Number, 133456789
U2FsdGVkX1/QNilPYl9hh6245k/tZJsyh4W91gi5PNk/46jgXppZ2Fmx9ioBtE6XAVyRftyvGr5Jy+sQtwlbAQVm+bmzS9GUeGGxez1Odn17Qz2McMTD0bZyfjvgUwV+cTCq0fNOk86taSh6aCspNZQjt+xI34IZJzviMhCZfpPB1F6WolP1YcjzwiWmuoTuTRhuufWrzXqE/oQl+YUOEtNk1sp5GiD7KY86vuSJznkDukKlWRxlzV4sQ0YD/SoosLwKPRWy/GZpEK35SPTLI0VHpcbRxX4/BqrJ6V7GbL65pyC0nrwzEk2fvnGnJ+GdwlSnL2qyGFMfnsJT10hPPQe3gJYvxxwCeZREkKflqk/VmOJNrl/JPXNREFvsHk6MEKOFjhtHleGStWKtW9TZbTRNFB2H5m39IZdGJGsgTD13pwMOXRu7ZvoZWcao8t/n14lMmXYh7s/Z51r2YNPGPdUGJew0OZC/4YZV1NxX/s4mISkVIL+zeTVYlSIsubDVkhU5gx6TjHM3RUMsAt1nl+0ya44Nnsld4GvP5V6B2xUUqZeqeNjp5IG3dA3mHdqnBKdydsKMqjgOvoBisIIoriWl5sgQU38qIYmHPplPluNijOsTl+HnYx3fxcKOR/G5QUNfWq6ce4jupDouP3G8k0D2WcvF4BzA9hCS5puxsKwo6YoG/Q9aMZPPTThq3XZE8Wi9BaUmJRDBWqtJAmL89CQXBEOy3Zk8pcX4nEpEzROWw0HueklDrpKwAMQMmwhKnvwOTSOsFO1C2nBqTpr1miK9oHFde2ArYRr64U+qrAdwzzuVxhTpV6uYhJvTfGseLzz7iEOyg0bYcpZ2XypJqX5hqXeNFvScYIB+AJXmxJytpoROoNyrTuW8NABZU0ol1smVR7DUDnYF9zr6kVahdKVCXcY5LWUxL1q7ecQ7oWjIMpoGKVuxbbMi7J6G26bsX2IZS746XVp2AOESYuaBeLJKfwl4hYee//l0k6qKFbRdYsdDrtq1R6WZm5gkEyU50rtf3ypngXFX4zljOQt9WTOIJ5u9NnppPRG0LGZHjXvGNOQ1u0poi8/cb8O2DeScsRmcUuvWMj+IN6uO2ap3TtcuxuaG5aFU6zdGazeiZNIsN2oEnIXlJ/jq38eycq67M87VtpX/JCAt4CF22j7wHWPKloF4LQ1LQQ4Wja/0GMnR48wxsOOUKVUfjs2yesQo90fxSszxqRsfWFIV2lC4Ol+LFB4jwxgZ/Qf+sInk8tkiFygVvoIOpu3Z3CdZuHKW/NRdUnqsIv52VBH0YwoUj5rgf33qDnWtFzsxU3klN+NbBbHVEpq013J8WHVHsiMPQBvhxp+7Qa783bp/Jh5N/wiJDO6on6J/yENC0kjLsJVOAAVdLKPk5pKCrybDJ/aWKi/ru19hnprh/v0BKFMe0M+1SExUVh0of9UlA/a48RanBm7+a7TryLtc12kwSgly5UGQ0Bd4sgkI3KQ/ih9Nq+Z58NI93Wm3AY2iBYA9jz3WeUdIewBY4Set41V4kvAnCqXIpDbjft2B0oTEjgyQ8LbGu40P+hJgvIBX4CUHnaD/6E+aPpvIpH0RvWL2gaMQRemFXPoJ8mlTNJHxBdgIEStGDd100JK915Yn/mfPuWmuIf/AlnZVvHxsBap42LnjtaQSehHpHSC7+chiljbaGW3KComlW+EknAcs48QD7EicKjFN+44vdztkZdWOHuobhN4vvIjTIFEqYeIZtq9glvKVckiY1j5JrjZPE2r5pPyIlh0X6cq6qxAslGE7f3/VSgbM0gigSm324jd05xyfHx96O29ImwZkaXTxQQ7lDdzU0sI1iQIU+s9Cblzz97GW7CnhWpI3c3IN1f+2gCY+UU3sCJ8Roo7e1QPKkKvmykI7LmSOKpvwyx04F5UWBg3HJr+VoZPLdYhbmHr+1Oc2QyQI0CvPF0fP+eW/YDSkjAc/h3RJb81uJbn5VJdEeN4ugPF/IQ6KI7Qa/dbSGxzO7wHQdOnHnMKg57SKjOsWJNhHz3f6BA5Sn30X51vzriviimXlCmxMcCXzxmtAAmwKef/x88n/JQ3xlVswHIEe9o1Y9y4M3GHLNvQatanzslexETxsp5MD4TWzXW2G2LA9LHUrahRwYtt9wZVlJcZ+EAI0sz7K+y+GgBU2/GdbqdAVmC3KeDqkViY9P7JlowawJs1X2MAkCo28zY3jsA90dfamkF6GW5dqcTJ1YKXEWSlNdFkE//6Hvyt/ldGQjmvBuE/UxehBcls2pZdtjqtsM9E6wRkeyjQnOYlKTCy8y9z4te2G40sWMAsfLh63QShAICjIbj+sD4XG/qgayX/uB8qgS96nRat0D+4ghgiqKDT+zdG64RlGj7C/Q4537ccEZlmXA2VOL8DK88rImgE1ukwLzh/OEfqi873OEg0ljBeKvknfEwR5rFXKE3k4m/0ZEqDAfnkXlEPKVGE164tIY+E+Pqkbz+eZMSh+JsfoWdACmaDfeJd6oyBHhUPBxwXy7yn+Po82y/uXHisyoHStg5efV/kFqZqUNPGcBxZNZOh+nN5xf8DaUd3TDz3mLOc7uM5Y+AFztROYdgyCyaOmkviEOhzO3QpNqAbnlotDucye6gg1g+FJn1KRZ86NmabFDAYifR0kjgAXn2t6LV0vpK0ASojD4R/RsBKgid8MW/NOVy4lRick9ZacpjTf9lxnlIn2eNqTbMNFIxocF/LP0YR8AZoBwMZryEvdmMlrq4FMWBZhIT/hv799xkkqgMOftS4tDbPFAejprvGp78NtmKBJhEvMwfnRsGFpX50bYB7FcWWN/VyPTY0RkIuosefzR0eeutOrui9SrHcXfJzMzgsZuj4QMRQ226qTvC2Xa4+24E0kCDzCi9yj9gnvtb3Lzd73OIBB2bk0StIbje3xgN6Ye9mdQTZKr3wBHVhDOJo48TiwqDKOHXOF+oxqir2HhDNpYqIf8wHFnA6ViMHstueEs1emE2TE5+db2XWahcb+csnE6hfBbyQZcKG3eEtMIrPiJtBxtuyEwQ6yUeStIpccyaljsAqo91QFBF9ejQCpwJay6RrUgdq8DZ4hsntxe7yMXEuU8P8SPK1NCNsWKbsjYpwaT0feQgBMoe5JpE9P+CzgKP8caiQKN+ahvStwejqVTvQtnhFDuWUQn/UlO5c1RpF/YM+miWWXzU5DhgnStrMtQ2tt+N7/A59GKzBQnBv2c6orWwVI7uqgB6NQFz0Xqzacadb+ECbonmwQnoPQJJHrO1UuWcsM8vCuVERUJ/R56xr0HOZMuxHuxO2tX3iIE3OBU6VMvnPoByQAqQ3l1hGAD/jlRrvB4OfDGVMoMnQh6qTsYxST/L38VGkNnMjT3HSzL2MejgyzcKfZS6i1vh8Q/FsZk104LIIEEUe/UdWnnOWBBp4qcEM6gcf4nhKgLJjJJrweZ+hT0gHxli1tLaWHeOPwuQEVzJehqFg/506GKJkaY6Uh15+OW+GFpkvPFuL/Bc8cHNR+R8XSjiPGDNqDzlqJ/2DtQOBWxqLPE2vrV4eN6zPKrpy2p7NvwwEV/NTjTlNepM0+dz/aE5j0e+EoSOfXAgR5RWhK4FRZoe9MZaec1tFBVeQypxKfHKlxXsqm8tP0qFnuGY04SW074CjIZAgJrrPdhaTapgJzdmnXIgoVG5r7XedWhppRenGFLhqk083AmuHgBT7OfUrz2e90CQmchC03XUI+RPohlmTQV2w1z8Y4tHdEZ8kUznylqv9EDa7Ulcxn/e2CStBeRHEuu9f2KASh6LlF7VabX5Tw2keokWJzxvq+vB4FAYk1pCMSLPWIflgLUvfKYZjz1qybPz5v+9fsFMZUZHJeSV+W5ntrreVF2g+5hSn+jFI8Uzzyd0yTdKVFOy50fb+qi6226Arr+CwUir6DYuYAdVQq0oV4jLgJNDcxtmTtYB6Tcc51ldurspms37YYwW/q3zVi6bgoNNisl4mc1qtR+aO9D7MTbSvJTcGX2MT6pf3I1LTKXK5pmiUQu7aHfGNuto7F17zOZOVbP5u1GVm1MByNneZfCcztSv/PSKbkdC+OyBnvfChyflTyECQjSyUAQ8bwinLsKAW9kxGVwt/UlxLM2xWuHucg3p+dhUONXWfZuSqYcLzHlj+NfWk5VO6vKnj98uIlob9ezGImElwzWgbgjkv0q7xxiyHFiIAAlK3uBGPE88qqIUTd0VAvZdiB/z5oOpt7BQEsruKD6/FAXJB+Tib1Z7SzuUs1XvkwbTyAwxRS/pkEWMIk4b9bYdDJYdDMGcF+Uq3h9MIE5VhvD9tQq96gJS5aYlHOiIo81sRYe2iQBeTZAx7tAua0WHgDVpPXI1uQHvUaMkq8n002TWwDzg/VtJflBN5/Ppea9d+BVV4uB1KV3GMGW+X79mTA2v5WohlTM4Ysbvia5FstzlKe0NT77+9lSRkcSppw2yLF8FiRedxeK6mb7qo4KH/uUjn/Fv0qmabKjQRxOSAjggSnFJ1mfxwFOrD6jzBvNyqENjNQRgGeev0WIvxHEtFdl1xP8IPq/qUPT9nGMCbztJzpft2NxTExYmZztLoFWxZmYxIU23sujCJ8X4n/begYKEjwsY9ak4XhIfkJDyliKLakiTsPxLZBd25HiAX5okU4P+7dq/uNxn0w2e77xuzcv8gawrteWCXXXoEE0jnkGsDvBWGizotnP/ahznyjj9k=
Variant 0
DifficultyLevel
708
Question
A car dealer decreases the price of a car from $50 000 to $45 000.
