2kZLf9az3kGlf+ftPO/gESg4A0l6vYVTuBaeMBnsUCB0Z07GK8W9tJWVRV2C4+y0kLpyg4QvVI9zUqbY3q8ZSQ7cqqOx/Bc2z1HUa2+Pbn0NIbbYkuCkBVK1eS2ntN03mog7aLlQp7mApQFaN00PgampIuVSiwNsiIQfolu8mg/cH6liZiWce+c5gOS3YaaZDWKuEmF4sDLAVywSR1IHH0uAOUMfWBP2w2x/V//JzeNOZjUg6/qPnfl6P1llLPGbQmC4zxOfx+v5slmcA9r6aR6ZudWmfqcZzN+wUkAHjVzlYnCpfr2ngs/7pGkZWFOrGSf1yejVZK6ZTmdWSJDiSwHA2gUtjM/8vJfUzaH0JN1Gcv2KFNrQkH5g1oV18upYPLB4S0jlpBSHfDrcVPEDllR0TvmCEQ1aLR8fsKvQVAGNShsYXAZh2fNBqZwT5fVX3bX3iRXn+o6d+xVTiGad5j1fRncO9nuR8Zwfno01AZJrHxl7IZQBZr7WPSWnVkmErWaz3IcKw9zQWJ9YilP5P4g8LSLc0HIdMYAazpp81P7E6U88Wl+vzoPqaXrXpwxez6XxYHTuyFnjWyTIIDHu74tHf4ovRmQjd1eutGoauyYAEjGl6Ibgvx9BMRHlueQ7SD3yWVMAGHKkillaewkXinARxNpKSgpQJ+YpCDEUY3CylFPGkGPCvuvLrYlA3i4LEej43nxOGKJQEpfZG8pqPh+mzMNWYazCtipX1V263cN/n/m13RTEYHVU2oGpfW51eQ+NYtsgVROChNu8U9ApQYhMVthOLkID/NKe7ZqIqVNpwkEs+3B624c9+1NZlItvBT4ehdhJxcucoYKztTBNNV7uwCXIWnFy8Re4Cg2p4uCafoRLeFfABAbyx5txriWmAp7WNDCtMXieNmogY98ugVltOytxpwyN5sY+PtmlaYSSjG5E00V6pUPG8XZivvb5Eb4s2LHyx8Qbe7UK//Qof5Cb9c+HR361zlBr4pJc97Vi18/U9gZ9M750g930VnTSBWKMhmU91wGurjz5QcGAr1io6TDCtU8EzhEhIOvfMGKaWRMeNkhMDdPsvQYbS/wn84wlp2T74lATwsB7gz/zwwsW8u1CCNSdbrbPhjxtzrUHZDqweMYyWRr9zTgt1Vm81FcFtf4+OGPPa1hC59vtZayNAMqeRTYwkMBavNWU1uhcwI2EDW676CJdqDiLShhdNhxfeyERVqDBjYaO6uy/ytOPqQ1JsUWF/agZw8ndlKnD8OIX6MMBWQIN9EtjbG8mVDXv9iEtLyiFxEH8vIyXy9rk/3A1P+kTyI49VNRFKxuRBvHvalX7pa1GptiHtp2HHwWQZc7yTVD2WRaT5fQnB7yxlXWwsndcAx8ZI2mVN1La7tbpWcdI0x4FtedI7K5TKFHJugJ2EkQmBCEI5H57eCbJqCy0CCRyoR6+acBq2H8HFnsnroszeGi5cy7Ct4Plh98NR1i/W1PQKVffhHFFDrLqwAS3pqqm7tSzge8FxPZ+yW2R6HWbnzSPTazT0nHaOqfG/SyJN6ltj2FdRz1cdsNSpfU6raPB+6Xpp+FWkD9xFLtAPYtukXYmrwrlwtPG076+v6ucdGk1raFPgIqQRQZk6FrZBUlcFQzuTClu2SkfLDQrRz1Lf4BnWB1M3tyOb9eRNZdoP7mwQCKpqryoLl+kb0HzP0FrnZdnSZoW7iq1/1U8qKtaOEaTyNPF3qpLd9wrYSqA+LmZpN2ezFJgt33mI0rxNAThMoRZZjflFzInSQOU1iSCsTt/mgPYWNThNTpSoSp3hRL+qoVKMXVjpa8AtllKgLFpPBQIJhfwOzAoXn3A1KMtT00zMhGw1DKNYFHulWKC7CqG7jtTBOi8LX4MP/QgwaVKaU2HK063uCiQ44Ran4WYEo2GxJB1kMOFIubHs41iFzxyfkeZPhKQqk4o1QqG6x9bKN/joQmDs8xDTo9CvfTOzoiF1AZaqDa2jlldMZHa5Wqg/Fc06rrV8QAUn6/TjYKhaoIfRuuMJkYUr2+YGry+N/Vbq1fLu/QsiETxbjg4kdzL0xFxYu2W4NNxov2iao5Bw2h7PS8vk3c0SMGeLrjc8FRYwJNYwwBuZIZrPcKZUtd0leo4v5cdtGC+QRv4vXWwKAe/581fXaw+n8RNfmcKgwbRq4uG6dKl8bRCFikRJ1M+HKpSNcqb/J2a2724eMBqnIKZPElXRK+a3ST7qjMQ6kF7nzdOLKvyCTC9C5BBEOcnWAUmTZvKWa6iGnPHMuNFtqvC5WO8r9+z6Kc5juOL4L9rLD7H6WgdR4SeIC4Vp2Ul1jyGbr7LXaNsKCtz2LrcpU6k5Lba6Ud2u3rfilublt8Dm4W8jwgzb236Mb2j4Lwdev0EyLs6HZ9QoF0kfr5YkEcWIFr8gMw4ArhEWc6RucRSeWsOTBT7XTCI8uM4uJZgARW+7LGrJMXI9BKsNTYQii3gg47x1bxiXhL5YcCH4jnVyL8rSb+secC7qBRrxXfEfurNKuwOIsMJgwzjxBdrBXlPGhmUUpTTx9ElTgNEE+/m6EEUSUApwZ3kOn9k2X5gSCXDYl3LXXau2uYgq3e7rh5pN0wWDIdwzN1NTEJORDC23XSs0wzH+UYSe56WHHF1jdaAkJA2mT/CS1CURO/nKkdFvGaKxtdPqPRENXd7cIc6RUfp1nf3+wO0TrlNIbdTy7ftpRJ6ycBatt3tYg0jPxgCFTRYvxcibVghGLuFNEsZaI6TmXUwhaf11AzLC/8/4XwBpYKWJD4xH9x7zdQ6n7+qDU/lLyNIhRaBttW3Y7yIVMDlZYMufb3junsYIrlZQB494hsAzF7CdMseoaa8dj6s9RInEjDPxUi1XKo4xFJENEOz9G5pxp71VdFE+bkp8ghJ7PWk9ZTVPIT5mvE6ORmiVoLLBjoXrbb03cAt5rDHBusUC7eG/8tgqFxk3Afy8/+L4CIbfTAa1t4OrqevHYE/4wEaPVTEmb0aZIjXMKmPh2EA/y/jYF7r5pSler7qcurfEsbYBlUficuRm5RrPZiq91lHGvjyo+E/3bTAoeye4LqGReyE6n1/H73fNKRUe9PNrJIenDHy0rQFxktRxbnrs+Z/986cY9Pm/6gfGvR5Q0o696YMb9WnAPqdXcX/33khUgvaUsQukbctDl70N6zWA1cMaBcbESYZtd9mZlk652Kx8/owpx9bFnOh6Ue7XEaTqo+mEz0QxtDK0pdRqMSQ+k128C8VYtXoYm0FvwIA04c1aHpAVqwvoZc1x7pXwxtGq2PRut8FICcm+CPG++u30blZOWRLBtlyA1lKjmAYSzDX+WJWSqbkpQQUx2pJcIqLaqqps90f6eA4Hnzu8gFZVE12alWaKAXCmU3Vfg4Ut1/8ISH4G+hbP/7NcZnFXPHxtzUsg9eqi9bVGAj0/Ad3RQ5Ybzzm40p5RUrjpHYHsTzfmMlMPuTrv8jloDDXoRZYS1GoO77Dll/P6GMo7xNlaokBBrIU2PQ1ZEuPP59MA654jwox4CwyLiOxTmA53qdyGtoTxPfzwj50XY7vxyTiUe+0mU+uKDiuZbuOr+0Vr2ChLjoimUf+cERivHW4ziSztvNs1JDQuhmphx7aUZyVLveenj2YeTtQY6nnBS5Ldy1tDJya5K1gDlB3kKZ64ss/mQTV6793H63h3Hbg9Q3l96dYx1dTOtSdY9E7TolAZZMmC6QUqx78+1fniUSHIF4Jzo+iZ/wpGhTuYc1cymPGxGck1igZ0JzS+Rj1VvLXyfcahrVNw+a9XPu+t2rmim9c6PPQi9R9JY2+cte8ySMlAMzoZ3ZRLDfYSn5e+eTQ+bLbQoc0fISZEx8VxAudurlLKoOJLM61i+5rbMJJSQP9RNf+VjyfC1qLfkDUaRCF3KZ7+hqgmHED35WJlwW6ap3K6A7HSsPP/78y+35R3lGnyPXZdYe4k4U1k4cfNnpSynxYJ5V3fDjAe4wDxK3