30233

Question

What number could replace A in the following equation?

val1val2×A=frac1\dfrac{ {{val1}} }{ {{val2}} \times A } = {{frac1}}

Worked Solution

Simplifying both sides of the equation

val1val2×A\dfrac{ {{val1}} }{ {{val2}} \times A } = frac1{{frac1}}
val3A\dfrac{ {{val3}} }{A} = frac2{{frac2}}

Make the numerators the same.

val3A\dfrac{ {{val3}} }{A} = frac2×frac3{{frac2}} \times {{frac3}}
val3A\dfrac{ {{val3}} }{A} = val3correctAnswer\dfrac{ {{val3}} }{ {{{correctAnswer}}} }

 A=correctAnswer\ \therefore A = {{{correctAnswer}}}


Variant 0

DifficultyLevel

624

Question

What number could replace A in the following equation?

362×A=115\dfrac{ 36 }{ 2 \times A } = 1 \dfrac{1}{5}

Worked Solution

Simplifying both sides of the equation

362×A\dfrac{ 36 }{ 2 \times A } = 1151 \dfrac{1}{5}
18A\dfrac{ 18 }{A} = 65\dfrac{6}{5}

Make the numerators the same.

18A\dfrac{ 18 }{A} = 65×33\dfrac{6}{5} \times \dfrac{3}{3}
18A\dfrac{ 18 }{A} = 1815\dfrac{ 18 }{ 15 }

 A=15\ \therefore A = 15

Question Type

Multiple Choice (One Answer)

Variables

Variable nameVariable value
val1
36
val2
2
frac1
1 \dfrac{1}{5}
val3
18
frac2
\dfrac{6}{5}
frac3
\dfrac{3}{3}
correctAnswer
15

Answers

Is Correct?Answer
x

8

x

10

x

12

15


Variant 1

DifficultyLevel

625

Question

What number could replace A in the following equation?

488×A=112\dfrac{ 48 }{ 8 \times A } = 1 \dfrac{1}{2}

Worked Solution

Simplifying both sides of the equation

488×A\dfrac{ 48 }{ 8 \times A } = 1121 \dfrac{1}{2}
6A\dfrac{ 6 }{A} = 32\dfrac{3}{2}

Make the numerators the same.

6A\dfrac{ 6 }{A} = 32×22\dfrac{3}{2} \times \dfrac{2}{2}
6A\dfrac{ 6 }{A} = 64\dfrac{ 6 }{ 4 }

 A=4\ \therefore A = 4

Question Type

Multiple Choice (One Answer)

Variables

Variable nameVariable value
val1
48
val2
8
frac1
1 \dfrac{1}{2}
val3
6
frac2
\dfrac{3}{2}
frac3
\dfrac{2}{2}
correctAnswer
4

Answers

Is Correct?Answer

4

x

6

x

8

x

10


Variant 2

DifficultyLevel

626

Question

What number could replace A in the following equation?

243×A=113\dfrac{ 24 }{ 3 \times A } = 1 \dfrac{1}{3}

Worked Solution

Simplifying both sides of the equation

243×A\dfrac{ 24 }{ 3 \times A } = 1131 \dfrac{1}{3}
8A\dfrac{ 8 }{A} = 43\dfrac{4}{3}

Make the numerators the same.

8A\dfrac{ 8 }{A} = 43×22\dfrac{4}{3} \times \dfrac{2}{2}
8A\dfrac{ 8 }{A} = 86\dfrac{ 8 }{ 6 }

 A=6\ \therefore A = 6

Question Type

Multiple Choice (One Answer)

Variables

Variable nameVariable value
val1
24
val2
3
frac1
1 \dfrac{1}{3}
val3
8
frac2
\dfrac{4}{3}
frac3
\dfrac{2}{2}
correctAnswer
6

Answers

Is Correct?Answer
x

2

x

3

x

4

6


Variant 3

DifficultyLevel

627

Question

What number could replace A in the following equation?

505×A=114\dfrac{ 50 }{ 5 \times A } = 1 \dfrac{1}{4}

Worked Solution

Simplifying both sides of the equation

505×A\dfrac{ 50 }{ 5 \times A } = 1141 \dfrac{1}{4}
10A\dfrac{ 10 }{A} = 54\dfrac{5}{4}

Make the numerators the same.

10A\dfrac{ 10 }{A} = 54×22\dfrac{5}{4} \times \dfrac{2}{2}
10A\dfrac{ 10 }{A} = 108\dfrac{ 10 }{ 8 }

 A=8\ \therefore A = 8

Question Type

Multiple Choice (One Answer)

Variables

Variable nameVariable value
val1
50
val2
5
frac1
1 \dfrac{1}{4}
val3
10
frac2
\dfrac{5}{4}
frac3
\dfrac{2}{2}
correctAnswer
8

Answers

Is Correct?Answer
x

2

x

4

x

6

8


Variant 4

DifficultyLevel

629

Question

What number could replace A in the following equation?

642×A=135\dfrac{ 64 }{ 2 \times A } = 1\dfrac{3}{5}

Worked Solution

Simplifying both sides of the equation

642×A\dfrac{ 64 }{ 2 \times A } = 1351\dfrac{3}{5}
32A\dfrac{ 32 }{A} = 85\dfrac{8}{5}

Make the numerators the same.

32A\dfrac{ 32 }{A} = 85×44\dfrac{8}{5} \times \dfrac{4}{4}
32A\dfrac{ 32 }{A} = 3220\dfrac{ 32 }{ 20 }

 A=20\ \therefore A = 20

Question Type

Multiple Choice (One Answer)

Variables

Variable nameVariable value
val1
64
val2
2
frac1
1\dfrac{3}{5}
val3
32
frac2
\dfrac{8}{5}
frac3
\dfrac{4}{4}
correctAnswer
20

Answers

Is Correct?Answer

20

x

10

x

5

x

2


Variant 5

DifficultyLevel

632

Question

What number could replace A in the following equation?

1089×A=115\dfrac{ 108 }{ 9 \times A } = 1\dfrac{1}{5}

Worked Solution

Simplifying both sides of the equation

1089×A\dfrac{ 108 }{ 9 \times A } = 1151\dfrac{1}{5}
12A\dfrac{ 12 }{A} = 65\dfrac{6}{5}

Make the numerators the same.

12A\dfrac{ 12 }{A} = 65×22\dfrac{6}{5} \times \dfrac{2}{2}
12A\dfrac{ 12 }{A} = 1210\dfrac{ 12 }{ 10 }

 A=10\ \therefore A = 10

Question Type

Multiple Choice (One Answer)

Variables

Variable nameVariable value
val1
108
val2
9
frac1
1\dfrac{1}{5}
val3
12
frac2
\dfrac{6}{5}
frac3
\dfrac{2}{2}
correctAnswer
10

Answers

Is Correct?Answer
x

4

x

6

10

x

20

Tags

  • staging_suejones