What is the percentage decrease in the price?
Worked Solution
Price decrease = 50 000 − 45 000 = $5 000
|
|
∴ Percentage decrease |
= 500005000 × 100 |
|
= 0.10 × 100 |
|
= 10% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A car dealer decreases the price of a car from $50 000 to $45 000.
What is the percentage decrease in the price?
|
workedSolution | sm_nogap Price decrease = 50 000 $−$ 45 000 = $5 000
| | |
| --------------------- | -------------- |
| $\therefore$ Percentage decrease | \= $\dfrac{5000}{50000}$ × 100 |
| | \= 0.10 × 100 |
|| \= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 10 | |
U2FsdGVkX18Zs9l0e9cCNHvFKokO1MqRJomCIp9NDlCaUPjaL2brCj4uejlzCfUO3cNRNoi/ExHnYgsQTKg/gaSO+GV77RvirJputZi5E7m2g55W3udh2jngCI4ViIh3kbDrOmUH1Iz5PbMzStJzoHeqONBFSCQWB4GdUNnS3VJMQxzZsMSlBdeg/9z4NFrCscGHMSO57kT7P49cDcXxUBS5UJGCsQraDue3PBtrG5ZuKuux93VKR0iGClePSlbpugtaFz3i4toV/cM5fzdhpApbmAZ5x50Usb0pFpNz9hLe0sSeBtP+6kzQW3gaSS9QQI6ZyMnHJucbJgh4ieg+c3VMNkv5kVrnZOH2eH/a7NX9JM2usg0uKYdVqfMNivokdjKbiy+vEA8nXj9oX1vMg2JsA7CLKqWg6bm9cFEUyQ7uJ39JhAtDZ6GJrq8YDcWlGUn7LIseronp9lgDgGA1ezFWMubyz5xEfHVVpf7jW8i1BzwIaxybELcsdSAeFFQ33Svh4OwZ/14jN7vAFg8pJu/4TVfsu9EJxrbyMQNdqQW8POeq791b8jbz+Kkc5aZH/L0w1PFDAs6vcsMdtdis6pRCoMX/NpDkDBf6Gza9Dl72xcsG0W3D8rz9VImBgV5zsWrnzCzkAzD5bO6GrDLfhZV4Lo5+5ySrYq55S3vITyl1dO4Unf5Vk2vYDGf197cqo+QUkD+o7DpXP3jQn9V/7YCxc7FzbYW8ar7s/Vlus4H3MwUuofHJ8ndMDt7vQ1sBY9H1zb0y02xAJar9IMm52nLs/MS+s0/SRDBM7mFw7PRJnbb8HKGL1mw6kL2MK7gFJBxc5YYJ33vfJ3abJMaM0YgIYCd2jSAOHTCz3EPOAPy9a63FiXf+sponaKgsLefhjXAYdH4fOivrS4IHYXls7GHTq38zKI42lzjp4H59d0De6COJU2T336Z02xv9a2CVSCtT3D0y2X6fHRKuUxwpiUnzho7JohVXuHnYgf2Jy5HvEmWy5eOGxjsQJ6r/DnrVPKdxZtVD4tTYUYkyBZLwxZxEztrcAiAhEyvEY7Q6RQTVNhvDM3YD+bk0KWa0rf6kGGMdOeMFfUPRzldXrv5p2sEPY2CnVjibga2KLoaJ5NQhyy0wMCu2IgMR6qmmH/kYmXsv3r9aAow3PIoedzT2a4oRiyzV2bo083Ls0dg/gQqCCW+eJTXUE9Qw/N/kbKoD7jv0v4URSMASbioiozNFQN1kZSkNVlV8Mu+XHL/YOFhPl+8SE3+qDWplN5UodKpyW1dkY1aQnlODjv8K5fYARfIzIWsbvmMIuJmBu1w+Vp4CyGaf53uvPuFiHpesqjULx6u1ELcndRwYNWmDNtx+dJKqj8cXCy0ipdapfNKXA83+7XYdUu3PYnJWdSG+/zQN0Dr1rnfHyi1Ez6qfMJZClopPtzC0x0P4z6tkGWjKs16KQR9G+48fAN+2F4ZzmWhcdJSGWXTfE1egPybtAgwYbY497EOR6XKtpAaOB36NelbbDpHQQ8kQTY0WX+2L597NmoJBUKIPcDFQn/P9e3W4dirBGZxVEsENFyZ4Ke6+903hnYE+EJr/LuZioOj6c9vSTXWu/vS4C9JT2UcHThSnPNk6MpSENnEgJySZKzjkc0ryjVYZ9kndId1QcfxxWlCA/HVlVd+DDw4zAC7mocAO8Pt27kCZre53AeGwBIvdA4W8zoLpvGnYkonq/Mwe4HRCVtSUb37DCt5Py6bOtbZr26K/tyFkzEwA7OS45nz4zDQALFYaMwD/16A/CVwIJW51uZwlmwV5xAjP7866t/ohEHOHvP1a6UD7s1mchSycG+mxh/AqZcijnmTMTM9OLQcli0LMJlvXCgqlS5Uk2OGCPkNLAIZMFNDUDanJrnrrqfp2Sj2xx/2o7H5uIciPVgBNm8gHCSCbCWoabI2ozUo9RccaEbp8SC3KWnGbudXnr3r0tg6XPkMOhx8YsrhgVjyiHDw7JPLsbcf9+fLzVJs3lNkEDc2Y5dWhmLYQLt1E1Gs8YiwGkchBmr60JdxtQKWrpm2uN7YUEAxMversXY9/Sbb1zYQE/VovhPbH6gaiHLLjf3LxLFHHiY3iBtUudhm1RrODGbRKQAkT9voH8YVneUIEyAmWHnSz8Brw4g5xQhE8YgnW9Tjkcg5nqpVYB8q0+tEWwd4KvjYPyk9SjOlheJx9JEZSqF03qRhQvUAtmhmQ8F9mgvYN29c7JW/GY617RpbjP8SjJZzr2PZHcg5hYN4DcqUGncPYGy0QElQIoFlWNp5HDozp5YHm6NB8oXLXRoH0TZzcBYV7hBaWsuST4PEKqGIkMO1Hzrp+pkwSNobHwSZ/bgkLdQO+Jta6R0fx1iBFfZhdW/Cqt5gT6VPQdPzE/UaILYSItIE9Q07U5u5OkiNhlSQBDcPElLGHEhkg9foxD4323u7fFyypz5ofi5sKHIk6/ziyIxkXzjPu1N4pH/eMajMbUxWiN3Icinbq1u/tJlgFVWIwk8kms9zUTIGsexBJuqg0b6KJmf+l4HfySXHBE7DC/qmk5rMVY8CtxWqBUwhUrQ4T5s8NHQJTVURv8UrcPeUrdt/oKX4rTA3gpF3KUMe9oWCUyZHQ90907WX8jplLBwM36+3rlGYZjUk1nbb3cl6KATNm238f+XOceZsM3aMtb0kFm6+wqIW9FAkjOQFEI3iSP/+ACd9dbhjoN9Bl1Hcg0LSzTogr72LCF/iliOEy7jcynINGTtz30HvCgLtIEBGCtE4qql5vJ3xoCTEjgRZQVCewKRLKSHHKDJzU5uEj0NpshI+mwI/xshIvjVBqJdvyjBSEUJ9lWqVJNK2E7ReUv3WVK34+/zkWAyEKEYLiTet/I9YbyG4wX98Kl+VeHS5Isk210dWqAuyQgLfP4N+q3t7hyIJA0923oNG3BkL467XDY6msdAWwHtLbhqyOkTOFMNwxykBH+z9w4wExwc5fTzjzgim0DUB29Pg6G6OfHWsprFN/e5ldqZasiz1wa/hY8WIqF/w7t9OpXn94IBERU+UQsFh0Iih