rXc8J/gJ9+LRk9zpsalO+LAzxVQ2l9033E0NW49n2ojaF8zI3nvoY5FBsEyoOQS1jTooaadmBvMhUwZ/52Ls5GOO9yRfaNWu4HCbbSi35nvxuwpHdBSuCuKLdZ2+jADX1cYqV75Y/eE2H6xGObhtfAqWJVimtjtmmzqK/fWxzxpB37XB4Soo1E4R6NbRRj0rh+ME6I/wti4I2Cid/0ijNHGldAoi7OCMAzYtrk+yk7JiK2W/iOL0/QoWokF09PCz/lK+XWy5EzDS7jc7+vxTugVDo6xRAYjSEjLkLq/kt7sbhAAkovlq7+B4d0kfnFzHeuAPb4ZSurF+OhFlyZ4HRwu3zBraCyn/QoFkYrogiru+yW56/saAPTRzxJNERv7QCdSPTdMy+09JQ+HseLRRtTt/DNDFVhAW42VKVIdSmQF6bs4Ixgz4vSHUUNfhmTS+CMb1gOo73+EjhHGXBAQPTZ2p5rJQLG8it/UYVLCl2Y7Ll5Jydi1xf/NcMR7Cw1Gqx661pIY7w0ktWJ3y4emP2OSzCcNgivcqwRtC3zM9wDEf6JhafleXNwDDcMekLhuKY0XpSRxtePyx/aJeRu8OvNzOWnsZu7ScYmyNol7+xgB6bH59008i6np+w1pZ+Qe+9K9M/i9/wDrx7NYv3acS8jR+ceJOw0ebONkNws1h83DaA4rEzMPAXwqk3WVVi76amK2CSRyHyaZ9OuYSCvTp+yHpyJuLYJYhrLxyu+qpk8inrFMLIYu8SQjAZK/CaX9PU++Wq91U+JgcDmUgeI6Z4/JcRiNcAAjSRwHcS8UZioIX+FhkNe+Xymvg0EorjghuGA1YvckEAQ77RKTRt5xPUlrI9qAT9Kvfeejt/CeQb2vXtCEKThg+HFUQRNfzi+iryqrUX+J9hKYTK5lu3sfHIdSw5N4uZ4x2DlupbJt6IzBMEBZC+Cn715urapISLrcjpFDozejqwq7Y+noW6b4JaEuHmNiwshPcBrfiOaRhAxXZ8ESOs6cMs5pLVQzes4yYiBUPHU1O4QqIc3jfbQtpBbZMwLS8bKxf08Cjc2/SPdQZ21CA0DWoZNi/BQeGykO/y866I/CRiGpDPt1cyp5J5/WAM1TAX1UgRzU14fSEW1whFF42oyMrS2t9jYIFpnmnAmJKCq4McFbDD4xi/G5huA2K7Hq5sapQHp5totQ2XwriKnijP0jxP8OLw7uXAz8hYEah5pYwV7OUYfKzhQT6AFYf2DEouftAda8RCo7IBqxIKAWB2nUF6F8bvCSRgcUVwFv2oyqPDnbFaK4ftc+Zt6UTSwvhLPwnn6z6QZ1GoX9Ixyc/L2FdDw8390k8VVkbjLhb6m7NMJJjlD49W9NqZam6J1VQszOVHRAoE/QePG+7xT3wiG3vBUFlOUDar6h3iuCwJaU50hW/ZKV8erYcFgdLPS7Rz41WYT0rfqmVc67eTryWWlJFanmJ9NuwmFrq1IWPcbQsizGVjKHUlHtk56tk6p0rnpgNEYOQQSHXgdYBvSRsWM3AON2CPqbY0hAJblymBCsi2jz4Igkga99U4ALcXcpyTeVxwol1c=
Variant 4
DifficultyLevel
581
Question
Transmission Oils import engine oil.
They sell one brand of engine oil at 241 times the wholesale price.
The wholesale price is $12 per litre.
What is the selling price per litre?
Worked Solution
|
|
∴ Selling price |
= 241 × 12 |
|
= $27 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
company | |
product | |
markup | |
wholesale | |
unit | |
correctAnswer | |
Answers