Probability, NAPX9-TLD-CA20 SA v3
U2FsdGVkX1/LWu0U3zW9yfuE8ZJ+GYL53SLTVKH+taHQ15SJm0gWK7W6RgOGNS/BpSWUv7IfhbbhVH+yLOsaqsk7MpGyPZzU7zRlKEzf1J0a0yEcouG/T32jFNdwskkZVfjf6pjyIgdVhptjZtGO4G1P1s4BvnDGyRa2s2MRlYE+NEtZFhNUQMTzl2iUeOWIwFDYUqnUCqmYPkU1Uzki+goEBCCSMV1zPnh7ahC0ymBHU7c00K0HvjKBfJUTvwNKMbYjXuxvYrpI5D6nMfS5j715ekOv/LUTRg/qS8ORUqwPV8T/cLrqsh1HpeTwFZu6Tw7z+ow0iwHjp/xXQF5ODR3eB4CRA/fc3CQFfYrxRHa1RaEy2e9djVM+zo549IDKym5/BQTk1mmIJOpTi9Bzsxoj8dowqJTvz543qAv0L4aUEsjDyyDMcgzenN+QrpU5MQaDhOv8l5JM1tYszsfpZLWkxONfumZsVD89pbkrJ8naO/6dBFxW70HouKBeeFXPyBSavHF46dmk8G/2iFVyQMiiExVtFPoBzzHeCQWi5ynTlG038jSdD9O/4erwPRHsCxbhxNNsGpHndTalA2D90QYeTOorjc94PATO2dH6jXDqKizWxGBG0lPzHidpoB8acUjPJ8V4xbgNtOsC9prHW9NWRt/HhJ2c8ugxdgBOtEFYDOqXHzU56QgTdk2Modte4KuybcGSrIgbv9oCRkyvarju8Bi9xRJGyuCCfyNsyx2TIwALyjTvPOmBfgVt2Obz9rBU6OF5WZqpTIJyksnWgXkVLKWorgh2wwaWMiAmNrqVo3ReLWyA12yLHiTxKujtoTttajNUwj2B4zlF7qZHM5pYy1T0Goj27qwfh1KRNJAN2WA59hdGU8gkNsLPq0DWaCNJZpNpGCDHlvsMGQDYQDxS5LS1a4w2SJAJbQVbpKDpCfnslv4M176JbG1N9fQoButPsGt7tISYpPVrsujQIlV+juL/oJiT1JW0lS1/2NdmnodQRgCBG4xk70r17gaB9bidAy6hPAT5x57jvbPai9AUniEwhHi04Y45cbUImBhUkHk98y4qQReO3LI9X1Rf5EKUiX+sYv92DpUmv9Bvv9ingUeSNza9PBaoY1D1rwVLCXRE8X3mC9sXpPbJNyAqq77BZEEywOBiXkiz3Xf7SDnMGlBeBMnjfDkNczQCECrC5q7Pve/m40tU/04kDb0XdblDvtGx10qNmQYdFoWBu+UeaiWAWbjDlpk0p3wyGOdvQMjAetrNyhngLm9aaYpMYXasdVmlKGrwougJERPjbCOfHYuN0JFvIe1TloZDT2xFswKXZwM4NyvGeN8/yIfTHj5ZWgPJR909Y1TjlIAAt+H4rW/GLYn/gopKLwcDAMsn5dFllxTuOMkI3/swJ/8PvSG+LcALqn5Kp/FA0hWG/ROQWXiNqIeBBbCt0S7546wtAsRslKoJE7/B9iKe4f5NT62P03Zl6EyFdDbOLjNysaYsJ39fagRTRd5Bv9FPPNlgSMCnXa9kYiY92ifvABAth3m4KG/avCwbsJW535f8ts6jTH3rBCsHf3hPrhCjsK4MtXPK0CfgqVXQJpvL46mAHbt7QbHGkzNU9HK+k/V4EYTRx9Si6iaVCc/FPNJYt01XNyOkJPlxzLwE+Z99+4V9f5yZm4rdQxJGGqs3LjTcsW6BomuXSSBdZzXx0zfR9hHMqrqIXh6pl1cTSlIahAYyL2XBY29KNd0YZVpQ5qgqfFQzQURcMo7/75AOdTQoEFrbwbQ0TyAIYLw44uourjfUZtPKLuLvsHWKFjHHrM6iaT7LQNefZtxgBnuZhCbcFbIclxB6BlTOAHX5luqE+rLfgBIRyTbw3v/uyAHkBzEDSCg2aazAvhF8yYygKYxgOwOg0myzLgAiJP0ohnCPtKyrBF4u4IqpwgJSeLBbcXZb/TpuybeH9MeJECLv9TCh8BtqyDtl0HG8z6KmvHQz92axT1F9JV0fkW+0elDwi9j5PYfz5wNSDHCV+SdAQewfTy1edCys6fbhIsikHXYN3sfkKu1JuLA4lnQcXuPguJ0zBAJlh7CfcSYicQkw5nzEXEAKyW8izh/07a5PTnweKUIQUtiSYIfhEQE7RYmP2tNxag/XyY3Jd7tuxKQv6jZxSk9rIXWkIFilLl8OwnGfIf7MakwmAXZtYXZUusYMnVnnE92/F17jYY1WXUJyJIgnCqXPIBigKEfWBOPhC2qvXhyqyPlB8i7mCMvyGUeovyriCCbnspBhPhKDmSGOj1VORe9wtY7kdmo2MB+X4A9kYOpWwG89uRmK4rws4kMFix1rVSL0G1tuWmJcWNxF4zool1jeg/yPR1mY6ueUrLHeCF49FyhE515x9P5P75Y/rdAHBEOUU5XU/mkmFr79uDxDM7j3Wq03vRexF9Q5vf3otLzii0kKVaNt3FCVMNas1IEh77LgQE44vP/h2RfQE6KQ2tqDhnPWMzx7XdqDVpnDsnujG5UYWGJogMBwDvqAoc0pjktN6VhGRzY2+/+04Cdp9hlpMBG1WTXpVlLgQr8LrH/9IUJJWsm7AhCRPyv1ywPsSm1/G5PyO8gwkX3Q5u70OMJmyVNayVCDZJWoVRgFXZKfv7zaU8rRMPVAq7rGJNqifIKy+NXi+lTXGbX0tHBWKkCaqivrLGel5RBhlqK+7NWz4WX13nrxNurbBjU31BtK1m4GrsKNuM7/DpCvt5tqhCA1Kiv7BvqzxI3ylolkWBzifUYF/5pzNGK4G/I94fvsyQG8+rIcxYmIRxqDWwdCbiPVGCA53I7K9oCZJYjk5DdrXGegnAkthCp6iGh7KbNThliQEBOMyPQbMxhNDa3dg05WsJMd0vOa3JsUyi8VKP8SiU4rEO6/LvLT0RR6HM0Ha4P+Q6GFLSnABlshZaN32OUMwi/3qdIq7AE9602b5vx3SuQ7VuC3f6tnu94ZyngjyNxk7gc26VRmNNyv1jqc6CuRAA05KGgHRSpyFrbY6TP+oHihCV7pFi+ogpnZgot87eYWtahVXAqV/LkDy6yajEmMrRJ+aR3xpD5LwJ8gROWtLhlY2OjWmLWjR2tNHQcVJrcXkTU/YiiDfI0DA8UXt8uAbE7Kw6aW2Lmfd7sGUL86O7DDipoKc5+tfimcj1H7StP6KOctjwrmCjdyfhNarJ7BIqdI19epMPOQtE7j68A4TWfxorm8h6GqfzQ8GcMCKjnyTyl09v1lRTiKAC6Rq4if3aBe37eu7sXyzEVREysLXK90YygyyBs7++o8BmGSN//9Z9umD7k9ZgCgkaMO0F1d9ISnCYbhQDBuMqcW7gST4WMkxxQeJGlHb9qWqcu3nrpip/u1PMMjYJxX5rC1LehwsyiXeS3LQ+PXGkkff06DN+jO6zDmYJ0CNgva8NZ+k5ImZY3yX4F4zVzOV6s/5/yzuEajJxdNz1AxejvDSUwsOdJwygeeOSpBSTXXWPbIO7gLW7uhOnrRgcUVOMCxD7KdirRvaADKhQMCz1jFXriQ69RH/qrLj503pQv8ovGAgjsXpl2ypl/TtxszdIvEiTpENOKUzl4E3JF16Twu5CAe9R3eiCGsFdINP0R/jdpVtDq/WL/tv9OKKOWnsJ/ggz6QFFe/GyG+skx4gIf+ZkMUly1islit7+SPqHzEQahgCrJHER+3XOEXM6A0iUaQQh2qthr9lrn3xKj2POjYlk0b7GlVMmODMgDVuSQtoG64czdBkiWuPKoj/qUgrw84vYhLA9Wa9ZTCHCAYF3OZYG7rtPIetjomLnOncEWTRxo2OTSRXbhKXSXkAi2T3k3nDXCzdcHm7x0rpgU3OHjHb9Af5Whss0d0vg8eWKAh/TyHdZqzXYRJVjfPPoi+6UXkYRRvcM2eYXrqjMwg20j53RyjkQV1Wj6yGWPtwDdaLOoTVHk+QD2v7+/ci0EYqg/9/R7J3fevBfPY83JONM+UTsadMoTmBjfnk/HJkvuh4zB9Spni/hGIxqKA7zec0jMs1j9MhvCYf767F0v+pF2ovq6qxufdZntTschz2jVeXcR/FO39dC6K0yPKiwDXWJotdIMnfLfPJlA6o6Vhrd9ZWag8H2+rKZPEWkzc7JNkzR985sBRA1L/tBIA8e1EGSYMaFsGqgrHfqGtBkmQfqOjxcudIwm0S14bVm4Ux7WnX61Lt1IU0FtRT1w5W/pxQNCFt62KT7GlLLXuoaFItXFZaTqqu8sYI7VsTPqzlTAz3bEl4uUJPK85csjsgfun5rMYwyRf01h+r5mAWGXqNKVclAAgtiGaRdv6cY7jVIv43wKiXEwcDYjwAtXJ2IKxoXwHQu03DmH7dxIWyrWz89AkCTyCJq/M64Ub6Zm6kt76n30Ybo53s0WIhfsC4QhYAeKJkabS7fyb+477e2j3eB8TOfyvz97XyIrDbxSFpjvljwP47y8vk/5SxrnGH44kGNT3ILCdJMiKFRiAcrwEg3viTrSIFvpbNVyQSMeDW46fdSi4k6Kg16ugjwkltf9IuQeGf7qlh2OiHVQ9J9WxegrmnJawbYBike9ZDLCTSGQRttIIClAogWcIN4ZB+txSRKEX/s5Bsv+g7u3xFMYDnfxQsgTnEQuYYJDEj5dT4Y2TXDwks8Y5OTxJGwtV9fbIYSyUW/7BCEEZHV10z44OM1dClnu8nCPYn7MK5jqHjeaGofUccw6x9ppvpdUxIgl4AcYpjtiAPGg7FK0SoIbVNeZ1ax69SJi4X04azN5goDlQGp0CxwZ/2D9fLrOHw5oU6w1tLH6OQc+GHeohyimse8SzQuUXSVvafIb/Pfos7Rzn1NTALcsOUkHsrsQIFkhQKKtqPTd7GXkhSDFtKIldXc1crjcMZyMVjJ0z3AZHlH/VVHk+Tz70n1pQQmQMeHH7ymCLS53+QPe7fPTcU2/dlMxm4BoOxNt2FlDfPdS2poWMJjxQKt0dhmIDw2mR+gyv1nLfnnNT4ZKCPTDVQYM8TyAUj8ld5Gb+4qU3B6AwiqPLyOX9A27LY2xZhX5UKObgyKhR8nNvhR/ZAvbOY2WAnipfuHR8zRgPPCmW4Fm8Ic3FSBROCo0FaIFFxxlW/irqx2gBGiiZPdk83W8v5+liVbfNRzqHQKhJLntbxoSo2xk7SjkY8bwGK37WaBJ6pZrRDx0oRuy5FZ6qI+j3LIScMLhAB71YcU4gktcvUbPfAfEVvaDZNwwDUwkJfrcMWI3BbIKHuVi6k7BhUuTpq+8hdIHmFmfKkGNSTly0kJbI6zTkpur6MuCC8nMC5cFw6GeKNxG9KC3AMkJ1NoO6xDmLeILXXNeS/dRsgfNtHyB+lZxr1kMva8XcYwIUDvAnFLA1jbIaVCoAoRZ91i63rz68Th3lwfbMeItXia69duveQPs752jiQ2TapBALl+bQ8nfYsy2W1UbJzCzTcTnQZ9EKL6S2TY2DaXcrwyYzqJj2OOpQnNyGYPgXLd/v4WEQ+Z6Spr8lW+kvmMAHhbg/DIKah9GVONSVYOHWhsv0LWC8edFume0N1a167dUwE3QogFVxxLsjVIgMNCOnkv8IWFeH2t1w0jMqkAVsoU2zont6+6QCOPIXaPYvOcdvvw6kvbPBI910Ux40jH873y3g/M+iJRsIiz7IXNW9q3BiHGxqr6ECodjwSxFluBQ8DxYoqQ9zk8YVKwZvq5GW/+ieodnojdZiWLaiGGrFnzELGXO1QvHeGYNvVkpDwujPtpnhxHEC4TrXicBulsW7+9Pv7ohHLpx/bo7Z6YJ8AmJ2I4I+Y/oL7Cdy3ysb1nNjkrgYoQ6XlVu8Dq6p6O+N/nJzcZVW08zyR8P8GjUtgtc10qmLXHJy6NYw15YSF29kk2Qg9BXxgA8+ZKgtHf+L6jILopIyLKPGOkRPfu59tSZLSfTMctMUMf1SCN2aesEEzsOncDyMLrDNvJwBmX7tJ9qN7d05KkyiO20c+KFL1pU7hVImkFy7W2Z1aYwQslptQ2Qq/3mz/5mKSFdKuwPS4NH5cpxsMxSN5CW2JcnmG34K1c2I6wfFDxSvXSbD5JldOJoUekngF/8CBI0RbUuYthG9G/66ksuQL8mEf2iaYS4i4LZyMBPfsP19HuBtcyMbPYUyhivArSBDTTO365fGGePyogBGxCWeLogyADxVkQ7Ri3kekE5ycCIxBt4wmhVLsrMIBAEEtkFzTX/2vPQXmK3veIPZDiH4ODSOVcDhx1EhMSX+MUHjK/9l9mlIqVYFo+2OIv3D4dZz2WD9ghkSer4nMDWVRYzxUOw71rnADPhKU9iL4gNA7nyKzsRzg+adxlfrMHb+6/S7Pc/G0SYJlZsw7jtrk4FINlRL3SrN6gS7C8wWe5RgRhYozkAqYX0OdFUJD7iau8dFYq2DpyBTtyyRNOFzfFo2yZCo5aUBfFXVdwM6A9J3Q5xhzTrEL3xElPXuS0XQbnjw0mnvZtr1NlQbkvM7dC6RTv7UZSJfvOOjx01AB3YjNMj/qn9CiclZM3YI6sfeZtqpeQxuhoK1T9GfZbNXYiJ+dvmmeTkXsluZbJqnX4gdSQbxmsfUcuolhVJHH9TsIpWCx3gtF4QyBt54jLIcPAhQDhKESwqALN43BP0xxFS06UZLMXJwbjz9sjosFmYwBd8h6YFVTOhMDkE9lNC9UwbFTyxylg7myS/Ko61F9DqIyrhLlMcDCn2J40A4aZ58vo71id4zfk66dZp+YGjLKf/X3HMIz+5OfyN1/PwpRRCEpXX5FGxYM20yo98Olk5EQFCFhvAkKErRuaO2oFji+hx/5eBnN30hEESrgI+RcvCvZXyodSn+JNPSW5fdL5Rt9LT6bL0/8+LARWqpXtSsn5lUp2QJ2NolJKrf2LvPtyU/0OvRvO72bkiqX/RYLZQSgoZH5Pybw3KIxd3/FjW7F70HwieD3+WywYox+SxhEltQUjqh0sw7ygA4M8/aXQly1vzb4VXn9PUyIOaiANUEnP9EpYWyZTRqjndcbL2gvmcOcdeRHBy/vKY+AeJm7EMVoHvyUDUFQF1qt8/LimBYBJhB6kOUoEU14mjddM1DEbWgec8K6+asN6rcuPcz7/RJ78q0P8G3FpjysMkr9nWLZM8zfcYWNy9HMBUGD989TVvqMAnLAh1LjPY6On3tBSmLxxzLxDp09w0dLMQCWvgKUBKzFOwnfVnSa7S05R20XoMoD+9G6EThahwPsYLX2Pxym0grR8FVRARUT664eb1yjOpJR0j26mXHZBSPzFa2R/lBqyJDOOk0ZjW3WOuVmUoRwDkv0twVm1wZyWzzgTvmG63CebfznOjyXNGzLrElsPJCxntktPTpdxHZufceewFqnnw1WoD3xJM8xwBXzKYjHFu1C1MPC9AOwHdk5y832IE0jgnXfFjPPcISJqJJO5JLQOye4+zgbz+OmTA/EUh+/Z7MHoj70IWjDHlU31IO+4fZcKQkadPJRpU+dZGuHU07IYTNjYYppbKCJy7sdKENt609W1YIQY+KxJq4Xq3Mh6OjUNbvl6UGNyzHT9BGRsZsOLTe/3JVKo9BXFty83UoDadUnpV4G2HTRvLBWZFxfKmmgrEep8qRn/9UQAn9LPpUwwlN0DT8ZQyVFrABuXt4lTDHvwq3L/KA/q4W8TJUOzRBxOY6FNc2q+8P0V9qt56e1rExnQ9+AJAVRca9tuvG0FJy9Bmc2iuegYSfSShcRul7w8aEPSxG1TAETl2jgem1u5V0H6nnMEzDH5wbmvnZkJW916z18ORSplvy/T8aArJB6s8wcn83KASySHCukuskCiPiLMM3mPhIvWb9b9AbldR2q9/0Swb5eIfhLWnRYaIqGTWTdmwYauB1PC2JnFTy7a9FQIRnc8nmIO5yXos705zJvMRR5zkIDrsfl5jwtUosS8tnjDku1Her2eNa9QOp3jXhPsVt/NNb1aXYU+9rer1TwLfPh0J4XJ88PoUEfpESSdkDv6sm2ThSw0B9AMfN5mILxmHU8inKONH3HldtOzHqC+I/X9xiPI33diZaOOAShCNZhGKdsjK/4C2UOci3pPS07XFjn3wluL0AuJB7E0Y7EocZrrqWkHYq4i5T15+0kf5IDrrRsa78v9JDksb7YLHGILfs6vey9NukEscV+fAf+anPMOh8HJvY4u9QRdCWezhI3RRR/QmC1mh9iB809YBcLUlAHLtQBAWDUA9MrZfY3S9oZpx7J34ljX8dACB7Z3VRElE+MGjF0xMYC5skpGqF+a51LWlPFmo/kfzj/K2PNMPoNd6SwgB8gy7+BvCiUlWEVh6EmIA2UO1bLDMZu9E9Iq+py34uqyrqUIqTvhtGY9bO7/89qmLArNe+fPUJg+Ti67Tt+lD0SmOhQMSEqHKV6xXu4Gq7JFu1M8Qd3sGW2gLJt8PeDcaN8XDeCyGFfd8bCgtTpVnCvhRulFNwwGJzWQC4mrbkvgnsT6ta1UZw0xXE8cMD3ILYAFlg69372pmffF9SCSCck5odk5hEdHaQiHAmSKU0Uf/4YLs1mRwFzilO9t2zprbiPb6Imj2bEhz+VFqxyrdYHlQ+dMDkNxTPCNahBxL5Gdh6OcayGLut7lPJQeXJST5ql2FINVusAdbmTzjm/2m+pBVIm80YNBrYaxUab5dKHP2N//iUb4NO4yU5P0jXXpvQ9wcVk+/1/elsYosasWgfBhnN0lUUn+hHtJhkLI/7fVqtdp3KwXqRtB+1hSkejJUpxhQdcGOpfhVwX6mbaLudq/ZxXEHCnFvwMJsdQTGQnQihZbn+OlAlRGQ2F+y2Vq2v7O0o/VmFLDVlEErb8ktyuhX3Y7Ybebp1vZy6u2uA0SLmyJbbVkWZT0db7ySJF7wcPHnNn9fHg3SURJDGM6bNfkEhqLcYQ/1OYusuNxCe89gq4ZjNII9v2PHWLSxDWjL90UPzSfYsQ6xxothTq4HSmtek88AxeQsbwSYnVGuMKP2vMCJJjynOrksg9nxCA/I0YisAhf2Ko5Wg9x2Rd9lQvX27exKJlBbZT8ASN9Oqd9s2CzxtRwKemW6rbd1zXqV46LTwDz6JGE2PH/JxjUAIXTVeITRyMJfgESeoZJOqVHMlt+DJoKRH8Qj1Nb4gplMUrV6AyUWqS13tRwRLrMncaHAyl/KEqc4yC/eyqe10d8bNVI+uhKd95vqnnKgyWDBGe3EtLuWFVEG3IGTL6D4WGDRbCX7yNvw6vDW54eMeB1msZLLo8gFLQcQHIsk06EzpR50+s0JpYmB275YFoh/6R3UcyTj1rUrkfhp8eBCVVqUXmIvMmihDJO+FKNpC4Pxu1jB9u7ZLsRkTV1Ue0Jvzk06+NRW9i46agb4nAE94YOl04E/xrNpiMxRFYKFlrFuMpnxnGZq21AUZddfqOc/AgGcDbh1Wol0dOfqXcDfLmMSvWfBJPqVUsTrvx48AzHK6canx4kNjp9mLnDAvWbuCfsCAJ9VStqyaRQWzTEi+7+aYfUXQpMkJWgnnGocd43ifMNnKR/F2VuoQ0a03fuYCgPd4pMHOs309g6AjaCN2U7ZpH9TPaPiORRPvATxdiENb5oMY5wkkmHC9o4cSYLUNTNfDAtvb8sm73plczi3MP8jKBiXCEhgbAXaCPhMCGGHCV50/nLY6AUG5Jwb36mu86fSCYCzcGNRHKoK/1hsNiEew+AsBYBhWwZ6DymZ53X8n3vF27Fa1IGA8KSwQK92cPZ1dMxrIOjxj82UEmLKv1YXatfTkN3AUjawL
Variant 0
DifficultyLevel
633
Question
Michael rolled a standard dice 76 times.
He wrote down if he rolled an odd or even number each time, and recorded the results in the table below.
Result |
Number of times |
Odd |
32 |
Even |
44 |
What is the difference between the expected number of odd numbers and the actual number recorded?
Worked Solution
Probability of odd = 63 = 21
Expected number of odd numbers
|
|
|
= 21×76 |
|
= 38 |
|
|
∴ Difference |
= 38 − 32 |
|
= 6 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Michael rolled a standard dice 76 times.
He wrote down if he rolled an odd or even number each time, and recorded the results in the table below.
>>| Result| Number of times |
|:-:|:-:|
| Odd | 32|
| Even| 44|
What is the difference between the expected number of odd numbers and the actual number recorded? |
workedSolution | Probability of odd = $\dfrac{3}{6}$ = $\dfrac{1}{2}$
sm_nogap Expected number of odd numbers
>| | |
| ------------- | ---------- |
| | \= $\dfrac{1}{2} \times 76$ |
| | \= 38 |
| | |
| ------------: | ---------- |
| $\therefore$ Difference | \= 38 $-$ 32 |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 6 | |
U2FsdGVkX19H9OC0WkXOLuv4hmPovPPIcJkNJ52A9rQe+wa5ig8BT8tz41Moco5mRjeBI50cCpZmbVgBfAxY605/95CpiD8007LvE6xFgYijDkphEPeGddZaNKzXW651SUbgFaA3bRZby3sonphD0wQv2t4n6x0AUeI/44MYG25nD2QP/bBDs3Jp5lt8Wiw/Wi6b3RmhHBKBhGjHVmwp+OU4lV5wS0rTpxooa6Fu9LRShlJGIkkjTxsBO7b+aaPza0oxEoE2oSyy6gq4mO5UG/erdZYsfi7W1PlmZ69oHQipKzmEXhukF1LF7u5h8z2kXwK8OT17S1vgr2J9chROf2/A+D5Uo2MYYprzpNFpo+EXjOpIRPLxh8H5MW4Qqcfz8q1CuGbMZDrAwLdHXApu69exiPLFnhV6smhkuZCOIkqSVRmkeY9Gtan7XX3VoE5PJEI1QvykoS/c88IjWdGwYPvCbJQrVKS6P9sRwpv5W5/pLiFjQiT8lvMRzAB/55uQuMR13rJdG+ZP4J+lJFJ6WFc0OJyfIDG201kJtw5WtaoFQWOIuHsI10nvoTRac486PfQwMe6dSELKtninthyEcW8t/Sx8nlJNU4mfajvZRqlEOIiOsobFu17T2lvi2CDngN/l96PzWDyZ4rOGEfhz6Ypx82A0HAcjPTCWEtZ5+ZN93GfCpOBVTI1+sIGRvRHCBmpjnIJJXZsouYffCBj2sgzMS73ms6rxRpQM4bgezlLfKHbvT8hL8sPxz73OmNOaFFb2j43qnQGnWdqYwd0uaB5MCw7T404/mCbV7H3EOKIaiKv8x9mX6YK+bctqHjNH27J59MHM/c0jy6sDyibkT2xc9popyFGq84DHlBAX8hzU4h1wZch8J4FEuXzig+Ocm8FJ6vE/JT518eQuB5qBo+wFvqSmXfYgIRKzy+0s3OJuT+9bdSETpE8VaVQzD55j4mBUHod+oMEHRr8U73rkYAwzs64KUdTKLgACXYFTQAFwKa3KV7lH07hqgqSFvRv8ei2Mcrpna/ty7JlhI4gwHycoO/5+ic/sBr2dHwt2GrZi/dmqVT63/O5g/f1dwmo5p/+bWYf1Qlp4UqaP6wlTTFwLnbT3kRV5RJEp53rxj/tfiybwSMRwjD4IOTWdiJfFpOq63YANNpOxUv5P/VJ8n6yg5orDrK/J3hMTmyBXGmfTubPhrOJ+18/IPd62352r7posfYASVeRBeTSjJI37YKQK2FRrZkJE/gIaSmySdnfJ7UhogBpYFnMl8EB/R+6Lk9aUR0YzW4fHjRvGqhmnTjmFEEJg4RcCL9MVX8FRA+cu338Ix2ecEDXfjdJAKyY1wOEn7vHiIJ6SZCCcnnfvhCXkNn7HrP2rnfrLBNd7ZBv+5kXzzDOgj0FVKPQ0hS1FHTepvDfNptc+Mbzpr9rh8T53PLSS0urfbdLUH9uT9wFXxruQI2ZpKU50EQ3RWoVNldKzEUNF65bmmcCXdeyp66aT4P5MKSvwTJ+JbrBPfBCiqcO1lJMKcClA/D9lLp3fUXxDIB8Kf85005sXAhpFhkJRQC/ewu315NcbHAYciQzzBkV/mWumuhcXYvUI1IYTC7VdZU9w9KAEQGTIH5+viZinxuo3A/tz7zvWoofO0M4UNYEaIzSgb7Z5f97BtbARQMxJsr1XjbbjZ67yzCIYKdWmQwbj3VB5DmM7S3hXgsA3ninGaKwmupWvKvlp1lmBCmMQUIG6GYaiIQo0bThHJWrQQ9dS46hfrymo1xJ8xAGkV5nb9CwstoNm9AvhmNPqmH2bw/wzsqn11t3kSh5ID7uZ3dagTQK9lTluY7BrzODsm3jAkiNIxyyD2QTtoZ0PeQQXk2Wddl2y8vwFvm4BqpxbMncV8EZRfwslBoZi01aW9pSwo1Qh2YlSH2ywao4GGSdFLb21jytliVbJ5pFJq179C8QGmr7zdyYBxTAhw2LVQjuzN4Ytar7gNUD30Gl0UbTAI1MQery/yZvD9schcIWwsjJCUs2gWF9gpWjWB75F+OgiqcKk2oRdinDvO+OBFm18e1UbHTVpol/+5Rl2EOX6WJhW2niS8hFa8HA8ZdikvO3u6VrzCos1QwS4vd+KROqjYk4tQioIEnu4JsRIUAnqaBFdM9+iWR72PK7bh6R1SGHjF2zZz8CJyk8GQFziz/fHEyev2FlQrdLIvS+ZR6XiURZAWlJL7/8wqGaKgTfqS6dIdnQiZyGVmyIeWm+iZKDLi2VhK/cLjcXPWdaZA430aeHuPnjwbEN2FCsdvzzLAuE/kcBidlWtM26MV0aqII9mM/FDYPb29J9IdXdKW8xgp4F2QEiJOHUVXZUbRX3wJugtTmVEHJ26+M+C2aDkAb6EGEGb4MCORdCtBs6Abi4dVRP2peLMAvWGcZwOodAg+WYmQ+mBaUN3iILPFTLPXqUFySJNTFObCUSw/EgXKEbE4y6OqqlLt4VMHd+5E83vg17vbW44QU0rJN5oP4+ZW65zJiFLnSuKIPzbzaQpuVrbvmmejKSok4M5c1iXjMVvdmyIPK9uZVoEaQZ7Yx1xERgIP1CVHKeTMgNdDC4Xp/gGtsKoPI1mtAiWn4Ol5mHcnMhW/L7H7+KoxpfJAJGnvLsEtekYK8Ftjqih0SuUzE4uV6plghN7Nhy4tRjEOzI0a5GBy1TAzg9z2fuugbhb4sZV9Z6Pc8VYcluy6aGQZ7R3sc0SDTCJ6O9W6REveLw7c1ZKmXMS4ZvS2d8XmfRoitpspv6LtZWSfQkU1/AocvgxKVTVtYc4K1ql1kSlQEC3ucfieDF8MGz016oIkzkPli2uh0wR2XYq6t240EwZg/isyugqdW+iZA31zE+msxY+yQgHvGD7qBq+xS6nbyndUO5ncGxRHJefeiblMNs0fqBeajFzCObkSK79BdYUDNuefoUpGz0EuU529hoeihxU8YVxIQW6/5ffmYnuibgcNDMFXQdLppbFZOQ4alXJ252BPa96ul1gO20VhjRRZOImdomkFqzJdqoYlXfKaWSQJK8pS41fg3rsClhULzW0bRec97IF6SlkEEQGlPboCA5ia1ao2NQE5+FfMfWk5dWGrvG8HVTAjBAh3yVUTBi5EOE4J1Wc4BQNhqvsY5ZPJyWLOh67murNIUh/tKXZvverRoVxi7vLESQ3gTwuVrWRQwRkC4CNB0F1ZyRfSF6X//8Pvq8ih4i2/4nugxgHsJ2Lw8Ws5UvVITY9M4Se7NcpVizPR6KYEGv1OhMHhQOEt4CgmTW06ELfSABYcD52oSig5Z3j1n7W5iJ5r4MbJMKGwV9Nn+5JLlsSS9JWYvNROQxLDsEQ3Gz0VqGHfbks9a4iAtB16Nv6JS0jD9GMBnKNdiTBEFC4Btfi98o+NS6+vnUKlpNfUwcGC5IfNLCoJvz9rLrBeYm2mGmtySJVA3jcX0A9Ou4hjZgKp6nrkBDK4Ynu1fiKBBW+0M59PA1wQpiZIjhtOcXuJQKSjeP/3/pVhvY5Lvr1guPQQfVYz5ZlkL0EVe/nLIH8rO8oDgTmzva1cMSAX0GgarDk/Ou4zQeT1ULV2lNaj7AB55g43nuWyZry5jgXExoeQDiYm8PldqQnaPsxQEiSIZA4pNEpyYg7S9SCAjYN3xooFu6lZWqlbElP1aOipnJ3WT49lsFWlOqG/V/fIKLWJ24QLFMTGoAdzaCG56nGvWLptGNEVpY/TrX58bGDvwOO7DTUv9Y6MoeHuPS1r94wzL//lxhhtLbtXhX7U8RDbCNk6MsOB975pVAs0Lq1K59zCKqwQxp4Ssma3g/JOIEcQQD6/JNKKK4FasqqZjZI05HALVMdyQ9WLbnl0Hab6yXXfNRlB5ad2MH/J0K4EC4LMjPs+jZvNXGZDcuatktICncngcmmdIhga6sF5CMOE5TKyc39yBhwEpuBbbwP4zhQsfLWO5wLxY3dBIPQrTLj779CdEMWYTmvZcatIF2JQQibHJ+WDgQNVgJlGPk1oD2xmJbJXV3k6OJYY6m6OYYX078i1iWuTTA9z26Jwfd316SiBFvg1TjgcBipVcW12BnwrrGRh2P1npFooHoJ5lYQFA5gdMJM+wPQiq2jmPQV0vdZDrxDKWD1K7rZSDOHbZ+0E3wzlB3jlI3YsTHJP9wqGeGqKOK0NodfGm7M8N2kxf2eH38mkBl8vrcR3/XoGkdle1wR9SVtzxQv84Yi8CFmVcdaNwFbta17RIj/jIBhl6V2YKo/BF+p/JxMgfK/iomk0pyFUtYpGuXrTfI/I//jRdrs/G4/uMkAzHdkfNjZiKBqJs7w3lsdPqeB4INIcFB+DDNTvOYhNaBEW84y1JNlB23CfREM1glfzV0EmsHRYu2i+JL7X3