19T5WGA+GqLyykMzWVF5Tpxjkhnubocc92nKPo3e8C/zM5SfR8bjtV6hn7SpT/c8qySM/Xx0TZ1Yc1yFm6nx9nhmPFciolBt+sImnOpYsmvSFkfe1p0wGk5vWUJV+n232SVAPAAUe4BEIbOm123EhuRadYvy60o5R3KJeTqlw6qhc8Hz+afXhboyyasgqXxwVD9DHGkJYmPviZWsCNZ5DntK+eyCDtG4UVzWL/0FyHoJD/gWuHeuysx8pgt945vRI/E4hcr7bQP8NCFio+jNXqLJUTr0jrqvPJK5f6409ozvaGxRI+gHDq/OawuQ5awjx01tCQ9vbB0IYBxMNLcOLMIG6S7VtIRu2g0jBpzwoB1kZWykiq+atIFrgBw7187/SD9/5RmTSEwYTJ/7Mek+/i6yaITlHo73dxVOqIgSH7SaRJtFWHFE6JpH53WkFCroqSmntmKYB9EjzwJN6MHd5bxNSfFHxerC8z/p7fD9HA+tRSKzBu4fnAD7Q0HokAE3GogfutA8CcUYiUBtjaFarfqz5SCieI35m+KnjbI8gZLtXHJNwwGbZggMLyamLtknuGoqd20MvL9Fp14wfb/fffGax0IixA8ChE+5cK2L+ElvAT+YtDU5tkeJqFhvwb58aV7TEWDvVMPqs0GDMr9JSQP/RseU9GeOJQZvs75lueL5rALCbqdivt/WRx2Aiq7RqbWzjdlNg8l1S2u0LvVwW/2WScu0yrquPUEfihjmIry5OmE5WZqZMKMhwRqYn8/QIhah0J0OcRQMFV2j47xomW7YkzT/rA8geVMoS6IpeGD/+n/GVBOaeDAPTPS/R/nqR/2d4DsgpmAjJUwUDLq2tMfbVVK0zkwWNi+QoSraYBnEFO3mS+laZBKVWFVieZcI/Hr2XS+rSjVPKznmom+hc5010qFKU7LRnMF+w/OY2e9sbnFrEnsV77y0292rchUtVHaag++sjfh4bUPo/sMgFrdoxKiX6Pd3gaGoCoVFE8sJKgC6lXu5SUdLAwmXu1fD81AbGzaBAftITdwv2fiZKypChe2y0oVrN622CMM9wcm36h6gFN+fbyDbpoZ2geRQUG5wWmnDzRLlTnpk1NZEFimYsM5ksNcNq3wbjrqGXIA+TGCxP+WlrB8xr7eTnBE0z8z6q5PXt1wtILHcD9KT38WAWmWlUeVIrHUGZsHRcqXqMgsSbriqggB2Hq1iqHcZxDEWohpjD9gRa+YERqiQveeEhGDtc4E6f0ZsrRfwOEAamheobEhNMr0rAjxsJVkyhtYb5l9NF/tdaLHGmvi8mAEKtY0pGSX6k37P2U2HNyiLuJCLyaDRtLz4d2JbdTfKjGS+qphBbxIfgaxyayMEIEq8+Ky+9Hc/B9xHEjVl+yw9OSLg0HqEFGIL04X2o+zVsxI9FrePfMR3pjb/tmlKdZ0Sh23IUzjEIn9XL+SK5Pqy22vUA4r938ZvW4mvOYC6Z1CSasV1ooscoamZZYLNfosz+eeoGacd/aDSrDLn9/wid1qTC2TeDThOWnFF3BuQ5+XVkX9WHKFKD0DnzZuxmiKDszDBHPFE2YAiBJj37JQ==
Variant 1
DifficultyLevel
712
Question
A department store advertises a sale. John purchases a suit for $300 that was originally priced at $500.
What is the percentage decrease in the price?
Worked Solution
Price decrease = 500 − 300 = $200
|
|
∴ Percentage decrease |
= 500200 × 100 |
|
= 0.40 × 100 |
|
= 40% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A department store advertises a sale. John purchases a suit for $300 that was originally priced at $500.
What is the percentage decrease in the price?
|
workedSolution | sm_nogap Price decrease = 500 $−$ 300 = $200
| | |
| --------------------- | -------------- |
| $\therefore$ Percentage decrease | \= $\dfrac{200}{500}$ × 100 |
| | \= 0.40 × 100 |
|| \= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 40 | |
U2FsdGVkX19GxbppiD5O1tFjiHDYkWqU8ZFP2rBjmjrvJarLRvomR6hWXLrflfg1xQGgtqGywNFMQvtQ7jC/4iy4cPEk0gaGHOUVgj+dL47IKaNbqrpX9qzNyiDy3TLx1OsabBIvlPHLQzzM8JVKxXTQFP2gwb3MP3+Y0ZG9y/bclt9DJttjD5cz/2Kl2CN/2uuxA6IBVawEoBVKFy5InoCvwCeu295vIo2Np18di6J373PSXzsYcHzZxZQZ3J5GL3d5fXnZZOMmk4jkLV7v8uLMRDZ+Yer9GbLSPt5Pxs+x/kosAeYJ3tPqxKc2glaQgQddzOwuZTOk63dlVqAd4pkdD0nJfL9xgawlcu6X0gMzV0KdLGM+78ae9a+o3TytV9wqB4AgsLtg0k0SW0uQcJ/WuhL4bjIwWTSvDezp4Ot60QjJrGbEekey2wlkjLn7PnITztXiNy+FP7KGcr5SyYByJ0J3d3EPisqGJXI3vb3yWVf8S8+r/L0VDBG2moxGF4SIe9WOY6oipqAOXy1Id2/zqNzH2N0YNPjHMa7clBcu3rlPTBtNy6aq1OFO4DKQL51ezBoz/RiKr74HD55PhK0IGVxbx4pTBg9lpG56Ne6z8RG5cI/EnE2TQ7NylD5ymYd41UsCTZB9LO3BLlH33OjzgLAIT01h6MzkjREzi6hP/8sbFqPOh+aX9hU20Lov+8kkUgqz5QoKd+5f9qeuyov2qDkT6NJSjob9boA1Kyj8lB5ksyWeBnvOoQ8LZQHAWaPIFyg1pmwmCAQFdq47DpCZq0yS6G9bAQD8TUUjdrj2BW0GXo1djOaf1dadNRW+V0UKMIk2ItJsRS9ix/oVvH3Jl7M6buoQe62RdEpY/1D1qst6aWbJzmGS524NcA8NtnbQSS6KR/bOYVCgutlBW5Q1jA0e0VhqwtZJ88xhw66zrIcLBbXVXIdcawy9/mUYAaGCXIZxv5ixH/7PiCpJEwkuKv37XwAZt7qeOqAE4r3A3m5DkVZ/WDDDHlwYZKZUnimUQdtSEim/WXiENWrHPduKqYJNp0gNz3ClgVa39BxnfQDQ/F/Acii5FL9Q1onQgrv/qxjjg0h6xbr2VgB/yMA7kB6KRwuPU5diZHYyLRXQinJmaC4IHLSUT5P3swqbbbl7c/BVegO8NCbRyS43WElSJ7BZUh6ZjVkAONWQfkeOVouCqcrz85o/PDLy0G9YUVcFZpKm7GU14kEPxFm4t6r1+6Vrxdqx/0pq7W9FceS4Y3cG8Edqk36fA5VZoh/yt+ZKbLx70ROwmyhKEiYknPA6easZ2