Algebra, NAPX-E4-NC07
U2FsdGVkX19if8IeLcU4aHKyvjyzxcmJmkSZmGyTakObe4mCyLd4tt/MLjUB9otpIhCmhXUdJMeptq2oYyFTgjVngs3jfD/+oVBfU9YlGrKmAKroGZu8S8aHA1GQ7Zftol3FZXyeQ0FAvRUhjtXfZ3GGhbsUTdpHi2f5dMsGXxSqcYakex90EKe4BL/ZtBko0emkYUIJK8TrUj/d1OntJ2bvm/p5FFLaADuoGDJ3ggt6NCv93VxCamVz6CcDecKjJ/PC0/470eyX843EP0jRSxytAR+IfFcMSSewwaGRnZAx5Wo6mZuWy2mCzEiIGr6zoREkMJ6DrOv3WeGNipc7NuCchSid/47c3iY4GjSZg8xFOQTzwmXRtMsbwmw1Luso1xAq4GPymtaPf6q8gZenW3OB9M+sVfBHacKdTtvv9BqRK2vPz5b+OhdAXwLZoKNlYVH6ryXP8flSAglGw2zMq61sNvUOCS8xYsLsg28fsJvw9UXxCh8c8bGJ+3Lb6cgMSHEs0cdYRn+sMy2wEeHZ0pVm0/bFoF7A7EpVg1kqlCJpg6FBkMcFFEaQkvBPoTHaxAwTKUzSmPMyUt+gb2hjS5KV8vqmV/7vbs9+908g2aE6sjWV2VtUSZaefeEPtLCTjInvsNdFG6x96RP1kr6IA3c0zVyltWTltKiAdsItFMnOdJHkxLqVSO9jZfbFQB9I8SAdMntXO+gmhAns8DeV6OcBFMp8GfkIWcVAMT3H66xGGGgXUljYsgNpCr/UtrLdw/UEl6DybShufzgPFiSSXbvodvKczZkGq0y4lU3qkNh5q+LYibaHHsB1umhRxT4ODKcQ77cDB5mnue5p/dTEaBd3uULgOxugM942a5paFmoH6XHtD3lUnDeZvzq3ye+eL4opFb0vrX5ksftFgs1DDdb8yF6C4yYCnRbEWJy4wL+LeYz8L45UICR3XI/czWGHccohu0kmi/zw/hoS5daLd40BM8/ilf8DMyUCqlWjwFbnvzxUha/GOCYCSvwhDlGumW5/BhNSakdhcFlqqoCEthqr9n46jfNGy9LaSrmRZkDUqFEYcJgN5vfZ0vEiCdkE/bypChQCx6tiVjwrmRL0oq6CCNn788Yr1oXE7AQsafgtmR05QTcJTt6pfDa/hghjV63i7MEjGlz1xOupWBTyWSm3tnIC9VujgbHgYl/n93APUU/GOdEeTro89F/8vXeXMUlu/ERtFp+SRX2GQGxLKzAy0Ve2esnevMSadfH4Uyz4X/zuuYOy3e+jCt3wy+ooIzTW1SnSgL0BUL0usAVw8DZhKqphJGKl4NK/UBePILxLa1kxZo1277Jg5l6J7zyCS7djH8Qa7Ljpl6yRjRYJfmiun/asM+i4KaSA6VJpbWFv3KIqJ6K7HUx9i7fZRrRqWIeSBwOsO3kS/YvnKtTYA5exhW4E9b12UFwV+oSUBvR0v6zbaYrOaT3u2aZtk10xLqjQAMS/xKpEFOAlJi6tIQdGwQgnjGlPkh05NSWRhfRAxD5kIfE7WqmSmHwWnycUSn3zkiodxvePMcuPDY2Wm6b/JXh/umIlCb4/W18RpNSTEZNu0z1u0ofHqIOXXON8qpvCbgIp4t0Ofuk24jbPqlBetCRz1/5VXpwB02hAcGNF33CVQilVZb/Z9FubmbyQ04zl5qVCzVMSBhy9ncBV088TMCaP121VYUjNfUjAVIyLVuPxnp0qrjcaZVEZjfStUFLb/BiJVRv3LkheimpiVAUBXWPjJvsnSDLzDGg7TpkFMyFWIHHGDaquAoidaXNVRVJZsA+Z+1KkO18IqhwrhKSUrq/LnWNvvGhtFFO370yan74WrJI1LhICsjkixFa4aUiZC6KBnicT/HQ1RxTCu4YWPTzsr9XcJmRB8u8hfZRJMsTi0esaGHeXTGQWH4Xh6l5B39GdRo3rxLLjCXjR5DwIfVL0n9VdcbkvFPQeEcb58Uh5ym/fscWKhHU0w88vEn/g/HhcuTkTA5faNk8PCGbS1eVXGNcFT5hnFjuzQ+NLCWms9q9ThBFmSv4QSIT+Nt+F6qKd7rHxkxU7Jq+eD0BXoQL2Cri2oEFgWAkiq+0ueTpYb0HecCPkG3Ki91+bX0rWvtyOk7lsG1ZTdgNVK3LZn/7jzsIZcAKfUyovUQlFbVOos3Pve2DMiqotXioC3eBwNKp6jMJUScoO6GuKlxZLXu/UWG84m/H0pBPLpnisWqZMjAkMj6utIPqRFwP8/BG5a6hvcot33qBwDKpUV/mZ6MOVggiL3hI9DV2iMPVRt6VV52MveqFgmsTVlPNq8p2v00/fmq42oHi0Fky5A04YpBQ/S+rubldP2lEqrh9sgwIzowzd33cYpr+elKou6Z9GkGuC7E+4EmDa62qbD8p3oUr7TtCG2DE2s9dQ7aLAJx76IXoAinAdfBExK2B8WzQO+wTd/6Hp5trf/ql+3giu8j4si++9X0EqDXdbp4H9hNcl9j00oCjGRjoFPBlJBLVQpRVLEtw3hFy5Mcugj3n3H20vcNq4YOamIsx18AkxgATkKPZ7apgIDd+C+9he9Oz9TvaKKTFoxALz5QcyNkVJNVak184rDMnEap03AkIPJ8jFnxhfbWdY4fjcTbo4yWw9Zrg1692X8JwCv+j90zcpgV9zj3qkYdN9fCxcQvR5FKwKVwE5Zz6AMZ3L6v+8XDE9k0O8FSnVsvj+usyojccKkhvjDVkg4YKZmnFrJ52yeRTvWI2cQcgG9uCgPEd28RoteZ3zrxh8wfdEZFOQ/b2kn50cJmm8L4sWI/fJK+IW/1c3sxDO6yQ5ORm4U91lVVhBebi60sSTtEBEIlyVhLZM9a+U/qgKdLtuy4ExP9B3MHOj7zBLsCmNZAAO4td8/DjD9giIBBj/c5+zhK9zF/qlWFs8V8BiorKnflZyauCuhHlOBFlVu7yGfe0R8ELgrgDogyYhvt9R0QvsMEyJORnoRoOWmuVHC77GYGnvrvp8e+5xEt4RQEfLrKMA8h57sUKcRxx6JmIRbXnDXWAaA962ugBxq30K/ZaklQ8B2gFuYyMpG1n5pIDPBsj5ElvUP5gWzUN/omswt7Wg1HgTNbAnFru+0DOJpJizxua/5gMnWRPXLA9/CiV8Z4BSO2yuVCtgdwgXK5Abj8tgn7ZrrTxfdZSb8vLP4nYppttxGd1NHX6UznJ3FVNx1PkTdwpP8If0THuHKtp27x/p02J9w2UeRHnmenxALPg34B96MpWm6+OiWeEHFlueMKwaZvJyNDtzNkSI6Bo/NDpawmZd1aSyT4taHdr89Sq4KOPYsk1YuSz0LL7ahUga/gebzrm004ffAGtA9Sbf3cK6xk1NtcOJfBDwcNW6eNQDs14RuQhYfdmAs92lc+geUrF+nXEOkO3mlgwXVISopn+Xs6LN0g6dFXGmzFtwv0DT3RPVTNSMI5ubLxjPrtWmW6LMj/bhmSJbpIoidUADKcmcJ9e6vm3tMmwcTO99YPMg04yOEkjSp3WZHfig2c4u3bWzxeTFBUR+sRM0bEEi36lDnl7xzt6oL0AYSMOFgbST0hrzn99zEUoA7N4q/6ZEoxdqkK3HzQAFbrdn18S6cjLD11h5d+B/PrgPjr0Af99NbVkVrT3rf9/3rwgV18my0Fi+yQSevHKxOLhAP20/oalO/i7vcuOVsmvxQlK5izkI7EBFwbbTJmWoe570m7R2Y14N+gJyNk/f1uW6OjjhXIfW1hF+sJ9YT3WrfDZ7kMCZ7I4aTfmB30FoCunM1XqjiQlsd/ilRYOqYa++TGlc8G8tcUZHlGOwHJelmSzHVNp0y5takU7Om4sXhgI/NtpqfsleSx/AjRMl7CI8jlJp4PsyLRd6GcnUDS58Fi3EnQatRq52nwqrqa7zx8K6Uh8bPhKdGSgb8wX3wU2vCvor1Hf4yqqQHrJx8vRn65QHZNyTeZlcX4MQFH/3oL9XMnfdQNfzpH/WuxaI8ppu6RAin/Gf6LiflSgKKvQnzW7Pb+diww8qbW/8hspeEIIV4NO4onSHEu26hRB3Tx5NXq1Yh6veisXwHOHw3b6d9Pid1/BFS7g4uaVj4s+vNDFb7sMyC5mjoS3T98K5FuIAwIyrbzf8mxoRoziWZl3VetTvGC5M3fourrKwE1kQUML3sTiweE8ZodaqNgMr1brrnXT9hbA0no49cxR4d3eZoDvFHQjp2uj/Nojvv1JAJahdStqGTIcTNZNnKVssSf/f8RJJEVeDSKktL6rUrSbGANaXYgYHgICnsCW3bjpl72DyXTdk8aQ3FLPDzuiC8YI8MCQtpq9wJVJAMpt2Pe0NLMGgmwRvRpSw3FEVsB1aA0MA8JHs1yRWAM4IVhLZ+n7fRzDElFZ7vDA+fQOwVp0xm0UNvD/edUbPJGISjcHu58PHvUtGb6p3q7Rr3M3TGWjEt4pXqXt8ZbvZLN6kf55gUu7xFHMEnGxlOIKuQqlKkHvqr4T2lwOaZQtyB6sIO886M5xXKpliOgLR0CWflAGL6YaBIUnTBrvp9YCYXA2pRtPJwKSDJA1+r5G7cu0KR1b/nEappdp29a3lAceNrcAKJDGz6wgQbKOt+47ZF+7zFLtA2kTansGJSc9RImR3knvd7pHQZkK3D/RUPlFtltN5iKgDSQ5as8mAXbQCZnvGRhkUM5atw1+z7M8sEeBDNgl9nftBWji9e5qKbSn6Gcibewvoey5Q0o2EtWl1HIfIeu24Z7o1fBuWVBwioadHYQHBOe5XL2Ol2vI2nDj7fXzMHITAYX1kk+u4mqa6DrMo2SUybKYp8F2KKVCCfEbF4QzThu5oYg2oyXLBpM9ueqjw7yo3sa1+m1fZzZBzMD83sTrcRjY3OH2ruwKtObVaYAwuNtvW0V3TDI91SThR9Nao/VDUj+GRx7SPTNsw5nIBEPrCeMr7Rc/YkuhwboX7tuFLgZ1WyxnKCJDMhRCWupBxdTKHWZQYn6nfszq2zr5iur9k19P0pD9G/ZDX/JoQ+FKD/4U7BN5GzeQE5NYJ5sGSgs6DtWxRpmzj8q4Sfh2xzOOKvCJjcDsSrIx9WS3ZKTi2DZSuZRc0mNUIUwG8DIXMa/9C36uMxcZwygSnlkJkzVZifo+fDtAAJqipPT3h1gqD4nE++jTTchGkDAQROzJVKva2H3eE1I4bHA49t6/8Oup0+tOYI/dyXpiEfrwiLRiqX4+WDLmXzd+lidcEvpLQr/qU0kmpB/1Z2gpvFUl1v91AoW0UDXrsLgkq0msdUO6l1gP3paERrGU7I1Oxu5ohp7TRzTSIxifrea7tJEQiFLJZOSzT1iXdOZyQTC7jMYvAwYzREnkfNetZdynD9SYUX+Q65NmweWSPdt7ViMN8R+AZpKMNDzvYn5lVPsW1XCHUrjhAxkYcp5YPpvTiyifIi4OFDhc7EsLpIU7PcKEn6NH5BVnCaq7/TRugnK7HGQ3lHuWh0zrK/AgSxvGTR0SIe3kda3/GhJg6JUfZSJ9R4DqchkBeSe/NdalodSaeOz5/fmUioZXjCAxOHBI7wsY6BNcVo8Zy1mZLRf/9c4UQbmbviCUljJsX/YYCAwDTapCKSx2DmPgIgywcUIn5UuUxPJ5OL/YHSS1WB+2hyrd1F88XUTZKFxf+Eo7wob0MxPE3BYHCm7g9uW7nlLTBho1nR3fVhsp6WQ8IvgHJJqYOwXW2VG8dGgCSY/cRLM8VczEzBdriz14RocpbcRuTxXmQncEDfYcVIhttcElD4sRA4erhYfKql+UTPS3iFapN+hfl4rnpKQTw+fpmSL9nEByRkNi8Dfw+iv57mUVYvD3eL1/ne2DSgvi6SYSYVB+G9XVZndH57J3eqvYx7+Tcb6+PcHb9r0riC+X/aKPsrHoce6I3dvlj+TcEu9Q0kClYvjsFRhVkcnwQGcdllO60mouYhRhAlGDcExRI4yVMlSJ7/WC4mDn5jL4K8K6ltp+U84Bi7o+CyDF1xfXFPcER6KVHKMzpDx/zyzBVq0S8BJbzjW4jo8BmgWOwZvio6qE7W3rnZKvN4IHTsFGYd4K5P9lDkCdbYmNh4XgegPUYIw2MZCAE+MjDEAz58avjrppc+CGqU6xO/5TAQQzhU1elk17dMbzq59C/By2EEX8bQXkzV+0ibE8I8r9hTsF8hA9mO5TiMbiBYyVTh1QoIAA3FLT6Be62QX8Ufv/mRuY6qPqODSMaswwyIN8mb8iNOibdncZsCoXYhrHJb9CccID1crpW6FyqulLwJfr58Wak582fMbuGr9jrn0FF1IaBDu4yy20Dj1egDUAWZvmmj5DApb2IO0l22dCbOAFQkRZ4rj7Dkc3LZNaMcgN1neVmJcRKZF6qkeMKwGY3UKtQhlO1rxZxqZt7Rp02/Gv053KFcXMiaBOIU/FBzkfJxFypfAoLeMZ4Ixi5W7DgsBz5Z5fuLRsWlsxWJ11PN1FyKRZWJhuo1JYXx0kMxj6k4gWAmVxzaaFHQmEyRrZIbr/24APORPmffyXgAp/Q9ZzxC23WJBRH5aC3ThgOiv2S3VfIaUWUTYlgIQn+y8CAl5WqzZ+Wppx6CtdSoKzIv+sYuMcvRiSAgofJ9Ad9Ai7kvmb70MISriqdp0pjcITHXXOTbFMLIOZSNkxwqfbN2Rgdg2BEYkDv/LuQkadxLkNjx2YHUP8o/3lEFZ1/QIoU8lmgZvB4kvpXouYZxUSoqNobHYyZ3hyXUCs6HaAUZCEPg8xwFL0zLKKInI2F4HR7Ett6d0swqe/xsy235sebV1fHf3P6i9iaYFHMnUFhQg4o7C3WPC5YYF0KWenmc6JSoG5S/+tv6zRJCrQpW41u4tfrkIqUPYxiNcCpSuRVEhYhQZOBo86VvZXniZO0/XVCNba2KTJ8zCT3S8kWb5ikDL2zNywh5gmHtI6BIDJwajgjhdkkYNqf4oE/aAnJYiRmFT/BWGG/5+t5n/XIqu4kw7XzOWV/KguHeh7hn63aUs3TylghNpYOulWslUTVYvAECgRwiG7gBQm0wLskKd9emilCGqWN0fAni3a/71ti4/H+IWoNLPzw4n2YArIUdTsEXejbkNgZMIgOsje5RX07yi2AuB+5ikHJGwVFb9/gPJpeWEg2OjBUIghGNEfnK33AHiM9fkTIJ9i/bYR7HqjC/wpRAOkso+4lsgiK6LD88+Yvr4tfFhB7aNHm1hfZbvIGTLaYFlPXDi0PNEECgQICQJ8Pg6qiuSxLE8cE4HcBAP9oVfJzICLpZeJiiqLRIHbT+xb+GLJj/afse9ymq2QeFJ9IwbeeY23GPJPHOwHHmo7hTdd8KVb0PCBtNhlnzXCfORVP5yyOzPQhSVU1eS2p3OgBv8qcBQbe94XQx1B+QmiLDmT3w0azMtlDWUynRSYq4hpfsVEuAX5h9BzUGExEr8ex7XGbNJFDmiCDSRkJFEZ7bSZgQORfNdwnze59RVFk9P1bgwIFgUpS/7x1s26PLGGjwWyDqUYGFKfglv+gHNsT/LQHXMKnzERe41zeuTa/4+dmCi3A/flyaCSHl82iBxbjzUC7zbutaHTpFdjQ8hkhgMBnElZx5qxXw8vOPXzwMD3Hm66iQpjfMhq8B+8zc5LYnywnW5jb+GjA1jR6kjTu+5UnND6A2yx14lMD/6WasZEvtSvZhVWMcCS+9Ldrq7BD4ZqJD57fB1vsBug2jftBOdwVLTvyG6RUwLCkpv+QWZQ6+JhE7LTKi5hxtlhKXLZs6All6n58CnDWOnZShHQkmCy1U7bnfHZTULFfAy5C+KHcBYX3TSkkyvewHEKtVQWzWPdf/zRxDEzw+x5Icc/ZxlkBZJFMT8ra+MueitQD8LYXH+00uM2Qd2VhbxvxktWC4TRCwH9fj2kOus1fF3g1it6z1GPsK2zkziIEAdx5Ank5Z4PpIU9lhozeLvkl4n17l7wyPk+wB+Ctwfi1LukIkIibjZjOQzxokw2WTZFKF86OeHTxqwm1e5Kx1eCSYnLsa+etaQYp3rt1BtRIV21QLQdiWmDtwYVBPj8EpjhbBcVhsOO6BZf1Dre4DK2+wkoroxU95PJsFgez5Lw4AB5Kcgt8chBABK1Vn/+R8Bsfqe0yRPEKb8kLaynhhfGvn3pwo0i15gI9xPS1CRLG8/orHiao33L2yGzA2SuNGI7xO2/YgJSlFpiJTh22FNxA9Zv0zLLX++JyslxQzvHzbhC7td1M2cLzCgPpfFxMCtME8SA0iYtG5ZgQXSXJG6WQBqJF5JURYWgzFQxQSbBlti7lyAq1ISS5G6++YbAJt12YJJz8bF/QhLHbjr/fwfMGRNMo7kKTb9rVjJZggPIaQyvny2lJxYp69ljykfddd7T/ZFCEaGsZuFbmO0KPBWuhsbSguUJjxcZU2mMi83a+IGxCEHxI7jBfLBlhPKasOD+Jdz4pegskF0joHgNc+eId5Oy361/19XZYftlV2io+4XZ8SH7Xzcti2S0lqie7tTzcqi6H2swyUeJ33icGKJOjKTHDpOr4jHUtLWNLPm7CoOWp6Xr8HAwiL+13oY39yqZdUk4mJ01N3d0MSW8u6M7lS108AP26BDdKjuro6ZndXEuF9LhinjgOX3vUKTB/gIq/WxmhF7cZlBLFRn5oqh7TBR6tNX1aKxoQMGsd/lvsPZ4osm4Q1rLIr9t1KduQntUgtoltkrup4GHiQn7NkPPk86xvOnWdoFL7DzKbXNDGfOgdWWx+UvX5TXfwQvWluYACE6LC5XytHNGgorkJ5hwbulfMy3z/IkVFaKA6tJZ3qcey3LlHF4+NNSLTp8C7vSHrrc4B2La+oxpJLvC1NU8jaydUzgI3t52c+HxsRXjxpOcHd5lnFpyEQSJWsRiQzkivROX1mxA3IBLXlTzRJZReJIuDOU9NiMfWeGops+1GFKtAz/wCKCoIwmVC6QoBRpqjoWfVtOqwycqrwGWpYgp0dV5GEyC33Feb+YY+2LggiWUQUckhHB/n9eLzeu7/7Df+CaJOtByH871OBhPa/8VYd4/3IMlKs4wbEcYuOroT6BnAu6QkbggXf1Nppk7Xx7/BWHh2dXihlBSvpU1wO96sKmz3hgxjfvOMGPL6PVyxdIIJRb1CGpLEU/NAG7ubNMgdngYZ5lSON/bmR0Vsyra+6nnyrPgnbO2uKJumrXq/qVvxhE+OG9zqEnrgDN6jHsIi4b1fZMa2S2IutFRcwwU8LFwofH3Le83719iyGmD5RdDA4L5WYnfI3OMAiQKfIxaK7OOen1GGd7Sa2v/xe4miOinkvdTaXZfmGR83b3n7vr3hUHIT3ENdIDsP47LoghFDNVuXpLANAPwzvEEAzQ+DMTwqsAJ4x82KNad/em7VD2xL0H98BhduQLrI+s/MoPYkfD6vkMFaUwQGdAUQ6RZJ6TkJ2CQyZMH1C2qTp07bHDcwwRMby7QVWalQPvPAV0p7QfUBWwRRkjtwlAOzDdnlokQV+XiwI7wYC/JkBM1tDeqHaQCyOeSdpR5lzG0UIetn5dzFWP8ypRRL0SPglXqSFylDYEwFbEL6T8qRoC1bjrSPLGeWoTx22nzRNcKXh/s7SrLnfkJyJXAfXXjXTHoNrOTzWZbzfOviko422hfrR/AewWJnUgb/cAijT0GTBpFfBLRYAsKAkUBGG1nuxge2YjG3rKtrOdYvz+BaWPDxIjFp28buBT/VP8I7oevwsIR7KwzqxyErH43ZS1Pq8e5p5VPvrFuNewpiG89Vcu9XRFsWCJOln6DHu0gclpey8QRa4YEz/gI1w5XEJ015gfmh1BqTueD0/+vvtPqody1duQciF6LyttJQxU2auAcm5USAT1YwVUCDDkMlseYMFxlJLf3bJelzqrqVIK+itf6EeuFIlEPZP5Ktd8yh9jSgXihExh913qCx/klaN+XhNsgfuXfOGjqzlGlh/zZKArxxzn80MSU4xODWr4h0QQk3LH4PBV1iLT7IHDwTEDS0Vfr7N53Ffr8KJA988OjsgEqvfjw8gisF99Qq7zud988bO8TqmKz6F92eq3YEasz27d3WFX+g5qDCSTTFFd3JL3Nq5fFlgCjCToH6kGCbcq1japPWn7c08CApb200aYJU54IhC4T8TV//mpx9QQ0wDIziqJ4G2OPN9XZC+7iluSh28EUVDA5sNC9f0GTXJXOdsjq3Qv+YYHdT04gCgUNgCizACGi0XK1KAmoZBgbE76e+4zC35/bbhnvLw432Lffm+n7l7BsU0beNRgIQ+uFTiNA37vzBAnJkrhs1PvWFZMGBgh3z3S+a9tO92lB5xrndCa3XQEAbJFCdSJEUFni0g8XznMHDemlBaaiymiu2/3IXSlCSr400g0gq/czZeuhuEesf2e2Qr/koNX+t+8VZuM8YNySRR6jAGtUEq7XZzmKjyXSCAA/grg6mcKwcveOAouchos/Y7rsQep382glWpEmg3DKHzId/MCHaYgxUCNzvia346K1AG5xXoW9nmzit84QnnMFJT3XNmpTpY8WCTdVzhBf2JZ8+ccAaFnqQQv1SIp6rd7gXa+y9ZrQAJkhq/ozSUa+dtn/VezxU4mVD9LnrPGIJ3K777U3OKwkJLbopokEcX+Ayw3IZhMeFyer+r6TZSbaGJGcvNsBVT3ya2XnhwJTrNesxCOCyU9SjideGZwBReFh7AoYj8ELZQ2U7CRYUQoJLIaC+SNjT5KMl/yccoDnZkRwO97BTMKzlRaCZ0F909cI3mVDf8/t/9qZV2+YmXvTbFPyDFKwnkn+YpSBVtJG7ELt83u/865S4iPaEHUB8Kxms9k9CAQfzAFCcppQLRFOhVqM/l5NV2tn29Io5z/GRAFyCs7fken5GV0AWwwR0PiL1AOBnnTFmH/UPYaCL/eMIUP8rM/fTlQrna1/ZSlKhed8lT2+Wi9jc5QNIAZ/hFEzY6xSLw1ruO3vFmugvvAhBoft/dfXRibKe6osGRUUFuyWPiocq3+CqGabiWgZuwRbpVo28fq1+J8nZaFa3CTS1FbfU0AeV+FrKtVGZXevtHyhPBdB4Thohd+Ua5Y7SoT8CvESJCmtKkrS5lo+OtEKncSWJL5/MLHHYdgVyzqeVpO6DITQowcX2TDaGeIzyBw2qEAoDcAVtEWoRvdmuftMJmBTtYGb4em0AVhsKpn3HWo8sn85sm0cYw+LY/2w8jj4rcrly8ZL+u197hE+9ZaXtdVbY4Oexu8D77Y70JBnoja7A3c9NK3dwWtDd1uCELqTlIekhLhVeKhoNH1GHNXf5jwMsUD+h0M62uBxkcGyDarBIxSSkTmww5lNt1qDLtJP7TZL4cGDHMBKWEOuAzJe9vIquznEwqjuch+yujb35sQ7dRLNQssniU+tFQEZKkqXy5zCB33kQ01ceq5UJGuAkZPkXUiNQHZ0M3V7jhWym3FECPjUjHD8Rf0HPCEnWT6e8T9jt9LpeT8VxcvD5K6lobOzfr3zVfgoczFeBtv1JSbFC+kET9qe6YqgI4fmJOBWEXlw42lXWQUVitBNptAc06HQUGVbbvAKI23NqM4JTuHGY/ZjLLRNmhl9oGql0dW3vqViht4KRFLmdcYFnuJs64eTJ0Ov05gA8g5gv25iSj4COTQKsVAj/g4WW68TSJSAHtRSJOwQwGrytHstalRXXKNggOZHKQnpxzl7lJnnqsXwEz43avbGdRoC+Bc/5UUyblOQA4LJ3jp8v/7KzNSa/6Bee+MmiXjV6rHt8kgF8zvi92T7xMD2/f7c28mzc2y9bEsybuw8hHT5YxKvl9KfdCyv52LrDsF54ybXSoWldSXbTGiBvylpaXi9bMSw3bqPnRgxqnmDEZn4kn0AXi/IKqtWr5Yi6KKkPXIOGytS2PcUt+p2pgomAMEUH0ISme/dZpUxUrkpw/eeS9O48TduOWjAt+0YGorM0gA86AyrkR0iOw898LVnw7o9tT/EPhCdyIURF4bD0WSblqT9drLRdyydoy0eHcPfkkiiWHmJe6bL8ZF22JlRkt4Q5Yj8ghDwICM3d9K3y5APjT5ACv++i5dE6m3KJOXhCBBSqIAJ8KBxw5NFvBne3Ejxr4P7rujysKGJhMfYQ9vfPKj6cRWTnZxPWzCI7WFLt91Vk/FOSmn1mYTuDQcpJqiVDfwjNx9Ef6SZiQUv8pA0VTODy+hLRCGDGyXJU+CUvJf3sKqDMTO511PZTbW8LR0Qk3GKPoKc3usU7rNRteb2L/LcNLyNVp98HMPSsMiKTuP7JhpMpy7fyjDTaveV2WBT9aeCBjBjMkv4rwzIX+0IC4qKcNEgG11tdthjfpNPWqkRZ3vf1jMgmnnjJEXz9Jjy2FqlF3c9lBoqEuBJ6+wRPx8vF4ihhrDkFkqIep+ROLtUWru80CFRodT5n7jIHTngk1vuqayHJtmeq2bKhZM7ojutKnyAf+byGP3uLDwP2WV0r6V05Xy8KFpvejPyJbhwUJvOxk2yQER78sx2uo3LSjI55Z7YnjMRzpCr5Rd1WXupWcfJbjxpeRqFuLgxQ+rb9eQZ3OA89xDYCUhrrPGk/sO5tk+SjMwcX9DAEHzJG4112axskYXaqJ1e7OUeK/RU2H+Iz6uzcXOxVbZr7fTQNf9rz8WOnkwit8EkuN6Qr/rovFmHxccf7kuDAl0msi+eTiNkK2aiog3VlGDMr1J6A2nCn3umZS70bV+Oa1COym4gdL8WTLI+GknMxxAxEagKXdyusFNpf2HpUQIRSila3EU2i5jYtXIJVSC49sUfpy9DluRi7onfYZ94n3QOUZBGXC70AIsNAzz0ROHCtV3SVtCSoSLPOgEt98TdovYPSz1YGQrIaGN12sU71GH/Uodi8+nQhSSEThtUea4Yj3VuMAqq8Y7HZXouaY5LCPMofudBci+3E2O1Rh7cI3NmArq2lBhu8D6yao2fbbc+fy8bqn6d3sT9QzNQipzrsTRoBwEQb/7GBGwil9kfNw+Trtuy/pBwR3hlMQwKLGK53CZniNoSTuI60o90CpJMXDDGskR0pl3X0OValZvRFrXCZakDw//3QReZYpuhEgeRr1iX2eaxrTdq864VmkrTIku2xcKrdG2awaK+zTcEAW4gfRurQvLT9wywhRJe4FVqCqNn2L/0WUNoCNv0zm24MLQK0pMTykIHlRtOSVdPLNuh4lNB6bOtsGqv89lZeKM5jct3stT95y0Oc0n871WitKSNKrcVeJw2MQZchkWHILuU22Tw4SpY8uErFAWXUSVCmfsL9s4ib3TJm5dneOhvmWSw++PClL6MW6FrRqnWltX6VdH0iylR9JBNqZH/dD3M1tu7c1+ynQGcftnSbYkB3riPF3tlkya5ZvYBjJtBnM2YQmswZN0vQeP3Whyix5Ujp1QpiDaUOmSMBk2Nz90MZbDa1yydmaHoAbxiS+hcQmXQbnVJNsMNTPHiFbjGL3JK93RcR4PYK0ZIWaeJ8yNzifeD4FElGD81oBAKosEQ/LLNAY2J9URCdsOlj68YjBKQGWgXC2I/k+iyW7Pf7DfJG+HKxxu5h9DwWv2UUbeZztXKrCqA/JX0fKhYttlR2bHNRQmH6rr+KMe3oe3w4XNnL0A7DC2n7z3kCnuWRochdV7gYqU8hvjK+R8WbhwoS9iJUTfcZuZ8jos4LCzA4l1anF1ONoB9u3ZjYsz0MsaJkGpP6GJnvyB0bm1+V+JOV97kUbeNrlTcSBG7oHFzEoc+XcIsIewycxFGojaxZ88A/aV1j/GfqyVz6qAg27WGRlH2RQxRsU38O1TZTHGFNB9zWN4+nfJ9ONXqJd6mGPBHIjmwd5pjcbeOxSN2YpPamqQR5u1N802mzvAfpt0ZL47SWJMtnKnuZpRjdTdbQsyWOpn4uXOJjFT8JQFXpHROOmp33AJ5VmNDQ7917wgY/toW340+fuCfbVorvwchryQdtwiBvsGnhmAosmpPL6nTTVYHSn4sUp7OME2VgbhWPso9YbLlw4gjZUOqqMoYYnsLeisY0UVWmSCTd5FwZLjGVXCKug6b3XmKcKGckT26Nyumcr9RzOSDkZqwaINvOPc5pnS+QAUWiqMmIDOek6tL7dpC6mtaNSkgu7fUkSnlZHnou8FYMFhSVSgvVTVrhfxOyS2WV656YS0yFciRusy5kIz1IL7cH0QzRTn/8DdCPpJ44r4cnOGDdtdpK8ip8nk3PmRiCJkpiIb+Wz21H0PV+4CdS4zXZuEy2Y5MxA/ziwE1U99WAWZ+itoaeUlDZVO776CgY65rG4B51VUJ7XfPQcbjC4Xc8bDEQUySKBFYVHKYFmSNfGBule+yX1rERIKw1np1olg9i0q8j94Qime12EMW+3svZy4E9L+SGYk5Ok+l6TcZEUumEerxB4OPLPeHC4S/rZ0ZLniEt7vC9rqR6A9CZwmOotu0XkLiqwabUvkRQNMdq0L+XuNW/o04iddVQ82f6gh7OTdcIlgzFV+nFNBM/atym095S2D10bbjpHE0nfKUnSjinpPOAhQ7DBGQg+XtS0vrHyiO3iZ8kgkRUFCsGqZJTw5qPRKQFcxcaVKfdTdUPnKI98sfdzddnDIXw8WNAFGPuQhBK4d72WMeBhYkbwz+eh5TU1/cDfRji14v9D5S7stck/PX34P0v0PW26CMRikWmi70n+37r64pjbYpuc6SeM6MNRAAZgk2HeDh888rNNfrqnFrm0IHf2lQdjh2yCSDZSQsiiE7PJqkqGlbOQEBYEAFpyXNbzWkzcLUBXaFwUccUbqtVZ0bej/JKzjqES7JEs13UIYNdDBX8fF9rYAkqeIKlEJsUX4TVvH3LouhNnGRW674hFqTjjBAgO17hM0ukNJUpQ+G8bNuOrzEnChK2rejBfM5SnyfmVma2u0gGmY/X0UatgCzonEko9FMrRgB/MZGD+yzptjQc/z3xUpofeujtOq0jGJ25xDkwHkM4/zXHRYSqGt1zuVlCB9piBDkUkaCz1Q1Yd7Bcn3/5ujZvq31MvR7Uf8jdiJglzxkMkxfFI5P1uqWDH0l5ujIwZYsOyc+yvn2Pil9K5rWsxidD6a8gr8utUuhZHnVLGP/ZUDWQyD+rftmoZmgu6LRGwA+7wSKQs71XYlpIMOgw7/vm5HnYJh4snUepP8vIQlQlPR0YZtQ9tBRqIfgYBCQ7/bUmKi+uZdKcx39L1uM7lfGELeZffRHKs1Oqce2qBtz9TbrlixvtLbjvXUe3gnvYVU4pPAPVCJz8T7Tcan3W5giiPLlJlyNUMVhXMqPk/eUmkSSqsnkeQHGpOAHYFPjqlU3tgJ6frVlXP7qliVBLKGnuVNR+9nE4k5gDfGzEHhBB6gA9jHj4E5GnBdhah/ohJIOTYb8K7nepi1Uis+v29aD7tc6MllbP9REwfpmnZACWbiHsueITMpV/VyvKI8CkEc4tMKw8FlYbQcxml+DxP5OMWaYuB9+XNFQabigDcAk2krVeT6mQ9QyT0jc0Ah1uvYwJR8jW8on83q2XcUpo54eBxgOpHu0Sd30zsErEEFkqB4AyETOf5qPT8uk91wZij0FKKq6jqy1PYpHgb2K27LWS9fOu9QTs37lgwQhkwZzaaPRoLEu0qj9NAWaFaZpx7LFjEo37qlR+6DT+NyOBM+woEdzzEb/eor6Rf3YgmjK1MIGgS76eRAn/kw1lrODx5fTytxC6tF7MNtKaD7t7j1biTZN7ddrBDtDWpKY/+Q6i3fuXvSR3etIXetnRgbi4B0h+y+XrYVBtGEVaSTw19xxjC/WSG7ZJi+Ygx09QE7cxopo0WLmDhX21+8TD5u/FfWw1YzYUtnKA9VzPxMkYHSgHyuV+GBpJJmS7fyHS0Zlf46Z2yWvbjXU7HwxB49OinhCE+RAQ5kFIDk2B0D4jvluaPPuQ+1JCUnRH4NiktPZEW4sYMjiB4leag4z7Z2PrM7B+PlMN+AEA/VDxjxNoUbfq62kz04hHhuUjaOUA2w/CTrA8ypxdKQE3mP3eJboXndIpEZTikME6I3CCcKSKCtzJ54w3qNm/8yImdT3EZ97UfF8y8Az+XxPOqcmwiGEEzy3rVI06XHL1cPTEW/UYlbFV4qTHW307SttL1USADtagn5eMZqmLKffJ4z42yWaStM8y5PxAjdKbSBj/Oe6z+9vddgewgozyBwJr+Ko7u4F9KbPR5fLJ/vR38pQiTSGqlsmv6RVKTxdshOLzqf/6fUPphL5ods8HYKtzL4rPwlhWstuAQk4Xvrvw/GockcJcJ+/s1yLJkzuE0SCGqjokx8N6s5JjRhXmFTNlhaw9PuC/O6RDwfCmV3RM5C1vCSL/8bVAjWhfFnQsfynv4E5Z57uUrQGTTm9Nczz8TmHRmhyaileYglj5vihKEf81HpbIfEyhYG93UZmYOTCLoP90O984xXl5KUCowta/5v+u/2nXD0XVj08JFq7Lzz1ssOgK4FcayKZWbqZi39cdKI4NfyhJ+lW7ffM3WpNFU9mJFcWp9U/+byJIy+V9UYFAMG8rZtK/0m7hXwEyS4SkwHpbgENgaAvvlfX1+hzDsPDjYemADaqn4crwaaBvzsolUylCTrF/0W6OGB/+ltF26OjTBFKA+bUQv8vcpgzcHmXQF2GPmaM3GjG5UJ72Hbpjb9xCYm0aRd2U8cnL7t0wrVfB9X01crN+eWW2sZclYoc7ZIwpwWYFy/n3pWOqL2etNr1mvXZyy2sTqb+qQDRv8