NEXq2IZKYShf6EIdX4kuHz/pksrAydUpSxk7ngq09IlDiHXrvySde/BcI5pLkjCfhIIKLHJGF0ONNBOOPk+VJkXj4HAjeYJ0XbB8ayKyCYYYrUgXr5e0tptZycYxxSOLJSCJt20QJ/YJBXADPON5qqO59MjwKTfATIcZnIHBIBt38PkL78liGcE6tf8pzve/+seosRz2S+fJxTVOKM6N6Z9KNjKt2uV3tTxXdVjUax7W9n1D/LIFQyh90K9fLqmtTgHZa+VZNdkaQOy/38vXKJjgLNBN1+mZsrQ81BqjRivbvpubW8smctS+Hlmjo7mm4VSAg3Kt9wF5d8+zDKDi0EW231QAcHcAa7r0fftKQIDMZhbHzCUmN8cgb9rNxrlxjiM+I+NufMmeAPwpQFBMuljctV046pn8KkawAuCiAt2mJI+9Ajv34YY87BOX6mJyvY/etfzMinBy23f8VL9s0GXvcnAWvh87el8bWigQ1I2qCMLeirmGeQ5o5l6KQBkJik+1Plnp3+JGTy9oOdiRljDV1vAwzCoZ+c03OJeb1HE5EHX6u3RIICRq6h3E0Lbnrim3N4q/MEoTnfgaFGMgzBtHjd5BSl3PeF9LAxwGsSnGFjU93vMUcVT1daGBws2z6H7Kw8YgewE1ioC762uK2ybTV3xfnlW8sO1sZQnzRPf/0vME5+WQRmOQQEsTSdUpbNvpttLPJ/O3m6oTROsSfKoh682+aPPbxwdP3CucnnnYd3UC+yuBoEIYT7zuXY77D34cUFell9Ra/DXyPAHeQPmJi16kwVFNWT2/vWXnU+IUZth98/Sm49XbjdXMe7FmAQ2wR94yLClYd0Ub7Azv3oHHR//CdVOtiwmPY5he3+HNKo2/CH0fyRGPNzm1GzgjIlTT9q9CSUW5ms5cxkWcK6s3ebzNGWspTozOXwjN6lfTAIAOuSeKI4VFikwOewiLryBBeS3y3ZqcJUeG0Y4tvBO9hAOX/PZLkyDsQYHaOGPO6nCYuwZS/PFAoqFr7RM3qfhLbTWaSqruOKjv++JPCJLx/oPWVR0jV2jGGA7B8Zy9SlJ/gBAXIe6jg6V/sMFBO02rBRcQGOFUqblajdRSxW5K5i7myxDcaLrEDFSq1c0PuTKOclc7Mm2eRwZJIp8rT5r8x6djCftJruxvxizNNUKBIOo7ss3sA2TJqVfZwOTEQ96F5ep12sHeBOt3h8KMoxj06vi+pZvnB5S06ZywyaMQWA/NdgbdUwt6fieEa/4WqLfy4mcXrOSPGzsLnTxig58Fdc9mR45KSjo780MaFUfKnHS3+5FesfknG2cV91OmMqtAp83CGcWMqPL5x3yYAXzEilZslUocIJ7iJcx8j1c1Z2W1HOHj9pTvHON+ImRhhDaz4m6ZSn5HskHhSey1HAULEWMYBpa4tJcLlWUINZmG8Xi9jdrxdhz4WMsSF6rI9MfcO+QnjDOCZ8dHcnMT5WNjznZHU6/HTyz3CUP+ftTjfpnSk7Jt39Cmav67q8zGc29nDVC0HuFv5gbCx8AK2YN8PeC0FR4DRiCP5AvndA2h9RrHSCENzDcKuxFPd76u6+TKxvl1l0eRZAwBdYs/rTvJ7qW7jFCZgCaAX/iHxFOFR4radZK62yqFz00cKgNDrXckLkNcch9IPQLQnTPKG/JLm+u1UWaUHxlM4fouI2ZfqKUS/lfUhTHuwdw7BGRaays5MYhWnt9vcBN3YN2p7zU3aYRwtw4SgVlotwyKH95lQr04mLHAyzLEcXM9R+VAgIYRA9hHzMix2Gxl2tp3N2Rh3AwQL3GbnOwl8K+t3PUzLuXK/VLDPDstyNwiKihYIocPRnPEr5CrmF5j171ZCl3jwP9yzsFcRlsHyNXuoEszfkiBLiT/sKnatndu6Fc5cntx/BFOHkB5j1Ozesa+RPtLGnOQDuYwpx2PHGllx2UAwDZyR5dQsRq2aINEr+71qNMaFwnoeLRl4xcpAAFZPvaA6zOXYYzsCQ+IACmOxufLuPxhufj1xOpk8x2cY5hxx5+NcrpQ4Ly3DPgL5uXQhXGJDcuYKhfZKoHnYTsJWTRUGDHtyu7u8di/ujUS8/8qn2k7R2ffQDTASy38gvM607V+TS5yzqhXsBBUdRqPP5tGjJZZDcdG+57J2Dl50J9KIznjZ3ZCP7rtVExe8MmgcJp2bTAe7tfg3XcokcYvKjIyY+LDr+5Ieid7bTYdC4x2Jn29CGhohJVY+QOVAxCW1RaGssW92GPCxk3odJrOhwwQDv+sG7VD+1h4Q9rqskDFDE6oEkF6oMXYLK6Hom6XohS9uwm0Kpi4SmT1HD4FoWf9qEjZxsStTA3FNVyKOs5WwxxAD/g7a7hufJn8EYwUYZsbL4AZ4NrL7qntzpDqgt/JdNhx8o+PHlwKkQr2II37ClvzCt8QgV8Xa+h2DGcZMyvCT9qoMaG7rfKkChZ9IDQnjBQ1FljSdEdlkVVjQPMm7IF+AdpZUE+ciXXEOC3q3ALu0I9jvUNrH5R803X+jmITUePJX98ou9BqtmKv2gdTB1ixHElh+A24NVLmtQ+2ZgSiVn6LTIn0RM1SDL+dS0ducNANYVDF03KyW84Yp0EoHuA+52IaSvISLijAUc1w3+wAe6DPeEf2b4NgoPi90QgkXSlpmZ0UHOL9ja8e+B0P37h42TLv0u9E5ugMRCT59r0h7IXUz+8mBmZKwHcMB2o/xXi8fKENbAE996vEN520Zw0nFcyrFnXfUalltAICnPzYDgho6E0NuLGpLZN6t+w5pxpjOouFjsum9Kkf/CVW1jYtSVfhjYU7mctYGfnfZfOacq48cB/azR1tfmQHFEwms3v8wz5ns1XHAoyP9Rigzcp1Yxmog4sWBEOIosWRbLLICX55NjIworACAHIYY1VBYrleYasrnWUjWoUI6HsddCaC+ej1gkgzi2Obdvh8Txfcu54asUzYFw7W2P+EmKW2tEqXZY171hzLsPWvzzwzm3OMh7J5YjZkxos4cPOwtyyAGUj+Iy7hAYtZ6A9I3NByLmjWjHNaaetxtCXCzNlOXP7jNjxSjhjCHJ/4MbSbPyTxbE3Fln4KdaMTu5zsbm+KkOuG5fUrkSPaQ8xXFaY2oTXaB28yN7rBwSKtIOigZfowTZT/DNkoD200I4FvJ7P1yDS8xPp/vEueM4OW+UUzmhoZmmDzkyBtpGyyWqDgwTDK+BB4Y3PY/jvY2qSitUOUVc042IoInV9Rm8Oos7DnDrelsefINHJ1OCggyKYIVpE5wTexYELdFVw41NSDbuQ9eADeRSrpOsKG9QUIX4/eIgwCLiQz6SAfkqIREDKZn93kF9n9AGEiztmWY2Loa3tzMLwLcWrpCK9E2s1iVooAbMPkHZWcJoeQZN0ghJiVCa5OwFCV52SUSLgeSw48iv2dskzOZp7pR/Ldh82RhEe7pOCfSRQ2hDNzXHuSRdy6et3gjdvtTgvTzchVUfNLH5kOZsmpn24fT5kTEGhjktC3zD5UGSRU+4jFzE2WvueBmRSgv81bsjZJhYd+Oy03IBDJmXZA8=
Variant 1
DifficultyLevel
631
Question
Penelope flipped a fair coin 128 times.
She wrote whether the toss was a head or tail each time, and recorded the results in the table below.
Result |
Number of times |
Head |
53 |
Tail |
75 |
What is the difference between the expected number of tails and the actual number recorded?
Worked Solution
Probability of tail = 21
|
|
|
= 21×128 |
|
= 64 |
|
|
∴ Difference |
= 75 − 64 |
|
= 11 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Penelope flipped a fair coin 128 times.
She wrote whether the toss was a head or tail each time, and recorded the results in the table below.
>>| Result| Number of times |
|:-:|:-:|
| Head | 53|
| Tail| 75|
What is the difference between the expected number of tails and the actual number recorded? |
workedSolution | Probability of tail = $\dfrac{1}{2}$
sm_nogap Expected number of tails
>| | |
| ------------- | ---------- |
| | \= $\dfrac{1}{2} \times 128$ |
| | \= 64 |
| | |
| ------------: | ---------- |
| $\therefore$ Difference | \= 75 $-$ 64 |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 11 | |
U2FsdGVkX1/D5d2zIXtwkgiM6EiDASu53KuhPwa1VzV0QmAGpkBWMYLcApwxa58d71W6iZZ2OmrmmhFnCJe7iIYbMvfbYEbBMcgbBA5E4GD/RoDl51xyslNSMso5Ue+AS3+ACRYVFWTlZykhmL0wBCTepkxDAi70xixi3UsT4j4w2SWtmdGRBKEUImkhDpyZJyPSVPqm3KidXpY3AVQlFKU3nwHQ8xY4Q/KkjXlf0DxAARfC5336R5ui0nRP1z0e0cxaupCWOUoJi6MDUgfRw7sBszhSUihz/1xO7WjvbbiH2o2zU3/qePPk8/Ql+VBzKDwclRgrmU0gTUKqcR2Dbk2BlF4xIs3wcUyxbh6NSPiiyhhA85bvg8FfwXplQqEMTT8xbtIT9zIhmj7bM+6gUtIcW2IX50Oyq6uuqVt12zUpGZf/qEJcdb9VZ1ribbRflHcNOBGlJOT0nY13e8qZ0YXwnnTHBabwgBanDdQZCHtwgVH5ayut6hmsIE9cLq98mLnm+V/QIF1nVvFKoqpKCJSPiqs2sw5wLCVd4R69fqHt1sE4HvowVqJ/y8jkwU4CgB/9FUYJx/y2jLVzHo+xBQooW4uLh8BF0IeEa/uG+M6feLWEA1tBr/zOZ7sPOqDD+wzBSI3CgccpMkz+kCiIbdKcRT6oDmndhoA0Qk5h0Y/AN4IQvitgAocUNcaDzgvHfU+nnpjmSUSo+Z1tz0AUrT+8vjUeWDlSliiC8isz7DuRe+xn2ZcYoHx4sMgzXJKUNnKxqhtn1w8ioFnGyNdgLfqoW4rbdznJ02UFgScrldfygNvN5M32Rm5PXFpxhJjJXkMY13LCvLYHBCe7a+Sn7k+tZSkl5Yw3zJRydE1wcJYcTP6m1RUNcCoBxn2wE5VbZvRfU4XFdJLwV1IOyF8VNzLgAGgXcT1yeTQOEL3pfIJioLwwG1pDaBoS/u19JFMZYv/IrpmPQf7+wldc34Aa1FcDZJl6DqzdIcp6Y0SH538IueX4Yevh/ajnRvjMWb8z+5aeusWDt0QUPt16eoK143XGrF7QVf9b1mtrRf3GRvx0okucdp5YyNbHnbjuEJrfO0wBkl7PWVnruyuC0BF1eXqeWmz+1ffzTv1GIlNXSPgfRZ6+VfEa9C3LteOJxsV5XLe48aknwMXVdQjL2O2CdIhTIY0YbFUw66qthP4rxpgpl9sbXfntOD1zrFazETCoCkkkqc/ITezsQk7ogmRq+zWMcl/rfvJuvTXjgAfrBXoTbf6gjendq+elAfKgipmSR6gCdxg9fMBQcYGRfNBJZBQ/s4hBGTrU24OD+hHBsanMWwkGIX1LeZTvyy/WhTJU0OBOl3yq8I9FzyCkbkRR28Gm0IeiZk4t3OefVrT5SEG/BaIW1XFr0vkDYYSpzlnlc/zHl6ccAsbeU2mFxUyUGZE5sZymLJ50Og2JHav3mB96LhEAWO0fCDrXHvugUagJmW1ARvPOw1gfF1MbRPHbgNoJ+YjZFVWBCZcLWVTbDNwUdu0UNUsTkZZ019lClsipL6mj3WIVNZpfAIdlKWEloqdgXKYkSRsqVwL52a0a74yPyOlDom0YyNLCExg4aPm75o988GBOC0jc7R3fgsOFTijh+d5xzby/VCDXkAxZmU27hipt6QQiCBCcN6xqaExyc87PS6RmEwnWWvh6ZcBskLVgSYiPnkuPLELXdfY2RyxcxPU+/ynlLidv60JeI6LWoTlC/RNbbyO6PrXdVcLtc2IvwNQid31DJxQI3Y5i7siWrqLb856RSWKvs0eDxS5OdFKX2XVmVyVXExN6j0vTGbBn//k0ksImWSf/A67ReilYGoghGcOBJg42GTlGKV01hTcWO5hmvDLuOQjGn5Qq0jCuwJ5SfjEBQF0XqlyL5Sdw+ta1eBd9ESdc1Z+WxN6CVeRVcsTD1+nG+X/s77+l2wPSKZO06pBKsZmxKrbuQJKqxALaXvp5W9rDFHwpK6WyGS2hTu6G+cbdonTdtj9dZveuekdXScfZCLj8NDHNlYCxzlToYZnKjS5JvgWACFnfYKNHS1YR/9gRkxzPRPIKwp7cS7ihzj00vxc8ZPvNFUgdn7joMWrtVlRm0sYOUWRfnUEPS+Jek28abNDT9EMfzi8ndrZm59/c3WDSl1yx0LewJ/q3iPdxmynkV1mx9GEa283yy812PCZUOlpr9irARvCqUkPou9OUeNK18HXY8lH0Nw0B+J7eo6Vu7mU+RKR14NFY9xhJWkqZICVLfiZm+LjuVPvo2s1tLems1zkQlmeZzBRwyCcrwwFyYpmparUtS30MP/1Omsn4dG//OHADRmhdFEID4VjmnjfBbi982eZtCDf2Kg74J/WcCCsfq/JBKkqMUx+8ApUcJT2hAJIWprZ7B4zoPGZxxBxsmyDz5zfIShcnHb2nExkKk1wDTuwAA7MWj8zxh4h8yhzDp7rZeyLqJBaEFefnweUGE7Bfy9+Hu2sMqSXDZrL7rfKimxP/UlVlS60iuB0BWIlX1YYQi0swH7nBnl78WNekAtPhulP71oeCA9BB44EMYRtj8SVaQyqke2lFtZpuhQCHW15i3sSKlcWh4zK2bDW8y6ud7/5gvwYlBtNuoo6tjqlImxBAXv0ElZMtZ5aEIA34SdJ5oKLPwTRm7AgROu+EceEN33UyGxyNPIJJvpwIV757wH6mDJibOsSZbQahk0xU2qdfJ471FEFmDIJU0ZF06vX7PQTvpUql5MPtQdDZKWAVm1JYOVt19bZY1XtIGu5i2v3NK3WkpShPxdwyTJorxd9Ftye9xrzu1ju46SFb9HM3nHr8RoWmGWaTSR/DNFiu3i3qd1mlQuWseeR0JvDvLs6ysUwXSnsYE0Z6qSihumBuFnPbUqmH35sGK8IRlXfCVvGWcGxausuip3tK2dMRgb6OgCxWUJI2FjGAtiDXBnmeKp25vB/Br+Lb3/SVRV31mhaRpVp41vvSRA3kcTj7kjX+eQt8PlAIPrzdQk6DYIddxyECVlL6gxmIwYaboCCm3+12SYEdoLdomEb1IwtfVagPgilyQK2ojqNKJ3bnAOJ6Le+6LhVjulMn8m3ZEVMwBygu+G3wA5LBAh8EFCSYg2T6Q+EQlPYWmmvIxaNJ8ulZCkZ1Ls9VbRQPr4m0cjMv0o5BwwFZElY/Q1V0QpbVboL3E13jP7VAlsQXoKb4lTKwHYRWfzMIyJSqYvhGIBvCmjKpAZ5KLp852Ei3mre7jzFD72HM7Grdw+JdRPZMwJadH/4wJNYXgEMnSDTJqL0Zzdkly62I5nsokbLcf2/ZP/bHL9cN+8ri6S/f37fEljowHzEnFurM21IxMsryKHFJdRy6YKEPFozqkRIoxihIW8v0DfT+XwcO4IpncuMxxiZOqzpe0gmGyqB4XZltyDMVHDon2ylduE4VPW5qoMvYu40CrhxCsEmReGvNtVegWD5hH4yIxGzqS5OgiR0Kf0VhmCnErPdSKdeC48KEgzZqd7IS8uUvjlK388XAyNPyU5rHVo0mzTGy+fawkUbWipbr7+xf2sWAjlKJKoN/N0Wm+mO+hb5eU5qI2vyAnidGiky46WbsS3orPZcWbD2B/ZP51dqrk2j30HyJN/XQagx1HViohsYPaXJCMI1iWo29J5t8jsikMlBEgKuP4kjGioRxlKduDo7xQFTc0ltVhGTbcc9kI+1NiI4vvb/yr4OeirXAMLuwT28sRiYT2l3alL9DzCC9/W7M7/7YQc+RxokAzhqTZjUlcLub5cxsqNJtvNYV1g8PE611mu3Kj4nWudDPuWHXT8KNe0O1e9YZ4Qh5UPfK375OHj/tUYSUIH0wubQEk7Cj2DynzYCwQix7fln6Yy87/TXDc2qRRTkqUb6YfWS6XOqu870eDJZtbKdoZiXyqpJOxP75XYwDhesPEx7g2jaVT+J7TudI6PEvW0rdwIB6dKqXNYOrtwBqGxXolGx/prG8jtxTl1coIRSVmZx+BhMHKFtfd7Uc1sgtzuTeN5A8ZL5HIKkOCDJV174gbqlDaVPN8bK+EnIZcRy8jxWhtYzaGZC8I8tdiwXI+Y3w8CKdL7Be71zPOe4lTNqKev4g1WMr4EwVAb1oUPC8jth/WMZl5stMyaZQxGxlCDLKKpo6MYn2GzcIwTLLH4Q0vrA+L2VZzOtm2tpZhJ6qUuF4G5Y3bCmcsJialICgKcPo7d+h95ZPCTM6eGDS4EehehQVUtmods2BQ3tP8rtuFJeqdfL7+aO/McNuBheHhXc/USxm4C2XIFfeXHqwEPouZI2ikI0oHNwyWfjNjkqDAWvlKAa/EyOzm2ecDiqQTsC7j7Maqy+WCdGgjylwuxOgCNt4x8ipIqPcuZMji8vPR5FVYMzYFB18VoQ7EdNHcg6pzLtraSMQxgO9+e9J7Gb/29QBbs+rRD38dEmYLfPPLiRK/40fKVPfuFd3aL1pXPSNOOqTwlSGpU6hb82u5Z42xqN89zZfH0EVQaR7pSeNKU8H4UJl/+e+seb10cpyVeMoCZP3od8lxzBqtrkCWAgXV4TFBsZfeyiEj4pwz7OnC20kzi/SgDkdHBNhF5jtp7PHZSCyGkjP07PCi3LfQmApVZ7GMdXbT1bj3zCiIFOOR5nhb17DR44Tp7ObDdECtm3eQ547Rz7TzSY3tIA+XHrlz/mkwt91sByH+DRD5QEhqlmoGU4aEMrJSlM8XC0JQYBgey4iOfMhTw4PMObv0hrLLJ59kmMsxdtAzzfCAuB12qnyEJWb/1VFnQypdrHhnf9RQFfJZoxiepqKWs50z8NRi4Mpt9m89ck8fJTpVhMfDgFiwyGqxnS3J8tVa+jj3hBecasVav7sTEY8IkSqoeRp+TDgW3asCAWoAKaYpD0YSFrXQD+5q+VU9M//PiY9uyxQXATFE3devle31/LmQkpZPwDrw/Qhyb4RZKYuk8T2JX61P8q2zCX21A5fr6AQMVfNHIUzzci0xdUrgyVH9TmIb465yoPhlI1Uwp7/90963wV/yItx1GHzmj/2QLSMMVxTbKGel3ZJW0uyectXuoS3CjWAofeHnuK859GyTN6DXIJIJD/CoLI9S+HWEHAcTyJj2AAWrg6eYtKnsFOIr/Lp9bYOt8ub32V3/6um+wl7v4fPJTTSGMjjS76nfAU2aI8mJpajOyh0hC+CRIgB2xYlNCuhoeiGZQG8fnEQflyzD0o4xIQtK9ou1Bb8zSxZvoM9Ly9rP2ldB9GVZTcjMZE2Nu5DnsxFc9bl8RWzgNFRUgfKmAvT7GrN46d2OVeUAM1bsmM27va5ba7kd+vgZ1vSbRuY/aCuCExe89Z4KG0euPgQE9+F2byJE3PwKC/VQvYEO2U1ELqVIVWUHBBxtChBT9ASTM0oCvDZydFh1eZlZGFaJSvuFLwuCmOUKc9p9vupEZDIGg1k0lmzda5yIKA5hsuKUfn2nn8jQxoJ/dNGstyO3kabMPFRkn1CkhuKSeDTeLz24fFlEzzqdfFmWrpx82Mhma/E+P2zugwR1TdTruPffgwJfjF4+jKMlfOV0hP3xJFBKh0ERQubRfOiiWhQdW5+fxgCSlnkgSwWxnc7hd6BRNLDDohKbWZ9Ra6wn5g926YYVuCczMAEuiOydVcdJ4CanJSuj3IuaLLWSb6RKAkVHWzUYOcDzV0qBjtCw7mR4y1StyRtIs9fcbhxyQsEhx/Q0GfAxcgOjYfH2uptZkYNMHRcPXHYTnB1TaWEeiFw1nMbzR1RF0lpis4ZR3/jqC7JVH8JFkOa7nnPy5ATR2d/xz+OPMQ5xegDh1au0F+g+70unwEbpHB2NhtgxK9//hr99IChhiy9DfEIzOdXSPfEcuRIMQuMpiLitbPuKcN5eKpCsGy7Rw4DzCoSIBwt0yrW/tD3MG4j49i8GUuLkIHIkhRESqi7RWz7AQqxMpir87/JaZ39fjXlw6AaRnR3q7O0d/qe5Norki1nt2KwDpTh16WpKcx6LhCDB5zvegTBo5+OY32kLWC9H0DKwrma6RkZaCpiGmpRlhNGU1VH/iRDn6OSpaiqWWfPklG/JnJb9K1IvvTjmWDeRPASvsjCLmrea9IPdYgLj50Us44IO6qgZCeJg5LXgRvTOfzwp62lL9DmoOWYALxF6LTO5DqVGliyjjR+Tw3jDGZgHXqa7v49UtvpewFI39UfyAc3vn2c1ORPoWYekTRd5d5h5ZSvInPzCsja8mXvdjNvUQP9uGXrEQUCmh2/Od/7ecqVnYOAusgcfDVVnwS4QKPy+fJ6Vb5N1/WBorSzTmKWS+TMEpG7o8rjzV+Uav3Ra7mxtM4NQ4NGYL5ByHKInCC26XTaMfoE2pTwJFP8VkAOqs6QEBrNWi3d/aebXMRck/2bJ02E8EjnkVIUdHApmkcEQi1gfnfxDnoqPSA8gNCPSR2aCh13s82tmAfVZ8oFDk2ayZbpleHJYwRbgowMQLKilcru8wlUvSTyP20kHXV3KtTbe319IXWBTAFNirpnJW/s+Do+8VYMwPr+nqBNKd2xNQtn8ms8MZZuorQXKMeL2u4kaN4kl48ibI7Gi/jeywzdRii9odkwTsr0aPOigN0ovuEApsimDozGVgcqXYvwizvUYDeMoAsvxzwiMuCi0BLhvudPj9mVP0EJYWVtBwfiot2e7Jj9Eq1hcbKV4iI1RQ0nM8jLZLg2XmK8Lon8JzQsvyPq7Vv0xr/afX7O40yfABojT7u1gzSh5HOkIIVCkXyuzlckFSyDXg3wWRtUj+GBrGxzvycnpQsrZfVcuQ5eou1Afsy6i0AAycO00bRCSOAzgXE8D/Q/Nj4oTAuQ1r8xPJOtRNW2Sr+72feUvJEjOJiUPIuvOHpHS43b8++uDsATYPCNSos05r0qHtlrLrozDqOuSsyXDFETLJEm0QbHPpO5UwcgQb79AkoOPAal0gretMN0yjzwBiLSpvo+xgfbgz0zDbiBoTEikK9vWzaBNA0Lf8CorwV6EGcYclAE8tU0AjsXk04hovoJLzbSc0oHBbCzeAxwPFxP84YVA7qWQjB4V6uwwAfxG0uzsvndh0O/XLJNSBofShPjFutNuh64+xowX/IFuBMS3nUWDidqDy4LBNnNaz1dWoOr5OT9dNit4InTPC6hq3i7ZlduJY7kZuPrRcXNqlmyjY6es8U11OrIN+mPPjlpeJFsxLKG6UJ8u4/8wCjoKFa15udc1cARWIk6/cDXMHhS/CPo3mMCDG3EtrYk0gMd2DXqsxyqhroiGf6JvkLc07M17Eje39WLmh+4cwOopr4vpfcmtV5i/2/woMmhdwxa7QhbuFlAiItcJ+rgJuhh/GeM+JEVlsILiCauVEfE8wf7QL3AgNvcMP0TVzXSb3Za6X+0JGmer21BiQ6TD3lN8PqhWCRQjG9vEmmi6IqeCYXIsj8aRKEuki8sdKI6xIBFZcC1iFgi9rrY1r+2GDNNytppBlkXYb4DNe3AQY/Ddhi1L3klTkFj4pI5SE6ZEtIGS9TN4e+I1U1xWMxxv6nf2sDLKoHB106GtWENZhzrzIzqJXCKhxWqReDqWKow94LmIWQe1rI2f9TMSYx2PLfnC+Bn4ZzUDXnYQqX3Dbf5j0k1vK/kCEMUXtxFuunFnbRTWj8Y58KCJs6n49OuFscVUtut94zp4TMX6e6616yVNpH3UZJ95CYTCudFl1WUPTL5JbGpmQMl61fzK38hv+VpiMBJNNUigANGBdlbHd+M4KgKG0/JjefOhf2oOMWhjpPTAHpZKQZLP3RIB/frzTLXMeShE6ozu1lsg6nDDCbxrEwMaqjS9hvYqtAokrQp5fGbDDxfYoXilaC2qASI2YbsZXpMvVtreRRS4RMjBDUMxSWi0RhKc2sGbO3Tk13oa3rhCy3M5PjtQULx+5eE+A037M9zKL4AL60skYjMf+Mqom6UCyvnO40M5vHdA7tNMIPTE+AKG9egWggtUxQDMYl4rVsPb3r1NpBGDdH46gBPZ85P06yMn0qL9no8YZKIVEddjvwRcXU3+aMS2kUGxqCdC6WRokzelPRWFMn7xq0rnbErnHUdxZn3LaAZOXTb1ccl28i/8L4YyjAsPPEZt3Qae8M2yiErlHxf0NEMS75SBrrOtJgq8mn+7om/3j0DJfXxRFdzz9o+JtcSgrWsSO1U7wPaRo/84g5TbBCaPMf8VlNccmRPDgYNosgkHdkia/TDdyZ8MRcW/x54oSkkb+WSjfqdKsU+n4gR4A7TU8R9XCjYbHTfidacI6jcp4weMByxk0GltFVf3bxj7+3BaWyX3IXW9N6yAp18hEPWenteVggH+QLwzfU123iMK2y+X9NFPzIDScA7v3OrG8up0XJPgiqPNerWP7pLJAmxx9FEIyOyLJBh6BhMHdCiI0jRRVLNICR8ggD41/g2a8AV76hTUVLcUr0hxW+Bxt47XNiu4epqzjNJeJyIRuL2uW4JSqfwlptXLJleW9tFoPWieEGm8fb/ZB4ovMVQPLNo2rHBiNUBlXe8xc84pB94pDwxik5YmLCuDltU5h0kLgyBoONUg4iXPFV47qMznZhOolEsNsLfoAPFigypi87aw/nM8CeO4wQVKfpbcVEg8nFy94z9lQEK/JYKayBVN8ZR5ARsyaRHqFE3toTNZFQfaBqrteOxYSHFT+1DN7zHgawCwVVtHJ0Vh59cVAzyg2MqUj0XGg8IguDuSyQkaWm7XJ7pW7/ATJmQt+0s5hqRvry8ZvDVwYu0L7s4miTWOBN3rufZ8Ay/sOXIki7D669LDo8stcE8Dqsawr45mIvyQQhTuQAhRPEmTWih8YTlVEhnfoBYg2pEELI+q8u4Kw4xfobeeSDC0BxAOMD2vytnWGVRG6OFO2WT/hpXgU0mPbzzP3m3+5tB/PX/nHDtCPtf9VAf1Ecw+1VoYNFMHALetnKA6+uBJj8iismm3W9ZQZZcp6pxgcpOZ1g4bd8d2JW4UyP+tEZjy2b6aq4gxtmsaFLFF2qjpZcxN64k4rMxWaYWZMdP8uRHKfGaImB5fPovs6A9dA2M+Ky7Pe327IbHadOekVpDm0TEzduNtLD5mB+Of6FcqvNNPMvBoiPa3ujg9ekBAiuJiiOuqsabQvauNMvL7+MciAUWQIx3Eu+PCnkoDKndGnQZoqYQSEeal4Qnkd+Oxo02XnU/Ez0ukGu/p3X9i6WC30BuzI/jlkquU4FXoH1Ubtr9FOcUji26L1NDALX95pFybAK2R+SVroIcQdzJhAXVZ1p+DMJibMXFWWV5P5L+UAtaT5AazCwJXmzsdiKghkfpOSFjbSlOWhc6ySrZOtJUCSl2FpGeoyeIIENvbzSCHGnTmlgPd5St1id3qne0XK7Th/oC3z1cXfS3UOQYsElTbWiW+vSBQLmGe8bhw5yi59fKqd9i2xniJ2aWj24am++HyZ1dWSJshM14YvNUVW4HA5tpSG3o2SIhvICl92EF2EFHTN1JvjHMxQKq+ubZhWmfrcFv3D7tzqfJCXlvUjgjGTeRGs/K/+Oo77GAIalgeMj4wSlqZoZy78aEyN/e3oEkCUIMlgYSpKklkDERdKLsPxX6sZpKRfqfCASYeikA7XGB7kPWbbYBSCZ1EXDwCCPf5GtkbkzckFt4B3ELdZUd0zt4mAPHGpjtqfAUg0wCtYUCfTBj+NhrEREq3jjy8sRRJI0nD4ykKZ5t4Zn7P+Us0hnwByosZU3/zoTj+qL/uefWeeUmf0RRWru1l8xKvozQnOn+JvvxrlQsBa7MWPLy1/q2FZkZJ6TDuo4O2pOO5EWHE7MxZ0uneUSV+zqHFbqu25v4U77pw6zhT4CSE+gksCicQg9nhig9I+Kcono/9o/3YAH/+j+8yK8Fc777TMrxrK9n1cAUvx7yYFL+0tyoIg==
Variant 2
DifficultyLevel
641
Question
Jevin rolled a standard dice 93 times.
He wrote down if he rolled a number above two each time, and recorded the results in the table below.
Result |
Number of times |
Above 2 |
56 |
Not above 2 |
37 |
What is the difference between the expected number of rolls that produced a number above two and the actual number recorded?
Worked Solution
Possible results = 1, 2, 3, 4, 5 or 6
Number of results above 2 = 4
Probability of above 2 = 64 = 32
Expected number rolls above 2
|
|
|
= 32×93 |
|
= 6 |
|
|
∴ Difference |
= 62 − 56 |
|
= 6 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Jevin rolled a standard dice 93 times.
He wrote down if he rolled a number above two each time, and recorded the results in the table below.