uk48IoZPsmsDNHICxSNHKAoiLjm20Zz9sNlGWQTNOUp72U2G2r5GZGf6OVXfGq38end9mN0bWWc9oDDs0muqHP6hdFF0DMBvCjP/AK0XpYqy+hJcWcwnc2xKbryAR+CqoYM0wbcuMOHryyLomh6u+lC8RZ67Ju7mDOGd72ruqhg15/3ZeHkghEnLIeE5Aj1W5BnJqsOLlMAcWDUIW9l86ZX5wEd21YK1fsZpg0Wpa19t8kzVDRAoJgoH11VbgPgtfgO41lJuvIA09PdzLujOn5TiZjqVrrqoOzk8QXnjxguDDJltvGV87ulHJ7E8scyo3BJNY+tRweMKDk7m5PuI7hmtSgsoOCGRg5ZYBPut8ll9nD69Oi1E/r/WVmuSCGAsSdmWvo0VCrBRXCvD2Ys9tcZz1JjXVavs6HhOx/IeaLNC1fbV0ax1NG24IQzW1v/R5WrVruu9EP7ZrTxe4kSxNIcbSeSkO0xMl/+qQcHln/9cHd1PW2xcnTWjCWQ+cI82mOYz4K0kvT6hG1QiGlsD1ybmPPgnwDM/YAt+7WpBBbHH83SMzAhJkiNVllMjtK7oRQ9gROjeOAT7YelOoUV5ipgLFqm3hlx5ANMYT/eDJYG0tYCAUX25oJaHnGim4KGQO+YX8o0C9I7m+PWs2JzyD8wI4enVNMmazJ97ztxiV101zrErN8wQv2tNh3gyWJUam8Wg04fPwuJ4VdYMgJuKPZIcUFkZJbHd3ctzmYcfqe2xbFce5PWufoqv8oBZ0dqp4hbS94NN2DQt2Xn4DgEdEc8Zg9CaF4ZOWJ/nZuXlHI92okNRZJKe80RqnN19LpV4mpGuJhv0bosVTqqv7aLYknWgMcW+zy7Jn9SIiVRNzKCkOvvpyIM7K6JYb0/kCzQPdYJiiJnfE25ZG5cNQVj47QbPdAjy1bZXjcgnA54lTdlPX03RmkXvr+23HmDngMvWFd6adXfPRB+veFGz/yP9K+gHFklN4t6QveMcDEnmoySRvAOU66/XnPepE3v1Juj5Y1pcRLVKd8D9cgDbxrK5Uzxi8WneFxymv5gSygRCohAdWGLWOxO9rzK6fhhEcAfWuos9DPbe5poNuIQbB5x7zTom2m6lGjQ5fOC0xwNCkqsuh71sTagEaoNo5HkQLqVNAy11epGXYvTRc7KcFCSkQG/udnjlZCZOfYSjz6s71W+sTISTvb1IDjr/GrSr6ywWxf9zh2SonoVct8bP1OdAh2EjXAx4obfV9ZLXFjAZNpwFlM+Fb7Ujgsw6CZ9AYKxhD3H31FrMRKBhmc8NrTByVlcoSopETATOuorF3aPJkhBaM3wjwg7jOgagHOdtaEErlqHV3wuO8ejXbG3wLaNx2UzXMDlmfVTB/i9YrP0WLE9eIuteloHc222r1wyeGTjtcCMdGc4eLNQlaNsxm+LnxnKvxlSUg2CHY+w/QzAcslJAhjxsI+tEI4Ohm28fYlyPG7/jmbFEe3oftVyp1WzleWK+qFndU5dmHvdSJZwSxH/Wa24pH/b7YIR/K6nq/pLJRP2iVK8Q+BVAUDf5TRZ9iZWuZkD6vPsWGWRvIxso3Vyjdox+cr+D3KMM1pUAg+f9pqoV28aJCqfbWwNZkqbl4bzpmO1Ncz8gGdKMOmpcdZyrExsIKvJPL1BDI2Z4T5XgNKUBGVsXpozNSal8/pzSsISjtMyVoDZ9MPhlXn1JMjTVR1TEi9s+9HCuNvi7BVLiyKgx1MHAMUs9PhAlDd7JE1LJ7nmJ9ZBd+QxRzny97q6N+n/AVe5i4Kj2YqeGfAcX+I2TZCjV/+/803gThSto6fAOrZEj3fW2b70tDzv0tIhPc1yee1OlpnHz8WrTX88VyIALyLbSsToS2vQFCj78VsToPqcN02r6MpUHYfhSqWZEbTw3k7bAXshXFtkqeBaSW9IdLfNRjK5kzTm/dmgGdm2ruC8lCV9PU9yWMNBiHg/P5JDdx4iE2j8esVIHXGQlFBc1Q9cPJkLjaXH3UEniRibzzxc6eiXl5HzcrzoIpKcTvLn5cwugFU2NzMkm040VnI2CmbJUwtWqfI3PzFTFNUbe2zqkqylOrkqo7oAI82C9OfCETlkKOunKF93L7BzZq1maFq0xL9qeHxMsRXjzxdXs8Cm7VbBlvMsdQ8rCBMQFuyC9U4EtJCqD0zVfjnz5ggjCmmQNA/QsvCE7jDhCYtV5icZ6WhRFbnuHv1sVDSBqqkMpsOwYsXG2PosZbUIM8MHhN5+LjiOKhB+6dlR/4axw0msPFH1oOoogdWD4POVMVyZTqBGNb1Pz96KyvqPd1PRT6T+R4S8EH0daZ9tJmC8FsV3s1j66O3YIYDQUprkXvPZstUGOKby5KRocZoDBpw34jB+uSicHF90gLnYNZOT7Gf4bDQIBj4Duxe0EYtSXZctXn5Cztd5rK69IiDt19QdsX6JJ/W1601cQVBbSLMuKVwolKyeibOpSCVHJfzJGnO8CdsP1o3OP4Qhd9PyzP6waAhckPXkdkJwyEh+uUc8fVV+NbLrAE2VuWXMJysjaq+KcOdDTaDzeFUT60kgyYsumrtwRgpxlkr0W5em9v56NgT85gZZpTRMq86JYUUKDNhVlmQSoC7KIkHX0wAhUMirLZpONJ1+T8bthLGhALFHfw6cRvA8iCrubhHGsP69raiNjnB9Y/yua9Xy9d2jpjW9MMCGQcDYaNWLlI8QTUVXTmlJUyyL9U5+qCm0BVinGlvh9Rq+EaswRq7VC+IBxYmhJBhIN8MgqM40eL2whMtUFrN2rtrOkRQp12PmjCvHbq1biD/Qw3IGugB6kRVyBIa4UXR7MjOjtbBQN5MdBLbRUqPZOBfPz7H6fpLtvq+DTMHEo/RgYjiP/qGHLUa/Od7QsOeK1LYjYaMD3hKwPqOxphTgp63m8jwBvC+8tGh5QAK8ttTyiepq8tayYWJIJB9qYAAgea0fau8E57BsQPcLcG+A4BPU7aQ07a2jOZGFf2v9Nqd3bSiFBUnoiIRpQ9T5/Tq614iTCocxqnMbaDB44SJb9Bcu36Gxdno+7FA8nucrT3FUZSAxo+kWvh44gBhOqqXgoY0SU2fflsa6W5TEor5FMeL36yUahii6oRwjKY0dT4nP+QZtsM1d/5L9c5cFOs1DvqtHejhKivimBgDgKcxlJDsIKmJU9ldC6g2oAAlJ8odD8sSVxjSYwj13Lb2qu27jUeN1FPzGbU/p2hbAp+pH+D/j0Z5jwdywJ4iva3mgTdNKMlLLjWhUkXvIXmGpHd+xmGKXCADCN/DCkUrSK1OqaMa2rEq0
Variant 2
DifficultyLevel
718
Question
A lounge suite decreases in price from $3300 to $2640.
What is the percentage decrease in the price?
Worked Solution
Price decrease = 3300 − 2640 = $660
|
|
∴ Percentage decrease |
= 3300660 × 100 |
|
= 0.20 × 100 |
|
= 20% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A lounge suite decreases in price from $3300 to $2640.
