30233
Question
What number could replace A in the following equation?
val2×Aval1=frac1
Worked Solution
Simplifying both sides of the equation
|
|
val2×Aval1 |
= frac1 |
Aval3 |
= frac2 |
Make the numerators the same.
|
|
Aval3 |
= frac2×frac3 |
Aval3 |
= correctAnswerval3 |
∴A=correctAnswer
U2FsdGVkX18RbWJGY/jWarQphXiDIY9Ct/dTkZ95BeYBJbgmq/WuubGjBUHcfvC861pmjwbR1OBSjInUwurxQeF5rErtjga+RHvoE6abvv7JPC7YncC5LP78UoXP8uG9jZ+9gywitlo8LSVZkyjgPM4ZJC+26zZCaOQXAcphkSg0x6LVdm8IJoQ0ZdhljRgIwucKFT3l3PWECv7oh6G9gczKpt6oPmjNol1/nM1qmsYazBOAT68HibfK4twbeV+Dz2Nx+/t95535RTq3XwwkmT5CJzaidembtA6HG+CKrCD5m60gWlJYtQiIqRY5VmsfiFWCg7wlWAXDGk/yC0ylQizSsEUhEc9pXpngYiHhDzaFUoZzG/FHWVYRR5bRn/UfKUQFe8mAcJQRyfTSXCs2S8ukV3P19WrqcHfs3UUEyWUslnuUcNmH0949WZb9fKIs9+2I1B7haQvfWWFggthkpPx/+AOrjamOqk3yV3jCfHY1DUODUBMcBOEdBm1ywfs2wQZnPFYn+G1aAQda26CQ2PibVWfhi6FmD1Oyqq77uMssmPRe34DmvCnI6w/j8ZWXeo6a0BMCb0x1HjfJyTKddBM/u/AXLjE19SRRt3rVxcZy1O8jmWcjIrEIujMFrvEpKnQYMUAw1UUkg+NMdC48s+oEw7JvY3dLQu9K4VzEhkf6bVGFYtHvF/iRuEjlHNM3LFN7ISRlvFBTHrzH6HSHnqNTH9MsH27aWSVjbtf3KBNzV9710ta9xl10Qk5GRY+IiIwSrZwTIwGgHaNmkz+ZEJlO7efIKODLHrOpKCYZ0yVzyh/SljOhYceI/R1F/hkXhdN8U4kkJhT1Wqi+tpTZydEt18p6cfIf1kupNejwor73m/isu4MVHcJWd4a5DZfNGvYtDlej7ZTpurglFmM1ogP6kmBYVfmx7PPsoewIUjuLZEHqzSgupb17KdjeJboungtEy6dP/0segZhfo2ogByph3YIZiVK0UTRnEKuDEMLarOZHN8NLCJUqCeKF8d+Lwb9cBCF/URFPaS7VX4jFFw4w91pv9FmYg/eUfx4UsZlkt+wDAxmlzg4hwWswo56VA8IaLXTXxB/sjgHe2GRb2JtgfpcGM92kXA8rrr3m9y5HipAuA5qm26MA7uuXluveMW+7Z04KVAhoUKO6LoXJsIDLmQpWZhLNkNS4oxxLp9S5KTJLdMbmZ9qmaL9+NM54ZbtodP7IkYvlQHLGeLQOMBaQWUfkEo8S3ftCJScye2wkhYcABWYSw1CGimuU1F9X1xhHPMwks0jP8jE+izXivaV+goeL0ds3v1bFTlzuysUpllEs5vy4G7McE6jbKhDdHyBfaDkgGUWLnwkl+JdoB7ZmuLRwpO7fUpjY+F2Q9PZprlPISwk4BKvOTjH3QaunVYKxxKoWGFKuKMhoLWzB9NJMUjckJrXJi+5lQhmn1z9+OFUUETij0pn7SJvbVSZIggZc16LhU0Y0quU8wNGMYwbc2fCsZj1PReZFXe3Oo28VaphVOmn9tyUZpgxlOdYcdaJgeWNjRtiP0fvlBjyaWNtAO5tio8u8xkGbBm2Ig2jyGq/NRBfkaDD9SbqzHogKr6WG7dS+FsDqZp09X2qpdGh5LJdtpHb9Yocujqe3Y9m/n+qL4W8jEHada1HTbzyhhAgD9EpkgVyD3J24m+wwLmK7PY3rr44FfHGBGEjwsAxwZQYBNerWUgSQ1wNLapxBHJPYS8bhvOSny+Tav2qoOMxAmgPWXo/SBq8lCDsfuR1fnAp9HKBJpCnSPqPGJBxw9rkLY7lV4rAHLn90wrmtcf4E6h2cpwA0hWzh4qDW3iB02xM+e3LzR4vCz2GuXzLsOaVOhVkRu1yTRK/sve5FVDnI85IcsTCQnldrCnV3BKdQaakx1tP9a5m5R5UV6rqyyLs5PjCmQNYwAhNe9wE+5ngYtgYFEVFa+tlknRCW87iYN+CJJ1c1QUkZJSaLkW8kSsE2bIqzn2mFgaMqZ5P3T/C74ewzyWAi1zoDnn5nO3kBl3N+pUgtZp9NKJmxRQ82GKy9mMiqMv62jFXgmtrGh1JbAb2/MN/GB2s13rNjDM0ZBTorFDNFHIvObACIAR6X0Q72oI6OX1VIzGKRpV+wda3iZ+NZu2wR9Td+7QbGlN1J4CSJ//7EujYxSCvoosmADBTMpSoRqyoMDhMX9Y08GcCVmKmhtkiOqQ1oOkvjEs8bpN1ORArjmDOeujto4Smg7rz7zdMjEpBO1TKpdIm+G4yf7DiyI3K5fVfyZc58NFFCFRLGMUQCA8QHJ9AHongbqM4vJby9qO0X2OxIaXtzVDK/x4tlXSW9trrrLxr52nmEum9TALP2cdusto3zvjDlNpz6D6nRVQpnb6+2YUouXnjPEn7CTVt7IWUcvMPgg6XVjW5AvuuPLr1P9AXzQd+VKNsG2w24mLku1xCkeZqsuXL5DNLrd3GLqUyYniayfM8cuBRtFkZGP5Igb5IaIJOrbzdyyxxL+hst9MaEFXo+BwDxP4B051du7YpNSFOg35g+l3SXYNHq69PB4HytZU2cnf509tyM6s8WIdDiVCTDRqH0Qmcea1+T8o5EH0uVH0a6GzKJMMW3UrkDo/1ayC0Fr/4npnwDFPwMQELUgyrLHHkmkjsH1AC7NGg0i2eaW06k8coN7qjIqTjMbA92uy/3XZvMJDVSBAw6tCnxTVnGD72OTNUAOOeZ9lzpRPx4BhA6Mi9bW2tWCkDAniA2Uh+CuxCayPi8+J+CNuFxt0rmqg52IyrelXlKWo6uUuSxFT8ITBUBKePcBRoKxdOQhT3Ezwgs/axCDKJvH1h6BL85qfb4mvjVgC9KLyAvkyzNXkROhkZKkrxokxZaHFDZo3Sh+i1ysCqPZe7V+mih9WcIgB5mWPoDUShdX/3CrTZ2q52dfzNPcN/SO4vbqLybRUEQUUO5s5NwcY0jBFAnW/RmtX3HIPP4Z/qfSfk7a/Ct9AsVxH6GGOt8fWLLCxXzzsR4rDahiM1DRcaEdsX+ne633MjuPd4v9lcNwnQs37rGDDualwe4hC3M60CwJPNbclZctZPzN3X9bqTdpF+y4AgUs1+TFxl1ipnDeFmCsO7agp0QEbi+/0F0PXkRoWKNrQaZIJtarjnPQytmc+yGco5ZS5q1o9enuhRQRhz2c8MNMgAfFBb/rizFX7RsxzyWcFj3Y4NlKp8ZGWJg3fN+XdOVvkWxPEHoPjjMIxIhVf8LaAZyOLGXzLjKlDaIGhCGQBiNxFFDvdiii7DrvSTbNiJ0FS/ZMOC6eOiF8736LHgdJLMqPeMn4bTOcivJxBY4IONe6Gm6Vzd8zhxbHULtYr23jtcKMVCle4R4Y8o6ZV4npNxbUrSqE4QLP7QdIyvhBuT0PJ9ePa8cfyhPrl0lbesPKonba3UKAk7P3IOW7BzLJiHfsUYbi7fbHxNBxqfUQ1XyXAi4lym0Lbffney9NYDD6URNlsaZlhs/oVKxVFLlnK5kP0db1rymSs0VyJS56Ht3/hS2ctE782I5OwP1sDlmkjhoGxy55BiIGMud2AiyX10/NvnSPOZ65s27iAF2dR28P2cKUFs8qv+mE6a6aI3KIB70hizP3O2G1IIrR8BcyFZxN+8558Y58CH4ChQIjIZDQvkq3tBFP56ZDrOKVyDR3R65WiGniw+XMJOtU/RT9pAVgM/3BGQZyd5zmPjMF4dmE+FVDebSX2hHlly27wxInYzHFPBGZCdOO62gdWvAWY2UV5KyjEovZGP6XTkoq6XxktP1+ONNmTv1Qu22EHRIjaxlUk3DBtf6ma52/8HG2pfe9LW8jJ/IhyW6Wyod291c5yYQ3/IeGHcM+uG8JFFRD2DfBn4NERCDtUSKbGBWm03w+QQa+p54G0uIOEry9/l4ylQ9e+PTU/Z8G5dhSzlP0+tQnPGHTuns7hCXXZ6ILu8n4/9DFG2BVCHqwQMernglSpI/OCPwk/U7u53rHMFEXGTN+zzDUWoS5YQSFUjWLPIGi4OKnh6aj/MZVnl+vHOaaExI7wvQrDtQR0eibGSy3hj+Uj5w8ZqmpkRHy9y4kyYrPhrm4Wh/mGwVbUtGK/HmYgu4qaq3CEPx/qY/K2W7TTrWoGxwOYX9r74MmiGUWFG4jhqJOO1In3DRyvhXwaD1IEDAZll6vhO97ilMjUMRK/7DTNoSM+7ztU/a0n1kCWD2wBpqXskaQq19iTKxtbmFZ19cU2Oki/5itTbN0cPYF1CAMQacm6naaZ8kpqGxYSmw2a1FOjYwP+ODWmK/OXmsbCoUcQtCiVudkYTMQ1UmUtgiGiybQTgLiYsKix07ILWC5E9wVYTQY017UFLNnEOd1kmKD/2YwpZFLb65dRfdEHSypxhWrpLVzga8bQIUzuKtF1dY8IwUx3Wt5VFiRxYnDTQAQUJ1KG0sDXROQok6ukzLWhJfxH3PqGS5uN0JrpzB099zfxDDSsQ+OB19C2iNTIsgpu4AxyAr6tG23dzAe1eBQC7AJ76xk6e3hPwmY+pcAyNkp4dGdUabVoQcjDc5zzfdPumoGotEWGgMxipSaiqcOsSLabfYwVMxW1kRhhj6JfwLXv1VhavnTOQfwBTZVGe9+/J4SnkVrUrTsI5HJiqJ18tIJfHWNXmSJ1sWSMRKIbV/HyLz31Uu0AzZiJ88QvqTjrAdHfZPYkWMJH0Vis3OHmHvLw17BVAmYHk7zmhj6iiDtIAVpNLYgxtF98XTleK63cdhSlOXYriEroWxrwd8EsEKYYE4hwaJV0tur+vjugtO4yEgA3ReBWdBQjAiD85fcga1JJXFFpYpot5Z8YaC54cF3ndHfohtOMPI6q3MsDcNViTmdG//EWGdfNHKgzaS0K3bdcXNiO11aAYJy30J4FL1kPzHPEvTq9pGzVL+oFvR1h9Vu0Yun0ab573gEOBP6FiSYJlGnIjdO0kNSmQuBBe4OLVWL+wqqKYMGhnN7rM4qbMdBpPrjr9WJWz0eJH9Yl4+pRrLsDYvpBjCRDhuPx2fsg9xw43ZZfvGoncD2qt07aQ2Z3+zWr0x7MIqx9k7BEJ8TDD1fJqWfBVHIHyO38/4g2g+V8dDaodEtLfPDbwBKReSuIf6p3paH2Jefg6WurXU37uihDTn7xwEdIYspeGqYqGOdDYMjPtaH9/XOqtGOO0gBGLAvIYhsrQNr+rFO7BxGObZCmgL+HVgTY2lISdILSfSZU5g1NJOx0PveHdDAEAQKvzQL40ZJi0IVmqkyA50nj9zcvn/xwZxktZEwHd1w3rT40gif83UNgTTmJdx2SxcxEYefnllAQm3mlDfoEBebpQnW1T541ZEOnvOG5xDXeaZpssy/ujUjjkf5ksr3dHWm0H+NiZT0pbkordXMui68NSfDoAGTBrfZBOQGv8qINCzrU6oXVnmNFZhzV0ia0d0gsKALjstGemfwPLIKvRnxIt+YQnYZGPt6r63QlQ9w8uLaIZRBYzqysNYLZuUVH42bT3uvBQ6k93COFazyfyogZwqiRzQakbfwd7xYbGDXLv2CMTFYt3IJ2fiUXeM/vUh3+GspJsnFIIiGq9aqqz1QmIw2WTk4jK11DPY7kVSulAYBaCKGgr+NVur+mHmdJU7ym03O9W5+ZyxMxA+BwBtddLbudsvTYuLbEGzFK/HiMQh55fyp13Yur0tCv3a1PgzIfSKIY9jQf8U2wafqnLny4zB5GQ/7Hnd449hmVbPyOSIzG5XiLZNX9s0JtSPx/ar2zXrbrOueCwEAUhdVgUDEyHscM0Yjfz3cS8QsoPLSeNi2m1SvaKLxJwbzcOLFMyKub8FIz1u+B4djWVXaEmC3tc62OAN/aiYk5n3/SWhp+1WhCRMNmang8DmHCodA8UfNIyMbDQ7fhrI3ioex33zYBrb9zzoGlpZ1AuqSXoF7zFf5MsP5TAXmhmL5hPJqjy4XlGqpCdsjgzWezsSLPdKhAJ3PJQi5wNYyFebALZH1AQIagvs1gM6b+5x2QoEmP48pBHbGXzt7n+Culp8p6ziVgk/auODlpaDwWDN32imK0H6H+jvJm/Xixz6wWPV/VDm/75DNSKo0nzI0E06ZwCEtmLEVBW+7Cg74y193L108h4off6dode+MTUbyMgsUPL1gYgnhzt7zYcrUWLIujcxn4sZcv2eWI+d8nfDlTfOB01qT9gokqmr6R0mi2E0G9JsAPwvVVIjX4hz2U2T9AGY6BFrt5VnUx44FIFqNruB8pGNu1dG8y5HX0C8VjQ+C3jpJX7LHdkytkaLX6sgRtJXbtBSr4TV/17yjdJ3x6bi0x6MyPihN+ro3Pls7/+yQEWzgMQ7tu83VGg+Yk7fu8RZgD9VXnKfDPikMTGfvv091rgQpGWLATm/ts9qTu9SAvXuBfQhYWiH4YXKtUYl1NTivuRrfsl/kYdqjiuUQivoi/+wYfmBujCLCPRO+U8BAW0uVarBmCWE+uIZITUPzk2lH1PXA6lusGiSUtAkN3Rmnqi/2p/1HaqIORXpFYNVtvRZeSrgzDFm4nxhwmpW9urX1HLnyxH3KRE7lj/qT3DhRFASfwjMRwC/4WGSI/sbie/N+Ql9sOoagcdqYwCadjVzc8SomNg43Q9iy3+ZIN7WtKAhmAVFWXPlZOVeA0W7MgkwVl3DfqZ3MEfGN03FxeESPXEj9iHyEjRqveVVrLgNgHZvCn1jIXeUuL119aeqtpXmHfDJqdSd03ZYc4G3gbTfYJOaMvNE5J6xkiXaMlmjx+aCVkdy9mvxvefp3Sgfmg55ipdnk4uW2IfTX3k935y/EZVbM+2s5nE3Gl5u5kPfYQROabAfvE4MypyR60PnKiRB92ZoEM+KZwI6Zczr3iU2eYdW//Cp13MkwNS1LsAIsevwv2R9jGbI7M2DywtAGamG3ad7dTS7NGbiSlbIZR6MUI9EsQbjB4yBMKuSUMXl5nhovs+UijCm62Z5RhkRYPPxmHfVAbIQOkIHjuLnY0ka4heibLhw/1QfXgPi/07MjbZnSdnFPdNsAINgxPhVHEwcgyyClrB6oU7yVF9gKVoH//U/icaFvPCfVtmNFQ8ek0WsiT6ygfJHcWnqs/eCAMvL1IQ17/M1A4uhLLtEdcYgylR1xUbZjuEaqOqLTTqpd8O5xQxXt82E5YfpEFJ/rOaYOZwhtM8XMzZW62XC/svOnb1CBrcqhWfO00CtgTH82OpvnsN5GQl//8HS17zgaSyBgyo8SiDM4UZvNTXztqEqBqI8/jCPE8I6nScHC9nKv6dPLjoQj3ZoLHTb+ziGh4gMucKx3zcCiLqNAWyUh9G8q+TZYoR1noXn0lDwhp3jcPMjtPp+Y6P5yuhDT5fiEQ6hBEg0H8pxCvD80EwPmf65gdAgbpbgvAEw9EDjHnZihq9kc8VqWw1uUnotmBDza9WV7UKt2I71tGsunLRp2PJgGYks6v24sJ45A7ug/kvZlAJjYRpk36758f34mvCIPIaKoPnsEvJtERAtWzT0D/xpaiB9Mt3xWLMxcjNAn00yk1/Ysh2Qo6JfT/sWwEfZ1PIJhPiZQ8Cp98aUkE4hgP9cKXaVhJuWy/PQwiFqoBelN0wI/Ov6pG2jlPaC0h1cEgwwu22TD58sJ1ULQhj5QZt3RGZlz4lHndVwaP5ekFiMqGeirWkGSnN6hd0cjdNgAqsdxC7cag2YV2dGI18eKcldBZaYILrt4t2bV38F2lhDymUoerPn39mz/+2pwEpjK19wYCluqePwJgjiUYi8U4j9zbFjEMH8RA/lvuWi68fOXWVujcFfFrRvcsfYRmxHFKcdH4Rt4DbZUqb+QGd3+bMxn/bptrdOGftKXchbfLmiNdORvS8HzTk35L1UyA9SZEZFuMt7WbNOwHeDE5oY/FSOrdSMhTrXMFvvKGeyE1OM3xinPRhI8jDnNKBIf/BVv7czN4JiSxN13GlQo+ARM8EtokSLagFEr2+5lYAk9cDlQnaF72kBIHtA5mg/K8TQwMh+JV80FwgtUEW/cJg7j9UA1W5+yaflJcPQf/HEa1RlrEGJ3Vi1eXJXF96n20a6yFZzVjHVTVs074LU0V3tHvydpd9qhICAaknzmiSoiWnbYJkg+DN+9KYAcpZHquU78rVXUEIBZP6jXb0U6ULhSfDlbJEIs7tURAUrCH99ICiZmTng5+gCsnfWyPSnxC+QDgLOaWJS4J9tGbK43y848R4jL9+eoUryFElhHEe5EeELyrJ5uMEMwiOwKJNk59uXH1kP8eHszfp/5FGrqgH7QgDLfyPlguPgMONlBFQ3Xy88MyNm6bCecWQpjCOPjzbcXllagUrm3lqAoi8nqcBD4ZCbxgW5ezGw540hdwp7zrS6oWcm4BcIrbHk/5ISgWIXARN+j21NcPlfKUwirp0XIRgAlJ8P0ml/Xh+CjDRJfxtzhI4rbUq5di8pG6YsQ0V0zwhVxByx/GstJcGPMlKlRBHlp7gtk3PYn3DeoNvACt6lsTtiO35/gHkn0V+qXtcaw3T2CEnh3DCp7k4UkvEcct3Ihe2ukdAz/sqDtrjnbwifCU2+OwJnlDbT+SDwwJvNghCKkMqRYcscJbXGpj456nkK+csDUqzz4V197yw3UMpqGkTB26JhZkf7NI0EMRqsXllwo/wDp34SsPKUEu4kS9arxnEd9FxJZFH4pSGfswItPCvHhe2J1EKy4CwtS/1Gkj6dOueCEJ/WgyxdwYwcZXVzn2cMfn3nsTvW4KmBHsMw0iZWziYmkZ8ZIEhsFZ7AG7wB98+d1QlNsQG5HtTJwe+xxP4Ci3vRnfRIJWUuQIPz14OtcLZ8ivnyqLrJHTmbI4hL7hFya5G0Jg0lOYQthTAq/1TDlKx1qVikj2kBT0nU0YgfPA94E04lMbGTp9TIke15fOpE/gRlaiNfQzLmkzkF7Kz+TMUw3GOo1n1RVfNXSzyB8O/G0f9KnpVJwgvNc9Ocw5EW32eS9A1f8qOxjtTV/InIKf83HvTZBok0W7GPWfhMI2ytj+t+dFnS6M/dVUTdwH98xh+cILL5v8EapO92iHLryi22huAafFMCoRbOmbDROCw1h3mk0e/wyYzKujhqhl/6RDLIUUzh+AFjHSlta+vA4zv3Wih/ytwbcOJ52Xqi7K6+/KbMuyLoliHHHtCyPHRvicCH90SB8BFmFqcseMTpxpEIZaA4jLwpYP90NGVW0//2mxTiXCgHEvFEgaUF5c2cAwqJqvi7LawMYpvKA32GDNzb2pIE8b5/NkUF6IFTXqQwQre4RHBFQEXLk5KUlHUjW9XPDVRGJeXuoCpOo5XQO7ffJW72aWk0XjD2GtwR2YmNRp4yhfhf5tZik6g/7lWl+358IOBVZxOAhBQjZZ7XuT6MpwgFtPf74PYroE8TU32NHwcecfQcEXnI3AjVaVu5Oi4A+cPt8WXkCQrAmR3tDshwYls8IruPpfDk/whD26q1yIccWrS0iUC63loeckKFBbvyhPKxxyajvjctExxeFRsXI+Z7uiPG0QqqJbnMgBDVDUF9tTKu8GFYJE7waIcRsv26geuygp5G+Fyx8LWXfzXRHmeDVV5M5XWEbmQWLimWZ17/8PoErMPgIFUq9pvw7fdfFM7ujc+cd7z19gf5RIwn9zQdG7L4JbUDmIvMNghw57d7PJrpmExeECx97PLjEA2RO2B1ewLYxHl74w8Sxfl3XbYvRb3vZAIBUtBXy4xFQGzRcWfH8dHFO51PDcNJnCxXEx1DODmZNPvewL1/3FRmaTcMryRJSAaGcIzpjZlTKDJQYJpzhldPxVa2AXjSTAEWYRtIn+hUVpULzRWoy9kn95LuM3HAbrAqIjREEWO/cafqra4k5E40Z2Py3Djjo6wc/SjCtS4LKADVVov8XOQJuzyZGSVVAPBcfSOjWI0cgaAo8pklmY84TstgDaqPz3VcIHjwWjo4AAUSQj5eQkmjazYbGbjHFcPs67rNu+0YynWOO3eRkofvGJlavi9p2QQ7oXo7eCvlcDj5fDe3axXNl7BSHAzxCr8HTVYK62ANSNwCSyuaVj+WEcRruyU75te6GaX47My9Yz8Ca0EErO4BJ0+fF18QYYXXJzxJKOWYTmBSWCmnDi9uCxx1UvnWRktLluH7RR9babydBSNo7R1ANnaW0MFI6H6CQ5ZOasugE+gu+G3Lm/n3LGqZQfgAIbWmkqt7eZPnoFxWQ2VAeUD1rsZZPZCEBwSHUwF4OeCFS6riXOTed8WEqV1D1kf2+d7TsoL65pt1N8QFSgNGFT0RYys+jnkNtXOlj03R/D0s8NgOvKNQwrnLfePoMGLGqjZ0CBjTeSsJOV+HR8YjiAa+bDFZ1ObRzaDmVRf2G7dCICtn0Kr1aaAn29/qbSWxK8Ll91o7rGsQev63X/VP0rSSNp4eMBsG8637agXZGx9FTMl5vc5ApYXsaZxaaI8i78Lghv7OyWVIecp9dEAKFdXgAYlY+YTK3QMvwHyPE8PN1ZHpDHstl3mQm3t4NsIy0hVtAXz9sYt5Lczrrn9y7rtFSXpX1rcOPZOyql64tpKQ+ILN7gyOBrGw4GK9VRG9gxIrA0YtUwMvfIO/dPp8CJ1zK2IOj39qEPto521Dno05Mbvaafk8zjT3L9QncWFDpB5FKOAwojFplQJCTfSeSUnKm7F9BexVxXMAepq0v05jPFMVSPFHmDXS2gIJK2OlQ8+ZmFTORqw0e69sAl+EYwSAu9N/XkpuhE+AJ6C8V4Eld7vHVJqKqrtmKGC0xc0eG790ggUND+yENdeybJsupJV859mT/gOUwuirk1igJUKGTU3RXVB1IgML+cAx3I+fE8ByMMfYY8Z2V6BqOtfw2fhKF6mHqRocPKYIxhDpetefI25u+lNF4fYx8aNnRR6mcIE/TDrTx/CWlfIpKMgwXHukHost0+OkKSwqMpLHfUpnFGQ/eY09a5cWWXfdU5EL1GkPpl1WJZBLZMoD1GSg/NYJbs71S2M9mhp/9c6gLZugCyStw3lrBGskv2XCrEM0MXz56IwYFjM+gX+aFAr0RhhSjU9FSGmZ9Sg+X50mJVG+Vtqkxo9L3Ova/SzhmSy8AVEiD8EggRVaSTTJEQAReQGcjOedhlDP7fhwzWWkw5m7BqqT6PAr+NQsoBKAGY9EloQ2Qcb026aaqTQ0EiboxYwmuuxrKZa9t5grQ1ZXoROx8cHC3wPeY3hglqt3GR5cA02rCdPP+DlMKFZadoFpb+2KutNfrzjqPZPbvKkzWH5tucQ3hIEnGnuUAUzeJQiDrz1GRUhjeEmUWF6e6fw4sYgFzQ2haSYaUDyzXAM0vzAE9uyPRoDlZJv36DOX8WtS9wGvxiqTEQ3us6ffttAi2nQ50BfylAEpCOT3BGbrZd/EE88jSrFoxXK6Cvb5JRTPZhrYUy5vUt0zzX1ooetkP/GVwvtXJLjZPviF6+e5r9MpdLqQKL27YHmR/293wAFBrds/jehVy4cpWdU5u1pKqjFbkQuEiDe6OIz9nFbTnZkhS2YXiqVbQ+PBzQqLvZqJXqMJbU3y2ZOJG2Zl/baNktSTRr6NBhherjzyjIAyTX411smowuu0Of7pE9KM0rd8WwyV29TOm0+/jdT8vNggNSV+JLbxr3qOWTQYaiVFzX0hNMeACYAqqQtJyM+lNS6eh69j40e2wI/JQ8Ix0YwaNM3M3oMZmhZuoB/n40XULVTwXYSmtjX4anfBlDeoHo1m7JKXY6UPETJAV3Fesv8dBVNoAYGLpvAiJTKRGm7Xv5tSlrFRgBuudOhIQ+PvKiXCDUgk14pHzsAccC/1AkPpqqcUCIuEuVmey0ZBC/tTEwU3DQDDk+Rdt238entzI+FS/pelYemgKs2fVEKW0nZIJd5a3Ago0huDYPPm0iuMaPQVoyBwzaQ1mh4sJ7C0yrfftBK9naXT7twBtnpmizMob3D2QjfLhmxzSppLfEmOxclHymUP8jfDHuKD11JtC40FpxYrcHRNU1A51Y+6ceMiazaBhiJdjougYirY61RVyiEurg3eLcPKuDZWS4ErCa1eCUdYXSyMPj8y4Xk6uAbq4i/SY/VfRD3J6Vh3Rqk5p+Exxplx0fjfXzNm6XrOWVAKfvi8SKade4RF9PS4cAY9oi4LV7nVTkfXjs5lb+LPCtEcyfCznapSMKgLN3/U3QGv5VZ2GC/L5qv2VBCsfWUuWeRmJqPzjO7eVu1UdjdwFiarNA/z0+jF4Ob5FG8wp7BtI2UIoTnTDDavNuwE6yr0uaGUOicw/YlC7Pl0wZlwx0VxDxjfyIInTF5BurSU/9IgpQAMA71e6naXC4Lu+LDR3cneFlxAlKwLmMjdBiQeiq5jJG9fpsEk0PFdqur7Mn0SEUCaizFZ01md47yx0gIUmvyACMUAGEtfKM8lyo9rVInKFuD6JxOiSWxWuJQikP40+J7BgIHmOuKV+wIJjFbeX6taM7R82dYQp7QHr6xVST0zruqejLZuCMDuStfJH0jGvEM+zHmopaIuZgY2zlbNqW+gEESdpZFEe1UX/310O8KbtEZAkfIZ0ulWKfwqfDfmchXpNDBcjk0xPNWjwbXXaMk5p7fnplFhJw1p4ReYsptkCDncAWAnOVKw/AU1ygnwdx9a+u6MZWABmmeZWFepqUvfxKPsaBAhc7OcbDR+5vcpO9GV7moGy7d1t2K4lV+ylmjYNyeJXV6ARDaOqf3gtAQgtL7ZBwS0ZtWqgLR/VQTvvGu2nkaqiCztDxaC/ZccLPfnEZYKFDNjx8GAWQCWAHPvZ/gJo06Z6Fsj4n12QdPDpPjetW03bG/twgh8/U3jDo9AubNFVeD8F4te7yApkFJYEakjWUPLv0s9w23YRrQzcSlSDAFYzqubr5andxFOKFZ9ZVv/kF6nugJmNp4J7rKb2KhjLj/QcTccphwMfghk+NygTHTg4KPWvqpufd+sOixwYXyM3wce4tFB6LkRWB4YESW1HYqcIWBF3BNaay6IVm/kRkVlH3NOVfn5rTw/rll5bUS6FBrNUN91jZihmxiM89bGWilZnokQb2vHyDpmoeLJKUy0JisQEdk6POuU79EIcqnz090FbQI76hF9JFSSDEkj5F0bEDlD10ZYdoZI5Lb1ZAlc5/HwfI53kxRQ6arX7M0XoFQpA/3hmvI9V5sw2Vgi6umcaejJL6RDvAIzEVFtulwD3oUeTgh7ICb4lSdTaml8k5/UayThblJQDpoKlomJYxb69oQOdroMbsW1gLz6jIYqqCB/cARXInk07hCfAYoh7khobRngNUAKYKmSw0m8zQV02HhWxAcWjL8C7R8sYlZCFg795WY6bXc94YQl6TWqHcn/4xqwvHNYt2epstJ6VLzfgCc7WZnKk1j3/hIUsGYc96NDgCqN48ICo1GGXSi6vySmMNI5KNakCZZqmjfi2ko3GIk4Qe41tPg+b59TxdfiIkLNielhlW7P7spzCi0TpFHmPZuXlt6RYOxWhKCVpGWO3JTRve/cjDNy8RRPkgdPC21LiblDxE5o8aNsSRFoObWAFTDB8Ej5qf3+AECtnPw8hXUkqDxaxLFiSsKdu0L5sge6Ldn/N34A3SUgiiFYEsyg4obBBr2fmg5xuZvGB3s4TrE6eyQYPC1HjQt5SgRqRHOu0ipYGqGsC/lQhEWQlgjOqM4n/uibSsWVtttdAI9zgsR21UjTl/C4wGSizbLaaix8isIYmqIbJZ6FwAhf94vXHe9kq1UwLawtq4SD5QSifUs/jmi2CIUSBmWXLkAv4smdngQBZU4lUUujK/qdtbXliy6epHFV6wBuyyIcBpkM9d2wroOI2UYWFjeFnuHoGFEAi6BMvlN+7pzBj5j+KdjWEjXYJueyzDmx0kXKr9dt7ElKFMyF3ag8b/U+VJNQcWNjcHSa/8dAIQRkDgsuhq8NLL3NL/PJQKPSm5MhiI/WQFGsFEVNnM7K34EwhDR9HMkBw/2/Y+twMGUuXi0Xk2vPpZZ8z3qOLQ7NemF8zlYcVGbM4cKSPlE2xQIui5oeULrM7ZyZ9y3XaWoIunauMmI+FWypcpQCe9AKiIJ53D8CyYN/6gDoyMJNDvegPPlDnpqcgCEUU+Oc0rB58dbx81uyPqQ4PFC91DYImgSRkefvN2RgWdr0Cxva6uPJTW080eOBXgOjHEfegnedOmA4s3ixhGoh7q66Mr7moutCgeAyOTL4LsFizIIbLfjm4jbbyPFf+TehJrnAru6JK3xThARel6kAmWDri9eYVACOqTd4prClnUxlY5JnHYCPwCDbe7X8nm98vpmCnRSDcS4+CGTEy4mK41Rr8OkEXvSlUKUmCyBrZOr0ZOMUat7zemJ7NNemGfJQQGSs9Zbzg4bjpMVaktTn6naZ9qpB/ivYMFYDQOMNm8AnsCyyzdmgCdgsFRomw9igYwg2y/IW/OgSbVDte+ldOnfkc5K47MtgRH3N2OAUC5GBj2EyQym2SrCddI5DCcjl+q7o2oqC+OwfGYTNZMG5f00JtXpWPo+7uWD5bPLg28xpixeTSc4vJFh/qkMs2fNFxfvbAs5wRdNgae0HremuwVtB2FAdFYRrJwyW97I6GeCuvar43R8ani7cavGT6iRCPsh2mYNXAijulfCtY1kZ3zdlsOg9aUx6+8cU20f1WZP0nqg9bMvLm/J/P4oRVpBIPoO+/Xt+ldl2TbQfv6PcOeW4V4S3rYxRselxq3x/BM42EWtU3rxlLXlaFPO82YFGm+1Qwc8UCZx5LClWyns/Tawy+wY+VrbxVzROJo7ltfjPRY0zye74Jfy/EEmVwigJsyTNG+8fPF+bM+1EmTKZBOLPCgad7ePZ3HZBskO10lC4JwTNu+6+PuqF7D/8ZP6nojEd9Wff+MIJ49yKqwN7cCgG62GO/8DmG1FEKq7yYZY1lQGoIVnOCeawpodlETGcvJ/l6eug4QArWcQ0TrDZg68Qj+BDWQq+j6s6uzDpdfba5HZSJ5jPxtLu18bbXAVS7VXEyO/dxuUAiKA71o0rdgonIe0BjPQiddYSYssop1++MhpWt31COjAA/kibw43kCWNVXp6WKJZAPM8O9+G+LFuEwItqi+h8b/iquEP+c67WBI4DxN50z0NmJUflyB3FKODqU8kI66Novvnt+m+J0Jg3vBZhkfnI8t5GsfpQ/9FzQKTdsjqwZ/u78iQIRf19XJ+6x0epHxE4WE80dbxXXspuCKXvkON+bxzsApYYYljyplhqvw77b8blcjOUUXz7I6y7X+EfXMaDqUitqznr8Fvf0nQfSG4v+yFk5aLZvr1ZHYDJAXXvAYBWbxPceLzwAvcOxbsuX5Fiok3rwk9oR9D687Aa47WWt5ZMQnpCUkDmO633zw6A5Cvp2d8tyTfUrlUSLeZX/j6p5S/AxFXQSFK5HANXXAJG48cKRoURajFVxrPZeZen7kFs4FDopjidsPt9+vgkgcaoqMoaPykjO6AwT3V6aGUo40vpprLpL5aVjSlKrVN0AlW+65ovfCy5xwZM/Ic/xUz3NOUC6a3bku8wpJ1UgAz/dFeJP3q9ae1Xzw0/B17r+u2ums7tzdSmufTAG6Y11scqb6SeEmmJ5SnksUaHkFDSed5+UWmZ9ymiukHLZNiPJ8u4ZgJrlQcQt3JD22FE8QPTUfWSYxh4kbIKPrQmVpzi/91cfDgt11LF1bE9LGiG0X+yQnkSgHxA0ljoni2o6H7s+Nhv1Qf/LeqJySOAoZsAzE3zuK/xgAfrIrQ7bA3jrArkB/OfMdM8y6hLWj2mg4biLr+DNhN2uqCsFaUxc7/f8w85SOYv9NrHlGp4AfiYNaLw8/BXuN2GxCaccoVpieHpE1DV+mmsfoVeAnlOMbBTZJzRQ8e3FT7aNLDEBNOCR16gCsYNr5B/vNvnSlR715HF3gdGsM/rw0vCSRRjpo/9YCeUlnWgoMS+dgIxlKyzB4zLLETdbvAZDJu/su/atoHuC6kNJlfsm9sDaybx/UT3MN8Hjod0eV5nP7bIc35G9B8LTirSl+rKzrTwFhLgy9DtQN6AN1zILjDpgCd7chutdjVN6s1Oi36tAQIrAGkRrCWlWKH7rlra8Vlf/LFyK0XdQWLKPxHJzFwXoqOVMfAYBBcUGXAWqmloeKCjYFGdi8UrW+Aj8z2XlvuUXIxqvDyU3Y3VlrJYZpuyT3TNFWnVftnfyJ0vX3AtL6vFF8cSnakBQ8Pr2Ur9Vc30pDqaUaQ7U9kHwGl3mT7irkCsdvJEfGUZkpMU+eZsfMhsdKes5zXs2J0eRfQuuiv5wWYrrpGjeQU1rY+YHZQeW8/NiiSZuGzijmlXhlS2GRvzM6fBk5JT/LzMcknNU63lNEyC+V70SAwnoSli/F6lKTMJ4giKnbecD2ByQmZZrhCLoEfd/GiegpQEVW2RxzT2D7+kxFkPftVtUHfKSa/LP70GPDc91fIyK+hebX8ircbv/4o4hi5aEe088jpruWXWs7WB3DycHF0wIvDBdCGo0yivL9vGpBaxZVQJDJpEYmvjYfk4ZPe4wf8mTnfpFA4bztHQfoqwdyGbKfzSx5HprVKiVIJ56+1OWhWpONHOWRwO07uFHSyrOaDBJ38g6koSLh+o5bqfpVFsfYZF0hADMv3awR8T0yzE5DogtKf99t4w2kMJy6Jz/hUxVZq70/v0myTUhLJIwnkbuGEr83HIntGFMSMfTpGghE/0S8AZ/U8WlkjIZbhBM7cduTBdxlVUdmDfkm9ilTUJayLiKCqrooP6mE+AVmFvJndSCRObdqKabEP8aUmDnCGVEagiYml37rOsv+WQTEyqrpJXwH+scCGVm2PtN3Ds3SOtTK/nsoAFltPLmfemz91HFQTLkg5nI+EFlQHcEf/5QsGKHss7p58Kf5b75A1s291JhXnGOCicj6/vZduAYNN2Ld/E2qvTyQCbPI9AE1ltax1sfvLK3PyAEibCsTWjavmT8HzV/Re5Lzc8KgUhXo/F7fBgwtbZEKcWkMe6FzCpSRVgXKYY5bRuTsIiPR21Yarh44AZEHMPw8Fxtsf1nv4WTSM3TF3bKpbiUj1zVilVT+SYBa8X0h2p3Q1+vql4rWgDAtft0+58udoWcraLhBOZB66Q4A9ngJ0I1Jvwy/jZH57KqmLFxspDYerLAZSuqPUXfLDqmFlJoQSBknJUbx843KjfweRp/TXq6FhNn6jvPFhs6534i/RLBLHHXYW20Drjpjwojpav3MtUByIw/GVocsuny1CWdWIDxQJt3EbbLLgZw4bSmIMjCXKt9Ipumra+zdubM2RRKT1CVfSc60HC3Wd2b8v0WlHr6E7wdooplqwfUjrKqsrrphCBlCOQl4bZ6eIkq2czCKKebCQOmmvZR4qv+1n0pdNZwuPmqWY8sod5y7Q8arwAUcL85UUlLsavS1hTELlQVY8jy0ojNZo89if9QVyIzxv1WGdxQgjEP5r9OCUOj0hGhw4veZQAsi1TfOH3QFRZ68LURSVZeyxzyvkVT62oeqlHkpF3mOT8e2KMBRORvI2Hnyg8JQWzeQtvFO390kNlHIqXnMZTQNOW+x7/1qUdYX0gvlwlXInO25i2UvWhwXGlTfuQ/iU1KvbaVTxWBqcPnOBC7K6JNzND73g4lY6Y1i8Qyl22xqOJcY3mlLgPhXyDvdzYp8r6oj4+O9aGvfpEDU5cr1l6VOXIq4CI73ejQ/+1dqcOJzuVAGfX50YY42vLnqkmWBySYNR1u9yZ1mTwLot9XTSjBDselBvv+R2BLEzWafPS00DOCJmLSwYDTWs+9zNdjSjvG5MjqZtaGK9CH68qo3qrY8J4JAm3QkuWT5NE1CdQK9wR5lCeyajzJcaKlfQPuYjvZOPXuxOkyyAjRxNHqPAgRqIjwXEaZD49ltFRDyBm/NuLDqqJDi92bIsxXMWK5bycvn90Sa5nUQGqZzMHjPOypRe9I4BHhKccNMntZ9alHyF+PhLUC1sL7O3B6ucmUaHmLCiQbBtcg3mRFM1kFYrQdItHkrSwenrH3/bZrLomLzRfykI/b0TUoMfla16jl4zrC9eMS92f3jVWfNEya0W5EGX2fDw9sSJ9Gjo++kJWe9h4+2wGhfP5hf4e2imz3PBPDU2ERF6Bvmx0THiitNhr0kibUQ6x7tzjZGxiVX4XeVBbmIhRYFFTrHrco85XX83O1lolasTu6JfLMkxu7/lvYpHIcEy/faK49X8+8XpUVRBjHV8zLbc4q62RNNSBqN7H8BjKjvp0ucljcg79k9tBDIwGaZ+lladmYw6w4gF5JGnlSWPCJRBVepWM6xjvnW3TFkIm+qgttlFvytHjcQZlJZ/7dZjqq4ZzkbW/Zmkm+muudNbJVQFdKsUoNeDNmqBrAT1PwfeYTRhwfpal4+LXCK6ZlIsjvCiplEB0emc7azm6nfBgF2v8Wh3OWpPxR2hQ5meKYQpSB+J5kBtwCoayxA1AWSLDHDc6crWrJr5bDh0VQRUh8eUGM0fyXV3KPw4p9UWKJFD7Lz349kJ4KCChsJ9KEX2cWvHDYFdtIs8IHfILK+G9Q7rXrHrDlnd4bbEaCx6NTXYbvbh2sJ3TWLrlosjc8ZLGBTm2Syo3lH8igOW1qYY+1W7l7/HuTU0Wby4iv4fJk+7ej6iruNROJsHaEtpz9Qplz3yLWnd9rcdshnK+Z2FQoAHW+ky7Quftl5qNggHGhBEM3asys8PoqU3hyyzmHxpyuXfvdIoaSAzqa+s2z1OtyZB7HBIVDMqrgd6VEnNjVihqbCqYmyZ78+OMHGWG+smzXMlWg777ygtCg3SYULU95Ot8aTjCeoHSwN9H6IIPqItyXPBJNahEjTZlKyIMUKmTGO3e4yjMCW3XZUjtsNVNK0WA+7mrT1WSzSnnejIG1lWIl281ivLMhUyUy87QgfSpZvPX/9Oqqflx/qF2vLiEiCuXcWquPqFAFJo82rgmrfzGJGGLXAVhtmwB48RcMU9RhHes6q/tyTt/spKULDrvqH1h7E0ILKq2jW2D7eUlKHN+DT6vH9d5T532eYcsAMdLVeJrr33DCC7ZCF8sCjBSEwodzT/zdzLpefICQdDDjusOiKrqhZcZF7WQ7iv3MdOEx5o7PaCMY2jtLakbtKMLHENCTCULlBY2rVpnkesxAmq/0PDU78lZQhdWHTBpfmxLeukSRMeA1xoASE8nraBm/R6AkzDlcr1WKiBfFVG1Rw6tmtNd9w3m2kdMvi6U7Ti7C486F+1kl8bMFemxgyJWpAojN+9xckvnhOilh79/OGSKLLkrwWfcXEtoK0aQHNH1PezP3Ts+8+03BuMetIJf9NUhi6dicL90wGu5U2BH5MTgVerVtcT31U4xX0ePfm/vTS60LvbTBZ8rXzdrVYhahRhuNicBGgyM6mFzBZ2FGYqIwOYC+SdmJ4ulKWo8lOusfzP8jjjUxBmBOG9eUPgoLrpobld2BSAv2l5Ya+ejoEZXdFLvJ8sQRE6teXbpuBsfntIl3OWbJM9Jao7/X8GEYiORgN0Yrx3eNOca9ckYwBmFz9+0V/MiXCLTjVzKjsjp9AAED2Af90AzR5nhdB68RHLWM9lOwpzLeZg91U7utylKdjqw87gLh4ZMvWLvgNQc7CCqL98dEJdO3Uai/LXAbajjJjh3icUEmn/O73DX9/5/pmgSu0V18Mm8h1yiltRqOcDXWwTUSktc+cSLv27ketd4rkqdmsvdWZwIdkQHBlc/dyUuBBQorAzwogl7A2Ra2NQb0dSd6WOrYGnNpTH38qc6EIBzXJqyNv28BHb4ZgtAg2eaIBdIZGgE/sKxJRLbjQ9/OAliMqUu15NQ63taU0Y+v3VGwK2be5CSwmzPnM8uvwtaaIvKY2Q7W6alyIbGjPF5j8mjZJNTtJrq47MHZGm3o6IN3TLbPkn6Sl1Z+CUos/VYpEtq4M0n6AYpS99whGldnI/VsqV+1peHlDl0jeMeHDjY0royRFfdi7HM5AbS/8lIZAYFXia+JBKbOqLm/LUldy9x36xaqxfRFPwTs8R6foGUrKvyksLcDrUgIm5BR3xqZ4lfasfFxFUQkEQYO+OOAoq6jF4CzxlV1im59P98wveHzb4xe4pFDHAFJHq0uE73BbXG0je6VmX8YwTAuJ0yyhbgKy7gv/EwVIOX5+mZRT0JKkiy0OAEV+D7e3MY/o444E27RpEKVJlaNqcChWdabI0n+poEAGRecAjASNGhj4gIwBlRcOS7em/tZNJRk8C1muo4IOWbBtwRYjPQr4hVRsIglIbyhWazHumgDbW3B4m/o5XLH5pjCqz2j6diMJB3EZB8aZVBfJboK2fPJxuZorPFsZ6WGKZUln2wWhkcFlTKa9T3nepdJLOhbNrr8FBfyE3lJsFDCFOZ/aWR9g9EfD+0IIZrQv5l+WZIA3ZXueOuA8sGtJJKfNJbOH0c6Bo+PndIn/akRqABq/vA1dK+cjvKr8UHDOcc9MZT0pQed+mSyyyHuf3XNK9mDkIvmaEYYsUxbWMwVFGEZHbdI53Xkwgc6PqKHOjZJYCKQlYclzdqkfnVA7Nwn02y3VGdLuj6vHEW935Pwi9SOPfFnRbk+iNASZGyN5wTsWkXqi5OHL7obuUivzFnRi49gmo4TJPeWm+skxJ7tuPoz+FuTu/0BZ6JkA/b2EhGCkJNr0jwuq/gGw9mvxmvmblgZNju4PA3l7d958S4I0skLbSZABxuand2DD65FsGhbscDZ/HkZyC3b03YgsbadneedRTU7u4DjZJfXmGQZhi45nlB3I7R3ZQhFKK0OcA3LIgsKtvxwb5H22aMZXmpdc3rl833BgDKJU/dbJtdxZd1bJyRH+OwLH246y8U1YpApOnpdA3ba1y0lm8+C4p1TRn1xElSLZSGHRHAMnL4Ryb4nE4EHIXBUx2HGjTz2D0LNSu9UsVHgwn/JB2+xrEM4V8ME0HGWzCvNoaFezFecq8VEtdeeXPd/G5MxUh1JAQxewsLpiS9/XidZhrjk+ElubE1s4Th/AE8th2A1oFB0vgEE8ey3TzyUAtf9wwv1vre6d3d5xgNJQJtnhdTuGk/4Z8hPHFUENgT1avAkex6N64ukqYDSnoApiFUE41BtzWmzt12FhuJNptaUtIclx65y0qvS0m93qYjCCLT43DD5wtbSbDrTrfR0an+XSz2zh+OhkjUF5lRsNmJEuTn756fcek0mXuuxQEcThWoOE3UvX5NCzELa25OX9dkybQTBMjaNpY2VGRLbb2xVP/ALwjiCuM5z4XKZiWKfUIltPGOTHP1uzVNZYUg2xWyO1MDZ49ABY2FB0vR+lZpC0DFSYl3T2fB++zz5LHhoUIJ1hwJAIcBPdzWLG797wx958Ox+wpOAtFqNzgvssihWmmctD4dWV9THyFaApb2oh3BSS/us8ZxFwLIwEkDKzvYUdHbfVsfO8CUjHz0qC8fxqxHFggtJPhtfTKds3nxiPyt45xW4tUZvn2TAt5K3xpjnZdU1k4YFBuxl2+4Z1N6uMdiB2nDRBPcIc4QoAvRElPSNB2SwZW6eZfC57IhGlk/YfZvzGgC5H6T/MsaM4tIqA/ILlyS9nTVRU2Sl/lf6IqUbq4D8aKvWNQsx1cUF33nrrajYDlfsjkAYgPa5LLk/NB4DxubJ22/8ac29az+MNRjNPx7xjIVzf5j9HDH5SQcNdOawXw9OtR/oz+6bgmdeMBsF45Uwz027/2e+nsAchmxZw10msYIOUUtCLNPpP0R3Q49paDuUoQ4kEPg+YJk15Ydu5Aoj3tm/sSefynuoxnQ1ExuSa0lcZkUag01wc0BmtwPvoQQ3qEz5Ir6OhT5xu8WDrvNy0pKValtouAyw6Jwpobu+NXsWbQoWBJ1nmMko8YPUnnGSGuvXxfuMDhunlbkH83OvuKBwN+ojTcrszKrm5r00gO3If48eVW3YEFLLBUUyRMiF0gtIf3XxZwsk0eOA4D7dP5G1+37Swk5J12A750gi+CYfiQIexeqcN9KdNvrbzghTzkGDIfr6Xgo3gp8S694UGLOhGYkVmf8+3+kiM90R/SxQ9gFCn54zX2KGEx7/Yk5nEJY3uHD0J2S+4WXK7gisem+FATdP4EfOBvNqRg/csQWBTwaq6J91XGUgrxI3zeQ1cgn5Dl7oHjee/6nbLxA6WNIBzZFkN8CkQCOPyy6dDIv3TILK8EZcN4NXkkm5GZVqp/FSkt+VkLtUxQVfODPWgXuvzaBEfVj5ZOfQnhTa28h2n8q7ZuTtSycBDt1gNnE1Qy8Blp0oMintBygSscwHWQhu7lHy1a09pQrF44MlnO2XmukoZwLc/5x4AiWoPLc9AB0+PIGavXTSU/QluGME15BhKIPRtIlmRipFuGs7s9WY65lCAy6TCumWoQ3qyQoGT+4s9oal4mVCi7AKYz0fxn1rhN2GR9RN59CW5bsQG0kg4SnBHw1qymLlNNX3k+QWZv9lO8a6t2TQOs+QEhmGOVW9ZFD6b+aS1vTzp/iEo6QLKs+1M+z8IdIs7YDf4YIfuUemWVVpGFoCqJ+IGd402IdzSiIxqWPrdBvkoCiUw5RN9DpILUGKXArKFOCnb74ZvbIzBzJrfHV4atKbw0K1KVSaKQruPf1umUopZApCcHnUeBNrEBnKDeCgT76jBUsLvG24oxpSj68VhhOa0+ALxkvJl7VNV8v+K/V2G8eqadub0CfgXfVyMv/FwTnUfYFr/mzrHcfX7kjkYZ9gsIO/dm1GWAwP5n0/VZLxj2Dxd8niiKjCxLth1diRlXaP7fUDaUkxoQw1q60DboP89rXGnONP8IQ0mP9ocCtVlp96wzhJnaMkVhKnYu51ySe3pllRYgfm9+XXQck4x+10LVd/dcwYxdc/viISXQvKLp+lBKPTxWMYvkRcAO2Q+QnqYUqf1Rkb3et5vzfPDpExZOMXNRoYLXrB3gYc5sHfay57D0VAliHv2L3vub8/MwYf5I4RR4Gao/PjcVMXs5VBdn9W7N2f97iXmg0MPLQ+C2CH25xouxDiqG3Vd/7BtF7Px/JNXbNxk8XXzv10lVT76fcdh1vTtjDrwg6rT+I1JHs6ipxuPIN85DbZKJn/kLSWqbFZMSIZtPkuhQBpPkHVwaF5lIodfWY/q9+cIDsTaYed9kxFVFvz5ALRokxiM2JiwmGJLFxELfH8uYeBa5f/iMfy3Gmkp662SNYRZtffsZ0/PHpCLHQZJLw5Ldburj6vkqSJ2ZH94PmBF7jWShZGKjXSkiMbfhE8KyMYPbmr+w6nIZAPJnpIUyx2A3xY6VHHYUIHsK7MTGHlrWc+ndKH6KRaVT8HoHe9Jo57Ug2levLDYpCMF88FzNnJpIO03z8q47gqlAdsyXtiTYXxzOlHXtDK64JJaxouFxVFqCGkCFq8o5PgNtli4cV/j+SX5LIv37QPrqOOXSi9f7ax0UXB0gqP+K/XDHGRNd6eGGIcrvkeBHmjojvMI4HoutcEo1amZ6c0ycwadXuFhdzz6p9YrUkqYm7UXMVL1lcrxIYDqsCy/ERrqa+qHUbLZeoSZ+ebrkfRAy8wkJpLaf/OkYhJHEKn6zVSrbKe4c5RThTgV1ZICcnJ758srj3dXJiLtFwLxj5htoLa5py0k2/QRV5Y94baoK4UtW3cjSVcuCegdUEgfld5iSHbDWQKr2EIqIcHkDCmzw3Hl12D2yUglJgGnjTghDVG3Ft46+sNMuCgAq4sBe73vbJGYdOvDEXzjXcRyzWB3cWoow8ivCuyLaxwDJJWMSCbvPCxK5iPgLL07bnU2/W9v42atJN0lgoIqNQH6b+SeoQXGyGjcmEU5sCW0piC7Tq6dEd2Urx7vB5uXwFoUYpLRS8X+dq1yks93COjB5VgdHA2Wc5lJE3tSIqHFSmoutZElgMtKR0lDEXaBTs8VXaDL6FJJGTgzPM/CNhuzByrsaHOg8hljyQr7OAkQ7fgu+b1TV2nj6kkCtripSpHjfBiLPXzdsIKgBUNHloXso9QuUpCfidSDKfIO5naxPrXlQ9Kxa5ixBZ22UQyM4xzkN26fL/NoiOI93fcyULVlFNJdY90iwI5wX6QEXGOUD0+Jtt3uPGEPntDSqtmQhS85goC+fSv/rvHifaflh72VGZnbB25FHiwlmGhLwiVf1Zh0QU9Rt9FxdnzrdtmKIjS/ungSDsKmGVLTbuVqTJQRQXl2KHVXv7AOIb9NYHst/z9l1PylLOEvsqZrVt0LXIPPWLiqKmw7dAGHQufll3oFrNnB9HXWdyBj2ilQQ+S5sKYhUa1x2GKb1LumRRRWqeScsNuo9g5okSRrdHIX773uk7Fm9NIJrxP2hFco42/WYRuahBSavBq1kwJmiBvfHDk+snHlO2V57LEHT3KVZw4efiECkzD8g3zCQGXNroRyGMgQYoeVjdM4ubzfONISpan6ZILqWzyc/MASr7hV0NzonDSKp4DBspDNFIEu5eoOR/rONK21y3yUj40WDG9k70/opaQuuqQXOavKkIvXzWaE0jtEuCc9i7e9WYzsjyRui06qhI9EPn0PewO7iqkhylNw/C0cexeWFWprLCbbYpX/kfbBYvEsJuizBPdPJ6HcrzhAFjwCgitYDNmSKV/2/8ZJx2+hgXFSBo3jrf7/oFBHGV06bZo99nHQzXeoiHfart/d7V/SsmyBXyWNM+IpZa1pdE/hQ2zx7UsbC1SUSBfdwEaqrL3VyyKlxVT3e9XQdsb/OP6r0gAEEiyxErJ+T3U4sKSWiW0Jw8zFk07B8M23HpjjYEloPfZMd1AA8a/ilTJmZUmqEOFAlfIehaRN8AGIeUw7WcGNBKxHdg5iQO
Variant 0
DifficultyLevel
624
Question
What number could replace A in the following equation?
2×A36=151
Worked Solution
Simplifying both sides of the equation
|
|
2×A36 |
= 151 |
A18 |
= 56 |
Make the numerators the same.
|
|
A18 |
= 56×33 |
A18 |
= 1518 |
∴A=15
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
val1 | |
val2 | |
frac1 | |
val3 | |
frac2 | |
frac3 | |
correctAnswer | |
Answers
U2FsdGVkX1/QvNd5jOXpRfhC923AY2Dv5b3VSgCAtw/KBI6xb6XLn1NQ3/3jeCBtIc80Zr78lkalaN/SCaTyix+O4dT2zY1x8MgH6nRNuFR2xzfg2D11sEZw09eoUG6vFc5reqo0dG9faVqZZCztj7Mt7JgbnSItRFrow5G+WhPyHOarXyxgJX64ny3FXarhvJh8QHOt8Bz3im6KYrynX0LnR2AJUGtePTZQjZRDnrCRZ+dqDYqqX4CfjCroFaOuGdYQuhF5Qe7so7vOh41PSIr0WhS2YK+LsEzKKZZYy3kfrse8Epb13P37KfsfEkuDDJstwsvinfohxu6Zl5knHW7bcqaOIacGHcS/nPcwNQf4MT+Vw5evtHxUEk8w8k5jz9Vg/CJ+lSdMG7x48GjRh+4HgGYRVn1nEft0F3RChnpg9KrFNHlgWBRhmekkFA1QCGIqZOX8HHq59Lbx6/WKrJbaY9PVHP2Cp8c8VWcefehtZyarxfxRJLESgejw2wQ2Vp6W9hJtZRebA453CKu7ULeAXG8AfP2D3TX6DliPabBeQzrsC1sjF67qBgunfnU0U5iijLKVnEJnolAS5FGH7GCiAnNUEPRjV2HGPgu5NqtzxF3HDUeEZKTdEJxnSYL24tUK4eVox047c8zv/Os7fCPcBbahMPmpVmhE+CQQpY0qYZf5QtsrvSzBt/UTEh2a9EYlyCsRMufWbECmvzmFnRLACoPOdXjsdtkU1OpqpOXdurDdrnEtJJJ7VDBCLFHD17ZvUDWJMuM4FbcbZjFalkPq5AnMVBhazED7PVNmJxQ7Jb6kiyGe8MT83ufvCYvYAQjp6wIWnuPKqCx7pxEoCzqdzd8PxyoFwODywf5mspH9wUZmHCiZaZnPOBvifinE5wN/WGkd0cpgn0rr5HXxOSwUzCoyBP2xa4wtorTOIieEUTBYTdiNPy1JKWaV2P/xVLacTtfDboVtSoh/pxw8nmU7XwQnXzj0o7f8VMpOVtAXazjhzPj53sMZjtAhnMFDvIj9rQiFtdNH5ZIf6jpA+E5TI4U9XmbsVtWjFG/yAIWJYnhOyPBRO1cSe3KtNYC3WdPMJ22aK45/F5AO7ZT3zCMgTZU4mdVgC4uZ7QAs4YPEkPWsybf8mPnYm373fzWHTTBMlgDD8ki0LjPLaMWJXi1TL74i5ilYP3VQddiV3xMJEBKbpWY5AhookgvAaK3FX9n5LNttr7Eyc7Ni93qonvmEIFpA4a7Y41MEEq0JK5HOHyH3vTIXUZvy+9Prl3xzujWqIrkGmnfFEeLIxTZjBc05xsSWc1nsxokXgCUQ0Daj72/EIi3eTT/QZ8u/o0bqyeUUOPNsJ1Whhy49zTDa6Sp3zxwdbkQ1l6xz4Vcyi9DPG63WZ+U7DOQLw+OcT6kE90RFeMZZoWFKTzw/ocyl5U4pGVh54d/OP77TGrWQ9B9TLe+bhA9d0LiZj7dtpZZplpI9aFHal6250cpS4c9IVlt8G8l4DJNsvWfTIJ6OSdDk9PnEwEYXMfLyhjx+gAtcsNsEbEIynjNmSA+JRl4sk6ilwF/37lAnk0/P6ybOKx12awdRVs1YIWPRcCo1oDFRiRy6OExZgZt1j97dOvwc3WsNcfezbuX1nfKPizd5cnJDjttpu9dPdyW5mdzXR/NAewWVz8NaDnmtDAN3WMPXAFxieSlEf4aP2AKY+umb87K0U0C81+uDfvYSqIBGR+QbeMvYeTzlUIMq5j4Hb2ouxjdaF5s50ElgV/bR+mOfhufkyau+IQUGzvj+9xN+7d5+64klpy8rmN2G+yHp6ie7tAsh74dCLaGiuJUj8nn8bLNFDTS7dFSUqcXHKqrFDhaMnsM4/UcFf9zMng8c8NueO+TJkLYh/rFly1lyQxtToVirSlJ5cv631IIyawy/Wd2NLnrstpoMo9xCf1Kuwx7hzSxyiUz2aI/lBmWGjw1x6gU0cv4Bs2mXfe1VS4wXy+hfpXsI+hnrcqHrdJ8yHQAaXoPriLMt7izmoJMfm1SuL8cKLgG+blgGTb0cWrJO1kqOAnsX9sgI9iWDKnH8e5ntj3N5umHbPWO8Yok87gpbP9RVujcQwWMx+WXlggQJrtB0mzzNkxwd6OF6OzYcHPu1LP5Ij8CEojRKEgYzbyK6S5YNM6ztDDqZIPoZRkMijzW6vGeT7U2i1vhcWzaWNXbq65zdKEVcBD9F81N7u+nHQNWEaHmOczcuTrTqh86Be6irU22wwkQs20mhFbBxVPUNGOqZq0T8+a9M+4selfz4C9VpWmUpVlmaxTngeAywVBtjd8PpTn4fj0D99PiRC2gxYhK49xjNta/3MvB5HZLZLxaaC59XiEtggDaAtbpcWu13JjrYCXeiDmSysw3I/g4jaW+XhY+WtmAGndyMIs6tCJdFxHRMmC8RiSgO/xGR19Q1G8X9BoOzoy80Z2PrEpw4dp9E7ozuiM6ybwZFxNf0RM44algODcxMOQFEbyq7AdQm9ng/Ni1CPP6KHSWeu84Jmam8anY3Spzq3g9LR0Oqm1L75pRP6NMkO6/17CKM0s18wthJVWf6yTCuxeFouAB4y/+ssV8UnVCuefDmmAwWBaj+5yzTg7Fq2/jZWGnR364O08//CNG4kkClzpSxS1LMw1cvbz0KXwCzQoSVuwOUp5XpNeLKG9i3SLqe9Q6rZN80ZUcwLCQ5ybQTkdbwW582awSaZRK3Wu2YJlfRzfTd2lsGxwyVKDq9xeBMi+D54s6OK37p4iPtuOZ5GdiU4El4RPqAUmew4RoE5geZVxOnOrU5tbCAbsUZG+Me17nN/b1pmrBfMUqUZI6UUu1PasDupXz9Bbn53e4F/IHVntZ13g1oE2qCBSVr1//ZMgWo5tfNNFT6dad77t8s+qRDEUPTrPPQt8SQIz4af/vkCgIF14Ooi5gMQHbA9itHNCDSNlzMzh02EjBDvPfMRoPF4dCKHVIv10bHkRIZwJdPhS4cHxxGUpUlxwALeRpDcSgxBz3hYNyPtciDV05vmLB7P030v1pJr5/OJgw/+yIQ+5WI+f1Hu75uGBBH170pBhbpfSzgr+rurwHPvAgQGK7R7e7ww8nnnjL7JGY44VhbMcwCBVmkFvHlSLNdGZuOkE1lLX2hfXe9g1tUbE+aMNEqRX0L58MZ9NhboVd3w/j1DQacb4YLhWOiKHE7bdr8OeiXVLD9ibDMHxjxulPIp2IwmVbno+IIIW50T11GhsHG5K0/fODTtU9zlQe3d72oxeKw5O5jO6Hqr7j9KXwpCNEWoniJRAHtAIjDdUJe8tcL89E83anwB9rlW0wtRG/hRCoF2JSTpAzq/ktMCU3SX89auEgFiZ0NwCqmzQkr9/ZhpO7wbuZbxAQNYFO9gRgDyChfRKvCbBxXVBAUef60sUr0I6b+GgiiijFlGf/apj7gM4LWlJekmwFIe2iNkbalpV8N6KGwdCtEPHBVU4y/lUuLSrzwAGtCY81C/RN6Te7mWayRGWUm+OwacYD6tLdm3Rq+xZg2ucSkKu0uJqHLoVqSmyh9Vm31WhUhhIeH7qg6yRMyK9lWrG3ktnkEUSU/D7tZp+o+Ow2H9Ylw7UydeEKNn9dQjBxb3vz0CYW7bu0PzjRaNHrC+y5Lcjf0TbRHuHGouXGmB1zXcfdwG5fRLIyOzkk45sVxH73azHc/12qK5d864e127EPaz9MZHVisODCw2r+Tn6efBkbrFsOLSpXbFs/JtHYwH5N0FO+s6lyOzfmhlMeBSVFrKSSOqjol8RN1eji13uQLIK/mZQ9I2i8y/UTNaFTm86BNDhPrinUj1UPVVlxMd2cW8KRJLiundp7cqnZC2litb3JcC5gXbVVfMtyNWN4BcaInwhaoZN8toFsGCVpfmUYcz1gNOxKdebNst4/neIjiIVv7Q50fVWK4fxSlJMaMTu5mUIn1tmPAnG4e6lQQ6OLf1gmjQ2as1zd07nJvoVgjhiJHX1nSn0xmkVUKjjcFwXeZFIseyf+OEgVoCr73yxQRQoH43hArxD4AXq83LF3EzTh+q8czT/Jo8VVuZaJQKkMEFXUlXavwnVrurUltBS8y1XcthOq8K5loYctbaH1bI0Ty5TpxWf+fWoLBL4v7MwoX/QRt8mL6uC218rodjDYWEZaJXCwkVbsw0loHG6H3xH2iRMiM4c8B1SuJiYqezVcx1dK25//nDxM32qw+FTk9qX2OWGEYSJn2yAjzSPfFDPJ6RBiJceABlz8VDiB7zeULl9Rr4mr2T0dnawOk9XOyaQqP1KCvf8IzasrBEDSGGGi9nUPRW+UahYTVzwbP42xc9t3Bi5gZl/GdTT3wJ+W0Vcsr6KT1hQ6NVfwvQodurwaZq0o3JykDb6+Z0T8F3COo1ScOw0Z7AEF4XszfRXFKhdm3BAInwOSeQ05SKsIZWfiM3VTiTRDIgCnpkJxBtQIsvBTfTNtF1NTtEgm7XpujY8MBPWP21xpQeXy1MMqfJpPCzOfWkWlLqSUCh49CDUTH2q0DlyVK0LcHN8MGOILTU0MSj/Xhb3pGtoqyA1yNTnsMaG+B+jGcsmRoIw4ksHBASwBwveLCSvXytnAOq19tHQ79JX2wJMHJzUTDU3Ma5CAw45YBU2WAdR6Btru3+RQd5zuuLFrg6aAvj6O84a50yu2CFolSV+r3BWiux5HKIow5wX8ASjyHT2cmq1u5I3C8347WED5CdXig5Pw/kZdRIJ8W9/KepZXPowHUTl/zYQ+HMR29MXczPkK9QZh+CvAyG/NNpDHi1BRTrnnWT9g+ssz5WdoADZyZiCv2Py84qN0mJ1Cf0/phdSPdOT9zWDPy4ZR21h/YD2+6MxX1IVGyCJGnr+cnuROnLECoUO4mSO41KodpUdxe8739LvSo8BF+ENp2xk5GgsNuzlr1DJZEGgcoMMmYMv5++ZdDTS8ksMnGbat0MKF1GQJdCiv10sH1AupVAvPrihZh6itqXNMnGII+t39yl/FAhpmf9Sht+Lk38C7wXwsJ44av6uP9Qsb8dwlJulL0nmXituVCYssp4m1IuC8/rtA5cRRb0yDug+LVJy6HYFIFTergnMHdO+LMx9K70vGNgfFih0nweYjCtvAS61ApSzNy5qpHAKmYFpjN7iESTroMQ2qijtV/7oXdz9dCiQvP2lAPwqJK1f73vioZxAhLoiqQCKJBFj3bdTQJEIYaOqN+zcOQ3xuKxfhrp5JfsAvIfY9JruTMbYw6dlS4zBUXowl7wU5NNvIsXJPuubPV06iMsdkHMnWRZ0cVqgarOKnbW5J3ZzXs3IxsOBFnPiRo9XlbkpfeKDRLNp1/YCeMPiWSWMnFEvl7qrt1UkVQyCj9VAXOUAt79A8/1nAhskbK1m8Gs1lHnh9kMgElNlj1coBhjfAeFF2CTW9hQSJInCFIraFpWa7VHpF77XNUOhG+Pcx4p4BIvjYMbvcDF+egLg6P6h8NKcHwau3eC7bS4WiVulQxD1Du0CZDg6PlGl2lVVmlYC1rhIAI4/t4fHGzAecGxmTbs9rMHghBxRAHoRolXwQCjXoo1kTn7gRGRiJhRFbFXzqKOe4k/ZcMWveOAoQIWRUJv783jamS30fSEVgyCbywdXiyxNeAzeMlTjeSHUhWKh+xYbdB35wCEmavl5DaFlOYvrkmnm9LbR7h3eJ/Rn6A8y/o5y7N5mPu+3ar6oF9HLzOxra/n+yTRHmjBPkawoxXip8qyxNNYdptkNbT/qSINRDrjY1GqAPmdCNiNbFAHpveQeakiRh597PQll+z0CqITiik+U+ePd8tw/USSJfX3HBDVlibUApPWmVBidFwqBIKrMxfDUiACHQgxZ8ETdIfv83nBYdFgkf4M4NASI5tO4E5rbf4Grg56Lf4YQkrknnSW1i12IuA+ggphAARSUQWaqeTGBWWCZ0MHqKsiY5jBKhSliSKrA+3yKqKZQWFeDud+DHKbdnQMF+7V3lp7BJ0TpFJPwZG4clhY6aHU5KXxo+Eg2pbNk89CuYWchg4FNtJE6xvGh9fxAO95ExUaseQ5IJwrlwkaEPXL/3l6XWQagNXfdjv6q33ZTYZWOsTmCpBDySNZmHR+pfKug3xTntUfUT5AqCND8LfwF5QWK+gl9Op5EJJaoHJTRFBxuLkPuSp4MiZrtIwxIv9YpoZGg275gOYcaCMXGa0P2rZVO4AGMkoooaAcuuo5v7PbRaCsK74HlOaQKvx83Awxi8Ybwz7BV4rzmFRZUGsHOqT8ZG5y6e58/TdNRcMHhe/Se6cU1u9Bmmmr8KjhJNeCYdvujZQ76qlbLWU52zZ2SRKdDSPjANe6hlOrUUbx6t81MS3RCx3d+ZwNFv3U35RjEF6DrBNr+6ssZWXgw50WCVVCW2N88qBGCc969DWBZVhgylmgYwnl9dDgPrL4cvqLl8jJDIim31HI4YHt0lJL3T6w8PJKrLxR679TFM+iEwrl+WLXKFVFNCZJBowVYfPSlvUTNgoU2xv3Y9SIPwZNTQHu0ieE1/EYovBuyXi8/taf7wYpaKs0U/55IyIaoAuP66Ghm8ysdOh0ebFtCIhmOCg7XToPpHJlG9QuD2LkzVCXds1W8DXrSHsZ18AQFDukG1Djy4p2+90YL43C8RpnX03iLzc4/o7fTev8XhCI2GhVN4VhyW4zqRB9z99UjYKhzN0D11WMh+VLxmmwqrynKQ1u23Sik7lGEuBm3mbh7aIfChKGnA+XRJKhlS0Ybgkqq7P+mM48Gfbuu4pGqZx6k4zqxrpre4J6ul02hMP5uyrg9YhJA5l/rOt6BCWiRGzRS71MnOInw6XHt0MLU8/t0HZ8unUo19jHspBx7h8s2VDcwgO3LFEr7wXp23HTcQaRHW9BqbB73aaAIYLrT7eNqV3zTqPALhfAujUHzKIBOiqrvWjwAUkoxl9tRs6W0hiY2MZ0RMT+Ame/51MwKo+025N1O27my0kRalAfxEZnAwHMmk7T62Lmi0Z9cE5VK00e9ncgg9mRNdOvi2XGYAJxvLrOsDCU3O40Gm22hLrk0f+hvvlvQI7+I5mCgbrbxCqJEAcY6MJydGr/xH7yZyw22QNEjHXLKZwC9xfHPPudfH+bka6qyVLk1Zu+LR7lnLzQZuxCwJuz6110E9yrUsBiR9xnBTLtEj7QVULY8FQiUm5ZRZRbJ6rd/0B/w+AdqD2YznqlJH7xcAU2aK22h0snLKZFOhUOLZk87XqkUF19jfzBH8wP+xZAVZVWdInXrF/nG5xnD5QxIHp1e6GtMadvAjCkQPDQDw0udPjZqPDyK9vZ08RaKIrTWUWalNNtLRAl4jerBOq1wn3vrM1l0DmVMEyK9hxPyaFpWb+f26bHRChiwLPDjU/Iqy5wZvwI5fanLTH9ErrxC4lqEgmOVLKrbtllFHtIrmnDyMcYgK2jrrD6tsmp1rNGUveE7FkseMGogHoHlXK/GYaK2giX03Z3aadRrXaQloMOZ9SS0IVhlRhV0Jo09vnUx/hWao5/W4YFKbY7awALsDclYLPfSEAw1etneAqMH5VJiiQuujZy36Nk8XdLIrzJVW4SH4cmqW+6Pua/CzB19MIf2Eyq6UgbIEgixl83uhI/QXFhX4vCla37XFcW2odL+XCXi3HMw7DH8RatAfo1zjFcdR6Tgq9GhOkBIArxgCtrOoX1mdy0Di5P8Zp7xrZsKni1bL5cPElgyUYZ1KSpOd4M2HwqoLJfHPq4+AgeNbsSC0Lp8yUnoS8d2j8cR6YKhn3XZq7Y8cemnR8Aig332mddOH0C8mvQVTT5B6kRgMyN3F5GzmWH2G8yYok/5hIpswPWwe6xw4x1rbxV5LWTjcDO0ytgX9STn6R1D0MK6Zt6cBnczuC9bnfmr/GJknG1mfM1GKqOWcKFBZNuGpOBvNNvtmo8Q7m0fXUkzDVK3sa1nvTG3IfQPghB0srcJj5FhegqDbo921hDbtVg6Js2sBtc2Ak6qmoab54U/lD2PHetoyg4FFdPmSgscMTsglpMTkeInAC6Yzcs+OyIC+PIZDVtEB+tomixm5a/8UnxgODSZxkOzpZ3sNsDJngNZRUWgcMbBfacIySxO5gzEa6tY3ZUojXiBbqBPEPaTOYCxBWqsX1yj8MeKIzAta1FP/bbRX27oO7owsNXQM9SVlekYEOYO/MtJLfbM7wgkXQxtdFYUlx2eZTkWfOq3wVR37XZY5iczExs+67cmq9vyYuwCPIaKv1m37e12TuK38i090O3gQFKA8CmRUeazSrS70jVoMy0TFI4GpM9sZiszlOLWdqHydI046W3aNFFEFFRT3QxeBwl7uiFiJcUzIY98aDGSKlU3nrr4nkbs4nGqmebLuJf/TdzRJbV471TWov3qyHnmLCub4cth4rI/AENgFsDArNOxgIItVRF30u1WCaHvSbru+zoRVfuArhsU5xxFSou56nSoG802knzi6Pmcdo9earv7gkLKkp1DbP+FYvmNLfGzzzeRhjWrKhX55Gz7vUbSZGNDxQcMspuijRozeNbvwyRG3HmFaAWNVQo6bYURLpbwPGXJMO7EoCPpEUTXAiQWNBOi4vrw0W13u0icAg8gNj5R2uyqWvMj7wAdQ67/mkBK872l9G3Zh9EcwQo91CmwiohJlHe6qnJYShqFVMvyqrMyvuEqYnLOR6OmIXv+OqoJpj1gSxcf1Xhm63v0iqZOH5zI6rKPWovr691IZZOvJJ67jfWu8/6DtNL+Ge+ZxUmVgDISHt1UDfjOvbpamWThJUDIyck3t7eIRGwIqjcLOwFXOM4NWQS6HNN5prjB1f561OUGpdeOFkQX6QKdVmpnu2tdj6WwL+vUUpCk6s9/3V1/PXFbSmV6cKt9iOQ6xCql15hKephPvf3OX5diM5D1gAM4A/w7DSoREf/vSpDTMrqA2d9GFKLEGoSzyJSr5H/02Ru0nS13brl4nmLk4BnLShPvGj2TP4RWbHwCg5iCTaqXP+f3Z46AJm2zXy9RyJ5D/gR4Zv/aRkpD/brkWuw/cT0ecJmo7FMdJJZ/gDdQLE5Ur9S4a10b2HsIgVTIGIg22EopjRZYrvGv0NvRmgJJnv0+KNAsmteMy2FB/EDtgTb2PsjNFLBLyUelW/4dd191RCUJym518VAtkEPZ1+rZSFw06So0rksfAIKeYqYNwuH6586iXkDETmZAs0TsGOGyq2XweASBexWeLOyQBMunpSwYarBXDPI7YqdCOT7lLizbgwalXx449EQa11VG+xEQBp1VbneKS5t0m1Rn4MECs1jXhlM8+86reoKSNM56QZls3+ntktIWaGbVchWM59APf2GZ4lk8czfuFr/Q4PbfLALp95VmmT3gWI4qwF1xNWn4K+uciKWA1esnTLr6HJlpNp8iMtIlDvnGL4Um1/OqjB7Ba9lxIBXSeVMHCbyT/dy+/NY9uxqiaTww9vcme/hlVu/d6N2D+476wwLrZGplJBx0F5lHCl1jPipVA6Ok9rg81qnK7MRp+EcflSqxWwdNzqdaIRONoOqoKAcOSSXJZkrWW+YeTaICjybGmyjudzQsFLlpes/gHhDau5frfU5ZHLfqYBXhNfoIgjykifrokKHRelnlHxQqR39XEfNpQWLXB7Vq97qsBJdxe5r2eHu08WHjD2oMqGevYQiHK3CYQEohyrecvc3Jgg2Xx0yRRQNKbQvNobmZNTat/wbsAZf6gtA1Ab4OH4VimqKzSqnt+U8g5Acbkow9qQooTsoaPIP7MU5LFTQKfeZcGBbIu0u9l8EsQZYGKGzLKOEkNCcAJXp+4DMytrhasgrB5lEXEN3c3bukxCob61VaDgz+jwCKiGdj4eWBycnnjuSdFgcxUSRJ0klPr9ezc1p6DbeQkYAO2dchSYkTd9+3KdfjcjjfcmjIubh7NuGlYxfrsd9itFyOMZaXbIWBYVeFMWgw3gxuz1EhRIcEIN4sKzOWcONwQ3fyyc7fttUBo8vQ23t7/ujOb1Ei7kK11mTILSlDO39qOtvJkkWwein5BV7EA5QT0LMmUrbAzSy9Vkxp1+k3gwhTHKTwMLJtxtY4BHBtyMgUjUfUVDru0p7R5dfOPo3Bpc8a/K5MMxE0iwBHRvx8bBAJBBAXlQ5R9M3+tXaGEmWFjBkOClQt2ZMv7z4vbcq9sc+1teBNyhTxoSd+BCItceKFfO8wBx0wLUKM8g6qoJRvZ8bA08vQlbAjKE/bsulBSlpw87BOa24jipL34/GefO19q5mB0dPnVy69ncD3T2jTRqF1oTsLiHh85XryRJMDj8+NGnE7QNy1QK0pYoX0mHVsp/Y42qTHTqcd5ET31E71u052Ayy1kcKmvmbDqVkQn+RjDAVX3uCDZ6LiobqOHq2ErQCxDjciCyXLpWQXcCF/5VumyPn/KhmpOv7qKNFR8qHHsmLwxFRvclzHyu0x8eZHM5ggQqIGOL+TK7i0NshSio3wnjzUleoQX5Jg1EUTZkyYrR/lJr+qHQOoIAZ60CnCQu4kZn6erAs+Ycdqwm+5Spu3l14eaVm4Nx2rLc/4aVVFxVs8nTZKwyp6fy/8unn0Kll1LW72oC92U0Q7GGIOuy067G/5dCGLGHGPsPPieew3o/37WyOnkH8P8cKs4/STduYNEQKPNk+mevCZjRhyEk90ESDJ7rWQ3rGPJYikt5DG7MzXU5o7Xysfjswasi9Arf1rJk3gZ4EkF9Y+0HEpS/oEQjBJ65iziCRDYVseMWn+BaK/WV+DZOwm/zPfBH92en+fSg2GvzUWY7ItDZnKNBo26bGV7BjrTgwIGnjqCXvznaYt3KVR3deMYUMdMxb7KmtQSpmMG8jLF77jjeeIwle9M42jpNcWLIePEGrpYtvmwGLTzGQXACHskuwtUqVgw0v/BGR7ZaZOcZ7DoibQhP0WP7BhcONCklVGI9PJf49k7NwLSzFrp2lAL2Y7caWiX7LCmawEp3vg+lPjfiT+sgPF6I4uLMiUPSnBeXIB7+kvCtmPXLjX3YEAU2yZL9lTfeaaEezV7qmT1jxcyoxfu0XikyagXPOq8M6h35dgO4oZGspJ+vXYtJ+21r5mlsEKAv6ElX3rH5qEnBGpXZYzEyWA3cggURh42baEBx2JSWxN5euvU8MJdKyIzoG5NIvwXLvmmtt2t7tJ8sxITBgJqm2KYOlhH6+WxCTP8ZWE7oQvWy+kcq8yKJGBBOSsR5/HqJrUaeDe/US6N/s7xhWjI5j5abywozWoB6ucjhE5pfawNkaC8gPIHCscLZFsYjo1n1c0TM21/7NAYLNeTRmQXMkzNFJNLZD7Ck4w4JHu/88yM72CknaURMYiQoD88BwKIUn0LG3Ytc6HgP6pwC/Wfkh7SH2uj6+8wRQeDcBw8oTJpmTF54HauTXibjSOKJtr/RSFw7XG05cKe/83GAO71SxUaE1zJKtZHmVJThjhmasxjjoLNlrY8Z80pKjDn9Gh+kIu31ddc1v+hBD3ZZgLaF0wdVD/InAX64CLS0989/sw4EKZRfxnw7xy4S+Y7gMr80PlG3AYxSdbtrqPWGR91lnYgm9CC0jIDBbFBqYR20d3O71sHAWVyq3a7QICrzup0zqMTDEHC28ZI+5woI6WWhxuLXMQXPHTKUM4vdR6ZkOEARjveBD2sXGpyltG9qe9XPzBYZH1WG4peBwTIvywiM1dYwBwYwlYnmeeWFzMoj3fiUuUpXyt/ixRtHHoaP6BrhYMp4keWjx1eKR2HVSlpCD4nPnBPUY/OU/SZ87DUhOiAIHVs5NB39Lp69dsgwnK5GW37KKEGaoVsaAhN4QkT+ujKGBzZoLAXCvln9Tqav958xe+ttHeLZkTrZf+0ZXW/ZpjeAUvwMmPM26e9kDAhu2Aw3XPb/DephWNi1PKs7CaQ1w/323jzJJBpBTPcP6M0MyVvgEDDUkFgT5HiO4MdJoyE7pD1yeK30/5qa8t9jRF3i9qLXzRzQykKTIGyXBWAJzy5c2yDD+LkOjG7O1vi1BhZCZmLg1peQkm2l2GA5ujKIEkjg5/RdNqbgxaRurLBhqtpOkiwrDlxcnIgaGAjkCgfMbHitksAyrDJBfEfAYU9/oBJDrYauPDcxtsPXHoEhOfpTiw73/HFI3UzYt3K8oihcTUPPc0T1VScg1fTBzBmDRyklRPddLLMCYkkuhq/BjhEFdRpA8cuN/wQ4ZQ1G2zJF1UyUTSjDFmYLRyxnenPl4wve6grhNCslHb/vx0DCnhtkSvnCeo7vWpPxIkMDtJZ+9PDNtSIAr9BCM3f34RvwRFCxTeStmlmma3/T25QNQn0/ncPwXpaXU+FQGfcGuclSQYEvf/BEmtX+dGdM99IUaUcOSxoeG+4/I0ZVC5LIV54BvQ6qYucEQ/9tQnnqFubqXLSDJAlyaN9RqpT62iTeZIcMWe4KnfXx/8kSMdXOBj/XCXs6efAwJgNw+Qd9o6xeH1nzd0U6o8WWDT6lix33vUlUOG5gx/p5PUjFkz+Obx2rLwtJBKJjsXolmG1QZUU74hIRVeTYe+U7mBwdEGix/BM0ABoohBGWHdcxQzybKHGolOkkgZwUSLCFG3qgRPH4i7jP8B+X9WWrkKDpzHlny8Fv6OKEPGHloCrCKaLZF8dTHFqiFwT5BjFfhHFLH6tRqjDMXiANsolEZUTQcVD0fDcO+26hgXiDgFYeOxqYuefpqbv4ofF9PWgt0G8KlBE9O05jSB5kHzVOT7rHhs/pr2uLkoSogJADvptdnpZowaXx9DXF5xNkE/4D3+4wJ/ZO2AHKBPxt3kWKL53H5FY9C5rIR3C+nSTXy/8l1A2INdxO3HlUg1vaTMr42acOrlYQIoMH27l4jmN2iGtwUDx5L1Ja1jz/afFoYgeRomBfPssTy8/xFOcXkI3PG5t7drMVwDm/3im80X/HB8RykmDcDl/7xlKIx5DNYKwTMDAc6XRZT+cVKCJlakbx68ZeVbiSHZzgEDo6w1Qz1shF0VKsZ/L0sIlLcSUX5invC1PbMHIjXIhX9DLcIZnRr2ZqpWjyJ2JtVYvzILqoW7XJ0Y+VByBuRimg3DPPGCeIwxLueBt/1cj+OCMqn7PtZr23BKezy3K4M7bSkrz75VweHqR7t2lxh5Zk5r3PB9tX86EhWYqm1f8nww3dNvlysDJmpsgQwKK7DU1JKTnrWe8jnvPDjzjbcOER5nAya+sz58ojLwNQyHUr598+Tt/tUlxnFEPOhf3TiPATXxMiu7k8z65GbPzbb0FiEbXyFWhZwRU+kkF15bE1RKyq98qzHaYv+4zwEM+zCNJlGxKTlKkQQ0lrr4d3VbG4ZbuXjr5H9e+tgGxaRFGWnBk+/IOYfCCJOBlVFd8+gMgLKIsyZl+5dNr52BeescZWLNs23upWO1pWYT3aHWJwsMNrWqrE+xwMLkGSNTwVLp2njLfwt2yBEm8tVe6mI00r19hziRjMBvvMV/ROWKdAAOjzU6Hsu3yAfbtHdNqWj+1eMUuhhMtnkHdzI/EeDEnqXpSZfaycytV7yuHBGsma+cRT8VzzA5R/TekT5EZQ8hvrtyQeJr39ufsGusNfZ+m/qSFAp0dV9iNKn7kUvdwiiAdIo/VMpmGW/781gp0jmoY/J7qzjpnT+7Fxtq0GZ/LAN52yLPH73DXznyBhSAIvv1ROaIQerMl1KuUtMx5QSCB+6n3R4vds2/J8LyvlLit7WBvSeb7PGEpt+GigJvylOY27dNA0VmM+1Ngx6Ho96LTIfxPJlI+qvjVOHBn0OX/e3C/KVs+om4kEoN8qweyyioPmmkVD8w5jI5DxUg/XbUHBW+qeyatBcawUqSK8Unp/jYG4LO9wBCeb35tNTsWfI9Z4+lvAzKV/a8OHXMsfBSArsA/bLMtCq4HHqJiMky/HYcyXLjFiqtyl9wVFbuhlGb3bl4laF/rBXHnbJZNwNeWSZEkzmg4TSckvCsFoIIUKvHwdw+inGZcnRGIcQAdCcboJF7qtmK8XM+e5hhW7RlpGJHdkwy69mwHUG622+uLpog+Kqt+eb9lJhh9T4F9uPd8yCQ6tMHiB0K1pvlse8CjPuV2M3m4lS7xFIyPsGlvqeBsCpgyadiedjB8UqCYLuTzld/PHaRpgS16/c/faVJO39cxb3iaQcQOHTzPb2kxrtCDyUkofrpWsx805BsMQAiDbIcwaRUWOiJblXlJV8vKvInVKQSuyl+KDnEC/vtGRx5YIqEKerINn+z5bInUzOVmfI5fL9cHlaYC07FSXoWbFqzqFZS0lAcNw2r3xEx18uuNAxAbFFCT0sUhCjBs0ewoKnrxu/2XrNjXVPyN/phLIty1bzS+CzHXrTE8q+PimrGDS+DAslK54OYtAi2E4ZMxFy0HL99/nr23bDblQ9pwDtOQW8n88x+dNn3xxT0/Y4NLt3+rUM/u6hQTZiiC4rM/VNE84HDSXQtFVa4uI/qfELjPW8o0s+bW7KU+TMNUBx5yA49s7mRqEJapxhhtmp8HOsGNAgH9A6ATUzaAIDSJn6guZl0UXkrJ3mURozq1Hrbocv5bYpWilrNqPdmYjXSpsP5E/wf2t6VLVPzeBBkpUr9ZJ12h8CQU6eHv+yBVEOiBEtqod4lFSPVyppMqnHhPl7O0YfipTomqUBI9n29bFxi3CgiIrLqGVEOc/OrM186EFOQEFVI1Aif31+ieedgPt7g1+QWikig/82DbUKIuG0j3MRGHW6rwSXjdWzCid80Lkhr2vO2EgKt3krzE9L3ZbRTzpQUGfexw1UK/CEzGJstfAErGjbOGS9pVj8PGIyrIOQkOG5fg01p+1E8vS2nSB6ALceDrf96gVEVihyfsfftygzUuhU5RDFWdYjQeFvmk4yXTeoKnV3DE3x8A5S2jX8FEKNPcs44pZH5uZn4Im94bd1SPIRjk/a20XmNGQhZ1Y3+TVKs4ruIcu2540T/sf0l9HFqFTYG2bvWQ9vlNmJ8daBGyvVbV0gtPg3fiq+R+fN0dudqldcPL7ou93+T+CakjQWzf68xX98gI9nenPw2RjU+fRl98WiSjinI+xj306MS7wpH+x880pkFldnBVdN4eWi8mf226IAlwj82Un/ShkREEnHiE01RsJIJHdAGb7k6ngi2fpHfY2S02b5vnxXRANDxIyGEb+LMcLSi9qO24/rJRc/G0tiN9LmQHBX7qW4OdNx8CyYjiIMIJf72JbPV0nG4WpXV+Ayviv4KHOgEzZ0QnYyUuk2OJik3Cv4FrFdvv5DoHwUUc5nbdBkNgwMWlkd775VGF9J85kh5ok/23+VDo4pH9H6rWAZpJJ4FKEF1VxMZxUCh9kzQr6l06+JVEfHwbfARLp7JaeREfUk/5O1/9V176dPM0aZpxvDjxfhBTm9WSlXABytnfV4a7CB0FiVaD0UZSbvnGUIxtDyLPbhMK1mfNKKa5xgObfJx8Mj0zzlN7gqKYF8Ll0XAqCvmicABy14gi/2XS8Jb2zIt1HVxADGrSKFTwOZeXJ7LLLWkasPqmz5YcloocMbrr9+SvfOcd5xuQ3l8ljdNo2dCO+UfdGZsNzGTYtOn0lqa6SsZbdxPnW+tlwV317XMMGnqhKKczX7AruEH74em7LPV1PEp8UX8buQbbQDAk1Qegdsd/sYaeLCiO0tEen41WiCB3psX1zsecrBz9TOkx8cfn39ghpLUJ0qmTBbU/7aDY5TmPr6oh95Q94YCqqiLwuhReuZOpqQwBwd5bL0CAIW5WTNspYLTeb5E+KKo2dAuZdNjKYrsiAIzKOWtF0NHJMa3uSnO0hxCXcggc619CUELExyR924WxmI4zIborkSbZKK5AhOQs8wTyOMa//aSK9ZN9fPvbR6FGXMBFPntrckg5HBV2r/xgDpQ3WlXz6UCahswz/OihRG/qVRkUSGmjMzbzvlvO6YrxiHhIHxjTOjpkM7P0bNwRanJa3RlG0zI7Eyy9u0xSCFHZkqIIrJszOhBflsyS1+iQuXRIZT8zD0s2UfCnCLn+u1lh3q4Ews9gZ1xDM7WGJKo9q29zJyoRoHAVoLiJc9Xf5Dfng10WTnfO3s0xeniiwDJs3a+3yQ7JjK4cwMq6xiQGxf16D2cWJmp2z1uTS2MVichxLTI1w1ARFHecBHK0viL86LcxiqQjEoLffqntAbNMBgOPiMnmAcniN+RLGSoZ7ZjAAuhxfwYiQp0m2oF0/aPbvXZcJsSO+cIXBOH3niHmEsSYsK4D7WvMoXuHj98ydDEa7X8oQ/gU/PL314jjE4AaYY92uu/AljqRnHb4D5ZpNPi5I+H05/s/XDbOL4FhnhSvLiff22HkMorsolcYLJijUJ6iTMmb5f3cezKE/TfuzDp0gEjdqDW05yTi4/ahJTzBqCfUdzBpR2DhwJJvj8mXdmixegFlLm95tYc51SciO5djMLW8ND15l0GSzrBEnM/YsVAbjlF/vLg+tPJk90TTGnaeCXCqr972LuUn+7K1UABn6Pb97y1DmFxPtJgGGgr0tp3gAfZGeROAcSgLfPqAreVH2FMDtBeAFpSwPxRFfC+bIjifvkI3KvF980LzHo6GigVuzZS7BB9AUcBUNnjiz3+61RKVdadcMBtalFwisbzoqjM9pHco7DTpDWAzau1XkdxbdhYEE3LIvsa9LHq4OXefVBUA+Cdb+MFlAYDngBxpq695pscRCoiSIbyapAHXIFwxDQ9V85FXxNxfziRvwlHkbqG4AHhEeb91vfWF+omhh+MOCw2xSc/evFeWoq469huz7avrOlpnXu9+Qyp5U5An5nSrls5DAFV7j1cPgRcGHyKh+76h7rUUZYxsbFZCXhY9QfimjFBmYm3SffGMG3+8kTXLl0i5MecUTVHIwHzttsSF0O/yXakH50goXC4dkjf8N2fiMqVx8ETMWbVeVBatu1iAiYYJHJ2617UnEn3NdLBu6l7P0g4D+YG0WICMzavdJZLVaY4lV98a9VVPEBzCQQGzGMoUDuNDNrIRWozTMGsNkhNNj8UCNbyOIswPEDAsZszJ5eVkpY01RJ3HWVWXfFFxuohNEgF5Mfk0s/r6HS09LEwoPqqx9dz7cV/4TCoCXCyKHoPCN3bS4MvbY00mLjX8So5SYY4OpvmjADjLIFRtuTdnEwzCyYmiStrwrTa1WOR0ByCArjyLyN9NNZgjb2/fG2QxXD7FkGmhUmxLy/3MO06P9yDtharnzRIaUcUqXfhVoOPAJpxpK+4drEVTEKhATfTj6F/AYZYUKcFy4kp8QPsE55oICk4KEPx04qyWIOnP67KEINRlj/CVHluE08Dgr9HUlQvvEEb3N+tm555EHerfZZNhESi0viqfkONJ+LqaMeVmAX+bmCL3SzdRpHmxiVVTWClcvacyvdswMn6/Gsnki0EOIh4zT+uEIwnxNrHCV8YjKJZuy+EF6xZnWj12MMB07ui/9Y2oMsb3uSQGQ6TvJ/mZAP9UDv1bb4JyX5IVfl5zDsoDtOBas4A/TUiWnmMVS9dGPSdnPcUNlJI3EvhxMFGmI1U2TPZWH/8Hb+0/3Lt/QVaF7GPjwNSFGcXRSGObKkdrsTvS5OjyegmZOQvt2j7VxU02L86LWwNGimiKQCtNAcmfOQu0cUN+SnX2CKTpuKkAv/k+4eNcgSOJN4T3JBJFLYaVL2A5RqMuB8aK3YIuJMdiUpMfVk52uoZyCE+XovHLGJ+Kj8IC1E/TXc7Eril+zzG83l3XPlZFjELraK9CIP+Rczry3JfOTMw9w+FQoN+1s+wxR9YqPA/I1DNHim05/SFHwrith/Hmq1muvc9pLwl0yt4+wpiQNhTtehphkgGjyuNWFo9slTfKA8CzZkucj6LaVUA8OMVghZL565+n482HJ13L1KZs4sObFnRYIPi7PDNXyQs5RfaO+ic7nciXNJFr3HQXuwZR4XmHiuH5DW8tACQDXR/gslm0U5gV3OBtI6ZjYBUVOESNKQrcxfAxdAJnnwTHyoRHZm7J8ROqg7PWS6peLDsrl3KWIq0Lqn2TnuMEjEurKk2KqgpTNFAWaoHlK2QXoJ8Si/U68dVggZ6dcQ5e3AUnY/L7DWZeyNUhli7kncM7JpCb+tOAoXC1RM2T0Ao7+HtbN+VBFBdLEqkeFPTVPKMYeXzdVjaKJHMqIJ+gLlAg3ZkwNOAW4D/UBr0NlYNHKg9QfZJjJOVl+8TAzUasrenBMwYjrM+g5GOxdL+veWGRuab3ylFw3JyZ55FexXfDAVAxnwjV4oF4Yi+5OGJJQK8R1Hxx9zdDUD4D7hgc1aPM1Wv1+ZIDr/VO+Ontv1b8YHbHwafRzpA8sDHm0+bEkzSoJIkI6lnG9Z/fthI4Y9RierYAt4DpX4MJrvXv/JrAYHTYZjHdHReKcEMkzT6lOZLiIAkXDrHWUtSQfTWzPjHKuMorfcx5BSZiT3R5hyJPJbdsfqLGzvtALCQoM6zSwoZZ9R/OWMRuZrLt/fkQ5nJVnnBxlps2S31VF6x3IKCP7DiyRbfTee349vWGHABovso6OwkKBX+g6n1nhja21Izp0VrX0BwZJa0rBVK68XytEUI2t+/P4PooT2SAJELApF1EOXADcGLWkIGx4dmH8Z6WU2nsE6e84ndU/Txy3rjsGHnNxpQGLviw1IYmCuUBSElAwDcSAVUnd70GCZAqO2ov8hFDZC3Qz3vkVIqzWiywCru6oJRXFj9gkTved9zxwFI+4GQe5T1YZx9Kas6fZgu6G/fHIsZp6bqzOb9Ya8xTHoWHQ6qaS9zPe2AP3Ajhx7NcYDCkuPy9EqwfCY4G10EgKRIyNZYxAjHMcDNU6NwKST7aCx5s0bASpZzKo852OWWZ+SbjHsuc5fURSz73M8B99NFYMG6xPt4zhJ6yPLGS3yhHHmj9MeeLL7lMO9bE5V/d4/3LXS6RaGz2/BMqMbJVPFhLgrmCFHs4WQ2qqvy84YcjcnhtAYpXmnPBbV2Ro8s0eObodlfb/xdqpiN5koTdbm1FN+bMzspLIlWqkKG6VVM4pYDhDfAO0nj+LkoJKMEP9vto8TZcz3856EDoFJYb0vAGCsJQjjzMxmG0l8OPtOylm731EMZvxiHfXcL42Uhf3dmFTvleurU/CV7p4+fxUcfD7JHhL1SEb3Bn2GsJunT4oafWo2uATRXZoQgatoaP7kJ1VNC/G33y8iubwk/Xpzf2fyNM3BIKLdnIpG6Zdo6a5phcN0fDnURidfMfOnUgUXTIBwQyzPvOe9375DiLFopFnyHtabSLyp69CM5BqxStIpm+Kd46VznYCnbjSJ9+eosm3ANyQDGJxyBcbKLala8wmVSSOyWt7oQdGx8XpLllhl2pCyDN8O77xCX7t/vk3Jce5+zngULEdDEZWeV//lX0PKbfHts4yNwJlgZ1PnYV5v0S8fkjUnqyGGjt45tht3KauNJVEc7c7u/dqZZfufXic9t++b6/AbLKzH6MHV0c0gZizDKJx1RTLDloR4ty4MZCmYI8J71yUs9vUYOOmLoD6bJz2FChrN7D5PKTlfEONcH3hLN7L7FachGTcQ6NgdIh/BedpKK5sQA1mBxW4L/f1Z6SqA2VWhFyUsKb5rCz7OqWLDPqadDbSvmmR+zb8R12Ln3PO+kwjWOZg2CcdnRSNLn6Y5TDqtL35dPUx//sl/RIgA5RU+prXKTePmVhXMOaG2iVL5a9j13VVBrx6kvlC4KKczDRHpmqpL0XB4m2lL3Mmj2GHlS5L/9mHr+hxgW3Q4fDkMfWvX0SZhZblXqmtdQMG29rZlLCDlnbBBixh/GwrxMZkH4xo1zkni74rnqgCkPLX+uGHM1uJjCCl3dO7x6urEAGCn1LbakFipU1zrrgzvc3w4HbdijahBPZFFKpwXSVtzPHUKAR6To0Uqy26IVWe8RcBhHhs4C+eAyJ6zyoZje0n7Ak+MJgl0V4uq73dXmM9xnJh1mwhNwNpqDfR4ScbPCeuezau9HDaHmXh7lU70hy4o5jtSAHoM1mAyndOTHyWx2iWWVkspRqUd/iMpxs9uY1H1+7oe7JPUfh32C9Gjm1tMrkSZSqSzbyWmm+jARlVQdAqwv91/oEkYkAjy1WwI53MxwDBx3mI2ewEzdC8VfMI/3UDEJzAKSHPaZMME3nYN1M0TA5506DlbviGEParLWy7Z9UhLwBs2xl8z7dTqfr8CWZRL/aNx9IGY9mHedH8fnlrwcm2sHM7R+W3KHKH4QL5XEjXVczh98CJDhrSuoNyNqO6UBwqDdhWl4JR9h0L6H/JR8VmrqB+T6GIkjTFFWoGxfZu2NexZ7BQpCi0uKp3MSGIYe6ypC89VuS9xuFIuZ1SNMq9J5xRVpq0ETwbl/W9b+vPB28BZx5+nwGqqTuXj2c8+mNkBkPEraaJhQZpFSzna4KGKvAIoqfb4Iog2Fc1pwEiBjKhvpJxWaMssF9ek3FwAagDu2IrUGD5NlB0KjamMvyY8iNEzeYvPrPE18xiB/V3DE6Ol8zzvzeEAzK7TJbW/x37nxGU0eJKmgMbvTH9DUEU31CTVc93bFBxD5MZeAlWORVRpINhEawy/khxsYyXlIxBScByV75JIFBMQZXUDdy/O6o5qht2FV0+WBN7uat/tFIbvaHWAHykKammtWXqm7f5eUeaDsrWK5KUFPhDnvD+4JRfsqzrvgHZkYC27ANM6kgkTUVusTLV60Q7hCCpQmvUO9gEuJpxTVKtvg/Ss2vTR7txXQ0djJHBHbLAJdI2uaerV8KEQmi+EnefE7Zj7lotcsUyScQs9hqrYsfrghvlUqBH/IxjUAum5d4zmgD6TiHEZUw0xfaubvtD6hHFMZulFzkTTN5ljIn5baa5tmSvxWagkRXtTxWvLB5Sc0SiMVgYv4zlhp44lBaW+T7CzD4PEZCeRq+qbpNap6B4uS1619qBCRs9CkJbIVLdq9ztcwT6y0FuRC9l/vxsGGwOqESy4jcEuknoLVP2cWhtrKZ0RgBhgz3fipINWk8Wm1LMlbToI6Ow4DfDKkscE/EqG9d3ZYEJ31Qks9eXattCQt/wpWFuDlc8o3gvm1mj9j0bLE0Zn6y0GNdL69eJ1wQCr5N5SnTvgAwZU/qQq6Y/XLbFzGo4VdyWyOpfh14Gcek1JOiB7mRkOC+ZSoGFRaUKwpMTgAGcBTKjDl+k1ph/OnxgdUDo2AiFfu88jqa+0Arw3DzfAJp/erJ3Vy1qLfSTnc7kQFYSOMXulJ9ZllRjCEtn+zjU4raqaAOupszm7vzgcCbDaHB+eF1SWwNNRAe4VWTvWbGRuDayQFr8j+CPEqGiOoT354wRPc9dVkaBWr96/HYjzch1nGtEsWNqmsPZek3vW4wsDU4dkdbnTgjqYeSwKfC3PDX0k4Q8RGczhJexc5g//SY7m5SG0kNhqihJ16t3lPH6pr0IiCl3JkdQQXpN7PJ/hDPi+4G5dby74R5ziOWzHThgbmh3o2wGMxJG+B2+Fw+VSjzzgdkWsGvE8/tFbk59R4nuttSc7Rw0Ax8z8uAFETBTjxXTylDPs+pnXPxfiiYsWWkKas6bgWoXOpdi9kQCYpfZggDK/wDYoMrIZFiJM4qU6xj5JGW9oHo4lIjCGM94iOZd4j7FnQ3ncACITnDyuRgkCzj9IoF7FkRCV//kCxqeUe5UnYR2zt9gYmOk52jUotP7uG4X6OXHejnHQVg4A1LKKAoz9eaf07Ux12P2fVuIVbSy/T4gWhjn5LoPZbMfjZkp6Y4sJ+7tJzwqIZXMJ3Ir399XfUrg5K/PLlZGWFojzttxF1AwawZB+wgeMul+/O7ig9wr5yxEbTHt4DQeU7v9Mc90UxWqhkLFL6Ka/8vA+9JeQ0IHEBLkXkab14rNJCvudNl71QjzEB6/sHXWGMQ1nGYnTH0tsdaHH3vJVSFmCrEIiBrJcoP90KCKuDgyea0DgonLPpujEOuO3PeialER07GLyqPbHOvvQQSIwaj3Tpv91ewELxvjzRODHmWZv9OifVR+DnoYswA/tamrgexyh1C/hyjupbf6/PrXEpFRItR65VFltMf2QE6d63ArgLcSFXA4K+EGTQWXUUH0lT0PRSo5T0mYqNsqp200y3n1iMeMlYYSvSN1C8j4IlX61GoW4ddYmJQ3Yt5szADlkR/ReECyXPWc1pjSGpiJaMpRigczXEoLlOD5PnyX9wuQPVtqC6+5wYf7Kx7Wx5JvkxLJbrMDpTDhhMl9xy0i63BNj3iIJRnE0KjWC9IN3/r3q7zl+VSDAfs9w+uJKR4rxz/hTdllNzP4YmUowhZ6e1aOJO2jRVsjqii/Om0HPtPATJVXG7g4WqXMHhGNvuR0DNUvE5NeiZNfp16z8h+ePqN3RpRE4BnxXFqlTzDj8tJDh3P9bPpXOgfvRQUqi6J1PtIT9qT+cFSulnSW1MfQLZVSNFT2eRXKYwdm3QYIqPVHAt2y1k5eFm9iDLX6FZmDjIhTNFSHw2YpRsa6gLnpQJVsy/UkrmGcRHKrt9P3BrxhMbA+IpL51WJfbuGZ3JQ/RPzhrWBVPFKuzdf0rVpIJJl1w1KXzvjIkMJF9Jx2bLcNpTHJBRV/iHw9bBkG+39mUj+IMlnqGflJ0pxJamdaVtDxmCJAo2DyQjYbmNuFqRYyUErFSCtEy0rz3JEcx4ndGhr2s1ZMjlyC5IymzOH8I56mWsIAPeYotxmfRxHN/6iPC4lCWufpZaMIIwSNXbRRU5pFEcSWqi4CFCZrT4BIOqY/4i94KeNz+Z+oQr2n/xMFeQAyYivsklGpWbHXgyN2Xb7BNbiqemAOf+sI8ZvgiKdWoV9jApa+EGuCL3WEj+MuyKtRaOwGT+VnRXrC/+R3MZiVbfiiJwGVyELrXrcEK/OVrhF4uqZFXwv8vvbLlrB08VQLGxI8R+wmxR8C3gE7AqDiaSrEL5tHAWUx2bpdF2XhHyloUL1f2HIe426O8/961SteBsUX8C+8dekpjj5QV5IZ3bCn7LBzm2jKMS+vtbDBjWSEq2nlJSqNSdvmTGda2lrjcTlSz4dCZNoMQnpNQNqjmS0NeVzcZxrihNIHRH72U2ghLgRlvGBC6MWr0Ufka/Tpm4bpH3OtTxDkXK2blXhaP1U6lVeG/gF9x6praO70iB4vBu8oVvqMOXZOyg0JxoU75JggYX2LA53reDXn1VKvtJuov3iiwYOKv/5t8IZF1ef1F4WhBxx7+wE8Yq28OdaI12lEeo4DaWDHyZCu4uCtwkWCi91+ku7Bx4g3lrMq1V7Jpn+r7ieN7YUsvg3wCwAFqEtQjygaGEDzHUY/jyHGqAmVzm3jsjF+MIA4AP/fHp/eDl9BBI9r5H71Jefz6BPiVy6IF2dxPlbeiLir9TRwrkfcYViq9lCRjF+Nt+NweOx8C+NqKG3uBwMPdCo2u7vS1MB4ZcNNUJOp3ZzuaROEFIzqFT/3ZruXzNYTkQVzNiRfl6h9w80Kl4v4lxTu1GeDtC7BjpClFgru203tCDtg6i8tI3T+JWGTetaC6/2H870KtDP3VTqxfkjJIlih3H5752GlozQtd5+z8gppA8YrYX7viamY4PUc8Grim7pX59k0ZRwKIv0qYteBK6iX1m9aEJXpejX7U4pUcZKXeVtL2Uyai2rloR9ilJHb+Vq9NKZid1SWbnMvwFLXWPbFNItiyv9aZQlLFtGii+ZidNoVYY3bk8tePcbrMwyEMuOMgFuwYf7zrx3c6Bz76QdrnZg6d5/edz+UlJBwv9RjDdIToDVW/kjRQP9xlJVYAKTdQcU5b+bj+I0dJ72v8mdrkdE6otWrDLarKjH0fqQbwwfIkYIqV6xYYMIhBldsqlA3vfkkxTNHtsE5n08P5k6qwDUM0En5SqCqeEd157gREoH8FpYoCisW6NJYSDj/C9Jhe+JRJeQZy/9ORfwNjqkJnGGpBdoD9ZB5P4XI9tW8RjPk1TEl9FwGpOy1Ck705mRBAnTi94rR4sNpX/U68AZwbjMyuwrgFTiIaNCVX6B9+fKCKOc2I3kg08FghizcyvpUinzcdKLUK/txkUvAUbTLA8+4WreIyqKrFydY7wGajEOVh9IUmFhImMHbvM7MFHruIOIK0TqNJgDGfrIcagnyqnVFgtrJx9R7RdLqDEygA9MPlhy54Oal1xvKiSh9/LDFfGkiruA9Rto+xwl6KWPS4ut6WIanJLNOwqqePL4gRnWe5BkxETXZvfdnZ060GP0qDhecKXJiTzsf3M/7aaWYxTjWGQYRCSc6Bm/LI93GEyAGf4Nq/TzRQBWl3smPcJHj9RUQZFpSjzqX3cBjZuZVs1HW4R2UqQ5iEpenbAatmllRF5StGSR3cqi5jLQocaeDqYQ+XQHhu0S/hV9WSsqzASU2g3HhiWD9ABdsDozSYH/KiKfQ/ZFzf+qIehRqec+SUg3imqXuInOQtIPX+3cidN1yWa32jw1mSrM/ycSE6R47yohn7uNE/2i4dWWR+o+sbkHP1p3p+rrDqHyLlovjyv2vk0OlfB1GYLFBnVusDNdGrpWBuK3pbiz5cjLyiiOAVU7er49xLpODgeNmbMI+8pWBXimWQSU3Q5goCWHp2gbX
Variant 1
DifficultyLevel
625
Question
What number could replace A in the following equation?
8×A48=121
Worked Solution
Simplifying both sides of the equation
|
|
8×A48 |
= 121 |
A6 |
= 23 |
Make the numerators the same.
|
|
A6 |
= 23×22 |
A6 |
= 46 |
∴A=4
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
val1 | |
val2 | |
frac1 | |
val3 | |
frac2 | |
frac3 | |
correctAnswer | |
Answers
U2FsdGVkX19TBLExcfECRl9vZp9frHy29Z6NGIrF7YLlMuB18H4RaJlRMBd0e/AbFnHAzkTQei63FmpgiCDyqARml1IYJUCR55sMp4kv/TwmHd1JOX72H6NUG1mSE49RuLIRznzPsHpKsRGwuC+8wuZMI74A/k/yk+qqs36j2GCdKEbV73RbdQw3Q7wrkOkwaTJvPAD4VsawIVaVf9ZygkHij4Bm1bF44JwThytqrefmbdals2JFkg/J0PffU4MrhMZo5f+b2k+jpx/MgoVVp6OMiV6fZ4nzwUKCFw4WP+LWIGxoSlyCjxMtjaSSoQltro9mX39OL+gzcWHThSZGDVppqmPNAV2UpPfqVPDVUL2WM09jLwhJ87HumWxCLUzOUWMoKJy1Tu7Br14h0pb7tWibjgko6ruyHa8WRjoPgR8gliK4Mx7GcCP16RU1CzW9K5j1lPkElYnuSsWT5wRekKG3DSujmMirbKTyiIDgsEuAeQPGoJjeIroEuOHEoyEMHpFcniPrLfo2HESu6rB/+Bhur+te0iTin7rSMyeHPYlEk8NpLFABl8+boE3SmBl43ii/vAyMMohSLgNFOJkZPvYglqkpkEdSnODwFWDAsLJKS3WMc5dR4rvwsqmxzcOLHgsxt1NEHs0EBrRIvfTHSeYtmOws41KQmlAWdkVJT44/U+VQ1zA+wi+1Pcbk3PB4Xcbz85GZye0iB0tY7Uy4J7Fhr8jo7Xvg98+4kQEWdCR/6TE37LKztr0zY49be7PkN07iap/8TozUIIn4/8fTL6O55kEQfqm+vedO7I9XUYfEndrlOk93e7ToxXBolSdDKfm951Vo+P0569QYVAF7MkTr18jkZ3rUnIETuJw4q6hokahFm+/f6S1+SW8w4xxaeqHkn3szk+WM4+EawqmYYcwvckP7D2XefJ2D3WZoW5/ffZ7Gfxf2L8JdOe5AZVdUzN0ym02XUMb5ClgiqwJGrXHhZ7ZsHYfNqA+NzMUc2AVhkf0MMvwfgwQxStM3nLJiYwMvTzXqPPWzAYrMt3MGbqQ+pUWfzAyq9TUcc0rlxSlKYGLCjPZ9tr1EuY2oyM2cdMkeX4gDOmNFDcFsriI7I4k1BkZT35Cydade+0k93QJbs0xivtuJGAiXcUgJBJLq6s63a+03es4xb/yffsrAKfLsYClVCDwBR4XA1EgZSQvu1R8v0yiiOxuejzTOwun6YG2i3W+3q0TT7vSTS9UFfYrQFzcB6pb0bxNG/I3y27YV4AfTsVA3bQUvkhQoUrNQjl1BkdQ3pU+SD7sdJYuMqWQ263d40y52WAB4LyWwExREJpBZiXozNABc2dlIbd8AhvyS8NqtguTLhFXP+TihSNErdV2Rm2KMbsEKj9lTrmJv0qL/9+2hnAMa+sx2fKMa7aZVW9JMMb/qN0oDVPKscWwK9bt7QVJfhwt2S4HSMNV8cFa1RuPqF9zTdi+/QRKkzUCaSnMHfMKxlgmi/Ggb4PChamLaZ2MDJqPV3UN7MinYK8eFL7WGLmecKy4tmtGthNrBizcujkgwP7OOkwWNvQHCj6kRE1ogTo84fOL46KiIcfhYGb0OBfuvZ0q2B0gznTmMNhYKCb8KIQr7GUbKs6xGZD5NAoUis739UDR+UO11idIcV1p1NQJRVUlo51ZwkqNk4E0EZ/oSKZsqc8wI5k+jfnMAZcCmnYyZbNbruoWwg+BfVJoI4ZTq5W9jlLe7wUTVjPgZ8zdz8v2LFV2ctSCU4/NjBsLVk3V0hUk+rRgMt30VE1nezyVeNK9FvythnTG/yZ07qUyFJqSr5lQP5yuXvNudTETXym0O/I5vBFu7dGNDf+bwJWsmGSW8Ow6J8lMJOOEBPG0tuT/LTC23KtK7C56o29CVQEicc1VBAUHXlo7QakvxU4Md+y5FebjBaFeMiG2vG9upXU4jIdIckIX50t8A7BwqCgYzb97fmYdLomDrTVt7Tzystxhu8F/cPHoOcENVLANYojlgT6YTMtP5PF5pznJ86KHtzeVHhi188yTtXnnWDnqvPnSGsDYM0yRyvajCoHS6t3CErJYDMj3hJz6fQu4kmYyXrS9YBVSBbVjeUcj7jC9+l27IBa/Axh+swjH4Lee26Z82wAhJq11qXc0nBO0cFTY3QXIqkowoSG+PA+MYVjz7iiHMPCl0mzTgYuYimeXp2O4AsUN24sBZwIc997NR4m3hPZ+a4RGiZ/GvHYX2MkBwQ99Efx6vEa5/chSGzJFV0tLGccabeV9vHQJslxp0SaDyHJCRovD9eNQAX5uT2KbaB0bnscIpKKbGrC2S6y1r+16isOUAQ9IaVcZvlst1Lvi2SqRzIdiMLnNlCyA7nw7CtlwxZMnuf5fSij1Z8YwsTsthRlQ9hgD6fulnZ8sCzt1j6kMXR0GOqrXSV3D3xZMWKwXwWfWmyZGZhZsqyjsbff+BcoFTlTpssM5fPtr5uEeW6ca7UV3MylI+e5j4qSI0SuStZsrhhThUarQMnFoiyUCGoQFiqrpShlU+EocNhGoxazuyNj4Cmqe6tVcXhWyiB2tnFpHfd8m/5IdO27w0UVvJt0JYuLrZRgGzTfqCpXgsPKVb+oNgE/PVOt4Dh61Q34orBU9xxEAw6JxoKWabOw8+rKJVv4cSdoODejDvkL6Cs8ddjE2pM6xDfAhfA4lkJqrjYVf1qQ+WMfzw7bZXxuI+pOQ1RdX0MwK/iVNnSAgnO8JCufgfSmdTQjAQl1ONZRsO+G7UHncT9rpXXnRA+F0Ujm2Jz/lnaIO/gIryPhz6MKRhbSx0QJKGZ6kxRma8TLHLlGHtQOJEZi6LCScp0ox6s4S99G29k69UXt/nGnfGi6t/W4Znd4zp9O5XnBeRx5g9L9U3y1qoMd9BAIoA68Dl3qtf/xy44No1jfOI+3XMjzbatuBT6Qls8AMVBmZD/DCGRBTirATHUYl/Sg3htb5OIIsHCU3F0zGwbreqzZDZPfeSy7CFoNLeWEq29OEEyTSYJt81pQNMXKXk01TXdTRHbVbmM0nzz1KP8OXpI3Tdm67dm3il6Aoj/ILfu/rkA1K1PzkZK9wK7MgpkSWORyKuBVloCw++f1pVPLCZjmXhXaAxByOCDNsbxRVVT2uLaIbrhXTGCuWBtpL4IqO7cOJpZg6udvkfA5C+xAtUpyDVUc/09aXEWxd+i8Bjin9LX04h9iRjaMrUwmyyUb/kj62llTYoGF7TuUzjwhWI/owwslIBQhO9mLwGRZXLTqiGR4Qrh9L6+EXQdVquhMIqA3HX254O8y0Xx5s2c3DMfwfJ6fbJnrw/RS/hrGFeJ0ZyfpbZOWnCUeSC9JL/4z8+xeBwyGmFqguqSEm7DdQuoZSYo3qWOl3e29t0+YQb/WJFOe1/rT+KULFiF08VPjrOUaZvxqTnWBYAzSU71fyXsqC5/qLWmRwfPR/QIwgjPnpOD6E+B9ntaExOO+GEY0DQnYUQ58KtQmfHUhAf9KDs/6HQMDOdmBYkjc44DEjZHwtPz2ampAtbwqfdRMI+qkXsmfkOFxm/faie4YHHPXwoasPe+jkcRc7RI2UhCRhtnuEG+dB1UedyQHPuVM9oeDWxj/gxhOhQmH0Z6idQIZpcsSt6SPyzIbzMTqwq4OkVrKuqLfnqqvqI2wsioV4a8Hj3lYm2F+B++4PWi+7uxaXtKxaNLOfs4FZmyLb6A+Kp1FTOKkPx/I/BZtaakV5Ql2mal9PIPxHo6RVC7hE7z5UCeMWwi8cRdXK/+y3Ro5Fy54DrHus0xpW5vC5+hGB3wXy7F7sGNDj0vkv1ix0Wgb6xuxHWzF/1nYhmL2B6zYWbofZGhimThpEfH3psqkkbZBPPjs622V/I+vybRcZ1/DOzGyuCKUAKbt35Snya+oUBrkPqg0XyfH8Deq5ef4zlvOKOey2AGl9KlsU2MLc91BncLvY+6CYbGlyUg7W/APhjwVftDSRzCQMk5IQdf1h6xbZk7InDNQLceTtP4qJmHOY/EtZu4J3p99OQoikyODNPrTddfoKlpa6oCktv2ifEeBUhfPxZZQIGl5lnmaNuvF+32vnN53EiNeTv+aQoDIYrU+m4qC28NgiFJtdDAJ7Chvg86WIzT7Rl7aHrghaRi47hM4iyXu6Cg/AtfpTFu2Gu1iVB3GpsHQL4WFtH1bJ6AOKZIEo9BXkTW/Br6TGPOHUXgoOi8G8Juwv3AQ+26bXgJ0h3aCMjWlPPtiJDoWP8Fna8wq2asTp3KmHR8n+Q62YNm50LhllSp+CF9uoxv71Nm1RG0Lkbvn6a4TNdYaj2XVnticgEPSshn30NJxlMjdw36XSW0nGnFz2Y8VTfoiWm6b4cvaF00USZlHGNrPhukzxsiy5kSRK5eeMqK3ybdm3OK2NIh2HEQB3RS37wt+MnB2EfwpgOWPVF1CTM4ZyyglpGpvZC4GRJlM/Tm0M6sN3cfkCGNTBSlF8Ptyri99aIXpXk09tcp0Am0Uxs8qACi9RrfekyG4wzk5GkNznbVD8xiFZXJKLw7InCob76xXyNCmMNJxJ0nRB3daFYdw+AWCNtHfsm3mqAwsaVGyEdAMVAGmSWFObifR0I+8VK8COc228BGT7A0QuhL1fQowAUN1fLzSGb9fHU0h/JGKhnkyerBaRadqAEQ9roQjAtf1QGDjIXCLWU06HayHUjL2b5XVLKK/pKgzU0bFvcuGUa/AZM2WgenzY+cQo+PcbCGWuveH2rNd3IQS3gwp/pv5ubtf6BWfVeCV8sAmBINZ8PkIxtds1E1RRsE0vJALpyBmDARdJg0+d40WlqXLNglv0SKc9UQq4tS/A6yssNFhp7DahCoBzYRbPMRCZNUv6nncodaYy6KyiITZKMpQweImbvqWnmpmKJCLPcGod5iuHHYpxKmYPgr8PSaBVQvPqHrol584iqJ35thUd0UYixiy+cV/XB5+AW2x/Df/wVusaWOlTW2hVuYUKP7ltdnDk/cW64E6vex9WzEWNh1ctA5ecf3Z2VAMDycftRMdaG8uhZnWIxwE9bYyYLcbLn6ovS1DloUi0nLV5puDZwhP+0VECuUzx+aZq+DgYIFmqOiDXWjMWBKF1rTrIDdbEm/AK7ABO3p10yxJum74Up+g+35hzkpJeaHH1mmVDQTxptwXSJVfWgPWvsM1010S8jdQx3/LAMPrk3ELt0sd2UtTsMnFczw9ahHoSUSdFbbHTHlshVo0RpaFu75g8rCmd8v0ymN7slqE5Gvksbqt6uTSstXEzZMRMj6H7cnjXpmEvDjRws/kio1g6Rwej9AWnxZZyyMcxZ2H//PS2kRc0+BNkffuRO2Zm77/PDf2M+6jpCjMLvJ/3EMGWiCzSYtF44+Qv6bm+aBMqJJGrZmyIqEOteOrom/vKOfjgq7fsdwhphlvG0kzXKPHDSkVjTmTxdxu40lkpOvmkB1XAP68Iox3Wryt4KBhsw79qVON0QLyd8aG1/Qcf8yGOf8a+Mn8wGyEKRjeco83pLBHe/Q5kQ/JHbwhFoC1yTqICwQRBCDAI+ju+Ryn9w3/CwUNGdEXfzFwRsxiYd5PvDjb+yORfdYOnC9OrDZamKACUqWqsCI8A1URT2i6CpXhWYgD6KKVJn4g8o0FpJT6PURLMAnn560K2qbxLkk3tE7HDn3gnSxcXqzUbYu3czxYVq1CUnS6aD8H8S0EDSSZvi6q7nCVlnADt7EtMjcrtlj1BPF1B7XS/Z3pOkVxFAXbfAgTPxs2UcvSr/00KyqlnyOk4n8nUMQtm5x8SCebbDyA+yUW3W2I3R7Hrpa0vdmooqy4Z5PcJ99dlZH4O172iHZ6d59cfqk/Bp8HyBaNJBlsrA/oIQJz6utUIeQdvO8542gNiG1Ro8b+qwnpvl7gy64poGFmAsTuIBYZsJEEV3AhXh87PsbxpJBGtHhk1/+nKdCv54Sdo4iol3yOoc32aMmC1T6f0+RciwifNF0BMHGADBoR1yZFjK9pEKwLuFYNUuDmooHhhEN98kCHw8c2YQILowuBrU5xvgwTqJK1DY/hcFcD0QJMF9b+MsCkjQBujFNnfRxbXfXD0jcAagToVQqiaUf0dwXdjXgkzLx2oKAvDfUgNK47K5e9Tkj7PFTFl+P/C54FAE+BJsSiLHd13DiWqtkyFXyDXzDzCR5X/xwV6wH3VTuxvaoJMSlrRh/Q0FhZS0ELFTCsYZS1cZlTj5gobtmz7OcuLHhDNUCth9E+DIy/wKMXy22xFR34PpuYTAi2mjHJ2pMvHAkuK3BtXgixRGrSB1qgOBdcUo+/l6UJ7n8ha5jICLoOYrg7SY0zPykoPcO3+XEB1MAh5ZGyhzGB8dDqxPWLbQtjRzWFT/US6aQJGl75xaQTVTlnIUmugasgp/EW1kSRcP0mm6qHAArHsZkLIYcohFp5MfJG5dhWup7rbeeGwkxe6KLzFBdDP9ApwDprt4fyqt+tBXjOFcVl2LLTV6QvSsECGAUA8qem59TIT6HDzJeQs3p2+M3/svmoNeF1MQ0tQLii/0L0npVvOunzuQIIQ6t8aWWusCD4p20dPwv8aoaw9BX7Dqp0H1NHIgYHVlMlfRrDXT2Ep1ZC4X3AXx4YgAdhnbwOX54LrGM7yYW7YbyTDDf6s5zTXsjz2qo5qbCCU4c3ET8/LkKz2F5nnuSxh1HfThFMCfukutn3iotzlUPfo+LMhOIDZ7hH17nqgYG4YJNjksqw6XgGafuISlyJOzdM6aygI9I+xXmvtbqfHt8I5a5xowjvbHyQbikVBvan8WAK25YfJ7iwulIlmBwsrODOPACqz9Cj3ForKQ7OBYpemDJX4CUbo56bB88u0ZNBGsQb1LxsqUJx3rVlz+/cz0jPJDuX89MkI0KvORH8TGe9KP9feLcRKLKDDLVhLDbKZ6IFp7vJzHG6MMOTDUJTjWIsNwxsAleOOw5rBofOxCvFK/wTQQWglqen78YjZXYDrZ6xzb4dPDJPZm1pokNg36e0xYzzjvInqNQInMRPv0p15ntKPz7lM8YO/6p0fNVs8jHzQISw2mTKYVYq5TFj6aQq+ziufECWLpqRUedWA+SeETs+E3+c0VQ/B2dAwXkFwtKBmz0CiWdG2arG7cGJqQ96WPzZz9apDlvA2kwFUbEKX6w39FnN9wqZhhaJfoh/CSE7mJwsO0NaDzlYDKlCvVIyybJ9oD+ZfdS+6AeX/5sbyQrkNQXpyt7TKddclXW3UVJRM31smvfTMJS6TMlJTQ8+tFagvxxyW5txMw0ePks0gV9ZJpq4zJ4IFhHVlFcqJcN3ev0BBA2EKeG6V7S0oc4yYEuhM4TiSuJQqlr76cmkPcwsHtI7wqDfi2iM2W+esfXafBjqq0WHqsXnbPsK3EPC96u43RfoU0tBwUN+LMMrOFe4apJLeFnI/e4Ey9LC8Stiyd9m3eM0Q7DvyjdisBQMr9jMiCyYuinDTaDm75EE3gwnQhD8a3E7Y4mFQKG2wvLomcSnVkqL4OrtWsSXrBLW+82AcaACHyywHPnOBI3A0GVfIozDt9QpzUMdv4C+8iRKjusc9WC7/5vCYOID8Blu31sxSWxdwAo32/KoWET8iJhMj3bsUXQUv4knVjIZnQe5y1U7yO+T1E9fPdKAEEWIyd7jygK0Yb1u4o58sxk3H+4jhYKdLR/IZQf4JLl8MisyqS164kri0wYVAKCsvGnRxeQZEmfVOiYI2ilH8JKU4anh816QBKQuyI+hYYNzZg4KFRGkhHI4DGPtLjb/yCwke+25yavIWuUvKhJAxQfyWju23LfYf/FS7gJfnufGnUwoE6UWpmxyhgdlvGnXmcfa/J5ZSsk20tePFT607KzEhywb2xF/WxH2QdzfvMWXZ+sF6eWwMCCX+BYJZGeaJU+IcwSuXfiBXBW6MA6LWk+kLzCKigK8ec6hPd8aMBGy7ElSfO3TNX4ZB6O5f/tHXBD+NVlhDEz5mQ9PtuIBmHP+0GMwxqkbZVr3I0xbZhPVYq8EIMOB0ZbZC69e4luktO/njNf+XLrRUpfcTJwWtbg0ivilVvL7iGktOxIZe/M6yYdU0ZENNWl0DBK6iP/3qjmA6wbwEvXZsMhPUI7nwEXWGGB/hwK2gW6lSU0PRvRvU70ifR3Ox0RC/CLd8K6bVMS3D+agUNxxgUZCNxpHNKlax7xKls/HUiw8AbNYxTTcZwWZZ143REkOzJqt+z4y/3jNrmPxBJbZYS8CrEZFa+1g+MR+FEwyGFd8II4CIjRZyLDMJNqT7suLRACq+wvqtXsOQ43ZWcoNe14ZK7YrohYyaHnk3vv1in4yIMlH7JmEMymn2WlHqccktJ+ocSE8N9kD9RvctVFpqqgU46B+dTnc9hPfbceW0EjDUCpuxouBprQoHFD3dnYBV0P2ihJlYPlPFnDZAtJk9vL849j/vNRvmPjZ/CsfM39fViq5vCOTynP3/FpnYdR6beggMFPao9dCOjB/z450VXzQP/oqs4k1K2ey7rSNzpQ+z5fXv6Cv2U+SHc9q5QqM9KTneDg63FRkVl4yEX75NWD4calgircDQlelwuS3dDKqcwM8XFhVg9CpqVYAyH2aOlbyY9tjzKffH3SEO4Z/C94Gj7R7RNjbei2z4xH8Nkyhzoy5kgr6v4D1bD+Aot7dxFUHv3HGer8pNwfPaMa2PGeMIhmM7z+Q7TYjZI6L4OA552jXj8ZZtKKuYBdO24rEYHQpub9DrmDDpGxwMFpeO/fhyocP8TiIG2PDtQeQZ41/VJ/BhtimLEwEhmG7/d9epmfnU/T/pbLcq44qYfH+tIl1A/0UGzqj1jli9fLC2DgYMv73hqQDcYmknd/dpfO9dJ/K4MS9D28ozHE1RMpGJBkJLPhD35menM/2jPnWeI2Xpygppv0gx4IB/ky5KiJmYhOY1CJOzb/3AINTC68nuBO68HGLa/4b6m5umdh08JPyoOm05n576zuRt1gtPOiKVpbNITTe22gJYiHjbqd17Pe6TN/uhoFBvTERaGyf/uRTMoll/6F4yC1xWiTX/jT/ZhMZyuhGfbixDnijR4VBG/jr41ReHzcxFc4j8Ypk4NnM0VkcvPxgYsz03d+2qB+K9Ie+EpMDT5G3rxDXoyzihD74K2ng9ezC/RLvABEv8SdoZTloeND0lsPcQnoGs8g0QF0k5+YKPqqOeeGh5roacVlirvZyv0jMPrcw3JsnCMNlk2T368M+4O3DE+CyWEg0NrFIdXRsEr9wTmOEqFdJUE5hHJCr/zW90TfOuq7f3w4F3QfHSpnmXkdCfTojKUOigsz0OJ2MIV/0cOBw9UMohAGaIxpK7V8u+Qy124MQsZ+dLnxXq5PGRgYozDZ76RCSi4MwfnkyeX1f9WdWVWSKTtUPc7iy+tnW/r6uKiwEepYfHpPRoLIva5BTPbU6f/XWXh7CcQUocN/O0Nfs45xBoNaVBma7oUujNFQLOPdHI7QBehhT0VNtmo+ClnXpymPxTfFGRkcx6co/YEUORginxQ73Kk7RAZD78wu9b5BJxAja3TRJSmZvhYBZtQlyXSlCeYlde6ZljJrD3h8SfJ++XsqPltCVihJWDIuUphh9NvdK6gESNkZ0YDDYqj0UyoAchdArRpL0W7jm4oaDlsEnL4vGTUkavzGWySrNIw1SXhdtI7Fpbr8o8m/aWlDsyl647aHQBAjOeTzFd3uqD39eJ4poY9gQ30fmM0qsHKDGxTVUNN59mWLb8Z0+JXJIh35s75Th0m9vqchbhYS4db2omkpWfyeqhIRSw/dblc5xZk9Rg6ZYgAG38aZu80YY33AnLLkVWX41q1DcLYgEerk0wJyw1fM+LNID0JiqA3JvUgYwKGywfIlysKvN5LYx/oiOZ65fEKgmE9fIS4AEy5e/7COtS4lPjoCvllsEGFnIq55AMrff+9mi1Wzx2eJhzwDIIeM++nj2TOwu30JrZiZ8NjIKFMEfa4DPdgCz1hEEFTGtfNRRDlVaze/Kojn6y2zHaIWfsboc0nYUAuJ4Lv1MXaEkSpYnZtad8Gs0ZuKt1fHhVxJIo250sBFjnOBhJSQI5P4GyEJxFrK2OgDxx1Us7mRprzlsNpLwB+B/ONccpV5xGQIT9yZ4nNGxkNrdhzJTCBoNcHBJYPlWpZsrKJKn+AN/kp9s+NTOhMDyzF/JCr7upBVOs0D4nqUUF4EQNC7vLx0QbX/ESkOY0pLtSovRhYogE1hRak/4HvtVDm9Qa65NVFBiYuIpW9UIqT2QCybbO2IHGNeEALiupOrObFwfvKo88SVUlSAPoLZoOIYg15IINaUQuNxa9nHeHq/j9E3+0IueIQ8IiYXklnNVxd5kYJ66R2RFuwkui/hf8+4NMPzksUMJbt45//el9S8v+mfSe/e/3onCzaJyXWtacGdCkkyd16vyi9bKeok8gkem9h3DX7dDl88MtnxvhckLVnvkcmqxSPW0cM4h0eQM8duhItrXHxv+6B1r3X0pXQIikl5ty5GFh80QSMALaTC7DNhKXem7l25JRqW3ek5Z/UQ7Ip+CpPh8HEwhQhXjh+43dzCmENf0BDwDdyLc+hr4WStEp0BpS+6V3oo1jfA7+yiKooK5++UrBy0DbC92cLvbvxpJEfsvfheTzytOQkwPCDAKQ1Mv5BDHndZxhSmAZkZoddAB+lk4+VeO5df7yNdzKdf/CryvW9Uc6gQLxavtuwurm+IMjVyWEu58ghYBE3MftqUsKfPhs8Edd2AgY8nWHNAUEFmZBnEuwjTu0X425Ci5c6+moZsv47PVZQf195mjb0GdixuDgozWXjE3CyaZtvWd50ySSOXutONm6JJZN2NFHdt+E08E+Wtb7t8hg9xYjMmnMsaqqFJtRA+OitEqqi5k4vLzT3wANheH6MfSk4/+0nBbUjt0jubvss8pYitcGdWAP+KuA0NnSy/tcg0HI0DLQWr2ZNJl+YMZicYiTcrphuH9glpJP6d2f0Ql38VGBZUKv/BivNBnoBQ0joDXu0V/OStbJHsx+cWQ7TQlUMbIdBGFyJuESBbhB+ZDPdG8qRFt8jS+KJPZTUAAJ5BmmnWf5OalVcnoZUjJgd5n+hRpnkt+HnjVItFA56E/W6X79bnElv9c1wQHG918lIgPsrLvTSt57P3OZuotJ8+Dg7JULKZN8Qgm6BqZqE2p3NlPiFNtj2mIjogGRsXpXqsmQyQL11RDQQlQ9OF6OoHPdKLghbcZXIOqF32FxOH8/Gp8eai908ktBzpViCrChgFRUNfj4SyqSyKb4I+QjY8RRae4UkSp7e6PpbJ+bm8f5ZRzquxmi5g9sHweDvIuSZYxRMJm8moImoRVLD64obk2gk3mLrrZSOAnlpbB9l1IyOHTlFD5dm/0lh9CqFov9PHdG4Io/3Q/YtnfKBEv2cjtjnJO7Bcls1AAIPPknAc1LMymK32+9Q99ucKvdfIlRR6tg+9KnM2f57MxFmR6U3/w8FJZI8hPQkbNPabawGwTVJj3vS2SX0hwdqaclxOnyeT0OvK1mNnPP3ckXL5n0bwF6sRnLghU8Ab7rkS1/cYhsTmLdNIjjHAA8PnFJ1l8SvZSdDCwCSxr1qiw9RmypLZRHmwkTFV4k7DNdlZUDadiojfjoSCjHEIJ6rD/aQF1CuSMkpZNYUp+NrtzUiiQyLrFmzSRJTws2/KaE/NScfSAlGa0p2EfiCjdr3BbzqI1W85hMzofax5X1zwQC36wtmh0uyx1UwA6lgmDalWfVW8MLHQG1iBDTfrnrsvHuiYa18YkKq1YTtDbNWokNRxjIlTxVri8ndNeRlplH8TtTeHUVenTa/mg9Rlc6kOS9bcin0eYbHqsy4RvSM/WsD9xc70cj4dm70NB38nrUEHSJv8p0Vz1Kgs2zd+85Jf8JapLADSS3EbjjRAJFEgaCkIrOgN1x9pbRSVMqG8+Ua7I+rV39a2Spw15d/7Fva7zAZ/ATslITfbHdvrGnY0TU5Ea/8Q6ytxyWwmxGCC/s9QrQIrd5y0NnwJeTnaTUA6+LDvx2a5BsKFb0g40D1rroXZyRxGL3sXAMk3uqhuvYTg4nenoWAk5DzfXoOH+GY/X+kufl2FtcsfMr6DttSRv1GcHeDZIiVrZqGuXjFe1uY/f/3OAAVnyheLKhKhyIOYExNDunfu886l5L8Ry6/yhttAWjzvM0wTcVD2kg8A3w1gr+MuKkwgWvPn6guvvFtumw5mPo1qyiEX2ZG89ckYxj+nfOK4Wp3ogMWx1yy0FtJNNXwz2Q0OQ8mdNMc5J4lqhMnTqzCVhsem/mIZS/JChxS9BOCXJpLAczHNJlKgyJp26BuZw679k2CBsah9SBmwLozWPPX77m/ba+EuEIYqbOS9uD+OcmXXlgOr5cM7RBubc4KJhkefihjLGjHGAjNtkY51f1m1BcoQG6963mlcOUejDqNSdSegzZMgtgsUh5mZG9T9KelzZyrPrLVgbtOWbk4zQUfcJ9+UDWbRUhj6GVdEyJyWkHwG39bKeG4pM3hi7KaEskH/qnkqor8qMzhg53GULVumDTCwT+8Y9a5kVuvaO32QUc9Qff/O/BPTgvb5Fcv8m0rX6aJt7A6BwxSBFNnElXkyBwZv+RC2Klo1XiZcTDlaAUOjEhw+mLOeNniI4VdnMMe5zEiT/qRIttmJ1zTSISibcEhVRFrfmTySW1Wm15Re2RmtUB4cuSxXElZK0r8IyEGp4mu9UBzQ+EQoOK57vALAd9unn+Ja6gOTixv2M+twpkw4RAQ8a/yNrJ5r1c0HvTOX+ymqEfYIiBW3NpcbaEIucpkHYr3gY7gpj5aDEce3eJqi11QHKjs209s1NffS3wd48YbPf1Lo2FK13OnFWc3lQE9wxCE9Q7FvOLpD3B8VCzQZ9kYqkdolTYh+CYtHce4IgHyezlZSxYJI90c65OeSMAyQFfKJYVabwzaRgNjg/YUGqF/22ZxjB5oim8EyMZhesfGxLOEbzmO6SddgdRA3Xea/WAY6KgDRXhL81bchBKAzHSy9UbuM5hSJGchaLg2ZymL+GxUbiFzBl/LD2Nua0qtblYzAvdH9lM9XvgLOOM8z7CnphZmprnsR9bBm40m+JVqE3Gt/u1vecgQpbFDT+BcxufX25p8xfZ7pF59W1Fm1E1xqgrEZnWRDMydscwaMTe7U+ZaJZdIpMmIAKPhduJl+2iPVpyARuRXptinwgFqNkyLvJuu9mxQEvE5XPFaRWc3iRF8x6jCBkFnXRAWPq3e4r/IRYw4SQYLe0wac+EeAMFtK+3a/HaKOpzdK8yFRdJ9wAW8wvUGMznGfA4CrBe3vQeFs3LdejU8H+SuyKSUWY37dQDNqk4CXc77fcx85kEju6d+LpyIFDll/6akRfAu3JyJbmVSWhVaWxKeT5w3qdQdZ4pnHQ1FFTULPH7zRKP9MLx3XXTwlrgzzLeW2ePV7tfVAiTdK63MevGGitMY/3x+sYZ4NdBVVlXCj6jrwF0Lj4edLPQHBy9fgEOnpDdc25jD55/BhcXADqDR96aOtSryHClhb62ZG2vuy2GsMEvaA/plunw5cQRYJvKwjhEdYPj7gBCCosuO6HUUk10Ob5+n2I5+Uy9HIgXon4VeQmdDj5rDRLnuHtSzt4WBKJCUEg3K3Z3wEeQO0E+ktGHzSXbsEn3B2QVq87JKFtToo7PtVZjbPW/uCLtaDUSm4pED1tf+vHsex3phMOqeL+v5JZqcTQFf0ClVQ896Q/N1xjU1y5N95HcJ2dw5E2wZ0J0FzOKgXnx1AeKmXeuY3QSHzYGMsDJ1TJhVBeQVWsRVJpd6my74utIVaj0Y5HjPM96yEB8PVXRssPRtteZ6bZ0WNhg8MgWpNQo7fcj5we4PeWK3P27aVIMqCHcNEj9yUsTPu0DnXDu+NjxivIPJ0WMcETzMsyLUhUxqR4irhplyg/Gfu6V1jO+sOqhPuFDfqOeCj0k/FM1MWwOkViZnXkJUNv7yxEkHOWBbJFiyX9GXOkPFqdJIg0HwtsB2JDmr10p+H8H7W21UkpFnRIgT0UNad2xrjq8w4IcNklx22Zi9ZBQm5gLvZWASG6ON2wXEUC2klelbmj6NtgQdyInmwHWr1mWrXbAcG4zb0Q2GSgBlmv1kOwm6s0illmH0EbqzIMYQ5QZC0WBYrNIh1ci0hgh2FGtxbSpI9aph08mu7ZVDsRL2BsxkLVr4B4K4fHscLhiXTKG1G0sRl0pAj8r19nlOgHUFcE5WXBQctytBVZ5stjE2BFywbiTqkuPoZ1MEvvhxzjF1aIrCor9yNiwLVPJj5JZm9OaOLnIpOG+AIwDEALxXwIc3FYi5D2RnycIQk4e5g0/anw10g/Snqt+adxvEx7nALyT22vgSvoBeesuBT4kBLCbYo67sRtM6dxFOGDhDReh7kHULhH050L3GL3yflnvNRKaE8zb0tuHEoVkITBg3bc44BYVRHRyX8J+/Ldkmag71vurkX1QThQlMCNxhVqhUEvBVEU9pbesMQL4rE293gsrqwsHPyPVXo+y/cumGie7fW8QQqUhBQrp3DvUahsIvKCNj7iKg88hYLsCGS0tuSOCcljLUdS9hm3/iky4XK5L4GiyrNeYzyPL7P7Qu9xUpM/ke88HOujcXiQ54ijXZmXRi7XlXLiq3iPrTuo7dxSyMruVb3BNIIwkZJCLjWAyntTCLXL9xbeS0JPpynWUWC7CWBJUJQIotE3u1Ac3cTW2C4+Gc9sxfohbiaiopfhxUp6s7nKMh49aIJ6wzZ4DcaZ3aGZjRBX9kK80cRjbUNfxYvhoCign55SJoIYrANHWmSqW9s/38c/+Z/XipSlvYp7cHWIgrtFqXL8gWJEboNUcrx3Pa/U+XtErGiQb7k50H5WIKIQe0MqhVE9SX0whr45F+sVrw3l01BtxMK6u3ynJT2iCcxqVyGhDkhzh/dmOfetiHuog1zqGlYK3TjZavyunC9IAOdLvX0Y5GtDa7Iz+lY0r/+eIVOyurYJUuXxT5S93DUeleGL+0mwE46HL+WZv891Yyldx9u9Amhfn7A0KpSTkxLOxYnYJ+uw51G6vOpYMmLZ+t9UjEXe77M11yBqWoJiUideJ1s3o0BKFMbrkR0G++TKt2NErdm5i8QlmnO5ZhFxV9FKLN3NXQdqM4MgDhKBa+do43t7yKhHxdrGP2qgftMw6Pga6eImGzSVxt0ObP3sdjwRhWzpIG28i4suYUq9sFXOrQ54bOo6XYO9GE7YpN8DwtguZrME7pHgN283FyuCnbZiWm1L+AmQgAX0ByIcyQIyYiMzE2FU6kjh3+WBl1nXeXuWpjgkdrXEakiYQXHBGjT5flpSOp7O3oIl1OapTGgGQm+G1puyUJ8Tj1GZYeK3laCg7Q+jfKvChaNMLX+RfXQ4fjvMDFAQaDiZjeiQS+Ejdil+a3owZqJ3QSrhAT3WfgflcIMDj1jt3D885Sb0htRWNLNg/DKPNAQctH13Xm7+J8k/D9DMH5DjasXuyBnZ16SLQ00S4xyIs+c4eptzLIt4TbKC6oejuu9v6F5ZbdjETZm9Q+IMwlIxCIUq0uLp44rhUoLGGPZerS5MyjKIG85Yye2HB/4vX1TB6rvotbw74QUyoq/Ik9X4zLo6GPNUk+mZN5cwqptN78F0dyfLKSlORys+grEYs8u1chK8/tX/nVehyhAxFJKyXefpO39G5KGH6ibvEicUfifQvbwr+H4Ywd42PujlS7YS0/jtaFOgjswn5W2pDrx7MesFkV8Vjp6V1M0JLr0AouL+m5Gjl6G1nT+7HYe7XCAOv4MLCUGHyqbrwzkdDZcUYFipbkdeO+xqyZbdmoeHM5Kxz3E1fGT42bsYKAXUxoePY9q+aDL5u2KtHLqqDtWXt3anlMuUNZd75qR2RsvZ9GcdKzNMb1kLZeNvThThu7oCPDzMC2tUrMZTDRkNrG8egOQPf9dXpr+RHKF2CaB8/15hefIg5PYmhyfh6Ww10+3Fu0R2Q+GQ6rHhkmw0COUAmgBVx4lyL0309nsk19DTQHMaT2wcQqOxYk6QYNEIVJmPe8V+1c2UyexDVphGmbswa2eTQVhJ3MBPL33RSVHuUp8HqwS8/yJGx4Xap+9+1akJ3Z/asYyuV3Xb8tzYLBzpodWkJB6uSn0CMLQyOv3jOM+a+/S6IcJVgpTSbhZ98QPye8UFbdKmsTEiYfDSYlZyoPo09eOPiSArjjB9nqZuSQeiYnPiaPJvkSBWyI7s266ct4ZkitaeF2gvz1BwzTV8VSUertaiqydCehY1iMTZAJ+gBFEW/7JF6gYllZ4ELjxQClFG4ipFnFLtQeSCT9KhfEoEbwkY6wy7iVftFBBtTxphULCzS5rHRDnLoAFzzSIvFf77U6IrnP3kEmjnLGQUTLwII7ivahZC2kKECFUKrciKIWKi3eudiOdp1XEPrz/2a9NbrmhVDPCL1I9fha5unxL8JKmSl5l6dOHdyKPxCDu7lp+xMtb5+g39oFFauRWN4mHUN/CWAVfXbIz3S42AGAehkyGxxcNezo8HhRG/EoxpwH8FgvocPa0GiBMBwcZJsL6+SDghdXgAEfqiLtkNFpm0EZ6dyrkNv2uKFVz4CFYEhF9Zo7Ua59QeNCK8R6rfJ1poOmfosq0/gbNx7YD3VzJPSyI8rB1+z8J+QngrNPUeSqAKpzXosL5doK8G9wxfUYjIOWF43c0KqsmgmMznnLbZsh1w0F2pGDnetr76HiJyMrhftnAZi9S1X3qPNviHK9ihnS9+vjBA1HtlRbeAmQFBiRl8aOY2dXBL8wEBuvkXCJ9O08Y+xXf9t+zVueLGLVq9sxhLpaXEONJATfcfUoZXs+b+JzqZ6k+gvp3AAl/tTu1zNXqpGr6/a3xCZzzG0u8n6jP8KuHGjIJUcBr5OXYzs0gNZe7ABU+cFdcsjKXWNy4Y5AeMsUXnbaN3luEJfLjoJs28QFVpmsur3XHrmjVY56/5MEZSUjb4eTQqut0CqKU4dQ3OkyUaq30NjbX6kFf+Ij+RIhvWBkYErSecv8XovxMgjkwd3+TgDmT+uFNtsKBy68m+jmdGxNv/MdfXUHbrfIeKlvXZG33omiodTmm4cbOHdsyD8iF9It2LSopR00j6WLRM5rVZZWJMguoh+Bhgqa98WcCzF8CNAMw5s6TXCcfLn9zr0Fnuhijyf673CuN4WbcdgiDgLiBv82agtfXCcEW9AZLwIVIU5W1IWgj8b1dFYILYbMHsbtDitkVcct+n7ZKnfXSO+7KyjtnKKdJY2B9Acia6iHwaYVS925+uWDJLu4QxCff5hQhRdFUmz6QdnzG3fqXnSv1Tdp7w4YV9euCTyEF0mEaziyEZrFO5DcCfbAvbyIsIyzM399zyJunLm0wpVJSkWwxt12rq+5muGstJhaH/ibikzxw4JBw8jIY6UjP0z88b8T6dsDtNuXYo9DHhhDQ9Lpqmw/LLHs1++PvJXYyEZ2oaPal2Iobr074LuVaO0IdMeUY6Z/1q6ATXU91kjY074P7HA04TJtbbCmFLEeFdyNjKIshnoiYratxz3G1FsNEef8ZN5OP9NRFmYasiRVI5p7Yg6G2hxJH+PKntCN0kZTvDbRIv06/RuWMoKl+k0u8NdRd5kOKvmp4Q77x4RO/56yMWx5FYrwTqy/Pfo5PDgaYGJzwstma82AsJoHTkNebnD8B0n4mUrUwWeyDqF5lZOXlqOaI1N2AGVZH8KC07noF8Fq2TxAfFCpAqY5X+GM3GnmXbD121F9C9SGvybOBdbR0swSm0BISZ24H2YfAko1gInge6IjccQA/MAe9v9hk+l600nLr0NDksFqwOtCuDmpcjLqAVcRLLj0U/pt/nzSp6VAXfjMA8xL6cxEhD/IGC33Bl23eZJS+spbWClTHocV9j+KJcxCXY2NBWpaj3xaeuxhhNubIsQsWPp6rMJW7nPjZG9uOxA1VCIaXuc1vfAQPjXqriJ2vXRYzm44g7lwvPC6okW5TSJ2Efgj80LfnCxq2iqqAJO0RMde/mZuX/SeFgJ707jHFqoK6YnM8gdlnCWjgirPqBD28FNIFjAUwExysY8HvtLAl83wOyPM5YM0bQP4W94UhQNjfH87F87swIW4ZBuoO9DIK9CTYHR5AT47Y6A7ADO1M/cTEkX9x43X+JjPC4VQNsmMV6I9SwD+1s/3optCWRePFWR9FGQn1QOm1Rzb7Tja0Zgwy/7HzddKEHmm85a4H9jh2V9GC5fulaPjukEocwIig7vQmybbIajrubo0UhrHCX6NB5/m8d0yPekEXaw7z4bFrAglYmPK+WFcrrJLAf1M7atd5jrRxsMAo0mTw+qeMAfOOkuIjOGjOzQXhCHzuupmo5ERm/ps/IXx4ItSErenbKN4aQ7dIRCnxo6eVegIj69UcjNf+fMIfxZigc2z6eavN95xN0n/gfP2FXVJbIHWVzJb5dvEv3GnS7yQkPUUAaKmxt0m+AZt6lav2yfDYTg9srECs2Ar1aVN5FEgH3mEEB4FfxBowg5F6BqT+aOM2Cahrk23c0304TGUlHNl0PjdivBFx+UlTnDXQFrDbey+YT85SIhleSo2NO7wFH1S3E89/e1UWTHVlQAB6MIXLHCBLjO09Dak5r4MVBBrAKSjnFVXqxP6eFiu3ziVfF6uJZcWD2jaq1Mg/O+6tln3lbnHAw1C2bzuSh9YIujTkpgyx39OXF2q7hkP0EzM6hngkdVoqPfipRpFtN2zTk21ukLvpQMMW0Ln2s7PR5pDe1bQI0DJeEw271JO+/MEREVlaYrmUEzF3iDdX4iRdlN/zpEN7TJXXcvd1PFkny15j9b7UMDZHhR9tLQ50EANS5c8F6/G39NhQQ+QBrrOF9zN0+hH6Pk8tXieVgfJMQb5UNmqSpuXtPTAGPoitVmpaGZdVT3W5HH8g7MuWVlXGriFW9IO9KIoZWUNFd/Qwa7/9hJylgKvd46HB8v2ZWRtNLj3Es1LroTmJaV39H9jQ27cqpfUMl2vIJmRBt8xVnlzAFJ1Z5JjRklV5a/9hN35rGZ+iJjE+frq2q1RpyXq/WiDIfaP8DomBB7Og5sUQJd1idpGeYyoLhD7WNVb+UY7De+Yz/Nfc17cymVbjz+pB5CLt67ecK0+bzmxNF6zEu8QFd5d21Zn432jJQI7st4zTiYU5tlQR8Q7PB4VT3MRiIrPZUz3Yd5FU1G3zKGzqOJ7D4y5VTpH/l6Siq4oJ+9ZBX6WGexI4aRVcS/+Tf9iEHfPaKVxA1G3qKDL6+8gdyBRNzIOIWPwcRT4CqsuxcSBbKEhahA3QvCR5E2LRKn+xk14j/zEvC8wPk8bwaD+MXCNQAnVCJyoEWTYM0fsVio4zydfh84BU81+mZCwqDBQb2A70+sm/nfrLaelhFV2hggauwXzPUBGBDOzofo3o4SRG1QZBicpwK0AovSQ1WNjKBHlHQytSMbNqKct7unA44nZ9/ao0aOpHUgyjTBSWPYVnAOpo2Xa9r8W6WLJagWA2HJRn153ama7fGGhKEGPbn4BfQHURpdusV9ekxkO8ZXQjb2jVeBc5z70LJV5Z3C9LafZCsyW4MWlvll1fnLZKlfuEmStMZ8yBridrv3uKXACbJTWSeWzzbAg52Tna3OEXWUNzCKDPEDgvv8Jq4GFl0kGoVXGdbVBUKu2uY5CDmGPyv6LVsTjVXQiXXe3Ha300lhnYyocq9C63msjIgvFDJ03gJrMbD7sJ45CDCQE4BtYTeX0efd44ge62RDqrz+vfoJAWJlorlc95ccxXoLbtlcyC3LUNm5U3EzwaMGv+r8nApt54oHqPe4IH4wqcZFD2WSSjvx6Ksnn74JAsXJsQDCBYHmT6uWWIwO26jvIuqp3u6hY0p4jq0ngfAV5hgjW4lj/KyO4SWSjwY9k++leTHfbjzPPrwkJ2eUgMrX9EOk23flB/nzEdjTRSwF77KXPpqCCD7vmhFwufZatQZn5dN6F7cBN91KI5mtLDkqpspWBN66w5qS0StGtNFpXxWyKiAWR/+414A/bRf+2McUo8lBAkaJluRkxTvNGNW1iylZInYuIAK0NNnMHsx2J8k7KuqajYz4K+9/ChCTjlpxKUKjHvTUutnExLfp73K19tWCPcrWHAq58bJCSh+flTuJXGomxFQSFsQEhjNZnCSYmCRsTp3YyuyMPGppD77WkR0es3RPyF5IK182z0nqmpH5VLnp1aL/8cjJeaMG36hfp3afeBA5bWQkIiK4yJBTt9McGH0dU4s22VxGjpzCe5/aUEaC836O96+l6kcboq9J/JYkcgrjSuQ132zCjOnc2GBAZs+PYICEoQaqQZ14nIqKnfPi5GSbJmNaAQb8wJTscEoKViQHdyxHcgIF0gzwWrsxAREdI7d/T/kMp/KNWpLm8ER4Fio0AclidTYOVT7h5b/rOjVmoeBwZhJ+qMR5PNlG1SXk/QbTu7bXLe+/KIp3qSrTPpaBBcvIzmK0ddYZl+8VJEG+L99ixsjgnI7JERm0+pYcOUWCkpySizB+4FedOxxTQiBpd3PKycA4lYpGlVkf2GRsXJSji/jKUee+mCVpzKIj1UEF5/1Omq2mBC6Xd47anbOoMK3+e+i2hbJc9DU1V4MY2URq3IbNMo8ZjXr0jgFyAW92ggPGqwNyPdZHPb/ATZEmTj16MGGeHdzRNdvvpMzlinWtvQW7WA7olWJu7joMlo7YtYMR8p6i+wk5LD9TO9f4qqfk8IQ9Td1eZiPPrRF0GjHRfbGP4nFLKznPpsKuQ+DhS3wBk4cYv5wma1BRS6lg4SASVH1KiqA4UpJSwDZEk1wRwkkmrQIrnmh4bEaHieYc3yAlwrSF/QwyOTWIq+ozH43nrhzLM6TjGlPZZmQlRCheNUbAo1neWQyTyrW2YR05a/SXfofoxroKRssKNdHsSJJ3chVft/M9bLkMwYaOngEh9+6RJFtJAEnMGkLsb/b9bQrAMH48h1tyxXaq3e7w67HO0pMLE90BKjZs24fuFVPwKT3AQjrzjFuKGVv7jmj0bltYukSDthVxXjng9SrZQSSOpBax7H/E0Iedm1SIJjxfx0KfgJJlr2cdtCkwPQvGTPPxzbORv99qPuInMTs3Hk5FYDGtzaaHq/y8LAnH5Nzb//bFIMYjI/UMMP3uk3LwiUELECfZLpgmMZb5ySqEdP3QpNGGcLLkpcOdaCG2itWXZTdUSp/4U6LD0LH2hxq75xJphzK/ge/hNLJzjoqcTqsgG96RRpPRnteph22h8C56GxaHMNLKjdBRnEZjpm9j4iR4HHYvbwwUc5a8uVHPmAZdedc2p0z0GbPTRT6lynaBubEogzMobKRDk7S7leZlUG4yI5arw0emDNXwugimPJq+jPgyjK6X6tKM+zIYhQrfkqKJLTtNnhuYsDPWluFGJhgorBq+dXs64VblxmBMjmq/UrA0Yr9FR8QvnWMJCupuwA6dAZTJVAIuvm6DfsS/EXT2cZNSOPfymA/jBKXR+wXtFKgat+t/+WNihcgN1RS+REXIdU58eZqJw0LYICOU5YVejVWzoXTZV4VW+X2rwaQ1n2vg4IsCJ/4qmIs0jHudCXJeKUHbC6v5mkj//rYWEISP046qgSd6v76xJMHxj7J9PMK7aJDMe6rslHTaEILLSEQ426d9PqkavAhiulGFSYc8hxxHpv8BLPeNsojN1+X+nupj/mHZhJ5OEXVGoac/X3dakeuTkrudW5rEQQHPLbCJ5vam/KJpyGcoHgrx0DY1t2oJt+BCXEoxqXa6KcxpJMv/Gi1djIlCw5A66EkpystDC64LMoE5bvnVulggMVnvk8FVS+lzLIxW2xP8YTU9nWAwnkPWySDfFq4dAYajs/BHpVj13J5xz0YyPMv3H4s6HHouQX+bYvoa8bDLKSba5fmqDmq/WxiTSHakA5ZUnZqvnmDScgPeT2Pm48MydEZoEW4YW72TtoySzgdneDLOiqOKRHC6PoTpezXxbbd70Zo5CE2c+VesN5BAVmiDni7xpSJg5cgdJRTSOeefBKCPAvAcrbLS0pw9uOITuTu7JCM5M1VRrAH8grt2egLDdr01KsadfJgYyZ8wQh8R4RcRcIJ3i1R/sMKoO2+NAcf/eDUX7cDyS4QVzLe2pk7qeaq7mDL7cMyd9IiOu638E1AZJ4OseX/XMWj7SODUgbNqzkLaO8YTTdtSi+fWxK7Jn9KMlVtLVvu/YJu1uNA8MG2DmL1JlXg2fiFA/zg8s/ZnwHuyeTbL2bcqvlhDyPG19VtO1U6L8+UViavqVLeDaUCn+xXLDhNGya/2pjPaEvGIfVdVNRDMQO1hPKf3qZgtsm7VALf7Qp4rmvkcvgjSpVau+ZtoQ8WYF8Oa4vh/ca8Vqf7GSiPDGoTZPBXwM3AZUvIjqwJNyTlyVoHLS2Js4VQ1xEGqD6cS4K9deW9o6a2p/rNQKmNXuO9rkizNWA8EEhM/bl04MxcOuj/V2hCZTE7p+dVfyZIoRylqdP4O6SuL9UFsahmTsIh+WTau0B1NyMkEZgL4iy6H9/JA29ega6lJZxd8mb98luAzmhmA93KLyXO6J0K6rdbEuApJtmKTKD0XKmXlNdT/irhi6SFg3YgPXDVFu53FbPfJaybyWk2tTYw/BBu7v8gsc7HEVfQHbmqD+EENAis7+KkZ6cMVDO8pdZ8YiH1X1POqYMe9qpUIj+WWLsvCK5/1UwUr1vmofGESX79+sJ8qwr5+rvd9r20/BsZfa1CWMbF/ih1vshmNDfdrRJ40aLQCoH+u8Lre/Gm4AZ+ytvxbcPHYcbw/XNg7CcvHloaa8x7Cu5IU4y2e5u6VDn8tYrLllyqLt8aO2TUXsLpVb9SIH4/s7oIvahTDDb6bNL+67YL5eZbfV49Y6ZYi86atSlR2TzIaE2oQLhIn7LUOXiYd87ROaAbfeArkPXcmsI+eCkc47dgfwMmN4bPFetgvQSi8ewAGVhT187lkkwm5/Xnt585FHIJ0GRIZl7gCaMMGTPZpVtdxdTJla2yCZ7m/Qkb2d27t3k+IEEGvd5gswl+9QLvRUIHCN6WC6hb88kIrUCWiCvdYh2roH5TGkdniPw+cPvGfhsqgM6055lIoPMtx9rvtgDEUz7W3iO8qNu/8XS8t66LBIi/0qWssjhfMOQwC0xAGx9OwJaRE0vFHDF0vMDPft7VlpoTbjjUw7NAX+ANL2GPqC2WisOvxKNNUB2Y1lJzGfkJ483zczESzz9MNI8aTedlHgvKM2dwK/WGR4XDP4DSCrCnUL9JCjVkQEhgRN96UppGz+5+eumfoEPJXiUCZd88lefxaHbLjW/wiZOGITPAWuRspXx+JH0mxSHDoDnbxmS77Wjx2stdta93xPvfgkgIwKGEP040Houl0wvjjfTEIxW/pSLdu4pOKdbB0lRK8Cvzs0jRACQRYR/287iPkTl4pwkMgSdAG1hoEnnWpmGmM4FPLRvbkb8HrBIF7qSTnM+dU/BZ++mRxTDxCeBdEtNkAgz8Qo2zJQ4rB5uFTLHrz0KAlA/XTn9YhAqfah4QavSXazMBjNxJ2LKjOL99ac1EkpYgxMxR6b0hsz3Ks64nwmRCmgEMNzzJmYXXpD+MJa/5ghCQF53RKdIa2AfI/hIio5hqPVBISJwSH8KcIBrNHCphbObXD8hqZDKLjQLQfk5n3VeSgaSRKpt7PEP6wVFIIzeBt/DHB18BIv43bTacz7id97/iKYtUf/+RwUKEqAte0qgiGk5zvbWgc9iL/O4r9Xmz+lnkxpBZM9CmFoFkNWzW77N+N9gNrWxb9YEpV1RWK+C+WgUsNdU2gUN/dG8jzCzioH2t0n+WZTlqQWs3xBSUY3raABGMNwaxIUIcsoiTuK+Qel6LxCvPRutTJXlctnjRX5x1zjoMzLqjHY1RthkjECyiEAVk1NmotzngXEtfiTfElOORTkYzFwUI9qj/dgTkHh0Qva4NVJd8T+F0EkW/NCUn0EYsqjC2NnOdJSoHbgzmU045xFTn3lqC2Pmv2E93YX5buxn90Fi9m84ggFLP10FlYiGfen0gLRfDXLlW6meBvF6ejrydN5dyvy61ZMyPl9X8BC8aUA3eqWgZ/M2MqOEbPvJP51brb65cA2BcBCAZoOIxX9/0Af2zR/UevF6ZhOd+utP+nWQpWBxApIZNcZaD1idhu+NMlKMve1JKSrwtRnMnEpK/wjE5GC/xk+bYoVSAYmDV2x0kGhClKbQH4oZIcu9K/GRq87tNZYDN06eHO4FnGWarPDvfvHTClnaogPDs4zYrC99T9Zz9rJFa+Iy4tXY557vB9gLLbnUkbkT+27ZQ9KODxKcnkOmp5sZZ7rnBVT/3FpIs7t5WLWdZiZdqlJ0LPAreqkfusVI8YzMFVmy6YH+ZTgWoIN0OOcdb+6McAhl0tYkSS5eGy0SsRCOBaWKjmGkx9IAymXDnrlIVhY2zIIjF8fTWAUNdvhfyUHCFBQ+9peGpb01tucpM1XPaYz2VDDFGTBifju6703cagrmP4PdwsmByqoZL32XAdIxBI16Y5jMTs+Acjn
Variant 2
DifficultyLevel
626
Question
What number could replace A in the following equation?