>>| Result| Number of times |
|:-:|:-:|
| Above 2 | 56|
| Not above 2| 37|
What is the difference between the expected number of rolls that produced a number above two and the actual number recorded? |
workedSolution | Possible results = 1, 2, 3, 4, 5 or 6
Number of results above 2 = 4
Probability of above 2 = $\dfrac{4}{6}$ = $\dfrac{2}{3}$
sm_nogap Expected number rolls above 2
>| | |
| ------------- | ---------- |
| | \= $\dfrac{2}{3} \times 93$ |
| | \= {{{correctAnswer0}}} |
| | |
| ------------: | ---------- |
| $\therefore$ Difference | \= 62 $-$ 56 |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 6 | |
U2FsdGVkX1+UnyF2a/oolPLCeaGmllW8MKq35N/oStXo8s4WngxSIma7FTAga5fOVRadf43dyAz7KqfTVGeUWZvetpL9oVLfo5usoCsx4uA/7VlETNl8BSpZKC3oV0cje9llshnLRk4RaenO7fLMGTyv98asq3umcBO5XYuD2ruwO1xBnM5dsvpPUCoFv+oaEbsLCT5S50Cecg+BvHa6W05FUUm5r4RXQKrfDx9rBrYS0q7tTG90Nbe9goZbAWB4bxQRZAWuYrXQpH6iKTh6e20n/Sj3s+37gUPn2xOUZdesYBDfW2JuDYMMHnZd+1EdpdsHWcTriICp1h0F7+ZL5KdDPq+r7n8PcLhY3iXGehTBb936ZkMQKXIQG4CMspa/BgasyXzfmHX6VNEx7yF7f6NWQdkpHft2AZUco+PpP1dubdmIcan4C9X7gYKnli4rJBsCf9qdlqsjtmmlS3G2WIjPVwMWVgVapvdULAE9e5bFpyszTi/XR6U9I0LvB7Di1gGe1CVHztW7nWh4GGoSIyoN4ggsdjQC0ULyksD3gkQ/xCe/sVMU5fVaPcwepQvTXBFfo+foTXNf7Zknxjfmupj8F2qe3sb7dWQ2qcPdxoIxJAEsmBQ+S1Ebng6uMXYwvc2N2OKO4phtt3DcveGrCCbROArSrDQfDjqeKMOCZ2kz7raqgb2mvjU4Ow4FCvzoZkgnA2Rq7nnPzTzE5hl1wP+XN26W7835j25a6jFY5yDMdb+qGrvAtESHGQva3paFBJqHce7dTHam7KxwYBmg0QCgcefVKYudGtgelyX3SVAffXIfCofKxYywLRArlmq7MHWvFnB4tu/lq+faYONUv8VfgadDQks0QMGQbyAcr1LX9/29r3lh7gPCzjpyzEsijiJblRsxqEeMTOBSQnQ49Xcdh7IPu+A3a6+lza5ABh7yX6tyygIVR1QgOHcWanN1ZkH8wrNbAyNXih8ydqp69e9Yw8yLJnnqyJjpx3osftnD3fs8LqpCca1uZZswYmyWucQyZ2GtDXtuvWfbmVPwGDoBMIuEZVLffIstwdithj2SPpTf4J1SUphACgtk8horV1NyeAFHoMQw/KFU7UVlqFinWkF+i+Hmm244ca4xlw/rnbukZ2KCggBzBmsb3Gzj5hS6g6Bah105WV0Q7GsSpWPNMe4uLLlnHB/jXgwDT283U0ViCQC9L8fKykYYiZc+PLt37L6ced/EGJqlOO9B+rpNZWzBdWkBYeE+qZy9RZTdWuI8UbAAUTaCFu1QpYvOh4OLR2eA8r0b+DvfXlTSxBriIKaTsFmMXJ8w4a5Z1BEGUGUPObC2OnUoPtsHo+LZwut14ndtxLZRipDrfIs3PAsTb4TwP/EyBVkOaGu06EoUoFGj6iL+DFbSNecZ1vcngVtPX9goU6p/tNsfsJ6YFpefHT4SwXlshvMWjmX7wwnoH2MesiMlukW0Z4bl6ANqqlyVJJJaggpvDSKux1UP/RjnjOLQs5eumfLET/izRtOs8XSxT7Z4pjLv4WkgBfgCjbrdpUGZjKaI3G0yZOBxwKnbjLWjXMhpf810+6gGtD9ONSNDgWfIqpsSZchqu57OWb3pUcVObSNL4DJmyUuV+7f0kvE4YSyhreB65QkW5ByZ5YXy/D/p3mTzYcJXH9YehTu6c+y3QQbMaGRt7sNFwgVt9bc5dpu3LzvS3NH5GhuR72Dwwprt38mej6i0etzaCHHlTt/fwkGJZGMRr697NUVr9n6VoT0r5wuNw1axCNmXB1QKMJHc+0DuvaK6G23KFHTIeaPYfmMuv0SbW61a2iNn5Y1UAPZnwM5rmPD9C9BnOykeh14FHvP0DEG2fC5xUIhIDRZBO/BVCkJfo2HrxrXCi3qCTCOxfckqKPvIN5HZZtN/6oOxkDyuuxwr8v4tyg6fpQREVSXan60+dpMl0qinYASRQK5MsOEqs99m3YULlpGUMcPwMJ4skodkSXdqteTD6Wuag+N8RRDBMk/Vw4AryFSXvlPrgwzapJlun3W8CpGufzg6d0248/sCsFP/dc56M3sq+Mj5z5dEZga2zDFSfoxbXemiswyAF5hVcPkSeUUxvHQwvRRIBdJCyAOwjdq2YNf+jySzj3kKvoaoAx5ij2dFbfQY6g/FzzOxKvl//eR9BMm/1a9LUdmhguFdqiQYwqMiIGMYXQfP+S1FV1welLkJhABph5SJ/F3uUsWKaLvykMJogIollURjumCT5IMXhcVPuHec9ToUfPUi8p7CAjOdU+utlzK8ArIEV0I+ZD9L+hBbCxSc22PF45ZPreIes8RrMThpRXK8zhW61wOp15BdK2Oe1hbNDtGrNUG0Qx6hHnpWeCbPne7CmKOo1omVffYKdNHcTaAa3eM+sfaZU+xB0UKY0F6VQgV4Pa8J7afQbbyi4Q8VioKY9ilIFNJ1lXDq9Y3IDCljcP3M+mAkC7azmtprIbgcNEAAq5SgyLJlthT7c/x+GjwibiZk+gGbc6x7ybNNDCfUq0Gz45bO3AE6Wu2mXoFMnHZBP3PygePrRKtELjjMoME6genLqnyDJV368cXYnzPPkUBy3z5t6kzmwbas/FOeUiREfIQyEvGfWfuZh+2+10ysR+L2xVMd76ze6AhTtEQxs6iijTdYFVaAPiivPgWefc08CJ12p3YLd7e4sKtLQnae9Trm+lKtZYsIezjjfq/7GlUuAhe3waJ2t+Jx3u2n+UFAl5lERE6Qac6Fp3+LKP7yuwaMYuIQAkdQumOYnFrDHve1LgqBrtk23xT7VnLigzd77CgqZZfL2GG1SBbmggz4PwjG4dztbyCryuN9Bygyw4pcOqMHSxdWaYxtYKUmtp7Odq1eK6P/MIlPoCfwjBbRZ+szXfdq0T5oHI9akIdBRCALz7zPr5mmfDnFJSTIfZh3f7AxR6PGr2FmsjAWS0iqVLZYQfgIPoaAQ3ByjuH5bXL4Mn4KFPjr8qeOMC0bUGV2uVpJ9BVfDBH8IAwbqGAohF+H9kqsa1SRLi5FV7S/OEie7QDK34ARTu/Dm7i92YAEDVOR78iCkRB881VBcd9OS4gELeZKaGzCU21JYHNslNEQy9TXBwjJ//XxR/qWTVKeIHE74N/Quwd91re+TGj36qWlOtuBc0gjF9OJ/FeC2L8AaHkmMwh3w+KF5cDO2alKcDse6JKruNwzHJS3nMxyu8sQVySfURItCW6BOaNqg5GZo5cVE+ngKFotLXd3GxZMBQ9NhLWBu2IGNW4SVh5UBafeIJQWEXIAzrbvgD3kQR6nv9YfakqUxzg5K99SuDhaDK0jN2ypIW/Isdsp8r791ZGHjkxwKunEvu6vdom6FuwqVgeUw//xI3C2JWoHfcFHXXkTaB0jmfWLISSrTtxYdv+X5EMYqb/H677rKkqmCSVHe4spblSsGZBIBUwzZFDStaNGDWqd/aH6/jpkwhvkrwgarFZW4colrTMdGeV/WfXfdJx1vCNzryCeMGEWXs6sjwKLayxArBUXxNEcuXBvzqQNL2/z3fMFib14+Ld5vfsSXJQlTHPnFP+oEVrcfujLZ1Xi9blta0igCDWah1LEvtPN1g1pQEQrIa3PqV7GqzL6AwMge+FtNnNsv6EjBljdniP8BltetBjSESt2BsmPLngMkUcXrJWaMHXhEM4aj7lvHDHrxtkjXGPoN2YMiud85d1lbQqt2r5zZC9hiN/KjoKEL430r3HA5A2L3HCt12Q2MILA41AO3+mddJ43Z99RSL01QVkX3tbOMP4lymM/NlYZozr6DOi2w/KO1FhS04H9tJuQqnxWWixgCqAU+Mh29E8os6W2wl7pO0zTMfqxv/PR/fIfIOOp9G6STMp2FMS82WyRhTLpXTFywzW1SzJmyDy+kJm9QX/wH/tTJL5LBN2xKh7nqNMGq9MWFgYKU9jJ4HU/qRhlp7Ak7yLGyI//bBGMTneub2zXEAVvUFMu7xxaQ4TB0YXwtCDGRDFnSvoczLrHI51vPzHOZ+71tkX3A1jy9ER+PO0XahoDXXq2pRZ3Ju9Er0EbEPL2F8S2hmoG6OzPFW+JbX4IiNNOXRZIE1SNHSvbkQ68RtjcFd1BtPh61XxYrkL+WX+Nd/pGESOD6jB57COg28g5mA0HWOulCItE+zfSA7ROBZUZn9ojdIGWGbpy6h7BLoig6M1ZUc4Dxarx95h/D5Ju03FQSFAcR/F7+CLrlaRUxR2Xh0MR2Vb0M51LFL8P+uxuJ6iDT0vHUvevk68SQePUYS4MJ5K6wCyzNu4XgHEzWaLwLqEwMHSNzNj9QmEB4GqMUe0UMy3xmR4dExcEpwjS087SyIYsKK1xZ8d+EZiy7h4UPkUnLQ8Mij6Gv7SczJuPjuPIT3eKOz6aqz3Hz8rH52tmsfhIjYrQTEeTA5smOTVYNphfEM2Vvzjp8l6FRz1yEz4DIsGNDM4qIqS7Iisfeh/oCzFap0xNxXL/bSiWaPjgQzMIsceL4JYu4hGmAgoP462sF5qvgcdLHodQuJNvZUGqj/5Kk8xcFgtA+kfDsVytspoIHoG6G05QcjSncXhn99YdA0ZJROJo+jOwVqSXUUk4OCXjhKaJBHx9SL4LB+U4ApwAA6aqUWGv0olctY5WcTOi/ZxZR9ytbdcPfyq7j5Id1kye42qRmKpJKyY6Oe+izkaNZqx8D/qAoNQSW95ZDQWsuP77rX1VFRA5Lp9s27532glzyQo/5Ktd2TAlTiHp8QcdzIZ32oSr0jfr4hn6/xVHTkW46mBt8mtqtqOJL5r31psyZQ28/TNQkcSvOZ1TqxobjJgxm3Ro7WZQDMdFAWO8yDDmGsuRxHNLmitaxkqKIzKsOY4Fvg2wX9Y9skwdFLxXEmIlv1b2YrWQZCOOAru3oA5jso6tFp2b//1pYMNCM+QFySTpjkvfe+vKVBIveH461KV+aE8CZhpHTK3jSNx4hNr7agikaaEEROaz/R5wL9Umn8+4i4xvLc4qruvTPAzY2GPzNHlnP9eY9a06NPtnmtWSqtpLkyALr/iUJ9rmN9FQjVJ0ABFr10AIkuhU6iJD6RByWaem3gTqNDnpYnxU9tLRKWa/T3nnE9Gm+M7adDfdBi84/x+oJXtkO4fB99JKWDPlA2zrvwGJ0xbiXhrTIeVsHrHhTbpZ4CIk2GZpWyJvI9/1Piu+EqFRrW2yh/rRlr12cebsMRi+u1UrLiMG/rAlOCM5uHy2pD1+/0/NHx3nSOAelN5jDNV00pug+V6HhmfS/BseFLTayKhoAlVcuZfps7zDmw204jBa+KequB4HPpDfrtXeBIlEptDNhvRt91JU1MPBCxrG+VMUGci55o6xTTjntcJwHcGW4sLXeHNE+6rgUm4cqlZ12kHRsH2GEkyH8VHxKMOO+ZMF0iLdEVpDZc0PCu4diguFVPsziWrP7T6rEwnGO8FnXeMtV2a0nD/5RMVhmhzfONj4NCBe42jkBdAox9enVtLw7MZa1CTgAlCsSf5eG3x7E8pa4WESJqUNoQP2s8WqUsNQijE8w9mutTNTIefCpmiqBOpMlXjgSPOYz1uSjW41Cr0CmJ+LAFig48L1xm7QRgaJkaGMLitegD/6y7PSsiQTuXjk8OT0zerAKH4x6upuRwwFJHJRQ3RX1zeMxCqle35FU4aaJNv6dCWCtBlBaOW2vLko3nsJSSKgFBgLvtt35uACCwZfyA9yZU1wr3AZYcpTIaabHlH6yXR+/3KYDCzMcZBF5r+zWhJBCWuUALMYnPHE23Zswgv5OCJcJ2SkebxyudjFTDUlePqBHySbIyYSjhQ1oqksP4qHlnrFfHIdJ5FaBj56puZCu4julb8BrJJepMUiJf/xJoe+govGL34HLgvLmXJ1IcjV0tJ/WjKx0tktAaqkkr0Ry+TbgEv/dqmMg7j5EORup8C2nZchx2z5UwLNlx6QlDqRFFqMGa7ts2yE0kgE4+GxOEPKQHBnDwKbeFvJT99kJ7CzVrNd/z7iSdUlx0XK0CVjKkDJLynQlUpr2xfn7vCtNlB/1Avt3yw+d0iFeBhrrVJX45MT4+UqMnaB4VOfBlpTiSHAlZxLZpKvhtz1m+Hcapakg1e87bgdpB9Mcrd3xuFgz82fflRsS2P8XsAr6Y80PsN6VI5V+Fq1VMuBn0g+GYObS3ukFX40nnWBBK930REky/4ylHHLj6CqyEWXBqNT+y/Rx3sjUNek9VhMv6oTlOqNbuFJqrxB9N5VMBfYufM6MK7BFay0GXb3eRr2gobTPLGg3R0yKu7J+MD5UQtno7brXpPFtXxm7cZRny1gUS3xcfmc3DAFEEO7+uI/AX1y5tTM6mzJ6903zZjq1FWoPCyjxEonlaoZqogI2frhPQjMVIVNdi9wSBn+0pCF+KjAy/AYtjS0Gc88PeE9gReB7M4d+aX+Kdcb8RWryDwAWB/8FkoDT3WT8EqQAVPwIJYsdQLvGBLki0/+CTxOQVGPLjIfFE8TPibZoavKlTToSmuo+rdf4HUiiBAun0BNZEVg75ZoqHysCGEM2S1z9IBZA1RAN4WozrzE+JBLxG1r7Dx11BO3krs7muPyZKOV0kYrKY+xjSAaPXmZLS9SIpg7wW9aWg+gNG6Pf2wjUqfklWPQnZaVZOsbvGN2+1Q+SV4EZcnzTqWxvRM0q6WsS4++y34ukIa6dZGou1eosDdDCXjhlgZmEHlO/QB1L8iRB22hIHM47BYXxbYCtrY52MCPvRNVkSd1PYDOIbJbDTCsdOI27mHL4aGXqGWX8HSdNwsAXrW8wB6zvfhjJLx1hBlJb5gczvtN5i5d/QGxV4ch3T3/WElU2EY84SDvv488D73+vnG+EGQZbefd3EEBfz75RF0v1SnJTtYslZ1JbyONnDypjGwouMcb/I5GK4cgbZwa+MnSrijhcfzQYFf8lv3vQ0RQQc9AhtQab7qz78cwTGU9QZpbIcz6aN1n+ZuaYLn6JRMQ5fJvDL9mmh3Yfx3tQoLNpUF2PfsrGBjRDZjvu5fsMCMQDLsFbzWR3+RB/hAIPpZrMnBygC8he+S4T9OBv1XL2tyRBKXjiPySCqfioypuyynM0tdW+hQymNWUXJhHgYkSk2/ZtwtMOR224vDvRq9YztANAnZLPhH4q8IX2/+QHwobf2hc15vPT5VHWlNNkQzKfb0tEv2EGxQ1x1p9ZLEoHgSjfva1Mbga9YuOKyOmOM4wB0kl9MrqpaWBap9YKwUe7OX9fybl89di85N7CiJlAmmnviXGOUXyOLOrm5n9cI1