20179
U2FsdGVkX18PaHQ3HPBu8icirWCunUrLCtNOryo1tNLdE+WLthoM7b9w6JeCDwX7zetMnSB/S2ujJawVG5A4ynXI04XxAATQMZ2J0s5m+JOxV7QDDNu1BnfKGEUX9azLvsD+BH6UjWO2Rr1+7pIvBlYz7bVIhcPEytuzOoFiC9dYLCstxkfSxBOENQ1qHzfYRzEEPuNxGSUqjWbdrCHCDGiWaJOYqUFcgYkD4zXgjAlehtY3poSsOGz62UADGwQkdfU/cSLXkA4WQloZzG82bQISgT/mxOqllD0Fgq2BoKTlr6zGwWmtulJ6JAcbQASOpSPShRAGX+ngNJdL/CA+uYfO/hrscUW/4zYz1Y+QvU+EcQmP1k413qkphHqXpF/uPDGToY09r8Do++VVV6TwybyGcQmBv2zo/I8tCS/+70v2kiFtyFfv0xjdT/cFTbdSK8P5cXEscMPccn6L4YUtolGTtXldZZUG21LmWrNsYhlMeEMJ0T7MdpMxSSE7R0hXzgh6DpV5xXG4ZyOfrHPlXABYL8tBZiFT3fEHGqKIRgvGPGJI39MxdhRZM7xY1+tKWQ/9oLM/9HPfgzSar6dXKkjNefbaO8MbWVe6JjQQVBippNoWLtX7FkrDXA6tC6QhG1MTp7YkVmVgLc10kur7IX3uStpPGkjDaYftNxPYJ3Kwc0LywIGagBaY2PdfkChZCv/G4OQrpA6nT6cuFLf37QIV1BDlHrX/MFf5hwt4IpFlDI1Sh4dU5xSeqWbioG3UZtGIwtz+BwoogrVh8UhzeLRccqzr7p4rTCNJKtND6kWlJbxcZeRINiZmhrFmXga28iIxVbPrZF1d4qayzKSm5NA+m8FUworxtk/RI1vbzx2jzX33qxhBWjIsNNbywA2tdYHHPmmaKFuvno0ETn/mBAczpZ0mB1F0MLqmmSmSkWyShZN9u5ectu1Mm1Gg5D5OKskT8DvAQIoGW7cM+3xoZVnaEwZ+znNssv4oXECnvsgh0IKvSTn0537J/u5g22cBxOlTitBT/iih3z052SSt+6U9urbLuH3uRcv7829ZqX9GlTirBIphojXj3pZgfsoYG2JwgkTboKzySJTrrEYgP/ERDalWhJytllw93bdbIH1bSbR7qxrMvNe0y8ZtPqLFNhO57+NDSDlyU+vdjmWaLR1a0r+akJXyBRF/mZw174l/dksIZxJqrg8iXpgGplFr4JR7+Ugxkd0JJ2F9tWx/eYu2Bc6H3Oyw9h0w6HkC6qdURWc1EzAx78ylwcMEnMbX3VhWkdv5Bs7e0T+fILLti884Qub6Hld9XbSDmKdtaEgcRMr0h0rllpSz4BKuD3qsXT3DuefQycujsODWuItaxwaKUuStUMI50jmBj6KOywcAMjfzuL6Hjjq72/R8ww/p8drRTD8WG0APpERjCX0p/MrANw0eV6nU3DtlCBOfD8bPS9R4maqTbPZsXAiXgqWBtmSP6SvDyQqNnEsddENO2teGxE/6H/59GDQRxhipd/zTFI+p4R6sO4XqqWY5HlmPw7ylXcnueBz0jmlAGD501OFWNhhkBq5GbNRFHhD0C7OSH4hiT836WZmxw3nUHRJZOuC9drocqzJvpDUnvvmBszvJvsHK5Ua5878YnGhONwm79LdrrRY9P+hSvRQ/HvaVR+41LnRifi2lbQHIzloM4kFgslRT+Yr2AgF0dWk+jS6sY+tLv18E+H0w5OajvrRAwjFCwHHiB69Tz4MVsvBjI/etBwWPklKZGboDaijlbUotqDr5xp1mpZWINYXt41rh/sA1JMSyOKXK9ffYSqKHTbA/TtHD3PV3TxRPAvcBqcuM9zdzysjfHtY12qEL3AE+gBWpG3Kd7RglGNqkfYht8je9J0jRPbKT6JZUnlkGZ7vm+jikQQzcvOVhcle9+JgQpO8eSwBglDT1ePLIh2GP3KMzjdmMN0AnsmQ3uEBOhZ383jxtdKXI3G9sNYYnhRoHr9Hq1sTK+Ht0tfkS6geoWwCE4F9MpJXV1IDevlE6KaP35hoCiVQf0O9FWSkekWyJvD4RIxJPNxuyRhjk9xN6p+h8cpJ4KQBacI7vMQa1HfFldq17Pva0lIh8taxXvlVHsVPrDfJ51Txw/E/kzgQyJWtN3XJU6fE1Mrhy0vfRFvCzx/FLSfGoid3f9Bdv/DnXf177QefWuG6rSFcbmfMkymE1wY694msHOsDjecsnspQQSwKN+Kdewyvu6mzY7idSmfaFNVwZOVQr+x8JQsAV9myBD75m0Qh9e7TSzUNKy3TTYfcPj/Eut/uTIZe00lY2VgYYh0ix+iDz8hdk29QVz+sT1s3jdM3qHehWwusrXOf+PXTZ58Eyy6BfAfgR3fYBlAWvkBcdyxrpmlkso7yHlDdbLl4mM4bFG/LJZQ+a7Lchf1M5TiS+ASGbyrE26BFaDHFI7L3ohDYxpyLDZRheIRDulcXQ2gm9UaiI9m6IwALm1nqJGp+mALOsixSlTYIZo7FQIgVXIQy6Q448VROJGvuBmqmYnh6xsiLV94ocr7lvGXqSTQOdZhBJ8JhjjBeJ1AnaIObEbkiS+nQjXzLQN2M66XFzybCpWWmnhrPkbISKbLLFcqeQsVAPA/7Ujs0frkHrEvPJEt3RchgM+ig+Wmqq+OAYsccab/jIiK+r46NtFbam8kV3c12I0tHbVje2kabpwfos+vqc3nVpEJ24fXsz9sv8IY05GywiWfPEUgLP9uclKO8v0UEydUPu8HIyPyq/LTALclfxScX6G2iFJDJQaU6P+/Ysmo76UtZ+TikcGQ3zVMy7hWMQ+GUxVSxT/Le7GNooEYvhhzlykl9WFhL3ESzMGGH+HBRzCCxg2Jep+aAudzNpoS0OPYhg4lifhiSnE4mt+2RZLEjOR6BICtBi5SXEqyeGRVp2LW6gT4ecvY056DFX/2czphjVG7Z0A+9tPw+aCde1nLLoLUQcE/KXIMXLv3nLO7a2vZopIlBIQyTH1133SIyunLnh9S8CSKXvd4B5sVNKZSugCkmkBzDJ8AXPIhpv6kIIKMPsqYmJf4d+HVolZ413dgouVb825aza/fIkYV12lKdodC9mSlX8OwUjKGND2vGsWMow2/3WQ+TUuvqnhrPCiButwb5Wnb7WIi6i2KBcavqUJdWG2R7x1Kv3dtqoZo65vy84wL+CDCEjeeOhQj0vkTKO9AamSOr6geit4kDcQ4XGrHgIWfLR1vjvSfJ+Dw12BQDB6vv+0ApS+2hniYo0Aopd5Q7/5MWV3DNwqIqIRVZWtYBwnFS+jpVxVzmk52RPBGLKSWho8p6Zg6A2cl+zopmfLcoN0jlczS3lpkijRAg+oMUxeqL4iwPgfixx6NxZmgJn8IkFBMh7rAz3qiHQnAhZJ+zNccxIGNz3hiz0+k05CNoVz+/glqNrZmVL5P2rB/8BlFgC46/Y0Fz59e68EAzDW2f+a5NFfHqGRHEqR2TnhccbRuYMwdOgNFMkKlQ4LCk0vPM5Eq9cpO/6UT5R+33fMYTr5JXkgPaXaQEYN+J8u2P2eH35zBMdmWRnw8//IrbpRQzD3IjIjle0N077bsqxIZPV542nlIdGa6S7wqr3JDQqqLnsUhHYHST+Rx5AempJTtJo6DGZbD6W+r/lp9nKjHqI0R4U1iR49RGeTenUQhJCM3obSDr+t+zhDCkDOnouMMVuM2LLwWy2oJlpmpAeggNvJpvzKmg/W200Y4fbotlgFFGR6p6GW+P+MGF3traoWlWWk4WU4u1j131h7eIUpOJa17J8YAxrflq58Ay2PxtkXZA1hwwbhbYPJYwpfeQ7vCdtNrX0SgLMI3Kow0a5+G1t2DcRVp7g9nGK2SzeuyA6jtS04KsbUsAIedsV8UL21hDYsuyMUKCZBhSMSgWlSbyL354L3rTD/Ebh9K2ux7I7Tf7oDYPqgKIziC+DVg3MmJBxPt3GcmRlkJNmevimhcnAX0LtoxdqVTx5LDcn8L4CqS+4B99nNmDDnoG7p1ZvvgyLYhSIOliT51Or+ItDRS5uLKm/HutymgLSTKoJ+OiUr5W7U03LESj+0d/R24qmjTjDxdMBANuR/Ca4CZqcbXXEiRCz1hhO6faFTkNBF1REM7Gs1ADKreq2cB1JEjG/qzlHu6eg677tH9K38E0gkYoke+xznZYjMBd2DFgyNYflxmoZLXyJu+2rKwMFuMWhUtjrEZOnUp3K306/d1V7p7uq/ZyMvm6ErK5hP6nXjgXmkHmfHabjJSP1aXwRGA/f8FIbNX3pm81jaTX31vTJ7ZWwy4Y8FSWB4NdiaLX3PS/2rZ+zuDJPonR2KkjxMh9rpYex/XodLUEh0LVUrgWKSd43BqACrLs+eL2O5jRXDJFZDQUQ9HA6re9P1CjGZ9trGjGH6CNOlj6W0NOsV2WNDEzBG1/iE6ieFlLrWIEddYOZR7XtxkafAdN0eI9xYyoAQrkbUVrQH9sjdyHZbSIx04cil8KGM9/B9jOkfI3NxNPl+iO7nYdiapBpRKtyqvPUlam/MEArxculuTYOegnL0KIbEdpbahBzrCyTedFwKWxoFGbKfHg3sChjPumdtJzH/KX+C6m3uSiV9Sj/kvYfQyX/z1UigIdMjpx65+5IuM1e+IzpgiSPMXRXZu/tGXp7glnqDDKxrDuBjhT9IHikc7gHU4cyIu40seeWeJCM1O3gk8B+VIwVSBhPzJ9vWY3U6Pc2omONIN3tuLSI2Q+RbaTh4AuDpD1O1+ageo7fkLfHUkU7V4V+OndeX/uFh98BmtWcqzrW5cmPx/YeIkslItyIY5/8WPvbqB6BMAQf8PUsgtu+aT7qMsduCUkHhaxFf7Onh3+KSaYhK+XtGZzkhzk2MhYI+BSgtdHW+Tx2DLDCOdO3qcsO2i4HiQv0vttGzx+stjAcJOsoc5RbarchCaHvf9qu1bK+iHUdmUpcIFkyR5EpxwafiucIEM8OV6JlBGQN/T1sVVD0PeT6P+gdRp7b1YJuWt48Ck9qcAucwWIflJas16adHE7DfezgiBVCCZm/+EF4AIOkczK9Ic3tySul6I0wew1zGi/0meeoWn0xdNdc70D9HAMY6p6HjWTZnlObbtXmWZ2e7BEEtS4rwJq8DDWucusVDj/zcH0s6DrPU1ajL4ILb3xrEIWvNrhBn1tzEW+c+FrkWDyb4/cSm1zxzWOpHuWD1j/ut4ke0fyrtEXYw1UjwPQYjmhxltoAF+Of1fZJ59BG0UlrhfPrQ0Jp13k9KxZ9Z0/ZM1CL/qAr9maKg1Tg8NtpIFOf7uPFepVEPX31Y8mmuOkyRifcpNAWssW9VVeyl3MdGu+sOcig1/9uWjiPnUqwdBq3lUMGpEMRB3FmsWAWWc+Ystrv3mamX7YJq1Ak4SCq15mmTJwVvbFvH+pMIWoBsM350nh+JyowVqR6bYUTEtKFYeQEfWQEeowIu8r7XR8xaSumppsLUc/i91YlcbsIxm5Z6NFWhxlB45aOMs3/3aWLgdvrZ2L7dq7YCQdi0GLCOJi3d7wKwd/33bwfcyGzByjTcXxBsL8/7GqSHzSB2o/pcz5peu53G+2khtO4NndkjyGc4iVLvyEQ3nbKeK5B42JI65lWv26NhOtnjg+3jkyvn+X0Hs0Fr7qX4LtXSWf0zRkwtUSSIcTsHiw7puYvPCf9LDKG2K3E7k6cpuIM2ZqGjfY8kT88EJssEXkNXE3erA1J2OViFskAIH41pZ8jA9xMup7Jnq2b8/8h96mV7FSWvx8upVfLM4pxRHWPR7oP1Jt1PgFkrWoszXrmJyjuKg7vLN2ykAYJPUv+iPDKrWHZfHzRpLM+3HveUD6iyfei6vcvpF/8MvJ+CLnCpskXDVmtkhX9Lt6+q59GpqeGqjbOVbJxjhagv6+YN34wAiGaupaTaOjGkuIz1iadaOStrBXQNjjHDQMUt6QQIy4XqMjeFhrnxsM6V79Ro2376yynD6OxTPNCoyJOFG4Hufw+A7ZjdounVmrRy5JIkfTq0apPBVuo416IQ1uuK1JrdVwg421cFxGlqlJi5TfvmHUHSs5KxQzgtuuoirU3F8NC1dW24Bywf5YC1GOekLtiymCPECJm32oxHuAjzN4oKgk1tRM6zLbFtlhg6VaBDseQICY/CRpUcqJR5tanLhvvmS3Zrc8wuJh9y6b90NbavfHHJeTqUdDmO56WGwk8xmqNdBPxTaE8nbpv6qmtnpQAFnyBLNd6yGVrgo2K5T/nR+WeLS/c+U0jGWhOA7TBdFbm54idIVCmiTSnz0TmIrua//OLMmQwuvOQz6ShcvEyy8lDO4OQPBGCldSVXdRbxN44ccqr8NfnpmMTYjxCrGsYeROEyjs6yTeAsiDZqGrxJNiNOxozp0yUjXz4FLQhExpizQoOVVNMpfcp6jyW8iyc2Hvnus1VOIcmEGueb4BOM3Dof7NcdIt57ITo1H8VxN6EG15+qKUmcI2K27jh8IIv8XmOG/KzltxaB7703buyescZDs7+ABJZRpXRNsmcdOTqVeGIKjpEga+4G7eypersoAn1fX9R6d207K12Jgd+kAaWM3EUs/GcPz4TUXNIrptDBg4LqcfzZwzOGAdXtFF/TwIuT+vNcNcg5yEbPGBecPFbKsOmohjak+bVd4zZxF0Gxz/D7ktczGHZOjw+eGZfbb1sFlcMhB7ErwcEzql3Z34XPbsEIbeFMPUp398IxZVyvmjLCxCQzgIPzbZL2PBCbF5lFbyf5mNO6KL+PGOHQEAaCdoU29PAK/Uq+4yWrtSfS66wWg74+mRJiS4OCmzEPDGn3BcIHl9298EAcneRBrF5xxIUhO5xugc3C3uQCFaqgrUMRMvpLtS+A0NcF/P1JpM+oR162YP60QeHcBvvzGdyTVTQZwlUAVCI3xvc9dU3E4+BCwHmOp9TUJOyKjslqm93d6th8f4u5rvmyRhPdpOOEjR7lSil3blS0cxZhNlMJFtnsbzibN/UGBE9e6Yo3Xz+7O428Bm471tWOiEuOo03JVu/f9BhhkaxUFULxiKNaPDrSI3LEQZsEPHLUDQ192iylF0kKaBXKxwxMZ9oN6TJWqyB1mhpJaO2c509HWKros1ZvfCy7b0dpsQZmk3UrL50i70Kj3EV7J8Ry6gQpigciWgyYvDb6/+0JlbDv6sb2KYTQ76PQPbTyprBtrKUJO2t7v8hOZ9nZirnrgOKTvPUCB5PqOyxevJIqcKzsTQTg+9Wi0EzVxcXqV84VMB3uTxrRDU/XLcsmp51uEgXuMCRUqf5xWxIJKfmC6VnYpQxEL31ELljnH0keAiMLNL5Vnl5GZJmKaf+nfcQEXX2Fe6GXVzHtO64869399XpvLDitGo4wjdhoM/DcVVMzIr+z3q22MpvrIBOMngk6mvNvoPDfN2Dj8i6sACe3P5jJQp/EUssrG7em4+VCC6cHeZyDyn9V9D+5ErkKm3W2t6tDnF6QbyrP+0hz9THqqlC6nGhTRmM2h8Qez+e0TkN96qKE7ebTTTdc4WQU8DMXTVcBoBtIvGryEzidPb9svGoBSr7EfPnFIdEY5SP6MNXBX6Uo6nhjsjKcdGngoe8dgSWHy9X9JLBy8qtXTtxfcjj0hbDHoc6jcg/Me1T8Eq0Igga7HvM9mRnqQrsw1QFSRPVfiBhwR8vSQmo1qfjwDMAOQnbdM8g1sqKkBofLPSWqorPEzz2uSIKK0bRyllh1A/RxKygOdi6U99VAj3q+ffO4P6zVe7ufqaCd4slEJWb9EDfYXwCPY8+6dhBp0OTm1NZLr3ZcPUsucRePiYgLYPLGnOBIfdYaLZ2O3NYco4DiV4+tIzaNXoGvqdF7RE+cRdaTj4VreWxif3n1glE4WbrLihepSrP9Y4a9a/emajrKtKsi1RwiF1IDopZdtlSnjMy98XUdFvNrAdiV2Ovg4Ou7pCI1ARKpK3UcTIl7PjTi+jsQhKgqftlBWqG43uZjZLjrM8FkBAKGW4rGwF+1zxt4P5MWhR5c7HN7MiB46JP2gNO7jg4aO7nsYE37ILWo9cVyoUScdd+O6lEx0azOdRm71gx4FI9Ha8GTuRHVS1OZSkVUa6gCtopMNYid5k690H2SLKxPAh0VSIlPaWBbv21X4uEJ//0BTZbPTeHBLzBP68KH3LhATRqgTzFUbH+IBBygB4PeNxGIvT8GM9ZdKFvshb56SDobXQ9QLne8TCbYqw3GhRDRr1p0i60oqRKyrqVsU2Wf1HCgtg3XbX8p29Lu8mT7wdRjfWyHqpZfPtlwwotZiTw/97O9fGT6oW+P2LD9JStmaROOrIFUV92vwzmnsa7Sl4k++/wn/kkuXfBqqy8Z21WSKF8nJFJxc3Cc5s5nHTVquwENYbXdUp1wsNUswGDlgaodxhvkKKDH1RW86zx4XrUVpWLcIMWoB0vTfIACavaHg7zrXo4ulIQh/Mjwi+8upUxrhKWZkW0oFvldxEvXhEvhzld5LcJDc7g4yEkIg4M/QZ7BFX3XIEWrJjt6wCdX6LgLB9y0bVRgeiJT8cEkzTl50YGxmvR3yYbXDXhipQC6IiOI04M/WcE2mJE/ewIaVDUsayb8AriFCVowzx4liWHf3MedDwwSAEhruU874MsSqMW22w2F+8omjk9JYreVGy6bTlJKm82JDjpagK2UK6GdwJmHmByTfjbxAnUMEuiMjMtP9yevBl/y+i2kHi6dcdM6Q9rBVZ6bFQQDQqqr9Oo0efS19I+c/bN+L1N6l9Z2vxVLB3RaflVMLlS0S2Lo0Kn/AvSHsep5PQAr9nbzjaEw5415HaEpAI+p95/cnYsHqmLb0n3BWmOBaQPv6fLqehkviOYAMRL90udrCO98tj8ssN1vknRxmohmslQr/ovMhVYmyQ26ogDs4PEBzU25S2MNKucttpaTpx5lYeQ4H09W8RWwigr0ml4KpYW20CSk1f+enknCOggns2xw+4dd7Aq8Ltk1qOR+84GoFT1dU5T8uB6VvmQGzRJEUmg7L9/tNjxdpf/Iv3/tbAu5BrhVr1tyVkak7vrzhjqj15IkiJMnkKhjgpCQnVxN+NKw9ego/NRsXxxn2vFNdCQnVno9oTBkO2GTgV9tJB2N6QdLK1infL1s0WxctWpqSImB04+9CtJpAJztXzVBLa89PGJp8N24HNMww9cISt+PHEXowAUzdHm/zbHHh+5lVuAQNFDHcJmIUDCo38Bn1ZfbWID38XAlvpF/8NYlinmfLXtKBoCd3TE19OJgFr3jZKPfb/YDOh8+XBUP0IeZJF/tyiHPVO9e2Mo0/Dk5O7MC4ntk6ShioEMp8yfBawCci+ZJSUuLuxLjjBzV8y2FpBbdp9ax4G9vulqRXrHptskno7BAG2Ll4uOCLJJqXUGQ5BmHp+6zW3TZfx4y1j5J+QRLvj/fSnVb+NJqxnyFGatro0sPlc5OUcKz2q/8r1QYk6kkz/IMLru2cgZuXol+Q3lKce/hHqiCuK+bihi5sfPQG2Z56QJmEY0gjHbZvFc5Ex3ydTP8+n+OVV2S7psS/HAkPrUxYg+oGDDX3/GptkdTmuFzJB5KtgyRPPh7l65MvDXOjun+Zs24pg31/kQjmcGbwrIAE4VqUgUk+tSfhUZEJtNV4Pg+WEq1FO9PIGja8C7Y7mvWMLtZmhffOk2rbEZmp5GTpDW47jgrMd1u5wXtkhQNVdDpGFtXScthws1V9ADsjUU1l/Vz4UKe82uiqOb47Zyhu9LuiJKyYbf3VKSKnDQPxTcAojAVTOFmRmqngdAY/eQJAeAY3TzNisqf4hFQFC7V4njXtQgTRnSC5zIMIypKi9sExIR6/QgT9RxVBZOKMNXs1GFXp7Oh6wId+aSA9m78Ilrkx0swoiTdbQ5R7biDYM7MVVoIvnGBPs2cszSXgb25hkFaH6K55XFWfAUXzlcEQ/5RY/UGyP2Gm/Fre3Lrs1WoeUANSQniTf/1ro1fGLrK7t03jUk5q3LfdDl5dLUzFzpY2UAIcpMVJHcd3gaatBHq7rveOY706jWUAQfwD32AJZqeDFfzx+qIjgGONcuYQxRV24dn630zeO72BaBlTbv8Z/PTKLPfs+fHafC6mWlRsemCrQdUvVp+ptczRqOLCJfG04YfNgoKc9M6QzFvSMsl3C7qt+1spTCI/kjvKixXLQztwfEVjxGMeK8dlcthBS30jRQLQsWa92Y8Qz2U0cJfXZR6bix1CrRpnrs+sz/3Wvcd6JYrhTYEKPHC8yQxBHvZ6/SzsHHgjlnDmNuTW1HZ70XCf/28f45McZPqcKWbUzICSVWSpH1ror5R2diw2wLXzePtYPTiqCjKD0K1ITtbngVBncpvB5Pl/sHMj6b2u/CP32+EZs0QP2MEKvN3OJKUi9xaavf8pkVJ9gGf0FlJ4Sj9/iVQZGohgstTg9qdhwiy55qn5UEC1/Oy8pFktv18QnmWoYkGGWtkzLSzrvkachDx978zXRTax31fxHa5IInGhiCLT6iLFQwW487nxQkisvuxLpiVdLEVZyyqM9zp/6os6a9xdFelFnAOJSjg0F9mCwXPiOxmeG6AjzbphlyuD3tPWREI140kQx8og4f99rRtQNrcAQ1KGpmjyreW//2SKGCxAe4r649fauupLSAPQsOUvl4VmvLsUnCXPZUOJBMQEfO0UsV4d+df6yLFZZxd0lkbq9gZAOtINP2Ia48RSr2TdMX52x/kjQgusn4TE1MtHHo4DQesIBvVI98mBZ6Q2ueX18NNSNHdnQufjcMlsb5GqOpQ0a9uSyJCNGH2gNwt7K/XB9hsdBbIpFFcugvti9qfuy/YzSGDtb1MQz7xlip2VGsz09EGgLA0N3QNSS7XLjG2vP+FNiJFTSmAQ7CxfUi0/CmZNA2fEba/EWXyYvpgd/0wEHHsbaY364OftSMefkzEyPbNrCai6p9h6XrdviGrSwRfwMfHQlzq8bRJHx7Z32VCMygFScB6V4zfD8Ro1lg9HU8efq/vssiWDodjIY2NjwslPxNYcBNKuh0SqzfvSWqX5dejq8mO5WfgfzXOYTPyQaOcYIpNhcQyUuAsc1Y05rRJops+3e5vqRVTZ8Qa0Z8vqWOn9q9Nr9blQprc6iWJzFL+5FTV42iboSAbB8kQccPTAWFE4pjRlL1fn58oR1f+wpMQmaUcMJ9mh4EWKBRymO2T8JWACjIMQdIs5JIRNxPGaCWThimYjvJXPnDwb66agIZywngsNq/RGFiDTNYMwriMP1h4ZSTRlh0Fvu3xI7VscsqhTD7SxfdoXYumVnwyq84/EiGd54aTywLo3x4vEorkvKRSsIodZCyJW1C9ELeZ1wTNSlwUiuyevoN2g1+Zu5HwirLq5WEzrjgN2Zx2YPyS2OXUjNCxU7UaXIqOGPPFophckCHpnlZRPPmgzYSK7dkAQ+27p5hPn2asl+aPc9kP+YqMdwZD8bJ5/n1eVXp7WcbcTe60zDhdVMgkXV1+5Vm6zMiZCERzvXGUqCQWFGv0pEVHzs+sYehpMm29U/8i6+d4PHxMoYF4CdlDWVVCW/lWhc7NcL8TLn+MJA83t3Cy/OYQHLTCmzs4ZCRl5v349NQaqs7Nc8efwJ/J4W1Y6am9ySccQ1OVq6S4F+d6tomN+PJgEzZyBXm9ID7X/5udTBlk9KRjFJQB64CMHQdeE+CS/flu/Xusqw7L9BmiUvDbIIm0oCzfM6J75pJqb41kG9ruiWnVK0vAXrEDe70cm/EQ+KbwB0e4K+pJVehAHql96jlxzTQBDEgT7j01F+Loc8ACAERoU7yARQnvDfq/AQt20VlvmYYnSBLO4M8W8NuljRPbUZDvEgFky6wX+4qm+tLrBIgTCZSmVhePobaQzhoDLspDyA8TfaIWkfMZIEljsSaY+GGIMA+wYGlWQ8RfBtLYN/Zd3F82r5aXO7sAoBH3Iy/+RSJZJ2ZC5Zo7OY2wSDDEenTXP3aleuoDzksNokrqx3Qb1dU6Bn2cluLzsgHwWtBLZrIEQwp5RfPMFt9EkEH/RovnAwmBCMpsCPh9OTpNEpYG/ODqs3W2h/8kL+XgAoGL/QJG4CX86gqVqvMN04mp/ijuElw8h+UQH+sDAwn1tjOzt+5pJvat0XXmrbd5jZuv8woaBeweTcpzM7WdisWSJ5GE8Od6ePvbWsW2S4iDVUL+cFO/WOAsbiagBwpfFJtn9YbD5tvzzpIdJoQoq7h2Bx4054G/5WceHUTeRodcstCMhAg/HINSANq1u20/XuqMZW7HKiCG2RunQxuoqydtRBdSfgru5Ct8exKj/K+8FQnDLH7becCsLVrF6cE2kPi3Q/SIDaSQbXACzAvlMqKZD5n4HLkMKIeuAApCxDqf+6Q4aDknd/Bc/njvWN5YT3Ae6T8WBXYoicTRk7GnUs9OZZjZPLrtA9KEB1jlPFDiKwj/BftMrRJSLZLcWhowFhnFyETl4S5JXjlrj6uDV+Bf3ZnzMpkjiUlKWn2W57aiQu/7+2JhuYHHu2em19OBCqjckCRtR90eIWNlZZG93qYOAZkiqegKkudqys1UNe+KjKkHPkZ3ypGx782R2piTcly2NTToHxuOa4QRbAcl73p7dzJfvs+XfIXIaJhH52mUnRcf1Ujp4S48okKqO4PPkqCUPJfywOr4+RY7Q2m4Q6zcQLnN+XCezWPIatvXaHPzGc55p188MHLPG0Dgoyo2z/KwlSA5tBOrz5jwu9H3c2dTkJ0fH/+EUa+4Rug6y0sevwXCqgZ4n3OAmT6WVQHKKZkgJK12qb8im9/hikwI1HpR97jw5UZNCD3JeSZow9Ugt6UF9LdyOashdWhi87jhd3dktazlNyAOioxli5eAssLy/r76Q0ZdBK6SVX9NTNBYxS3PMWtBcyklhpv4BeeJ1h6f2aG27Zvp6Q9qDI99ndHI7rFPlqxCll9wPO77u2etINqy6O7+PGTY+Ol0aW4Mw59DjJHw0tP0IT/IdF3pmcGs+9xGk7YsTLGtD6hEGfrVu/aW2CHJmBdzXjPEwp+PKWaWcmwtcXxCcmO73p50pqB7YDbsOYfU9LRZ5ibAh8rM9JVvHKj8YXp//5rmY/iwTfH0C+Yty710CZdDovLvGXTDxlDjxtLNkPds1bAna4vAXc3kP7X8AtvnmF9vxbfGkfFcRbPC3FdkiBHaGNBr+NHiYPfY8Ra0uxT/Kc0OTxOm41r+swuop2QbPQXzCuRUpNfv441+8rnpxd/PdDjT6M4PAMdoxL+U8nUC2IUfwppw1tHSVrncXyX99so1uVGWL0IygtU6IfU77/mVh/4h+t3s+GPWTJ1Ya6uhKsRhPzwyjTSGqXBmRFjZ+ZRmmfyAKI3u+RDvTvMlhj3mB3gjCxr1UDunFa+fq6L4laU9OkKP54zvH7PmDDxqY/hXyADXtUi4TUk8kybmVF6L266wZI/4RFCMiFUWE+1DKxVW4rJxastUEBv4VFORe+dW0PxT7VcSnPnqyUfnQn7ltntbuIQGToRZOsF1+8bBkuIuZitINeiLyiF8YAvPbhJmWnyrl8dJeUBAGGOpMUc9xkmDUlyORQHflDA6HoyDsLnYG4WNBtrH85sQq3HEUrM+8mYlD4wqVBoAmk6bGcLJ9AyjIMwbAnaGSjmGKX18ZkpxTNXX0k1bwIhlIC3o/QfY84qjBYgS1RtuFUpQ+7q9zDPIPj37DcnmqJyaCei1/YIMX/SM5GyQNbh0M+KVcBhXQteHPuJj76dLfdO0j60JgBuqyIueW9nR6VmFi9uvciDoo7wkch+iny+SMTrx+N9fZV/Ew/OwZepA+rCuGYshG9f7hGl5qYSY2qAylY+juEbxqm9iHvbc4tSrwPPHXOMaEZPZs1KcTu+t7cM1sCkfoqgx3oUICfAScvad+UrISIZCAAeVo1CP2CZrNwKNM9jfN7axLEZ7JfjVqXDgLP53ViBLixENUhzu12ZkeJI/V9C2MO+alLP7lsKqZRvW94W4+xUqEDFMcs+IqnfIJHcNWdeDlq6GjqgOwR7z8ZMMdz3ub2c7q4C+UU5f8ig6V1Wg1VtUnH3uoGTjUn1oxdN/3SQjCwAYazfDKDx5QANCHoClMAWOCq4+r9tSFdcvRlwbZ52iQ4iSrU6wIWBd1yS5ixewSQfLmCIPEyFkcOw2wfL9OLOSXa01YRhLmMcYVG3an4syIdCh/tWDeOU6og8i/GPwyWVPKwLn3ONCWmimL2ErufWMa/DrgJExAMCQ31KjZ8sZ11KaLhugRBj8LSwEmUo00zumymEpt6GicdaNGLErEUEpXxAYqWVig8slagBn9ET8B5fxwmQqjr52z54rgm/oxtEN5cyS587oPI6e3qqYVSriTHFRlMFQhFBh/1wxOPE1TumCZItah0KBj0JiRNNeyFFoBd/6NY+aTzMLJBoBkg/AOE1suDCHh4LKY8yUz/uIXeJug7oac6TWW1Q/RIeUhUE21qKqAF06kPaBOSWkmDRR86WqoY3/IUkkQUi5GlFmAAjl73prTS823MakkCfaR209eRf1HuIm/lqC9tIsagzQEIFCqCYFzW73D4I1Oi1U0U0oqyGjcImzybierJvoHVuhcGL+hqbh4ZU6HiwY1axRN7+MMZrwko/L899gwDAkbvqGdxGWyAju3u6SEGrx1qGHHKxS7awNCLaXgGjsFhzSD668UWJ3yqv+Ovqe8caL7Ifrg944LgcpiUCyL3L5LXd24PTvqISTrdzoapm2vqOpmnHAebFO2lkEWfCqJid3Sx5/QvW0wXduG42buDW5+cGt6nQtNq+DlA0OgZPqrhNqSt1235/BMXe9TWNwysji0VfdimHCyTMzRPVgejwXysXrZZyLVc9L0BwC4vq3m0o7+z24mIK7CipOZfiRaR4YLZNGv0DdJAjh+/8g6vRTuYaZHbtXvs7bhwcxHPxjHaI4DFPn9fZncHiB/lJqD5pzkt00FFn28YCLzjj2EK1EVZzF4IvQUVN7iXuBU6VW3npGtcTk4AQTrTeRB80A2RubZEkoR3C4ad64tlvMEGvPbX2ialtAbH8bFYtbGZ4aTXRwWmnwgEjNSk8pG7Qf8yYpL3eKShYVCae/79LQXxResQeB6M/HWU3Lp32vPEtXYzr/YucqtcZXCZ3L1n9wOoGB/aNoWTt3CFoT8pxnR9FQ9LB1EwZwIA85O7+eKzIvC/rg3+Iw27mhQwOEo3Va84JOGzTEDtt6B9BE/LVcWnCp0trvcEUXILFRiYPC0stX06jlsTUQsl/ttH8qFXIpP3PDdiY7dOSrZyMkgQRKG3mB1WV4rXlqn6xEJw7vwh2WhW1+Bt61xfnt2BBHCl7rsAYk58iUbpxlxB1UxNZA6Nz0BpNUQ/JMZ9CSAg2ogpjvdWe2bOZSfUNlo20AbA5xsGdHo9va6alrSys/ApwWc1ePkp/9MR3lR0ong/S5W6mt4C+VP6N2Up/uGp64AIwY/JIVHwXjHBSv3E5Ea1TDImVwEc6SfX/M1P7J1K0CbjkXdxkYvIuXGyriFQtDzLYYbPy1oX5kEDS9F/x5VOPW8yN2KOWOLJ+DU0djY0l1hx+fWZAhjYMaGIQRrrdKdmvI/u+X3nvDhxSehgiqt0iOCxw6ylr3eUnSo/sLaXY7tGHQVv+EDd5YTtCnL21srvJBoDmwLV1Me/Oi2rbD1FpKK3USnfGsakXqrubmGmPrRXQ9CR0CQD3x8OzDVKVwkvBBl9HPCzLcQ8SmnHWV+eom5ZgSLpeA8yxSIp0859RjSFtJ4dpMKyIC3yT55HFms5RzfRklp36zcrzYtiUxZDD6J8hUWiF3margDH0/6iTWB0uM0bSHsTP6yLLCC8mJASQzpSqhGfPu5rGqpuVyl+amkiDN/oZCSRydGG+kF84i4Rqk4D4WPa05TO1n5ikNEdn8JxGm5kQHNokRLxy1IPLPB/q/sRzLOvZFOy1BQ9zmQ33gIpw4pNsOGZVx61tKf1OQ//4PIXKAqDGYxdCP8XDaPgKtXKy3xYhN9/YG4yE8obt5WyvdZB8TP0tzVzKR2SFQXiI/ykWYmLPdKUbUBwcr8L3HJZvu4IBaooCbTjSwJF+P7/kcsyELSGWRIktrg5Gjhovptblqd0E6kmMdzkix68Km92v2xQEeFqDFB6g9a7mE9a4Ti9VoTnGoGx1aqhvV6XJinRR7jRm0lVfESXNqrbam4fibv4d19FWIS7u6mlyI/Juy2SEJgvVay9jE6/kflJ3gH0hKTbPxac7aLA0RqePUq7BABdfV78uvoBi3G2ahVIjZPCdSlsn7PpR9lrkeVkMSND4l5apPpzee23mP6aNGTCgqBdFSERCyZ361cw/6C/figFpFSKC5wSwhu5dJyNh/a39Z7UdlkCbnI6EY8c2/WCyn2XHfqgJwiFAGaURQIsgyl4CoeTO3F9bF0Pt8+Tul04qTgXDbqlg4CEkwtZH0BrzQFYpb2vR4jevf0t2f4NEgGwY+5ptZIqOlUrPXuA+OT4UqCMu/vM2l7RZz9m+QzXqHUJZY0rK9ypk/vRISZsueVYnw6gfAxTQbG5ifO8rzkAav1qRpVq0G5PzIt/InzAk5GefSqSq2cGpNlvqkt3kiaz9KoUpD0NmyYzIcQiI/ie6/zXOzvOq5Lz8cZrFtAs7TQAK+AxPK8vfbg/zPSHugqwBGhue8S0/Ojcr2FuajClFEVYNPlvtwWr46T6sgr01bXuOiFmHhOvWvGE619mprqFmHk5eZMUybPSsIXpT41YMEuMKbyF2wjbkCKQcaLIeeIR2aeOUCogGifdsniU/M1ARQ8dejjxWF04WiyfcUi8ihJulETCWKm8wmCP1lCl2qGE9FvyWcmrwvhovzvJ5aGYP5TyM9Iu1XojFTc3nc0GgIexOANC40q4WzrrDIFYvpoG5ylpQnq1e7+LuGMs5mkkz1J2zneQqZ5q9F2YNj1i0kwkIzbGRHidgWgcS5nXwb0YrU8gOQkRxJBg8kGOz3FeqHG1TbP14oCigiYujcInleKCmbyIV3gJzBQjPkDq8EYQIFGuN2UQHWN8t6f0toc6CZD0x7ynkXI0RQrilg0xGFVxzRFbvs7zkvjBTPGWRV3jsA+QDOUp4Vrg/7+OUk3P9XSo4amc3yKrZf77ySXAkLats3UIFailJAgAO5gQBefSwM51C2yG8h+XC7rhBhh9cvKuX6yINRRB5n4LzgzrfCS3QDmS00CzeP/OCi/PYPljilJ78NoMp0m33yyEMS8X2Vdc1bgr6u7S/heY69uvWpKaeb7lL5/Vifrt4dJ8wVCRC5WHymx8oIp3GwT/0tiFlZPvVcWOyC/Tyj4HWkW53XkmdNKK7457QAbFCGPq4mv/DSDIQMfZ3C5phwDAwogVtsPJQw5bW93d9XfiJS5qjTU2GHACJktKKvmhuq+SztENLISj83516bFuv9nK8jXZtCPMlGcq3hJmIYNyoY7rHZNm03TraAJNz5Tc8GA/N9fxeEyHrPLv9JYynR14dBQe0b3WM3PJP/bVmfXE1jO2n6e7eFUtzMqOsNLFTEclWZtghfgeWCuxIVALF0TEKGzzpMPsmI9YIlOqnGkOxl5+QA3eaCiY2KhTKu9hb6leN760dAli9g76mrInJpqB8hU4oixMrbViqY59c9UaaWvfa3ucN9oTbH0t8QoYaiW+24madGA5MhRmMcCbrmwG8NklCEVxdPTC5kqW6j63XqahQG77z8G1+no/qoZO4U68Cspjqvq7uvHGVgcydMdNnwYTPEvWTRT5nrQbsQ0D+ZyIxSv9crIil/2IMu9ozv44sfcz2vW2ZPHCPPtddRp9O3Hh/rwiRLKYCcg+m2GcLwqrXuXQ1cbkaZCmEEFKpEGC5ztSmgEIXhngdNaCz5JcFhsyMTuEKmL2W2GIFyT/i6c3B/hee93Nyh3cZYL7/ErKSjKjq41m0SOFfm62Ih0s4mt12VV1UTvvVyjbrP+whgNN2KD/DUXrs7c8jOD+uZYp0mQNw1R68yxanNdIeid0It/IUTZ8Oocvw/gsfaT+4eUcJICJTenAyuCpoMj29TlPdzpn291L54GZCH03IAYe79SX58keSofC/7Ao7CPCsYpyuhxTcfJnw/NPBsh6PDQWYejYPuHb5E0NQKrdyFqoZJXH+hDU0/qioDYd5ffuxVwYfNu01noo5NhJHGHnwdTocbhyjUX6AwzP+r9KdhzH85WTcsr4PoYOhwEVYru+850wph3M7M3BpB6xPdUtm2Ck0cYG5ioUaWeJZLOmn0MCNAO+YoOfzarM2U2CqUTPWEB8L3OrbOtdUfcSXZ5NS3fK2ckYYCfDediKveaxorMZFxkyRYZ2c1SOjuSFeZtFyc2Y2qRYRFW0bVxAtM/nadcvTQ/b3BsLUgs+U4C1hW+tDM7Zeq4vO/j4SosWzjjFXr4wFZg+WUsKe25w7fptsPjWNxlBkPk/n0tQrLmLVAmVlxXgpY0azvOLRovQwS5Z1zV+81EvEZcvpWwZOXgh1Lve6hNmpeRJpqbj9EjKTQq3DsCBvVLZyeYvq7GgjxfoH6787OMr7GkuyH+Lcow7+v+9uT1Zohh2GfnfYW3HyxMMK9eVPo+RIJMZGkuulH8ahg066bmbwETbdVH2sl1HYDA47ht9qDemvwRVXTw73+6aXncG3gNlavQTKpIQRrnEBajOZ0OXVnOlUPl2O4Nzb6btXDBtNEazWGvJRZr+4izoYxz20mr2kHGYW8wSkS+/xPf4zwzhfeLU5i3SXu/qKeMuzvt3UMLKbpSnqJWKobqqvAtkhHMQwmbpTBgMHpB9osqr3nbF8kc5Oh/Ef2Bgtpf+pVSDXqiFHzqfIyHmfaYlSwM2qMIzh3pYwNJydjGWyWQhuxjELUNpnvP+xXQEp/RLIfDPHKPFLhSAZYRF+1t8AOEzoA/UNxBX/F8u9ui1a162ZRyIIJ4tFR/4uys59rXw4muP3WNHVX2GsFltIYi+zUTR1tKxiLZZFjG5K32/FPPsfb4Yz+3PE0K2aFvR5Romzb0ypME71E1Tk5Ow