What is the percentage decrease in the price?
|
workedSolution | sm_nogap Price decrease = 3300 $−$ 2640 = $660
| | |
| --------------------- | -------------- |
| $\therefore$ Percentage decrease | \= $\dfrac{660}{3300}$ × 100 |
| | \= 0.20 × 100 |
|| \= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 20 | |
U2FsdGVkX19UMg8xdgyyxc9pBhVeSx5PjjlB8ToIH3hZ9p5qZhjJUT/boT8Lb0GlJlp/OOioNWhMeIIcYQ1kHVTUHoCbhxaJMtNKd1VK4NXqnbNDOiiJmnNCzOwarwIE6GmZ3LyFj7eC5w2g6v22dzQkeyELbS0/XUk3gqWA0ucmi6XCXtPQun3xysRONFh+oWHxCWCUsWQ6+jWbHoWb2idsLfHPMuL/j1oIX9U7o7cwmm6g4W/nP6kyTg0rpckpPVX5WlisbBkHErb22WQPExMcXtKCzwmNIAS3/ylODJcf7xYRGXYvMtEBJ1TKRN4NRYD4iePRIvq3BBaCXKGutDlTDYIbugxoAPKxRJ9pHX9kNdlkKEnv18bM3FoDVB+8nAofyKyuPz8ko+oKMP/ZkUYyAgX+HZXOMirKWbIOnDGd3tlHMsPvi6lnhNr03Jd7C6P+2vDtBbaibJrgLI6a6rq3nCMvGs6EVeRBLlN1FESNRKeycZuG6q11q3eXtWTY2PbhiKDBB8mRCFUOWJh9dLa9lbQSYE3resWiTikN9wxd3y6ctFZ9dWqHkfs/a9gel9sCgw6GufTMvdqreLsyKpiUbr8tsYAuzZh00wgQ1qcVQ3VHFxOMr6PbvMsvcVY8cM5VH1Z32BTlHxMyJ6Kk8bRiKQ5l6fv5qYyvj7jabT9OhMKSv1lJwvJSwBW38S5Sb/iWJynfRfOVcH+O54EHZo4XBkx1LEerOknPNHYTcEQif9bUUAzr8ALOqjpyTYR7EXuGycCcXa82Ugum8jpUrQ3J5zrE2Ee8t45odK7VwOScZ239IJcBU//yXQvW0S2PjIYAJneAIy2fVZTx5dGeVuiYVcPNJsQetXfriDfejvYPnxosN+Th1OKs2AqZXZQEv5bfGkIQ4s2h/vuRfQbMbfDj4eQiQp63PwX0ygmuCn5gKfp5RBZeXlvQPljQ4F+l/0Q1Jq6/mnneKWHN+BMlweUjbCn8jtupPsh5IJkFUBfB73p76kWRi91X+tf4UHE0POP/iRxg1J1WH+Gw78WZMG7OBY6Yn3wtf5aRDPqZSJNt6lIn1L3K065MfDL1IvCBguTYOQT4DiehtcBv4LiYJ8d9FC3O4F5TBGCdxMPwuSh1wOtaQ7+cz2FtDoJAhV8Lclwyx2XhP9syiyA/ysTUTeCmG5fYaUjQSNk8kmVWLofYByidRw3KGazVY7jdIxNj/2S+vDfbwMnZlHqmOzEVyOVp0NG9xKh7C2ANwFd5fhdBoWy2Uw3UtJlCt9QAB5wHyxX7wXArsz7a04qtq0prM8ZUi69ffVXihKOdJhM9kQzy59h+EI4AvkOx+nhPAj7apxD+Y2/TN3/TGypm5GmYcUkTqU9WMIR/iPLnsqsMO/ufFFtyCnb/EiCLskeg08d78iVDQCm7/2YfRLVESdijbx5U44/t/MXwvB6p4iE2G4KttV1xilo7zrk2YOpSBVG0oDe4WXStTkAO9sr8J7fVhPiVJLNo9tbECk4h54dtTcfbBz3CG7iDjMj8YGKsPE9H4At/AkGlQgak8Z6iUTuXR0YXqEMxfmoA+k7L3TQ6YZJJmKUdkHe7z4gyi9zmFDTElrRs2rquL8JMJg57v1QbEcHxzsPwc0cWH6/wvstk7RhjsZE0kV2mIBE0ftfw7gOxBFIgX7kXVzxfEB6ynneW6YZIpIFi+0KltSkbz9jBTCQvek43ao/X7y3fd+NYH0OoRCHrveGykhjs3vHfiOptaq+103z1Vtna2lONaUvgn07a5smLgN4JfRgsKW4lr41j41jqbfP9S2DhdL/Rknyoxv0JWL+CzzXHaOXONyE4KBuo3c2JYC6UyL/ekZWfjR2ccyOC6bu9f2gMpUgI/DhAH+jd7SxGtZON290ocShwjr1qgg/u3mcmg/snRl7gNwJG8MrBmCB1LBlehltEO0CQ6zrdtjnj0bbyl3yT4z2wgj/4xOTMejS6FT9g3+j6L6hIu7BoGEQJbQNr5WV/PvYjrjRf5vVd3orADl/i2EeWXZjY+r5JyRrvGjLyEtwwaPTzv7QnshdL5G7ZB9Ys1d8s9EJvhE/H+/hIf7QQJxyNehtBeEMQgL67NWsa3ueDJsc2F9r+T5FcKzx6/3GYXDyuts1Li+NDhYIfjBkEbgOk1pCJNxOyNjyJ1SMgCKwVezCFakBdXRb+a5zzZcKVS1yeJzufh2z1OqdzqFiXY2u+FyMkGQ63WtfbSrU+aDbHuXWBPIWlK384mUuVS8GNjk0ZZcJ5N22UDTfi6MiJoKaHzfmz3GH6vgqMlLG7qSqbSEUSYUALLsTgKYfC5wg9OR7a7/WQTmlNhqPJBunsWQiNgSnXRHlybvRJTapwyXCZIAL3wjM+dpdNUmGse4vuTn/CWOXvl5/269GkYR/8T9r8UPJfrYMk3LwoASqThOtxlneU+B8eqXbZLU4FZcQEWT5nf3RpqQSs2d+XpH6oW9PLJooTiJ3aTvodZn6MStwIP3fdXe1yFnTZkIog1veeY4mIncnO4uaA5uLhIFn3qHN9zSeUlxf8UHxwEKKfa6PZGp3uDFWxI8E+O0eFYuIAO/70hrnUFr/Lq/fCrls1v0mMtPO14Z1xtX75EeNPIhJvmMSeuV80RoTN2sP47JDp1U4grlcEbLLeXtDT6rXF0vEFaEJYFZhM2Jy1xL1UusnK11Db60WWTCMVbmHnCsvebMOMlVm8ghWqIPC+C8Z0MmOxxm6dB7yArc+yLRc9U9JU0+rpw/x6eRgcqkzBtuqZk6undEF0aGCkcrRkbTD4/+fHXfuxdNtP1RTkIg0qD/6LKIvibQhSD7pQIpwL5/8kVPqWPhfcY/JKE8F0cgGNKqXX0cQfiOSmWo8i1rJVB1StZhSAb0Mjd2eIjt5u4IMGDwRC2VpUSwvvvFhOWeStA498x+d3mgsoMU9sPW3WwbCr7ay2GjiAkVXLQYn4iqOThdNhcIafuMMV6Hd9milr0KyIjCqQRAyMPjUtmu2FIaDq5vZj4Ik9USMXJwMRGTxTNwl2qeASHRYnrksP1VH6sI+uAHXYoqkZXhlAgm5hvkgM60Tk+kYiHXHIShnpZaFb74UDMK+xkB0J/eNdnm/sYki8sqY35jVQQUw+03V+hoHjD8F0WY7rijEPxoUscdItGUrWyyhxaMQsunouX1udPVgITMobjeSnc2rlqz7O1uxgkTR/z38mt/yQMsPLNYaf/6wKtx5sZ2zoXFIOo4XV3tglTG5bwTUWjGxnsZnepp2tzSV1ZyBj8SPqYIv0aMaRU5wIF/xjsA4IaIzEFCOzWeNV4VAtaLZ8uO+mAujA3ZJgfXFui1CUjwIyvKpMcIWAgXuVlHyygxOr5gKMDR0IVkEEozwYyCch4amaRAFge0/KPCWM7sBnr0NXikPppCujExrohZJD5FSgHt2jz7DJrO5YFpE5o78pC8IakIQEPigfBvyz5xuYrNU8Hm7YmmEOAs7Wec6PQuQ0df3QC4y4SCg/pN3eGbqn4+rkUQiX6tDDR6Xp2AVRF5uMiX3swZPh6OIp6/35Zu1pX4du3bpw8RDog8HBx+IizlZXGf72OLKCANcNixpxAyGApD7gkO7oJ9xMZknP6LmBWkaDoSEqnkxquvwl6uNW5JNDgUDuqilS7aK9IyQfBnkl71smGcI360FbTzswGn/IrXpoLEawTroqXRKA5hjgcVhLvmdH2d5A/3WopF09mCoogzPJ5+fS3Ujl6T6tTh4XZRU7frbf3bkrAtkZfWSP9yMmLye6DmFowDLAKGaQv43aRoDJr8P/JYWc7PJx1lBhwmJuoZ7/NBC8b5bxhKfDfNuE6OiIJtkXGGSShM1P/yg1aQew/h84yK6hMZQeR/np5HAWH+SJtKkX3u2YP+Pliv5ABm2GiiWcFTNUuzclgSwoeDqJLffzLCGh5bwGjjswMuaWY5TCV3oF/b0Jjs2pC6k4+QdCbVvQZ6qVzUpl/eCbfqDfpgPMsFU+KmmHVN+YNLqfL18UAU9Oummol1Nn5nVMzp7yTyx3UYK2k6tuD5ksESVp7qywx5bvoiYpuzyH6yhLTjFGAdfo0UdbsHUUP3CqSMIIwzarBvoBDIuD1KYrHwtr/C8ac/pLLdR0DI1SB2DgSsnQcztieWQLZimd1TNjpG0KsExH7UPb2wLjN8cvZKSx5XGHLAGgn++KZ9GjQamgYt5pYcrunsOh+/ArUVQVvkwclAGi9D1u+GBbMUDzpOa8MXykrT8+++YiRQJvwnW0YhBAaDRE7zDfjPN4sm1IkkWL5NFo9HOfGFDepvkrxA5EsYJsIURf+93PPJ6tf9abz9oRdzIUnRRhZE8zYsuJ13CdVsM8BZtfeQzKAjgDXmN/nJCSDTHJAWWTLoujnXQF+GgIzIOfCeBUCmx3+rqfO315YWX1vR3qCgsHZC3cZUv9+4feaxpH1jz90EGfVmfr7C8/3mnEqd7ZpxOQbeRwnNhlsLczekM6G5CUDPHBFGjWNQGc9Gy91OFtSMSivj0wJhRXEhmqZeoiXbSenmvS63Oe20FrRnIXfTsaj+L1KuTFAjenuP2uxqUKSRmx8oChmQxDh9lDJzIdRjmbbHxJGiYpUjGtEOKBpeujQbL36pIn+JPKEu2+D8h5NFdswF6nqzH4Xy2vtAg=
Variant 3
DifficultyLevel
717
Question
A supermarket decreases the price of a kilogram of gala apples from $4.50 to $3.60.