yFOOXR+t2EY0y2xfho1+CHiLA6hdm04uQ/Y/1SlzlEa4RgqK4doFiYnK9EHZ5dvwT9plyaQ1hexrDoSvV61edlMEJoab5xXI6YbuDqmfOSsx2+sw0RFRofswan0JdlyQUJ0HBVDkG/VqKexvpcTx2xk2ngh2Zf5ahnr37mY+1rrAN+80c5PVj47LedV/vKOE3OrwDzeglwaHEBKyAIfILUAbofhvlE2FGMI1DI4LGnURZj66d8mbQGEx8RKBohJn6UBU3KzisF+pPYWvXDVxR2j28NXhLOIPmxkUQV7XuYXOh415OHwPMBdZHPxEgga/YKYbYpLxxXlgMeLDxeThww6E87WcY/cx33MGBS9kxfOr8e6pwxeK86hn1YnATiik/zn9SpVkfmiSwwyG79kWrFNYrS0NzFb90l/hPEzbcNOw+DGZWgjGXiTM3esDG37x6pX+v3iKFV8+1LNYvGd7N0NDr0CtMoRl4VQ1AmPD0cu9ISCWhTxFST4Jda6YDmByB3MTpB66C/mzWdLHmDKElpxg3FeGo+kP9FV5uHemiZm5imTtzOnMA3k+hMSvvavnQe8nAK5n2kCq95dbZw6CyVBPZvOgnU+TwJMjFbD8K1RUIzJk1hmtNqDGU5YMAMPLeRVksMq5UweKM2CNbV3W3pCgkVQy8ANI7945CietuDUcaKEwrechpHFTsPTAj9cEQQIme+EPfy4NQUgB1q6yd4nUmF7EuNFGzspcrrH0FLk3dyFmRV7Hqm+zmuhVCakWWweHbVyJghrO0Eqahz1Uv+t+IdHbccDbgVOLyY70VEwkxHtuoxthOVG7RMMHL05GJem3M5Ui9sH9MecjHuBNmf/9+Mj5hqOhnY8iOklm1RyY9ATPuLtJtXLinTngyyloFw4PeI4WKftCNv0CDum46hoz8GKiMQIOaDwJfoiZF0BGTNUdiR7C9Ui1zR9wPBAUaqqrCMpF76iJ8eRpWtEalfEBuB0S1iwM1qLIH3ztjVCoc9KQ5GQ8rcWfFPdWoeahCIymkLQRHyrjLJ/088Tfg6fnL6Bfew2gn+AYpFq3VL8V4lhHjDG7GZjmp2d4wAdw3SNV8MzLl46W4uYFcqkJLL4O/D9gW+/JxxAbtG5CyO/IvN8w1r9BhgZVl/1Wkqf2jFleT8Cb4BR8C/wAZekat06D2ubOcQXvFEGWj/VZnFl0ZHYZkdDs+EO9sVjC2pFYxKTAki16gIsurxMFq1J3f2QUPDc50yXhUYYBzhZDygyw8AWXu4YPWfioPfuwenF/1gvjye6EtU1O5pQ9R2vnc983PpPhMDFo5lUa4gKfzj2MHLA4/pYz6hat28mOwVKWxf7YBmLmpmmz7cdQ2GAEMiCwTBicUDdK6cGF+bGi0p7RKeM69vseHOeBYhph2IL7L2BSu37dJBvc7vls+kL9WpUqMCQ9w4Uip/D0NaIFN3AU7B38mJpU1omv6c4d+UAYfBpKIPMhXxWMVROtrWJZvrPsylGfiXM2ZxVNa/2y2dkUZuOjAobW/dB5oXm3emK40227cik+8QnJrnvJnO6F/hK8NdaCNfdKX7GugGr+8eKtPJR4JyZceI2GFNJufzc1kWNbdAJ1mu2t1uBDDl7YZVPDdNzK2gH3J2/XQZAChXdnq3BPhIn9orVi/mYx/9bKl9Teoh42rbqyiNr1L/HTa2JWH769tXhUInfLRGAWS2cXVRCSE9GKZe1ME8CA2OJ4ifUF6ua3lmn3SChNX2pqyeWePNomv5gSAOLBBAt+hg8gUqT3b1zQDNH3+3KY29vkqYTy9eK3uXjBQRdqz6ukycawGHSNLNZmU11/nbJ0X6/l+lCchKiWtsavff0V95irrYJBxIs+T5NurlLAzKauBUfmygS3dyd+QsW9LNM+rUfx681AKCYvWHDjFoosWkHfqkiEN26SL/ZVPimf+nZMFKcSxhVlatpaS8uznwe9OKES0m7Mw/D51aQ5WaUAmNYmq61n5zjAzzgVEVJIRHN77DYYYEa4niuGWiTTl8Pr3osdnwFgbwLSqAZZtfg81Yz/cjfWadkMrEUQtEP4Emr4/FUA6jNUwM3N3nlkqMu9kjBJn7sU3jCfWAHYxYsttSlJKs2sJhUsjOI1PF8VG/R/HBDe1JQlcPNaLExC/z82J2X+zvuK/QelEb4TYJtx5k1k9WsH59Z8ogb8gQ4744Md041InY61o1L3DwWf3DRevuFeBxzwnrP9MKclMtyCuqZvxDuCIcc5P7/r3gX82UcCqW8IhTWN6YN0ZXwS9181neRE+g7HhknusjMF4dd/In9xGtO+7cNAhYFAmpDsFh/9EYl5LGjj1aEe/LH4V1/v+LicdGH7x8F+ESTcBobb3RvERy5l+AwAYDLUisEErTUaf2iXJYJkRisWQQfp5AEmR2JJPfeK3yi75c3rV0JFX6yWEooAsTK1bsYr8uuUrQIo6XbG3epzcj1w9rrwfcFajk0R56gNUbrEQ++i2CpqvEHGJun+tfoo0vt8j5T99cN7DHGvyD3pr0/HFUDlWH7rbP4FoEXYK1eBLfMlYq+XcDt5q1L6ZAvLeP8hvC3U=
Variant 3
DifficultyLevel
652
Question
Campbell rolled a standard dice 15 times.
He wrote down what number he rolled each time, and recorded the results in the table below.
Result |
Number of times |
1 or 2 |
3 |
3 or 4 |
5 |
5 or 6 |
7 |
What is the difference between the expected number of times he rolled a 5 or 6, and the actual number of times recorded?
Worked Solution
Probability of 5 or 6 = 62 = 31
|
|
|
= 31×15 |
|
= 5 |
|
|
∴ Difference |
= 7 − 5 |
|
= 2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Campbell rolled a standard dice 15 times.
He wrote down what number he rolled each time, and recorded the results in the table below.
>>| Result| Number of times |
|:-:|:-:|
| 1 or 2| 3|
| 3 or 4| 5|
| 5 or 6| 7|
What is the difference between the expected number of times he rolled a 5 or 6, and the actual number of times recorded? |
workedSolution | Probability of 5 or 6 = $\dfrac{2}{6}$ = $\dfrac{1}{3}$
sm_nogap Expected number of rolls
>| | |
| ------------- | ---------- |
| | \= $\dfrac{1}{3} \times 15$ |
| | \= 5 |
| | |
| ------------: | ---------- |
| $\therefore$ Difference | \= 7 $-$ 5 |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2 | |
U2FsdGVkX18vZhvgSiprpWO+moVWeatB3hxlVZWv0EbJKnkXaCtklKekhk7231K2xO0hpe9Zmcnpi5ef6qhCKT196bor9V/Fq6co/BpC+cb8hLkjmIXpCqsqSmDiRuueRpF/KfYFWCzzQBobk+kQiV9Pfh/2eT6IqPCeDPez7dY8kMQreyxNXNWjwQM0MwRZKX5Pp6oxwXFQlTAabcbgaxQIH5vbEEjNQhalk0E1Ds6XRSx6xLUNsOSIgInJ7461pz6GIefLxnS5OcZ4SUlm6OmICg7jnPRDEu+y3PvxG98TpNB4fJClZQyviCWmiO5M4wOWzC/BTuUf50eHEy6lmeL0Eir1+fcEFSOo9Ssh9kctUL3IoflreWIClQJKH+LMYbB0rl154jVd4qbzIY7VQ62M08aJ8ZJ4/E77hGhZtjFz+2qh1AHRcPAgva3iUf4x/8o+1LTEnXcX4R3qS4xk+NtnXlqjoZLZkCNM2mM23iqEJALJ/AFI1vGpEdkpbSFqyLLNw23/3ATTPB5p0vRZCp0qwR9CUuR0Bxf3PwSYh5F0STrMLP8Br7bwyYaqhpGlmhcMDfcf4GT2IICc1Nc7BJFi69OI3MMK/GJXHz3WqUUn4+LQXQHodxB/4E83/6ZklHC/D5fMnTftCVU+QZ3RPsvpchFd14Nx83owr0Mmw8h7j61RaJ5ntmz5JTW4e2SrH1zYus/euX0h8PrwPAfE1QLzDmfczwoYZNkoqbE3uMetJgrkeTQnrTdjEPVCT4DziMsuSVdHvdmXT0EMICMv3brsHH7CWLuO/Uuzls4QCaeHAdtOvaNl/CNgQvrhlPArvTc+W1pmUn3K8FvDS+k51NyX/2YeW9NsyU1kkyH61eQsLJPtgchfKpqspKJ3VCwI1wMGO9TEVKxoX+SqkCEPI+v+lhzCE/cmxwqgDc+K/ub7pQiwMxnzBymgNMMhrjKvGSmVHQhqAT6V17hwAwdjqBI71X2aIRiZQNYVAiUz+CYKy0Wp7PWNuRXoxoUOZT/4cFgavnhs3sBx1WFe0p0vvJHGx+9yrGr4jxfEUxojMEPEJ9TSLrSlGu3M2xwoN5sILZWbXsTzNux32BDqzO6hupQY9vt6kSaS8Ax9OlphtEiEWQRus3nbYbgml4e/ic+Yl4SnsmceJ7hHZOlmKuYQAQ4IEH/d2SCSyGIIWZXeBpBn5ojZvvlIft6r8N6kW9cyhow2aP2PLqZtTX3URBP3LDpS3PYR9giOpJocW4XAFvMUcvsCed+ehxPaadk0ZxuCJAdhs0xxFuG33b+JHiOMH7HuSQ2PcloPcnBTvnTX8blP6SquFzzH+zlaXpbl4w4bQk/BDejKtzlUWNHwruPjfjATXCbkFbZraeH15yZ2XV9DE6hQWWAt8oQZ43wqosIWZ5sRiz2ahkc1W5K7F2DakmY6h5trcWbgoxgMOGcmU1GGQSlnRQ3ylK2zqOmEOGWPLI2IieupxiH14R/SEJCkw0PgCrZv/q1BCoN2yjy2i24G6cv5z3eYFEAAqso/PoOrjwzbAcZ6mRd05/IvQr9B73UV6uBhaBhLQdBUpwvT+k7I3sGMC6gdDJDcSNggMi3lu2fTxesVJ9fJNzptiQk7h8Lo/8FOgeUhZQNakNgmfFvCwzAwBekRLvlKb98Y3WGEMF9xL4/7Lt+lpKBSxEcRCfIhVKlx6uSbtPzzElSAA1Cy3Qrcnnl8nfyzM4qzNiRuIeZf/K7mSMy6wwUzx6uiY7x8O+HF98+3ftKVKAWdcqTuRpavNNZm6UIIZPYgMh8zAu8PFdGQ+tEsVuDlmJj2U1hk/QlPjF93c32IYIeQPCw4+x03JoUHzjxG1MyQHTTgghdRbZYnWoDCEHJwZyEjkWKjMKZPicgF1vDP15PyHHei4Jxtf1UoNA3VlxqZRSk3t/50kvO7EwiCXt8oPj2zzafrElTbB5F5nCo+yE8sohVJWpx/GNue1t1ucwJGR/pofohmlmAIXFtdsUMWgNJwfwDVrx77qW/BZYrxLqiQkLM9Cj8A0E1E79dTGYBKazdGmW7Djz5NAuFN3K9ksKUcTo04llBT+/rLcsFLwosd21Y8znopV4E+DfnuYND3NtVRRh/NjI1E0g2rdQhplIJ1IIRdtvvZm0gqYtTP1YuvC04IY2JvW+390rLCkhhm1FHouZgK0n6ftfOlD9Kx3zlPJrrJPafRFcqpzfLHkt99XYtNbjRquxvhAh1ZFh0W3ROp8AwqSlQq26hvcbJUdVlrYs6WTbT41NWRCTCcRvzvS8htERMH19fW9I0vFQvgY7nXKULhyLi0dawY8f6XAJYsdC3lNSbmY3qN0QaAP9UnN+QzdOsp3Xk+7ug+anCvmAyxaMdpDC8kG3xIepXuIoLn33bs1wgNJMDtfmiHeupmx32UHgbdHGoKhDWnZ1Q71s4kWBHOygrq+EBRdlIIU0uq+pTcBZaqr+VOx5cqFJSwjVr1ug8oJUSmLArsZStGpY6MwbPsAzxynywQd0ZZCHTxf+sXtgeVMw7HS3eFGS4GLfKxAWaAHm9MBAl6DKCb72/X2wIvgRxZWHfaDQZacRxt26RutfyWpQwu+1G8ArQDxg31oZfKyaf9ABzh9ck1pHiIOYzJ1P8oBtl2nPElp/puDLQsfBzHOCEDvFPvZZyPlVpE61Y8Z5ckdbofWpCQIeYjOchRKp/fPiFrHTFCEQZ3kNPSjbmcy5aLTh6xCJkTYUm9g7BxqIIx6KJmW7011SHShcFnn3d8LnHlmckFrYZl/OpfiFJTFQZUV4LgYg530KJwvCR79YgZfsmv8RP+RCY7/lpDWRClO3OhRsTKU8d0QIbdtANG/yxYG4HKpfLBn/dKyIynr74ROzJB4kh/WT2rU+wYGb4Lby+shaYGc+egTeDGTns4D6fx0nI0f9zptF6scQsf6NsAg84y/YQWPYdTl324ss6WWh0nxhvZBujmqx+Xtr9Kxi+4/IzT3ctZWX/WAKO9zVblsjA9QdTwX2w+cvQ3DnKdIqGz+yrmGlNLiyKLKGTP4Ni6o8ihltDouZpAgZC9S5MDg1OfNNZijdOFDkyYw0G5U7rGIoFSYXg1puOd+RAjrjHUoS5Tjr5YntDStX4LzpIPzVBm+yyKbELJ2wQZYHdIuwa3Yuqh2ZLvwMDkbI5xPfl+kma/GQEtqd9uUp2lP8Mh0rYQHaoWJnwgqkbzFDYXRYYUB1X8AoibgLTKtvG0pG7dBBny4t1IN0NIzvdm3ET6pH3um9sGorf3e+hzwA9LJExSGrdRgARBtoTkbLolGof4Ogqh/dqxi8ESKC55t7PdROrtnZhD+PjUtyJ1GFkIk0E6cXgZLdhppZ9pXIiKbcCH4UEaNWe5Y5JuQ2mqXNvkEZdAfWFpsQMyIBt9ZpIcBOTBHv6dVhhG/43BM+DpQdqZu7K/5TtjAVLF8Xd19yCBR1N0SKYN0Ql+XKhqGXW4T4n0mrxAVS+yLXFqEJ9pqLaDOydK3nosJ+ViR/UETFYgCmphNP0ioJRS1HTLhiUCybNB8F24Sf1OYrzzlb0PqjCRtO6tgiFPQ0pXTjW5qiUPQcIur7MrILCpTWuQAp7xjaRTzrMaS3MasuDwQerNId4gIAhkYstpEIqzyWp1BZkQnnkj50ZoWYYcL9H8tJV8l2ki+YJz1j66Uk8wxZ5sb9Tonc34BT+U2zikm/EI+a7lzyNu8Gm3lCg6HpvEPQXBd9ZsjUj2W+7/VD1W9sihsHyzgVkak6qf6x8WnPxOFjiZYc/ygLptbdhT/XaIla9UivQZu6pzaZvOErxd1lPH/sn390mtUJUy9HujJqOGYZWgA9/fKaEmDxIGWIO8VP67PdbacYBiFLreZ03+09TVp4JFL3/EPfyEGewnUX9rLRroEKZonRVTKhin/WhaOw1xLXJ9Kp9ZUli2XFRBI/GSb/qBTlHxFh9t1iuV+lkJpovZ5SccBp3kz3+w5W891TwdXqgHWiQ9HOEDhV4XVxCBGF2eSs/i0fdfKcFbOvrSyVjRHxCs2j1H+3vf9cmtJQwtmRMd+HbE7kXmEdtXn06AU1Mv4erFKZAKMYSvZZg0Gew/iGap/V5B9dswUoO4pp/3uyQyZ2y42kqmAuoccZ6CsM8CtF79vg/fhk7u24zsXsMeKtBD7yBYw0KkVs8LCanInGQsWcy/pOJ5aZ9B4/qUEFYmlNp9ujKCsRfxu36CuBN7RWObZaxn1u4LZrvv16bMukMVfMd0MS/3YmserHsu1pYPHrVJeXal8Z+4ecvHaGYmBF9/S5kal/5gnQaN/0E9jrFcOlfmS6gq6akhFBUh1m7Ue0spqQjCBSk5x6eeuy9lQL4LrDbw3Pdg8T8Dnuk/qBcfZfmRG3Yw0RxLF1tWGEuGNW0G68wmiN5YRLa8tQROsys7PE1/xfuHe9fzw0p5UBnF9SBSTGoYaAPHlDndeC8j5dlWkiqoKcqJvBNqv4SW+tD5T1qV4yMdip8dQrx6EatfbgpXx3G5hRFu9Jn8kAMmEnx3DEqO9VXhhp28I7PmpjxcG8udzjTvSpx85qapax0Z0L7+Ig83A6l+CbwQkiMM4hcsiK9QkEoIcS8BB0C6yCrrPS3vQnhkdpKUljnC/riTxARkm3qCR6pgPe9s+4oHOos4rm1UabACV21xtqnBB6Nzt0ZTVwuQIr2TGKlTHoKHIrxWS5Km3wdPyCpaGSoYLqAH62VmCtNHEjWaGlzBh84sCUln7W/gSabA7k8DCeoow13zPkj9V2GBkfm8FrTc44dI9fE+ho3NJTGv0zrBypHnPmbS+HZziXIjH90BtBF+DRS+NW7cdXhFIxN5gps+3q9JITSidZob4UXrZoSFg5jKvZeocsMZ1Ch1OeJeA/bqNlbpvxUIq7n6lJxglXWc37TUozZegUQ9zJDySno+4pDtWLhyNqMAfCsDFg7MuVvxAAegZOpuuRYWL7IWXYzNLC7P5cz9WPC4q28OgWd4nobGEpa/J+LVssqFTwLinQo20GlGycpRr36V3ZHuyZElmNjyOQb0OdXyvJpSB6Wy/sRwN/i6FDvsHHUw+Ho0qosU5wXLqOZTVrLUkR5okWvQd7rPTQEJY1wEQjF0vVUo4b6qUrBduxJvPUh2pW20fXUhhKdkDtwe3tJdtG45bTkrlU89C22uhwHuTr8dxo9+mZQKk1md9+ZeqTxmLzYBIxpYEMJLT8zjp6z2ga8o6Bo5GXrf8+x48DRy18J8cisAh/XRvvpJC3/quDZxIDD0S/h7mUuBJggbIBlYggwgJ9Zw0jyHTA+ikUX/mRseAsoL2ebJFQeFgAKQQZLxIKFi41iNCqon2LPxqtL53tG99oGtiv6eZHfmvbPSbxdpkcqR9ZQfuYNOzh7Keme8J1uJJinQBaMl1madI4w4yE+kEAEloqw/7sl+3LzQLgYt5peK4PAZHlSqZFbktIGbJq49AexzF4H0PCrwjI2t4MHQQm3El3ZhPlDG5YCy+oxoTAZRw8X7QZV93GzSaJgm+7IeRiHCHyPGVRTkl2G98w1ZOvAscMypkXXG3FT17B2GC5Uc+Eeu79MryN8tmrYd6NdtQgz437FXjURFkzfxTRInVGVGxU1tcLVKhl+AvfSjfsNufNZCTj461oW/0TrCxNmdWM2HpWX52i+dxgw3fjlR4s4sOY1gIjXEaRQ58e9U3AdxzChRwLWSBQBMRoPUXY8Gnx2sI5lMPJFCOSEXVtulkqe0BWEq/ZXWfet8mVSMR2j4vQTYA7Tjs44wGHejPJOcjhnIs+i/yKGFHFxNUdRAA3ksMUagmZJB+SIT1gxPwtQjtBX0fhWPjxf8nwxrINdCv1lOZvlh26x7bGqZcu6m+X5bFAJQNkexd5DbfrH0ms6LRS1kkosNWORSc10wJV2nX6v7RSxWGSnKNfrHWlEimmK46Lp7RY0Qe6g3rJLW6rcUXovSV8m1HEAGz07TxhD01XKEovjMmia6VQf+cm4yn/CtLmIHrcfSQg43P0IdQ1n6MvW7Bh1rJ2topLGe49iwyHD4RONjwM8gaXBskEoQOtxC8KgdFWR2odMNFOQA7LGYtIzqpdJIwgSev0/t4ek98siRC88uZhLLAlbdZo6pgkopu9hymP+ygMmISfl8XHaDvHg75jEvB8nwzbKM1/IeK+zaOKVgtUzE4H7+vZ6n649vucdNtv5MgPmGzQA8fN430CkOAiETjx0WIM8H6DUE0vNONMBeezmY9tprvAhr8X/MaY4qY7tqJ941WDjY1AVY3frqpIy2pViNa+XbCOkKKnTBquafnZVjZjjk80BRhbbpThCe/5VIGr7vQWzllLi8FDLIlNMm2OQ32zDbE9Vg2o4W4XZ46vDDIpzqS5ya7t0DKjbs2hV6tETb+0K4i9At0rBqbmnmJ4EigGWL+Sorf9HUFGIeZ+BIzST/6y9eHEgH0JSlzotKgxlA1rHVFP0eExglqy8IzfjHMTjr5RRnugbV5axllLsxruwzzDynTSYf5nm/hyFOPF1FK5SnSNQymtaookCzn8nZfujV+r+VUdjIXiAsVbMH+N6LGBK8y05CJP0dMY8PESqHRv9YdVBxaJKnnpWg8WCy3jTMk+zL+Wq9Hdj8DqQXG+6bUbObgI19ui08YkJ4kVv8UstvdfRz+qgGEuGfKMSnQGGbUFQWj9Z4UqpgwmPEDAx+FWvbOMZ4asQ1UxEDzHrelFSdPWeHbyoAI39el8WkYx6G+kcpX0CHyyxS7RmA+Fyj06SV/2afXFhdpz4OWz+8IHf+f1eXOFUMgxEQA9qa1OWvXzasP5snNNv0gRw/KXB6yGswn1fHerAQS6eMkh/eP1I4UBPClQXZMbNs5I89T/Zld3SoXZO2uPC84iZszL05XBeipJRcwDXIq/Y/9AKISYvheFL4O3GQX3TLy5RjRyYPAHh0sKFXFCN6yMlDM9NiJv8pubsmowuqi6b5FD7g9UMNLM6jgkBn7TF7FLrJ6Tgm4jB0swxZ6bp8Phi6+CLSmqSoWkJx4bFCtP3BVPd/myEC+Zyfn5R6VJNpPMrJMV0HlfDiVFrJ66my7K6GjFMMk0bEZxpL58sems5fzN0Oeb6P5JcF6wlRAM+n92WlcRh0uhzNm2IASmsfPwYXpVECy3SgnWPp8PswgckuuBKmIkLptzv+4a/Z4pS0mFTN6pZrgbxvoM0lT4rHt2R+ORsyefAFewfS7IP1smZjQAre1JFNcYHCVC+wjXa7E8EG2VHI1O7PZ2Bozr8K42pURZAtiR01zODWDcsPebbaVlgtCN3P6VgxsFU/TNBLggGyzqFwWbtHMd9gqcAJaTCqjCR3aVSUpA+pai2tksduNh4oleCuREcF1lrbjKELV8siJn6aJUqKj+IwYSJ4im1t6f+JcuAYeKICF8yKxNdK44oPlQ88IE8Ba9lZ7AXE4b8/ZR3lAgQEXHGTIloZwLSx5W1gZxDQ3KMoty+sbmCQUwa1SEF7AgCSKenPXO1YTgJylF9fzQMuqRcU07gzQ7OLOjUz0kXLiOfUZTzvwJyeOgkabTNmg7SAEKHb4Z5G+qLMhBx4hUMlyjsN+lc9dzmE53EHtvdqvv95pSvxIv0RqCkFJYas49UUl4CIHkDI/lIC3GYIx6Wb9CwbDACTnXJEzQ9wVrpcG4reOCbufAhtXbH0kY6dC5bd4ifdXh9PnTpG0P67yPto+pWbVcgy52FZNuyKVSVB66Da1Csf6n43bIlfHN/4FJT/ou5natJV8rTuYTBkIPf8XqNfFpnYFDYMT7h+YypM/CFJRQpuFRWu8VlswnbedxQAid/V0eCrDOK+Jf8ZfTN8xZcZ9xOxLXgeQk9MC0Sr7pRAW2isgzgwtpY=
Variant 4
DifficultyLevel
634
Question
James flipped a fair coin 42 times.
He wrote down if it was a head or tail each time, and recorded the results in the table below.
Result |
Number of times |
Head |
17 |
Tail |
25 |
What is the difference between the expected number of tails and the actual number recorded?
Worked Solution
Probability of tail = 21
|
|
|
= 21×42 |
|
= 21 |
|
|
∴ Difference |
= 25 − 21 |
|
= 4 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | James flipped a fair coin 42 times.
He wrote down if it was a head or tail each time, and recorded the results in the table below.
>>| Result| Number of times |
|:-:|:-:|
| Head| 17|
| Tail| 25|
What is the difference between the expected number of tails and the actual number recorded? |
workedSolution | Probability of tail = $\dfrac{1}{2}$
sm_nogap Expected number of tails
>| | |
| ------------- | ---------- |
| | \= $\dfrac{1}{2} \times 42$ |
| | \= 21 |
| | |
| ------------: | ---------- |
| $\therefore$ Difference | \= 25 $-$ 21 |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 4 | |
U2FsdGVkX19zZWzMwXout9fSDKk/HCUtjWvClD8S7urZiDTURp+HoT65+hz6C+PtF3oNQy++8dp0u+IVT6tnzjY/YlPvFwxmxv/hANis/9zcV0ovMqyRjHXdpaegfsrwZ8wiSDD0Kfab+VULResJcrAv1bulp/Dv4cooSRrnWQbCQV9rW4pAcRWc5xeCQSCbAIRjHicMg//0MMDi/KgXXgyBBY6TR0Gkb09HEwvtAcwAhFw77FXxrKy9lyAxAfdyE9d45eib2ZtY0b/i6cm70BUVbyUp0AF2+4FOAV7AHD0u7g/YotnpOB22qvYvkmRwruC/VBlhx3Xnml0VXvOBJn88MIkBfu/ldS54ThnyCBXDwTkJf1c8Z9fLRK6xWVa9Dwsr3WH1VLGt/2UBh8ZA2fMkmx9Acz79yuMeftkSgne+6lfmGSNhaCti72GwzrATX04237blq4J6zQNWl5xr1hlZZXuREBoqhcoSKw8gVSDOqFAIH+9vZTxbMyjEqcdEvBQrmRAo7uOXbMtXH8dS4R/qk/5NE3tAVvm5ul+cfreaM5fujbXwxwNo0BME8rYkCYIwtvHQqsISiu6ujqBjD3aaHp/Fln1D7mWaOF7TCwM03BD+iT0GYMEGZLgNhsXO+jRaKbv7iXnK7WGDVRKI+QIM6Q5Q8d9D4JlWrLSpk/To3CT6TsbZNsr1RqT9EB3o27HQdU7RHSnq8Y1NTRa77wRezFdGH/6tWpySiCknsRMJm2LaHJjKZoEE9itemHNXSUlpZgEr6W0YBg13FvREws3zGK4wVxXUv0Yl/6HSiAfTF5NGvEidbPFofd6a+ELKDTYHVAhub5DvsubbEdKxAwGdAaO3QgKMt7PphQ+tjp1mYnQo3Hq+GVLgX9yBpQA+sszJ4Ekzru4eIF/3bhDFRrfu2aBRKN5rpNzdVDhuJ2GMRglqdIkANtHEMPx8yo/BTrBMXl1+PrI/PYUWLA4i4HD5GGZEfs8EADoc8k/NzN6cKfFhe3I16C5HhNFVJZKu7cQR1JDzg2ye1N0S8vrVlK/mKBOf9kRcT1Nug5HkJWeCO5wFjbPRsKtn8TsIsNnEYUyLd6av1CF/fCdMfumeSx5v8o6x0taYESS1tpPvTVIOx5zoJqta4rKo2hJ0kHKHGdgqFGxbQkUDPn/e0jS2jf4NH0T2TyQgEPISX6DYnMwsOuTJ0YVVBKZFgO1m5PhhSkRGx7mWFVlEcIjJ0g5+C7DHZ5m3VNFFkLw/9v+3UpYNPsiqmNfxWs6h8MoAdXLhHg2GjubRHFuzn3s48V4WS9QRBbZ8uzTsIn4LedL3T7QBvY/dg45E95KdnVVwCyXzQr+6tm45L0B1v3y6w0I5fQGOw0kaaFwwDoLJqKPQ/K2Bwon5bE9xGTUJo8/1nUvciUAwJ6MItZyNKYUeqi1aONJcVe851RS7WKmq82w5xJM6TRtqcLTav3m0KCMwGgLrgAKZVAFGGNDw0XU10IQIqrD79RZkkGdcfVDdSNrieEtlKWPShwX0lOwedgPJ2JpdR5qItUY7v70Ac9VpvyqBvzFRfe3C9ud65qlhc1N0wFnYZnmLIem6L2w0x/eYsNV2yuQ7hzU0Mya2dkjZDFNeABT/iy2VNtPtXL+T5j/Cn19T0mEh8IpRM/eu2KZiWvXrlxvriufFkCWv2mJveuVNSXwaTToniUuFJVcIo/qsyYsYaxepyaGw8muymFQO79VkWv52/f5vLtbDTjID8M009i+eUOjmYbSceK0eWsWp6oti8asmMmgYcUDEXP16kdBCcJeDHg+0QkncAaG6LpRrYm45oV+0LMZ9+ejRkLPVicDyshPU9j5nnju+7M+Z+dVYthdq3uLhAN8PgD++Eh7cIdB9IMjjXrs8Vwetd79MegnEM5IC8J4y18e93xMmU0xVc3R0GK9P3Ov4Gzf64y6AsYfrevrepxBkf1cBfx2brkE380iET2ad5shLm3SH69Xbtwc8H68pEQtjpgUGOrwBR38bCK6noI+R4gS/e5h8yyqlgfBBU6vk4whQMYy3V7Cmwt4hZp4lLA05U1cAGc41MVGM1lOvUyZ9fp4LU8ZdQXoIiQH6uXDygHKejWsb4NoC3v0h13nsN6N/OY0w1r5AB3L5IB/O4XfmgVp69+88XRfs58JwAB9zxuMWFQ6uTrO8bOe3z3aZ7FHFotrnIMp+zNbw9bBJBGvfa//OToV1mHsryBGFcCrLkzfJuH7yi/0Y4MPOICktSJQRjK6h1oya05PUcDfqD4wEGvZ/toSoKEWv/wHDmi3rxkJ+HXQLJFDgzHSwrt0XtFO3+BCN50Ho5n7YK61GgHps1SOQGO1UB+UQ6Sd1F+tjmE5IttCWM0IXIxme0dqYqy8RecZgEiQLEerS5CpHZ6gzCQw2cg06HzPlRA/T3LKX+oDu2rLq1g8DzWDf4EZz2OjvWgEE904RLqzNE7zaPECzqoBmFednodsIOuzL+/1aq/M4kTYLCBxrp06P0GXfCUFvHF7F8sTHiiKMcuC3yqp6IB1fQbst+MW7fR+CwqTyTWp1rULeWxlrCUpdimPFw2r+jdQ8Xn8jBVghdrIJn+V1d4RPzw57R3aw/iswmlcKf5TvpPFNDnm/CnWeNBwtF4fzmM32Hzwb/w00JimbjFZZ1hVmZMP77Suzyxyttn2hGVTQE+W7LKqMMyc8UjLgPFIgPEx0xKYkvmEyL2gKc3oklB3c4k4kbyFPDFoDklfd1ejITolBiZYLAmcg05vhjM5TBxfrTyGU43HXV06seOPcXQVXMk6xF9q4awgQv/xpjYHAlqUy92sfpKhzc1pMLeycDl51O35O0zlILVM1O4XnArdpUUGU9T5Z/WofdB1XT9z3/HnWr3K+iyUbcBypcXt1THSK5gT8n82I9OJr+Tej5r1reaT79wQJsSgCkAanx5QUGE3LTLPl1hE4vCMDU/sdsJo1yS677dRdAhvsNiRKIsTwrkoXy/twJjrU235cHLOHwRfSGURw6rFnMCNOjsNAmX0xoO1fmdWDqs7NDs5gb3uP0cLW031i7YthobqU6EPELCjWndlCm4ktUMkWA846