7nNPga59EKto4N4w7MiqcMhw00G1ktttC4QSRiuMHqPRGjWRIU7JbE0W8DM5iw+iad7N97ZnUMgU4AUwO07T8JfpjJp/Hchxl8Oa1YK6RJzJ2nSj9wGezbOvQs8wRqq4CAleRUNxCwBKagH4WXAKWwfBGnaNtxTb1/MaOBRr0sU7dtrWU7xKFw1U4oqVMsGnyMlw+CRL+EfUoMtzo5+yFU4JREmpvhe1KXYGg76Vofjn8zA9kGxZMW7Orbg3b/jeR3sKK8RUR/VMiAfEHup6d4z3vX82jr7bBtqAPTVLuv73a3DKHSleIIPemv7zK2i2jmIu9FffgQ21j193vCn1LceZKoYM20btTJGWLKQsOvsvxXW2+FV/o6mKiv92IM4jqGYiW7wnQ52HpNcshMNBQU4vfwgz2oSEGIYooTMyWhFUFuqyrqlZPSk7vymiY7sUQw/P8YcokVX/CuFuKzGhFv9C5L9O8UfubFLLyNDliE6CzsNCe7VWOoYrvojkEyCk58gLaMVgHttOz76lsIIFvRQp+GA0+IH6j+KuoD8Lh0dCpLOCp/Rr7BW3rzX9G4eR0DeOa+nVEVznOCDzdQkpyTjooTsA7SBHHac41o4746AY6UoMPXK6FD8ya+2nQ9yRL5sDd1w3upUwAF8DfEVquOfuqA3UjYrpupPXNX4b4me8aIyGKMlZyl34biU7IQjvgsp0xM4xA2/zc5lDM1UxF1y2kwouMIXHrIAXYGCbFm64vOKVIPnMnjzUs8FW3Bud+8CNES1vw16F7B+FILVZIBjy5F6umdR77+rEvfYYX7FBItz8Lq6hBXmHsZG3DazAprqc9wF4lZJ6RCbxPpi1hU25p0k053FkHuef+2u12kNP0fSZwrXTLZ+Sm3syz58s3XspjOgJ5BvZNYHEMEkUgQSZ0g2nThB4UKP6yco1oINQhNjF0jCGNe47Q16sG3cpu01HdC7ZD+vxEzhLtty///qZO+5Jr+vxsTty/tJo/kIqwWI/yIQu6yiShORpKt8/Nxs6oc4F8pvd5EOTL5U06ALXxiQSB6AOLzHu2HTUCvL1/KmGFr2ehwHWHvPyI5WRDzvsS2id4V6LI+q5aF3MBKMBrZfpKlS6vi0vXJQFHU7gjMT0P733D4vAMiPGs1XIVKYj/aMJ/Mlu7snTDol+e2qyCOmPVVEaaqCqjLqoBuQMsO/eVBcDPy0/1tzumml88gkGYyoifPWdLZjN7WVwsKrJUYHv7gkSYU8C1Qw0eVpTzVPqjXRzlN8LyTqleBi2q7l4+XjJuqSBiLxQ73DxSbLb1Rofvsxm/JNpuRv4e2e66kQ+Hj3IkFTVfPG7gt2krHX30rplbWLkq/3eMpM3TW7jYi8fXxtuppWUA2X3rZMEDb0vaJ4qbvx6MabDcaLBLxCqLop/8QL25aKztmojhMIHB77QspfavENfrb7+l0gwTDtJ63jzWh1xhRB3XvyL5/Qc4I8n0peGcrBEnmsms3p62dTNT+Pg/APO1QpArBtgTGqUskJas8jepSAxJuOwkscwDE7x+2KPUlZHQHJh3TmZRWbRjVuEfP4Zc5EbQky+Wx4spX2lq8FWjLzdK5jNTrZGntSuIc9ZvjIWHrF0pCyYS6FQOZwXVs3eAUj/qUtJrrLIku9JPdhIEb9F7QV3k4Hw2fAIELXJuhXF7V7cMc0v4wmakWlx1ixTlwr+vpoE53GMK2TQ4XwCm6kvOm0f2S72UHtZ8sxwBS4PyiMdzTQQrBh6zRy+Euw2xBrjG+j55KXwZm3C9v5ydFkHWejiacZvrzQIQJCSWHpEbBfKSLBorctviOvF7JWPvizS2cFiE8gQkIVGS9L35nm50mzGb+gGd7KxkiyH5vGTSgr5Y3TbWbEYApRnhmVszujp3EYtSRsNpt+4Z+C1du5IvB9ur+rw04mjKEFupQTy+X6bMVMWKgVxxB7u0qdmjXcznEa+wRGgwR3rDlk8/fduJS2DYaw68ubJ7eTLOXhuYu7rvCZdqUibN8d3Pl4qxMt1PlctjkNDlBfx5LfI3e8kw9Le2u1jO6S1NMYLLZy8WsbA8fLh1OOcDAwyoEQwQ3ZvKErR4Iq4Pva6ToZtB66vP7NKSdrzUQKEyStdc6ZrL7UgHMMedNMQ9HiXhoRlYHgpNe03yyMYaVNhJm6NcC92YfOTYIJ/0kuf7VsGWV8j/oqxc+fvhLrp41lGclOIJBLZ4sIp7d6f2Igv3LruW0SW2Sa/vn386EV7bkdY/+14euUS/7O3SeZMB/2uC0zFCqY1X5V0HQL95sIi3Nli1fHPX2rPFd6E6TWLYOpYV2aTEOEXwPmu6DkzFmeKTom3H//XtMmguI9XFx6ao+ES8ur1I2sWQ9qMKgSLB+u7qSSuK5nhbHA80R5ftY2H8APtApmjxl4TK76lp5TyFYFNNvw2PjOCZ+mCm66P27I4ds9eLI+P3Go58fSgFzIInBBlmoZNLIW/f1aH+vfuLrMnTs7RRJQKOTMK6H7fNBODsXZVXeEQhW/rfux1adMNrPpxdxRkdc9DJlMIpDcIO3BrDjW/FO/USIFGQgdotvW2gXmY7JR+/5hoXcdy1PNdtbphmRWRVi1fjCTcMOTiPJsLwIRwl5/GwPGAoxeWjTpmrhw9p3zN6CINIA7mJPHx4Wj6ZJUuxB2v+vFE6SRV2f9uWxrVq9pcozIWOd6q2vK6kSXrbCTlkRVgpdqowFTxxVG1sWYJl1oH21MHnY0hocve9ImgaYwp40M+YYh0xJedMmzmjXWUee3vIhLERM4kRLzCR7Sd5lpK8tzLmp2tuLjJtWvD+JEXdjnQoUMeBkqD5EJQEIoM0D8P2LfxF/rkx8lMCNZthndsAyRToDJ1ZVpFT8QRnjfIjeWvCYOsbrMj7zLePLORuKorW4VvPqdPNS4tpBKoyezrItywpV5FyxMvSm43asaHpHiETiMxYJL05t8+vXzdoAldjW7Y/689W2TwF4vLmitOTc0HwOR0kk/swzYZFbN0d7hjLOZSfclR9gtgJhYL3kFpQtmFcKjYz4Ggk0NWdt5Yil3SjE79aO8YGQ3Kas7M+dEaNkJEgfqPJ77FrJz7TmIuwxIG9OtYK4yI9agJAWCebU21bT2HjVcoTiVtv8Tmy7CiQGqQjAYm0ctef1QYMQw4CCA8nc4cGzy4j31ozRQQu1tJe5t/1m6FzoLN1w9vwlq4eF4RaSHIuoXHExND+gZM9eXOhkPBIjJ6hvyzC4KUoICIwQVCNlnOsiEdQ1TkXBTjYNkSLsd+u971d5+a7JKBeT+b5skR98eEsVZQagNb3TV7DiKeH5LhnWSotO3IH9Xnvq9tq0ht7bRz3q4vnRRzgpSFAYhInfDI/KdCmEXSdmXUucMxn3EvHMmRwOWV7vYbh3vWIvBIpXvhyb8pUUl5VEZ2XV6XDmi0xVUCHuRizYrl46EVC60FDRvSXuijg/ZrfdI28x86gN9wSqZ8nrxCfrHkEUVl1UirWhU0+jXqHJOvaAeQggwibfzQ6CO4c64LpkaD1vACNb5lcF8XLOH0xAZneoEX6hqgTRUAWaB24VgPcrO53N9tVNBaZwMGcjxWdGiDuASXBfRBaIYTd67VmM6xW6H2DBmvCwd5koI8+vdVn07MDMv4hMUBEriwBRz9LK5LjbwvL1XM7tzkO7DELgm2ok9GqnfzcGfaHehV6Y0PHqdZi0b+7+VLRYZl9dCtkYRiGHL6qDynK1QVtQZsfpuBhF02Z7PbSEKajkvWnZzYhYFFA2VHuhO1Jer8fE0GYvrlPrFoAhUH9XRs+m9U32aE63HkpLqptygczL3yMdpYd2V5XRcMI706XKvlzxfR7Bfe2imZv9e9y50qiIZ7jVqIKyhbhajh2iKkdjDqYT+wMikWCoym4IVwe3dNXzC95tlooss/RTaOnnz+8JkkloZzaUoOa3JMCD/SgglUhptkJFWHsE7K2kgY/s3LFxlPP1NDdP24GxGY9fMj/1trGBbpz8bCpwAt4D/W0HtTcfFxd3+lygqlybthATcNsZ1wcVRQViSC7PoRkMVvGuJ4zWnF7RuptMhkmZW4TxVtN6Xu537kGcBGjj2r0KaxWhxXFjGfWE6FCaC+Nu5GrE1sjJObcFCRAxVRsthnM0GytqY4oVwfTlkrqQtCtGlFAToQdX3oX+dR/0D4VF4J2aLylSDJbwtM/3E7bpK7TOw==
Variant 0
DifficultyLevel
655
Question
A garden centre sells a potting mix made up of soil, manure and sand.
Soil makes up 43 of the mix and manure makes up 61 of the mix.
What fraction of the potting mix is sand?
Worked Solution
|
|
Sand |
= 1−(43+61) |
|
= 1−(129+122) |
|
= 121 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A garden centre sells a potting mix made up of soil, manure and sand.
Soil makes up $\dfrac{3}{4}$ of the mix and manure makes up $\dfrac{1}{6}$ of the mix.
What fraction of the potting mix is sand?
|
workedSolution |
| | |
| ---------------------: | -------------------------------------------- |
| Sand | \= $1 - \bigg( \dfrac{3}{4} + \dfrac{1}{6} \bigg)$ |
| | \= $1 - \bigg( \dfrac{9}{12} + \dfrac{2}{12} \bigg)$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/8SY8o9MJ32eLsTASrvD2GZnZKJ/Kp3AR8WEKkeD50H8yHPvP2Flo7kAfU8KQ0CPuTuY6p/LmIGZwqfrCuTKEOJ2fHBCp67Je/6qXQCQCr6g8Bcpk4sel5oB0YTDLhei4+8xYP4Z0zNdx41H3JLyZC1bQ7sLMyPT2tjIFdoaONBYHoFXLwrWQsN9hsPZSqFKFrhcSWqLtKQdTGQJ7lmJA4kLaUcYxkji2kg2vB203kxy+w34n1CXIfI8TdbTikw8ODlboknACxXGsXhEZMjpFaQasAKZVJxap3o7pb5WCWzpkPSlQwsgyrZhfRGjkmPaD3KONBQyku1+mcmauYzcPexo9yyAKRvZ+7FkymS4PiK3yXMg+AP3ehxvjWvA48Zb/jfsEyCBXxKTnpjmzP3siEvT0yfv8bwFCUAfj7vKt0E39dd8iR9cIfNucPKIK8OEzc5rrtBd/3zaIIgu0PQGQjsByIacqTnNQh1aEhbCZ+itaghmPPA5EccjxwMXkzbdh/oDlcozzJrq8muUyvNJHJk3U8ctXqY0c/bzZbmJnqRD0tFNZkPO/EPxNmnE0eZoDztrcJRtY8qhY4sOulSQ23YcJjebmhFqCDRBgVgJ8xKKuieKiG8cfNZNXaMwSTw5H0i0PpylE74BJlWlsTU+fLLwQ15eyw5CM5Sv2vDE3SczsQ4ubSY3DS5/QQzbtjaSsy6yunowPOHtklVFEAIU/Ga3pDqxo0rGp6h9GmSTSxRaXw/SPL5vwxoYKbu52Y6IH8eiPpqlYQh0vSur0FlJLc1wAb7o7bDfT4CxlHFlhdNnoWhB7kz0bzU7e+rmH8CysAJkVzjaQhKMQPocLJYtqq782tpXE3RWeB4jTFeW/8BCUBsyOcQ8lqUJWa3DAFiJzBz9XTx9yvBgGPN0JilEy8BGpKfrJ9OTlc4YHwoGTYN0jstrvb9Yrl97RLU91g8JUWou8CZIfEHWdx8EUjivmbFtDGndbWBpMXaRSDqalix+sfHxQ45HczxwqpgkogdVTUHzS5RcsRl81uXzLirqlCcGdQ25G1nrVYWmwKq6wJACzVinuUVVXOtrCvPCpfL5cc9KfRdQ5wGLCnJU9tILyE+zRHQFo/v41uEUYEN2NvGTB7ULtnPfQG2s1VoKdOnFt8FixkAF1gbetJFAgfWbnvuO1jfh9vY6yMQUatL3cecVPW2+vCzYGbrOoPO5C8OiMPqFAAgvKvaUyz3hyzufXcZ97V/h9/NIPOspq1/kH9yWEYUlxdDNgEB9bAnWsggCOl38dGRU/tiKrJOpapnQHDhBXxaQfygZRchIcan1VPrKbcjb955Cp9MNLtoYUrwzmmwQaY0ZzEpgM7TNf+CdlPVT158HqYzdVPX5QG2EhyVBVcjU8gmnzH4rj8MFpWXczfsjP3UKUEROI/Gn0orIDDv6iCxjlpdn0Fk3Qgjgsz3ugir0A5fE0yCacAmmcyWazyWLawmrAvossoYEyCw+XeeF1bLcRPAyBFiXudGISmk+cgS/vM32hK4LTjUI4agH+wtXGVTxzUBa+Q5JpINcUr7an3v/b4SqGNwzuFFNv2yzfGeOajVg2rsleub5ZyYPgrNf5S1s7bLD/6TDSq5Ozc2xrpGlT4n7qlQZjj2lCo9h7gCVYxyed+viMR/onESlf1szVrHn94AsipCPXXOfwx4J8Zj3mzwp4rp7BS+6MUMm61QRd3jY90gaXE87odTW7bFwsPcdM1GWWu8mBivRZYsUi3C7TDgPUcmF7/9gUxgEkDrrZoJL1TnU90jEIGSHFSfonTPijtWrXnfXTEdxAwd5BtKTYqdaOaJU47G3sbszGhFlvEHCUB2NqqKXp+AEWlw4jAiUW/iB3cgZiqqMfveMYV2wsfSAOy/bKa/gwqX5bzP/te/ln6ZcM1hZYySPCl48Vmc6p4y6Mb0ff0N9NkvFc4UsttS96zxRCtdHwT/nv/SHi7wuDgjce47w9OVp54QXKv5RRGsVDxZBP3PGVMW2isaalryCWw9Y0M8GA1ac+yq9AkIbNEGwNlxtwFc8MnZddTtlpuPvTagQ7we0Z1d5YAvpwd6Rd6EfYUwgrnALvMkWcVPpAikSgrEzsTlvtYUeoYXD6FpBnYF+P6qSlRtF7zmm3thUEaAhvsyZ1r0giL+MQgbHDEkF7+F6HQTY0YUHEGxAxh3rajdhb9TWbjCT9x8smg8E6te4LytBv70EDVjT7l/paqs5KOC2AxDQL73lHV/NsaRjGDtu2cWy54Wb8gg5au89+oXOItgqWTKJP7YDEMx400EPr5QMrE3wtSLzrfOS8TOxLj84DmVat23+oA/GXkj4ZkonVuJrF+qqu7+UJbxEDjhPQXlFj3pzz9eUjh3HUqLb76Y58/JlrEdbKSKZXuv4r5PRcXFG6NtxlTG4XzP0ps+uBC+n4r39BdgzYvel+aSyVO5JKGXq5KjDugZG+ZWlAqRaG3NxBXkMNU9Kurj6gAwmvFESIZH01CIwRmJmOAyjwwgk/vWgCW+3zjG+H79Kr+buPFSM2VNpS48ZJeCN5IeLzkCB7xj6SknDEPRpBq/YcqyyU9/Sg4jknnopCLh5HcvodtRiiphGyUMZ+XLB6aJm2jJfRTYfe2+QtSbk2QCiU3HYYOSRSZKSE0oWrDoFBK9H786OE0T568wngajnDKvFN5iUIDiAa+TqxIkOB+CUQkE+5VxSGylr0GyaDWTbr4J8gcUFzxpI+RPBSlGk68SshBYtu1YUf7NjGo7i4SofGBQOY+3cbwxs6G99RDe+KSutKJ7Mts2Z8RLlblULOmC6wAkrKTaHClAHnxYsKboXjnunp498VGVVcMX2hdDij0qrBToYV/n+12DV5NCSznoMJub0XN2j7QwTHEt4VxFXWbB3ORnv2UegjqnqqSYjAzmJg6niK+keemf1c2MTyfGf4xMh0PRUJMoiXpQXv9pMy9gvLx6pvbdsh2yd2K87CEr16fADnsloWdflOM/mOo0IiEpgQUaWFXBn65vwet6KHIT0hRtyCbvXAm57QlAVVOInHnTHHWeAckL9VAOlIIRUsyTm21W2Gc+POJD+8mOWBU35SdwmvSB+BAr5yX2R5/4Vj1GiUTNN10FKHUkujvSJliXcOLYJ9SwH/PLTgZgkvV27qHS4X8/BjhkBG39HSsNZP0DM1uqo9CsxWDGDTs5omletq1X4sndQ7OjCHUIb4U41veSCeeO6CeJRgrHdck5rSuQ9weKHdzcsYjogWVUb7T9Kh+OkTSsSY3YX+cMhGeLwFqLxXivts2O+EEuyvKkKb+w3ugzY5a4ybcInoPtd6dfWD6O+vHr0NU/VdhE8LJOT5djxKZE44UaoRPaxpKsWtQCHT9yNSp1lnaPj4eE+7sUYUAmegN438JynW+xuqpZ0FWV7naqU53DyDD6p15vuQK3/A6BlwEAuSsOUOgqv9J35v5CT0DoWZL68VC1wSOE/03mMWrDco30WgzorFf+V/G7w067DyHvUdKjFuItn2jDvbRG5CnWAxXis6THFQpX7Z6d3gY1zJXdSR7gnMjHH2Xuc4+8s3pI9lYBR6H2/esC0ezKupVk1z+er2/p2ZWv0NKo+0vIgX4IQvuRfxLlYLNDO3O5hDgxJkoHGJKWwuCTqXLtlIsCidW2jBKcxuKiYEuhPbsBTB0uC9UU5jbpCk/YV58iB4QgP5uPduqe6AobgIZdoOFRLt+tL3+GetNLtJkywGL0tnUPNURaJF0oHetK4hsZgq+5XqV+FmMcMV1ID1fa6BFTNKej63DzABNnwTvvpPHVQYJTo+ZSM665dD6xF3X705nobWImSaL6ok3RsLAwzDQmtUeOiQOTKuHC+LdoUMrT+dbbslmJpTPIhGxjlovh9UZemZ7v06hL2Gopody1MpnGP6SLK4xwL+CAdc7EmAWsHcNSu9xUNN42RGLoXqZEuc++R4eh4linu0xGR+jSXyrPx/aBAbOX13xuMEqu8kFvrQkeFMIyixjuK1DmLHBchcOhu0q2+hndy3/bJrgK6MA7zbzq8LrYVTxEMIoLHCW8uNKy3XLBA2ixCvPlYQwXgpCzIy+CXu3aYu/TkzUDPex7CONuwmpoEkzxeAGDNk8sKDDQYAio1zQlp1zBSCGpQdPhVBFSRWPiALT4Diwm5Cg4Rq3+SA8dSM6/kWZ5iIP2wThXoFY1XJ89JndBedf+G/cicKhj2rkegOSINcOvtA4HQtQg+Jw9tZCucLB+X+s843UpMMQ3t8d84Ws+HfRjpUE9OBGbwMcn8Yk8u5bWIf7lIPFvNHrkcn0MPQDLgSuHzZhavVYlBheLprg34B7OeipuVIvVzywyJK1qGCqbW6LcEUSJi5LWX5aYrIzVQGuSYON0hzGxY5cKgUcPYqqO9J8j3vwOyoJEoKVZcDNP3NqcPUjnv2KXJAKczlEZbIMkxZv2aSAIsIxsH34vLJmhURsXh1ENAo1bVQo8zCSpHf6JDdxRopjQbgHmuQwmWIzKFUUi3PxCeY+EGwxMhyxtkbjrxKmbZ61D4QfYOJfaNF0jhOPdywI4pU8Cl0FGyQ6G6S6P2DD0hgYjw0JhRORf/nxChz/xRkKGk9bU5Dh+nwNDc2y7XQZE99/5/0MdOTOECH0ybkrXiFrmEU5ejqSd+JoyLVyyVmDXBBhU2nYwAs3dw+6wRxPlsQPmhhVB9naLvb00fAJqB5IiyMvV5jx3FZZ/pCLOAeUTagx8mbQHe3YmeBCdzuqwWzlxFrygMBvLl6y4mnA5roWvn3fSdV+AUQkIXKYIhJaIwp6u6fONIWfwH+rA2KlBssYpceMvLWwUk/TJqHfcZ7YdNuCPw+PSrhknO6NzJxMqqjoQVCfJx9xUnfEIYJ0uvXmSzryGL2jjWj2lg/aXr7VdJQAwr6reFafjNoh15GtaAG8+GTd70DyH3mmDHD1PG/gtIHPDzOtOH85ZHVCaSLBJSqjpd6gxhSZYQ19ZqSktS4UZILlqgBC/+7M/ktYnydwexfgd73Lfr1/0npfgtgDJ6eeoKgeEXpTuBdj5F+IHY8tGe0vqTgRmqaolxt4gW7TdNtCD2Ljv5McaI/tY6GRKZ4/PZFyWiapqAXDMGFBqLo/3e7FnGiBbfRKn0VsklqEHBFhkY67OnteObjS5FhikMWveZM9Jofrku4C5QPgU1HBxe8FkJmD/kLM40nHopbm/4L4KPxHbSaf+S1nMgnndmp4WW8Qx7nOeTffX4VTr5DZTQ1QBFMPKkLGKNI7ovB6Za/OW69XZF7ooNBMVjCjHGzu4FLDT/m5TBnch7DAoX+Tocm/zUD2hpKHSrhw+yXOTjabWNk+Liq6D7kiwak40Q60OIG1UqHVNiByt9uvZVmN8vmC2ktjfAinuo1Qb2qYiZysW/N3MXN/kN2jM5rsoeSpPRgNPWOcTlLCdeWcoOLGXO47xe8SIgSac/Qcg1iCaIjAv8qZ1o5vCSN2PUmfKx8QeIfgV9V9+sLyBIJWw1iF94cp88RtMTm8aB0XCGYiygmnudtvjbgqGVdVV1MBAur4V9gYYyofk1BAQe1axk046gcLk5VcDIUnamPV3GtxwZgzfA+KKKxfX4vsQ77jUyu67sAYAb55cOowu4O3Qsk+tzD+bJyYtbBRrvShovQYCn1vWHAxDly07WpSKiZGFJnK5LwXfaAKOqKDb1a2imrbddZ/u3uUiY1vYKhcyUvIVgVZvHRl6bef92P/gwpM8u396QdPuuJWLQ7fmKmKCtiaseSdRv2rNUQ4Qps7/iRuo9uGAlU+paBvQA6Uw3q9XB4v2HDhR+3M3z4Iw0Km1sp2x5w5EdCF7bNL4dFL70xb5d3ejKEN4TPxFDMuJkn+Avqvz7MRq2+NvAwX3kbs7Wly9R7TIoKLJXiXiOJqnmNP2QvxnW0s4KxnE+iCTDw2J46K6rklv8oGy9leU29BIKdP3m2OHQN3mN6suX68uL8NgIaielKyVmO4MWGsiBqKQyk5FTBQmevfLYGQfF17EOYyFNm1XcTgYjXENVCy/ukP6f71tarm1bBFtKJzNT+MEQm0NFEjxtNP9++vrA2ejlUg9Z9CUcWMRcUW6jEshxhSBzjuttaYaUEoZz92aMdQxpbBQugdQZb4lzpx0Mujv1ZAL6pb5iRlv8hs5Nvome8kwqNHgJfG4pjOO5MbIBDljLfohyt8qfnQ0IF/l/ZHf0NYQYEvXEeNKT1N7LtTprVEbaZ8fL00USN/oYsViygpJ7xfU/T/BVenC+bRnfGNGE59Pv1liDjqzw1RInHquVT17Jh1FfYTGpZ7B6oW+6dJu+3Xv3J2vNRtXoBGx1IfHLCYC8OSEilP4Tx9KdEYYDHboor/5jc/Y5L/6G1yGUiXZcN+gpbSAwV0HXUyL214sYn/cJSAFQCT8lLVYhgMHspHT/NUgw3S+bRdZeoAWIsLEMUWtP0tSKPG2XriwgtCj9n00o4wbE8GQt+bIEWJVkjty429mPdF67qNDoQHL/VqQ7IfK/lKAsLPo1RVst7pXsVBmf17l+JYG1zUXH7wonAQIprww2QsYb9KxQ82PhRhCJ+kxytj/rDV3QP8/3qym6Hb7gQWJAuw0/YGsQr1qkDO4rkSV8g1kiZn6Wob3AHF/cSHxkh7kOpfM3VVhAH56+TPXLQRHPKk7ryfjTKxJqA3CLW178PPqi/PMg+YeSe6nHxQvrYak1amwQBdKDBGnA7zU4CSPoeW/KE/5yq6D9xn5UM4ic/P8mzgQrrCwD5aUjDar9PWH73OYMen3iBKT5/qj/iw6VTw4CcZz1Uaf0UD/L+82Z2HXnjIB+dAuGNdsw7LKPrXUNvcH5LYKrZCXvkXQKe4EUSvEdMBtEX/1sBL2s86ysvfUcKJCUwzsn1P/XnAxgeiO2/obotGWJ6ESSTNRiBkGo5R2qPMLFu+6K1LbmSO6SsBKgp+c3ofXWULs5eAG6yjYdKtodLLYJPVfHmQB9cPI/805ywMRIQFc36H6cYSpJFrDtu2rgevrhI7im5Ta09twklTWomAbJiGKuPh7p6eqal8PPPXXZWs8z7rb2Aua1gHH2o6Njzve9/Ol6QY2X/YbwJu5ALxRidHAWcYpjVEUOUGFCm6YlZBGQEwlo0St1dvMouTYXztgwohSafMbcm4AgaKjbzTfgFBnXVnOTGIgxGIyX295o6IBzMhQsoyvNQWuYtxvWjsUdKvDQB4JStbkaVlSvLdSKFZRD9G86fpziryfTsFlsp9gpr4wQsGZN+T/6gkSj2/cZDGhXrEBPkJCNuiwVlnOKmGXA7Itcj3RB+KdRYM4JUwhd8zk/toj20VLQWMiyAo2cYNjyYcfREwsxpWdvzPXQZ6lJXTsv1kJ5kVNbTO3EBberGX7yJ9M2lT962fwWKvJ1FcnUNdDGNKAmk5gSHaC5YNCGvJ3Lx8vzIsup/7Vs0n0d6yFvYGZhzMsGmMKcx5W49WTzfDx4iI3do6JbvHK4lSPjjKYj5QxKRBB7g+9sDTroUdXyg4iaTT3Ry8EXcOMNKAevg+sYb1y4xSJF5H/tnwGQFK+0PG8fkz2KVC8k82w3TaT/GiEhLSVxchZeYf0f3gUrKf72tHem5YEbVdA1FFFgGt1f9m7pPCAqHT2OHnM374NLfv4OX6899QWUa8iutLXpVAmbmk/Q0VfkWKNTy0nOgFznkvAu/6ex5gub2rCoboxHQQLqulGlRcY9DlSBLqMbMihrg8TEjHaHjKuFJ6s/byotUkSuARoGXO/9DBlMbeO4tzIbA07E5z4CwihBOS/LUF1vu4ss14He87vpWbx8Nx9fpzIwIitb76/SeeUJU8Y0a3fbuKs20hGElC5YtM9xQ2NnRm9lWcYNrtX+1nVcEjR6NZ5EnW2aCoHJxo5IYChY2EyQQZoL/iPvobZG8vZHPT5k+BKV7Gq2PQNCklUyt0H6gFuKSe8fOHUqAdUSb7ICdjrRu22Vse9d82fOSj9o3k8ld0n9OCiyveqDNSB5zSBic2ar2O6mwFpJ+snG5tEmYW7DZhq9VQUHquqZ0jt/So6EvswTmKdxGYsNPD9MhYl+99OCTnazeVBfUcymB26dh/r143CTBSGx4vF7edMBNhAOVVbNHL9/pP5CUn0FgyCWibMsvETRBeTQdWn7F9tKbXVpW/38pOU0HhKl5FWKIOk5qj9yVKtylBVXarKXYXRiXJ15zTb6Q3Vlv/Avg5mlS5RDIXKYeFcNsHTjTxbUB5zUZgVIgwwT8YOG3k6cK6G67WUUWwVvtMFXXy330VpAJ/6nHF23oA3fYOHmxfxEeOGS0t5y+WAVuADroMkJ/IAwsf/JBEgcBNchn8EXnjsRU0k8hmyI3nPf/Nm30/TVYmZS/dYcdMiSohzwR1vLP9xPzxJ0oAlwq5fuENJ6c5vT8hGT1N+V0GSUbQiWp/moEtmV0tNeNQbEUNs87wUeM0QhwQZ9ky1CLkdrm0SZjsmN6AgSh0eCLjA4jqW57PmtXSMXr0kTV1UC1fVT/jcxqEfHvo9aNx9MWL+M4d+30v9bI7qNa5rkJTw2tIso3weIrbmSgXIlTCgwd7Bp5uTIWHZO7NAznbeRz3kmTtAFeuR3NNu0XD7U2FR/UQPh7VBT4/eOMdgmIeggqsEdD6r4dewj8LsD0fUdYkb6flqWSJRRKLM2dBfZjtQHgtRN4UVovnRpGvFMOcAsHjx4wOh18BtXmljtde0Wa2m+XInC34DIU9wnRONx1Ck9oy3Ks+OsnvO6jCsZHmclIYCa9u83twCMs8l5hLiiRilg0HIsEayZRCB2LBo9n0jnZbumexbEt3LZYMAIxJFqO+k9AXLGOsVEG1Eo6iO7C6U+PMfvIvONzOkyxpMJ5aPuy7g4HWkVDUyHOsUxI1hpsZWZZSlbAxcDjsaiwkUEO74r+YoMlB/i8n8A/avbwQZfk/d8VEFusoj3Xkht/zwQhCGPC0WV/gkfY8NZAXFxXZj00Tzw8LLyrUX1RMfhdTLFgL+iHEvkY4jVmi5uCT+5Xk8tL/zidzOSokcKw/cqaN+0jokiFBwftGH1y95kyC3CysfsdPqgLH9v2k4sD4TFDo3BfA8yqsV6Ul5Ua+lRHOg/ejx2nlPx2GEuAKwtVEffnhHrDjkaRb7QxKeXWxgHu8AFImvGpQ/rzjUcunua+PBeW13yZEwO6PZFIQok3S6ZbTzIQ86ry831YYimmyy5hvCNIjFpWDpAz8SzwjQEVSPvDrw3tX3mo92p5tFOFMGrGFc7xGpYZ+wEemf5janI1MtQ39QKhYT9k3ec6lU07fqnzTfznf9XkgO09WPzJVFTg5LWiBPpr0QnKPDbnaRQpL5rW7NpxenU4bIJfxt7eZSGFvxPydN/EYgS5m77rY5S1/0FO8UWn6/RcWmFXGL49YqwclKkEWmpOM+o6+6Xm5h+zHq9VLWuW2F0aLc9sCAtFO7XpVrA+r+4OsYtnsa87zAGpK6oOBPOb/GQRyxDr+UVKboyfce8O1G0KRw6mRezecfMjQMuc0SsEF0QLesAkinjju1AZwNAifTOpulUuI4+mKfc2rh1/gxR0IovCte6irhiC7qVhb+kwsAkL8oVu2ho4hwzUx0cOlalNsKpusCegPQfrSCODYdgMbjTW1TzzHTiZA0SFqfD/gDwtikuhimRagSuM8JyNU2CPqknIvIBGmF2bt4CUsKCbsugNUTll7SgsZUpgOk0rvtdJN+6XHmp9GqAXgYBjnr025eU73tU39pRrjxxPNlT2fMBu1C+z9NB+tpipLzin1r9jo3Nda99hPSLku2To1DrW145lrK5vol6/bhLyUSSB5zF+sddlzzEv2VDL4nWQF3W2zsdyl74rjjUEHv1CJiVNI652J6MF4RFV8HXcwUED2M6jpCp5UCqhuuDc9E7/pYT9fOog9aen4ewf6Oe+GBPNcdAUfz9mL20a+OObBNz+PH0ezz4MnZ6PcBiES3OQp3FqAhw9O59UoIZ0XZ+WSFzXERzhrUdnyJsmX/RyT2iPvYtaGjn0n7BIX0SdLjPVexl5cktFx9XRMJIJTIjCadikY9qo4T+7uaibBHAzMhOHdC6CdiESYzISGNNMGYyvGbtUtAwRjpzolgP2aDZj+TB3Dfi2bAGfFbubQpBDNDbPUKGrdlCu2Wd4/MD9goouEmF77+tnA37agXtSWLYPy9ioY2wfr8xadYo+5tjtLPotZSNKWV1IhwpmKr/7/BhwdOIlQmHU79Nb9XKvW4Jyw1N+sZxkaaL3dSzNtFNG69KiedYBXXUCUO+rZhi6hyEPyeNtsVpZUM+iFkmweEM2WljNepcUuMqY0APmkUoPNLtFx8ZhIIy2nE5MCG9zQcDh0i18xr7jaRhUhSmU8hGNd0LJSjYGzgiO6Lx82yAw9RNKqdYpKxw/7TW5HNUt1JNdXbfLSERCNCN4P3OiUfdtT6OAsG8Fpcfsahaa3Go/MOBexLujoe4QNU9cjg6M0fU/+KSf95IMIKtlEg9loHTGpHWaGZAkMT42++63IJY1Gsv6IuDnLnbKh9Ump2BqV2uF7+0W+kj55Wa/YgXZyAljIL9OT2yJb4ZR8FALzTR2AEtEmAii+JsxeXnLkTnpTFZvpabBdlQWFyB0EJq9l1du9a2UH3baG9vwpMrLbLMpABjdRxTGbWKdSOHBfXt5igcasO3/80yva/MpNQMzysyXTzkYaidzG0FUhDRQvdmKGvfhjklS67PBc7C1LnKG3EsX0PXCJsQ5B6aXEJ0ApU87VZEPop4QAGPmVjmITDBXQ6xyfI86MvG5gw/Rjd5PDqNSFVLKSx8OGAamTZHZzE9OcPTNoErdYrdHLbdgbJ02tK1ihwEgt9lQJfkBlYo2/Rm8TEG5Nj0f2STXhf9PCE/c6Sy2UvSzrmJKSt3izg5oNGf9/Cs7ELxICtL9h33n/42Jz1VQ7lX/JTOQaqQ/9i8HJ3TSrthw16v60eo3wCnvlGhdIXwBexW21oS0bSZK0G/SE6iSQtTof5etoqKXknoXRLnTjoTgwFoz0rleN3E1mlZscuSZoYPK2bizngROBEP7BxMzebGLPdfbCd75CzBbMQQBckr9qgbn/XDtaDrZTwTzxVYGbnSkFI0ouQe11eu7OTP6wjkwgt9XbGMjygNayzpsDd/bUN1lP8XLcZOMs/qAscYTW2njHsYZq73VFR5cHmOTLVMTtq8YP6TWZJRvl1vZev8H8IPjNGAdYYXuHar/0bX5LYxieVcrj0bEu9wM+IYAdBn8hgKqDjiYQPNB3QBCwXAvLiJdFXMe6X/pLzjqzzuEI4CUlpyInqF+RCaRV3hs3OL9UitpRGLpxocffdFs8q5deE0UTCwxaKHSmeN//9F4ueTsfKXPMe+UFjTuwHgu5JfaOf3QlBHztit3cR9HQ84IGwXAEYsuJ+/8IiiCG//Lf+sK4MsA79lsGX3CUDEFWiCF0RWbnSr+0WEyCSiWQ75D6OyUO5MfDeBCFiZWVEI++b/weaCO13jjhn46rDePAPQAdWrNeJnF13GIbHpKjeGrelGBOvuOsYzqTSYLq2XxWFxFC8HhTIDjxvmDq2qWn9G0k4VLv+I3JqtOmHITIx+GfVBC1mu99bm8ipyrw6qaKvhPEDF8Nh19SNHS6dxrQT19JQ7uJtZ3hmD2tUjr4wHgOV4FwhnTPPtCemwiQBv/1OvGRSFE8LXkxnISpURJd7NCkKLfRjRo9HBNOCqnLYfInthHoGICFyKzK0d3axy4dP++YIuLvxepkzwJWouxgQdp3HT/nObLirt/KhNcwdi8uVfib7V4eGAFO4dSTc5IfzYL1mAswjeOuHYARVj9vKKxQZga8dSh9U2NuQeyrOXDqKUAKQxJ7DH16poXnmGlIYBOBIh15ulhM5QRGtikwhfJeLqzzjgQrjJsTdu9Gqa7IeI/32XPLFIw5FC2UXdCKL6FHW6We6FmvnOO6XYe71lHuLvhrbizEAKGCxognS6iF3HDZFY3HqwPvUf9QvH7x0nt1HIPobfGveMPlejgGf/i1WmjANYA7onFGbDYjpYV2B443U036i3rYUm+4RevCDm4eZkJijY+q67i5CCbJn+gDjoBfDmhb4yCu28YWtHv+7JFusNBWUgcJnwwOPvrs8GUTSbdnlCtXHbuy0mE47qt5ZUaA7t+JRt+aOROT99qN7eYyvcdvzeeUW5WlVvRx61t6y+Y4vTaYEBimYHaXx7NwMjUIS+vsoydOsBui48QEhcsma5796WzB6sTPf0aZDL7obuBQPL0OEiK4sY5M3bbwWEwufmRaGCcJx/3l2QQ9N38ojq/SbVq3wsK2e5O9/ovvpcaIU9ODtbMynH2145ZHh1gYcmBZH2TXkR6OrC9Y0yBjQbHR0FM1TWTfXjEYEgyFMpRvL24QxhekekllP2b+2Tw5oL9Wt8WOZf+9Ru7fX0waMk14qB0NQqp93LTikK3ADWu98bpJBkU68DIvTRWnpr8YcwmFVR8BN3gsdO6pnmRagU51I0afnW0hNaAsq5C3nZ/eeR1ng7AH2tKsrTDjIzvyPHGX3jn2FpbB3s44huoyHTmhEtq08sstKWZilWL8hdECNJfpMhibqXis145+1WaYM/gfKDToYIo0q+1GOuLhwRtjToV4vSYGGiL3AM3ki9Yo4vFkl0vm0NHKE3g/CFTXuYoLSdxT4q1fh9pgH1uuepT8zrzLijwNcSoY4RmLdx8DMlNH1FpwE2hzl91E6WHQ0y86jvOQMOhHrpy/UtoExZo1NtZGCpfZ/QCPrs5TI3zxmB06mFH0LIi4wtEAWtjDFog1tjxZpgmecJChMRYoB4VjwW9yGQOIW4tdRcSXiQAmOwuwy1jAjhQ2t0vISogAYYmVYOsB5CpimQm7bJMHx+IxcdJ4EZ+0RorfYfAGAf9uZ4Ld1BNM4dNjm/MYPwAorm9uApHECHWx0F8/85YatCFgZLod3/EjolY7+e90cVuVhOSTiCjEGe3/YMDY36x1xC5IX7U7y99OnDfKpm+ptNBoDZHos+AxM+yRfEa0SIEB8DSQTXRA4GSOqhZ3gJa0q+EFDkijhnAcgVJ0Ts/VCCcC16Drqhv/dC0xqV9yHV9Qg6YfoF+VMLf+mlDjcOO8RcvpTczFbKpDtHcB615G6GAll+wFyp8OtyRIWCto0VElFTB7MD7xucQHKQ4QZX3xY0FoRyvcab/382+TGdEEa7ah1rOLwY7UXAJIl8UsLvzah7ldi5RBc8jJihG9YFQqGuBVoaUF95TT/ik9YuHMd0rx2qG+ZbjCYjWoHAJ5DIJaW4OrRmzCo1Uf54FO//EksWFZpFRprdx4Sgs/TezbllW2d/tCogjDG/KGmWsltfgD5ahddXZBKF9V6YsMKFL86wBYy/tX4usB1rjF54rql2E3ikUUuZTqZBmIW4N9XaThGHJAhceRRN4THFkEYMyfi2wWwTqE41rmvt+AoM7gt3XLhulRrkr+YTtacj9cwq0JesbzyNpL8TYqbef4gplvEqS1ytF/VEMMGHM4h7EpQvv4Ab6eJBWum6iUhOqwDrZivjgHLt1vSLM4JAi04nEn9x7zV4+Ntm4QlBkifhFZWEt9SLZagFtbjQQZK25qhQq0OPpsNXlnPm9VPTehO7kKR9hwpMFslSjw0i3ju3cERHN/uU9+JfcBRyJtD3jcYihW0ACxQTX87J5Eyff9LvTirBe6JAO/5BiroV0aVSDqDn8IpyWW3KgVdW7kyBI54/5a1LOFohRHIBdYDGNboq1TMDdWCA5Kv++LB6HR4DQLVIM/YzjK4dd461L24WLtm33ipuHZ601PPC3N9updFCbuiY2sTj8LmMxJLu28rLcWuMmGRvorAJsNiYwuO0h+tl4Wnh1rrtRtw1+JIrmBcKygLAgsNqgZyXS793NEk1KTA6AmLhgJ/IB1HuKl+zLCOEbrf9htrtRxb39r8vlVBXpGCgY9dxPN7KfgSLPImM7GeCkXsh3LPHLmFj9UvQnHqrfwsI8UY9VtMci10+sKlaxDdsmkAOQnJNNE3Idv9aUuOEwPSbTjubgaLIA6lMOk08oDTdIvnx3Q1uCUzBKq08Je/DmfYmQwAIbbDLNjizAQvsHS9aJL4489+eV52xY/Eebsfe0O/ovd39Fi3sn4gv10jotCE60NwoPx922A5Gug2wTTN/Xf7EElLCAUe5sfmViD3jMDblMdfcI8YFdRFw4/bLjKO17X3Q/NbclYdAQ9XvwYWep+QA2Hyf1Lge1mts6E0JeV5X6U3oMbxl8SX7XEEEsmjM1x94HZtekC1HVpCMSdSBIiFRuBm6jSCs40yH3fEE6tdByPaKLp7pzBf4Es8+mbCAP7mKESZAQHyIidLrYhJZfo9Aj/M/7xr+zAH681L1ikcnPsPO3B8gBb04VDKXtSqcmZlj6A7I9eDRvBSA5yh1O2P7yZznp6U2RQPdZ6ok7j++KeGB0Xz7cblY5Sb15srFCoWe8rzBororBJaXNeOOlMLrWvLp0hLvF1re9tyD/AiaDTpT0RLnsB8dduj1Zc9ti4xSGtHeFseCvvnzbIigqv1xOYGHXUab+04eD2auBXj7Am+y2eJITCvVjMQ0L+2slQXS23o5p0QlT6sF+UR+Xf/kPFeyNem6iKN8sEpuHR7CQAamZr1V4txfdI9d3/I50awM0+ZMxKG3f9GzS0A3+0rEuKkrZcF9/tatLK6D4gm+7bLoWX3cEwZpLNYquVWyWF1GMtKVQR7ZlusYNVd5gdoiv1f4LqOyrR4HhwL2Lkf3Oe+v2gJP9fSswMnioNYods41xMw/mqBuruiOLSKCmsPE3u4bn9hhFN6CrwCxZRaLALaS68LqNFoBDi1/jzTPhe8Q99TiPJxaDect/yeqToX6LojDQS2P3jNnF/65ggrp0Ruew3JvpzZoHy6R7ctX5riVyxPLReKUuIussMwoxIE4/LIJ1zciNOdgW2oRrpiKa61UW+RUeHduSk8ermB2rz8maImD9NLSsJRw6OyO2wsPRiUJWL7TuWBwTztjgJWblKlZqX/oMxG1GcT6T1WNOSPDEWhwUa+K62Bw7pde4dHhyanRSi9MjtBjsoMcgM0mbXkSkabVK8uzcOShjSVv04JM8ac+WypQ1L3jilYklzM+Mz3CvfPmO4HIhbSH6nyHUIy/GhFL9IAEG/wgq9xCp+AoUq9PGbOzRXxJ13Q//XVwqpZMD/qs+Mi8Wgo13Pc9ZPrVFzH0WnS8qEKtdu5ZESCsNrFBhNpYqI7MDS6w6fwGNEZIgLtKvdSggfoEHb7mvfzzaJkd9nLrnKLCr1YeaU2qAhV/JGQVEadh954U/7E6qbBA8GGVRYjnp2CCw7zM6W24E2hey7HZby3N7jsQhg3M5VisI+yjPu+4JXNyTC2TN+7IG77RLvGiYQpsbwaET9GRlOv/l3Pmiw3AOVRQS9bpBoTucnlWQQIReOYnjQgS/olyx0jfeACkWXaQ7rIe0RNGb8CKvkGRzw//0pFQ4CU3DhbqIssyCwet+8Bh95vHiMLvkwhzT4gFw4j8FvayQ3SqxjZw3ngdieD8qGltbcqI90rm0k1LKMVDNsQ9z2cF43m2PPptMp4fZfH6q6Yaz33qCfiIv1PThDLjL7zwCZ/Md6sCNRTzIJ0pJXbWdsHHJFURJP0eW3fIf20m7Kd2Yt/CcSeM2QS62sQ/IHbifv++KT+lptA80yG+EXcUD2aN4AgaL1Rg0T0GuqCDyDzihTDXppx0W0zoIoBfgdjG6BRocNGZZkFoyBVERN2dG8+z7QmsdhzT5r6ggWu7wt4GMud2kQ0ds14A+GWLY9G/YvrhgWyIcd02iWpUie3jW0hRJbfr7mp9A12CovvL/me+e0yVaLbaL8BKLmvS9YN75SkAj6QaNZgD7jI4EYlguTdqPFBQUC8Rv7crQO5aSC3Os7PWV8owIrPVjTnzyFVmyT6lRs2qPhGR7aImAHz2huqX5Hrfj0IzJTT6YwhoHzpgMew9fchlsrFJFOF7m+NKNAq4hRAGd1raZrEQh7KbKJdVDafOr6fRxh+j2ohNUw12zlfJv/kTyxfILh719w9+bBCUazIIi33+Wq6IUXoVH5+gex5PnE8LT7XwpjK4KIIEHdQh1U/HHQju+IN6kxHEvKFyt3eUWC9O5qxq5M3P+79f2XRlZEtLwqRMZxe3BrJSFtffqCxKLG7nrJ5QuZ8jSnTllCuWLpHKZ5OJtJrDn3WCzF0oyOuUY7kfJbDnpSIPVc8SCBH1XhKgr4JasgO6WmKJ9/HQhUZY2koZTwckFowLS6j7r+yLvporqBssfmo1xl3gVkoVF6TOXW8DUcHce/qybba22FIdB0K1si8O+KU5dDuNYzEfBvbq7VmtP5fAhFjH/fMO+FB24S4pkksYUgswMnRVrCVUSz8ME4rU4Zwa+0S9OhWgEpYnuxZuqtggZNbkR08e4bPzj84XhVBwwqMJW8t524fK4au5ztdfUu4Dmt+NErCA6EY3fIExswpgY2eYFehnvdOyqYu9098a8GuqRvzr7GymAyR7k1UbCDEBf/fe+5K3vcAsEGnC8K3fNdKc9uhY41NNknLOHt4MpOMJ/NNJTIpR19Ii+wej7rxYpavf9z1AthYwBv43RDFoxOuBQ9DO/JfswrczNYljIzi/eVyEmwGuNd0UTcYwUtaH+Asi4ji1Q9TQ5jM5rEhbof1zCZPEpxEhCNsFeY1GVNgQiaTwqciziTsj4eDmetlIN8/suJUcSyd+om6WlUeZerEBHKXjaMetk2bzpsuaBIqbRzxMWFWxzBX9ux4JQVHc286kY0O8p7LX4+b1G/ra8h7UaKoBJ02+rzQCUjasUNxMu43XorhggKFxlX0vx51ZtcHA3ZjMAFt81Mm3Yha+d9ANkJT4P96caSr6AyTemoL46jslrizj7ObhwWkxlnV6k8F+iqQ+FxEGl5z68/rUNgUhBx3n18QfMfvB7/hYvobMG6l2G1WR0rqfaBpSC5AF812x8JR8Cvjcss8qWQMliHik8tedwePd18WEHUM+vubOV3JRNlM3ojQ8V1RZAi3aPPt61SllRI9CwE8vioKSkJIBk01oCBOa4mWTbZW6H+kVhhIp6US9E9vWIJEWHAlSV+1OMgLQNLPZaI8tJYfKKG9eCPfn48xtLNK5zWtJRlQD0QGJIEK1OZFub+8VG1JpkkEbXFrsWkFETZ4FHYzMNg+phtpoJ53R5duIz6sAi6g1oFOFmp5NTWR8Sr2F4sVM4X+955QNDHSJRLwHYqTn+WR1lJAHx52HBeoqQAkjjygl/cd/iY21LOOrfEvpBmBPw42QznCjs9ndwmnZrWTOg1hXAVXs/e4hzeSsnA21/SUvKpz2eFBFWlZGcsd7nMVrrhGlocgT+5Uq4xkx5nEHQuQh6GpDhd3qj8ecjWjELNN6NEvyg8o6EczkbnSXINjkKgElrgc4fOglI0BzAz9ON5pDor7CqpjOONX0z69KHO/16rU/unmmNTji9jU8MPSrTBrYlJcLcYjVZvjuf29STzXXUZTCxqlIP7UVrm6WjBpSzkh0FQ0xOjdn8JnazwZ2QpiqhLH/tL/0OEHSM15OKhvt0+T+oaajtBGoLXpiCAWC1eNvVp/B3yiQ0rPj2W9K06jeW/AsrsRIlVunIhTMXyykoTIQu43njIy+5H+A1yFiZPm3z5m7Zwz3B7g/jSQvg3j1vinbZ7YLXYcls8tMwr0qOKIFcd+lVVoRsOkVAmsiEykHTd1HRwKSLGTnaHlZ9mgp4h+2tRNNTPuoNK/m/JKcBfgb57BnMdaED0ATKJEkIVbBlaM9ASZfLESuQAKapFSmi/rcmg1+2HOpWRaqmRnFRYm7sPKq8i4d5I9n5kYSQPIf+Jp47/8MJyH+Zl1NiM2UqkXXYFG9kzn9CUVo6Jh4+5PSDtT9hv5T0amCU7hHjPYfDrVfRWjIpwx0zNneEyRU4WO+rv83WFLlG2g0EmN/S6RPtvCVeqTBTXXeJtmtzCx9bdf5PHAFllbvsVsXqEL6hfu/ohtVp1Pe7jNicPayNcFIKar2XDis+niD3Tmk5+meL6Qbe8/KnBSHKFGk/G6x2PLHtLqUDWG3x+aucqqRXv1TiWKCQWdPAn62nwQg0ozxghU8DXeAwXm3Ubpu2Y6hPqcD8RKWq5ivEOS3gcfiBA+t0f7nShAeVsm0ufPJdhm8Evj7Rl7xXHKKH+jklxOHiRo+Lq8q6aIamPMKVz3ZLHDdMh6Oc4ueIFy4MQ6tLtc6PsqZWWjNpVKDLcAT0tQmuu9+Di5KQo10bkWh77zls/jc7BIRPVzcmYN3lR10MMfunYov8eGrOzsX+ZJ5pupO7nl1ejEVQFKcuMtp7VUyjCSBFV762JfesKnkDYwRXv8GzTENqAaiFhbjLtO1JD2NX0dGBYTgKJzPFQPW8g9c8DXGKowBuit5cAdNf0UsjZYUP4zE4knxUfAGr1btbfHlH8kqD94lWgc8+yzYQfTCQqOQ3+O5OfIrFmKql4L8BoG5cwG12s9QhqtCfaidu7PF5Q+55MKJh/QW2ivbQfrOsSP92Lq43gCFJxTItOGQiXAfb/ME5nyyJvNGuX9j+f2DDBCHuV4GQYHVj9Mv9dZnE+/oEk6Xdf78BAzDxfkZrXTkMCC+rfYDVXx1dReeT6bSUF8uEfBEFpyYbV8qoc2eDYYd/Qfv1PY+OE6aw+ey72G3FOG7OCX1VRKNCOcz+S8NxjvOdTS35p8nkLU/Ka6mvxKs5qY+bjER/cqQuRiGGr/EXAl5WMTE7jnsz7x9emqNWJvPpp66+xUhmpfP0NWVlsTGB9AB9AEnocSscp7HcOfI2XAzAH5lR6CQmF8WstJ/H0ip41w53NOCYG3V9uZfW0o2bPOrub7yOvAIqJU83WNk2YoILzsaymnlF39DShxlbHrwLD8RKJ4SO7C7vNyjp97zOiXN4idIn/AIT98YWkzzN/udSdL5JbOyMHVACCCI1FjOuzJYX3k2MtvMRoL7wa1lzkkyuhY8Bzsbja26gkwqO8c0iuiwa8+jl7X8SohzlxTzvuQRFmq/S/g1YcKBouaPy0F91+BLg0U0sQrur/pyqUefiE+w/SlOJHbiitTE/M0cXHxNvoEXrkpRTnYVvAeNPISE4JjW4s/QjZFI+j6JhNW8Cd8h110O3Lw2R+01aYVq/6CxVmxPobEh+/jY7MbtLXJTABGL379NFp34cMjhMHVHSxHcH4ZlNJN5Zxa8H7M7wdYswk8yo3nbv9aM5Ogp3umWYUeBE4KSMN++aT46Z/+K8zKfcb+sXsMbUbQ/LNCbbeXAl3HPDzaKL4L5wgnzywXd5eNvLa4aIifpwV/lH6/o29u5qXomaIW9pDbIUxHLgiY/EOXyclhVQHfPUMgDnmnQP7ajJN6XvOawxaN19bptnv/DcX9SyX12yr5bRTDvg7I53H7E6iDOtexmUvX6GNesxiirnQRcz5ssccdKb3LWKeT4zu9bJvgmbXBiHO9G8Fpbd8KaEpWHEhM2VwkkvJH7qjRm+32KahkJB0h6W79/a7jmptBHOQ0eVXyb/QXtPqIc0RvH7Rf4S5laiIAh3skIwIN15ZuhG5IiYozrIq3rLmH6lx+62uHVSBk0vtfUC+6f/IodA9DcHk+Dj7anttTkbJ/F18zyaqRe0X0aec1lsc38CoAMdvsQOwp1M1XhU6EQ75dEFZBe8kCvB5sgb+PuGH6K4U5l951DRybJeKIlXv+6nAIOFhKXU6Z2tZiao0+07VHvemsHKWljzPEj5qtav8jF3Ow0C/z6QioqAiI3Fk2y3c8i9LQb6wFr2jx2HcRVvKMEevK5Ijpg1r9mt3DoArod6NHBKMv+XRUnGe20niFJ1KAsUhfNvNQ+fKMlPhbsadsKXIrT90sJAwVAQ0a5f0IFQApY2/RSoxpSIs9CfeeDm+LueZefe3r4zf+8oD6J5wwpCaAjGfBbe8153mSKaTH/zFXBpvmUlwtVf2ioMIaZrCZysdTAgugxzFm/k58lwOZVmcBqjs0Wres2Ej/gwlK2PxdwiyTSmqay9evAxF54mnv3ibaAymqBXe0ttte/M5ZLLqkwc8fbq6Fxk+H7qBhRFd/vrHe6oI71mE4FIoDSdGdn33GDBVuwlj9DOzKqR+MLX7TOCRk3TTMXNaskLZS9fGNK+b6GMxmmbzgNgb83GD2xuId3Bf8W9IiuF6SdY/hlF7xhXtYVORknqM5kIsZNYT+41LqjUBEQRAKWEnQ2ro9hVV2Lc30QzlMPDWljMqhp2vya8MI8R1dfvW6Ui9XTjakmZw2tXKoqiCXyddowgaP27L6vnwmEA5TBCj2cNrO9QwgnYh327EMPf6biSWZMiYc9VbzULjcX5LIPkFUukH7Pwf0tcPN2u8TI7BXcgLF6RMC5V37LmvnvfBiB/7XRGcmpkE0dzWtHvX6iwIZNEw3/KzfBa71+TO7wtILNmClKsnB5vRyR6ChGVx3uVLB7CnJkZLicO20bdEGX/gIdG2MIPu2pPTRfGAYlV1i4ViUE689a+8VsFwJDMxvYqIZ45PeC8ChLU19kxaaiWI81JEaNQVtXzoEddfdp7CCj45+BXt1nIsLacGtjEp3CixRhb1LJcyH2O4wTp5zJlbCy9quLBRKSF0SotnBu+oTMjuNdad55WYHgw5KfHdwJbRVwsOXWgorN3wa59FOHLvyrtVsPxs+d6DSa3WJV+482Vx7Z2KtEJO1AUCSU6dNxgO8YQ/WVwtZO7HyaUg6Xq4oDBGfW1obbWPa79amHnO8Q7gyRnpaaUpsppmSaeAM2VMAFqFFwQ1hjMtvyVyKvG9kLgUBZsgxtuuR0mw4diJUe2fg2Q9dMmy47oEcZVoLeJnDFVwE1dTkMqTiVziNGLORU1ZDOSeeYeBU/hRjdBCpqyuS/SIUxQU99WkfxP/kSyPk0IwhLN3MB2nn65SydtHiIGZpsHZc7B5nKDnWYVbYctHilnzxV98+Yfft8cv1WT3qglsg47INisPIqNj9uasqtB0TndhycBtWyGMw2jAAvbirOlLka2WFbgEWe8T3aaXVOP8x+SjK7GcSwQVcRA4BkVulGStioEo/YeGCa2jt6rKMyk2yPFcQfGSlYnkMSjOY1nlTC5dmMW9hZN6uoVzlYuSYn4HhPwk2rfkWm2HC1wHs8lqe0bdFoQjzsPXxlHoaqBuMbloQ/sBwFBF1kr6WUiugBopQAs435SSe8KTqBfthhwgXlxH3vfsmIueDr77VF9bobDVnxABWmU1hxrkGx6yXiH53UsUDO0QZABpFeDWUUai6zfJDbE+ZwRfLRmWWBMTK3nh8h3/uIRwqGjUimMS66CsWMIzlGnHiivtkt1b5dJjZn7opSxJdwMyiG7S9IecLPPHTEC2EsDq1DAgMJpAYW5CZACQAdZGvX3VoGUHrvvXQ1jIt5gsUDcRWt0upVFAKjVvF8Z/N2nMEKziPUEMfiQFX5eOxlRCbsFZFc8uA7w052VTn+1bRo5j4GCK1Qx7sVmzpvl6heY7uHp0ppxQ6wv4StZhtYSvav0sAopn9niyMM7Wp6sKCZ3bYzndJPwHws3C1TcmuTkmRoirEvuwLU/rVuCtIaghTu4SYgl50mRn8XK+qwcGYNMYSaAaran8BRDVqhTWNlHrHcY4efzBvIW+sYAuxH8NVupjCLxJsevzjvSM+apqI9qDMJpz7dUCYIbzTEUkAcYBaXIFdIHzphAvHKIM60xCOpL5yX0LvD2j0yOIyYchWFcHHGJ01ck/rM9/MI3p/XzDyk6enw09w1QI1FAK17yQCVxoJUe22u6rMH/H1wRgKqgcvgpViNJ15ny6tdkzuW/4EWADH/Te32XOKI23Uk8OqYfwtFo6FP0L3GJMiPp+csdobzBN0CT+psIHFpyOxB/QCnjRKhGTzgpEUHpSllu7GbLQk478ZMh5AVPsXXeK+8SVKPR52f9HCZRpOw7Yqfj/mSeTamPYfv51xdQT4so8rQU5TPayRs2hlcsAHzKvEAvWXw8XchmLw+CCwxN0YcNomTw4bCPQ/GkJDI4MWST9ji6u0+d3Wp22piuHs9cUKcRA/htnQKpYpI1VUiC2EkvVcMsA3IvRYWLuOI4bZY3yG7znaKgQGuLEoABTB/yWeuY7WsuaqF05W2kW2OaN9cgN5dQe3ahMJ9SB7CVwmVJUlYYzUKt99pVI0z1dhB+lvEQj/abw+chp0ZoYtDsyC18Sag8SE0DudkSRT/2QPS9fLycaWaRex+tPl/FBJOkJfVfr6gLb15i6/+H7QzBit17NiYPW5xoHGbuxiCWXctWB06CAnQNRrG3Mj+E5EfmNACHLjy3WwGQwihMU4v7GRT6OOEhYLESl3XlUw+UeudCS7nDhqYODQY0as5x09HhClJyZhqnQVeyIhRfGSj34t4FDyFYyze2eQqwq7wfbwcYQh1tblWFczn9W91eAjksD0P+60vGChuJAP9hxhJCC9vZsePNzPzdCV/IeIq0jzGfhMMgf12PNLx+eoaYHrl5VqNOhJomOyO4uSuamvDoJtC5Apv4TKZhlyz68/Jw3LJlyJr+d0p54CuxpSWX72MS6F+oU2HL4kYu3N0mpzaf+8Z+XJ8hjqyqghfFpPVuORD94cprN6jOzcU8HwcBly8Eg5Ou8sCWxR8/bcnzZf8+9LeUAxE3HQ/9I2V85X49MtgH+IcfAyweqUb35lpundIY2J4cf6Qzygg2Swbnrbdie2iyYU0W02wZCB3HcbEvwGMUkgKfIYAzkr0qArhIFScDi54/zF2pIeLwoXtGi88diqf2/yJJ0R8g9YFvNxE+e/FeQgH3Qof2AAhVtl0ZTpIOXontXMgKuklDxYr2hH+AElmnl4BzmvgUyzMB4HGEn1siuVjOjWYWO9IYbdaaLKEPEWOfhqSd1KnJxJtyI0V2bkNAPAA/zVRYvWivts0k5sKnqFvYJQC8=
Variant 1
DifficultyLevel
653
Question
A landscaper's concrete mix is made up of sand, cement and gravel.
Cement makes up 61 of the mix and gravel makes up 21 of the mix.
What fraction of the concrete mix is sand?
Worked Solution
|
|
Sand |
= 1−(61+21) |
|
= 1−(61+63) |
|
= 62 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A landscaper's concrete mix is made up of sand, cement and gravel.
Cement makes up $\dfrac{1}{6}$ of the mix and gravel makes up $\dfrac{1}{2}$ of the mix.
What fraction of the concrete mix is sand?