What is the percentage decrease in the price?
Worked Solution
Price decrease = 4.50 − 3.60 = $0.90
|
|
∴ Percentage decrease |
= 4.500.9 × 100 |
|
= 0.20 × 100 |
|
= 20% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A supermarket decreases the price of a kilogram of gala apples from $4.50 to $3.60.
What is the percentage decrease in the price?
|
workedSolution | sm_nogap Price decrease = 4.50 $−$ 3.60 = $0.90
| | |
| --------------------- | -------------- |
| $\therefore$ Percentage decrease | \= $\dfrac{0.9}{4.50}$ × 100 |
| | \= 0.20 × 100 |
|| \= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 20 | |
U2FsdGVkX18JRkH0gixEQIiqCg+6v9/If7QddHei1z72QSd0UUwTaJa5jeLTH1gUZ1seMr24uSF4MJm5Jcyg/JQFyG+PkGuQ1f7LWNgA/zo6jeTP26sMODZKnm9OqgfH11y3nUy7tkUd5CRm/MZ+fOqpiPtgdGz+ylXpvj4xdVJLpgE8/YLv0Bky7yeLAi4QsbKtIiY2f/Nd+xvKKvZoPltew4Q4y9j3f6jT8GT4ll3TE5gopUfmpdRTuyG341VhRbpn9ZLzkwwKATIhHH/q/OYDKWQizOLVomJRYx5FZ/daGJyLvOFh6foneHhzZN5yWGlsuzolmrP5Pg2i0pGkB7DqWfuLBGHxOAUpS+DBJYhoBZnY4GVnxB4Z0FXb4gDEjlnjR9Czg3/VdcaY/odZ18P2VqJ6TeQbikt5mYJUlcdGVpjtxMYF0WDivk/bPI1gtsh7G/MEE9xvXDjhTAnKA/Bu6eg6hlV8kuXcPQqVG44v7pkm8CZLKWEprAl+5YUDDlz71TYfdkTWtWtyr3XMugWh/Kl4/SY3JxfggUmX4sdOpOmhaiD4Ys0+gaRdrgJME0qbcs9w+seYPR7gUMb9FLno0Mjv+emiqjbHZO+rmIe8foJ1wF38LqabHFbUP1oNcj0rmEy2nRb1G+uoi4pQia5v8WhLaXj/fexqL6fbFqZGxlx4EZMh8LmKsRZoFlJ3VwYdd0QQI9az+XUlAnnYO94SHsinc10gpTmTJLxAZDz2g3zzTwny0rWceRHNc+6LyqQ4oDOPvh36ejZDLVkNFJjIRR7Yf/4tTwl5Ktmc+4b4iAnlwpNOaI2OmEIqTOBVhkf7bH7rEcgyl+r3Pxz+DfWNE1LD2V3dOenoeFPpbw08Su16xYia2aPmuTzvUqh/M2jkWOmPKy8MgMPT/AnaoYiPIVSWzitHNx/yq4bU/AT2kaiIUOgz+usmecs/5gd5pvFNrBiW+YCsK8iXqGqWSGuv8/16JVGAJTkR2AStgCPX0YvArNd8MCVsl3/UrMFyERMRAEFMtBkmTaJ65H1GCIVwlkoPUmQFmLwg7XnccvjW1OPDUN7LO94FUekZl6I230ajpsJ5nJgQugZoA6x9CspkYwzFOQku4k+tZbWFWFE8B6TjgF1HkIl61rV7siwFNZsQK8YkBxJcGhz9vFCSjHDj0s/dAJ03GPlM4zGS8zlcIdJWkmme+h/d1prvkrBV0WOkNRvaEWNMTMaAFACS88Rv0ybIklmGLbCQfhiy6ZQ/nPjGDjpg0wrloNUs+82tLx4dFgG/29XXW8fwPXRSaGqR79tXtKcf3eH0I8Phuhk6y99UP986+VV0z0UpP5eAbVwB15JyGU+jxFCd14TA6Kfe2VwabsZ2Dx7FLVtl0ykoArFcTncaogFLfKhgf/Y4FdgRbq3aUFCJCt8sFpb+R6yBTC2fBWjklo6aD1fPHcDniZ2ey8/7olbR8PUJIoFL+QOo23Z9Tt61SLS5y34L8knMBDyNYjZ2CIH3UdBfyA/kS7kwVxljShS7wBWSFQ8D9PS8GSDDUfXu93PSqwgIY56IdKmrghsL3mxMs0rlXQHz+ztogg3MNHbJDBuelUSieoqC1QVUZuZ+T51A8EFLx9NGdw+8oNzMDNb1LVEkxVcEVSrqD2S6t3zJmvDQno4d8ZylFwoJETxuSuxZ9D08zU1ITB+nDDZEBADmMfDAZmWHIlQEgFikaXfGFdkz+Osyh6Lwu+ytcwWR6QX4HLVjF3KHFwmTfEx1DRuwNWTUEYCFEjvVozsEttJ3bnO9SWxRVGfpGgBKjhD8hDSzQK0CfP8vLN1S930Sw5jrBT6nm5MrCKB6UnukS6MoZnEN7dLwxijhaw/8TWdgczU69XS6URYbP59VIIFqhXWU5SRcJjzL/sGAVRM43kQ7jtZGFVLgKBVWJj2G//p43Ce4/b7qlVsJDqRDWyuvM4kesMVl3cd6Le7/P6regU5GHN5ZOOkjc1H1xphZW94AL/yPGB3e4leaDOviHRZxnjyX13cyU7qKZkfK4i//4MgSgBBdfg59hvJV7GDMQWxYQJ0Nuw/8t3INyY+6EgSejbu2T0SYA74zmu+eKzvbKoRJLoZrcyJtOQLdnBW33Hw/Hz0Hn52xO/NVBeeWcVOWtV5Wfpw7SYsESCedkxrxRfuwMD1RUsO7gLCJjZTPLpDRsidA4Xru33GNQ0THJwctymLCTRTGM+OpArszHrIjpf+JeMan2hKwi1MdQ2wEPb3VbggVJ3i9R/Ht7RvqK4UnlRNqS1RKEdwp10rrWPM0r+ZcoQh3G62bQksiI9q8xDb5/7sz/Aw9ofAIYuWodoBfWKLVsTfo0ArjA2/rkwUajWqEC911jwGHPEyBuU676aALIdiwHz6u/m0nC1vHeXqYCnidxd1CZnnQ2pW//1LqEJmQbKA2H1d5vRYRW26Fm1lLD/+yzWBf2YL8QBoWQ9El6giZ/l1Jk6KwwzsbXxU/xSJJ8lRwc+KYeFrNROrwSCmbFV9oxVJYyjMRgMXhsZBpByYaBDBt4NGJcFNzBxgDIL+XTu1pQFPTIBsu/aknwqa+q/6YeV6XmL9D9OrSx+UlCRwbccTGQMGA/J/MwOXdkbO6+Px+9DEaTdTELcPt5zJnp7VQyYyKhsGXZIG2nZFq5qIEgOdj2O4C5JHO7HAd88FrzgtOk7MC86kE/JAdYUSHrpdCRseGIPFS3khCdyDl7K5wkUffg8oRoecBxED/I5LPVPt5xGCdDNQPYN9QiQK+Tw30kccujk+me8i1cTy8Wpbk+MONqMYGzvVrvo4ko9lbY9tpmRe09f03MEGV0xT/+oZWM3IGHugn0Bn9HOfyMCzGfupfdovWHfDni9odfvn124EzAjFuJ2G9Wmph8TN4C6tZEvW8GjzSzDsLf8jCrQFdUpS+WH/b22gZ9R4zRAH7Y/tpvkOE+PTA3JBkqtUMCuQd9gi51gzZq1L9Cv52Aj3uVNbU2uKoxQP6srJVradQY1HysyuMcuDF5TGZQknTwmJkxVeakYz3t7tMWqjZZJd2eeFiN2PP3aie/mro9KpXE/HUyVWVYPGsT6+6904k+EaqiK3ePhQVXszzEA9/X+nsGg5NXc99lodUxPhpxCvEMvrx7f93KabA/Ndc0QtBl4+J/ZC05h3NsWBOFhXwuyhd0RXFHB