Z0M8YxYBvD8FGUnFP81AnBhrLOY53yEM1GHe3MRr8GH4nQFByyl78Qe/ZTo+dGdXEs8nsL0De55SkSyp755NalWK55MRTCtJvEiOTXT/weHqiA8rLtctiiARQzOzgU9R99A7/DXBL7ON9aJ0b5vu/PuvYN6ra4MubKzA9KyDeLMDqfprUagpd36g2XTf5/5xI/TqnHL5mBTyzAE3yNqd+Cv5o8Oh1COLTuKiMTQFs80yRO+r8pDJT2JPX1gVPpLkRw9MxWPF9pqIseSZouvbgngoj70Uz2VY17R5xP75Vj14lTRcvc6J7G/asx5NPqWhE3nNPYF3e+JC0MtCZRR4zO3gvmmDxTvvyGlid39n1teiW4p9+Du73lOdpR6/i5uMJorpCrKIIHdoWvQBC8a4GZCHxQ6PgdekTAFmztmVdo8nStM5qoe7grywzuFGgh8FRETQOE/P5+jyFzGwH4jzWPu8lcfmiYAQZNL9ooaGRLBYvUpi7TnV+vRBsrk/IG9ZQuQsNtRuRMFt/GD9vHb+HVkQ+G24Z+AuabbTgdQYHlPBZSj+MGaPaEJ+6Ll46idsUOiRD93fH7AxeaVSVEPhjyRYxSBUn36an1PhnLo5pRh2b4ZUYiXBGYd3FPDucVBRxuJugpIVOkkwNQfmQPFGWf5eDcl1vP+q88AtK85Smwwv6DeTrlJ5YW8O7kBuRAWh4U6aI1Y6qSoIgvU+kO+DdqgzYYvUSNUI8JBNUDGJvFMfKjzld52X4FY7TThinHkNuIYqWsNCaCFFB6UYKWXLa+nljpH2xaXc4roO6jt9ax6OSB9zdowI1UgOOyd44Fb8+4K1/Qv5oxL59hWHxK85Y6k1ZAmC6pB3OKYYa+4yQ/OFR/qJjn8HE03PwnTaG1F4yYrAkPoA0N1mBq+TVSkQLHTC2ePD++aoNHhdBq5nDBQZdlvbobDLFtwpCtQlR3x9clAAh4zwXVSZVTsIEIs4raShbm4Oq7leYub+1SJ2/q334ySm3i/HfZXEsrfM1kz1A6N2G4Jq88a84kEef18oWi/jxD3CxgsuojopgNWSNFbz2ibRkpXS65GP+/jmBPB9s8pvMVmbWuBdbcvcarUMyPYWdTzuVgSR00MXcBKR/u8ZNCqrVKKUwUEfxGIgoLPO36UrIpZepFDJzNVfQ4gNTsq7DBWXCi2SKGp1CTC/UdWr7siBhJvfca+DHLGMn/0yzfmfF+eQ3MqLUAWEKg1HbE/gZqu8NH8Iwqc9DXz5QVr/7KRj1BsdDlmTgV4ZT4Y5aPwp/87jxzLH1QfFhQNdGgnxaa3n2YqI+vrPuaXJ+IK3EtcP67owzMj6V9/GlPYeZgXLxMl5iqX54CK+ZKz/D8v2kwgWS+ZDhFuRl+Z/6VshoL7yTA6+wfrSC/AVJ8ebbQCNU6pIbP2KfQU6D5v2nt5PaK1K8Gpoy7UFbXEdpalIN7neHnAUal0CmL6XwKlHsUealIh0c/AgxSsKJ0TmrOE5SFXrH59LEuu7OLs
Variant 0
DifficultyLevel
512
Question
Which expression is equal to 4r3?
Worked Solution
4r3 = 4 × r × r × r
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which expression is equal to $4\large r$$^3$? |
workedSolution | $4\large r$$^3$ = {{{correctAnswer}}} |
correctAnswer | 4 × $\large r$ × $\large r$ × $\large r$ |
Answers
Is Correct? | Answer |
x | |
x | |
x | 4×r × 4 × r × 4 × r |
x | 4+4+4+r + r + r |
✓ | 4 × r × r × r |
U2FsdGVkX18SlUIK0lXtNpVxoYFOHKTYzn9+SoTYyi2cZ0fvDesJ7GLsdt2w6TCKmV/yhs4YpTQ2+/CE4/PDWRTTd26Czmyhl43SCWidQBKGGkkMRXeEDHdtrnFkN2v1fJXcsuCRT7X8YnTjGuZWh4uD8Ws8I0uVJ5kQVLE5RMpbWV9LQRsrZrj4QnZNLUriHb20Vwc1oRn2UPJsH/0Ci90urifhqnSkAlaMWqG6KPrxz8HX0DiAW8etFr0dE0JHBABPchvHp+D/+FeQyxA19cM09Gvu5sCABF7rp0DVTkkSe+v6QOjljHkm2agucfEy3EtRo3QGfzugOsk4NcvxdKZYwPub0xU3KwEVhiwYWQu921Tan/2X6CJJaod1cakItUOZQh40Rgum/eBvjGIFfvXgu+AhhR0271HxqX0ahSjUn3xr7hTe5ISV1b8bG17HLaFWnze79/bPgU9Dc4UuTWDtVpGYFi3jfDr059tS1XajEB9IP95fFNQLcQYDp+9yCoThntabjyS4vPZOYMvsdQufjSfGSHwZ7jyPR2zS/7JtvtfezF7bkW5+rqUGuv5yj513Z1pKCGegbgsAWOSMnPe5JONCSmaNTrTZf+MDBoh2Yt+ZCiAzYt8xWpXYS/OMDJMEJqNoi6GbCjl8ajuoGaDkTS4Ae4EHKLedHctFHc/x4vGFBurukp4cKug2JQOP/93o7kttwYxckt+zUQup0CxnhpK6bpiQoZRbDlmxWTleCCo3hJBCLb5a7gau+suowTTx+RX0qlKJc3Q/EgGI5qLZ/ND77sipEP0XwNuvk0weftOBQn+xDQH30OWWIPw8jVyHepYUHHAfotO0oKkoT738S7+21SBYPeMj8nWyPVjry9h3qcmJrdJ+tky1mqxWO4BQgu2M4A9tx8g9onPKwNx0ZuNe/dBLuiiZJ4fNZDyXKazYAu5ti2TLDTXS3196rwurl3niccBd9kmpuX51UWStYxHbbiAkTjUPrXUd4ycoKUXWsFQbIL4YpXsJ80dBEQBkjeiEX2E8apmOG+vOkVGSZzXBepFVDW4Epqbbmx8iNSPyjyUEs+s8Ln3qetBg+hKXBcefl9bAWTKk7rTsl1eQX2ZA8SEZnoZPsuptKZWTvZEl4CFPsPnNIIvUm6+Q0RVjbYMxECngVcN/qWnIDSkW2KPQxB1NFknyskysgWOSUFNNC8G51PPnd/zPUeGKj4qlQMBEQXe1d1nBm0ZTAbGMcZoznDelIfeTsv/PQu5jeNxKVCb3TA73/eXrbFvbYIbpFsT8S53kQxTM2kcepNDcL5CXjLGW5uxOs4jZzIzKCLIRDzKfBreu0wsAfROx/7wA4BG4tUMEebm05sDYWO75Mj2vUB6RJhtPTo11OQ+gVx1+DI3DklG6rDsu42UcMVsfEtxvF9B4WZuZUHsl6yIy+Wi0YoyBfdIjH2UgAIf0newXF+6O/8l2RURxN5aGK5VXMoe8n58G0C7yA8VOpThgLifis+Tkz9JyZ3sS/Y9/oi3Fo7lwqSnWDMX7Rnchp4YtViNAP59ZlW6lEL0rILmil1O3q1WMLsynwJZi1LXbYvaGnpkTwX3Vwwehq+G5S+o10iQZlZsEAGfFvwejR4Zjl7N1CVt6lMYZ63hQi5s7LtJ12pDW4JI2pjWskG0T6tkgoHWJbn0RZYkvYjh9+hPjQjjCunkO6pe8lJX9yCg3O5WUMIK6oCiFcQ3EYc4YqwBUuo7+Pa+Rk+Sw10FUVp8qLaIY2PbVvzkATtrSJDRXiz8gmLDozQIOKEkAHtRQAQn2uiKK5QxhIrdWd3YFJmHk2vKn8yi0qCshxe6c+SDlHJCrPC/VxMtk74nexQYcASp5b+8xVUnGwh9sGo3iZ58uc+NTZQHh9OwXKgJy1N6SiUJRPCEwri5+j8EnDkERA5wlru01lTZLe7VovK5e4eEtJ5F3UUXSAxhiqEhkQz3wLf0DP6th+9b09ja4xC6Xf57HlMX4Ura8DDaTd/f2QoK404DtnZEy9P3Bs6EUV3T2tBSvOk/mTTTijv+qCSEcGzJZZrSrQMsFUUK1Qj37YqEK8dT0ZOBghz/qI1uadiDsM+u4mGw7qAqlAt3PFstgWwfLDTtCzXPbQlnB19vtEdmfkY2Mxv6bQpBLcd5eZv3tD/sRgVK6teQuWPd+x31Bwdw0mTJy2vm6NWwKRDObx8UyHXoQBEII3902kqZcZ+udAKqPQwHjbHWLXLdMFd0Ml3aNCv+Fn6+MCvO8KED8/FMCGoNJ/dTxMYRwyUjfXZAmJ5a0xe4ytUxWLWIj2C6EQ00HYkV32YWNifj/Gm0w9Yoq66t7ey9y+4TtQ8NcrUAuVWru8TrFhY6Ajlo+J4jmdPtYK5S4+vSPT+tKEJLQwzDxtEC148Ak5pE0quTd7ugRpa9YgweVCDJ+VhrFInj++H4DPbDzpGvPL25SpzyOnaa6EMf3kAK9T3tucqgn/IGvWXXcoTj4q8xSM3knhGLaGL1JCuJNvddKhiPTveo8QIz3j4gqAdv5rA5DdmRfRbruTeCpOQiwKpLtDTSUlznkb1g7v7M8EnfLEFtD3VVLZj6C0LXacXb0JTnom6aBg4GIOW/A/nMsv53LnfeylvH2DwMvOhsD5VSKLjT8flW1MBEsk2HQzqDuOHuJ4KiGubzGUl3yxBgzQ1aCElxK+/aMbIa/YMVc3qqhXsF+Y/jWoC0VcjGavbg0ezhamL8N+ksVnA9AKcKzVzLox2+61EWI8s2YDVehDgNYpmTzzAlRhBgmyBkUrw41WY1MyaajWrFR9mX6vC+H5zgebj4XoS0ZHU+CCrkWNVn+AcCk4aI5qNLVEsKPIErO1YVSJk3GRRQY0cmWAztChfG08b+zUdsQAesiQXyhie6SttbVcvfZ37OlwMJEY8tXH+IVfSJ7/FmJg5rZmSivto/W3qPCHGcMnFGhlwHfptl7WORfLopXL/gA0I2Ep8Kx8y6G2hVB+KRGFbCnt3U00OFqqEXpdaG3FOabbrtEW40KO4RNp1KqjBJqn8VBEnKVPMYWCUECoOdqEaW44YoMFbikaZT2zDtOxleBBcnK+AjOrRL5mxdNWMmHfsR2f6lve41Dc7+YcYdkJb/a1gkqsOHRNNNtkza4ALMD2lGiR1t32dbL79q0VLrFh9G+obVieZhZn29q9qdm1aUCM8Pw8qDO7g1jvX66FCakyzLkvgoyRaw8+Fpj62lEZPLvmY2TbdL5Ne0YEX7hCaIGOFmoKaeoX49tpTfjix23PLOY6KLEI0kmiG4djh3VFOAgwre1aH+4uTONZ/Gv9bSpvqkZ9ja7urpDB0u/QTDTraPZAyYLfAupDgTMLseVdl7l5JvkwlH8dMFg4tFjFhD/Nzso3u/9CgwNnQKfveaTJFkqE9hf6xRTGvsMiJgPkiUF0d7gvLbNrkRDh5LEsrsGf6F1TdaXGkiTvOxHaI5ydJGLSiTJHkum7XquphoJKXkQd90XlgJZ4xxOE4Lc4zeiPOvnjpAG6FKbqsAJn2TW5rHZ7PYglteUAh1a963Xocpm1NWuUZbgk/GeZ5KSo89Pe/hmkRMVK+7TaOi7zR+d1DkRruafeb9OiCmanXT0AAFUZXOYt4wBnY4EA7vVfwsIAftDJo1OUo6o05If08AhFDhiRAyFFuZ/yRFuVdbFo9njfP4566qtgYhU8IW1sT0NnCIuARXRwA412Aulib+jkFzAbPmZiBDGKFs5QMq+piRwuNhK5zyEU/0hZ3SK965fCZshY6WzPzVQD7wR1t7PzY+vjNZSkgpYhNVCt9trjpg8+OmOfOiUnUv1ppIcQ/Xod/xDuJ8jgrVJsCWUCs9Xr7NCF91I0qujzo7FYbXXlRnDTpE8rf/sMfrkCtf5RdcomYqwnZ73GAxdjeQ06nQID8ZGzuxrB6msZ0Z94j3nypnbUU0Bs0L3PvU7NBjJ/YYOks7QaWdq72BNfSE2/HT/ELXaMcArjR7Gy8lN9h1eZU3vNas9qkgOgLDI87B0zuJpNrHIhkOqS+jZ7B+DmiFLkxKMrhLa2tW8ejKrXbcZ4y6VSR62VZ8XVPfhgB1jY4u8n+JR4wZ90rRnCX0NEBUHV9G12hGnhftG2QAo4fscHj6RlpD1UgwB9dvRAOUnEmaZa5aPUNRkYsdF8dn+Bf488vnBStBvBvrGRhC4h4zOHeU9gdg4H2dIiXZty8OK/aV6+2LYlvBuqifKmj2ihfYLxok5V+zpc+A+MSkiCd1KPkC/4UlMXUjQPeTr3sSdN1RebH3NS6g9xhh/+vNU25GWmsZt9qWm5ZX7J482RqWKmkeJ1/psxHLBXAvLzLExO1qVsU9HWdqNNHkCCjkVZ90Llt+QwTXNzZx50x3qsXAqDXpoe97Zpa7/1TjbNbIJHsWt7a+BKJkv+g0IlZlgHNrkWlQK62BHqkSGnG32/2FFngqP2G5J8j9Bcl/aIJWFDPCrpA5DaDnk8/LND75EoCSYitOV4/ntQSMWycuNfMuaLvzNWPDiBhyb4EUPYfGy2CKGK2ngnAMdslnxHbrKzXyPevJqqp8PP5fAa9GGJpirJoq6DOU4tQEqNF0L3qGS8MyhM5artO/aH0roALmItM9hdF/ih0FlnfJKJ4P4SXYRY6dcsU0rFbZQlKyBWGhg/vEGSx2w4BrDYYXGbKyQESyyptdNK354939Y5fv59XojADRXYlbm7fV9igIO0m07Kh9uxWsI7+o/CPY9ytEl6eJtqVbHdCrsxUprJrNP//9+C9nAEKegose2S5oUEA9cFoJAKHuIGgNLsI5ZFZuO0Ju0RM5bnHoJRMuqHtjD4MCIRkOj87LlgirH5IF/iJHVkvMaPY2XIzMxgGXe2aUe0MLGWNNWb8fSSjpZI4U1NMw/eNmxp+wmGnsv+ZJ3GuLshUoQDMJXKLT9nJQa/w0D04A4voE93TLpJDM1clMJZ66WpUsw3M9jN0FjYIzO7JFpCYsQhg2zOTfOHJ9QcsDmlWPpTrw6ve9D8QiOQKvnvflmbI++lt3x9HnolDvv9eYvWq/tzgR6anFCk7aowLgT0YYvwdWSt1ON4xo3DHxrcy0SvfGdo0wxdaqlsj1UAapCJm5QZcSGNxoIyLxQwxLxD3+XMBq/9P6rgAKeNkAgTgtrX648rT08VhwYAKOklCNCUC008nO3qLHxIPPKrK5Zu1rFB1RMWEH5vN2Dt+xBm8OxC4eEKlZpdXdfUQZ8eIj3tNJ0lYYvoya3LK9HBuBLhdoL6dEElUEZfWxFU/BqfNHw2zoao2rNS+v0lhBq2VherTqgySi2yLh49/vX//TLkGbD2chHW2HRbhZOVJljXccW/enSLqRNWty7krHT0wzcLSUVR5vttvMUJqZxTOjjQ6XSgnZ5lWTSnjAUIY9WOuHjQfgHBJEyKXDTuqqg9UKm7Zny+OH90LS7auiD+1zDTxvk9xfSXPxF0IfJMWt6TC00EGIMlmerF63CzR8s+g8T5jRaQIa8iAPPoGHX7K/vuyiF4sDJsUFCdzIbH0YyYgvdPfFSwBv/zG5XPgoWsvFTk7t8NS9Tml5yofEeBX5vRVO5zmj3krCLU/5YuOMop+0jMaYcKHF/gJz9nGiSdwRJ/XR76jFudNtGcQSsZCFTSeKsVdkCNXok0PqIsrqgouJFcQS0whhVgQVQl1p/7tAd7+yAw4K9ttMGbpDyLCuajdcvWEaKtLuWaIMGCrtLvQaH0XsM2o4UZhGZfkdJSmSfsEGK3gHW1rdXUEHh+WAiQuxJwtgSYhOCcasbabb/izIhK9Wpq30FNFLXf+HYr5M4S+0A/1GYStUncz9mQ1tvF5r2RXi+nxzgLpqfH3U8+dK0o3UTtL07w/AdnsjGzi3dvOp+12gwH34XgVOTkzXJRNtzGkF4/NAJ2Qt3b4Cau+hjFYK5rOaSkn1qTHRdP3YzuyGDz0eLEvA2PB262W58m8ZoiU1ithhXDbTV+PCpIJA3PILZ8cnhDePXrN2sdWDggpj3FfoB9kurw1cyXuW36vMY1qQs636rRiHQRZ7XHaHFQFGPwmLaFUE/MyKmPjR0BLjINQawtR0pR6ursnY7KSZUjQnD7c5xob3a4/X2QhSqD7j+Bs1jx0tX2BZ/WO7GXJTIO6sYbgVu/C1zmKP4SBu1bGIExgO7LDmetDJfRsY17bzZ50atx7y7pJJWOetHdd22p246sVzP3iy0COgHVSspA2YqAYuD0KpFhHImGIYJDqMP+oLiTquujb5ZpJVRRVruTOrP2jvF5HhR5t2kWYfOIVUD3O2HQuZDRZ1ry5SPfWFmlyYWs7AmAvNxfIhmeEmYkb84JzUplatWJLdM5xUMzbsS0C9ZjYKbMl8akqprL2gvRa7WRFBm54k4UnqlBV7OCNAeaWgVCyt1uC32COk+RpD6uMS8gYvOyQ38SMURSdoRlkZEEx4NdNOHfJDuMZEcuPp4k2UtrhRMTLxEsvNDgUuKBsxFq53ot+QJ+9+oF5Shrr6fgQeuzCOLG109WaelmKQMLR9wHtd3MBQ6kBEizOQ9lK80NHbsMOdCyYkhbNUet+14utOaf5UhIiODF8ViK13YNyMH3cweMWOfAZvNevPeuuMhGejMeb/Mim9obuEMNRp0cj1O9ExVDXH0v7Bc5CsdPLaKoRUCW8mMjP3EI2vpLV5fkvTSim/Lv3ZSU0/wc2SOiphVX3TWOL1ZigpuSrkatP6itBYcIIZOusDUEJ8nfSimRAT/bVTIoPTnGRTvc6YB78j0noV9TCjOFLV3MPTunvUqG5e5O5j+BdU5G9EOBuyrDipn56/lLcOfsJH97j2XstwHMPK4yY2ZceltA/QuJb0zm1yBJq+VNwRzOxVGEbbF2Gw2f8kHAYf5EVffS383q8Oj7aBo8I4ExZEdxVet3RLgxWfSHXWywk2osFrVSbcJTiFRIKMxDcZb3RaMCO3boqFtACeV9XieQdTakF/KdpQpmrHe4iMc5AZ2cGrbue5jE17c45UYsFbgviAGpb4nyg/d3vXEcWQsfM8vOsmZAP86S7kaJeSFTeKdBy82gvBcFCv4h3Hbb1GDfW8POyUTmB0GKP/32KYOKYaR0XcE3ndyGsOwbrdfTpFhp6K2mJfZNoFfvTX88OqNMcfIMJvXpMpTamGLBD9vNWNETI6cjW+T9JWmApCLob+rahaj6VNykM85CST1CKZUuGp94j4YJDgm0XgebIpNNNUs4DgV+LZmLjIE4UqcjcG6+wLXvmcC9uA9UUfaDD3Rw/wfAJzgc/pLCyMyFrdXgjCZ60OQeX7GSEF8NTypg0CZkLbS2u5bS+VuF0LScf9TuOFQQoVy82i1Zf5vukaw/UZMCTT6b32bYEjQIJi4Gwv+2/3KOJzEm5thy5XDRuVBtFZ8qonueUoGysusJK8xesIIn4xigfHsIxhaizqakYab6FLUT5pJKjWEmTpfH770G0kLvCsjJDBJvaMsICm3lxyYR+hWEQDAhRKgL/SokF3GadVvQUlNohRmZBotz/e9+lj8GpklM9Yt4yA2gV/4+4a8AHYUJDGENfqwzx/qvc9Pp+8p7bU/xsYSDdV4W1IR1yBq8WrZkgPLjyuhXQh4jyTStysY7rKvOn9LONv8bxtAZnBeXg//QZVq+mewVn0jiZjNjqO8MQ+H7OhVq64SsyT4KTT1e25ImoJQ/PXbGHfklRsOZF78eTiqaSV4+lnH1L2syfkQN6uMns76Y1xvb7WI+fFMOyrKVm6sGjIqixGeQ1ljUJE3XPNJPq2hI35aozc32bOK85BzYSdqstCguUGLMpVYSaP1nJ3kWIvExHVb8hgouVoJfCU7NNn/Xw1R7pdNVvBg7SEk2rJdHerr4bZNmbpTeHQnKt4Zlv/NwEIY4t4njqHRFGMmD/2ALiYuzpgR7PXd+fDwsCOsR431z+D+ypsgj4L1J0g2mSib4Ja2QLJajerDSAo5dRdXEXbeOAxz2X1Y0GAtBEhI9JumH9nCHJbQ4wVeHamsjeMU57spll0RmmI845op46rnH3MxEhW8HIi9ahSqPL63v5Osc6IaBaG8kH7OqJa/rUQBJtVt+yqd3z77MY7nhQtYLkontzWX1ZtZFMY01Za0NPl22EhMfbDrsze8Kru2wyPRtN17RI3Kd6ylEz5Urn92d8ThII6JN0EtOldj41cdQpEKMfwGYXXQX0W2TuR62opcrBV3toFv2izd5H2mOGPG0WjvVgLFbQBF7om0O1nw9MMhIMef10BDhk3vBoeAg1gSRRqGDEZWXjNwENDqhzWSQ19RBDcNNkDe46LnfM2F8VwSlgxQAybSX/nnjX6U/FIyUvU/c5z9zPonLUfgSjkJzf1PHLrNGfirUeCLOGN3iKr6MvqgniBvTacfIwt4ThQS0hdF/GlliiUGhi8htUdyCY51neaUwzB2o2PfttJGtshc7HhNnuXE4Vn4MdwpISsA3XcgfpY++KWDTT62TDttzXnhiqWQ5Mm7uMnMgjimIU0bZoZkxGc3QkRxEtLwTvsqqV7KAMh2PkltBer2/2BIsViE6g9xkyPwgQgLBiJOzrEmfg6BXXfrYSqzFOZA0dll4equrkejz+6Hrsd/1YLLRoUH9ANpo6H8OWVtSvPdOut3J4RwnkUiGu1DzAtwr61FHftD4qR54kZLmLS5oIg2bbDf6rHWau3QGj84HWztyksaO2nNwqGI3PqzD0hrtuSJnAeZpTFDlQujdPlaM3ZYGl4zVwDULZve4CBO7RUn3MvcG9Nmn/iKtyDTokXr5b94ThWcWwhgIBZXRuqQ7n0XFoTXPYHtmGuU7fZuauGQvJuDMS3Al+oyLIJarFKI7COAtChpIua4EtugLsLAjE0PabDJIDIylwl83TpHvRFmPYzckaYJD5ePR5oHXEcrw34e3GiEh+qJe64w6l76/oUGyihVLWdJuxyeMJr3Gmj5USBYVnPSNUmTrGaglrujCbsQKBiOH7rklrFxksEFYCUC+I34KH+2AxPXkrEnrq54rOyS53gmQvlDstAb2GO67FbG3ApeG9NgKZz2gWeqkCrHW1SgxCQdNmx8XoiOEv1ocqfXHFryT/qylUI3G/MQynnFafnSo7axQVoo32Q9ClELIWfm56KELt5g3P2sc0uajvcLvZ+kzElXIYN02kx+QuGGiT5WRJtf/8I73Rm7lliswCTG0ChV7+YbJ2MfzxVq/Q4gBj7FznCnVEiNUFSfoGyNaQYKIl4G5p7NpNSkme/ZH3PVAVT9+6qJqhpxDEKgAVjqp6fa+h6jpDic2hDUP67nYIp79VEtIB0WCyioD7JB4VR4I9BbRUJ/XcTE89H1WRFQrIQP3nGq4gdvnrnMi0d0RormNAgThJ0Eyi9M6tSF+ozDnVjdFOEDgVGh2nEgcQ4N6Dh+cjl+YOKFTSWy2fnGk3AL1wcKIXsPVY82JD4USvc4SLmxfQ95AA0UFFg5FkJAuOHbeNRshyRju+NrftMS5x4rA0eJDoYIrTfzFvKeyFHjpYU94MQdc3pURc2AU6sPDKOzonAAsAU6Wak0oSlPIxhQV0GPs9x30YMSFUfw+38l+lEb8gvQsJK5Ce0QwQRHWvGeUeb1ZmkzsSNOgXD1MCrkN1jyfjU2chCSz4BOxjRW+D0YW+puTQHVKkRD199m1o6HirNnq0ctbUFKY4EbSzDiQmyZypXkYRzpzJTUGq0YifYBObFQzZRwO2lw6Rn/Ias9gPXUoh21ndbqJTytgH9AFWwCiTdBfXr7I3AsBkZNV3hvJnJj6rkGxwbxhxoJkNpaWeQAegGqxUF/Xn1EkNjbqsg48bJfEkCJrnrXsUFFjlMT0RF38Wz3kujczn5FHc+HDtoTTvsxZGCLyDoxcXgendzPQzzM5uBdw2pVwBZjtMjfN3c9NW1lXoLqo5S0qOfFrwzvvVzJaJAY/h0FI+UVLKBeM/m3DF2sLjsVI3PC0Kw9Yc0xFHdZoYGR+tVWTdB6DWweFkrFDdviIHkQGoiKO+fz5SsNuS8ujC+S3IGdhYKudVWzyq8mQrtBg6bez4Qjtuu5bbT4I7J7QXCf43FMAZNYEzjlery6rol3YT4G7bPayQbnTFIxhOFku2MVygF4SP1uT97aFSpZYV6oz+bmLfNTy3zY+sJae4fX6CZ7nKgmly8hwoewcieJfsfJue35/0Rvf32rhjmYWcp2LZib4rWhNtvC9tiRowT7V/9XKaBFwq50hFKaBw6A0sBqVkMTILBtuELLJSz6KOpSngx6EqlfGnuq5uypVDYOTZ4ZMnsF239BabVHuRLJUA8tmgjDxlOoT2naPemqchbnjRRGR0SPq99Pm1Eplw3zZNCxiwD+kg+rvtQBulw9SY1YFdMWBCQOYAriAs158L5ZY2f803di6kYmpfrp0Y+Yy23bZ68XFQWx2x71PIBw/VQu4H6jgmBBCQZP2WAVoaQo9tL2cl7k0JHFN4s03ZI9ICh5ezTatmRd6m7wHYGvX+W4kdu2ZbDVvw6tX4VsQbGLUVDJ7KT0vWtlyoajXcPw1AVBy1fFn665pmZN3pwnURLoQOS2gdia0T/bTwuLger1A8o8TuAkRmI5o2vj1c0lrQOOQdYEekvXAwNsyGd320BxCHocZhneUvKL0FHhkzOHuQ4TjgBw8DammJnVk2RemeCnDvY0aLikX5Y8N2ALA4YZxpuE73glwDp5clckZ/VYhsh1GcgCUWotXQOJtU20cxn22OLCEBmOTa384UM11NafmSWNmbx0iN6JKomfDSxpv98IKrkAuyBek7pUEa9xO+b2ICch+c8Tqdl21hIJVpJ3TvkW0PdIqnW52bzYSIl46yG0GpgRj86Jf9IUqwzAyTE5XgKywXQlPk/ZoWbZllrPaEb2st352kf8a+oKfj/SwSoO37RAU1i4nV2I6PuAGidG6L4upycteuoNopZ34a39PuHGJ4FklOAPTac0wQ/a/ND1letKmfmAMDlJQIkoRMa98sYcYCr4LP1kGzlxHSbSDDZ56mTNtPFfKzrBnHzAG1GdYH3HSyH0SBr+K4N6CEUJ4q5H8ZluYx8N6lINlY412omCZwFVAlloG0HAlzWgqGmGcUdgps8f6J+EypRowxHRXUYZD9wFBgoCKV7sK8ZPnfLI3Muh84RHZHpslb12dw53PANsB1IjrjXkVY8ZmD4SZOQMfM6PvHMaPd8W4/yCrvdpTB8JqJcdKniV7T/C4lmvsnwEzBEdJiYslCOc/fgQEr+JIbMrqfpCl3+B/g5n1navcCWpCvaHFc/O3nHZJQtVh/KKeRqlu7CLS8uJFS7wk1Uxq8o38Wm4rIsDYBwk0UkCKyPdIItsDCg+CI9bNNbbmarxM/pn6wzL0+4sg8wBvJOmMAuBUlB42frp2X501jtpip+BlFPeQwCNP6ai/taMgGJk/4wk+1Zjh+pv1UPnJl8AGffy7McVTcMxF7Y29ZV4W6qc7xteOhplYKqRRRSnNVpyKF08FGNZMVP20/uxgoWF9X3f475JhkvySFodJENU/eNXldtgm7ER9lj0u4/aC3+ecSKqp8SvwUmuOeezd9ofv2N+sM53kqAmpIprg8P/5J7/Ub3akiBBx7lmaMA4dCIWZvihozNKRpzBR1WZ+hikSUOJaa7EPEPAbSUxqWHJDGTEOUjQqQy7+/5tw7Hz4gDEAhw+fSHi0iwelxWMIX83OovisPk8hMhBC+by8knf94gronDEkuEtDaJnzD3fLRhCiNv+53DV2UCr0KJ4kju3wvBduiCHff/G+O3bTy6b4GBIe2zFtX2Dw7hfT6D/nmTSRxTlKuQC7LstlR4r02Ge4Hl8x+/pG0AyahSiDMNaqu7VX+OQQhHg2lGZh8XVMP+mTr5URYFW97md5tG8/rASUXPFIPgPIYFZfDFkEV6eWy/bIogHgT9J4lm1P6vjDahEo+vcVf7x22zXSVupEMg4reNn4yFtaxavdpjtHeX7JDgJQ6q/2cUkmfpU9OQ6id0gV0Ep45hgxDuuInWuSEBdKcnKVh51UU8uGsbyhC4HUgAr+fUYQM48VL2rNNYr/1eEoTRKkzoLcr0Hb4oK0auTsgeZKyZjqiEu4EWqZk5sc6kyQjLY6r4NzDyJFJOPI1SE2uih9owsHSB1WBSEXGUjatPK5Mmer/NfbbMcvGI/gZojzcr70IGrFHiZAh70PZSXl5SdmYJhmyt9AkgHjjIgpROzPQngs3OmKdhIXlDqmtNk722OMp3qfHViW4r3FIrFrhcv+Ah8W9itmDYXPfIIkrCgE5/9ki8xKhFucVmKQkbGSIVAlyntOeXKiINMYxKpP4iY6zdO9SEFzsATllMb17W/lFGpT3gLfVJeQdRvxHPyiKgtLsJeQ7V7yM6j6xLmnTJtWkNNNWOcra2yo4GJd6tF2nHgs/zX6M+740tgalyP2T16hgtOm61x/TEP5EGwA7972q+wdw50YW+HAs6Dnte8MvIvHv/UA2igroSLxt0yN44xqyeDbiS4ZueZ38pFsbyu7Esjm11JFvPD6zSs2YFTApXiB10nJT/A3rta8ulKKwyBJQS7HFoLehmRLzw3i211ScJLRX7I76kwv5Y7qHqwesSE23jEQJLGzfItfGXjLkpV6PWpRrOZB0X09WDJxlYsRzRHS0a/qzo9x70nxGHbABDnwycqLBWhIpM2+yo2GDbxBTqWK37P1ehcrOt91oCsjhI4VB7DIIrwgx/JsFUjxNuG5tVx6zrDDwbHPhfgqJ1jZrlmeIDwapR8ArD2sWwWPbrUnFsimt2Osc7GcviSKKwKxgzWX4TuNNJX4ZTRjYll6YtjMnsWCUgFZrKQRhSIthkYnHF11YBUv/vi+a6y2+OGR1f5io5Dx5l5g9qYr1DJSmNyz95IrhRIX5jBmm6IwDuq1vfvm1H77zUc46U5eu1bng8G6vVogxrl2TsRVDnEEghaKIPXWqz85BKbHsGq7v2v3q7nArOUWK4MI23snhdrFSCVM9sHuZClA3Fu0CcwJTKnx+FjdvG8pjNQbsbSgn0AHJXoyVcsusBEjDibc+8/2Z5znH+WLi7NVaglSDJxmZXNvaxcsSPNXg/69V33AHIpuNlp6MZu/dkJ88LQ2H1Qv7eH6fKQh8rdQ7+Rd5P20sUjEIhzuGT1vkfPJ9FSL3v0t5VZUui9Vc2ANN50BICRnoXuxGTafFHP47zPV6bG4PPJOVgNl0qWgSPQCcOcA9Vby6rYVwPIvfKr2nLe3C5ewjft4V9s887qony9rb0s7o5HUgoUZPjqsimC6Xd6PdySDedaQeivS3J6tU5kP8E+/TXGLl/XZar1d0I3HiETykzhrnXb9CbiN/p2YJ/6NcUsUR37uO4xOqC2HbmuMpVdcIbOB2aOxLt/mSGNzU1ZUeDYOSqIbww1AXPJzDw/1uqADetCIyWnJ5qMwfv52X30DFcWGvWLyMrPbA8gmLTwvwEuXJE2DXq4OrElajRcjPjpv4TE6YJEsFP1JilmLbJSMHbTLytUM0rBlh3pr7Lly1SMNKKj0ZPOMgQNajLhZFbS0DmOiY+/X0/fSXUiBkAcAhPrgcYOZ2KrJMc3mt134XOe/vhC4yhLcHggQel/R5LM4TAd+5AS7oxqZOfS41j21VTo4RQj/5liFbz20ghi+b2/sTo5VpwTNQNTtHgefaFr7/u0mawvToAnnvv1J5joO7SF4L+DrWxUECXEq47B4vbbj3Ol73LpO8mj5KDVKoqI+Jx5KwwVYjKZtRTuMysYSQqtrtPD0FKOMlYLa5v/Gv3LAPd+HRtZuEFh8xDcxPdAeDmeDd7iuWJc6t0h5cxPRcXdyU3JifZ7FFTqjMiVmMhQ8SYH2bQIDTGvp49vNO38aguQI+3y//iwfvKNMKAGkeADtmaRXNZiZBvkL41sX/Vp62Fg0wOaocOXfLbsnhweL7ZGLHi5xr8PHBAwD6T7eCtHBaVF3I4fmQOGAaiDB8RVJtkbIO/a74oSpodqEJjz61D+EijXFpCTBoc4tesyoSS+xwqGgcAx9dvihSy6vizl7epu4t3+dDmHs1qgcdhKx/7DldHZcxxWN7nb6vmpB9fO2qORPFsRfoDzD5klEjBe+N4O5TY3zHvloGkChnzqs7vsmEFnTBw9Dxhd9yZjzsMBsAoAdYejUfV/vTMsVGvh0XzXt5Sbw/cM+PeHlkFAeBmvCuNMoQfRWb55BlPrLug7SVbawy3SAMzrSpitqOGilqXlzJpF8XuSTYhqciJ959cuzbRmA/4KSqXUBQ3/1p76W20JW2XuwHhhN960PYYN2+754Hm8kvvL5CK6okpWwSw9BvcnodjFMXqywoJlLgQ2RSr+SjtkdS1r2ZhMtIa5lKtS
Variant 1
DifficultyLevel
508
Question
Which expression is equal to 3p2?
Worked Solution
3p2 = 3 × p × p
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which expression is equal to $3\large p$$^2$? |
workedSolution | $3\large p$$^2$ = {{{correctAnswer}}} |
correctAnswer | 3 × $\large p$ × $\large p$ |
Answers
Is Correct? | Answer |
x | |
x | 3×p × 3 × p |
x | |
✓ | 3 × p × p |
x | 3+3+p + p |