|
workedSolution |
| | |
| ---------------------: | -------------------------------------------- |
| Sand | \= $1 - \bigg( \dfrac{1}{6} + \dfrac{1}{2} \bigg)$ |
| | \= $1 - \bigg( \dfrac{1}{6} + \dfrac{3}{6} \bigg)$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/pIPVHAsOes3Kpc2WjeDuS34AAt4PQ57XGPYJghegw/h5rim8zHDerKWYff97wCABYY0irlWcNK6ruJ9jo20VwMirB90BlxP3SAsd+ZUs0pT4JLa9tZ8zen7l4Gko4lp+Fha0uhNdn1W+4aywUd3eg2mX2XLEeOouvcDVzNcTwV/vgXDq1UkJOCPOYlHJBHAFfHOr1FjaMebCPZmPc0OD1D2hnOX0sQhYloVi2lHkLyuQ0/72Aosi26HZUqJNzfYLM4q+WFjVewyESBWWRGhib2R3akqipvLioDLDwsm6VQ5F6H56AS47RJd534n5h2SlJXH98n1mVNtfGtIlx9qMzpFnOnbFowLxqXQtixoxjc2cDApPI0y4EkL3g/CxOl1WW3etfKa3xPDZlqYXKyibYDop8p70O+Wt0lXRwAwzHukRYYqEjBZGmzTLZhBbUK/ypfijaV+nh+m0jiG1cE4nstNO4VTF2Us0a6QZbGs9QvVVC2QDPiUgS4/V6RDqRUHJ544kjJnZqt9nJ3KvZSbWX6N3zVymMeVe43wMQL7oqDwhPdK6OKfMNKKu6wAIkiqntWBUAvYtR8+1eu/boDdhxL0JVKc2esUTiTB39zcIUMfJ3u73zJc6eOZdCM3NCwvxJlJNGlg/VphvJU4VfPd9Xzse0FRSjMsE3WinIAB+A9FI+Z4NN3VR1XYu+xMVV3FKuGztKfB31vnjvkk4SdbVrkA0Eab/uYwztWFw1+YpqyXFOMTmlGPYcpH6d7RZdx2l56W0zBNta2EcLIMprkUseFFDfv8BrvNEjigQJ9ylD47XBFmQEpnJauYtdsYdUWBOHdfOgJRZcH241mD1wXK64UPi9kPoeYEoGFpV997txgBmRSVzk/FvcNRUqrrvOtFH3m8625TEsE031Plt+TU+3+OQ3qugB7GeSbp/MYXRp1TbK6v1Wi9daIFfbyQKQxv9WxU9XVyJuv6KlYDu+N4T87ucCDzAWLGwZ52BbBvFSjPFnJ5GQAtkWTNUdaM7zxmnbSJuhVZNUhFb8MySBycnu+ZV3CflUY3kO129twZiNQJVo1hg445eM+ur0injJqnTLbKE8WLDE3wQSmbBHmniDbbrIwiCpTIt/s0Jrg+2lI3j4rScOrdrlz5Y4dOBXdylAZ4dhG3pWDIfMYm5bCjwNRa7V9hCb7+GVO7/yUo/bC9DLkwPdbg5qHeoOGYkQEQ6n3ge7nbRxB/KFFJkzmYZecL2oQorRCd1erQNTpp3tNdOWVujJOKpH+lIGVfy/bFK8enUSTzMIUNEc08t4H2yCUTQxcn9cqaz80/nfFBgPCcPF/Gg51jZEM35RFne8LJ/WHlKGCnjwsT12gR+nsz5+WQzRv9zDGsWeHlidY4hRquB1PS9wyVBnAIg/AoG7WVX40+E3oc7LVmiWwCU8TCrgXOdmSV4SL2pEuJbX6+EVsQ6mVFHmt7dlkock4jZOhWnHMB/L/gc+zTu79qgtfgtXP1X0YJugC2umVIywlLCQsEuoRpyl5n2twQ0dEAjSYsXGaOzytoqwT8ypVyj0BsinpGNPjB6cB8Qa3EZ0jloJzSxc/4KdXbpX7hVuoPXtdG3fIbcFm2tibndHLRaFEPKBMtSXet28zomk76hXj2uPY6XrInHaV1QBXvX3GFxcTRcI9yj8bxhC4JPzQRwKIv0lO96RJ/CZ3IT7qVaV171z2cEXJ9be94LiEn89TzI6KyxcJ+yZUrN+cN9DGaaJE79Pwzhp0muMfYvqosxPJcrlS6OjigOauNy7XDz1wOIW9h8w04FyMfAdxLl+xIcL87DmB2I0Ie8wLIGbJ9dcgPXYK2vZBoYChtSN3x7c7C12FX7vvxTZ1ZXVUeBkdW+mI0mdVJclirPYhCAITAjXD0EwTk+gd51OibJF6ybU6ahNbCrTKFOQ2hKZ5vce5yrbfUqYg08hKgMkxttGPSTVe9y9mjoJXmgZcZcmNKlrSjOMd6DlEv30KCGl1yNtQt8yaZ5CfSNv0rvXMzyRMN7c7iNC47O2qC8+bEq9nSKlCGOIE2E7sGk8X710P9e833Mf4Cgu9gDTEv8PXmJiBKlHhEc9mAGSnHwL+VkA+pTUT1y4RLZj98jLcZ3cbMqN5+1/ycL6UWmYyfFhHVsX05Bf8GTpp0ksa90KK4dfJCfzmU1JkHAlU7AWAMKt6BH9jA23/qCHf2kPyltW0UQw/1W5lunqoQvUgx+lAPEfmxtSXtFjNpV5WohuExcx0AMPXepB6UuztGtZquWoROmCvAx5UaV/gAaNYT8IdbUHNnmTSsXuPtixKsCArsbAvMXs36wTAd+FkMc49oK6oqXq8Y1yMJp7commhjh6LJ4iJm0cenNsLhM9tNOFTrniyBqEHKMOaD2samCN6B+M1DvwQavZ8humlZ05F/oiGKzhgtquCyXo8Mk8A8XsEPlPRym6lPiJ3IhSvNOUocNVtca6dyqbldvLwXmqI0TccP0dxe+5rA/Xzuh0CNgCyw++BcAvB8V/JNI0Fh7aQewPgQ9dMB6hcy5saE6b2JfLgZegUKonnHjiaRj0TaCVWT9EO+2zdTMfGmwPAtoiEZCMtJdaKG1HJ/yx41V6S1rhB9yBXbzfnsIuWrN7Bv0rV5qbBdGd1y+wz3eMg3wPIxdSx2r9dgWuh2gjJUhofoTaKd2XkQmdipOFcsJCOEdxaIcbqzBjWERIGiGkNnQGJwjYDZBDRwsRD1P08bvWBITlzWq1WgwabzQOFOywEMZvV5XW1Od1gZxbES1UjU9zygqa1g4g60H5PTxq87/o7uTVFxQvCHzzFWynoremekNa24iQnBkN5eIU2ZkTiDBg3AQa+LCEYFwqMLYLmxOqfwBHfR5X1Z4muT1aY39ts9qZebqy8shAE1BuMEoS+ULfUB9qZuMzHTCoetMbhrTC7LIkRaXOqTrJCdJwUX+ZUaiwCLJy2NJ5kaOTzx/3bzAhmg17aNRVHMZG5eBm3GLTWg7rURx0pNfaNjskKVfB4nFV+zpyoqE9Ju/HGFNwMMcK74q6F5NVW2IBYNYXmwxAh/A59w55Bkc8cO7KS7lMcGPegMOBWLbzQuS4wCgAUEjqfBiJLwBy2CxvaOonSjHCGPiSQtG8+xzGsnmZY1CbfveC6xf3ze2wnFQIoEDbEuKQbWyajVg6jWc9+ImWweMMkejAgxlyw/17sn+/UHXrrNkMym0LADdvr0HKQ/FCB3dYHeyeeP0q74XorgUZqijcF/dNjF8mkRoG6r7E4bDtZg2KMX4pcjbhAFlD9XACIHJAXEMMf6rdkGYXfL0eucQnIiTlx6kQhr5ZJQe0N7oQ5HDwMtCFJjdkd08RBS3gK786TrTffqRhuT73+GtRdSwFBWWBMVq6WflpO7nDzfyFlXErwq7xlinkWwdOSe5WaF897ny8hUEK+b7oYux5YetJJ9u6WbiF4SswUPaKkHiSxS3e81Fe/0V9GXRDeVqWHXTiZH4A0bfkHxhp01kTJhaBsiqYv8KjNvpfKnKLvelPKDGnPrr/PopWniCDfHkf4TX2lmXGzAS1XtZEkwoRk97FSyurfZr8VWIgpwsIubS3wcT121sfQ2DXKXMYCypWnIkikxz/uxQBo1aK4V31ZbJUhEXyckJtOqKgTyPn6BakMMnYnfc/l3vKo0ECH7K6rxJjC6Vfv+hUZvTrX9v7d613v8KxS1LPMCVfgTh4QMtc1FDSqFcYbXTVreeb14sVnwF96K7RpCkJUbheDkj+bRB0xATSwLYhnBwj3EC1DjKBs3dmfEg6yBZgM0cKhX0fJFTKVLP8N0rXM8t3Rsj2Xt1JQ8raaTspqDWkbgdB8AVfNV9EtDctqPUArsdatpsSjx2F+hwz2TUnMWTJJOpeXk6rvS2rnoG0hAxJ4e32yrbFwHavM25ao8rL0jvYVBcOsP9J9/d0qKbSkCpaW0G8iQoOIRhZNLPoGQSHIO90km+X7G/Y75i9f25AcbCpLrzVaLJjG5/ikDgCrqYYVvN2jmIZI+xkrjI4q3290ZQzt8nV/29v+I2mCbWL0gZWK0jjAk2xoIaNGM+SMRD5u7U1drYL+KiiP6PQy8S4GphT398kNTBnpmBQiodlEy2VIjhr5Nl2Z6imllUpJymhiBetSy5/cKpBFof1zlEDlq0TioS7OsUhRw4W0paSwrj1fVohuMCtdWFuOtk4Stx82/pXY5zZ0AvZyrYNEwuQ4qw8XZDd9sJ5DQbmJPSdAQi7odUEUJhYN9prHMRa9vAXaZrXzp5ivMYVIFF3veL33KTRRi5WTCAGBhycfP8ZOUVeUH5inDQ9wx38UbMCoAy7cE4gAGL4yZX/nPJRKg0njB9GOxEh1aAcgLz3pTiZb0LKEdeYeOXzeReik6IAXq4NIWS6ZOcyxyyxwalyZtKNuwh3zYrwoZxIJrNZnbW+/bHVxEThvJXD+RnOnc+5tpyJMCVkIsWqhQJPJ+DZfDLbLgDZcsNTsdKiznA6T36yc9CGgDe9XAnxG9mzQRpUI7uVLzGRtXDwH8kGsZWk09mlKoOf/oq9zI/b5Ls+/o8XStlpyrqI/jyN24SjEFKvtlzjNQySAz3XqYkafegsjnDo7l/xQogJeFKKBlxLaUsXE+6enOARqljQBQTA9Zy1jGRYMx/6bSjy9Rh7rlbEeVoE8zTitrg3x3YJeeWn8fqr6Ub78HwRI+RA4D1jFZrAxZBYiZaWiot8BVCYHBUpNnbeWAx0gIn9LzJQ4OBa0xD83A9GlnreDY56JxlN4x7zKrPKzBfuQGT+iqgFDE7TbdQRqz3vZt5WT6pBNzFAB2OCKToFvkkllF6m1aQ83awhCBANEWOOh164jkK0nUvUHnwkEPxRnn2wEfEQYIYUNpJ9Wi/LKNTu++NgUHm39ZC2NVZpEsch4zoE7yvI+IRxE/3gPD9ph4aM0qRFKDNl49L8z5mpc0V7rZkr5UFF5WrHXQj7wvhoRrJQRSOCklrGn7R0B/PvWIWtRNxAasIxL91OM1IQGmeldsP2H+BpfXoZY2oQqSRKvmYhierSNMvd2mQo+m9RQwivvn2PtE4gPh6af74cqbQ5rYSwjz3RXShiUcO+PtwezrIITXfQsdNYiFNpPZzdfRw9fOAggkiMS2Bb+EB/OsweAozf8AWTX0ca+XSZ2ANDhRUIjp87o0B0GmJml9/zfywcRNzUP3nAONOYVHacxfq0DVIUuP76fIrBtOqeT0/FD7Fph6rLTYFRRkar6w+6qhN/vluU9yEBzruhfUmZS6e1Mnzh6Lu3CXoLP5KsuBIdjD8NjMwgn56Y+eFRGVyfotec6dAFFi3D0MicHsK31AHtYK+TKD7kxT4QlS4dQOeS5TmCyoFmYFCVTh3lO3QWK7mgyeiBHASfWPNgq2Lw+tN+/344wois0Ncz6pkjWnxmJGlLXO42M0LU59EkcjcX9gMCJlMr7bmC5NH9BdsKLPi6ko+5DCU5a1Ek5j1FVLa0HD9p+kBUQrYGMMnxkHNA1hWm5oF1CKRl/8urtsxF4VcroJRCrvPNsY6X8k/UszBNQvrprP+Pr8yV746/6sDMYMepSep8Hk1bkT/wKjqzLmWpZQcEn4IAKxeQGT2dJTVR4oMCRCZNscetCoxv4KC/pGizKoqDY9M/a3Fd2O9j3UoI6bu/3iFuqB0Ff5G2sH8BMG6PT7NxseQ8m2QQNT5jrLiK9kOFRaAcKgAE5iRnk4wDnaR/mVVTWP4prFFa4SgSYQ0xld5nrRJCqau1ndOz3L5qyrKPYMbOCXjE5RYfOb/L+LBsSgKFBarMzj0ExdqmcryTwwM0+SF7uo7MBuSPToAoSeiRyPeV1+1u6HaC2BgDc2ly49mfMFwuUUZGmBhVE5Ap2FHLTgvurZy7XlSLLHHb/6I4q+HtAaFKE/l+CAnScD3Cx9bWAGingkQdk3bbcfjIcGD6dqrXkMesLfW2CxjFY8GWsqxE4NOaUaMTbxfSKDM4/pLHxKwvNAS9Xbrpa3g9DYjm9+/sMNlVGQMQKB8Zrr7ee4ASh0uAzEs0yotPhz0rXRnovkELodWrvgizxU4dUDG5z8A3N9xaSylPasvvpe4hNHy0+QQH/YUyAgbPzx1oR/Gc9/3Ga1CsTC12Pjn4wTI68hmkcLO+ULToqWzGYqkm52B5AEGfn1VZDJC5xt0Vf9oV+Fn36tRci4VfhGMtkeH+hTsrXrL+yZEvBtxztpI7qe+ONXay5Un+Q540h3t48hgDk/Rc6ZKKfKaH7QfGlzXTTd6D0cRO2Ou0LjcjxDTwcK02ONWYGXhY78tEsXj8g3r4gssRuhVWhxHsw5K1FD5nPGVm//lJiNI5WjKsQ1HZxbzfFLvPg8bl56Ab1J3n9JA6/RT1Q1FoI/VvWSyFJX9gxpiKkKzGyvKlbcJhY1Xoii3yJn9M1K2tAuJS/9f9bo/77Krc2VCaMdy1yDrTXZaIH/h0Dv+PDfkofpRfoMJnVAshNHzNjwVwQTca5dkiUcskl1cMuRZZizSaGAM7LGtFULQlK+cWE6NePDbbyAixqSlOhWE57tvr7v6B7dshevAm1AgS/79ZcYBbPflngBdOzijbLISA1RNZmu0EVABBxqkk1JBdsOS2yfBy5+bdpkWdTinjNiXxJIs0qFFc56rw5axnxjG5SH4go5QCU7zpz5sA6ML5nsZsEdSESIbJ7RxKNtvb4+bT8WwihilJWa4Z+dck2J/2wiS0oA9nveUNUf09NoRGjMpPXFkEYPkHuuGGdgtiaj1PQRjOubHcLVlSWdm5MQaZbQdA3zBsgS1OKwuAiyiOY6ICJxO5nyHQbYsvVcDrcSzk5PaN/5g/d4/VUTrVEkb7O0bg/RcJDFdgWYDfRBV0dNX5+C6oC4LUa74OyahbC6uH1i5Suvgoyrh4F9jOMx+T4uV/zPEzHhnuholJ4qGgO0Bvsj9WIhrb/eR/fUrVEOurw9VbmG0WczLMTGeel+2kkBmVloCVxgdz5TRzVx4Gb93hh9x/n0TqH0jRgZE/SPFzzQrr/gD4XcVAXXsGM8pnVS1SwqyfC52M8uju1OnMkG50ItjLtFVvwhVo/s0kFl1/44uwH3lxQHNOl4Gmo8EmYsGNiZbR1TJVL84HXJeUqd5D9e6FdWIw2RNUIpnBSf+ZJxElO+cvXsSzyMqA7a91YqswiM5mMCeDqjDjhkOFNSAKpukXOk10MTSUWemN/TzU7pb2CXe0fuUdnKklwCLWdUsb5yiC0hnIBU+QF5RDckKmOcGSpdjU0xDohXGapA7Z8zYfX12qnAsa8rSWxUq66zLNPKzgTN1dm32xdeC+Z6diKNBIoaL19JY7HQkOEUskzKHL1aw9yf7vyf33u9kiFbwiKa2kswoAz7AKiadjh7/oXhBfvDCuDGSRbDyDbzXkxq3OUvxuFB+/8CdrTmG8UENNXelXP6r57zCUrTF43BA5U9fBWLSQIo0eS95woTS9N5AD1/Q4PsWi1uTUN9L+N19bHRp3pO8/fmozcU1aeRf8ceUeJpTaQw4uqkk6EQLLp8oWOFDRvmQV0eruXqc0sZozT2FoIJeV7TOJEk7JYG4X9Itxo6lg0G0j1ueEt9DmuNu1XOfT08w5p8yzZfnHRcZQxO8BJP9vE97bq0eR7r5atVnnYaS/u5kr8CiZDdrowIxSb4H4uTBSYChVAzQxZNaU3fDA755ag3DrRt7heYceJG9sZ6P5adIfKWIsgUdVGgtCKf2IwAzpZu6NAiiUCkJLVLs7xJTKbLYLX7+rvKu9hSqbZNbzWcWg8XFSc9J461WR0FAyxpiqkLZP7vPheDukHSTeY1hYBS1tVYZEakvEWz7w6Emnhj6Bg9ystWEm8eGx1c+vnYu4xk89u5CTropG4r4jba6MhGHY0b1J/8yxX4PFC6CS2gs/fdSMjE1AuL5U6NVMyUaIp+JezlSeHO4tJi5BcMYOoa5324vlfVMlLHMM0p8UwWPWDwUDQLW9Yk4IznqodhOR2CjaEYDD4YpkecEDeZl25Hx5EO2ibmkFeJ8PlEkaIgDADl2DGjdXurZCjYutXVRMsCJ9m7oo4zqLWOAIvahOWqFEhjzIU0o+TM9//GAqZk1AuEvMlQTh0/MvdIQCXI+ZY3JYq+br8CtBCn/Xgpy6CtYDsT40Txzeh10Iqva1JouoZ9lFF2nU9cpsBmELANcnQrMCYKz5GMFUwOTN/nuInWcbTSVai7fN9nJY0VUKuZWkqhjAM93rMoB64AN294xg7vR1P0A/kWdwsNRxVbV7RtL0Krcftr39ivg+miQmxoD9j++sEktHs2hvEW8DUkOyhDFvWaBdwjTA4PVBTatUte3Pn8yK7Ju+w0s/+YTgIVsiWzxHRol66KEoGnfuy4JDwOZMYpty7v+lt3BRDfQD8kvcM0Hvi6ZTXrr8AEBsdrdD91sz2QbaaJ9pLGkpPwm+/jw+AIg1PtWpOZgLOMtYsTIuf4kZxCGTgcJNenOJ38YKEmSy3J1t/0bInI/u2Gzal4XRNxzXHE1fwu4e7WUwVF89ufvPByu3dUlg+QDm/T1TJw26J3HdbVTbhptpH4Si4Ozf/WaXcygzjjE2pDw8MsQA95SYG+VtZSXOSRL/y9JCkXB1/wuBtpPV6/LTSsTqWgFHqcGlT07hfk8UiXTTRvbnk/csC+Q951JGPLS2Omi2afRQbQKsl1IzW1FG6++oTXgJAikpdVpgEIGfLlTTCV3UllZyIeqwS6cTu3f0+EnLMSbr4KcYcGt6Kqz92E4kpBdN/CUM2hCe/RszLM3yLBUxHJuU00GOP6dqhvF8ZOjnYt3fK09E2wJhnDjjxxjN/eiuc8uwQSuTDggfiHO2EXNDNWzafOqZCcXlLEWrSVCO5Og7yoilitP82TfmBb/K3hBJkk2t6t8baEgYffewZSHp3ZWdWhGCCMD7cytO/lNu2mKkMyJs6oOxBWwqGrHp1pu6XoZ8NxnIa8vA98rLgUbyTobhTRgZFEnmex23nTLjLWGCn4EMsIi5Od0HvvHsbOfdeoxM1jRywqN7ZCHOYZZ3NxHjD68GR5RMjPnMhqGjNwMZwiJySisv+uWRDRFmGlPJJEK/4BZMYYU/m6ptFrCW3OIcXzp7UdGGNDWSTHTYGGA2o3oz7mwAv4nebRc7270T2hu1K5sz73KAx+jk4393t9Xw1XqDI3k6BbR5y60X7Y1qMEu2uMbp0CvjMF79AniXV4aqHYkqiWVRFiIihHgV95ibE2U2xMxFef4OKhcG2BpnRMaB/HkEPN95aaeqbZhKvrkGGSURr54OkPL9GDA95cFDUfwAzd7DVIZ6gz9zZWFLL2YlbJHToMX32CeQdtFsIXl7+9OVdESQYa9PMi1Ep6mUOO01NwFUrQybhI90ckzMbzHLcquniqHp9c46r17PWIOt6IrElHvI2+P56BD+qX4oeEIgvMZJZnFivUPWwczbZR0uGgN+x5OA1itDvhgwzBsnonhERYnlHF/FJG8CEgNNPzRuBBYbqlKcoZ44mlN6kZgrHXNS3ec/g/EtILhKv+t7A6KfM1zX2bungD/s7pFWuWE+gsSlIVLR1y6te8vgktXuP1xBeZtfxRQ6xz7c3rYQ6MD3ORL+WDibMHNYoUizb1KYoIlBm1zH8JZD4tLHp56zF5yMv5tqIirc+VNOEgtV9iW9hF2xIXkh3RqxN8XL2Qm7st0nrjT3ROGpQnqmwyqJRwSM+mpBkFwldH629bfzHaq/EybxO037QVoBll7N27RVGLdh49dC6I5dLCPGilZrfeQD5vJSvNNufMD7tRB4UoQqK7/LRE/71pMWkoaaGJkF+0DRJ05mZMD4gz7CEBKeh3gGqluzxViwBVQldp01zIX9Je1U+w4IdCla6fKSSFgxSWSHYUVknXQAX5GNenSuEprzVpNyRm4v/4Jb74IkIMuaBly6lE9t1IJSTwq4mFT6hsvs509kr4rDroy3tscMEePf+blPzw0ATV1fiZ68mSb1nLxdWp/EuIklxqa2GhwQ+xdbSzkRzdEMkCuX11BqC7xkjpvhUSqXOWs6UtfTHjmYc4lc4uHBX3N3bxgisCsYWDUo9+0obbtmxbh0OiTZbwFIpqxB0c8wltoXxZtuaDkbmu3C8mU73SCr7qhl6l6D26B1/xGyhbs5MRoF+4HzKUMQueS05GW6jsL0CH0HsEGA2l/S2nIaVhMAx2gBirOdgWTwMqfCZ1XzpBY2jfP9vPqvXKdBq/XTFKeEd1iczy5Kh87YiG/pTUblpFrgGyxGzvETOPODnoy6un6+up9EOOzvKqFiWmNUthcYTbUTgvMwBGhlMSBnCmkbXIQREcRKRN6sw/Ogm3B89JxL/cj8I7mT7yYCpPSMVmKjQP0eMH41JIDZ+zw+Azdwcet+9rzFiYwSdpcmzTu6C2nJxV41ARRcDpLIK/2EOtqcLWNq/bY+Tr/cEgErmCu68TbyDGH2yS8Q2ubpXJnckYcyH34xM6rjDm7hW/bBocr+HawVXJcLE+BQzBySMYP/n3ZVcH46hcxrzaaqk+jCJs2/mV5NkJczPZfYBWP5wZA0xnOaQDkVOVzImzRw3wuVOQwi5nWCTkUL7TBOU82A2R1mO2tLb6mt48yBOUIyrSq/oUoKwzZGxfNJjzWSfY6ErW87WM3GxIbveQuJWlNoQIYmHI4riVef9RsJGD6o47q/Z7PY0VX9EMzcONvBVe1ngNz6a+ifee6tpFTXkJHcOXLTrwz9er55bAeNtT0vhDK/L6SLi7/2O51JRKm8CEkVdIYkQ2FUsdIgEHHetcVq3qUG2+BOL0qUovtXso5VuCWRVql7FSW6x4eWlztb5QbBT8X8yqNUnsHlQVIXggpKBEaVFEy8UPLWg40LUQgQi9wkEgmq5pfQtTnqVSxW4a3HTOyZUfFBeIW+Sqx1tAEpiScPXsQduaZO91AUR0LONXwS941tlmASirhzUTgIdAmJeYgvL1sScmbQfuOLBZNOcYvMZHEjlZpQaF2feeC3IWG9J+fbhYoyFMoBgknfTladRglmA7Kn+wOb2gne1m1Q90u6BJFFy7QCzN8C4siaCZ2a5s1eYaZhhN1OQGwyRUIbVY2oUqvyXWrBfvnHHSwBQmYq9sUnN9LRygIuVklQa754HeJbogZp+HwDBeyPnZ+z8m7mAVgo3G6Bijufpxp7aPRCNnHOG5pFEc0H3Www2M/DNbbfWpSretS65+R5Jmo0nhZIY2yxm3BLIg4mTd7DZS8ZCaTHgXfd1Frsd8PgwpizlbLzGxt3D72msjm9BZCgJgbL8RqoJI0mePbC1IdPsJRIYJE5N8AaSv+QD9eliEg/6chjvOsj4xnLlxkg8ppiPUtxZoxftiO9mTJLxaBn1goINIYjmkEVBP6FmrAnTLHkoY/qwfUzmSiI6KodzO/GLK0Qk2guZXmu0Aq7V8niDY7J99Un9o4FMop1qxNJWCGimPUcqnSm8tEZ7mOnYEvExD03Rj8HyI4otHUew+4d7EZUPHoQZ2iA0eH8GfsOqNnzfoItpLVprP3AgYa97f+tm/8LLTVyHt7YSXoHJpQc+KvHlwKmtOU0ppY8V1U5BEoRKt+gdD5wnLrfijQUCxQCLNO3xMnc7pq6Y78