1fDERGczO0KaKxNbZ47YVorExV0lPmwJOfRmeuGI2vu4yLbjZnapW2Y76pboQ85y1Cw+PVT9vfvnxJ8YP7PhpbXATHTxmlZ2a1bFlrFnrf2NJjB2CBptW18gGmfZwyhU71s3YzS5qWNmNlhtXLUSkQcN0rV9GAiYyBkouCgT57lmS0u/s85amzt0L2mVweK1XUo2FW4vvY8uCJuzP7ZogjEr0Dl+G3cZrJecyLH8Tu/g3hgc1p31lY7SPjQjMYiEupurrZM/bItUDkYdxNETqx0tJtGmRPX9ydAmP+RrD0PEXZeJM9W7RgWfLxRac4zk2g42XSFrjjcr90tGsCLdW95PFuoP8iDGtUmL3asap065QJkg1jpyw9YAtIy3xB459njtPvg+CQpMi1/6W91ixpeR9CHlsTTWxUv7LYFIZIAaIVz+aj4AGVzGbv/LeoEneQKNTsUCgTR4FGb9ieD7DdRepxjCM4lFhA9JZ0hNc8ZBqdF9wOqn6drsZrC4jaQvpY+5y845DzoF+RLOL/IJlsKgjpCezTzpakNKBneatpv0IrtzDd7ZN9YoGMzb5dBclDR0IIxqnpHBaoPN2U0x80QKG3uJnZhA2NSJFDmulozjkugNOY6iE537SosfRh+FqAIhtMpgRuBHYovXZuwMu+vD28Fi87MZbvOY5MdvcvMVyxcqeLxCU5/prQ/2CmEuU8tCfz79ZH2+t9qcj4vqDmhRGd/IKLoZEb9p6oirSzF5tBBt3BcY9LZnH88D60OCJ13ylPx4vDrU34TEY54rf7q3AopC7Lh+RlUDETG071oKMx9i6eV30oRg/FCDNWXxwPTDmLrHGnWFLxGUskWhF+riT9hVQsJLn7pEjbjUn+9LzxvBl6Oa9p3HWdJtK0Pe8TNUbSIbHIsa4Qs1MwVP8LfyrbXNNOLhH8r8FA1Db7dKzJTqZ1TxetPuEuLik4PToGS7JaYxb04jckgcn+PwPS1S6VkCT/LG/RE4NSOMvBOs38VAwJ514a4Ql2FUru8702ELdfT+5ljDs0e974z0E0/dehb3izy23v7KhKqUk/lL4hV9B/Qxpr4XQmu09dgHRitVZvgDwvtSLzPlz3EFPpXEi9pD94yvXcp90tzmoME3gQuF0zyPn1pdq09VScn5o6B8pQEWx7NHlisVn5+u+6tcnyr1YOC8tL0vPxKdhh4EvYR+EpUUe3huCo/wVHVFH96C7Qi+ksPJO3ELuxjV5q9lNZYfdX+2QuoYmLRKDhPSUP4SWbYSH7XUGPsRh6AXyNPIeG7xTPkZk1wajFoG9p/deOMjNpoljirfjdW57bY1ZFBKT/edqHhi2frEK4BLa0kfcyYadLoTWXssZd8un4qM61WZDW4c138JM/gW1Co+PUmI17hdxrAtmJaCds2wBYbLIXCP5Rn6R8y7tewdUVDpTiHlPHwmde4cKW1xzFels9vXdc8DIs8GYGoZPyHPc=
Variant 4
DifficultyLevel
716
Question
A family holiday to Disneyworld in Florida is reduced in price from $4100 to $3895.
What is the percentage decrease in the price?
Worked Solution
Price decrease = 4100 − 3895 = $205
|
|
∴ Percentage decrease |
= 4100205 × 100 |
|
= 0.05 × 100 |
|
= 5% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A family holiday to Disneyworld in Florida is reduced in price from $4100 to $3895.
What is the percentage decrease in the price? |
workedSolution | sm_nogap Price decrease = 4100 $−$ 3895 = $205
| | |
| --------------------- | -------------- |
| $\therefore$ Percentage decrease | \= $\dfrac{205}{4100}$ × 100 |
| | \= 0.05 × 100 |
|| \= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 5 | |
U2FsdGVkX18ZUDJoTkaTX0pzb0LCpoBftcX6BaWZYI+DVoHDo434fBR1HzqF8BUuljGaSJQxIpi1GOtJUMGpuKt0oHsNDjrOsyWSaOcpMUGlMbRwwBWbm+lzjl8Ky5B6VNwIgqC5nCnzNcpgoRKS160W7hoxGRWXCQoeliBMHzM2uZW7XztSCo0z8Lv32m6y2bUc0v0hLK465sQHOWLp39QH4Zl5V2nbqiHTHMYgfjOA42ow7kKPsrWDje3egoJ1TL4jZK523HX95JgsOhWFytdShEzznmOrtb/42NtSzbTM6ni/pquxzYzQ11TXEhAMRw09wKKmOsu4hzx7yFhewSd16mlXX1bWOhA3j0wAM4+CXYpZGhvAoZQcvnoHrrgxcOqwhkMWkrD4g+py0wrMk5EHSSYtfHjfVwouMKB2fgFRoVdyEgBqNRBBQ6WwSR+0a+GRHyU98JiWJ4HZ37jcBWDdbAykJPeRoNvZNgQoorude0uzv3j9K1Je8PUW5DBiGtAvEhTrKDaXS1zzRTVJmZczTvn8F5FfMQ+ZnSWvYzEVKbot53yOjCsDhUOtRP9kEjBN+AO7Dlbs8ZnsVH3RzNv8ZR44sR6RdJsFBb5CUWv5jKPHfZ3T8YJN72x6m7vsuS1HAB6dDC6CtEpNSaDgxsVNRT1lEtrQ7UVFLlexE2v7nlvrQRdDLPykZbiD63xjUq3MxfzzpfcZwvMuziJF9un7yCH0EXEoyfW208EONu5LkgABbbJnT8q2cLKBWnIQZiTOlbyWAuDs8SI29/h5ZSQtVLM4xAMX+EnFCGRK5jyMuf8ALVbdIk1zkiQX/7xa8dyXSum97Dg85J91C+Oh4H9fvz2HUgQ0uAzm7a+Nb3gEmGyozOB4IpaoC9CUdeyjG0qFXTyyK36s+FdN2Z8ywPLWFTp1iBwA7BHk/abDuD1j1oeaxJYSLDkns3Q+QiXvxXTK3zpV14HltbBUpWPa9z+JqLhkPJowzTMzUS66bY9hWakdorymwZk4lwUl4PN6VAvNLmjNjMD37753L5iHoS+DSYSbubfqUGndVtWhk+q2IyegQ3XcCMqnLr5AJsXd+pLTU/vSOWL9XJXxn8bFexnyTn5BkC8dl/N+zhmQJNYVYF2FUgo7R2W+U5WM2HhTcYUIDTtUZIRq1bz6cRyBcxF6Ug+njFwV52GhAifus5ilvdKytiNG6x3Zc6ZUf9AwJxX5oNrIq7C36vf5ZvXqrIeqrQEVOqERrSHvBJjAqpEWXRstUbfv6GmXIDxC/D02EsfoA7bCEHJ9JHU32CQ10E6PQZYsjhyuyzYRhrmoobcXEs1WHG8+ziF/W2cGYy5D/s3p+BQV5gPt/ss/N/oRMMvT/2GTOE8CKnmvqDkjvILVFvet8V4Us7jVuqxDuoNwpV4Kx3fU0IIhU89BC/VZ412PWKX9R+YFOhK3Y7nfQUD7/PKYYLy1neMt5iArIj3pTBr6C/RLy+USlE+ExkISUVsF6+VBfp3w7gVC9AArB4SuyZTNLY3CAGfv1CL6yP+dRAv9xw7yBWB/+1ay+SUdSDqDqGTdPTkUSZUGsYuHPOPY8/hMA