3×A24=131
Worked Solution
Simplifying both sides of the equation
|
|
3×A24 |
= 131 |
A8 |
= 34 |
Make the numerators the same.
|
|
A8 |
= 34×22 |
A8 |
= 68 |
∴A=6
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
val1 | |
val2 | |
frac1 | |
val3 | |
frac2 | |
frac3 | |
correctAnswer | |
Answers
U2FsdGVkX1+3+b3vkWkOADW+YB41YThqVF1MAMVC0bSI1L4AF1GRQv9KPFstezrQdO/UD5cR9i/bMSGwPXFidcWDj0aS6m560fm7lJ0xDVbNUq5HOQQfMU2sMQoBCC7csx6/4OwmeDb0ANBkoRutWXohhOoVuI7ok3+QkK+IQS+2FeDYvmduUk3UKkXhH0uQ7Sc2h9RCYiD63vxsj5s9H+GdA9XFoHs32ZhuAP0N/Gx0hyeLzj6UvxIyG+xb75CS6Hrf8sIsb0mvComS6wC5P8hlYApjK2sWP/PTANP1Mgrgmi+ZRBHWE4VIdyDBZflpcTEyXg287CgrN82twRf8FaJ4U1FvOjuq/0ze5Huc1RKdLSKCg5BK/DpQyqR74FkuoZERjyid5ORotPvransgHUNoprmsFgfROjTZVE61tFidyNxMrx9Znm5UcB2s3q3kR1ubUX/qc74LiuWKGKrSw8ysqoM29Yz1HBWxbGEV9zoIikveyYXktgZlLBkfndlqZI6ibuh/zulW0nWjjyvbFQqu4/7uuX59T2q0ZGHc3hQfpJS0x8SXsLtwQSDdbLULmN6VC5a0sJLHGx5fsK40VZ3k/4WZ3+c2XMxBlZ7O7e8IoDmdL3buxEYOqU2wh/+Whbd56x52VM9d3rQAWmhp7k5ng8/lvY4pJN78ykgIR6oxY7pQJZJfpt6ghD4LtQMDkXiX9qDmS7Upo19wuft3qUq2/iGch5NtPDhHbRElFcXNdRqMdHDrsAZvBEJ/k54kZeofBL0VrM2swAJAPPlPJaNXAc6BfgRiy9XzoqtBqBHmKQO65IPpujBBfmeofslK//EflghiAMDoAFH7EVdfJaTNhnjQ6DriOr66JzisRoMPjtIfam9DoSXVZoo/ZPXY5h6cZaHzs1mpjHmKdKXkeGyk1LsOklJEArrP5rSflSc8StTAPkSi3Ph3mi4d0pHaDOIwXp9His2su+jvIQW95Gko1QdD1dCAVhSX/JAEMXkmDCTELU67s+wleeIhq7PZ2UAbFloWidPRPfk9JQ4jnf2AxpFZFpiVKKnKxuQJG6FhTGr3rlmV1YI9S7hcwk8OJx9j7BFOpK64uUk+XyhswDjLrsL3fK0tbI7gffUb3FMQ62l2C44uZEJXNqzgTRjnGJSX0F1OTDyKbKTu6vb3UHGj9JMzV1hVdKbQuE1AcNtYOys9l98Xn9qwcGrvY8uUCDoGzbeYk2oZSqeD+sFJycHu1eYZSSYRDES3vRpbV2CzCRwbmr17gWGu3RBTQrgsT5yJGzfponQnrGYdiO6KDHrIcpkqiF9fVjxXIDaBnOWDtnKTMvIayHW3uKfsmAUIPwOUZ5WRCpFg2YLqO94+Swl8vD+493JL1G7zIuZPdoC6Uvpem6C823xNDYqHflW2Fl2BXnDRLmUKFcP4CpuvYxbLnCD7OfSSNaKhqlker9gFMv21VLuY3hV8IkwP/fJvIIEb3jtgR8CvIyqo8sFgagS66Wr/CvvJHp2EW2PyXF5zNLmQRjKN1rSOBdQ5Ka601ePp9p6JSbKou3GvizCtt7AwDCfy6gOpCJO9CIWLf6/oRezUQChk33yz8OyzrVCCD8AnCNrbbwKlXqOOQinzh75xUljAEYvnN861zWGWb2gHALkSQCH25xg/7daVLeH+URNsCr9nU8PczFhvdq/4f87sU+/i1w3MlcUBZLtNzFnzmu9WrntoytWmxSknsn9j5+FICjewW7r//rVL93Mm/m/US4Vzpmm10VXOlota7mHR5BvSJwcIcl4KnuEgvV1oj6ENhsY8OBRTi5oxP3X5QfgM3z/6DM2QbOaXAvwzY4PlXleZMnAv0JU0xbH0oRiRJayPI/P/CZnoN7XvOwInUoP+7kGyVg5xgvX+rH1ERycOdkI/OQhPDWjIMFSWgLHIehd5INtoIpuBpqxIDKX2inugEMJHIx1XfYZT2IBYANiUHiy0vT5MUGn2zZuR8vtK5U0i6pbCMHEAUtBlM+AUZZzVGuGEliFnHMfFozSBBGS+dype880ks0dCAzC4PoVOIzUnnjygTuLWYqJ5UA5/iuHB2OT/1UHkCKNxfTPNjks2ySN41no47JLg5FZ0jcoTArY3YcSyL0TRgSnAyqFJvUbLv638Lg5qm+GiaPC0KaG//a8J6wyZmyb6Oao0A1y2vtb8DWXROQAxAu1vFoDZDAEjMlR3L+9Pr5o/QY3If6uzllzEwCPXYDIPYV56m5gGN27/F9fCA19AQ6xtyn1MTaFCOEcv7FJWx3eB7RrcvG5SKySogj19hNMyTMTZW/A8hXcacTL6yNo2rskiCyBwB/2FC4DfsgUiH3hQSXWYXgmKzLN73lwrap9PcJxjiu6fXy1AY7L0Jc/dBY+tkuIMQAi/qbiSkUdEzUtaykIF9aklPiPiUF9VZ3c7BuGlh+Ww99kE1fpe+vq51lYOr/9Ai/wk7dNbDCdJn6+26efBUezNl9m0XYisyWzK08CXEuU37bFr112f9QDBQmmgKiutnsCke7GBP4AMF2//Xu9npqP0x2bomhocTvFSqi0JU2XyHYPeMsUnX3FYExANOlFRLrWxy8VXxHTq5iBySkMpiXvQgIN7b54LYzvE07A7K7nRb9VwsI89AJCvhE+OtEJE/PQFD2xMs1ClC8Znxy4h6IpruYaBYQ3Df/T0k+LH07maw84glfntQE1/XxtVDLdpKEr/f8EcHICe9TbEBDYuRMtKmoZFSNSQdi/2XMlTYbLHWF96Fhj7jnGOKDtqtGRi+WkDyr9Zc40+WI7ODo5Yz4RcECQPUp39W/hDypch9zWrg4dQ4YenUlCI33F1F8Ykb0QkmUsZqxT11YQ2rnpHm+FghcPnQOthYXv7HuVIqKLOZhrcn3u1EqzU73YHAX3xcHFBflHfjg+FuxNHKszJromHZ9JZx0svm43g2971pRNYtTDtnIEy5gxPd/dQsTKfPvMFQRHw0y1B/zc+2B121p+8zQinyPL1XdIzbWBgHm0+b4YPKW+nyXR817TVFkiroL+b5tdsv2yLyR92q2d2YgRcpdo3cULNxPktif1T3tjzJdNzMHjTNQPEu1CqaeBzn0na+cv3eBfFiARLV6Hkjh4JZ+u7flw2RqNKZPlnU5xLA3q+1RpEED9HM/l4U8otSCxrYC0z7tzt2gCmkmxq+/E/QC/cCQqFsWePSTF9hbIXGlaKiCavx/zLKvANE6++ZhyYRxnDnCJUdorthAi6sYHwVI6DrRSu3Fle5d0+bMRyw7uQQ/zscXFMYpo9Tjz3aeCnItj3mYvW3mEItHKnEQnWEpwHqP9wbNLRlju0Mas3ER1B6/j17AK3YWspmM4s6pMl7tZoq9wLZRA+ZNpm8Ccf/APts/MqfYO1Cj3g0RNLL/H3TZIS3SlCHTWk6s+8HjJSr7eDQ+ucuc+nPYTphrobZDbLQedudLcWgP4fT3Nkw8enKe1M/eRT/9Zq4VND0menDAOyDBuCiWbh8T6iLegjA7LJasoxtnTR30OtV3qCV+ie+fPs6uB9rL5pnTN5rLMwRrc9aGybyyD8a6YirlYPYIiHAhur5YHcE6orglolEbCqvv4utTN/aRNbKRlSMFlFelb6tcjFPF/e3yMruVf5jkaTbas08hwoAYmsaeG2TXk5M78lhjSlBmLv1HyTLIp5hAVdhu32fFe0DKzLDLKIXKUtIpG4x/fST0an5yqjYRiligddra96/WxcFyyMq/INEOmV87/VRZg1Md4wJN5LkMc56JWT+DEcyI7/vcUkkjvor3Vtk3akdYejdYWGwdklKXTQBNqpyEBBiYa1evuUk+vuFl40qfRq6Zn9Ny6GE2nlFbWtdSx0M3v6Rwor93sBDQ2cIXuPaVBJYcqPXT5l6p9Xlt5k7ygT3xJW4YVmZSUcIVT9K3InuIyC85701BUEVGAkca5MoRzUi06mQJANw/Ec48NYN/eZ23o42DH1kmbQhKqSfJ41HokhwB14t/qidPVPuoeiM58L4E/iX/3xyfM/G0G8MNaHNcla6pP7ireWwfQjXCPLkSd1trerp3OmSiUzV9ltYsqs7iT4Lvyr/sXQwu5ipTRVI7W6CmbchMZcTmaeSpikEtaskD2DPCBvJUtp16CsfiScGctsyuRQ5+g9aBa6pOzyuidbcU3e4jXaXOcPfNgAxM2g5rWwKLt7yPmDQihcaHiBw1mSK7SpH0YBq2X7/DcIAUqetGcVq51en4rUu0QFSWv7wdwUWCkEYizcYSRGioJkTmwpwPl4gyE/0LhWp7eESbTR+JgX+jEqRb8PZWCigxgg7SrQlzNsPYqjFTGPxtg0hv4DyyoWMWdxBffi6Wu0bjqAggkgGRokZx2DdM9mAUx1ywTlHw8par0j9cgjVnjuLZui4rBoSSJGLxvpM4DTaF5CvIcGPrFtq3RNrls+whtWiDgo8eAdYPmhTdefjmqXjWpz1Qnn8A4uUw+9yKzln2jrNCKRxpPbPuet4fXZKzwBzryrINSzNTu5RMPtyRICSH88SPuujW3H0fzNuxEXUPkYAyEZA16tJIwIB2knxJSgJtbSUdc1SVRxbjpejlPjDEIdQGGJjKE+YFqOUAtQbieNMmnb3pZY/ywGjVz2SIH/pDTx9y6MJpIGsTRNbNxnL/SmgkO4SIKQaIpYWrirjAuTr6ZQiWQPM6uwr1QHrManlM+4lHFBDFCQX0ctzgHZEw0IIOvM1BhCL+zT7MOM7zVg9sGZxXTj9oH3ZNtwmc6T00TLLEM8foJuIUN5WVzfRwi6nI6nFYnDhhzTdyOfcOwHbtt1FAK+P2f2PQV1xtgvApU0mDARX6nylzO13hsFR1BAzjnLMEpycrfzH0r/L+AsclJ+LfXXxxjGOQu7kJa1iAFkjnwlU6Sz55JYmo88ZpBgqgOVYIU74VctBPTvNkHd1GJtli+myIjskFhcBKnQUnM/mdAUitcRzSWirOO36sFHOPoRJvrWmdS6CDfDJQNE4aBEiJS1C+RfcUZLWBdlS1FCQHKZGA07+2Mup4L9Q6FUe04/MFAcdakS3IPRABOiLl5V9gDAchSelepPXoVVF2z3MsT5m3URQTQaZIEA6g0JaPYdLdgAlOT2Qwy5QkO+a+AzIoQ4sN9RF7pT8TU1jtTHgaZ2Po2m8fMyOKKp1I4Wru/IGtnmiZTLe4lSZDuHzAcPOXjj5HJgcUwPRdLZAIeB+xkxegXks1XChI1h5oYq71ndRZDOd3In0nTa1vvEZB4T3nUKql1B0Fwe12HqOnAABt/8HsE0Xf2OpEWRoYPdM3nBdqfESCjzKaP7pOR6ACPE0teQk7lB0X8+YwpZlymjMVbPdHhP1k2kQ+Ezb0p5b70udxUHjJZ3An+ZhI6HTFaCAXBZ9QN0MrI3IFLenuhkx0RmxgH6s04TPFyKOP+MPnJRMEjMN7VpTdCquMA2x28I433+thp2hvZuyzEOw+g2Qvm3Nb4epcTS3ejzoebJ2auFr5kg+sonfjrnP2bq5YIU/aXnMT9Q00F91Aau2DWgFYkCRD6wKQboi9sJvYPeyIAhPBbRObstIZyFiOAc2Vgw/JVbB4y2qcDcGXJEa9fLuqtzhRKrNzSriMYdxQpJsFS9BTgQyO01bFzRAk8RolvmEwkbHgDNBkkIvgaKAvi5jiJjqyEFftAbBYIh6ruX4lsMB11FJPbJr0jEFpxW3o416+PPXMKgsX05pB3fX/ibic1mC0VnqaDZzSb6SSvc6GFrmzL+XFKz3Xh1MoneT1vu8uCrEsv8k/ZBSW83iI0ybx1MSEKcXUS78JTlva+Qsqzfz77xmuoYTURBSaked8YNuyyErAsp5XFTjOu8wqTpq/d4eii4ZPMm50gYo7vJuoT8mGDsPhcOfYT5fRtixKuYgO9Z79YnWfh9A280uMhGn2bV7mq66AsRbkvEVAfuQ7TOTzmZmoAdXWvBGaw/CM2GIHQ9/3yInqSwuMwW7WaViEXNHT54U5DPj4VdydiLcqqSerp3mocMg80ViPS7ird8vgOyRAEZR84eYT+hZrdZszZr2uIvOuxM2SbV4fFG/PJ09dW5LXP590VGNG80OhST+eUdJanR9TblE6zjkQQwDJ/jp7p4lNPZugF9Gbxy8845nv7d37vkLSTK2D/+uQ3FpWs0Jrn+Gpm4KtRBZRH2Ze/MthJbq0ApV3lx2p4mFewNFxM8pjSDAw4Urw8U43Isw+TNwG6FmLBvO552UUU1aphFK3GBDO+7ANBBD0iv9JtnMLLcXtFiAAEc08vf0nxAIpUeVRmgfMwa500g/KtIjMxlpSrGqgzpqR9YVKa/utfborPLVY2TbCOUhVkKC8aLCX+cwbM6Rmrw7LhCd+9rijWfNu6u4RSazSCfXQi9esBU2RJt5qb4cwv4LczlrOGh5TTUUccvMcz2PIU9NYwpdk0MdWtpaOK55T6gk/EIIwgGw06yLKgStaNvq8LYVyNs1IN61ODQVBVkmNi7utgGccR2AmRnpttRMXMDlZsg4nUX+pnFEFcPvFVEvVtB1Kvr4KEPy5au5X/VpaP8Sas+eMQMHN+WBqmFmQ5NRr7UfFmra7Rn79PuVziM8PQYsT4KTzqLJatXNp44smNnwvOWByVep6AcILtslfNaM6GUrXG3cvtPrKmtmkOyb4CBryp8MJIs7LPubyUI8CvrLlNT2gMs34zSEwPfhnVjjxwUIO3fp3TQtaEN0ZaTZv8vBOTY1ZbZE3eA7fetUBuYUsk0/C9ZtCR2nbEpuuGbAfUUc6T/FoExtYlMvOhUHciOZ/TVHhJXM5RO2/5xU/+tmRG5kI6CWulP/siIMGmTt1k0Nd4F2GdE6OtPnjdFgYCD4tQSkhcJimza/umHl/4dQMySP+/YxGJpuG6Ne/6KZhd4tf6CuywYxDFjMjVc7z9DjsPajr4RHu0Ks3675/dzuVwm12MjuQpBYz6WZU8x667BccmYK0AGZ2PSfu+fxkxlViicl3UlgR1vV7Vb/0CCQzxZc0owZ8fdwdAUALwArq8p2djW4jJHZillCFpVcXWcsZbpD0Cj14Vwale6yG3Je6CeMHqZTfh+QtMzC4oKm7anq5qkjqRsqAkfEs26yU+YCntxLfKCA93i7SU9BApJ+yMI7xOGSb3sQAOEDOKBG4Qsd7W7wF+gmTw2hvmb8xlNsPEVEbfZ/sJApJiQKN+RJX58SCSKSIOiz6B5yU8xdOk9NY8p0R3qPpPubLGhGGhvBvixwMSiKzAlwWtbARMGaz+GVQJkCmAb+zc10E6rBhDhZUKa+KaGXaaCUv++JP4Sh7zDUUnB4kmoTAP8qXdpZs1XHDYqSAyRI70sKn/gT7FFwxxW+yF11GKzGbG3aqGJp6A0ZHDYCx6u9Yjz7Nz1FtABntpsdas3x02bhqdGFdtJgWsrx3uhWCt/otPhNRfOvfi/B/vWt04keS062GaGS3jUJOjz83KHGllYzHNzZiPDRf0HjKB0GdXUYAlvcRdJZ6Syyj9r5vevQX3Be4p4+ppkZ9NK3sQSCPq2sl0ZOS6lGDKl8cxXN9Wcmz0E6SHvkvrUWE3IJXSh9EFNZHeBMU/CURjHFEIlyS08LSJv4ktUO+Y1wLWz76c9Sh0e9fGNjWg+kq1N+kdwTFzOyAV7ayF9svMnaZO86o4i8nu/d/Fh3wHNaHn984b6OwPWZAIaGg0dXBr9YwnbAV+fMtDuv6AwNxVLs84f8mvO9gxm3OyW19Z22dNpE+BCSuHKR0DLNABMfQ5oj/0VisA1mJIaPinf4aDWYZTORnB4g5aWfHHjG8gdTJgHtF8nPbnmO/zdfMTo7D/Q0kAS9XSGUq8E9DT1l1zf0r2vlsQ6oJ6QG1PW7Z3+0nnswXH05DkaLDXIQl+GJqLd6YkP2mVcWdi7DQ53zMSy5krezwSDjyzmnGDjA3UcFD1Hi0Gxu3Nx3fRO9aejs8UNW+8tWkOTdQUKYxxiYrBvW7LEjyXENxd/agHtzBWGob5bMGhM2I5al+gjDpdZqun3YQazYYizmVveDOxDtVn1XD0Bk+i8nceQAfmYpU3fq8hiOdEiWHXTGkOIrGca3sIW0oWxpZi1ir8s/ppwozJ1Z/NFe3J0RCeouzpqPXpzgV+bKcV/gheqEXC7VA8gopvHAH45Hrs9M8OAX+IK3tSkPkt0WzJZYNYGXpYCVQIy34KB+U1sKQUgedt6Skbm9QBaaswtzhUYSfQoDSh4NEJ/FPPMJNtdIkMzv/WWDSVtqgp8g6A8EyNjJcrrW1JSP6CUS3zcrgPc+cwTQIfUSfhJddUqnpyKwJztLhdxH8KHQV19IXy4qqoyAat+S/hlegko4qDl4U4M2hzgDI+HmmpYZSCIguIBnkWa1VQVK2QK5GD5qZyRjBFSCy0dT+C4mxjAirWmyCkXSvcQI4dzG8+nJuG5rG/nhOnfXPmfSlIAfqsf/QM3vdYnwpZ1lCqRBaa5v+oQco/ex1mkk2uGwRKYU+iQX98r8yPsciMxuz4O0PPIbzmKuAoRkap+tbBpn6PU0m/vkogMrbJbxN9qH4cLxBCQdI1Shou530llJhitB87PciUaPSXf+cBsvU7h/K2LTLcjnYoZVoHXZ7R9/5cHpQWjxERzDZUSkr9hSBO23R4ok/LKeofLbG1b6sNHWWr/92ngL5quobAWQyqBDA90Su2o9v80Dh4IkNwIATMQ1pfydeUYaak8ml6pTnT1IaRYnMPwDELz/QHmUjZU7c+q8uXgSlWyX8Zupph3+HMtrw9jroBukIqFDK/o2D6PKQNMLOdhyLYGMBaEIk9PZAi3FoYnX88KFsQkyD4je48Bgr4XYpknoswZokkyaBkzefS9RdfEJJAeh/C3ofLwduS41MKYB+hWZkpl4Lne5y3sqLXeJgF+YZ3AmAx01E8fPSvrNiznKs3ClSh97FD9xGzJ74GCJAt1Hw4NB2Qs242EEGdiPmBo/bcdDjzrYQqtbWnUwPacuJ7se4T6YEh04u0KkLr3QIrACVhPeEzM7dNydXL5LlI7BqUf2MEO1t1ZpuOKbVVm7GB9eyXkmGfJxFeO4fHzIjfvs5h/WaPfcnLdp1h26whUq0bvq1IGNJxwAq40MLxDGDPuz8EnoST4NCQ2MnFkNTdjG7fKz30+lQEu1t0sJeDnLEXPYdRRES2EZbRlM5eaSRKjrdCLkUvTYmfqnV+aXfr4fS75J3QoMG8pQWIdnHm4JXHr5THtvr499YxXmRGjUo5Q0Rqv3YN0igMLKfEQB/RyU8KbQ6y974WjoYa3W3sKf8GAuxNATT2okCag+StCPhH2yLYXLCZtfMJEoGKV+M2boSbP+PjMZFQ4E+7z7PW0oOeCjGUyOjArNFau2JoE/oRXRWJi6KqLhJBwdb3nUIrIHHmDR54X1sgSPYceAKjfbEmXz2a0gCoFFrfpEcfrOnBXdnjc/sSVzJL0GFjQPLUknE3XFVCj/l4Vb7Y8NGuRq+ROMLyLCSJ+hVNm3AXTuebjzGnlzAJnnjIsNjkZhkrfGMkOFzGKR+753oXuzBX4TXZ7NVbvN8LwEhm1SnhaYCml+9zpufijhwk1B77bvptUoLXhrszlakYQyQp8cDY25dHj28WisBVV7e5LRs2gJbNyEvZfES8ZMjP3JMoLUAvM1lT/6Oi4H4MOaSvlvWVwDoZuFTgrVQ0tW7rixaAgvHpgk905tV2QH4HcHqC/JBiLnT2u2X1bG23eT2g/Fy0pO5DDAN4EX2+05tvy9ymglsurb3aMMQeIqz/I4foPE7Zh49JydB1mCZOZJn8gDj7G9XBeJsIj/wnbz23Cof2lXxb/ENtQvyHyFz8xq3D0bPTilK2YT73i+Z0YyASkTZBAowG2mRcDDz2ZncgpZZM3FJ8x4+dTx1rEBkhwaDVjAB7HtxugZNpzm2AGe68GXp5Bpv5k8HQgfM4OSLSPDyhwCTITLahaAukKktZLd4aJQ80thAqDPhU5yR7oLZRduemuItthFg+gyPcFlS0M1HevyziRaeJaEK3SAmNzp2c2wTAWYbefwqNdXUEMzXxFCOtkI1i2Q0f4mrIxWpkHLzv09jZwwtdrkWmhFVIZP8GThBrKe0pcsSsQDSdJBzkul9M6bXgALBGhwZJwyd3c+9kNKxhzSjW4sE9P8pgUjsfl4fu9onfI/hfdSADlFClh75E+hRDvPcbz2zPaS6MYgrI3vlBv9znIX72ryPFhwJ2xGDmkChhV6anQqz+97Vi20y49XrRA0fLxdYRMNKD+137pWfO4bUvz8j70UamjoWKTAb/Vmrn0nXg8Fri9HDd5xEkpBI+OMbIQnfKgZu9nlusLyR++a4K0VPcAWY7JPlGlAoFdu0eVsfb9X+PBSKQA2tSstCCcT/ebejrcnH/gKETkLs/L5KO3Xp9FHxA6NrG8kz79mwF4fkyMu0B2b1PkpH49r2GEebNJNae84i8JRHmaS0RDajhwvURTTIkZdfychxLQudchtDhyHJxAXCzLYjxYPVgNU2Ow1gtU5aWaLItU7yugZV3r3B5DCaPNGXyrrkwiqTywTJfGKAPydxMX0wvnfxicWce2xp30r6RjdeH93VM1NWa89xxVdA4m30qjudMHsFQwkOAcug0S7UnmrzvKIKoaKf7n63bTD1aELIz7pKViUq78yJm0ei0m2L9tiNlbIyrlC80OYXbisU9DHK5UYqs/rCc+8iSNawBtKC/udThmTJUBIfrja0AN+DTZ3LkozjwKkIgT4wcaA3PwLdsL7uvXfT6Beh8lo/Y/Lv9YUVGEeHlYdVAuMRsup1/HItnQLq377Uj/NC8wNMpz6aH9u6KCXCtmjprhfvQ/poBGxxb7gyG0/YhF8l06rffFMFYjQW/ILzcFyH83Lo4t+q8eCPheI5X0wDq6w5MEREGHaZRmJDWoZazKrI7/JA0bYTEO4ULDnfagKFYgytUEnWz/XWhVN9WQpAG7WNq4LFd37IJG7wJiPh+00GpzxDcxc2oeYHwb+d2ECT0WAsOpc7DtKd/gJQt7JbqkxsB25kuSmvGxLtHJTD9SqNcbjv1Zd5vh7eqqjxccOvnftslo+UO5Cb7L/cUS/2TIm7CNiQxQnJYdeSH5vQCeFc6EFCZS8Gb3jjLhWgUPE7EggJS2ziDNqQU9H7YEV24nvIPA8xtZ7tNBBxcV0pUtxj5ZOjnTaQ2yyzJMqHu82+q1PnUaDrMMOrtDQwrGm018vW7VspIo+0Qt1zeEsYLyi4Cdj32Llc1p2RuwXnowbhvUtPGBLWezWj8lv72XBTLAtTHGbo4oNcn7+D3HILfmdva1TJHazo41S37FPM7HYmEyF5MuiZwwltR+b2GgtQuSLzNiYMtbcSNsDstdahYhk/rQv2ggOfX6ka4YD/mgFESnfpWz6SZQp0yo1YvgKlY8Gf61gWQ2mxxzd4N9QQ/es+ybzR+PCKcYE27GTbGrpA13NKBoCAD18OzD0u7mYZv8qYzuCcZx7nyHWgW1cNHKj836YP6iaTbh0twU8de65gXS5bew1mDXnt3DWbbDEXd/XAzcM3zXVw0QbGbFBnbQnqOXsaAVPgVX3dwNb2O3Aw2mk/m5TU80WydlCMiq13ZXL6Pxan57SFRABqtP0qMJWNMXSXsmr6wFeKO1a8ppvImnUqcbV79gjUDSIWPH/A83YZXzwAzOLNezouFzA42kiKFsAz45PzI0yu9inryG+3KH6ZQkn0aiUDL3oa84ypKaaNDn7W0VhEHR2gR5+sIMkTEl8QVYTEMiyfohQl48UjaOLUhqRpqfy05LwwpeUKDXelroxJzhyJe/LezZn7iWxcOkZXw/3EPpUlqMA7Tnns+JlVjZOyhRbXVv7CvT8fY7RK87gGFhZ5X+viUGegHAtDAJs4vl1KSjWKmTQDTT932TuKLTvJVhFjPAWeRee5mRh44i2tEzDBc/EXUP6U2dvX+zFaby7Py9rSVxBdY0OJdEvhNTauYEgTlJKbbXEtrJttPvEWUEWC1eiVoW9pYXhEQo9Q1MH7IhQZl1/UMRaKixwJi2Jqn0MkFbySyVXfKByicoUMHYvP8XlmQIyP2KyZ9BudyOJbOGzSfCTpKhXznsOJ73lIjfygkezltRICxmHKUHo6XPrsqV4o0nZRFrqFTfpiUGTwO4YsXunLnRj6e7aBtRef9eOdNBv+IdnMUFeibAa1m2nbUjq1g5NXVRn5FwH527SlBI5RQ3P7AMrxh73qjucw6c8hCnqcU5Aib9QgrRQYjd1nSR40xOVKfbN6b9snJspMeztJXSEYJWir7vf+3KfINImYKAFQIowM2FafxdRAPhRL/plVNUvanSGqTNhAwJHPqd0VaVKcp8g0oaKeC3nPazE0I4KT8XjrLFzvafBhdEX75f4aEl/+3E/LDVaB2EjWNbBPRqZkQalytMy0+wYZAQMrFeNvajdU8EZD0Nsk6HrFxdWTlFVgJHXR5EYyrzl3gzAXPKP5pM8RXG297ADsM5d2Z0Oq65GvGNBiEq3plkLdwGy56Eg/c/LQCHOCgVfgboZ2Im5X6XriQV/DGkFAtSqcVB80J+MRPfaRZ28BXTjHoPfd4tL4uIkdKYl6JkbspsGfKxVBRdFldBr8OZM0Kf3UJAhSgCQaLk/mlM1VP4xT2AxDVGt2KIFZ2cdBgvONzjF1dZJscF7cyhdK8sJIxdTYV7oTZHtQx16sbgGOMFHuaXPJYwgetF+hJ0wTqaTyFtUiCkD+JOlDzFZ1RBi50ane9/8AlpYDmKevcmAT0mscfweECRkwRt+t4xEBp4CP9GoW6Ljrpt9wGGmEA06fk8J7NZw4no+kDNJbXgNUTsPldhBzsbg+miWgBCmy6H7QfJjofWqYk4UGZ6BfY1sucBnLj6C2rsag4swsCkEdoA0ykgY63Sxg3J9eAeIKumOYcVeeZ3kIHA7E3a33oa++5kfK7EopecMcpjU9i2yBTzKuQ29m0Sj2O2mbvY8HK0r5eTTl28fM2jxfZOp0Af+yRJKaWyBUkJG3edhE3XkqZc6AvATHaApAbtgOakLrCNtMfTgJjohr0kcN8vNeII6BqmEVQXQOOtlmuWVz7KRR3O9FT5L2aooYB5Qjd4WX7WVsf7EtKr7eBwTxV6WAmFw69lhp+twF1j4x1Jel09zliljzHRM6BsjVy2gzkw4TDY15ASy23r1dJ8I2ZU6spP5272ZlzluNr70eMm5VSdEVTOg/Yt1yTxVOVj4dC6dsRRlWY993cyh1T/aQHbZ3wZqxaCETBR9FYOYkKaZ84zFq1VgHQkTKV1uHIxDklfPBZAsUdyW6YxqzCPdyTpv99p/H6rSAaTyOYsxXSsfM5o3l9tDj7EH77pzRbHeeNGLCPAkKm9mmu73LLhrULgpZoxNbYNtxKhcryEn34eRSG+6/nrOk7t9NyawwoECsGinaDc+H8HxpyG+ZLISpv/V6GNEbVA1cAlPCB+0RASrfMNbHD2HBsYfkRPXV0PBCxNVtPB2VbTtKVntORuP3mlZNgPKDACh3RBehA/1hNPDBG6bXZsAgh/GZmRjD8D2xnyY7QBSwgaHPwqEzqGDR/4P6YgK4WxbEmnEIZ90gE6OUjoalkCilC9GnD2qAlAX3VZRhX/VQjbP/GvIzxFjEQJcZWuFTyB+6Ac5g8PZGmyWQESicuaCcz9AU0yqFQZhrxKWAOxgnexk1df9zcFuNz0/++iOCQ/raobHw/xyFuMmy0ixrG9dT3nPIiDQ3baFY+KUIMazBWDlotNE7D9YSNRduekIlwxdqy/yBcfxk5qMQrywqwy8/7TO9M2N5OAjf3HpqRno3f/PQSlKzpxSl4NykbI26aJHDMb3lKwuUhrtiX8H4KAJpalNPO+BbqcINJqmhrLquJDRVBOKACmpbKqFJYXO3MSHH9GjcYRIbBCuSUqjCp0VqlOJpHh/wgrVJz2bmsZZ5TYXdnI1ZE9313Uo/mJlHsye54kkrbDjSxa9EszN41R+VaIwDdccEbnRzuTQtmwZim2oxZ2YIFRopbsnZBc5ayhnnd5Ek4SgZ7Lw7es2ABESvQkN91PkyeCK4gpGlwjKTPilHikj6DA2sfUCrUJBPjpFozMcS3ud1yOGf6WcHJv0ADFTwDtgk02mY8baZl5RITriPJff78NunQzbIdb/oXVgjNA6X9zipl/YI2svX4mWOSeoI4yFymtCda5UDIZnughNJao6/L6IG9BCJ+a5YO7RYwBmXzvhVtdP0jtZwIxAdw6VMH2xhgPUoPnWG7gzLE7GK0IJ+hCpFUrRre/zIeUdLFyCHjAFaScXdBgLldhJ8ILA1CNweG06NkB628roFtXuYR/vAWxaByxjDkAGCIRK+Q+3B08vjIl5DK1ZdxzLBJE1bgSuD8Navp0xd+rFYuwrqKhSRfoi6lT07OQnOqZpOYWg46pPY6zQfn/2rS2iqVvkPUrLvCXfqznCva0Fory5DEwkBJ8DO8IyaKB+gaLEurG/szubqcQ/vP0kfl6Zw5G72KFTTC0r1lVZOF8R7JYA04uHM201nMFb8M16amtvhXQ3t2cWTdhaux9+6CTw4r+uHFHoD0tNTt3jV1xUJdcD0+3zSlv9uqV/sAD7oVTgi+PdocKemu7pDSovzshM3mVFQCIpkv12BPiu7v2Lz5f7n1S9sYhTRd46JPDiWYmEBHxvtB+9ulqz6mJ1dX5edWyx4gyOoM2/tQFPumEgKhWoVYYGc1iHdTLIKkNiC2SQDAO646VWB0pdXftymAekEoAGKNv9kzAkNxI1509rgt8WwLdwVGczs2Q/ZhKIVAEdvxiM/RTOx3nADm1Y7S/FOBew+iaVcO24QAa6uCkJwYistFSe1jpenK/uL0xQiC6hHbYIQARWAjIwtNPrxOdiUT/a7fTyiURSsM9Mu4c+j7fmkCT/vQFzqRZP4Bw5cgig14rt63qRRLbGv1lbYbXpK2LvGBAfK9pSYSV9M5G4C3kigeROVvedhxTow1rVD6wFxBzmZ+5JrQ/cLAfEjyPu8R32PlqAq76M91/Vmsy6blAylGOUU5clYPCCRHpfu8A4ISJVmXtd2QhvihHHXmOlH807InmGfMflXVj5CrP0sb+wkSYRKXvc4hxdbBgozeHYwMWHkStTEqV9P38YXR8hDHlhalMfaeqYmr+Umx5i1DwrgCgR8Y7XFOq+mlCiBp3DddyUbiZ7bD35GtJD7EnuysXe/TLZke/nvdm2E9FbB883akqx2P5wbFghKTdR8aNeKl5n6ppSxdcrQ2yRP52tRYgDQEkWq5DEJVReGjOLEsbQ3HAN3fd+UB2tI168x2LgHm54kh1ummXlXbC3/7PTJf1c7Nn1b1MJ6Mvav2KaQY2TkNSipqSwvUjeKaCrOQSBH6VQWUYZplMHns1/MEP8eblfy/qu7piD1AKNc+mH/OnVHYVQSlTZdvFyckkARtkXH2BwZDmQraeszlZ4kkogX0sNxi2pfsaG8dITqQitQ6Fxy1wrJGzgnmhqsZvrFlBDunSjwHayGg6yVWiG46J9DZxSe7/l1GKEaAt+C4CjZhJDERrW8T+BNix10B7EGbTI94mjUiO2QBKliwx/b/qT2P3ahNgj9BDvk0Ppu9a1v8WTdZk0FPjHH0f6LaZOeJD1qKonfhlrRqbbxZ3lcgafKGU2o80Gc8rxeXAXpOicMvW+Q/85Kf2bS/o9Ugc9xFSGBw/GUEihl7gp19/a5QkeH5eLKWdylRhhyHObHj4+oIfhu83Yd8yMOD5Sfw76LlFJmh6VLSu8EAGz2/CFOzJhlu2cqPxG29e3PA4A/UEWcHBVLOfG9dJGJyYmOsmX+mwERlwJOTXKKQI+KfDYjc6c4Kce2AXLscDasbk6WZnQ6xnLPhANVBbr/D0tBMhySlb+PpYwiljqj0ud4tIyi7ZxUV3DFSBfJ/yCAk/CxzaY+CVOgtZmoWTY1y68fvjgXF84NX3vZ6wXfk6xHzvbi0jfUNdRQJdNgJphSym3mNM+GhZVb+hfyzsG52FNCaUT5nuIopoNc3pbL5nw//7lkU/NFQar5sJ+Yn5YpjA1G0u+/1x00wk9w4QyfuL/iYzC79HmIzAS74Y9DmeGQBBVk1QFQkGISzny0mqhPPPUgldY53c8yJ7DEWDC07hwJg5B91JVv6JrVeBGEZyI/Q/W1+0x8DBZndd1a3/7dtfoP09KJafGBNK4UV/xg1BCyyU3TYabLjJXdYzTQHl2c5WoA+Ia59Yg0P7Yf7ijID3XruDFN5xNbAwMPsVzW2Ao/UKTha0r5LlCiufWBRnx2SULdKAfxaysTgMsqnJf35jx2uuTDqCxW6rXgBS66TwtJh2ydAsPA2O/FSw5nyukHHrRs1I/5GX7ja/YAWTDiSS2mGNx8rnJkupyShlIry35I6ACG5VdOLTrEWDKbRE5BN0/vbwGzmKmiSvVmRttMNp+HM9zSk4Z7G5KDHtKViy5tP4KmWuBL0g7LUpNXYFlShHL7irqvt6QupZqb+J1vbCgzICYUTMQkC0Nx4B6g8sBIc9wjcSMRTeGaPZPF5eZaqPll1owh+HF2xpGGhjbFxz6tlGwOMnrLiLbgFjNy9B1b2vy5Meq1MjJVRYtlQ4lm65eBsHTVWleX+zaTStE1tHed4GBlC2i8olD2p0XDi/GxALGWoCcmHGSYarhxZ+mLPX+F/axg8YH+fX2PyOrCzb92bC0VaFYEvC36yxPBXNUlAFUTv+L8SDqeQvc93BnXcK3PUf9hsWADJ3trom1tpgeNKJghnVc12cZdbzI6h2lWzrzGoH/lWjylImmi/GNSgN/tg5yz9ysnVZ2rQUv+JEBtX6GHfwevMSm2deXlpF1tHzozMlotoiGTBZs6URhOtHPxkWg6md5novUOQPvOUHNWZQhRqCan81VBK2SKGw/umt1eikOM1McPe6JybZpCxOQ0siGkjhTfzx1BGtmAxJCgzPneggnSXVNciwv54ztMr4ACrMWNySYcPDi7HXNqfK+/2brZjAdkrbcmNWWlfhs4n660sqrM09JhfJy1bq8k0heXDcFCkcPmaZqSOZYa2smxU7Xp0KAdF4lJES8fuuGSTlaNBdEb0DwtZFLjS+09mLlORDwoHfMK8pnpJ7jGUacxU5JymJ43HUkx+rbx/tq/Y8QT3oTnlf5h0OfTDZSWLRihuuTE2ovXv9tIXo3P+9yTwctn6qXyiJ8Bo02C4L4D2xNs+r8yi46iesUlcPS1CiFHlvzXHdaxy0survEPL2YyZiCxiUIMkRVIGbIbjkxyYgZXCmaAKPzPVg03LFhVQBZwOELvLOEi8mfimWbQ3Aqp336QwWQX14SuUeNo7Ho4c6zA4VTAS3JVLsnCQWlDFWfQASJiBxvzS6Zz5UymKjVy7dHNNpqTKzLj3FcCQkbzAnHuOTRS6hPB/0qlhKIVda6tlQ5AEf45o4eq7VtJs0rfj7b9gXYmMLnNFmRVT5FG2R7oC20ctTDQbeUYBlt9gBNTR6udmpKsXMdTVTpGeR6CqtZVnyRPv2Q2+NHpOHKpgxUSVBYzis4/VNGNkGN+eSgnRHK4BqUL3DC5F1Ds0ZIedgF+gOZOJ8ulpSBRMyZNLLfAGg+LizfeyQ93oCNGCm+Huogb6d75UMxqcz5R94+CV7r3TyEmbeY0FSZYuEhgOr9IqcVk0puafn8eBoZ7UtBXgYhEB5LxYBgwmVemb62OldCjlQPT3LlodL+3hCMaQ0wYh6HLt+tD6PhDBN0DjLAfc8vxMHoJ8mpZe++3BeA3Rs1G/RyviFdZKkPF3Z33HOfKGNJ2oPTlRIg22Zh+dSNIMnkM4JvAl910ZIJShCt0Ij383RFTPGc6Fw2y0vS14p8QzUbXcv7bKWCjMYvTvjZWaWpM5BtZLKJtZvaiRy6go8vTIDU5S8HLz1bINqlEHuqBW4TsAEYJuO67TeN9Y2HwStaZz1BAsodnMvgoztXXJ8GtMHb5fXxxcZXy1F+0Om2QsXihQ8sudwjqQdp9C8EvsF7RjRa4NaPwC6YVFItgpJHkiX8l9RyY3TFFFaNh4QpZWK3kl9ew7h+1BIQ466kE94BS4W+uiIs3+jqyQAsqmBp1sdxcr7EsZI98yIlY/oL5BsJzmBtG39ENPhpidzQ4OSDMYn8aB+E2ojfCcZ1PalHMAUeLqPu8S0F+NBwymayOqorSEIwISuHTDBedJRoROtxxSxYNJez8f/BFyWvc9n4UKPZvFctjdhMjKN6feehvwvpHwY1+nGHNzEpxJ7r36Jg/lpB1lVvCdGa+GHCmZEZV1YHJrcwvZ+NQmB3T/wJDonrpGh9lMAYbMH9qZ7mzqtvwCnSGGc6cI+dRo+523AxDfky7DZ4GmZWYFj5cqfK5ChPkpunOPLcxhDj1etLbz2ivhRzNvwy70/KzMX/UMQrSv4euExIYyiJGYSfVrCPudcFu7m1nnR1n1cBZiWFpyO/6R6xnTshImwaOWNBEPn42KwhMpdTdf0VNOPPMUcvMj9hy1RRZnAHY/1eUDXdbe7NIZhnK2wDYaExMBAzLq+95UtUst2SIqliog7TCFM3L2BfVid/b2P57NO+Fd8v0nFWoy8H0Xzhb1t37bp16ELU75ee735QgwoTtKybepP0o/6c89Wy8zVs0H2hOahQlTrEzKJKM1kfD+EwViHtVGivicVD//DlNH1tZdkt+hFNLkxf0nsqzmCr74pYrdqxUi7MRfMrRBhEyWJuW0oEDX99XUsrEoJfCO1smMjv7sKvGutZ/i+xNCagdKU38AG7A9NZJ1FF4puh0AJbNFSa588haRPEE1VbMWvOnlUHDJ2DBGchAfbKtvOBtRqyp4Laigwq8PvN4hQkXBUV5EF8bp/raWZhY/NSJy72NR9OoJPsHpw+Z+nJMD6Quqw9UF+JC+7isRhy2pKSTiiDAIKw0Cr5C0idAGurKuy9NycooRUT/bA2MKpTiROzYxznCUGwaaVtybgmkC/gl/Ffn7X/tFvLt1hBqgjDyz66am7LXLnSi4C1kEPNsjGiPiWlTmStWiGMb1YDcZ7sXk14XkGsDjUS9916a3JKIPbhxEOLuFWUAVvOAcTF6AzQ1z4W0bqYxNXe+LLnj/vqj96NQ23ONFSrRYiQCV1Vj6/WkUrcDKUCNk2NwtoCc2sXydQHvXuYRS6T16WSUSfkAOWNTUs84hfI44yBq6vxIKJjlzZfgXUUwoUv0qm+tnpYNXpQ8MY7QGfnkb0oZ7fYwp8MZQ7Ff7/MPYg8yEwr3M1TAvFmmAM+69VWqkYhvD6egYLWb2W6BjOqBDqwyB4uvmhUFeYm0WT2Aj1FHttiG+dUWNTeg69XP2AG2bmRi4RWlLSbs8ISK+qgP8spl9JUivJqRptlfw8fb7dUVLuGDo98HEZYC0BtL3/o2Ue1Yf9beJE6eqFUjr13FFXCrZdw7BzAqhl3F7x1xZgqLH817joJzcoVTjsr37/4IRXwIuss3tokYK5pJlbb0GPH5/WM5NnV87Tsl03IX7qoe+tSd6nFmE2v6dko8wQJceI8tfY9zbQLDC32q93RVfY4JXYIYtFh+n+acQT2KncVmktYYIjn1CVLadW8En4141+SnHfTwxCHzmiI/tHkEA6KKZjIe5dMqgxuzaqc1/gfPY32T+CSgtc9cZ2XmEcodiGbH9e5Zf661ZhLSedFBFCYiJciZqou/tWHhvQmakgSt4htfuA6TPvBadiWBWK1UqAvcPe/96dGhvQK5mujqSfoUykVFaE1LazG4I+izK/48FOAIal8NbD8ZWzQXTtjYatM45adRjyNgYT0b5t5iDmpM5O50eeSvOFgvi0V2PH/zJwSx5gKvjPlovc6RM+CZOQMZRsIjwUdfViDlbv4hnNqWxboY7nFQHvTexkigXdABMO4dYPaLdw6FK1k3/ZWPzdV02lWn1ewdYcpodXS73fGQuiEq4WJiQwclJkhSbf8YL+RQnWqt50zMWL6x49PJOY7NypPAXXdFyJ7OWRvJmNXqdexPqdLaaVrRKXXSOg1Fw2iSfKEW64hrXYKIydt6KJLXAs7LbHxpLa8cSMG/Wodjz8dE5JGMOKREUpkzuNUAgtLNJAdbJrkSxt2UUNRjQm/B/Q2pZLWayyAnVl4RIZkDMclg3zRg85m2KkdFE/6ytpkxid3N7G7c4jMSV9Eo1GHvRrFvRduG7yJTzELKb1xtpjvDGwQZjPIDLbVn7ivu+/EIJUhWm65pcmDIPoGGgqQIuvU1D1z09F0voNPNDJkNIT1dNR9g1CbhMYxEtwYYctkDk5RCd8FI2XrckLa6PFWegoUNNDhy7TS8UaTW/FuyZclD7tc0MqSF8IkUX/MAmrGA/SZmRo7AKjfoAPMK4HdCTOAJRwsi4KbvSyNxkiCQsS6sQnVWP2FsOH2ZTYedQxkurLNXqDeunWJM+DZ5N6rDRW4rlnG6ly5sQsdpCl+sLsfJRyjo9Np5XdX+eNGinpWdtikGhTM6wd1hcX0oCAArlVhUGcBKNceYoyBVJydwlr4pzeM+d0pAfUvs7eoTK7Y/LmlNFNY26n1dyKmd5qhuaHgQOSaafKQiXCkGNvQNqP/dbGOdmPJYfM8Uk/4c9423ROA25eFZ/Fm8b6BpR+2XkRl8+HHo4u/X+nxr201LlWq3vvhNM2Ruc5sOuf6I2iTK43YnPmggwa/SEcjsENJHgoznpGdBf40ngxvxnj2Uq0VKPOtxM1tPSpbRj7l+yzQs13b1NI7wHalspXbqcv+7tIkGod1hkIv/0oF7fZBsk1Abf79JnId/VO228/4Hh8DLtHq3vXQBEIZ3lXYNzbXKKCiL0VuFYXjQH0tIzda17vUd2IWZ9Tbtrv2+0D9on39Tkfv4a8HsOuom0iAkmoFKUPs0EFxrdSmOQ6GB6aklsqVoYZxSocSxhLWPlHTLEylkAp9s1kOZWUjzoZf/RJLrH5CSdvXWfX8QnE0ONExzjwomJKrChF8PbYaxwlbjFOxlC/EvFBGO8NFRV/KxnoPTtQQw89TgsXF+kdDuJbLXMDNjyMLVcbAk+61f44STpFwt7mZX3A079pysSDFC0tK4zYN5EFhEQWdVIj8GSD+/iN9YHqa4CU0Qn/5/WESm67CJnBcdvvfEoJV6eryc45LEr2EnJh9MEcjECEEerLjOf9uHSaS8WI5izhRvv3l2z//ca5jtAkcgZfHJ76AgMs5GcLSOIhc+8H+9ts1eoycBV/svfMMvwuRt8LPF4kuHUq+b6vAYFFCQLvBqBv99OFHtzAM2urpRW3sDWw0pp9k+ryn59LpoE/XcjDqUO24VBONgmQwWCw8kV2+hWd/DU5Ad/pABiytXiN6Px+CempAlaWs3+BE94ZD+0Nl4n+ZZdiPVDh8l5P4hUmAh9nrHlS5eTlZFdsk3dk9GH4sfKRliXnRpSzq9LB1dVvZD8Azszy2sW+3uGfwtwHPN4IewHt2g92zrfGk6SOVVLfNUUgyNGuo1WQRwbVYmoa/UhlIdRYNIiYiy4OvlbKPC8RS8opBMdjtfZH54xLTH6Gz9/sLI01cFSG+D9aGMUkudaIh/jnTc+M1KOGWCIJE34X0ay2Qc3DRcrGsRhSfdAOtlcz0Yr12OvP2wQOqn9uTQAztLtA6fI8PSdl+4k6DOTfzyhrEwYPXVysyueCnXeO21hVREjkJfybhkYcIoFyViDqG+GBqOolkdsNPQJ2/kKfzH8LLtZJI1e7mvKz4g9vns2uauTGMIhAai4AD26OdSx527Or9T2Qd0O25yImT+wGExG/Nbd8f4117vENFFaOAnC9/BXFKsHHeP0N66he8IA1L50mn491vqV+q8LCTC0NPERE3akyBi9yOEfMY77hRB8X0YQJjST2+wMqntiYiRG4EFn36HBLjl0u6mSWPbijTTMG3w6UnEnI+jQLu0etoYLmzmstW78OuwpevEjmnMHeKlGXaGIo++M79PCBpun8+RRcuH9nbY3d13E0FaQOF+JVuZVlBCP0iHiWJm95VOkOL6WaczrE0LopIY5Dl9Z1y9RfaOudeLhE4hy8rxZkzlLROHUg2GA7SHdZm1n9EjfPd1mMoNMlWZxk43x5ojpApSX9cazDlymFYHXElTqdgH/SqQf9DzzPQfmZP1Rbf4vQAlHc7CrZ1Ju++4RrYVHtYhmDX3mPfGCH2t/DGt9KFbGtlZcMJ/PgksDpjqMWB/jR4ZAywRlshh6ZA/VzlwNIDmqV577yc/kY/jAMKDtPkoG5St///aGLJmdH9pFYiu3ngLhlfPVMSWG8NhAdvPwIIiKpU2dEnHkRT/ESkAChq3Sc9gUUgGqVtP0b5UUgVpXAzU8DI7VDA9JdmxcpfC2uHp7tlPwWgvVDpIimHsFGGJvLCo2v4MstQEARMOaLDHQWdoyw10NLxW8kHnxs4dU3vmeEuvxQiBH5W1hcNrbXg+DFBC0VVX6MGfwFsvOVYyF+BJBJ9hq0CHcJjdmIOqwXgFZTmBEUWsGnO5BIGsoD5kEG1BvhRawohkUMpqlD8p/x37+OJquFXKeshCraMv4aftBPX3ussGY5uW2jQ/YJSb/iWjwDpweeX0Ot0amrlZ9UcH/liDdPlVJ1FYrxZSQOwZAptS8z6HEM39zmHJyZtgHjkthIscfvW6PhmVh7spttnpRRzw8omsv9EXrTAoLp4bWYsciFowxqjWx97b0813SFTl06pPz1MKKmKT2ulzS6iB/odPo8W9+SGYxOD20sMzmfhWH6HIRnrAB7LI7K7U5fJc08q91D+TwlpozIXKqLP2uC9/F2DXspA2mBvD7N0ZfUDUIJreJYBk03Frbz2bmsHaw6bsVgEiHnSSkK98DoRfqFhVFFtZwYsSanr/WLVIyOJ/NM1yjNK3VCLUIYBq0fWE4fgQfJQp3slmJgGZbC3Kkz0zShOJH1unmJAJ+hwGZMOf79cTrkmn/t7yffDhnotazYTT3IcXHoIJbt38yEZ5oLVp/zqa1QVVIc/8W4N2smZf7cVtnGiu1z2OVf8O5itxgszwNY0CdcdUMUjWWqwctfsogixqm4KuZ5i8CGKN3HMK7nFxGgYuIdiVH0Mxb4EcoGHCvEXW9V1pa1zUpjC3Rogh7LgiwIr7OMob4fxDimkp6jIc8/XToqzyg2ZCvLxEigL3t1veM/nhi4i9HcdjyMiWVhDYg6vLdcRhBVioTBfyJdzWJcI+zPnAoE5RuZxk2ZTs/dNBn4zD+NiJJdpK4tcEvSu4FlQ+PAklTf1DnPWwh+fIkHxAeV3Uu+HHzC/cWn/PwnHAcpfUYPM3QTk0IgS+x0kyQDxt7jngKEyEzvgG870a3IMX/9LzCtE0i39+LE4QEvxtIXQ30kkdasXUVNV9nj7/N7cV9Y1lplZpki6H7CEFwQd9TswZjfU1VW7gDHJXtRhvk1bGweARPIFbzu/9CIPcWPGYOh1rNypJiyctHt4CeIbk36NMdSzly38GDhvJmwmaSXWZUd4TQtY4kvPSOC4/+vSrY9whLZPWahbgPGjkPTtjc7S8YZig6Qorofj4K/E2ZxfnwHwxQngU4qI9PVyBTbjzrkdolT9UWAGnvY/Mwj5OlMfGRRLXRyyEz3Efpe7TkDYAaIdpmBrUNv2dH95nn4G3QbrpPedPQ+dAxySwVKihkDJBPqEMIb6tD6hPct4C3bNLEvUsD40fDX9QuQIFUTzJsG1bpR3zIlHsId8cuMiMqZYf9occs3vjYFK5amurR088UdQBe2KNtsINoOjPtthy0C7EZ3fKAyLELruAXt4tIjhaUz88XzoKjNYHBfT1f9KUscgAQSCPXhhpu9OshaqaFsJnXV252wjZ1BRDFaNz+MgW8GpStjD1aMgbUK51yxYbc09QZOPF+QH3YnYBmOcZ/cSIcOHYs4ieKwWW9t4Sy4FOUkSGEg78fvFlkFz0o2DlrWEK7YA12cGSYxo976NKrSoq14cU68V1rz9ITtjMXVhbqRfZXhpyRKKcJxyX5ramuQMcpo7BVeAbokAv/qEnc9YBym2INIhkELGYA9QMJITrYZEibWbNuohy5l90sNZR6kulVf+dxA0z9QfUi2NPcfHBW4nutUQ8tn52+1rJ8lvll2Fdlbqe2/+UZUpCyAiidgCSPxN59OJs+l9RsCqMKKS+N5AEKfSZGEAUkdSsVEuYFOODguI/6XPswlYDTYoxHJEvAXB77JHyj2nDcGoO5ecYUsmn1QmPguvEYSNi8qT3r6014fm3z3cRXx3Q10TUwlfduuHHahmbeWEjKA0/DzITAszsbrttSeUIZeWiPplWvD5CDv2ureTUW0EyzXumjxkd08t46Hh7mGFGfuFGmI/a5RXracUFwqUUBB1vpao9+148pjhmyY8vDqq1CDOp7WeH7UjTN5I7vwQwsD3vtfbdDGGSsDIY3HV1FawYQ8AkW8if0bv80WHTfARHozAiSnJVo9eGPGjBnbo3kXyBQcvuZtrMCwwHs2jF2Q1ZH5AQJ+aaD8cf8xhD5t4V2Rk7Qy/Ei/RTg1qJP7eSvLyC9Eveb247sFvWUnzXvfnNmuZF8KmcBFxu7hAWUX3Xom/1XtNI0XGY0qHdoNlT6K/nwN+BlfAVARzXgEytxe3I7loflW0WRQ2kIo41nIVSkMSWrrVRRjA0bOLtmRRUIK/lCd1WLmxsw/yEEtiEXuHpC6gYFjal639CMXX3aWRCRVkeVPI5jBGfiGZJHN9BDTALdK8Hw1SMWZz+WfskM=
Variant 3
DifficultyLevel
627
Question
What number could replace A in the following equation?
5×A50=141
Worked Solution
Simplifying both sides of the equation
|
|
5×A50 |
= 141 |
A10 |
= 45 |
Make the numerators the same.
|
|
A10 |
= 45×22 |
A10 |
= 810 |
∴A=8
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
val1 | |
val2 | |
frac1 | |
val3 | |
frac2 | |
frac3 | |
correctAnswer | |
Answers
U2FsdGVkX19D1WX57CgBN5gL/z4yUOkZ2PqeqovvWjUJDn4k2yD6DOP8mqFRx+Fb03ZiiEOyiJRuvFb13yYwcdI6bmMISSvR8PqgqC6l9th/Ighqb/0/8g10Dmn2zkElxN9cm5VxiSJIyIYwpyEEGAOoXgUcaQVkO4LoBKwGxtVb/Mri5EpJcKWPHBxIBgXT5mXCsHpKQuB/782vxNceaIl/qWpd+eEavCsmSBnSfy7/kbNw/t8fc3Mwy0TpuZFTH3FGiNGyLuHp+a9it7LXX2NnUeL/BWTYcjGRujd+vw40yCWpqMR7wUCcM9XcVpHSxbU7DwMLRkTHKkF4O1lsutWg0zFdcM2mh5Lo1gqnb5wkZDLYYvtZLZaRs4gDJ5B4NJ75h2iTSS0eSsMfHpJwRq9d5ezun+M97yUqYT+nWGB3ugIUifvyVMgoG1wDgD8FCR3s0+yLBsPb7q51U7vpae/XMlwRXNNxeYRPzZQMm0YuFOMKRW82G1T5k8uFAWYVsKuUndAhnWvRrCZjnlINdUVKPO6psu7hevM8tQeB8P2V4DkvyoX8mS11zVr/r44u2CWsV4lciLkBeZjVdGCa7mdGjQsZDVczPORj2kvVi8KWD+KEd3HjIuqh2OrBcM2i/UOZpXsZVxEtLqVDgxuJ+V5XYCai6vmjyWFmh9LjOvn2sK8+Ul//ZlyCrmcbAkbB5/abrSYgXyWJZ5YdzPzqEau/GujVXEm4VuMtjgIGFMCgpXn/c2ZPbFyPUnm9SVFXrw7OXjxxR37gUVfjvhcouPYT/EMp6jS8T3VqkX9KYE6/RdlEFruG7b+Y6AfJjK7fFwLvMnVSkj4TLYWFZXNvLeVOSGoTAevrihz1wbaVnsSw5thrIPpPGkQgsIZkvnTpnQXtw9Qcb69fOMwIhbRQse5IW2xlkdyG+sFlcCgsryBILdNGVUqq9CNdk4/Enpmgbx9T2IJEkvCpYJNd4CDMGu/dcvt9GUzNSMnaH+HSRe/DvKsQz3sZDzhTK87lJ1ahjppxc8fXkfBVgRmS6N9XStRyAlV6GTtHeIYm4al8DFSlr8Fs4CbhZAudq6YsCIpTvOSlTMZHUx8+5oReYlY1bWqsv5cP8CoTODaHz1TFxfZf2zay/VEyRMwQFwkLo9FfJesluWLXOSD93wrxuHON/iIfJM34X3gZnL6AaCFIepPnFxEI9hHGqUMRF2Dx+HXc1rUD1gOzZbE6PIXabvgXkZ0AGFrEI07C+3cmmy8SasJtWPMFqNxRpeVxtt+G6FZ42sQaFlp78K3GkoYopDDoRSr5sOSow5p2Q9PJvRqaTWloewHkdduIEV4QBK1QRWoFOq/HLJYYCHlIsJLct5aAg7ZnR1DwVaDcem76Tk13YrR9XQrhoa2ryJ7632JeuAc34mtHr2bxDqBe7w3eJ5497Ga0nMxiRhisTVno0QY6M6AX/KS0/vN+Rs4U9h8HYui2+C5/tuBuq7wTxDIhdwy2bgK4n9Xu3fm9KnqsTeRv+wXbKYW60hIfHdVZnDArcdL/e4sm7AcqyyZCpGfQPsRiszsIzVNFNy/pLzZf52BZNm7KtibHlRLu09hILVQhizlgZH4Gol7JEL+mHURAdOgpyPH3ciN6jnA8QCmJW5uQXHvSgdzMUez0Ktas2lVevoX3Ui6sOR8QwoxA8qKhBLvV8N/Dm8nOl1RYRndG05EiI1Z6+qXP7f7Wz7ghAPHsJM7NjRHu8N4bKixTQb4e6y+j50b3v/KIFCTXYu0gyhVxaUoJFW4ORADcr4osBkMZL3UHn3GiV+fWR1VR8mMxoJfNigT5Nb2RYA3g28JYJbVYSRsvj59RVTs6Ww/XQt+z06mxbeOnMSidv/ws6q4XOkKuPxUMUt/OBK6BzOzvKaJkqg65yPZ/g3Egimo3Pbw8yldyRibQVtd4pU2O44KM4WWWR/XEZTm9Xdu4lsAzXydeAyHZc7Wm6mnvCPKB30ezn32Jy6deN98prkgOmOoEzGNNv3RBFhvnVaI2ppi6NtPTL8mTFN3C/qfSJhn4E+sNv5sWFv5z0CrKzD1eSFmnTVxoz+KBuftTH0Y9QMVNIe2MC1B7X83JIMDtLGPsNjjwHLNeHg2VqtQkqV0zLe/E7LizkzCFkxe0dFMtJm0h55my4hRI0G+P3oVEBZ5C9WhN05BvnDQFIKyTUdj6RCWXKFTzAuUom9t2+nfCtcmD2/HMY2Noz4TYZJSbUZGsJDW5ptshSBWKKAZhd91NW++wAnE6p21GWk8ewO2M4sr44CXrSDQ42rGxVCRCW900JtOyuQHxDtbNHZoSd28bH+PFWoVCzIH+RV1m0DMQhhFS9xeIxkFeO/spPp+yWfNQnASATIMlViRUqFbg4+R7i/bIchwzq8w61f4ou+sEisbb7/Zvn+50TL5+R9Gz7Jf9h0aAnJ2aVZ4T2wSTSWEvmtts//XbElB+R03GlqjTOAa5gBfhUv3ifZWm27ZmZwTX99a+jrV4QxGyPnM5W7y9aCFwzHEosQuJkoAXmstc6kRvXJ5Kp5q28W29c6r3zRtpqT67EVivc8BTui23LiHN99g4APcyYt9kH8ZUO3uy1p4ctzgfmKfylQvpSoafQAuEQp4IaZwjn+sZo3x9vR0f7JWbCNsras7fj4ldz1UiuEReOFmOR/i3Ji2CexcIssqrFH2bqgfcH17iKLXFoDyhQXUd10ya8vACJfAF4sKiXpX7kmXGAod1DJ//P/1NI+Fv/qMYF1sS1MerlRwcUbOJuSQu7woakGOi16izGFUFIEtYoHn1h9bJplK9oY695OO6ZauLENEeWMy8VYGmEe1ExPL7knRu2fZ1FsFf1oOGW9dXuRXKc+gbGmDWlc80rxZnwxyXFI3Wv4yyJmrrbuC8HYYJqXhFa3GOWYogvJC5qMtRE1fBS+kN0AmFyRbT3gVwgtYmcDnQKx+Ljfc+bDM3fJ1Xr6fC2lKclvK1C0MLRvTJO+rPNKNuU4MUXdO+4v59cGMEoWgqgNovIScQ2opAYnrl1XJnNznTJopyHl9cMd4m8kwxVH83wiZ3jW32ZfQpqUq3BU+QaMXNmj8Wpk1lCiSQjmtt0dPiM0QNNCi1+7aQqGpArersfVg6GSqFKwRB8DPlrxBhAvhlYwlUUqx9jE8phUTtF0SIQz3uUIMiVlyu4fhXsUyp2AX515P06Yz27q+HcbtCnzusPNXku5z45KrFKZRUXXDuTi1POSzpRWvdoNkBbsrVdRHAUUSjdqkJDiTCdVNyuig2v4QGm5TVL44BbXnCeW8Jm0q4cwbWPUJXp10K8zrR9AYFiC6heif3AoFNUQt9bd9HZ/BwpQWbiDUPzW2phjIIfOtLmvrSSXPK+zvH9aIvZxbogZWrgj4BQ4cSkgvnZH1D+NXeZlOhXDFGRvJCl9d6yjynshH4GHcfF2/tDZHSBRBt6vg8WT8kjvZ2GemXUcve5R7SU5jT6NoYjdXwIKdJ7uyhWJK3yLR+fFCC5JRraiLdKfDOthY1fk60cI9uPjgy2Dkkq89eekW7jPn0lUqtZFKuS1J/U30CmLzA4Wx1DmX/WaWe3VcMIKTbXYRHnk7ry3VFqFcwSfbZDfAkBxCelDX44gAlEXcMUngs0LmTCcg4JGOGUrKsN3o4boHDeMy997AnkfejZjbTjrTcbLvY5UO3g/A3TA4YXVFIZkRUwXhM6LboZvMuWSaBnpLMRvEfrXhrYSv0N9frr4zKyz4zu/jDCbb/byOO1nw8qhxPLjNHSsJuYMbQQgvtP3IMMRwUctaED0Oc9XfUgo4UzMgZsV2CjZu6vrXOke5qMRXwL7MkkOpaRhzZxl0cM4MOkLbsNe6a3KiZyZZXwrvRFVd7bzIDDpHezWeU4EaXO4utMz7DCTOOGMgm/nmx3NqaqPNWEJkxxWSoAg3KmEams0L7NbM1zDABz+hkbZQnagoiZ1vDr9Yt02btQSnHU2ZnWNF9i83AlPn7/I6c1ZXSOLE/vEnjQUdTkRE7StPaLR87v6UpEYVJXIrPwuTziHR10BjtcPMC2xb811PLJoRIK7uqu8Y4TpZdRDBhjY1luxcZOEs5LRkSMkDaT/9XTjRLeQVLtO7Ps9dJ1EWSQudLkZSvklT1i5eMlkZYy4RHMPr43htteMYb20o5VRa9QrLUzlrC89K4Y4SfCpo7fO+cQ0S6yyiu5u1pd1LZDwNxWV5KS6GKXnk7E6L0bLDzK+J6sxRknWSvtZ/0k4gr+6rxLDBhoMpTXfDHV2jnmXfAk1btVbQjwvMeABf50rVSiC1fFeKCWX7y9nA8dbuNNAtjL28jGvoWw2L/pZ5to3SXp1pbdbjZMvRy4rVB/Q0fcZ6nRnoXBZmitXnH/5Pszb4O70PI3NxTHRXgaUSt9iaguGjvFyZf79giRMIxfMstpmW9ziMVzRp0oKAexLw8CjQ0MtX42jCWvnEtgwz/OOhxJhoIi4grz0UZVblgaBozZOl/80j/IJLOdH1U4VMNGoZcU6OYJ53lmFAVUAShiaFykmS3WL3C/W/ycF7ei4evkVh8O6BMv06yhHI2gCgkbS2piFBp7DG6YHu8uNTwwSCJZ9SrZd/XgTphV2KifXzpLjpKVDCgJX/2nkWhS8w/LpqcObNH7unRphFC/OKe19CYiK+059asngSfiioTxGctsCHDtvWHDkX8MOOw2N5aKhaftBG9dLmo4knKhP2pTVagKMa/HTdjG6t01NuWYH/euDiKkd7YTqn4IubS+bKj8n0g+yztl4lZ5KD4O9BJGgtVcYjmD8RJSsohuuNlL8f7CFXUzei9KqzpHo6FckLwFYnYBLttdZoODuXGyOIRmD4+s5rERHCgFzirmF/NeIPOJV8O48iSXrjeTThxe7D2z8aKHJUCM9fMwSoBZE+qgpDU4wrh7I3F7BG1IC8Vg52VOeYuePfwR4R+558nkAWJCoVwxbuZsADVMIXlVwlZ54FDlBDCfGfuXB8y9YeAOl/xTODkDfItNJ3Z9Std5KKKRc4ZaHqIcq65NcL4dYludBSS5QKRdu+ohQ9xV3qNHkeps42iCBHNZYa8rL84LiAxo1jX+QWAb5WGD00iaMaeaXOoU+ejNrngRedgswFwhTRJrV/uynVgEw4o6usxF80EP7drI3aaF5MigRkt6D0sKUacoOECLzVvVXZir5mitmaQoXKBRYY7KMtamdCLwtqfmGai1r6DnqAuqJfL3u4m0df0vl/tafj8qAnBKca8OHaITbVhtdsUFqOPAlPnQ3HD7X7mIZZ8nducKwEQdTw6ohXXQPSZToJDLMfOjJlslQCaejjLmVXO4sKZhpVAATRUA43fJiFYsG2NXDeajZ8uZ0Fv2WznM9TBHrckkolCshC3qs9NC1KTHRXFcW1VQZuBgpKiK5NRM8tK0g0yTf9NdXU1T4W0kb8bKnjtfIvhYIe3iK8H/zy95S1lyW4NGloTkuVM/3i6PIDXNBkOQ2JOG4iasvLQMzaC2eKKDTHFL5jjuoyn76Vq1PX2HXdm5Y484dV0sCzkMTVRSUMUAUt8+iLR3wA+lAJsNpIyYElcUVbQYWIMQuONgCHjThYjU106UwzR5DiOENMAq+iXj9EvQXfiHW3Zbq8ko1cFSLB8F/slsSPphCsJiJHwi/KIGEA3RsZYYyLhaqNHJJ/C7Kr7V2vuxpKafbN8IdAmvXg57yH8ornxXXfJVmM4LHrNDw2E971Nx9WS8ONSM2MTvhiR90LXyJo6tLwjpRYC3kbqiPXzRfEorakIjrqR/PrU3pdTzchPBLZq1KYC6Uk+ZmXJHH+09oLn9RM6Zpi8EKjvrJWcPf9gkl2WkxIewk1Ljufd5cxMElUe6zl4xS8IZfs2WHIN9qp5H1FThaumOYYEmtIxlzYCD1NnzJeohjf7HMUJqloo1jxxVkB/zGIIY0EHywg/mIyep25WP7HyF2xi+tPje4HMSrniyY8mB3N3stKWUT07NnVZ4dEoYXuwYfA4g5Hs7CXQBF4Jpqfo/0zHFX45kMUMjFJHNh3+VZWyo5fYJWLT1mZTmoh3evZyYCM4G7N3WiUUgl4EijJkXTHha7srXnzHl//MD4QChlZFVJMyKykfZCQqrvfNfmnmE5ij2Y7IhLPzwyeWM8py9tvui77xeIJmoGztnYc/h2VfZLoR5m+eVwOz5JhSTOerK9rBtCtxwqToEUldL/P2GpUkvAWM5Tr2usdCKb3ui8aGzGuYPWP+ZnbSB6t6vdgFX6/x9FlaortmazgTMTBye15W+ySw0bpKRvp6jnx/H3fe4YxAbQJREeXAx5sDlRrqg5xVdBieALy39U/ZB6CdrijmZ++TrKDTls4SUmoz9LQmhauproUlX6LJH6lON/a93q2Y7PzIEKmTojD5Xk2+ecieMhxwkKvJ8dyxfbKyTIBx09JgFEeZXvpI0CHAAbSIAk0jV9VYHKC8JD+OR9zFG/V9hzsOxBNpccS/5gwQxcQwUKFZZjJiMqKCJqXDLKiKcdkg6bCO19rPg6qT/xya4BHlW7XY7vRb5NTnKEcDrGzhuGCug7CiYCjHGIl7tUhf8qZ7g9nI+QBq+G91rtWl41KA1EORdIE31PuD7nr1k+HYjtQZTPnWCLXQB6AU12FO1oTNCIRDZ/f/vjbb1MlHNDs2ZKXMEKg3dByDqqlQNCc5tBcmA7gA6AIO6x+HeaP8E+zJVvbHimiaa3GyoOVK8zNGQFuNskjnvd6zaY4/UnuwwvuxRyFJ2gPvjog05wh8DQ7ca8cyqvuyDgWjk+sMDsPODUJjpaIYImiqudWuE6XAVfUXpXcsUrmmeR62XOB90cp9zuJ8RH41WePc+yTCBM68w+aav2QXDZZp7qD9J/OHAc8gGdrx/4dDjXtQu1Q9WZN5I/g/h6hVRBz7Uy/J7PJvL24F4plITv13zazRY9dfWoet7bMxF8K5e9DG17nQ861dYS3ooHCPaY/sKSsPyuenwyDtYWqlqVVBxJL1Ltdhy7+MQTqu8l6u1ZVnIoSptZVb6YwBhQIsM4+K2jHE9enR42yUAJ7/9UGkQf3CLGHBDe2kK6rpeR2KCigj+5zL6dlGT0isSKqh/o+xNu+sKvlEqO5mYi9Xh1Qjc9m6tpP+Z2aGYDhWrDBCANr9xNbedhGFV2UnrI0a1Vy1oiHf4CY3HxFJDnycPgFiDtFL8UnEIV8HmbmmXSPnNHICOPpcsDdVHaIuJCLZMdCwkTnfhdmXk7VfjxIA0K0WVEJNVuFOQP9Zq1mv5ZCs5iz3F57sWlyelpkM7BQ2sECptqJtiRdQj502hgt+iuSqySKGUyV8ZlaqOxe258QYnl0XuRdFeYzxPGrD88m8IqSlMl+gOV0rzzzBT5oDP/xYhKn2A6Q8JXcH/y4GXePQbUVFdOcRrtQiHHyImIuse8/+z4HNwqP3Tjx6nRGKI322HrNpRV9zk04fhkOb1IinH2yUAcOtRqi0N9uI4d8aEnLeknlSCEMRAFQFTVbXcS1p/jz4Q+RgX62rNgm30gQm7eoox1EYo90T3vL4EIMDlTLRi7qKqlGD0SioMcvG8i8a93CzDdVBGF0u+I4CoQXadtZX7OLf487q3B9SReso4OzB0YQKxjuG+jeGoMaRLEpQJRnkNhtF3zU9I+2CmZjIPYh933HANu3KuCjqgt3DrP+r6wiHn2IufL30xEWcTuWsNB47axmz11wOvRKca9FdmH37jwbNIgUkM78tuK/CO8lKwKEEG3+PVzDtVzSjSC1B0Ym9lSRWI9dMMbTzTNFqPlhrMHEFdVTdAOBI9kEI31lrWgf/Ltjx2vAo/DuRy+Fpy3CBteYmNfVGvupaH3pWZZ1fLVpcfZjuBUCyK6jXmqfNmuFmAyXiRPwSkPm1LYIk4M9ik+L1VsU/OJ+d+0167XZm+QZNz/zjsWtBL/PRxGdunKVUfIvH1WPeZGBOdaeDo+wTs/yoSZ0Tc1vnPA96iE0KgU0JQGsZ2i5tYhRk+qW2vFGiQmtS/XO99hp2hhkRuT/A/O5HcP3xrcxW3/Q/J28funF7mMHVpgzDCL5N2XKpnYrfJVLb2M+ewNcvdPA9i/Nc90/Md7pZKFHYAxMkoKbpR+gdVTEFflRXDNasaKr5iGwnAKrXZNc/fEEHwTcxOnCCgEFSlmVsFXR3vsQswKDntT4pdQ6QA+cmPHc6ewftYgyCyYgAzmT1/uhYa/TrB+xhyI0gDsGMy2969VXfcyvoRhqce0g2YMGpD1lM4mIIvZGWHd9Xq1IOMjs6R/TMsRRSh4r/v9Opl4+aA8lA3mJASg1vbgWX75xYTiXbxjt/zmN9Vml5YmdjmN8MJ/0wb6F5c4uGjvkO/jExOWVhW5MFUZbiPmNlukXsy7asaFnvZxgjTTWbNHomSHocb4va5OEPvB7nFqDCcNGJdSbbCaF4hg0p9pr8oH5nfcD6bmxYyjkDYdYIV3cLs9wYLvwADHYWAyeAyQwJ++9QzRREANLVldLRV6ky928NzUA0y3q7uE5A35/7a1FaregGaXl9q9xRIOI68S0PRynyqjln5R/d22fZXJTls7KKrcp3obroV6d9DAmcHHZeBSKafsKv0olvR3N1NGrKT9qGIH2X7SBBJQFueUHkWCOg1pj5ArXfOlb/817FygVG1KTv5z2x8p7IX/kMyZ66x8Vf1E+/Vp20gQkdxsFw173dsWHBip7jFGGAR3G72R5JEzUNOVEiNlVCApkQ5dWaWfLKbnncV6Ydpm5kYysmERvGgniAPOSV5jTluWcwX+j9fJ+AOQ36yODRdiOJ8AEDQaPtZNMmUz0Hg4dkTvGs7f9HmWcZac8Kfmqv8fDEapP39cEHs8v+W2skNQqRfG42i5kzV2fOJzukXrus3oOXJnw8oPrjKpd/uiieil9QlwTKabnEERleZE8SCDvb+s6Ithhoq3RNPw5sWv4tKGV6APU1ysd3PC8a3bvDCR61Z7zhysKMSxZRZvx+DhyGnwYlBUHg2r9oeUbpNjT1/wD7E4Fg9xmW+0b8SB/xBwvEzOjKzKlo0us+HTsy1tuPxbstFEiRm7Zta71AUoC1y21cAJ3G/IJnoHNJNOR6bF6aD4rZoXR1TcDm9B90HmpwrbrfQf3RLvwJKgEg8XGZWXgqpi7dLn3R104pilb4zs+LgXowtljO8ULZIYAwn2jmuXDPWlrJdhNKjcDFbuB6h3kXrRKZSW9bLFD61yDRRe86cdIH8H2shUZWsGfIksRwirByGf2ASPPOjTFRCLECfsSt7vk1BUGNPJRmCJXn2rTB7xPQuvNRcYTTVDvk6Znm7nBVFXVhY17CEvP9cPCeigxtp9QmyamWwkl9sp6e/YZr4IEkakbX6g5nj5x3IT5v2gszUjaWyYonZNNA21LI1077nAOgKvGtWrLZ4HI6tWUMb0iITUUIuMweipI0E8ty3jhX8hDwk1+7CsxhW1/R9GXpnwV5wXRt3Rtc+Mj0RTk2YHnlU8hYJRpBFpUEQoEuoO7h+64OCY2UvVlskqs1py3XZKG4LzfUgGsUSznmh4N5AcPYgp3T6zj5jDg7RGABSoISgv1W6k67gikuf1ZKg4XxUEYlIOpUNhpZPh0tB27tUK3Xm81cY7g8VSeX90kdP/i6RJK/H1c0Iqp3ZBBj4bq6pSwBr+N9G4QXnI9lpP1q1Rsp7qfjyvj1LwCxpr656/DA0yyQHS8ilMm3N8zr4Gwc6frm8T+Y73aD6zLMp+KND+1XEFq9MSitpqpKHZjSDvvyFkniEfXMmgtaqgseh0spTTGYaqkA0ztgbhNaNovd5h//IcxivcrGpB3og2NPr8QXHb36TQjhYt9fXhM4mizK5ijnfLyOyr8CWPaHj3TJFhUmW83jypiOCXKLPBfOdJa9+e2/tNdsBdAIOwwdNx1o7Q5LusNlX4DNiySsrjPRQjSUFxHABfsPVEP0EqU4sjcXhbNVHlR67GyfvFO3QxYnrSwT9R83Rf++e6nowa5PDaxt7yD5XWgks2YWxx5oywuuWncXpu11jHx9m4AGQLOqKIZM5cFmqlmg474V/0k+VJfbFUPRotbzC9afZ6h6RM2vM58oIb4mCaHSubvydFFS3Qz0ecLEebCCv2WAZeUy8OVIEGGJ+i0pa/16/7MwlR/1y2PZu9KvuCpoQVJA4rNb6ibuvyysIMdv1hjyvANPC9C2zjQQuWNFy9iHSYDBE8we3MaDYNkAvES1t8YdvR9hOKlloRt48HDtrYE9ItZlfxNV278dxHtXH48xzymp6S6l2GrN+6jCeeKS4vMKj3WVzCAynTsNQo5xdE4qOloE/I/XwD3FcvTANOfg7GEC3Db1tyn9I9S5M1ksrqtoE6p+XHEnIUHlsXGt6yf5PHNyLrcunbvamLKsjzIrQ1eIm9QC3PDTVwEbpnp50Qc5UcP1CnDytys5lbkVdn1LTnZGBd3UN7riayLPb9T+xf4g/+AQ8w1Y+z7M3TcYqie3dLM1+CHvweZ5Mzf9mKF0MttTgIsfKOmfJGIXLw28yhVXwFt2nhFDUAVyKnKVo/ZYAoCilJhCwj8b5WM/FykbfwKXzc1B6ETsy1TaM7g0RvS++lFMcWohQwQSq79DpJeTmtYIJS3WbuBIyzSlpLmjP6sj+hMXe2NNn1mR7oujl9LILyaDOtM6MLNwqCX7ZfWK7v+ebF3T0N3O1pAbOGRGZfMiUYKpoABf09vRb0/mMbL54xsupozUxbokpk5+HRU+D9wveK4eYqfNtYTbt33WLV5+KbGHGlfzttFmrZeEUAZvt+b0QHoSW8Vhb3trrl6CT8NLAG7Kpc56Ca/gkNTm48aIfrqJEh5Rc3Tm80/qidw6ieGxx+AQAfpjaD+lzOGWp/YLlAHc4pq3WKACuqou0/LAlTKE/b5X5catLwU4iGPi8c51MU8UmrXALwlcq+/+jHSBqsyWTyt94V/BumEQgeNhu9uR+0voCE0ob5rpYDXOPepkmxp5FbndZZip+JSehrHgztcyVvv9wL8XZs4HlqNu4iWITgC/h/lgB28aU+ktR3yKWgLK6UFLthfsoXj3P/SP0Dty3W9KL4spMajIGm2Wk2sOg3pB74uaAO43L4AF4W0HNSIIo8uOdk0CRR3wCYpUZZ6mHtdvK8/4P6lSLXBs0fpyl7qeCZM8QpqUaPt0u+Z/udKLMNqOV4gUXzwZCUB0GbcdsToEFhd/79p7yMxU0f0EDBQXuGnRBDcIq2m0iimV4JuJnfEXRvz8LS24Du6+e96MC7sw+Kyxj1oqvBSF56k869SIYvxytn8JRqlOFVSjI0nfPpkfkWcRL2piACYNtlIO4Uk3fU8xldbj2R5xOUZgTr9Ewf+06dQPFukDePX05tu0YE3oBl6RAOe0x/amVROIcexEiJIsDWuFdiEtu4xUhzXuA4vIgcRl7L0t7pteiTuY+9yGM+CTc6EsMoaun9oppjx3uVZWBy+xa3iJlm06nvWzrUVO1HTHBLN3OkuK7R4YfMxzLF49WmSpxSMraHZBb3NAd2q+AkvAURrbcXkuRBRBjVtVhK0DFUWAfo06ZWD+CKXHrtr/e8Hz9tZOkdQ8Mta0q6jOIc51u+8wRNHkiJwm12bvOQsn5693MFUJhbJx856gMub+nRwhqyzF/zegtJ5Yxl636JJqut8wCBYiEyG//ve5Dku4qejaHRpNA284qllz8OyYn25usAHxOEnS454ltf99jNfzQONdvi83IFfV87pCOYzwSJTBburkjVGhr2ZB+P1e1LSK88gqT2KKL0Ht/Q1bFO2HQYwcqEVRf3RBtP6boeGSMKxwv3HRn9eS8D4AnfCXKmt7Ugwv7KD2M4OejgOETJlSzryveROCLX8l6Ij8DTZzqTxV30lhKLqre8qolQs3KBT6SBuevOj1mOEMYzwex1R8CUzYHKcncLrA0uqttRDaEFlgpmWhSKZsYrj9TPy1xIGB6ks+t6d24kktgmv7cVBppsk7cypDAz4Uphe8jFtZlVbl/LolnGcxQIX6zYND3gHiu0wD6VRjRasePODdjymNwMctsv/a53WvwSKDcANun5Wdutbaf77OLExIdraKFnzH/f61YEm+eGD4aum+tdT0b8y6fhCTmlXbqzFqkpp8GGKwffSi4WC8xTyqJyHR5DYONtK59+mQryoacSq3+ovXQIknGctCM4H1HZ38PGXCsetDrJlioswSY02r3x4sV1gRRZIgae8LIFZko8ht3xWRj+HNtGTfa2YIUtRE89AuFPUF1c2pdoX+H0uJH6K3UcrrvWBeIxQAidwCjraEPfXsg3Hdgez56nErmcNIq7N+++z4uFWQEYVmjqDCKQg2DJlf6yScK2Z9U2n9yZ15jl89kaConBhz3NKdmSDG4XbIOBFIanh6WO9Z8565AR1ZA0tq4Ce8iG36MmUFH/qetdAo1VRgcYUgI26wbWCv7wSeedRO9ZoUEmKukwvaAKK78DxhS4Vn4PW7I/LYrOVTy56+aMVBbUyVIMs6YSSd/oQ5UuZNYY8Mo44GOPVLJg4m4//RYXZO33H9sglk0knLq/RovxQ5MKjzVhWPcXEUej/vzlJBY6KW8NxubEEzuqm4DgkHabIx2Lw4mXpnBUGq6fOH1gLFyO9qifHBOyhQ2eXkyVEUUg8nUhY//8JNnuxycbZM6Y6l9lDcxehqk5lkksiw5K2nYhHjyhtBCXP9gGxCg03SAaZWoeEpEx8aURk8jwNjfPc+2QtTwmbhgTfSFr/pAq3GYkGkEfdcwwjPKLkB4yxpDu6PvXlB7OCBEsEJHVrqIQC74GzdUYAQrzh5rpVifkpzBpBn/iYQBQAl0Ih48ts3hxJq+vtZ+pgOpuvih1tLwKS44TDA2d84OZHE7tWEahP7iSq35KZWcitHOwLjVM851/D/o0fmLA/Fbp6rYgmz0yr1LDZuYy6LuMZiKJApebrrv/bsu4UrT4pWbUL0MwKbZlC24ZBvegwVV7og1X5GWfFCCLnYJQHXc4ZnXzosXox7W67hM0QGwWiJELKIeDGRQsSzaCN9aM2U52dU56Ai/bPbilCLEo0L/8XjzMPXFHLir8/SPMEOFbi/7nSPSkzVKr7mSzGo7P3ekonpVjiDTzgq591+0yTf0+JNqOf2L2Uvj3RTVVgYVIYFdVSvp5bx2WKXe1IsTFLcDNwbHq4hphghd9BXcIuNn4M14LLWNjVuUokY40vLWlZVIf2vd8ImUuQGDxGpghmYz08BP5LChlAmQN03casDw2Q3sn5tVj3kMZybBJq6MDPJCPAfG4NB7qE3A3G8GP5hw0BXTRMhfEbmnVmRCiKpfOEB4BSq9+LIADSJW4wDKpG+JmrI8dq2VQH3yOjKTheUC4GVtzLxaxOcegjHZfV/rXPGHk5N1ctLzPhRYhPq+itLhlFUBuzGKK//aDehaFn8l8QaabXVoRzQpo2zd7kY++ZPfNAbBfSxh67akn9JNn1Qu2ewtwW6bat2y8z5tw9wAMsru+hXxcyKwOsveOxz+T2T3EZbeGUtXJFSv2DotVUJDUGMA2OdxErhiKQ6lMQLxfJxb7S7G8Hc/dzaoPP3f34tCB0+0UtYUzdd7J6XdoGn3fLhOD9Yqy7e0yzYqA+aicV2sV/A6P689lcq4JjM3bMZngC1oaCRLqU2V1y0cCvedhJ2iL35nTRvbseG52nKnaN2bZBGL5M2QWVUOU6qJ2bQam4AO/MvM8toa8fxXruc7m2woPMAiKPrsabLmxD+BieOD866CizoCuu/15ZQ3T9ptWoiFm6GjjvuRBU7R5p913xpX/C8UPQxc86pZbMmEmilb0E5lGYSBJRpRAexDfCx82feKq7StZpT025362vFA3YFthXYf8o73BA9xp3G8ooos9YHMl63VzDOcAXwY/9n7Nv5/A6Q3EF/B6eHU8neCQAAIgo9Ds9tE2mihvoqIxT5dssh37pBoqD6u8ZJCMOlBnwRKbZmkLvLqRq+QxFisjN59qO92muLfuA7cMyM4B/5r1QYN6+8ApcbZ5kDenIcsi62vrEmlD9WUWrlFQNduBwW5SZZpnEfisXMWAD+jKO/iX+p0twD6UppHzqg2Qr9ytLy91tIR2pkdSSZUrsFxfLjrYzG4fdfEgEFW/gKevwXDlOHG9kX5OWETv203eLOjzbmN7q6Iph6fgh1E6Nh0wgVSR4MXC0WedFQnUdsxSUggd4H5BLlcBFNd+I1GN9TW9+Oi2UmJNq8oDtOO4gyQVxUyulDHpbCM8792St1uc1tbeks0RqdGmirRDfdYtNJgaRTx2P/tKeyYlFg2BV6g6g6YFr7TmIcLHbV4e4z6qMuyIavn3W45hj4SK+i+IHDRCPKhXENH2Eky5f7SJx7e7sDghOKMnEpaU+cd0doSrp9ujmqA/3sjC/Cyofr5gGoswmnzJnRou4+ouyOiW6n5Jm4EDIFgzvFyE+0zxHzsFeCXvgXc/Dfw66OPaOTCBB8hRq5D+wr/Hgje5mPmjPVjvIyOsETB4uu+m8hiRTVrj1a8H1a7Ap94X81bpsd3r7o6NxSgMdFIxNZBNHWJ4Z1JjaSfmq/5r+/6RN+oApMw90rMkHqLIPMgBy3+2PERiT0nSPVJ498Sc7RAg8+yhUrZp3RKuwc2rGMsotc7zxSlPCJsotltWhSvn4rHChoyQANrgUNGhJzp+HhvJ5N9oyE6djBU+EiTh+vUDukTiAu0oXl51PAARKTcE40Kjehe/mFl9P9NzSF/Nvk1VE2MUYybvb/uRhSD3jogevngTyTlwNZrOXqHtByf6G75qLBL6X0g/CtU5JgfLs/1TtktQjVyLNll7/bGpg18r7yd5yI4k4hDIfnNUiXOdIdBCUCWBYV2cEiHhdS9tQGu4Ufwejh8fTg5QFobtDNy9gVTh3elQ0Jxw7TXD69UjGfT1GJU3MPp6QlPp/s22ayHu8hEAWNcNuhU9OyAzmOnxwdxtnEfjqVbvlJ4YAyH9ti9SzcMnT6apO2+iY1Mtq7ESZTsI2QFcc2+YxQQVGAUfBxIIC0N8JJcMSTtOhcSZFreYgRngcY0VOrZdDOu/qCorLD2Wl1UMDE3fLJd+DBAdYKKFfq63pux2BMO6eV/yiOJow4O0XzraeCaVp0r4UYfE/O17xS2IPZh/WA9iPeQ6Mkf1o13zPIfS9HjTrfhZtdv/vjZVqtOKKDW1Mn3nONxHBaKbevhEZEtx/ansxaBoTbco4cmqVNJO+JSoOs75B3alhBuXrNVYjct+hoRGv0vCdhQ+oladh4i+kReOmPJZWtRRmvNn6zc2GNKGlvFxEZ7ANK/95HwJJkxxkdbESnGew5Xk1ru4rh1cQIeSd8wia1nxpxJEUcMU7jIDWk4iM1NUMVTRCP1SiV3o6P0GWxv0KAy4G5BLAH2HLQv3/WcBdCBAn34iCSoU54lKnksYeC8Q5vn5p8AV/Bwd6pcs+sGLFyQqRXkSdU69K4g8XrbI+hQ4fyxY6hMzR+5cY3TNyaxXkEyDagSh7OErtAqTq+FHg220uEdYMSAVzRmZCEllJwlTEe8Q2+Lf/rXP/tZxo2uJr5HgzBMkXhjcmrOfQEOyBxp9CX8zO1STfuVPV1cRm3xUnLVghyE83Am+qJn+DWZnm04m61tpTOm3HQfGiBZlhlcs+7qi5hYjaCF5+q7FMGC04QH4WzDG7owmed3s3LMsWVv40F+qoroBTtoK0tRwo3EJah96+iMHVdPAc3nItJYyFFSwcMTSkZq03/1sPdDDkmB/2HtktHnfwVrD6LIA/kVMgS3saVQV6pfqsb14Qt/bgfL2cRSvWRfb/ISzEfDG9xbHZq/Fy/+5VURsJ5ERtNjDXzVT132pk3S66vqC42sMCFap9f2P0iD/RS9/G/97u/qUp1Z3+J0zgvkMSTP2bfVBP0WnH7HdJ8yVzNFVsm8N/4QxS2aH5jXQDy3Pq7MotHSgMCnGeX1J9zGBF0cl1Lm7Oi4pRBu07RCrD3qywTWGZC31s+k390MRHiUB7SMDeypUXVaY8fGWkETOR7kdew+oUnUe+kKq0JgrpQEEPU8tiDWUhqWXdEmAYyc1MPmyD0U2cSWSiimz8u0/orKDZxnMNKPXUIoK9miWstN80ugXoyL2LGlIzt2zMjeYAI9b/QC+/f4tWGEChcHB8MnSGuEkN4UNXwRKsnvktdXxF4xxme0ErpMIDrrHaTG6Zl3oJYYsaVaOEJVO4ogPX8AFtuTn2JT/+6dN/0VNeUOQAG2Oy0aTPCnumRbfIOy0DfGO1gDkQDb3mFkSZMz61FQ/9D7jYbYpG5hs3ixMJ+q1yTJkeN9Y1fiHVKumzG4bEt1gwREIiMRQ5PgBe5f/3fNvcyfq+kMn6bOovHIbxSQ/myRcGFcVcQf9YKNX4SvdwzPjQkEMnBKdyR+CCkyJOpHLMThpM50dnGWKN7QBW8H02/GjAi4ChY66/a0OIGzSCDhBsG+dWALOrcpPBc9A9kOlxoM6HJZ8uwLu9qW4Mxuxh1WQroiqvL1QxZawLxttjFvPMKSwKNo9rVNCrRKPKd1FY5QSMW7MOzYsFLx50wih2i8jfRROPXtLI00pShpeI2SV5lQxwMyhLFt5aWR21X2ZxiyhpQLZX3uoR9LFznk90mo0rS7boq3xXrQFHHoloxHePzzBKMPyAeLxWQLkCQS67S5EjA3UaznyFuKA2GT83lFhJNqwbbbnE0IWbd0RRo+8GunNWC3tzMb+9FtPUixuxBiWaE4Od/bcNtnDHVHyMR+yA9XEW8HsKL1WC2ZjjB6h9RN/hiYsc5lOtZPy+eM2Rhh3Wp6gh6nbw7xQ+hb8a5F0LUTKa1AKlIi7Q3iQu5Zn4CysSdEy4RA5zyWoBDwqUN9Jn6ngXbw+KstSuomJJ0hwKkrjN6UW4U5052ebnwpkl83+c6VSIHspDkqgO5LpfhkuSp2zhbTdX/Gu4MnGmH0ml9rpBcTYz0HHhYp/GH+NCHhlQoLDSY6GO8RzP4v049btMsepDCz6KyulrvE/kjeFBQVQQA+aWgDIaDImGz0XEGfzt9jGF3bEzMxN4nWJXHE1auLL7LMS2bRiYr5rftzFqqgvopZHr3xi9QImpgJtDB+SAL2mp+0NRVnH6W+Wezx7SiMmcbXVrTq9yihYDsAgR/i8QOAaBB9wrr0rFjh5ULhmyBswP4K//rZ599T325xj2gDMj5soZgvUZQ8xtogyQibmG/H91Tax424cRuDRLNKPAriFErTk3u7ruIqvZ3kUm9JtphpVeRekDsuQgC8DC5Vp8tmaEIU3EeT7i6lRVDPk/a1FF4dLh+mZgx+8L5I9GPr28Y3b5duCfvUlcy8K5aukOw608qSYjzvXyib3cZgGmDooveB5p1Mjo4gW2F7GDhBjJ0zTbRdGDh2nAPohWjJkXNnLjIPrYCZMTPCTayAxolbWZZ4NpRtzC+PBqNg5u1uySY2GckqV1kSSn9LfiEzgM5SNpNw6dfFo1iyc2DUz1JCXV13jBFjhS1rbd9H99+RKAEyOVSnu+DnCjqKO6v3Ev5/OSdE03VfNrtZ0iQpXiERl/nPAoWl/JlFXNRUOn6rBCmHFjfnwr88YODa1Y+pLzpRU0RnSJyt9JlLUsGEkP/0QIw001eFbSd6d01+HvGKu7zikq9Y4t2D6r+KBvoEurl7P5HVAcqH/LDKux4qdHkpBXLY4daoEYrfc/eehpsLMhRe7sKUo7Xjf3ydhlMpQs/o4gKtgphqtjVnj7lu2ne87x3tMqBCoSMxvaVTyA+SyN9cdLTGZLmVLinUJHO34sloMGJWnJ1DnaLHk1dqcUg+g+hACRPf5I2NArNav+MT/60NpVuPinrxWaUktTMpWXMZIwdnWKxQ2uQjlMeFTiWs1c11CBnWPp8WS3ibKwA9KH0EfZeqYPkdU1FmCgie0M9lEF9CKjK+CvRf+jD/HWc+LoYnoRYDx0TCvKe91AciTdbqwtwVPUk/GK9fBzxsr1fdbZOFuQILkAfKvWUcMe2HLoAdiBsNjj0JHoCQr0bNEqhTzQNDgGQpdSDqxWPyjbq9p7Jh5kEazlaYgwEgZqJpj7ZXwGOfkqHTYF2LKCaFzx0C/B/XeNCLpGJjCuD5Ul2fAJfuzHiExIINh2hrncKg5q3QnpxIZykto7p1MlWQ6UYtlECr33czkJY8E1lEN1Deu//oAewkEHIepHcTNPv0VLBKIxsPN941CCL7UHuB1ur2QDXenQIt63B1brTsHO8TZDUXo2Pn0SwjmIjbCYCjPwuxmulQIon55Ix9Kp0VdM0EITbLWddBgLohwAmfnVuKh/zelHICAJCG8kdeN2ajakFSuYMBxuiA2nwTUH2Q+AyPyLM4UD7AKnjHs92OgLJGthV8CcfvCvpPTYBuxFneI3vp3srdWBOFsMYITtPo1FW8syQmiiNtdT750gOjWUfFdPULxwhiX3hkBwk+/qK1JemBNe+TT1H4L9Xxyg1w3SClCHsKc2XyGRwlH1rZFBCLDsm9kHIrdo5Gk+RR+Ux3kQbyodYFHPh3ZC8hUwArOhuBPR8jgT4vRNVF0tEjoVIGtxEYuDAXVAxT0z1BWogK5FNqiAdvdeQ2HdkLbFgD9t4rwUwR+3YvvOmWhZi35332p5Wf+UxQtSTGvf2Lgn7fBfSgEvPiyVhjHWCjVqOJTfJpDMxkYmdOrWsrMK023nEMjPKb/Z6kbU3ugC9wiBQ6h+35cejlCb3lAHL6G4/7LjixzWkrVRrmLXcOQxeejuVJsRMWOe37eLLjqzQYcs7au3N/XCzRa0ML2jPZNBzoPlMrkdIUjCaeJqLDVJnuB8U3Mcumn1lryqHXLXTa9bxcGxs8fdjoWdt173CWBmX1UGuw1tt3tR6gq/w7k9Nooo391v/96+x0Rjs7eeulLD9V+SA0/WsFT7s/+jHmnN+Zb5Kaq56MA+/symAo3YCPr/7UMH4JHxVPE0HsdZf6wrx/BzM8VCYrCRJju8HyCbvrnHA7gWUIx69EpU8+c4tDKVm+ViVd0Niy4WZzQVD+DLm5vIv/tuIUoYp18sHWvEahU8ZEPe4rC44uDZUbP+dYS+/yBVs2hpJxKuksO+moqh20g04gYY47o+/6nTYKqA5BHVkk06IzxqfuTCTkMlg4IOV3bq+YwLeqtfaORzeWD3O2SxOCL14pxDaM6p5U7ZcqUNVrsJBhKaWs3MJXrX8QBsvA5noK5/2LWKEP0k+udhWfaKKqgGgxhWhy3Et8WMsRQmj7hdqCUp3u79mOoyJjOSTKmS6clHsJrJCkKPJnla58T3c/pGrO7B3ESkAp2buZjdGHY1F/lBIZhMZm1RmMWX3GcPg42HG1t/ojP3uyPhiwgHFHFtwoYvP7jKJ0FePh8GZ651YLe8BOziH+Z9ggOL5hs9oCJPLertBqBzQKnXfO3fDzzvRhNvFhERYXZ8n14HUQR9wMlEFSvQn4eQGSAW1L4rgpqVcG4dyfjQvxt63Qh9/5DnRkpc/2hhmHQzXFw9ZKcH6NEBssWFRvAW3oe+mx7lrXGtG2TgPxFKgTEsz5/2VaP0L2Exeul20WnrGaXs1Lv5w6ZlC1zOL1BiBYmxEbt8EEOZ84rdseYWLRnrzvI5lawu4cX2EvBnzLWFlwtfTsuv53WzgtZP5bpM7jZQtidwypQQtfLig4HqRx3vt8X9vjswbuF/6nVjbbYAbvsu6eadN3T4ff4GeHS6LN/NgzF09VKlNNIXeqYslYEQJvfxLAxjE+jUGg4rKvl5QJGcUknD35kEVCEovKv5riQifOcSIR6I36rgnbO72odGGajf0RVf9hTlyN09EnDUklJm/Le8/oiF7oeqGO8M70AL2u1dVrbxwOesqWJ30Vv6e4OF1gSXUkck+TNrLoW087sVlXlUuY/td4UA6gR4HFZEAf7e4b4TfZUvdhkhwfoE9MnmaEqCjzymQKSQaGDQY2BJaxsVjnlPHOVMsr4m3uN8zQ+MUBeDua5FFrY34nle6YlnDgYoXi5NEcaINX9DpYVwQK/w9OhU1qTQQq8Efl45jGymU7J16yh/3e+DnXujgl8YgofFzszfApVjSq2n8aHfpg5wztewS8rjymsqJlZWja6s9A7X6HEgrC6eOJOeh7eKophU5qCqf0dAjVFEWgOzbe5FxbYfnR/80/eckSZZpqepjd3xy2zJ2Pv8Wz0DuMuKEyNNZm11S9fCIByotraoty7NPv9suQDnbKmi/e3IPcXoKyOqw3FMz17QY1eFLT4U6QKmSSKQWtEDuaPBn4bwP9ZSvP8v110VSgmlu6/d7lmo+cFiModX8kpjhTvzn/SspkcSw8QDt9yak2RE/4QBpmaBdxvTo8aQc3w6qR9wK4wOAIIf/qCg/rsmbrZleqRnF1+gf9ETvoanRqud233WnKIj3iu2u8PIxWNgYFLHYgPBZ1Abxe7voFbQE0LhALXWyh+qOQbwZtxbugeiz1oSV5U0aDUhtKuQsy68O0eavI7Su1+okcTEnfkYiWsKt0yn7MNIQaUFmcB2dMYGMTFUk8x2quiV8MqHPxp+5PDJRujeicsvu0OGczAA/FTGYoBfs73pnQMBhyAggfdzy/2ROmeXgsKgWCBc5FdP4JIY3Lkm21SlWsnchtzDGq9/BfxyruL5p2McxQx1YvnM2QLlHAEkeUepBzy3MgJ2r6znTvYRQ2lLIc+yFcRcniEP4ssReDt+VkP1qR/iYcIugODh5usHQhEy7fWzZFTQYj3f89nTQDAwpU3Ju5j53tudPB5ch7bQ+Y961L6JsUnaYaz7QVagGTGk1ebcAsiejvPjYNYe2C+n8AsAj1zNmccWjn07XRPzvFxHQtL3CuBwgmZFnAZGZZOfB+vhUSWc6e5FHp7nFaKXB6t9vC/DHhtpcdI+U/wfDaJ6gM01FBCVRxg1QDbtrvjX1oAm0QiHP1k1CzNUg4rmc5dgJirt5bFx0oPS80xm/ZEOcnLkuFb6G+mJQFlcf9gzggQ/FKKL6DGudoxcZO1XI5ObgiRm1PghfKuAeK+I4twd/S95eS5f8gcvMeuvLI7k2ZtbsRsXlF4VE3rdv2oKoETCPArZEnboDJQTmzJ3B80IMYcm6/566zREBEjsFKWQVjWz8fF1Gdgj+Xrc7Vhjh0qGuAK98GXNkubnBfBWZvC22de4XQWtdcDrGPLJs8yiCgWkD0cZzYSnOWXopzUdFXqTyO27LHMxBvC0nqhXTvqpHBXIWbvtl0+6L1ok/HCkilruK79PzcCr9QGpekvhAzuB72qbPXP9+wVY1T+CEZs+8vhfRHw5/czwxDucv2LvzInmeWftLS9b+a+Nl3YOwei+YilfeRqw5lBp+BIJ/m2BqY2xvUvl5seTj86oibpE3S4WY9eZt7AA0OeTErRLTVHXXweJnMoHTQaAWWdBtBVOWvj1RNxgcHbfMvPgYol8JS6kyiM0kB5n03XeuugUskgOZUP6Nzh2kiggUSBDcNOAukjTRU5CL1Ic+e+7bKfcNnAyGLrHhDub+XNxbOLZjX/6PeSuqKVUlSTyGugIuOgA9Eq+xfdc8DUkz/R2n85dZ9WagP6TICVkcmawvHFz00XKkndicy3bvR7xOnw6wiyxIZI0AXua+E91fpeaCQiqx4xZG1eWHOxJ5+wGro3GttbP5GSJKk5egUr6GmMSwghhXxXnivgVZFMa19+Pjha7USn0N7UWvX8+yyi+bcqAWJcpht46fR0PxbGwgit/aFA2aQb7cW5pAyoN5QSSj+Y+0u3sFGwVYQ9PGObFVSkDWHNlsRCNldV36CkcIpRgijn/1pN7GP9YGZSTDP+NDnKwE0Z8nUfyzw5GHQtWFHqTPFpfuX9quMytOjHtPP2wiRVumHLpbBJ1fqjP/+sSFo3KVE13fRdhoy88E6Kv8nLZzlOU94wm+i8ySD9l/5nHp2GJboyW3HMD2gw894rUrqwT/GZam+oe21aw5SretfH3TM3WksfMTcBo9hXdWod15X8iuouRHr0Ten0PgeR0FtRJhqXp+aQEPMOWpuqKyE2D+kRNDZJ1yffwm8eiDupRsHigxU6+3keQ2Z9b0lK3+6UTVEqJxmhCnJGNNBthdd28UDxmhPLXhxMIx1Sc/IZHeWS2IjjOgzkk9X7YjFgF4Nfb3/WMxoaRQ37APjlSAgUp13q+ai6/fE3JHtV93sqyeHstgXKHRf7YNVISUdYxalAOJMKk/wfl1OIaENWEafOh5mtZLAdcwsLoPiIYNalDZJtSsn5BexLH0CBHXeKLbPas2U0g0GzaV5wDfQaB7VgTfX/SjJPI9jkonjLGGrsd8RRq+9Q0F7j9I1TmtzUKNHjwBrZChdUGAwBAinOP505VQoRHJMT8yF8p5YF8/LP5DG/GkwIt/OKUcMatVkN2flE65Kiy8OCaWYazLBwgqhlH5aAw+ra7YzrYGW9CZRBcHaCcDuu7Cqd1LRM3UC+DRMtc+rHyhIf6s2jZyt+eQHMrew/U63VtBRSqk6y7DN8roB0hGQfliEJYmZT8JGw4QMFuknTqPvvd1QhpJpc7TISLwhU58G8EGihJruMa72umyygs+4KPJzkjv1cB6soQPseGZAPzPfJGIsl/RSPFj6Q7rfWkS2UMaex4uamYK2nMn5tj2RFd5reaibEuCUEVbDJGlWPd2uDguaC4qdRXW9U+SJuSxW0W6szA4stFv3NLj8XMXD1PpWnclQMJLD4P+KhiUkgRCaf5g5Dm5V9HMTJunx8aIvi81FqVLZibg5+UoUJF3dxGP6CHIxRrEFNyUFIzJU5Hv0JbjGA0T/1W2zW0dL4NSxUEY1yLp4Jg6zitCom8ui0uySfG6kJ1KSz71Ec2tvaF3gJ/EEHNrGzkOcjXujwrFRH8ETv0rSTTE5UKHRBcm2mkMjldFe+pC6k8oc7Cq9Cz7eSdO+p5XG4kaKRJGUuA7TYpLvQcjTx8Bo9mH125G9X57+CA/xUUtQ7/wXfBqGebAT5QBu7RXAiPrzvsv8JBvrSI9vvmrmNZp4Lt3MObCu5iMnYVShJd4iF1etXhbhY7ZLZDAf0R74/t9WSOsvaHSm/nz5l5ecnSRBa1Kne2vUOvzJJ+U8l5/XYgEA/xJv4o0ghm8FqvK9ToKNYmcFGMcAN+D2vDUkNzRYbbQ2RsG/f0H3xdeqlH50VGTY61Hz15bjBEJEdj5lxFPwwETW77XmkLgDyRZXFdUnW+Pvw0T3Tk9Xs8whHS1GjMTPf0bBB0Oeavl8ZP753mXCbV4MivnFigIAADu5rWhI23GWeFYzlGmrDCtDKClNTt0Z+fBWA6H3qf0ryhLV04E/28nb77NN1QFWZxh273n4l40jC3wDAz15bCCCWvRlf+V57KV/n677zxdCFzKMZWJbpglliIQP7k9fUAlZz/Vw85BS+HbrdkR1o91vUACIeSmiucKh0EwAyVDCezf9gywBngwG/VXd6rhlYrRpL2MN7c2ZQPlqgUPCLIalLFIbS7xZiN54rynSDxoZPiVSWS07U4T3sgfYIdJgiRSm/YOdQADySHOXM8XTzFo0FvJJbdKD9BmUcsxYmTUvxKnytUUkSeB5/RloK+5GArk4LZioDGZGKgv38I5ul9hPFccqAA09V95vJJOeYw8fGtYk0qZue8ssZah2sThQ1yyqlwUOq9h7DFkfoamS2lTkhCZnIBPLHRn8pE9g+UGQOuMIioyuZVrjF7esNSFsKKMu3kagWUFhpFnBO+bYSdb1c+KVDpW9W/CbQgu+i6iw8o9Bt6TlNG0uAbfgc1GM1OotiJBB7j+S+vjcNDR0EaiEb5O9NHuuyTRWH+OgwBsD+LL+pUPtuejrFxx9/gdnNTHwgFAOLZea+chV6Dq6ig2+hWOkCuPACq1qFQD4sopSuw6O50BROhTxKtm6vs98X7e8TO57qGuAAgnB+kkiYt8tBRFejf61ZLbEB32utb8X1mz59Qng4qot4d6Mpw0O0HDtdGMLZANJQwKVzRCwTMLD/VAd0O94CkwCy8mm+lJH/Y5V3Wz1cJNlsqWOsz4XEmf/pR6LEuAWt3H+odL9BVFOCcgCRXTsjpOQ124uAJf98FfQ9WKkWSAZNzejnKv3n4IKYlqhQrhcY4EOAeepBKyjmimP2D1Nl+Q2wGuXtiZJ6ySn9+KKy3HMsF+sgSCow/2l4Vjv1mzaz/cgpvtE+i7y51NelCJFveBkWVDi2AOGSf3LhKAA6ruhSusuTVyIzVW8YLvG8oa1qS0O1XWMLiqmS6KSNSCUvRFUYxsqXRyOMST11M2RrfsL1oKDqAdIUQJSyeH7P4TiHdAcQUT4ZkVHtAoI/C6wd8h1LJm+ohGpHWpqBjP/MD3XZFsX4tlx9SVra7LJA/nqQRYdZMVlLP5MLcSQBWTwOGd5z828S5/O2cPS3sj/3Zd1S5tyVzWqh0fSE/aBMBkWvGVDgdDfJOIe2/u6GpAZE7FVgFuwqa2Y2q5awa2lz1J7Br1HufQMJWxL+qO4PIc9XLWowgcvXcBEHhWlcfoXOHkELM+qkcvGRuyJeiNI6QjTJyjN75fhvzX3kkcRQwCUkkPsAU4Ts188OCl3vrdNzPZ/qrs+tcK8FZMMjSdn38OJ4JqDiXHrzIN7+gZelpfz1C8v4fkguiOMFNahFCwayzCkX1NbV34U8fvSMDLhfS3miFq3MNnbtu1jNagibx6y3B4KLdLr27n5QDTfsxQ7W7M+XgEitY8i58941ZCWH2gcwE/P9oK/+Wx71uVXXQqUof7D6rMcAPs7dPHKodRd+Zycegq8o3x1mdnFDZNRUVayLur56x9k+YuFnUK38xRb7hiYVjZ
Variant 4
DifficultyLevel
629
Question
What number could replace A in the following equation?
2×A64=153
Worked Solution
Simplifying both sides of the equation
|
|
2×A64 |
= 153 |
A32 |
= 58 |
Make the numerators the same.
|
|
A32 |
= 58×44 |
A32 |
= 2032 |
∴A=20
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
val1 | |
val2 | |
frac1 | |
val3 | |
frac2 | |
frac3 | |
correctAnswer | |
Answers
U2FsdGVkX182bTduSsXJIZcKZCpi3pykH8hpWH1qE+blRguykyYcwYRMqry2hpoaYYOHfx5El2Dpt8uYHdXHQ/IS0zfkmLst828G5uIyo22D2M4DMzZbU8st+XxnD8GDoS4brcyZVRt9KeQ4z4ZuXzHqGhMkqK0vksqZeTMej+8B+fsxflzhM/VmhBteiO4sEGBSGM2CQyTyugdfw97D1GT0tPTXwma5Bvank6ku8ZsHgtkxhc4usaxUZAvobvluYB1zZFYabFXLVnnApPEuoUkTEV0vezoD2ac3Z80DrmlWjy+B8WwPvAHRSw9EDW7KEbeSjADIZIwGw1c3hYdI5jeidO/kw0jWlhl5dFbhPSFpyQi+azJseaX/mOieyI1yTwO/0m9nhFRgg7g75UgzGMGGvF0OmNOZW0wBQ4eYlMYKB9LaCy0UUzSFA/xXEJrOFfmRZJ9z2oeR0NVYZXMagvm88HsKDL/0d+HrO3wUgYKtN8CRV6Hn3SOX2q6TNW70sXmbrCYhCc4XY+x6+xriSUlnQG20w4xYx7FF4TQ/n79qN14s4t+1hsYidpw7UsE+l20wTO5qbI4UI3W51i8hHla+IEWjSoa8OwUDMIWHCafuqYs1j+6kVlOfZ8TnIzuRajqN53nt7ee3BGBMO84sg9w0AWOyoJomPimZGpwl7MZuR4QBhjuJuzHoqXVYYZ95Xt2raDbZ949HOlKPqze2vyZD+Jb+op9xOGR26YoLNZSB9TVDy1rJ8fQC2nCyYzbsKzxzV1VxrgxVRIAdlCA/v2T/t81VLcHgetMmXRawDz2NW4vwku2djspF7/bcSLwn4TnEVOa2jbA7EuJKcPk+klcF82c//xu4fUckmIIe6SZKzvprsPp896uKECGxewtsRZhpN8ntKO0j6HjMGV+5tnA++B1gaDbiMoZYaj3HWJkCu8Fp7lGlK6QYGm2nd2AJtE2b2EFoJdDqRdMfhd9w4TLmil5McHgEAh0sSI56ZQs7zCaD313Y13t11/+NZ8HVGdqIa4qLP+mm71FqBrYy4bXTfaIdFKjS8k1bk58wUbSqXCh+QAYHKbTcd2CIN1qiPWGbaGwK44z/y4lY+0ZNLEHx801mj90pzWFh8caVeOO4/s4CyuVCqWwMBz2InsLHiPy3Mwrfq4RrE2hoiUui5GLIaOYq6syj01kWOVJcXWZawsBIAaDrw8jrPFgFuTUO8LxyYcJ4p00oH3s3Ql2GI4f3jvRp/ahh1DZksDc9ULUU79hDiR1mJt9PdVq5kZY5l2p/BkkQ/qpFKYMng82ZcrbSNCMI3qOo7FtYkk163VzsAHG8r5ccoMb1fVr9l7TC/W8qFANpUFfRxErZ7If6ZguAYdgSxrTIoKd2XXUvaypheQLXA13FfztuYC504O/VAKB43Ruk68DhGwUpD0jc77TiglFbZQ4JHos2lpcYGA0yLbV4C+iFCEA3UsuSvhknAHjBByhXdew1OlGkOxyw7VPu4q8YE9W7CFPljrvDNsbbVp5R7OGfLnPTCscATKadLkEetD4rpyta9Dp12MMva31ms9r3E3xhhAb/MCQTnlCuGdt2PdhR1j0Jm1XsXyYufcFO7N2/prIckMuk77a2F94URnn4jRMOW0ZmkGYXgUmfNfzfZaxqve6+5iuyHtHjZFxhiRUTNpC1fg+iVF2qANx3piDqxDbJ+N1L+5VDexi8tkDFnFlUrYFKEGRWamNNSD5gUQBB57Qjc4XshXJpuXGstGGSeqKUdf5qbVVWeeqDeUISOKWxCrVemBMih58KO1FxLrqxh5IXZPNxg+JQEbzDETnbuDh9xCrvWuJDLXd/y26EJL0Pd0zzTiirjFv9N8wnRo8/RxBc7uXAxD72c/zJ1Sxf3MiweUfiD+6skr6zAzkymhsT5jQCqwgXoiRvjVG4n8eno+i85dVNZ/oF24MVuamw6xfIUt7fqOupw5A2CB1y9F2UGzogTZPLBjZ+zqEYZH6UKv/UHT4sm6pO1Tf5kgY5sTDQPV6Y6LYSVTZ5s4+zEWPqTKYVGBcpGevLVwzkms2RPTPcFuelBtuuBVURJ48Uqgmpffd1ckFTgrs6AOiJnbDRFOXLamsMQ6syWaiJOZH3h6ehBlaU0pJ1LBz8qk6qk1rxvXRub0BhCcAagfVuCXoX9rGHUPEvr1R4n+Ba7QRnIGEOd0cm/5hXXCzXYn0lGZN3DakSReeFVB4rd7mDZCmN2riGzBblFMF3ytnJbywrBOlVxNCAClPMs5AxoK01aGrlhnIOUTsjEMF5G4FYC2jMcpcO0Kjui5te39MzfwoRXoAX5bw9C9df8awEj1QlhQVWKH1DQT7YUro0ssPrYB3OgWgRpYD7hTsV29DJullXrRJcvIK+ykqWxEWFL/hc5jHSNPn6H/LYd3hsqDCcZ/F8vLvuTdPuj2DrOUQm6A//dni3Bkm3m/yEZlCwF9Kx/XmZp7Hvf4OTp/W60WKByW014Ph80yJ//ndNeNiJNZpMIdSoX/SILQ5Av4DpHT/9NLOSdNewtI4Nw2Z34YrLTsZ2Y0NH2GbYx+V8sAfZx80uFGQPve73CwIHK4HdpiWsnop/IR/Ve3FKxY8BYDteNnWYW/U1aUcp//LxAC2YmQeyQDwbfW4IQFI8oRYn6PEIgNqZQZgTn+TTMgvKLZ9GAYf+OjpQ1qcb2+AW/9i5gX895DrRbrSCykjY6UyDVlZmcqWF09flkhyIEXc0K1VOG7c/zzipydk5O/YzHoR9cdagkD/uWey2JJzX7bb0WW3gI5snt86X0zJvMOTuP389czs47xr3FeUJHrUzlJTPKRJUsd9TPlwGkzyT8bHcrtcdM4rkD76DGhphZiR3eXQOOpVzWXLyPkev8MjJHFvk05t0mKlWHeeIoyf/u61TlmuXNNFnWtwCl4HMYNS0WjL4LS6RCumi0+ihqj/31cnlp9TwvEZves2NN0Ze3LKWWWp3XUWrC4obyALyyPTsQQygvozEM5+ie6bqqUrCLx2oFmVFvUa9w9W/gwcOcbxzUgiq0ZtDaI0QccevyDOiUmk0ZkNIQPo5CkBSbAcgoZxwoicLhpHF/hOPY4nN9ihvFVQ0ny9ifOT1wlT4EE+Fnkexj6TvE9jxdjhYLwTBMT2uuyLy8XyatmcTHcDiRI3rWUBYv44p14BDwBih7Nf+MfQVcckIqR33OBUoYtTDQ6iRU5HRRUvmKBJAZe7gLPE7B2fT2hMHhaexx/vkJi2Er/wTFjxeGIGFtpwzyh6WnV/MkbtgE8PXyQ2rTIEpVE9qbldNpLEIKiLeE/vrOh39zhM22xC1NviTJdhzW490zC0SXQOgvFP//tMXGwrD3h2DL6OjF4lOFLXN45l65PD1Ur/iAyvmvZKDYAHRdBa5WdIX5vqKSsDQQafCUFamyzPmTYwks1Qv+jphB9igNsghCy2jZTJA0vWCVURlHXL0VMNnMcKYlQEGXDPJQZEMILvFH4CJfQofUHsyP0gS0/ilObtlHyg1N/Tra6gLNYYWRuayq/snhVslWfEAD12qtB80RMwn5wRJF6BOSMo8JHogIChH8e48tEmND1isSmp3sS7kYmeA/8SPxonBUxEe7roZTJeGgnLioQbhtgloglQgvaOtunw5LEUg4ZTiFGVnsIx1lIOfNHqMtgPamshIVcypLnKl12LAPaJ08sEZOgoQRanQZeFWq6K3TrytaKuy4q2mg6+k90jMJrJ0TbiCq93JvjZA1NwjTAb+LoqgM6zFpIRidVBKonO87UGLJaQ2x9iXkqQKlQRy24dqvoCCtyttumZ4/SDx5oG7AtoO2sG+1T91916iGAzYPJ1WELvH6OY82SXXCqqPK/h6JCsLEgekbAXvJlK7Cr3GnolpyOc73aJVZaz3nZpURX83v4NurlhHhRbqE1IeVtbc89jPIHgZ4GJfjks5p+VHpdfcT1Yhzp8l3mCsU6fXXsLx+LYd/1QdgsC8SI1XTRnS6XnA67UYZnf9S/cgoMfXOqAold7XuquLPvHJtlzKIgB6QUPkIaPx+2FTkxR3oRFTjnt/lfme2UC41OeKRgV8n5/0rn9rcpsIiXhIU6u6WvoEMFmv+8ILgQ1Ya9+HhDDr/xjNZYz5W0GA9qSUKXIR3It/dK99B2sv/ETjOLnQWYU5fKiZ2bTQiEWMSCs4JwHbhkhMnPug/X8gwCwyrIBFvG7EyMuoC9tzNz46xyKkaRaXz7MGclEmojd1BxVwJGh8hgOhOzkAsObhBK3YbZMG1YDvXm6ztbvFBEjDfcQLxEjXToqJ1Qpt5+N9909s8LfJI9SXcbpjgxfIpOHE2+r9yuq2yqG9DOKnSflZos+ytg3rBlXzoYbTdb5TGsgisVpqVV9ARsA/R7YZeUCy33ZTm4Auut+590MvKVV2+9i3T7WS4iLtKU3fawop6AN0xESuxVFhmw0bMzJcCyoyW9I99kkeOtl+8zVEDnEuCB4TbJykyvt6d/v7J//w359PUTgL4LiE+mqYJaCL9GxviZogfNKMS1dti25hwwHbGZ9qMGgPhNMu1XOdwvLwe/wellEu9HKkYD02wr5i1bwkbyF8uyGGbDYrcGaSiGjo0d+BHhvwfPoJmH4EyfHmVvd6B3NQSKPF7qeRLSt8gCPJOULVLa6rqbp+Pg3witXSUJ69QoqHQxvlmd9djLR/K/PBfhP/jESz2PBeUavEQfVVdqhUOPT2pCb9piQRF6eQn6z9pVy4Lhvx6WzkqWK+csCNpZ/j28GmEx7fqSJsT4wlPkMHvF4kAVBjd1cUMoplJonoiE2I6cBsbM7HxVPeWmtMHkNhqHjP3XCg/7m941RStqHtIPaugFb1RqpVy9L6nIYtl1rTZwWUkzx6JPR2jP/Rgbc8jV+IKBky1sJ/l67XsLuB3EXfWmug/ptgVcxSJTDv0921j/hzQKnvsi3UXkMQdTh6iJWmjMuw7aF8CK1CIenDRVdRkq3mGPerFR8zKrl+fxLY8d1pBUlXU/NC1C2L9zoENvdq9+scYlCIsmt3O6qQx605wXV76n2cHjVfI0NXMBxY4SwNGRC/1Q0d3Tiy1pYV7QFruiop0ArRjFBMMPkPRANMzQ7TJDrhSZ+Vd3HCbfufq22eEEm61BrBfGnx4RXL2eMvbGKjBacg4kU76PbGmCBTow2DFM/9Gp2AlNONXm+kxkt1McIEI5obgkJbvtIRmGla60rooDGIkNTxHyQiJuXlcnRu9eZ/fRsQytlQTKn2eVFCSw32ZOnN/x5RU4yhR866LMkZpNUvh2cMNR0ED5TKYmkykocDKaoHiHYahkrcGKnnZ0X8/S+bzYmV0Bqu5luAtZAqfuI6lmbxuZLxsZrMXchOnlcXEhumIHIPr48RLymf8dEZxcr2mKOxHA+KPWicPP0C3wOVgnvFdWyFnuIDa1PVHEjpTo8hbVAHHX4UYmrxKnbuq2hPGQ/+ymjsTccdha/QL2W/Y9sHCqdjBITR4GOe/V5ot2kHUpH6eEui0c1X3IDOg2+zuvNZFK46LUI9WOUerrHdsBcM3f74wjMmBh/kpovB1AwCiP2a6o3ewSLcZTh75FLydHN/6fNh3RFhblMuBC22rGaNyU4lFn7Hpp/IywA7XfbJveC3YYEpoBscfOvtpjpZaIXXuuhLL6AdXRxN0T0Saxh/JgrVW75VxjMMgxDXNrU/E9hyI8QOktkatypnbmicMSwbeStxjNqN9/4ut9lh35hz5A8e/E0uZyB/bm97uUkXQmrGeS1v4qvfJDX2azh4JIpXtEz5MwfuW8LVdiGmnwutuJc2nzo9Bm4TkkkKe4b4lBQH/+qyaSu31V7JKIBZw+YIgmx+DModa5/7/SXkFzo6eBvwSmykqKJd7kRT+LlRPRbV5HckC2ycHIbVoFWnY5FYvjE61G1SvuWlIoT82OesL/Y5fezGqt2IEnvqFHOAC23mf8ucgkVAcN6ENiaSeqvGV43Od3meGgOZ2hcA5eufZALSgMYi6DCAK2vo1zxfwHkN+0KzcK3jOXr+mMBEAG0wcx9cs0LH5DeGALFNm/ONJz8TaEx0wtd7T2FHDT7PV4od482/lBIjp8SUFUUNfQiviS8sZIlNXNxMcPv8N2YTPMe9x47G3DX+gL/+rHOfPKjzPdOoBVYWJ+r3gs8Pn8ivf3stTHGpLt8zolHIhUk3f3WVDLpZ8o6YwSmr8qZzPL9soeWcP+MMqe/ZW2rQYa0OXT3ip5LELw38bj//B8bXyuuVnfJmP4QsQp8o+xWfy3l/LirVa7qb7S6iiLQJhiGBb+SlE6kCY7b0SN33/dWP2jz1W0M3ah5Ie5LECIZ1eNx892WdJKthhHw7GtQ36YghgKXhFXGBtEE9DNnD9eNvjjFP9tbvyk4zEmfntq8+AXQKhlaZvFhtCF7HqVUHHzIjC8KLhfAqYpZOWDV4rwr9vkeMgLrb8j8FEcUNzmuY9RamAPOwHXUvzmw3iNV7ADvdVop8glmqKMHlZnTlqdqYCXcBtW0Ix3sF6mTyNJoLa6XMstZw8RqFmhuNTHLNeb7qsnFuH2bbX2Qb7tknQB36STtiRNDRL09LaAg9XrNF5CIXbZaG7RxQbXSmwgbgQjbHf1rT9rDVLet5mUd1y9rlSm+/87YwqFeqLYFFBHI32AY9b+DYXyDf2aSWp4DMhO1Qx6AIYMKy4IxxYHYtvtNVViFgtUrqJw+s5QhWOUa/8v9eSAFrdWP78eXkD4eMt7m5Hd95snIJwrc7ycwFHrBBObQDKJxqUtEG04MHQgaiAF4/YF7zQ5igfQZUZr5TYoLziPHHD8f9GCl0V7bHKWvMjYIYeashSWVuVA933BfD/tGHErYAH6TtS41b+/YdXy9aO/X7P51RQKr70f7Yb/tLR7cptwfAciJBu2+9deHmhNZjN9UrYzX0dHB0UV5EwVKMbbpd4MSnv4wWN3tqyEDmdUp1DyemyUqewuhy5avTcbNvhfQ8CN9rynUy8SGLs/QlPI709FEkURde82yoF0GBzYiJv/txh7dsobL6oJ05oyIu6bVCQGjuMSySReN8ushMK9y6JApF9reKRa14DSCtS9j5yV4PEvkYx4E8J0k+3kLNdAcJsHq5XbyMrHKcG+V/gsqVgFp+xJ4NyS1B8MOKqB70dh6sPA+xOYNV4j58LZ7hYbQrcRDU+nfiKN7QUma523SiCNUyDCkOb7CJl1pC7ieqZe9rq6pl6eRoLtQMgr2EDG+czk+Gm5xRWcx3ZFNBjOT45wREnMdFkSC0DL5feyuCjqIdxCcxj1Evy/1NIEpiYGA/YdxRsO0V0qvLz5PnIpuDOqfmTufoPoTGmbg+8Ixn9xczmEVg1tICXrH1/KF8GakFQ0a+PTbSSkmw7lOL011CrQPwXmYjV1Twz/a/HS0WDn3t2iYVPlSNCUNnqZUQyGSeM1yU7xAwTEQ6OBgHxel02vo2LGHko/gfRo/n2sVb1WspfowxY7Udn3AY1FW3MIq7+UZJD5xo4bIQWO8tXrAOYo6Ec6K6JaHu/Sg+CAQpWQQhKRNjM9UGXGaQoK0Q1b/kY3qlzUHt5JrzkNl1ZRIO90BA1MAqG2QvGaNQf5i3gE3HChVK+PuiM2CYjTNwD33CgMUT34A9Pn0Wyw2yrPOREycMPX8r/7EeOjqMnn+MJ7vjngB+6BDQBPHne+EMrP+YrLtNPX+a/7LqWajKmwUoOPeBJcUP9BgN6yg8n/S/ybuxTvnTHJ09Zmp5GA+1TE14VmFIhvNg+/GJ/Cg4KYpADN+dw+o8gSSvOqGXKYSGRxsHLT36mNptDooOWxXJXustJtbOMYlpBMoVPDdNlscA4GAaPwUKGUICM4DuzVsqSp6B6wV2L6Rdg6ivXcKOkEbQZqlk4rdj3uYmOREzhJOIXlnc9P+fGfM6wcjWmvcURd9SBjX0BJZv0jfOh/+zYfhXj+wbVDH2K+Jm37PEVgVoCiVyWRJiImsGrKt9SrBf0B3zs65EaF+4cf0gyAvIOAfScabuAWiVa+Xehb+Fr657XxLFp13FnisZ9hDrb9CQCrwzv3GSMV1ebGop8O/m9DQj8uVi1tA4hbVtA9tl3qr7F1xcIQZzPjAk/lQwuv486QftEB0yu7ABXoyPEdOf6ENLH8kth2zI2W44G5l6idKTSCepc1+Dng0RS7sm0kv2rJKLqIzGhI6HsKgIN0Taom7gJVc4kaYCHOehO2FMGWFIfEpguFxOh3siNK7iRqRhlpSamFbeMoYaLW6Oa1Db7p3pAA2zWhx9YnmDDlSIYWYfJic0OsroB4gbJB6TD2k8KFEY6Bcyk0y+Fs6e8A7O5tYLaTotSjp0ToSFSR0/9gkAeKO9+X4lEZWDX9smFEB8h25F5y8R2agK5x7aWjFYby4gMGzo+ylB4mZDzX/z4j7veDGdNILYENNn5qk/RlzidK/ySRWpshOCxhduoNzexCuRuTq+lVvAq1oqIqonr7wiS1caWsLDRUFjzSmv1VFsrJ+7TMfo2yRHN/zW79c3P4NavDz9jdmTbZXpyinxcGfJmQYKPboaFDjk/27Ayj+G717VpReh+dJemoRvp4AWi/P601+ADfn+Mj84glMEpNVpyvgiO+/+S8145KI46S6lODUBsm2cRPCsFRda4iUaxfG9oVZx19UhcmiN6MiLCmv+D7EiyyhY8XJXaNZcjk1TxQkV0qnCc+tgGo4EMWPpIYEaO6PUfTK4N9F+iKBbdPr5P+tBeg6drek/ibFz/5D+9O5X/S9YYIYm8XaYXgTYGO1vQTtZjDoJpW5vl7dkbIIgAUbSOHZHRKklg/3Ef9UCIlHxYvxLn/Sum845ZpTSbUmwuMeITQlbq/lJc9P1MOvNayycmaTj5/YoBT4UvYBiTHHZYSOcSjeyzh8WuEChLJJ3JZg0VVMfNJS3VoeLsZz/X89CNDxoBFGAUHNNhk+6ee2Iohbqa93GRz2lWGTamz5YFq9ufi0TMsLyadW5lg/u5WZioWfwZIG+UyU6vrYNVBZR4hT/xN8ot+wrEez/3NkieEjnQMcMFAHEXiM7Kaadi1casmWTq0c4bhEsBHXPabmMQSWeVG5k3cdrmxqfigDyztSCV0wLOSKFQ/CE0KaBWTkV6/vdFor5Q0MBx4cyzxtMnnJgTKLFi5keuRDsHXcNCYwFJMDjQUUiguu72Y2aLoQMoJtAkEifYJVuulgwdnYyfbD3z4T85FWZRr61xJxLpz6gXEjeLZiLE589fGKqTt+q/8Ehkef2NYlp76Zn8ccGxYmupKKFqL7imDLbhpq0uYDuKCzVh/qbiN0UeQbX8OlAxIjuUOpg+cAiKpj/Fx/+ICA+uIrfG5zdXmG1KQbIyA8PpOv4Uck6Aig2Y3hHN2GBkBR9cNEERy1O8QQZF9WpzF89EcNvlcm3Sj0cHfd+JgL8CqaJATedT2iwtOZicvu1wCfeuxOqAyu05b19AIxPp6Iy2MxXX1StOrB6FaZwiP5DGQgzpno1MLf5dITknj/acfQNAFZslUk+40ww1OzIXpuYymJv0/zV1eu7ge2yqcQ2496mDgqj5Y+VOAgjhhAxgHTfAVSuuteWDWWdd2G5oa5VBeSDVDmrdEZw3ROptsAmI42GGFp8m76KTwzzDZuMaGermwFLLatNm1h6y5Lqhdo6w+VrCQsdS3N2DPqt0nRIuQHq+v/OiP9u9NL57qSItHHtSn2vfltBae/3PnczmtI/p+Lu9f7Mz0q38CcE6bYXrw4/mE5/E2R3yzQQmgfU8vKI11ozU9NazTz4Hovr7Ed1VcW4Q8StPEZN3iLGMU1hGZydfzEDiMoEa1K0wq3kQyKIZp5XuGo67BcMR8T1ID4SdIXxNJ2WPw5LDs8NYJgV3wnnvoQuP4Um8tyLdhEaVd0CF177aLxr/XLh/a8JDhaXhGawLYHchAHoDcm5/YQk+YDTCJSDkH3K33yA5CJGbf/AMdZ/7dgje59z0gAhC0pWN6gubwXbGld36t0rERnetwFC4QUwmtdQVxjWQOkRqNxvz2qtoGJ/MAG8M5/lg743xHldLQyJdq8cswwctSzjoZaxjSk/AVgiDNZo6ZZUyKNWBL32jbSgL/zyfFnfgfF5f8bwjWXkt+t9A43hf1R+hNorMTaFjmRrq7gp+Ao/wETO1j2Hzhx1O99BvhGi4zPbYVi0WdIzY1oUeOSw5WAnBkXhSOoHYRHxCy/Xg9AjnmZ46dSoZdNslW5kurdVpyh3UktxYlfe42dHk0svJ/2PGOQLFUPI3OA6Ajtpgd/GqggKR25q2Jd6Crux2FXd5x/RZRIxW3zv2RNQbZgEhyS3od88LdsgqNtm1fOAVfsp7Sn8Z00Qajeg4+yrex0fQMBjhnvU4ud6mPd6Kj67gOhQNfKO19+8HYM9oGD/GxTjGSUzjuI1G90BD/5iCX9/o27GKkq9xPoHJNvewCW90YYuvwF6zIPKHvIjbsps49VB7XzGb3VsZydx1VHkGJRApO4P62E0eSntzwmtHdR4OYcMzsGwrTo+6qiq50/qt6G2eQP1FDP0cXyBZBPCJSnBENyfwDmOwjPLrl47ECewf6zWUPkfaIfjINV+YS5AIrs96sXWEQkpcccM+NzmO3jS3pFm+ZDwh03tesq4Kv2Jcw5Q2IzuTgU48DYxVoTUbpnYNKRzaRB+JJJ2oQQ+dRVetCxnrCHxUQ1Kp1LACtJA2HYugToprOF3/wb3xRQVyi6ZZjOvOLpFxx79hRqNegx+DFOZiyAgXz5vqE2oDu/NkcqR0yCvbQst/r07IB9Gt7HeWLvqzX00LnEoaBzym6jTvuZB4cG/VtzF6UfQ3m5QzztoJYM9X5SAiFv4cd8sRg4+mtR8XilOAifLWdnr1j2c8mzkBtEqSUUXe++x2cjcsfUSZi2y1FCLeI9pV8guDbsU0kHcwE9LzPSOHIUL+koKC25dGtG9TOLAQXk44KQIT5pjTAE4LNFc8wjbgUhCbfZ7ejSGKEZy33CzrhmDWqWt7wDFuTQ4W93sbUcw0QwqZJjz4KQZybUuwVUUuPw2cxUov7aDgON5PcG5uwY84fJa3gaVeCR+zlXZ0i4jJ9J1XmIcrfPVGiSOXJQm66OyGaexuVxrgV4A0Zl6Z5Q57LmdoIXGg7ADABKK87kuPA7jMxCV9C/klX8GFrIbcQG/0K8fqIhTAr7cs8H7WjsMHqBvya1KKeQCyMbeQ13qDMPcbmc2ai0f6noNmiF0ujVtbDSAUpwG+zcgvOlP4kkOoSyAerY/qC7aj1mZzRgjXQnMUgBy/nqkAn1CH3UIJCMtKbIWtn+w3ifJBwCVVvF6+QSQeBTeo2pxRKVhHU9QdlGImKkArpE00bDVAVZcA5dD2s1eOZXCQbsSIs39pVQAS8mdrTNU8ZeSDEG73d7whY5MH5PSraAcI4T3qAuKkaTkJcW10D7OTgaLNN5l6o27gDv5P8lH3vFM8BRvdr0t5Ma14FHHVC7vg1Ztxj9vFpN8Io4Vb4Oq9hIDsLO6wYPhxW/3TJnBqzj8vcOa9UPM0Zhzg6MNhncSJed/TpuJ+cLaCM/V4Dm1ioZFspJzoT4pJPzaZsueQqUW1AO6lSzgP+OV9zhPSpkW72d1uxPEqlcr242wWzWMt8quO3UPLLLClLbBuAL5IGWOmnoHU1i5ttJCdFe3aHWQ0Ygm4BFkdm4BLOym0mPoJfY7YWabshnQ/C9LT/GxF1Lz685y7XFwGc4pHM842NFFHvq6wHeSiJ0cd0wiE7i2p1W+OicIEE3Th7eGKZZxicH50MGOxR/cohxkpATYGSvbSULoQkbm7DZH2z/85KS1Uc0mUIUexHVzJU8XzwWU8cc6l1qIz/esdwueHPULTV5KGQwKPwa/G1eXzOEtqkUKQYZ1ORPVDeaGG9TdSEJw+r2zxZ1iUa9TMY7vrugldcxeXDQJxYWlkT0kmgDwetyySkGQg3Vm5AZN9gcSOGBD19a9TEAWSzpNpah8PMzjkImI9bTSkkTcE9DuNvr/TenVAwK/eRYS6y2UMrTl8d0JKp7U0zHI0M4J3EADJp2vp/7XrnoKkZqXMj182aGqtJDil03QpIEfBQc/E12pZo8B1k1JIiPDYyghaDeBKr87Ag09+x6fW+wgH4N/Yw3W7GYMJG7+TUSTuuArKbdflhLLWNqzvIhcCo0rBjveg02NTpydOHWfIpAVqsxS+CutMw41X8T0ofHu14q7rzvQEnHaTEsBiDtE9RQ49N1CTbGohbPQtGykXkxtSWVRKdBekS9RflAPYtQeQmGkyVLVBuYr3hC2wdbYZD5ZXddYNVBaHGyPjmQWMKwh44nLL1jez+9wVfT5HGOQ/55b6ARrV5hzVfNLJajcN6ROmXxehWZDCcAUf42GqLyYA/JhRTHYw/ZceajFd9eaiGYLDiGsU48tHlcsY4Blt202xyqjlUen0BCsA1kCNhx5HK+KzmDc42WYVQDIH5QRjvHcehYyc7M/4QjPpi3Si9kP0TKt7hxcqw2nQWx18g+Ms7Nke+AhikOYK0CjA0JA0tsWP45ERV5177qMyCsMINjGjQUYJYi5wHRGVQZZfA+P+aeR7iQGfVoreDPORzvo0HfSGvr6RvTpQWSKwtg9KO+pBCXYAThVkb4DfZqQ10jMnQi8tUgYUxWJVJfsAq1/DRToxVRo01tQttXamqoVCmHzVxP+bren0sGCHngDNlxolVlHpdd2XYzmtttLlGXXYRT3IsHNxDczjzq1zuCe5TVaOWS18rNQKX1puTo/ddz9MEB9Ru7S9VppXrfecvZMAQQugw4bPdHeXOQ7mI/KdmamRPStnq37vzRgFYMkFipqW+SSskT94MdHXtB3yO1Gjw/NN4aJ5IESlsHwtrd16fZz159WobckaX+HHVJ1EaQ5ZGhCxRTVtrOhgSlPF93Uoy13xzNzVOl6f9aJFhxiGfk2KVRJyFZnhVFqnwvMiZb8wtVR3Xbx9+T0FARyXV9dds8ivPnMHx5+9hxxoLP6v4/1Fgc4g/01x6QJsSWf5eDea8dsD+eaICM00gva25JyKXspwIiWRj9kK+ohgJuQRz5OsX4PP61kUuqieEGizhw8pt8WHyFef8yGiPCrE/bM7HEkP5JBSaIQ1ACQdwS1muKTvmRrPhReldUYUP9Xn/7H6qIJi08Iuuqqgf3+57SGI5RJS9aLPWKw5wDQwIafe3cb0oIfCNa+mxsxGX9LWFyiKW4S5/VTFtNENC2Kv04jhqbPwZcQcNnmm3H3SXfkd6owuGEEIbAEzBF21rJweUnswSYOVIwVAK+UFzEPrKcAy6OXwsTjMwgafkIls1xeKPsZCOILbUh9yihOxdTRqp55edex0L3/NCiDhgeEI0XQ7gUU3ETI2eJZNRWt2jAtjgeojX6xqC/2dBYN/djcfJrWb49Ozz8aDF6Nxx0Acvg2YQUc88sEC7MIlQX0JJ76lPK5I0q+US1HjPn0U6w0JVVZp3+uOO5yGw2idv4yv7DMFS/X0JFmlj86lM+Hc+FWy23yDAMcFxMnqtk/R0Z0/3WnWdWoMzAJ7VDSdxmSlfTmxeESfmgnO8wHQvtq1LCcBU2FWWSgNW0nwxSkhcDV8/VzTxOkGMmQIGKl64OSS2IG2QP1YJc4anttbWf1VGpuOHRvl7SADqYiCDioKAXK8DDxOAL6rO4mu5DrcLfJkphK0ujymkX6M5JGx8NnCrqe3XEWVP+Lns5O3pHVfQxKl/lWDglC90xBp6dkLJu9ESfGyV99/ZQnecTQvZG2CEF09VXlwaaVGySe6i+3PuaTsYLKVARFjKP6rhweYiRt2lmf/1gDS2x8wqnvis7173n9CornDiT6vX8qG5ddnfFuGPVnjMipqV9t90esKSF4+oqpbbT3gh/C8vVdGV7LLOEJfRbU8CYfq3q2Qoes/PsGv07b1pd6ge+sa3L0zbtLuOZbPp9ouMoTLPfWYShO6vuuDPVe9muKJqNi22CiOFBvJ9MGv7RjNiee7ctcV3sekC6UHnP77MAk+/4kES05KXVLWybeJToFn+C1gFfjvW2tKOwBKglsgALUlyQIyiiwkzp2z0WusDhwVsWF2GBGpexxcRjACwdaPuxbw+gSEilUTMQqUZ9jWDWttO/4vUfjmElsY3enWazvi93HF1kHZcfgfgODbRt2ef/fQuPQI5Rm/b9uejvYk4fGA0U4b8YYal2rXvocr/cQf+zvsyAWqu9zRW6E6Mlce65lGAFb9rgBqYuEgwhVCfyndv3hS+PAKeMLHBHn465i0ftfUaQNEmIOAlyUrO5Qq4iOfnflAfBtQOWwL33o/hfoNWu842Klr7l8ELIhvQOGlHe19EmXL8+yUMkWZf6O0o7QDvyThKpNzRZW57xn0c/dwPpls9OvIluG2Yaa6ha8bvxv6bqQloiG1J+Y4Zi6MOzt6X9eXB0S8aYpErlThPI9YvQG95zZqNy54Ayi4itaGf5GIRjAstY/7ZmQxhofSikbjCO7DvfmhOsxhbr5u+Q8BjYkx6XESosvDfnALLuFOQnsoGDoB7z+qDExElTdVNHGLECwEHynoVIIYgsZy4NwvS37zjFo8q4UTXbLKsV1JckjQiTVq/Gp8WNYg9LosMW2jqeHRMWtxZZWT8c2Iz9b2zsW55FNG1yuc/SIzJIQL/e5JtiKeCdWsfsO+MP2YFeQEDb/NKkPz3KTwyP7bEbdpx5oTNtg7XnCBcExgWxMzcmSnK3c9z3Uu1P0X2FsfYAsiMs9yxIhzDBTlMw8Dgt1uozYdl98rSEOjOm98IB2wMSFXrBdP0IvgEfnuUCa3xe+pA7uFfGC1mi4ov1ZL9bWK0B6bKbIRHw4bpQTOU7tsI/pruNlpAnHi76hyASqwzmrsDP2wE7kSBHAhBgqe/H8DZJrKdPDqGlgDrn01T1lyOgUI9azt6YfVlOJtM/WOJ52lpRHc0qF5t4NOatmKQGAyv6BKSmU2lZCqCB/9GGJW3ad5fLnnmNKR6Tc0Wi2fhly3a5FC2KqXDPw6pyAkUPOqFHgkCb//5MXl/ENOuuIAXidQr3tzhjP+l6OzPAz8r5eIAZ2qpVAuTXG9uMbbr4osQ6mRZqFz+OLCKC4kyhutJl4vGXDixTRuX3EfiGgzNkCRa4oTK3vQS3ZSN2AeL0Y3kguPb2USBLpePy5L3+dcLGTCivzdxH12J2HqHf9qgZuPbPR/mN/MySWnWNgs4iENOAPz3nZu3tkv6+nvXc6RtpugZC8/9TFl7OZied4klabOPR2310btdMmPC2lji3Z88DLAJkFF0UjBRTxuXdqzveqzMX0MZ/TSYxlULYs/YqxpS6/Xn9cLbQbDdwHq841PFQ51k7/kZoynW1Zw0XgtdpQ4IAQYI7DK3xflDWaSXmwVXwjNfyZxKHanCAKEwcEOEe6M7XUPj+d4jUVHXmPrmMMf7wkobWd5Eq00Nl0qBf7+0zPYfu81IbokPFuQBBiTx/QO0pZTH9yym57QmLQUfgifyhE+X9E4rH69I0BD+PlCfw8qKLwNW5xSGN48GjHXSbklrN8/8rwXpPCGeCuj8h+sIAztl+35I7E2Q0YcaxsnDw4BMdRNJfY2iEgEhSBUpZ4qDAu7lUEWFHEM7irfl3t1h75BIIrLZYSVZleU/EMO5MAHlgNM4bNs041Cf4mzIXs6K2eXg2FWGAsBUGt1nzHFrQXtZ5fmsm2YBrfeai8mkupQkU9dAlgAaaNP0DXof7SjUuvn33wdfKh/VV2xbB/NeJcdlxu4ORqbcl02rV1AGz92pX/9J8gR1a+TRexd8t6iga1WMxlhNs27N04t+3TamO5yymMKyM179UVc6ecpydlHEuRRSL19jq0q4qPcEvhAuOplXLw21bSL8NDPp9DMacO1zV/8/Oqrjzq5x4DyMeRSBEqRnbD7XdBQxY75MxA+gOqLCeIRTf+Ymkb9C4ujJLPJGVHBlOpQtXjUjk5/X1oFQNBaBUROj3BcYL1k7v4i47KPVqolXXtQQqkeNNDz4FkWJkzFd/JaVod6OOg+2V5d6VpmHyyxKAk1yT5RRAjDY1x4JyMJkmC9iBcwFKbtrn31GbSWTkwaVGhXKNYiK5ZxwQY8bSmZbGPfwhPl7Fvc7gwhYmOdPMoTXqxminQJX5SlEb4vnQnoi8Jy41hEkAe792BUVDCUqtSgTFoyz03xAIlbf/R17/f4cYCAwlkjXoOBz2YdLwcV2GxcRNIur2wZHChuN9RJSaAs6nDqfkGlp0GHYoNb7ZsKZVkjXma59wF0su0fixRu0Us5jAsy7TaEGeO4AkcV6a0HZKkwB5jmNQRSgm7F6Ex8oFEvfhfaXU4IB5VaH5/wLKt/gvT/OtM+d/zEen6yk++2ULSF7mrQ2TVVQ2I2aFKsNn3aLXAiWr/jPDrFa/vV5zfaRSBFJZ1HZWHOKqdzROpitc0q0mnG8mdnsvOEi2UXf9m1lHtZLiaNQQdFvv573vQK/BX030vA6F/mKtOBsO+Yr+N5IawIHA/vhy2Y6Uj7zqEbeJMLnU110L90T47uHkmjQ9kcsy2skQgZyKHJ1pSU3EaESxzzr7wODjXh8uIl1QcX/aYKaVA5ynwoZCZ84iC7B599UkZDyeHuUKFKGuI9CD+R8dNitS2RDigg82SdSTuW2oNQ/r9hglIGehp0f4npC5IiUW4EqYEUJvkL9IVeeHJG91nmWgt7dvhlT+Y3I+Uy9xpzx3WtpC+uW3raFP2su4G5I0riYkA4P6aRPGs4IZ8Wnpysiz1f7IBnelt9T9FVy26Da7nUUmXiaCXe/9BUq5UGjH8q3DsvistmTa7Vxzs1YQA5hVMR83OfvXuyZehuV+WVfRreNF7FXHJk6M2AMnAKFWdMt2x8bAI2i2YHlze71SzpLxHr+IGcZ85icn/iRZFjj44j/7M5P8mVjXNFNqsHl3aPe8LsLoDeI67uOpLY3bz6glLrkjG/ezR3uPFRMRbUfXcP76dj/NTRpXlsnc/rgcVcE/yxvZEh8EPOjUJc3SgfvV7iisrgYoxQzRHFUPYKuqjrSEWzg5YaS4v9LYu1ONhpKUpQylIL/R97HqNh+RU40SyusTaFpLedP46yPjIgJS4crdhfiTkGmWCa/UaLCKuP9kuf2dyf5VUEnL45qYVyvbRK24j2d4qE/1b2lxIdQZU15Yo2OEMi3vxVnuLKU++dwxNyrQ5aUm3fra9mgbWjMJAjlIRHfktbAlTduilUUTa9tvjRukt3EE0a2ory0Ih13fUx8cf7YGUzzvvqEA2kM/dbJAGr6fGk6NsGzp6/ti4piirL+sKwk7aXmcEWFUwTlwtKPs8/WQb897hRpgNLaXd8C9Do5YWehCaFVb1rwX6IEMwa1pip2NF9tlKMdevByk3sWV15mQyGvFkIAnMp0m4iCS+xXKnQaxvnU4EGMbkGS2HunpqyJjC8FzI6uj8RRlUX6e7BV6TpTWEFWIBSFIfemY2lYan7+fYIbC0VZx+gtIS6YGv1as5NK/MOMKXDYenr5L6iwF5TGeh76zQ4bPr5400sKIpJjrA3PUYOAKy74aInqSsbPEQgwvVlHfU8wkNMGGBq57yFOk22HwXQAjNo4DDDisukp3brJi3Em/neXyXfkYV42Rjl7Ak20n1HTJJGqvlvtAu7cHIe52sJAPOXThsnVZYVvxyPFCPp4jA3p5rinUWZJw1eSv3aKh/8WVMH7luFKRfqOxPmYQWkC/JyBYRtklHqGbJ+++4pg6AwM/PdQtgiPzrZhOReK0E2a5jTVhx8OV+nY6nAdN3CUL/IsazRmN8TJf8Fi6WBEtSwF82oMzIEdnSi4y6NwEtiE6oauZA82mx3unQWfxglCoIT5wXvVJqs42+71xZKf1m2NvId9nWl64puZ2K6HQ+f3B+KvKabAscbcFFXpSoYYLUlof/J0SzZgOG3bScatMcpDJT23oLBi9uFRwsmTe/VGUD+B6oReAhMpL5AgIkuZrS2qs9MaVfsDcDcv+Ff/8zsZ2QJnBtWN1QXeksBfuNsWczirF3q0YqbP1E8b6PZpD+CbM7Kwd309nfdz4MJjgg5IgDWp8bLRXaKiwi5fCYVxuaXZMB4j6vcEWCubW0EAZFefKIhy4zOnVY2htRm9afJkC6nrhx1Jjy47e7sjLTEoVjFkY0B1qycnxyCd57Q5gCbr14xIu6GxhlLxvuIhZY3HwBg4qgsteLhmC26KrdrNO/w8PR4XjeswwZYf4QZLZDYYgdiI9+zmgfwsaHzI9pK+t/TcpH5V0OJNyCy0SMFdHxblN/D9hP2eRo7JCSbh4oT3hx1ojnZBk+/EeknhmXr6+MeFPdEjX+oLGFiP+7g4oxSXY7t9bUmA71klDiMMJTWkrUfZcrfEW9VwqGOLzek7K5AwarhGBBfp1DPQZ5ZCry/UsgHf/n5Hvlh3XzkPv2asmSvWOCoAT5Q2KRKPwT0AQvsAWszss8lW6+CZHR2LzCe+lTlI9nYeErrkWJEmugFt6/wxM6Ih3/z4RlnHbMQAx20Il2bC/Ki2d3VTqCnJbwhV2/xPLoEN2oCJCpBrHjGkckIBYomOTTAfPYo6IOxmq2hmWvf73EZfzTW5y4uEW5AMY9OX5LuhTgmyyDAOP86xe1jX2w6538KuVFn1tha4SE+ADocWKvP/RDE3VJ7T459SGpdkSQTTa6NRcHbRyGGG4ox9A+6lvlWHPE/Lm1mSEhD5TL64dicLnKJJj+anuv8sNP1xG9Z6A/JChNiCXBDadGG4phNXMK4LGO8+c7UKTfk5A2zk54AqtEmUw1pyX5I4FoibXeD+oBUDpIuGF54aJqHD3dMXVTvqgxTLUj2XdQs+F2gQG3RfPSxaTIL6ht7x3ZZsG/wRIv+VmbdEEICy850kTN1huAebT8LmfNSkDn0bHU9VxPMz1KrDaPbugQCSFss0y2l2W2TG8CmgR8cpA0xyNyRHVtNwmrRgVtJ+HEcfjjAkS27c/yPqZBWTrSCSr2p2Bv0rdcaNn0bgl/FgUNvrIiPfFAdHab3uL1NMEAZqSKj1gg14q/aCFiK1aQiUM8SCJ4q5XggY5NwqICQL0Z6kVhSQahNpTeYc8/Lv/2k3LLYuSdl3lEMWznwJFLi+ET452brnQWLvdG0ri0YcwukawV9HWVaM+FEVgMXwWbBjkjOoUOEkgDrxvEqoKrpL/iEvV1F/45rmfiiySoVMjfbU70YnFbuSTl0Bm00cAw5fnzyl1HPOTjHHc/m+6m9wNr0JITpaog1zC0qalP5BO+heReJSHS4Kwpk5lVJbfWuvZjBVe7YI5MonqpCNe/sE2bfQ+fL2AMHa6Tftux1olrnyT9YdMZePg2Eg3VV3aUvQknh+ZsftNKVJdPw/iCJu+SbQM5A0cK6oM91+AgkeRphXrUGWKvRlbrJJcYI6vPSH/Ze7pPazqeeZJU0/UY1y1h7pmtajej/EEHKv5/kndDyh3z84gsYbqY7DnrI7b53HV5UZACyiA0Nc292d4RQFQ/6gb/8QsquR3cguYifNP1JUKKEM48iWALcpGj+35L+jiVNEyNOQHrnAlXsRtKcVMRyd+93/h0w74K08ZUpM+tQ7zvyHd1bqL23Whds37KivaYPRT4l4SKio1GcKZ4eCHdd9HC63mD5xBWA9qbqO+SF2aWwWpA4zNcJBkkOq0Z0TYJJ6ptr0YhKL5Ig80SluCGxM2nD1CyeKSjk0hhFKaklMereddKvqNgEYjQmKstTU7faQ5+MLdJtbDSdMZM5vfayOjxOsS70fQbdDJp6SbzRIhrMRUBDpdztUoyBqT32WZ7acxvsXf2aAURxa5J4T/IzIzQVaUSeqNgCYhgtC6EmqijM50+sjATBZjHF95CmjquPExSOUNaA4R9mai+2nFUC966c9WyIZt4j3+yGU1AA5JaLgXibzaFW6P+WREoecqIUFxlTqYGSeC5aZ3iroJGK0DNRcSaB0YjIE4cN69aI92tgcepXmkpsYjLDYY761l3ztedhfu7j07RPHwynq1sPS8ld90qZ6Wyv2W/khZxumbHfAj9irxcvB3+HDaA4mTPIcorajce8UDF7UhLgnG9/b8NZdwgADa6PJseHQXgXkwnymdpjhoxL73GuFunbW5sVFQKS0OHdZavaWrmsjVfuPfZoHn2L1+tNpFsBvZ09VWv1uesAsealSlylnHY4TnBPITDcI3/gbrZVz31TAPZ6b0hudg9PIlE52FAPTkUBotauF7L0LmoOpgDeyM0UF1U+QVjkd+bLDQhjwnxV0wifre3sJekuZFMXTBnFfNE1I58VLT4ie/QsWrPLxfICQm10cWfZDNW+xyFJT/sZ/OUty83vIjZonZQck3zncx/hZD3vI0RWyHUyTtyH8TYLTdLAqRDkYTya+0sgofYiz2SEj9d7dp02jc2syoxHHYqBKjDmX2+VYXfXhAso+bSq+0kxqL2rmgvjWpR6ipQzH1rWGZLo4Q6RenEZn6pjIwYSlRrxNhioVEztosEPkPMSsbhor6dp1p1Ug/NDGxVn7CvMHBrcGW4uKCv4+Z3x+KUBAWiCwHwA52H4LjITUWDkgjJdXzDghQkXIgOY0tu6SrF4myQQxPIkcUFScCmbY8N9ytst32OSFwtmaDD1gLCcm0ItpjxMDavx8QwEyBQqlWhcBvEUwWK+XslO1egIYc7gpTAA8DT1wUB2owEydgOe6sOXLBtyOehCgBcV0N2waHgTB4jEb1zycYpo3k8vEb7CM1wlW0kA0ZLG2+WsqENQN9hOPBXKcbstO2En83AHkPdlF1MRbHvKJczi6gwzGumFIr2Skrj1fUPBKaUMEPbkNVS/D6e9J3qoSSubu8UDjVKyNWmRmBOnrseZr/xYjWyk2e2XwciWXpRT5YY0awIDqD9ZYI5veNK/DtOrSbrb5ZCxMB/OcroxxBYLYNUnZRg1BPrUKa3H5ya7qleBNhngcnxroT41HrLj9aspXETFTxtT/wh4ci3wSHpERDwjC+uR+jH5vZfu+7AeLQnaMU8C1PVoBVoR6tqQTq2MorrrbytBai+1wFPUgBYmaKZBPuGXZcnPYZ5WirQDmQrKjCQ9R12oXO5V6xg73Zv3S1ix55g4AyLuSw1xWXaELXtjR5kfYoEkCSfzVBKZwE5eZ8lENDlO3pIfy/pIaKY57fjZASgHs8bGQu1aLOx7Q/Qz9R4O9aGwkOjvBfW0iTNj2D4ZrhggllS1FS0h6GmZu1fJhlcwlfMfEMpUnFVra739qcWiZxz9Zpz48jQ01TFt8h7ZeUvU5dON92lAuj3Obl/gQcKhAE9idLCVE0hXD/170R21A7QYVTojYED3LmSaMk7lYSsSR41CLj6JtZaMnrf1zN5SY6plOLq969P/tLyic0gQQsBa9k+yAHbeaP4yKv/8qITNC2nHxCC89wGLLRwzGnxtyVReNN2+5gV5swdvt0YFet6ibpi70bTVYXehQREfIHA+XWA9sJG2qQqyyzDsIpLYvpGvj7VSaXDaesw12t2wDFcX4Fg3M2BJLRd2aZOq8sCHny8azjnqJP9l+8MDap5817tZi+90SigSVgXdlANQMihT++BBm2T5H4Y8PFuXUZ1/P0VDhAe49CD6AEJJ/+b6W/gUpOHy/GOjjVGKvWnF8etFxNRJ+suslqLnineetLKPRK6F197Kop7V+LiMBVGbzIpicD75Tme60ifv94Y52HCbIkK8nVL754Y8Q2ajDhZP+QlB3M4urijYx6W4O2HmsgW1063n1oX6mBdpeZDuf1Y+mxdxGb4c2tOsHqswuQrt0bo8VXlbq0CJj+2YY5VWUPaQwTpurOy24DYd9/HBTTVMX6rv5IsHI1Khrek5fB7P3mVPvhBcH3X0OMowyfxL/olzn9xftIsS7+V+50lqMJyKNkprjTxBXDfo89o8m4izpWEmQUjrPXmkAmieNBNclmlqPVEtc54n0CxAHiDN3aV0eWwyTp6WrEZ4sK2PAGTPIbGC0sWwU/fxLt17S1oUJumIATI8PnVgxMryrR33uk61cW60+CFGzbIpx7MNusjDt3Lt9Hkluz1tVpqjYx2WUzuFTvxiff3YYsw6+HvalSyvPEuq/8HOcoKyRNmwftMiTOozHzZvAosK6F67LWEjezUQGd+S54FYJOzzvNjpAYQcl/dAs3Nz7+CiijKkbsUK9rG63T6w70nc7HqWbPhh638z0AGQ249/89qiD7PdJZEjUzK9N5PU1T53aAND/RJYR1q+fmljZPTlQLWkuje1vwxjS21efJBx1CkjY9Zg5tO1Efrhg0EYfsb2vpFtSEp1sl85sP/eVkHS0so80ytz/41UQdYPboSRcLWlMsSrj5ldFp2bYyXJtvFMHDOekFwdQhh100UMpPO9GkJbZaOZnZd7B1OLLi/DcUc6I/6K1ECMYHvt/8heiyRrLDp6qOgYwKitKFydBtU50IlgZwg9+XHJ8Sj/LF6oZ0ogvAmV6GPAP3VmgxElI+0PI/P+idqbdCQRUFO9SPMOIFopRI8lmmNLiQ5vksLwZ5SWD/bU0ai4N+M8zT899WQZe0eocrTpJ2alRaqgByRIjE2tdpa3mJOQoMk+RyIsCLpqk6FhUDeY+e9rs/c5CCvLlnG1h0Z1KhqrDPgwO0+GS3mYzG5oeGqGinEvwc3fMkQJR5XI4INiO3uyMdbMDEHuaMwROKVpf4jcsk5X5Wo0DT3X6Q8qVnAXYy7BhhEZ+vqi0VSJC6tYFVcBbrm1RWTGmhCyUIJzlCzRRgVxEh0cUyAl9dojRUmd+UXGR9adlprgV1gaKINxixBTAgrKDFxM1vmAWdcazet3i5+4Qq66jvqW0JSgkAI1DLOsKEuKBeAuI0sX2JjET3KZKTenck7qBmS5anau3kzN31GnZdRvNKrwp+N2EMl7zjvL6EQWqS0EPz61XX6cWMpv5SXOSLurhdlCF3nV+B7aTNuEKw83T9qTyE/H9wxusnekY9SNl95mCxaSRTE+jISSBQX6hb0kwEFeC08VnKne5FoRmDwJ6yKoMVtvU+/xm+XiGzGEBPMQdpk5EmFJoFHgpmMugPW6dM+4z7RAwhtwIlA4phRIRrkEBrvUv0v3VDSxgmYyetUI4SiSvLSV+oW7vvMIeV0rOxRoo0cSzpBB46kGBv2Wby33nyuTbvhkllGDQXrquMRCjJXGJtZ/s0MP6I49XjZItl3nCLEJSlKDmjLoLp7d/Vox3e3tfmomVX2+DQ21nBH9CP0pyhhO6clTZXIoC7Ll611hryFRApJRl+GDbITV4XaEYMHAXmCTnCHyFkEWNbcAP85HXu7YZULZzJ7xCXmr/Ia8x05P03F38bLwr/+8iP+fRyPJu12TPsfnuBq6YmxQvPjyY3NL2aC3z3lPg2S0jrhAYdNBpdTHPA6v9ou9Mdc4xmEzRdw2R/Pon652P/k1EgHxgaKxvCrSxSfowGT5eUCqaj70wZ93omPs7u05RmitYW9yjUHSn+yEAVwJy/Pb98qB4cHrEEyXwO6frNzBNQXSsT3B4a0AHVochSg1RwFfvPyospN28LWQQe7KbDolj7UK0PGTLNBZ5WviSokcQnp8++U8Fr1AC3FyKXqdK+rG9+gIhqD9NSyjdXPqp2owPUeEGGYO3+Hs9QnFRLXw4j+OrwepprvifYVhgqg3UrVAlQ/PhlYX/p54S3pghjF5kukls3Blaj8iMSJjx8Z5JgYHVVWOz/ZuZ7lMgs9Fc3qAnJyZT9I9dWl19Hecvs9EAi6+CMUBdvFFjEsxTk1wj4jFVLVEdVWGF5bYFiBCC7i7PAZlbOYr/0/18DCHWCyfhn79h6nbkcgbrreq8jQ6SIZrHIVuMS7bm1oRTFTVUriN2SJKD5KyGg29ipN3eUOGcqfMGNhNDjvmb2rRNCeoOoc64lj++/sYnMmXdCZk6TKQ+iAcKw3rLsl9kQT4TWjZit9ruM5NqeVw1SdRnrmaIpARxPYgjBXS3Z0bik/0ZB5o7u2fJDMR4uhp8gVJCqHIVAob7UgNH9Pr9hGBuoJcHHTizoUGHjSuzNnNYaZgSpRhowPPQXBaUgPnWU1zKMCGXtuqx5HEOiCktGXHgywsGVmfZUJh1pZ/7BqxBzfiNDMXHf9xasrgimbmHtwDQ6USza8bOrxPWVazAgZH/IQ3i32UBZkTD57+dVwnrxO0b2ZvPweWHfGib8jAoxkkfkmUmFBTkvqKsYrfcYkNUVZd1836/xhz6jnc/k1eQvbUXY4/BWPJRXl8X2iGDAV0e19hcs96TvHZeTBUAoDUTJ+WnKwqNMF9QV4TFtynAJFa8HS2L+FsULG+DObJ8kG+V12b5JEsibwHGXGLFR6TvmKRf3GpHNeMy/682fNCHQbD+mUurGf3U+C2PrwoSwekyifZ+M8xwTo4SCPrCxIphU/F7ngvuEyB+zBZ6htup4xbW8NShcZTgB7I+sHUkSbaIIrXJWt2kOPBD8xjAQMX6VaiFbzaZcecVh/JogsaxP+l+3WEOk/p6b0L9oSNhNOYhHi2XrWkpXO/XQIe3wCJmuAxkapGrnoJzSo4BxlpxlIwtkneOTjmoOkWVwFUvGDhmhH81jfGT2yMelQd+f0yIaWZIyt7ZlYPz7/s+VV5ipdeAtPdyCu57eBTE73UuIhL97s8eVtVF+FpXjVaUunRpgu40ungG+3J3mJYKiwnGIVKuXbLgSgMy9OFOYUAHY9npI8s+EBiNAwlfQXa/Wv6KCbfpoN3KER2N7pmG7vNkjC76m7HfY5N1h30NoGHotRbaCv0AenK1zKhgOYply/gv1RlyatoYwJCDpVSQGPw/hzhU3Shq4N61jpnRuPUqfm8Hyf36nvVCXcftGF9Vz/YWmuCS1RhmlgQyAe88Xppa45n1Vlr1HJAj+QsrFMgQ==
Variant 5
DifficultyLevel
632
Question
What number could replace A in the following equation?
9×A108=151
Worked Solution
Simplifying both sides of the equation
|
|
9×A108 |
= 151 |
A12 |
= 56 |
Make the numerators the same.
|
|
A12 |
= 56×22 |
A12 |
= 1012 |
∴A=10
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
val1 | |
val2 | |
frac1 | |
val3 | |
frac2 | |
frac3 | |
correctAnswer | |
Answers