aRV8mm3Ldje2XFWGZGVGAKBuSIvFRFG3ErjGlANKXQsjYAT9PuEu1AqJRcHNqHmPF7yxUk6ny8GbYzAeqBWRAkAqSN/I0cuI0bNoGP/aTfj00PiJq/qtpQ387lXYWg/qAEW4qIPkQmj8AzcmERXroQ+1g3a1BnwLdzFVl7IBJMZnlnPL6EOBjzwNpNSDVTkoWAS+W9fYO20muRQcENjgvQOUetwZH3yxFQ9+koeMKQF1VMvoj+MUKjbUZmu1Wrzs8J8J6QRLR1UKSulYPsEmGu7hSNEuPEtwN6Jr/yr4jMVc8dZmHYQwDDOix1MiZKnaHUUscWOzVFQMpWrfTML0eLRfb7Voh8cQT44LWIJ8323vjOXY22hompLuBy55zUUBTywpIyLt7FQdIUM2dznXncUhgw5wRO6nk0LFYuEU2f1ldLx4FMjCqe3eXMRzn8tURuzbSmR85C2oOCSHwh/g+OK4/grycU/Viwdc8AHBT/ElVK/WQVMhjwsnnGgTGSxVnJhpo/w21oQxWBqcuHHxIoKLfTKOUc95OfpOGxsC5lNvajzyAARJ+aW4Q5vnmDJFyd/SnLVMlj7OH4Kj/fbwdGRnHFFyw9+to8D3Wm6SKSoffoMeNLHjg1+ivXTmCaQmumaGL5WKWrwHEWNOwTOeisiOXvZ19A3C2YO6svZ2cW344uMlqMxVHSo0SCDVuxSiGvl1MTlXTMmK4F9L0PbFt3Rd3s7LJvJVR2jS4e8fWgU6HygXHiWqNW0bAiSy2c+6bMg6hD6FBlBBHMavxl3a4MX+i+Kn7BEpQXC08/wRh7nkZJJvW6rVwkR95wSwwKKjbK2ZTsCyEfHlvoj0nNE4pd0h3OXc9wnkk3BasdGI5qGLPlKxCL5bYB45SRQtPvPyDqJ10SYByPTUEAV2PAVhr1lj9QDXuHme2NnMm6nHJXcBZRtMMOL6YiNPeWxesw9vJm5NTep9dApAF8sbhJ9rKvYJjrt+AKSkL/K7JmtgiJVz7Ry3VA05pGlYHvZ8u0WXeXux/x+kgGPLZ1nOQGJcRFg8f7oca/K2q7ChAzAfFYQwU/JZQjcXaENjs+ugtqP8GxOErMIJk7QyKPj7861jnHqK+TTOBfEYNvKGb5nySaKcvIQm0fZjEhoM89/74z22odTFBDivXqGY7qfzqiYARkPsQHDfGFxM/en82JXGTPaY3q2Ijd2QhbaZyoN9oct+CJwnDcWOK57/L7Nc9DrBRTVs1h1u/PmIoVwbI8hHjWI3qTiCc4kilT58xxC1Ih+T3opVEcP4r+5QKWjYFTpSZZ97rgO6sA/gOOSWdssLYUohZ25nfkrXinAR1OPd/93q4JOxkWiL9NH5wtfAZke+06o4Z1YFV46ariWHfQiRUy6I5fFQVlXuRtXVGYhH3P/9l2mt9fIaaSWD9z0n33fPL2dRSR8XK/oi612dSq4clLan7xcyCJrEfbrD2zDDpj1t09iLMjysEwLDwNV35GvOUHgW4WcSIqYqq4gXc1ecQ3PmXXyehreiGK1mOx9dCFyKSdd/fsRakMuARXormHmKToC5mWc4KoLb/xOrhMvL2AzjtP4NljFC2zSbCHjQ1Wr9IwRk36divZimTgbJkidAWm6VOxh8Rx5W1M20Ol6U8ENGkB2J59mWF6y64buyp+wKFvj9HPFR0lj/ccYCTH2EPHkwtK0ADbjBf12H+AXiG9FUq4Eq97ttDHB1RAlBPJjNlQs6CEfo7wm8tZe0zyfzu4r4qT8byED+JI3JHQXZfSbDPabaP9qDSMX0a6aDQSb9fmoy+FSSCGIbfCzGZhdpI/s2bDxMCxGq/7Q8bVhUx90X3DkQpg5J7ykPqNazqvn2CdD72d47f0RF9HjTZAklrTsS0zxgutTLUVnzEbgiUfc4WOw0JqeG0QjoMqOksGu6pQHSz7DhGLWsF0i4+NUUk9ZVhhC+cxXugupEt4BhufSSqO2cqtUxrsD9SUF/0GItmTXRjBNAGiAq6S1HrKBFJIOboQaZK/6kv1O5zEkL3y2NLyzWeTvSjxizsDswE9hxtV60EL8LqLprTD/uNJXCbuGSQlejhc6U824Ewdu+yyjgYgkt5vwW9MPgPYYHcwlykWRx6TSOBZ2MDcjMnMcQfGX03xekzRgUeKmRuh6m7YbH6QWFr6uRnyATj6usNnAqdT5B6Gg/KvVZp8dPPilmetj+BHpSKjPBh0+1weJxKQ18lUak880xeTYhmBxWR+2wwGfP8E575Kr/XQb7zp5886AWj7zdw/qChJP1hQV8ctKziyGfEhwGiBoMcBts27/nB9qqN0+o+Vi20r1pkXxCsc94S4t5z00LJNFljN2hGwsmSvSl+nUzOCS+bAi1hW/d6UxjAl03fvXMnjRsAnTyOYKJgbH3Cek8YH7rxTMOxpVkwWFIr4rgpM76NYEmSHmXV7of1u/BaxmzokumxvdHbNeo6b5caLmmUml1uL99fx2qODVXDC1InfdbCtXpFh7kk5e9mFitv26JMN8lGcN23v4BK+OQl0LJb0cPNQTQvF5p1yMs6KMNB0LACHK2vuC6OGomcNfVAqraSiLtFcsF+Dos5nZQgrNzzM3Po9qADAVHlEo2MQ8rIGdosjJy23isKEy1LbtHeLmNRFTz2cPr1osLhx1pzxAQ1JepwVi7w5I8m3oAJTVmINmKq9htOubE8CzwftgkLkMH7gSxa62vEXONPMuqJkeppNVdUPQDyrFZf/3nRjVbybdncZ6nq7+6P5Oitf3a6EUjfNTRWUESJLqhODhRJTVKzRUaJucj+itKhMvZ07ANsdFYMsqIwiytfnWVsutRAYuPD4EblJ/DxuFqJyCyT+sS45WEfJUZeVnjaDHPcArSG7wpQyQNVa8TuQOMsydP4yepfnKJ1wQNVveASRUR8hZVyWSRqDTviLy+Yn54zdu6ad+ZPU/FGs8sj7Cz+W+W40ATalQYePjzSfOPoxxJURABGUgt6cP9Djwarp4BT7/h1h+ciSkkkSGheWEZCyItp+XEY0X1Up4PfemNYEaXOqU6MSiHm2at9sj20pnEC8SU3E0pLiFFtlSG/i0ISrxRKAJsIl93aphp/4qzUje1Bhp3Vlu1lmFX/54SEPD4bq30wZVROq7qqcIWgRFd05MOWf2MiRhj39tu4m4SHgdXt+37HPm7D5lURCLZOMtbSab06HuP848s1Q7xclmu4BYwU0KnOnWTJbINyNZZJGqrcKShxEnC0VNDcWZ95KaafB8cfUBhPxZIgKLmG/SLKj9GN2eNL9QwQG0bQBWPGm37AjJQbbawwLHnhW6WrTd3gCiS5DOZHdm0X5kDefO63fxuV7gBtK7PgAzVvOMx0Cj7aX+/NX+XyOzO9gicwOjjA/EcTgh0ClNl/JYb4LmxLwa49HavfMYYsYzSi0flj3d0MroliIDhOUouMqKLC+hSnljCcppErEBYi32C72I11dk5yr9p3VWdrEbU+fw+GEYhSBOBTklmhaiVKkXpccrTlAYSeynKB5BEyRbHpCHQyrOsxTsr8DhoN4LExM6wpcPDf7abpBaKkUNcG8/Haeo0LlawqfendUAYylDZ+WR5gn2ia1C9MAXbK+3rZB9FnHUmx2tLHini0YRRfqB+JfVPyA3weIo1Pk5pd3/NSdP8QsI5+QQFON2h90yiRR+8qhuneP5zM3ANmKnF2U60BcV+CW32rRyUtXzC6lmD5HywpwfOQct119Yvo3lX+dv87KptOthj18A+hKfizdEQiykOMkHsk8us95AnUdXe5CSlGGXaQYMycON8idccqPod9oxFXuPikiBj86Ri0upp94i9obaIFgAUlsdoL1X9ew8SO6SN1X+1bGYrGiVPzlOQH3WRqdMkKjyGlFOrFHpL0epClpR93f9XCo1E3OR/PyyRQX6E8X/k+ge7YKuqhifBZ34VlkTu80xh5NLkQB9iUUy68LBlkjMsExTTEB0ypRJou2gToBEFaYx23hjfrjvJDW2fFgS36YxXGCIZGJggyVkxDaWH6yP/laRku1unNuWe36CfrW1c6XdZ+7B4nObfbIxremGGYlRnNSJGuvY58DNhUXFAoGtmVN+FaiKCSFGaUufvleCJninz4Hcx3ezPgc62cngbHQ0f/p8VJ59xFssce8z57iSxB8d77pbamRaCzbDvwEMIvRTRm9YF0zAcodJi8dVyXF7ku9e79EtGvzffVVXE/AFNsxFpSPeusFtKE8xhOrFfXr19VvhKPKQjFQ2RqQsYmUgziTi5/vwKQkzGJhO4Ug5kHj6A8aLuPf9P/eRrQ4UEQpIW3Hs3vgsVQYQX6o/Z4D3VBPgW1ZL5KStCVO6q0gEl7ZOIU4H4fE7teD/hqulxWB99hTOVkPJ7fLdOtVMMQx1p9WR3OSazejCR0LlLYrZD3UZJfzOTfDVDQru45sCA+Zp+rc5IhLfsmDH7S+DR4KLRNcj7Y3pMFrCzylP2tRV7G0XiNsnsTqw0DJ4uPoMJIZ2iRreKDOfkeP7/Q5cMaFZCfo69PMKUSBfETJ+96LaPnBD9XsgsfcyzCZPYSSk2J8DkxgwG/pTSurUYvUen3y27RHfoj9dPK9XCDslzGR/Cyoq/Hi/RiXbXRPrGV7VOFP+Q2ucQ2XViP4rVO5W5YAfKSVkZAGF0/8DPdwKnLPcjSd1vitL4fgz1TW4X1aQWQr0x2M0eg2zYeuM6vREIF4GQYLXbo0/9Cb5c8gE82awpxCUrifPV8cnyCW9thGHJc8xVR0Iz8iz3ZaGU6RQlmTqvhxEFVk3K4KBGmiOAfsZYIGDcXPNb+x5FaTsVsLgX/DRPa7CBFf15+IvW0tXJeKvsNJjRkl61ZrjUa5HxPl8q+yDkeCiqBZYOfibVhf9ntapvFS5qhTNXd5VipIMByxDIctiMUgIcXYYEimHAUkdBiQoi+tfX30KKvmUA9BgktXQp4nImiCHPKNEUwhX80/vCGKuxqLBgfEd6zoC2pYvU1l8M3OkiUi2Y/oN6KB2ex7D7sMZfVA87YGHfUt+V88LUsTd6d/MppYGDv7wPSHfKEZh1DnR+veuYlNIP+Sc3PSa4JdZLw/a+MXdl5W6eN1/kp/hEBKpgHfq1iVOA3mZhLhNcdLXXdn0mUWMb5HJn5e+JiiPFk70IVeBcmJrql5PSDLb9oY+6nhYbgNqXQImXU6sEYabxcuSb/VNMWUm2Vb9VZJiA0VD6KDLLX8cxYBfz7m0PAKcgDellZ/apSF+qmhpoocLCDODM8+M5iBQmibkWo4dryXzlOmQ0L2D6X2x8ovIfwLl1Y3SSTo9CbcIsw++MXLNvQ62V76LX3vQxBNFJqifbo9hua0pTDftSjWbmeldo92u340aH6Qw/R0LMdnqRHCxR9bCA35q0Ao0HOtgHOciVvKKInmZvqAz9JmdVhT/ICWRb5mY1lviQtTEP8QiMS7R3qM6Ms4iY52IRc+vhHgHg2/Yj1tLjWct04ee8KjBUbKL4i3r6hx5XyuQl6V4MW8HGz+WCryryY8N6fjlNIVd0gXqbzPPP2PHmWlBO6jEne03w38665ePMUUb/UCwrwHxJYp7lrgJypguanJD3KLw6x7fh+5fwvLq9TzBOYRdYvKeU0+Lj70g2P3Ljgl+M6BkysiBaS6AAustKfTZcSo0WVV0K8zcRj0QtplXSoGoFjQhiBYgWI00iWzIyaeA78L7etxf/VE0rhviyVXR92OfthUXxtbmLeIcg3TuVS2iXs7Kab9aucQqmmW8Abh+akk6VZnXOrfBI9UrF/yg5HnckZVWmjENNpE7f+hV4C7qks+fVUcailKmVarBr3+o77DaJCTJypra2FMBy0i0yvBHcwf1RmHKawS73sRKgJlqoo/REo6jDPTmj5FS967DR+NC8cw7CWxcol/Xnk8hauYfv/p0SP6aZ5yv+/dtFjfkiytJh2sUmL/ZfB7+PRRyRXQRBYn7N7u0jqyg3NPlHTCt58MBxCC2+VUMs6BOb2WSqsUgjXWw6j5BeLAdPvnZ2F7gUgE3TnHiW7RRz46GNgvfr/0KbvgORXE6wUmmrH4u64BSXTFpTmPgmr3U/nQnyhBRCZ2NYfhQweQhG3HgejVKtfCfGAcuENfDas2VYmN+VobjUMngo+KkAdQSWRRy5eSljGK9bR+VWNk994gJuMgSL4lP30KlmZPEMfosGzEuxxqWtMDCGHeVs2v2mV4QyHV9QZRvb30rnZu6TBCvmDMlESDWYaOJKvL019VjbhSWf+bC1i8prm1Visu924NBeBcmBbu5WesZ01yj2juZV/+ZFxDKrj3bAA4V5BlXS1omjTwLoSlvaIBnTofwba5SZu2oBVThGY3ezGygOxd8OqB46ylqY8z5PoidZs/2392gwa0XmSbt9OQo9yLMPFoFiDv4CUlK0SdFAP/9k8SycE4Y9W7NpchrJzOo9pImbgSruBUp+3T4A6WSQAnreqQ9Ctq9OGlzvgqrldYI20NiCFY4BUDiDA0nFCxJ7VNew768rOhfGupYbXAmj2R2rrrweolFdom62g/3TrKDQHtkN1AxsH3FA/IRDbdsd2CnIg5A4qsoO1zWjq8N2K7rFNPCptJYRgkKbmvcidk2i+rJlra1ucmq3ZHGCzXbcQwUIgkoVa3YMf1E8c+UWuf1pUlKxWr8mFu74MzicXH2kkjRFqfhsNYKub5JO6ria7GHZzo+ODAFt9g2c61jDYQbQU/zgaqxs4Svoorcp3Pv2/Bt9Yv58TkZogbUKbHPmF+hih48eVDDGA/BWdy6nHyh+q6eMCEklKrN0ZQ5jT6HWFq/fqqhCOiF79zmP6YFUdGDpPYti9iw/qP0YlII2mO96lfcGHIVV7F96y1Ni27X+Dml/jQSQTw/3Ne9Wg9qB7WGOFfYoF9yBpYEpWNi0hsLYfzYatbrc4oZhFY4DxlHQFUc7xx4JBKXmTO41IWh/p5rnL+lRE+34D9SOFsqzZIuSUGJ+TobJKdAqpbIZFkUbE5/2ZGNcrtmAxMsvgoT8SSy6RBLMnEcTWwAu7ncoxR6UqJhRjXmhV84lJQT+/HiQnHfyztHxDey5TkT2t2qMbOp2oPqzL1y7JbRozUZ+yNRhzGccQBeOxCHeMLuSLgAFy2GJKp8qaxo06216p50AeI1xaSfQh8NbbNvuv0QKzaLHVvM2FUWYbssvJ3cHUsUjjj1qQz30JffPzrapvfaiPbAZDez8FSuiUOzH1BFPFbmXLs6+i1LKbzWCPXowDy1CtX0rAdYiNYeXbk5CIh/54Hlj+/nsRGtWN2RQk8+cRKkSrbe0LdC1FoSLnhmFfJUEufzJKYFtDLU5zijWhg2HdZo6mHsTWhQOLunwYXrH+bqWdqpQI1QcS+DtG9ZdoobcmZPR8Mo91TxxGbHl+n4KGV8LQleQuI63p7SKCXDATCXnWEwh2+YhizPP8INnNd2ls41mpAcmWV9L1/zPp5aKx9rIzDMuMoTTvFL/fZ1F1RWLoXE+pUZ/niHTCQp915uW87PnLOV2ob1evMjtMS0Zt/6JISR5QeLEm5xQNfNZPR9drGrd5AGvULIVJzZF5RETANxzK2bejQpCuweERhUr8doSoN82i0gH5wJxL3Dfsn3HfZ/lSYpT9DjFjSVrsoJ6Aif0mrZR32PIUsleC0HUNaVdidIIm1ygVxLyNdbjVlKN0WyGLAbNWy1g8eyTRDh4Dfq4maqk51AemJrwYOQBr55FP/C1kj8pDh6hUnlQlMBMcis5cL4eyH4DRxQkLxIyFT+jG5Sj1zzJ4hiyvDKXLRjcFQUuMy1CKDFNZVYeAGVF/T8vIPZIgnfh09ALQ6wUb4AMOtVu0bTLX8EYWuXz081kz9uoSoUtH+Kr6xQwHBpN3Ns4ohtJd97Cukw+964xFOil2tqYvKKU9BIECYFvFRtNABNlW6Uw8042k5m1ht93UvKOkJj29kULTUrK9H/h4pS2T9kWKJPdvK0bssWAn/NXEH43TnTkyYfQVUnVxNm7/R9pxmvCF6GojQDDSqMNt4DNGaqzuWNc9a+AeaDZgrHsyR8fc+3qbBKMdwTI8pN/IY0nI01ZzJERHkZoWi6vFv1Iw/f852cFPlt29mnjNkCKD3uktTcOvL3Pd45APWh921KFrzrTgOfQY0BO6SR2YjI3yhvDYyc+GcOpYifacVUb3Rp5GxZQhjjNlpeNJTyUDM4637Los9uuHfDjiGeV1FtPfplBDhctZjd1Dyl6VHXR8qRSyf1rItbUjSu0ri14B4WxjrdtADhD1+B+dMbImK+V7NAlkMXjt/zV/O1NZatBmhzRuF86syoNOUUPPZ7usbq1tdwz0Qax0vpt959N12tYGANs87Sva5ghVpwSJa4guL3EGp5HizM8JkRbsW+dYpuj8keKm2Gww/hiUyrWgIQragVCgoHjomT9j10sIkJvkytJiWMJomFNPFG/l7VCx7E1l5hU0PwbpMrssCpHQ+eLv5X+yoXB734TNiQzkMbB58p3lKmutmxtpV7BnXE5yzBvFgbg/q2F6ziadEwIFadtG/JknrweyijyIHF080TUP7Z1hEAav9YrAXFzyURYdGgAjnl1bct6Qehg8WnwAiubJdAIlSSVcy98Oeg3BgYCpTrsLkzXcO4SALzoVc1/yWJdKPboZ7Nv4xFFc12e+q6AOx7j+dRyDvESE9z4BNUNh2IvqWP6d+hhGX0V9QcZWZ71ePtnkL3ABcgxd3ZLvkQ7bd9a7fJTVvCcz1VJmXBN2IIBbHGUTFquZnNHXn1c/yae0RpCxnRLESLP1MQtJifTxp6OUllDOVdYY7PqS85RS09U37eNxETjO+2crOZVneE6lZSipgBAKy/SNdoIvTWPUuIwoKsHR7r8a+SJRssNMI6WMOmOCDQqm4oQSoP6m91XIaRGyHcjohYA6nG3uTsjSrnAkH43BRx+c47SKUpY/KIbSqh6W4Rc+sO2WZYG/fHnS1Bqgd5wPS5aFPyXUDbJ5Q6wQtStAwQ3OxYj2/W8NAEYdTB9O94Wk5qVRHCVRlaWj0JkvqRKTdXy7ff1v8L+EkDNJoKPCrdXQKy+I5QPSuQryhkiO0QqJ02PA8wBNnTwVhXzcgHOTAgvZ3I2rlBArOR+jbbIxnbI0J6m7dmVR3gHXvFFpxvBt6+B82BHBfJs1KhocgmRsYECLS4nB83bM2ucUAw3AojHPAnjkp3edqWHlLb6nJnSAvqlTHjtNQ6TGtvFfTy7K2Et1T8a5VYUrq4MAIeVn7k3bsUVQg3Nt+72mBFGIvyLf+kKaxvG1ucDmdLUX9i14+GFNCBg5zqv7L/KLadQQKfVSdezeSio2O708q/WIXHQCfShOkyU+8yEpDAfpE0T8rCVJd+1AqdzombaEyP5e24x3QeM1tkQxNbqJrY0O0bN2c3qi+J/BlJ+4azx8BobhoQgIyePRHQf1ndqnJP5gjqmDp9Q6JD6GCclaSqniMeNaOoYqMLVnXU3NoE2oRQ3VZY061sbHtMZqibOhaVVGkpibQkCfRh86FtLQdTngX5byOapTVZ0/05Ew6WtFaBxXVu0NFzXPP3sfUEPhq+dWaQqiaG3zKKobDtyUHloBoRHwkan0SUDk9LCE5WBt3dRuhvIBQN1zyt3Ep79QZJJyOt36/lxUiCsamnV4STukjLtFvqXZBICsPXTpbqh8WwnDaWtLk8c/DbbqtKs1ZRalqiBuH5QPHzfsPSiPHM0nd30ts7EUqh74/KR2wot0L3Ijaz2ZLEZA1u7TAMQ8ZMHR/2pVRv57QkBP1cinkt3GSXDkwzFFfgUM1q0xPT/H4HWvqFHMyqyQjEW3lPBnG5o/M+B9mOOIl/PI1818AcFW9HXMlH3RReRnCu80sAiXfhjjSKTp7ATLBvohEzxcDhfD8glvJ0FteZQXwVrl1Vu2XSt8zgKk/+GL9cpRED8BUXPb2J1bnA2xB2W1tCBXDLauRi8lgQPIteFpTZDT8/XAgJYkxmwAbPy7p5bhWOaM9EFRP0fMauBi1ZMvUXzfaWUhmjTO7S3XgpDe5yre6J1+co1ZH7PJ46bi0Bnt6TPntxCVVbMNnAPf0BDxm+a/MV7p0LnohV7/h2yDTBgCWJCFqjq2rqJRTyznXEoA382DHWkZOnzh/OR1vqKKJLYqVefqJqucfkiVl+T/GEnjj55I2erqD9Kq9Y/VEWUX75L42dWV+JXJNk14O9ev3y+LMB8AEbGfpwY1ibPZR2T4vo3Z46yeBgOw8cW+7D8+4tYPYYsQOPudotu2uKfYIpNgcHNBYyNlO5OAn1t05o7KyAqZY/FLhw9pBtt1nAXrZQt4T9dkoTNOtS8wyGf0iUF8F9gwod9J06dgo0F6sZ+E9BoYevJPFBUtg+ssMkek/PJdtk8FVsL3Rwh7UJWfKiyGlRUP/1SWN9XznKo/8zPvRtpvP72D5oLTei7sHu2utbnbVL8pKUNVAT9A1Gmwbikd3EiQoXsG9+Y9lCboHYoSjH6w7U9NMVtnjw9JxWTKd0GPJHo0C9W+AUPlHt2OOu7C011oA8OdPIGCtKAqlC2jEhAtASj6Ny/Hqv26rqbkPAxjv+ZtjqIUn7IVBI5rki6tn30q9tb0dwRgFppFwbYl6m31uyxMrkVGn7U4rYJwnuKUId1pehGXBbzuQIVY7rkO7I/jEjpwnqXkU2otLfe9zP0SMeJS6/N0+9unEO7uzEPwa+5gTKSuLdERtrylumFVvnyPKRfoKc5qAl6ih46AIV+ziB/ljHw77Gc/PHlzwEdUEuJsnQmBhyHSinf5q2U/NHl9Y7I399Ftm99syDActhqaYpFQQ0378KbEz5p0a4VaVlikfDHDk+dLq7bLKsnVEuZ6SAGayyJfsD7pgF/mc27cOEd3NpU6liHxmuLASTazKb3lHziV1eeuwFkfSg1ZVUY9UVNlxM42mCCqUJOpimfttoKp1+4tUZAFULedPkwkdbsjhnvYvzXRBseJ0LREdkZQ1029crK7Ri+FcA6IysH8tVL4+J9IKPiop0k/DqaMOvYJdon2FCTKSGE8flZN9nfsK1/vp/0WctmMH0Xl1kwSQklJZxhAOhqyqlZj49W215WFatz/IYwY7BRPf9VuyDPDp8SfoNz4mbiSorSmqPxHe1hewZXUH52kjdPVG/kyj5CUY5ByckAKlREdYPTXZNIS1nPuOAcy82PH22tqrF++k07LHbA5Ntj2KltQhm77Qb7bgGa2CMQgalmtarfaK2Pif1hASyCbNLMx1SM52LfE1ZGvLYT8xUkmDQWtE1r5mP1/B7A39QAjrJnyfp23caavZTFgYuYi0xxAuOUsl6k0ruJ7ElooB1tUydRWA9DkJG08tKTvalqWp5gnlYgPKV5WYbpWyXw27bEWZx2pjrAceKr3oqi7go6asiCI7HYwIerTlS+igM2bSvEsbhuMLrUVx8cp5T2GF2UMQJYDSxUrjSyGgiNI6UiN/pufuHYxMUtvLIS1WCHqA6ctc3zfr5AEmPzoIbFhLHBBYPa8asMc46itnW4hTsA2uamsH43sUJ155EhfVHimjA1Se91o2g7Gm8dFjapKV8NuuTJxiq6f384pCm7OFVtzNPzqnG6wCEO3lg6F8h24CTZBn0DcDNW66XqZ0biyOPsC1qMfgYV1Uu5d0NSCOswXsA5V6x14hW6czeE1djfh1mH8AkSN/i9aJsk5ZxDPu+qSlDThDmUwqyo45Dl2+pyfwk29gVLP3PRwjUYjHt2REmEqdloM+EnFzEOxRjUw0iXQwCSFKa5WRyIzyA==
Variant 2
DifficultyLevel
658
Question
A patchwork quilt is constructed using red, white and blue material.