2GcijyPTIPhw2aC90G2kvKwYZNkY4sCrj9+FPp9sI4wRGc+06MEl/gMBXIeoqshqGjIqgwbo2EssvqFQgkhyuxW/kkogXiDdw9ixwB7STsfgrTVyHfGdwvFEKTFX66XNM2wo6BGkqitGzhnXf54MlGvBbGyH102QgR2Gf7uaStYTjdKr9slBVJ1Ds0nIElDGg2vPY465nPwVpHhVbaiXVUmUYJWitQbv7HhRUScIPe50UJwu/zhMHq6ZD+ReOvUdihO8WIiFp58CUk6RryQdEkJB1KYw1heX46Fm48yfR9965KVs+CqVYwNbJaYhIKkUEqtzFXpygTC9M4HZDh34IyVa/17/xcR5jDIm36Im/TknmvsD8FVicJSGSsTZ1QKd6FXGTHrejbeJO1UfonAN0QJgqT+Kq1CAHd8jN1QIC/zJwLw6H/i77ZlesL+nHcqp4O+nQwPy5pF9GqheZldKcWo7q2I+gJ+ARI84i8pKNHsw439/CIGs7s6ntQlnqZDvmskf7VPeSh0Gm/2tj9Rvt7nVXnTWSB11rot56gk71X2oKQTlrollBVt+gx4BdN124qhYOpVvra8yVAc53HAdCOUtLPWyM6QN4HdogtjhkVpXVgiTzbV3i75FpdQsEKxRsNd5z3TN2QdaVYa03O9/VFePNSEZNJ/g26W3BmDHz6AW+yrssvbCc+YSHqUlWBduWZqrZZM9MCXF6I6t56YXt8k2ohXI1Iou2xX2fI3wK6qsFufmaxUKclUO9FwzvM8SWFzoh0izAgwK2vZ3cN+kMR4UsHGc4/wSsu9kwEMzXUWTuhufs/K4JW1jT7DqV6RxkWqsFxyoLgiX7XBkZMoI1musIzJOTSYq2x3YbonXeSoQ/sbWnNeztnLWQThIgTv0+t2p6uZ3p6XJdxQeyHkIOtU7fjtjjCqOdUuuYHM51NSrI3GayhK/Kif3U0Kp59pSTpoIya1e2WdTgcLIUZZxiLgHlAj2HZWNF+V37ggqeoErt5uQw+92FhgabBBEj6ejdGDY+PBmXunLfOq1s7s01Dz0Q8SsNvZSpMh3o4ytnM8QZ8IaoVVS14lD2VeLM4/apUH4/Z/MI6DkuEFUv/cGqBQ8XlKHI8fkKdUDfO8cjqs8Zk26/H/IF/+2T8fY/ei0Se3E8HYog7lWyPCJk+bmVbOMrlu88XyACJ5VYlXkTFMH6M/Yc1ZeCnYzD4zixyl1w9SdZkm0toI77mooitwevUbnnSZVdWsw1dWiwE3mYzcYWwrqAJ9seoq51v7w8yiyRJBsOp97FFBxXf8reXapQoomcENDnE68VutozYj7nqWE1+4kGDvrYsWEn2+y1ZpGhFA3hWAjgsx6amu2dVwJnJoQD8brSYmiBXD2fWBs99vUSQVGCM27bXecedQMVPq0lG6pMP/DmGyW5/e91ww1J6ezXI0QRelrdCMFWASiiEsyNw2g2qBwv5qliqwouvIaFk/nUckBAK1OdUgU9If1sfIZYcx0ayXDzz/ZQ9rkK+wVd+8a0w+CgLjHNV74wX1dq1yDwydbLcUYxbKXItBr6j6bLSKXdF9V62B8bnPIgYQM5ckYatjUO414AOO+vfN0/aE9wcS85XRr4SsB7kaa9Sa8P8Oyys1kE8lNtkXRd1TPSHX7jjJKASgyg5Cb4a/Dv3r6A7NlTQL4XPu7ouaOphH0nKFPbJQj111JVd2CNYNhTtNv/G4snx+tzwfM4qfmCcf/tVJExNZYeM9jqoN7PM7wrsNyn6JDkfnuptSSQoBzNKvmaggiUa7ZGmvzzAUcU08AeVt5i2kZKlS5QipLeQbbvsp0TosZwuCi63liT8tcqlWSQXLe+ztNmhIPfspriT+wyD5GExSncy9NTDWKidJyZOUT0WZU78qI6dLor1Gd6bv3DD7h/HdUmlf/uEddw+JU7avG09QXMS1w4jmu3Tp2KqJpDjbbgIKe8mDlY88jHGe93PBKvWMwF/cUAn5fogJR8xz5gcBAqeDLJcWxTR1//2UNe0yDhiN8UQQ9CFKGhJB2Uo9o7hhbj2NPLJ21Qof91zJN75MkF6Zviyo4SjGLKb49mhjyImI2GDde8Uuma9kXK/y9n8jXoRbQz4bDjNBbQCtvKlOMPHaCeCscwyRZe8x53b9LdEkuwTq2YVwZet3CqOmd/7BM5pyWqH2Lx/lOVsoDkyXTLu+h23WQULO8dn0+2yAu340bHVZI1MQ4tlclwys6bgDeeWlSgWnnx2u2SA4vx2v8GXStZDTlqLVGAZMvCOt3LNRTXuuYtlMY/AWi8IHsVRTLVttf/oRsMIgg6zNI8XZsvzDQJ5GdG2FkpDUZK4NOR4g4RafcBeDKPCRX8SP99x+2YVL5sicAW5pXSYC0u/bfKDJpTDRdAKe5UcM1t83KXzVXol2B6J8WzmmhxA+tjxGN8JeHrwvPTbMkBHRVnxy7xGoIiYmCfJvxi8ztMwYSM1s0OcQNFp5BsCI3QKcVJE1zKQekrQ1wTyv9+dXpDFXxY1DMUlZGWDcrv336rp6aYkqCyjZXIfHuwERg5uGObe56OqwxYDiwTrgY357s3dusQwGQ3nVavrkY/ZyZd1uPnI0FoIyrSXHdwkaA8192U/0m4B3G+iZ4rIJ86cw7X873PpfMLHJrcCr/SKHNNUX49yAKFWvQ2tpM+CSVyRX/byzqrbBHr0G/uBUQ8+9ZUbYymdWAELaLcThHWh1ONV0chEwoHuWrACKaI9AvCD2wOIJDRfJE9/w47S4q+V+AzESHrbUF/+ANfwN6JVE/EYmQSsVPE+o1FibMGQAeRV0QcznlJfwvOKCj2vuf2QGKDpO3LFR+hm8WruX6LcyofOzHp7vOHy2Vdi/iq+dErtJGNJOqoJ7lKTeS76xyNpTNQWF1WpTmOp94W6ZlFbeKbRxPjEjrAMSGGrNjG2/A8Y3zBfD549WeO458I/wbM0RZ64uh/zyGxwwpxiP9VMyZUCfzpKjdQUHN7mQJMvL5OXj8vWHFBG8dKAgUWxmvuqAwWodOPC0lOmN5VLrb43SsRISlGiPpOp3HR6HCLJ1zORhUqTMleU=
Variant 5
DifficultyLevel
716
Question
A family ticket to Taronga Zoo in Sydney reduced in price from $90 to $73.80.
What is the percentage decrease in the price?
Worked Solution
Price decrease = 90 − 73.80 = $16.20
|
|
∴ Percentage decrease |
= 9016.20 × 100 |
|
= 0.18 × 100 |
|
= 18% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A family ticket to Taronga Zoo in Sydney reduced in price from $90 to $73.80.
What is the percentage decrease in the price? |
workedSolution | sm_nogap Price decrease = 90 $−$ 73.80 = $16.20
| | |
| --------------------- | -------------- |
| $\therefore$ Percentage decrease | \= $\dfrac{16.20}{90}$ × 100 |
| | \= 0.18 × 100 |
|| \= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 18 | |