U2E0ULcbm/ipw3Xwh83yg8Mgw5JfSECLXI91XIiCDjuDb9JgkNpCTorLnAoUWiIczZyOsSC3BOaoofzfWaVNd1NQMdaqehs4FY9YS3jEpWJOw3BrygEwV8FxgX8u4p731J62Cy7KINfVMdrsT4QDpx5jbfbpz34UD951JAxuTVMwRu4sBGxxB7GdUKX1VlDn5DvWEVYvkw6xdGG3ZBAnzVi60wZlLu9CFiCoR77zy03/zvEAOkI1yL0L1mjXe5yGKAxBVSAK7JHGCWNRDUGzBfiAHJvL6h/Z4vBc2UqDb/ddWDaBUBTxY2gjKAQgkzv7XByVTVaHVsQo4ynGcGFQK5MY9za8kX4Iw6rLwKW3bmuqDgRjneCAkS5zDDgPt6IyQmZ5qlPHNRmTu/M/ZrX/QjErmKkIiaPVf18z2X4URUTea7DjTtkR1aDjFY96lsFyd5zQkgwwlTSdLCtfPYQ3BrAS0Cp3IZvsGVgiogqr2s4vFxfQOnUD9SslLnLsWSA3Fgu0MHkFr5ei4vBBI6ixJ42e5kGIzlu5wJQAjg0eVoyn6h5p33i4Apzmm839dCQbCMUawOkIzvLzOF68he5h/0hDV3TziFrPAO7CuYMOflQyelhs1oLwTdSxziUVBmwvkLsZPUol5z4Rev3DpZlm15mRqyOqlCwHi90++ibJosVfRsWBoNLgiurCqSyypoMSQfh4ln2ozvjrh1TeKk1j/D+orC5IpwyUh58w+lTorsvM2kEHedKmjIiCYyGN7nd5vIsz+9DpHjGGZTA91tq/yAIWMaay8KPHPPA8MjsWDJflG2bOmCb8UZwwOdXKCQP3nozlpO6ZEMtzKgI3FKPyde2+Ow0f4Ql9oBM0G2GXx3qlb39q62dkOOWbP6Tu63suxjCiLdnyG4TwOej+6sZkN6cneypAo9GlraObhjuCiEswTQ7IRQSFc3hCZr194gGz0uby9e8F3MvndI7/2URqxoiKPM15NtrjcOFKKEy466hSF88rRenMJ4pWnbaotJW04GRKrOinlgovrbMr6G6F3IR+XPcJ9i/Li+7ccK3sOmYF3w0jMlmUhW6woRdUgMPbmKf6VA8hjZifYRe69rSfphaYbCSWbsz/SZZTEHUEBYii/k1oDc8BOQgFHfG4uBbMiDRuhCP+Bxvui9fjsSMhWqx2B4Bzo8WySjNsWqca/fqHcUjykX/wssclxvpga+BCVNogprWuJUSCt5AV28QkCwIcs/LmtQR4p4L77/ScI5WO/qeBjbeqQGulOnfjbaxdnRXg94PGRs4GZ/uuKxGXRkGkudJnq9hfTdL8NJ1VFambNJCPrlq9v9udUH9D2+XAiQaZfZt3B7jiubikecvTgcF0EntmybnFyvqiLJoaGTOoV+gFIG7DRi6nDj2VG0Kk+kt3NoCPZRUmFqVK588kqLgK5ofvVOqcUOk1DFtwY5vKFSdNa/RtSIAWeacXTxKSJ7mZWOi2k89E9svjW8YMcH7yDbFZp8bBJ4H1fVRlDtz5P1rpPd53BfwMIiXh2K4Uu+onYFNzCyLYvplInehc3U8aZ6L7Gwyv/8OqJVCErKJLepvdFk7LwoL3jJsbosk0Ut6/juBzqQ0/5TVDHPLKaC23d88EGld0W2IvOLR+iEaWwYxQMMEIFkyDsTohDr/NZgD93OZgUiooI9YwweXXB0bE9Cck2v2/miojwo+dtB7s1+XiNgKXigjBFehZ2IFVx7b/R5c9i0NLxqQ53YvvfGynUxj+rzRNKzp1RPyrP5OZ7E9YulCohrg2Pt8Kjw2TRWr1pEArRI8OJ6gMAmZmEQJBluxFi8CFwqdgKgYoah2W8WZ6Xa82zy1BJSHw/8kf6lupYiQ0O9FZH/bkmaO5AQ6g3w1kilkDlEffIoke5XZXGGlNY0pyRs8pfz94IoIOnI4T1dTHSECUdOS3NxhYgD3lJEQMlEuEHxhEN6yOMWVYbHi46i19pk34KTcOETT8oeq+He4flem+PAkaRAC23sv+u1ISlUyK8X5W+IzaHwCMqXFOdu1fOXjSJs+NPAHv+kDe/O9ZPNRSVqdoiKdz73jvFpygUjHS7VwjlQINXyOqr/vfGNOTLoQkMTZtRuvItT9FCinh+/ImCWFsMfOl+AbWWT+bI2M/gXs060NhtKCflaDxFD92wpYkRYBz6XZFgTlth5tGl9Po8/g7YOkHFD7ibgu5G0AYeTZy0RN/GRlg3yOGCuxaC6arJRX1A3YTEhSJ/7vOUSVxZiae7eTE2LZbbXcZB6i272LS1Fy9riHr+Xh8DVp1o2XeHcxd/L0UFk9aZTzpinVn6JMmZLzADcab5IN/w0uCO6y8pdLq9nLpA2xCyWwD5xsO6fvNwTHMzQ9+W9D/orCnMyMWmFXTIqOvVIGAodspVos0OF58iuPtbYa3jRNTPjQztVm1+GZTBDdA7rmnc6SkblcMbEtITy4flOjVxqv/I+She2Vh63DQtzdigDO0tlIp1R8nRSzurHFPPvkHSAD2uN7uSxrETIn1Ot31PjOd4QK/S5HIAOV2D+2fGC4wm4ZZX5Oih3KQTozUsJh4FBj8V9SsN2K2S2I1+FxdM32j+88i4JU0J8fT8VnAk26O43KGxSLEFgCKNOmNNMo6cay1loCM2AiIxZoBhv2vfvFGAUtZM6tctcw8/wa6l1vCeiWmJtOn8PKDJklWKDYbbm58c2JtVJoR1YqZ0ESN1HAr9pn6uDAeJiEeaCMp60L2XcJpMBwouMEg3pivyLmOitJbAwyX5JWnk3MxuUbvjj1RRnjZZJt2poI/SEoAdJ2AU8JK91GSaRM/7iXlPS+3Ngc+AYAWzaVdP8v9Tv8xJEwd7Hmeg3TDsVFs4f1aGk7RUoMQv5V/Rs0u0kYbA6a77pi7qRC6GdMnkrGVuMVpSOk4pvLjPkH8uYan0rVckvn61kIjcg4rp8e1k9UXkEJRL+eLZ9Kc5a0khmoYaKf3hqG1ss2uxn3pc3WqZFOXt/qSmfQzzsUPYj2ibG4F5XxtBgvPiCtDWCDZwle6HSDUT7Xebb12pWLOyjgel4uTHAK9Ixsy3CvOWheMG80YtjarCIa9+UUz6Avy0umdV9bMlRi7ikEsub+FeBsluoJTfoZEf/D4LE+rb9jCljJnoeJGAMOZRdlnumqJ0NMgQzCfS+pcu5r6Y56+4LzOL1DHQ85SaWh3c2kmC10aqn4ET/lA0QB5LA18+dVUClRXNu7HQrmeAY49Er+bWi1qtHrdTCNPgOPAWxWXTagerYE3Lgi+6gqrwH8cKy+lSVPCSCCgxYtsggJITviVg7TSrMvbzNOzKNOfWEJ53NvBEg3BFnkuPjY5ddwdsqVagZ6syVw4C4CSe/14oby/Kzvce9OZG0KnUuaAvdCaKsExV1ZIrkrgeKcSgIVAeN7clYePrSqX/N1RMVjCV0h+P169Yl5TFfB6XvhSU9eWsvxyzAomQ12/X4BwdILinmTyx3rJfQi1y10HEH5dfwWuj11uDGso1GsW/+mAH+b5IDnkzrQsA/4BHVhzvNpora+qLQwH8jv1tyDhwZISMkIJlF+FZ1rDD1yWsLYyWV3MbXO7zrkB7GXvx2VxMlrgVP6s9wD6nB8UxCACfzR8dvyP18WDZs7lGslDIjl4Ur1UUmnWG7rB3nNCfYYdoEzwtokKmPCMLuoOnONl6bS2mWJyoVgTPW2ePlCEOpM/kz8lrqcmuDvDekwbamApLZ/RwKP4g7WjIL87eEBQjMGn2CKZd0FIhsIN7aJVysg875KHeXJP8rh+HNJMNM8bXTRm6dau4U7N5hfV3hiLWhLoybYTUZ5bYV27YNyzhZfK/AnmfBeugbjuZvQc9tzm+qXHkt6sadjt54j9n4bBhg0XU+QPWw5dZbGuc71y0qSVsldynQBDA51iZkkotMQjVixAMU0jcMLpeAW9lUdzNn1lD9EikVKNBXlvEJOrGPoKcoLbLWm4VS61E5govWcWcT4D4ZWb3iy2Pmags8QV8/zRl7b+6OHDDK7U7Hqa9vCRS815u/ABsNQDaSQRZK9FCuGwf10tW/btUt4KjQl81MhMZ/kLM0ib3Kk74qzh4jUVcRJwt6hT7zAy/2T+bGER8657b0xP4e1Fk98oLeUsOgVr0wXyljn4TK93oElURwXMRxqzl2dy+q7v219YT3pxGrFZWh6579XxyvVpirBpEGasWakBt6I8zU8Yh1WlvDmrLlW58HqxQ2Z+m0PM437LIJsfiUHr19Rrta932R58We+RnGiaaYab54a+5RXIcWdIiKlxxqkp1552UdSmQ6OzrZcPJodfPK+/WTposeCH9YaAUcVRkm4NUI+h4AvQ6bEGEsxLO763YlUJXOYq2sFwT+oA6vVyJbckpmtNAWZdC/rhytRfiS54jRedPT7cQuZOhlxJEpPzN1RiC6MX7eqC8zH/wLDWCO0NF0Vm1xmFz+4lrwfKhw+Czjcl6DgJMFavQv9AxXmPz/jsYEZ70yRD4GJQvXJReD/bnJSX89oPpd38z9bFse8+ee6m8jholejOmgFSQtQag349w5fyptxZXqYsl9L2GqEy7Kh16MS2TRQ3uhApcAnZ3Bw36VnohEDqSRbFNdIydkqwgpWnJBpwfpQCiNHtZdrZRK1z/uWspCQOhc1pXwrwj/OhRwqtcoMPsU35n3nkg+K5CNEBG1ImL+MUPSA+RGeI7qfperAdGWyQ7M3RFy2PrfeCVrMH1jiRExqj6Qx2cKpQMXyavw25PaGZJHQh9KuKDuBUDMnmxL002jKuCiLvLH5DXtrfuiUhjjFXkcUzWLDITf+HOgZXXmGdkcAh3IivzlHpD5Tty5ZolJohirvgw9zrxZ1T5wkAZGRAQlVGNIh/j2EcwtQd7s0vdp1hFw/Av02vUksDzTkjuTAT7R9+1IaCfqB+79fKnmjAC44AZpYWr5C5jQvSKn9uwFsaGLOlnsRLvxevRG3RIyMzSFKhA5BiTF/ktE+NMF19l9RqMtX07uv8AmsBf+X2E/Vh09YEN3NN9eBe8Xb+UXIoauc9n8ssAwJMNr5MoOfY7eVTjwMwFIpEDKmp7VrHaCRMATQgiIHwd9/9Tb6bFCKOYEZz4whOiqtPEuAznGJZY+EibK4zcTHFxqOSO8YoGiDpqYrYLmgbjNls+h1JB2ZCfMhy6iI9RA6WKhIFQm1pAHPNC3D0IA4IiKPs7YHFTavhtdbKWG6bEuVD4H5njthNcOig2kMiS8uA1E//yDRMOqkC7cU40lT0suqFPc2nncPw2i96qRhR1U9PKKy97kSdEOJX4wMPpOjVc4S2IN8ILOb8eaGvh+w8dXHQS3ILq1jKk330YLyJTIDUjSxS9Sq1N7QWC/HYHt56W1YNhB9WuRlOSz43PtL8yGKxHxR9Auz3R6DYjuModkq2JnXRCDNkMLfdeUupZFEq9HyZRTQWRcCaUkmuRoXM9IRgDllgRXQiCFGdX0+TozHPidbdMJSWFQmwgozejJWDG0AN0I2iNPXD9AmsPe6WSocIr3fVsQiI9zXSLrpDdzVva1bVA2ibNGheWmxa/bR76avSeW2iLJ4OPTYdffHks2FrvunFvlh5FRDBLjN+sP3Yn9jvMKsUhz5qzI0K5ubwfloT4OjNqQ+z9LSmYqdTLhxQfgvGWGOQkdcwx01sEwkjumM/aYBxq1vvZ7WYJx4aR/qs36GFt3Bm7FIIlwVyS4CFrPM5zbMHXb9AvJlX8EBnJhNPQHIgqDB0W8wLmJ79R6P1k7TjyIgv50Dw08JdopzW7fuRHbaQ3F+iDwljKOFJGzYD02qtgt+prKEF+tC88peBTUnvw8bQnlaOzQ3T/93+A6q0i26dUVXDIOKQ1o8O281J3+eDO5GMCccAbX/S8GWwtuzxBPsNh5DdKyHkm9r2YPh2FnsK8SUEttZ/ivphsj30QGyXCMp+rsVucRqHm8OgtW5hxqxKka4YTOpaQfCWD+eioW2qm1EBAigdoQQPQUIXSe2RxdgXstAMbH7OcyxfPxWPicVfCKpd0UbB57rj84rJ6tnKKtpkga4iQmJTXaCiIgbO/fe0HQhO/MUWXSSYrISYhj5+SmjSNKSeKZTV/1xkzLFZbivr4NcWgyjGMXZLYBxmjiJUqNl1YVMATgnIQ46t7/GgxuXL7SINWHhmSJwAr3ztolN714hRC6PQvsk1Sk/8Yusumy971slmQX8k+Pt0z1ingk/gj3lDi3rIgxJY6oNLCvAonla4f8N8BD+QAiVNt63qXJMqT+g8tYVBVXscGkY5UyqgMyjtc6BvMMMHPZjXYZK36s2BhRIybSlLqL4TFpa8MP215GpTNL5yD6Az0L3dzXzSjZiwSg/kjvYGBDLNo7jWQJjdXRDNszsUEpIxufJWXF3lpIHzYRqsctcGEUHxfYAqme52BDWWr28ntWZGFuy3wV62EvPLDzTi1fvqWDAA++U6fSXINZHujt8S6HGjKi4FR3yuqSA7Xu5sMVyigzLkjZwUPD1oogO+5G1uG7gW+vRKsf9YKL1n1OBrthxDhyBe4ehHDMHoXWG01PGYuNyO/6OjJvBou4m4vo+ENuRaCb51soNDG+VAhBMSCyGS/f0hY0Sf9+X7yhK0xjkk/5OtYR9b98O8t8Iq5UwqmlXXc6hdsOjz0NJI3ZzavuKMwyywj+NOXA==
Variant 5
DifficultyLevel
628
Question
Yoshi rolled a standard dice 26 times.
He wrote down if he rolled an odd or an even number each time, and recorded the results in the table below.
Result |
Number of times |
Odd |
16 |
Even |
10 |
What is the difference between the expected number of rolls that produced an even number and the actual number recorded?
Worked Solution
Probability of even = 63 = 21
Expected number of even rolls
|
|
|
= 21×26 |
|
= 13 |
|
|
∴ Difference |
= 13 − 10 |
|
= 3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Yoshi rolled a standard dice 26 times.
He wrote down if he rolled an odd or an even number each time, and recorded the results in the table below.
>>| Result| Number of times |
|:-:|:-:|
| Odd | 16|
| Even| 10|
What is the difference between the expected number of rolls that produced an even number and the actual number recorded? |
workedSolution | Probability of even = $\dfrac{3}{6}$ = $\dfrac{1}{2}$
sm_nogap Expected number of even rolls
>| | |
| ------------- | ---------- |
| | \= $\dfrac{1}{2} \times 26$ |
| | \= 13 |
| | |
| ------------: | ---------- |
| $\therefore$ Difference | \= 13 $-$ 10 |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 3 | |