Red material makes up 52 of the quilt and blue material makes up 73 of the quilt.
What fraction of the quilt material is white?
Worked Solution
|
|
White |
= 1−(52+73) |
|
= 1−(3514+3515) |
|
= 356 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A patchwork quilt is constructed using red, white and blue material.
Red material makes up $\dfrac{2}{5}$ of the quilt and blue material makes up $\dfrac{3}{7}$ of the quilt.
What fraction of the quilt material is white?
|
workedSolution |
| | |
| ---------------------: | -------------------------------------------- |
| White | \= $1 - \bigg( \dfrac{2}{5} + \dfrac{3}{7} \bigg)$ |
| | \= $1 - \bigg( \dfrac{14}{35} + \dfrac{15}{35} \bigg)$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/3FbGP4Dunr4AkOVhMfH+2d57QkaqfB2Q3mHqrPmE0e2JPjn2NHfJnMj4FfUecCzQvjyiU0dfbGF+1C1LuZvyznW4ktzEl+3OPdeoNR9XhsMx3s9s+QsHraVSPcI/mV4onCAGtVG2eHvjRyXHbZghxuCiIgXjoakEj4UnCgsJa5mek2s27TZE5vQdEBTuAI8Yq/pe45/+5pASEQ0foNU+ddNfQ0zGar5ZlcJTNMlooGZXqZ/5i3hA5N2FSDKtAh+0K5vZvx+8BOyBDoHp9S9uILgodZIqwuDMn6gao6hswntJ1Rqq7TYV7UTwtqrYbgfz2UynC+wVDZFsfbUpzYfNbdkHJSTwzcunjLW6ke9RsPYhpX7+i56/wDrffFSd8ML5S+46rsjk/TvhghFcEAmkOQQyulXfnDLBQeyednWM4MgGO0JlQaQFmb/mCz/UfvYuwuHZklI00q5MO3/zRm7vpH4sStgPJUYSeSnbAOQJXDsf3O0OmCfC3lTizkYKQVAD1AM8+Pkp5T4KS3k2UNw8CyyuAJjD2mMvC+NEF5Q/CXETEhYDPP7rhDUgIww1LdfydYLIaEHfqZgTGtrj2wFUeFa8+SLm8HykbQlMSZsRXo0l9I10Qg1KsIlqVOgjJo+IThofqGawxC4s5F6EqmaiuSTCOWthEG6sKQikWc5Bl24j7LdUfsBYSR6XkYtqflTu/gtmpTyQfRSMaqKaRTQ0EMzXIz41trtIfYSZznDGNq4331sBD2oCo2MMxC23aCH6mLZDogH6Py6105EP0FHZWHcK4CU5TL2Bf5gOMXkFV2k6m9Nr5P7AM1yoIQ0gYTL8Z+Bp3kp4+E/vhigfWbasLqw/u14t4Eoi43ovQKsgAjbw4S4V6VlTlDr/IgO+ODd/Ap4ngZvAEHR2bsFUwkYq6aYTBBS/v2iqrUZ8wJnhfWx48IJEibo+p/vKhwwN2AoHFKjLHWQuqDKAhcAKnbjnPJPcVxzam9i3Z9uQEcNeUnrE7HrpcrsRoG0qWTuRGP5T0W/PnRZXrCvNdDMjUEa22V4l2+F3ZLPVeoszn2h4MagEyPAxyALI+WJmYDAorCfnqtaZbm5YXJFfnQ2o+FY9I4v799b+bhw/z6OJkWsb3QEFL8Sbx/0bH6f43p2gzdI7Ed8HlsXEF/pa2hmwRiNMkC07Gp9TFi4xEawAa++Znzeq5d++JuESdfueUtbwzu2dY0BCAPEpXl1x1rYytQu3OLHN/8bcfL1SkdOW489Wan7kvi6mZzw2pdPGEXEqNU+TCK9kBmb/tAzA7ZDjya2ZUJaeqLA71OaHGMGdzXfqZfxTlpcA6gyr62NfpEeqzg76hRdNNeACrzXt79DPGRO5+28l874auGI34TIqG/cWgb9wyFJ7NxmpI6940MCoH2WKWmAYI9OZMJ52Wm3quWSMmRquB0ZQpp2/8nk6VIQ9pA/GvPhKmACInf6zjgPHPuq3KAwgMGPr3XB4MCJOVW+yQOcSAEi4hNwf77l1qWvSQ9qByPHm2jRU8uqI02gjMVtAVD+sXozET8ruGLVnUJ8wLcuB0XEdc0fD1EV+wRgu5uCcLk4gcx7XIDbdVufC2flDyQlD22toxmGIj0foSm6FayB0nW4R9LUU4WeIivFQRe+34c/ptLxSzESCYmh3ru8elGS4KcKRs9fEq+nuA1rN/2EuCxl3acOJWi0kwEXxPKm3GNo6UJ6Eh/3WqSJd1r9H9Dw8s36k8q7YJO+ZXnewpW2vHgs0rnQ14+8WZukhx7ww0H/LzelqjEta8FbPcQ0fZZISSzw3wBGMgqaGGPNaPCab2Z9oLWp/4ikJCYLyZdh52G8ymy6VuGT0egeUXA6+ndKgKOSfWDh62pV5B4GZyOXrnvcwQDSQ4Mh4nYBKYH6VP2L/fiLMbF2V/VgGTyECZQyFB7Uie6+JjM5h3EB2MrMgT+tdMLYZYriPHrmMzxuOKVpCDOjVZgsX8efVHZYyGz8sq8qh1hBeXiC50xnZMhrFmgVPYkE+zUzKROnvhO8osUdXAcDS8T2bAfibWmLaTFJukIyDkbRW7FlXiOjSqodhfn52IT95H9F/RA6QestqS01TvLZ2ucuwx7FrnZidmmwrTY5xOgntSA4brMzmgA40rmvEwPz7IYuN6Wp5Xqva58NLy7uQim5DilZOG5Vsz7MFSFqYC7rkg3HVK4pmP3o+yIO/I1xpNZoFTBK0K9X/4yjt2Xp3kbHMl5FeaKVaWx5vDR6zAGNAEzYLaSwpM4WNcBrPT+Sa6pTBRk8BoUcc8pgGyIFh52UeL5UwilZ+19jdXH2Y7HdFWi/yk6pnbDFnV6C89kc/iQBiGOQRufN8ILdBDc9xwaC/LBbzHLHpvNTqPBk8Cv3u7HkoIAimjITjEZXpTnORLmLyDa7uX5NGAr04vWBs6ANmV9hhbPJvPFTkNnYQPMSaQxsPgC7FY7ooKvSAndZNsiIMGdxiZqo0xyD7PSR1h+7tFiyqm++v3bcKTBTnGxXj6yyZj8BwXbGKEOlIddAg6NuPN1t6ua7dBs3asWImwLhl5+xhQhzw9QinYtC/VQ7ZKiMtaEIY/IEGdMasCsnZxdif0makr/iE6BaspIE5d8ZJT58y7HTXTTSdHDthMQByfqVeQU6mXa0VURShqxUg0wnl5LSjfp4/eoC+p5lDJZTYpGGXzgF0HR7YabrYna4LhhVWcKzD+5RS99U9F2Zz64sJcvkHhHEtrg0eIKQz57LX0RI8UU0sGOY/0G7oiBVZ87eZV1ahCpMafRFZ6UiQ4Pn5WEtW2vB3QTOJ98gnCX4d8boD3vHQqj82PR4cidcVtZxLgGIEgH7qnuoaEeNvH24wBxtEffsQ/uDITJgCcZfQSYETzMhB7naxEYMZNlmzDTKX8zM8YEUgPlP8w0Ux3iT+lUx/94JbJhTnSLFJCxwvARcbugEGMOJ8JiFf4Y+DNDQ+HYEXxTADN/Fj7r3j4PRgd9/0n4WguFcbVS1JH0parDK9Ab1Qzpm2PaJ/s7qCQQDHrbpbqbhmm5g46r0Ami+D/HaTFy+i7Im2meCs3A6KRscARXwpN+IL2C9Aaw+/MeNgbtEBC4SMsRzwuLL8Gp+8mkLWVV5d8gMnjL/432n5yIa5xK5vCmjlLV/aCh4UF0HyHEMFEKIbGc9knvO+f1SxucRk0ZNalwww7199i5FodMDH3FXAhyi+T15UWJ1Z6CSskTlitrtC5+8F/6n5nRdpWrWCUgwYsfY9e/3a64eLWrdBnsdOFhILvRNotnD5//o/NQgSPTYObZZ7EMGNk6LDqYqKY0+1Jy4Oa/NpfuZ4Xp4y+n42XaKP++lDmocralHzKIimu8oSe/HXvuNKC7Yrf9kN6w5wBdAHcZcbyI7UiNC6ICgQqvzmsgfYZbls4Y8PKhvLW9xOu/KzprS7iLjlAkKE6AZYhSqgAK8+qVh7F6TUXf471jeq46Gj92nG2Ot9cWq/9hV/pMoBAWvUw9ZBoLWBPvt6fMlMvH2NU7JkRTEH8miQ9Uq95Epp/RI0agW7Q2u63rvOS2Oss3zxqXvUmRqzUIEZRzDV3BkX7ZITSaCydr2bjVIsJgH/e+tskgkyQ5A4ZtI9LEZrL9l3ruKi/GwWKR9mBzjil68InhDmHAAQv1rkzfeyWqazPDkDfCLM9K9iNZ+RuMn+Vb35OpstuzOIGBOMCy4brK3mvde4kAt8AUOgeE9c4g/WrpSki+wmqQcaK+2eCDZ+Lb4BxPAvp8LABGXjAaSR8MHahUAuBFiD7dXfrqmpCeXWF1dFxrl4J1KbJfv8OY2Y2MmioG+G83J9WKnijo9y/r2SYpnhRehWyBeazfTZ8K7IZSwckkGfvZ1J6dgb/6rGAyiSgAaGWXTT5AzsVuGHTw+WiCk6DYMNZQCA5SSu3azl6DOZjkJkFEnHQhMxqWQ8biRgwz0mfKcVul8lDvDgf8zP4WaZwT/BCTelGY56wH3ri7z+LZEbtDLsnhndpfh31aHKWWlvlplYJKyqoGTbUU3DYu7AG+VqyVB2lVsMd44rYZ1z/ywqC6dPYyJMEkjDXvr7bD8W42eVdf7slnosGvwca0dvurFgCrqZSPoRvp2qJstdkpmYm6+sqKL9BFPJV+EyYmH2Tu/Jo3jmi2HhY0ZRiR0mhcL8i8pJ0O7tJa7mF3GShS7vJys5S4a7tj0ALUAaZr355wlAZpc8G2Ew71EQTA3ogcQLjkzKVxzHyYe6vLcJdllSE7+BIrXJ7VpFhD/5W599fpmdZolEp6GLKgkZpnd//96B+E53OVxyNT9n9i1FunqFPJdDG8YiDWDZzm8aQtIbJAoM3pLvr4MbEpM+MJXEoyC0EYAq12GC3plw4D0klz1DyWODCXVcs5DXg0rrp089sp30QXOLqTbZpu+B7DRU5qcAMR7wVEgASs9rQ3OfVjonVc7rtmeXFdVgfOoas/ysID/UV9JC2w+ymXLqXV8hGBtISaEWQcX6dTd3T8bdEu1WVh+GPrf5j5BBpuXCkX5CdHuql9aWBLIrfh90LH+mQhaqPXqqk2F4UGIbOfyDsDBNcFt0hx5Fr6j/fnIc9YRrqwUWp4S/Tyv4nyDDU2TwVnRn/rmD7JlNWIc12RCs7oWi3bGSjL+z2kFnJ3FnbkW++wSuZCYDZpG+qB90CWTzwHlmA/xSpyYG8ZLOWyea3N2F7B0AV4qRI9LclNG5UPpvNGxG4Z0OwIc1A6UXmgm8iSLKqHF+rBBfdb39hy00kNvT/yjygCypynzx6c02lkiH4W/08OCpnnY0bffTEO1SPKTigzDX1YkKppABmNkEmFsgvyIgWt8UabnnTYbz4+Q/xkUissJls2IRn+l8Wd5HmtYeBaCPeqHI3yWfquOjTOGZtr4pDzS8sRsvpfUX3FC2MqslM0hkxtzNWyXgCpyWX/MlyUoqqbt3PVyQJ3bjATY/rAILcPf/5bJIFWg6vWExHHxaXnjRYgDIGhDvN1kqBSK8Ge5C6axJq4JE3jrMldxixh17H5oyo91QeXkQbR7qrYKQn0pUYPpu0n5W8SXS3WxOmHL1rm0w4xOCiyQL6It+ydPnkTTTLDepJDJWxQ2DVkh1lsz29I26s9ODYxSDlWEsxc0ePGU0vU7rB+I2zzPstsLgMgpx2XdwKHumiHo4Xz3mgnm+dsklkpWp/vuhqW8KEqibjHppteO3+xPwWvVPMlDPM7iFlr3Go3uX3CEjkARB0MctP9qevT3uQJpeyK6I1eL+m1REsOgMBBgzAHxiT3IZIVohpev8MgHqTwsPAVQp6HE31q2DlQILU7lZLmv+zo6OQcpj3rAet/Ccv4fwGcHbV1C3Z9GAX2jAJO6PjtBDpgRexZPQNicH5E0cYyhgEgNaNP5Bfp2jXpaW8LfDJ+BwBtY5m56VKv8i8iqf62lOiJatxM0xCIQoRPvgmv5tscfRKxwVP/BwrVfkoSibm6mJK4wdhY95B8GPFXb1+EOMwjvZ79WWOy2AKgktDKnNjrJMk4JFcYleF2pmFEEGsv+Yhaus7FNbOyVo9XNj2AC2q7kR2Vba7UWl6XlpnN6U1z9PnfzO/i+bTh2IvViPkJ3+i/AxFPznoXJpYvOu/S0i9N25NHZh1nRbYAmMJsAaPb9XO3aNYa3pvckmT+emD/gjHGZV63vEhzAnpNceXfQpCyya1XlKpeWNuI0FF5YJzSzaKNBlUOP+jVxj6q9rdm3G2BQ1R6sRvynrskTs4C0OJ8ZBXAfRk19e9Bz+oc6OnqAIAfSX6QQP+GGZqcJ0Iq2fVyQcjNO111PR9IKFP4uzzhD/Q4fjoO9kbOlMe/Ga+fLE8ey+ev7PnQ3ft0xaMvIf4tjztXZM9X1RFkdCX5LDhqsHAL8o4HbGRh8s0S1qHdGLlECXkrzD6SArgktxHtB0C9Tkg3Vxb9bdiwrAPCFYvHgC9Ia+jXH9EDh8ks77QSb5vUrCLwOReJJN8JCodgzh+tRNos+ybV6z+TybZ5fXen+BLldwjq038z2563z6RQfWEFjvbZ8wEGuzDKv+5pjs34Vl9IHgst6Q5ehC1XNeJAFHREog4J4r3JkjMIgM3keRjQnaSMLfMqMIeR3NravK5SEcjR5BaKFJ1CPEM8ShdoHvhqNJ6lDT9JyUjY0A1I9WKMlaFDN73f11oexxYtR3thBMbym1BTEspzpcnVrKmaKj23u8gDe7/wdLGwEwUPMh4D4GcklqMcEqbIVGzooDRvHrYkbusISGdupghhi2miVnKlIMvGosFyf5xyf2FQPhTcRCLetfYmd8d8a2e3qdLvRwCm5+rS9S4qPN8fVnT4jfX+m4jo/VzJuQCDGiODzQPADJsRNGkqMEU3BebGlYnJzg3jFjuZb5NljmbaM6UrKvSEydw8V615RnRmr9OFvp5G6CJZ1Theot1PqnxAbCHZhLaTik7zhcmEr3wJURJm7DNVYT3AM8PJ+5pki3ccFNc9DYhKJYbS5QDFixrmqnhR7iaZEyaPdrifjenEAr9D4WkE5FsgPnReaVyl5At5UcyKgIcLvp6hGvHQxNogBkpV91JfC+nB6JzTAQwnLnmICnmdp0z9EFtGyGQshHX3OONa04A3qFaX0zOV64fPSVFuPzIl7zST2gD2JvaOSBMlcVtX/Qj8XkK7MQHR6L8xQsqnHxdVmttDf5yOB14NzCAjXJIK31nr9trs6+nCrwGUGxtu/+dON3uO52frt5i6KZ4HQtuEcUerLoo15GJieT2vneqh7lc8EorHpXs44lSGlaXv+WjRi2SJxr2x40FbcnkgEZi55Zfx1zRPZ1R5miY0G50EWEGy+2pCowxRPsOnEq5u6SN6tYiz8JSzwOj56rdMiRMWNA4fs5sJHvD4b/a/Ci+CCnsWSMKcGiNIW47LHhdwi82TJth3FhX3p1iA9zzkLGHGnngc16zxRp74a/V0WIfWzjgaeDHow2KTPyerBy0HoBmVobf0+78HjaazcRjdE5bdIvm2qUqnpyiAffnfDpx/9v72yJ0h646ZacEnacuU1SLcakijumU+uBkvPaX0XOe455iVrtNYbhBqJjAfUd3ReaSCQurcwbGF/KUS3JDZ4WZ7YhcDVNHsi6puc31o4USGEf8BaY89oPNCdDuNf1cedPTw9CDygR8XFRMcQ7Rp9kmyrGwBIaIZZOUMjarZJDoC5xrtRUwbldO/FrQXZQmTqvFZy5oB3GWVlu9u4oOEx76b7ixldex9V/td2roRFZa/yI0O8oTItrdphoUicCRw5ca5a6Q2z0OYlrlh59YLBPUc8zLH+LvQXEY3x09AQ/gffpkysGbyU1ouyojwZGYQSDke6yWkKuk6r5SscNf74Skigj6OuMdE0plWjj5D1reb4Xb5zALJ9av7UmDGDl/ZzaM7Tgo61UOIC+pFTzvrAWDA7s5Mk6xt/XoLdItsvkJPO871DhAE9c1x8XMZ3aOQG/8/p4UuT6OwPKI27D1iWcOoe8d9VWZ88aLjojbEPIu+f3sSpwfLAC34YegfkXIzt4NErcwPo85fGUwmtj1m23Hp98GmXr1bQqDVi5T1FbKW7405hCfPgIZ2qgClTW8SITLuADLKJQQGFQl1ALMFUWjhpl2X/XL6mUVdXLgNpGzQrMMJLTSBpiYEHSUs1hmoF8DZK7igipnLplsvttbhJNZkcnR23KJhYB4y9iqhglabOkmOWRwQoZcWJ7OAycMEi/5WqOojMVFK7JmlskwaqtJfHX/r7rBpChIWVFO6W3u39a1S9mSRI9O9jlBjgWJ19GpBIwQ54Ar3jtaQDo7k4Xw/+A5AI+llJm2m4I9ZbCIVwcxsAOSy/qSlnAoh7EtH0C+2WYTbSrwFsXOJq9Jg+VHs6m5OyXXWy2P9z6EQocu+/mmAJTLppMLwhvfOR8Mvap9Nb2NxD6J9k2drm/ofZrHlmc16CGcSdzAU1SaT0jVz5bm+CnW1KY+D5zoLY2pdCZGD/MkVPojji7TUolgNmajI4/1tUUiGg6/0Tln7qRab5CbkQAJqfIX9SCH1fkuUu2DmfraM/XlQbyMqEuI0xpyFDNPtVvjAMAvCjO+26tDTlGcXA/LBRqIzNRsjW3T7K7ixwrk71a3HasnGdvBZX3Pi+dKCmhFRghvuHQzVw5T3BQTaZSvUrJOHyNKZitNy92bO+1ly5w5akO9QWFP/tOwCuO4Ci0VhmcIYS6FOcgzqBRHXCU0ykPtio7NIjonLf1AixLWTaIEzduHsrLV+sFFgY65fipm8RX8Hu2PkjwSvyjfrN4SdH3dgki3PO1aMfn+3wS6FRX4UnCYLdxSMti9/tsItBwn/6ZaxSbygmLNxRu+GFD3UDhrrVfHOT20bduLm4OgovOzzmw5c5FtdkzR97N6CtaW4N+y18/fxPV8LuFwITL511Krpmj2pfbCXO+mL76ay0amsuNXgEg6ZkJr14dgVx/85HRhyGaY6wsNcNH14yoApVFhJBcDfWeXG/rt7G8q4e1B2QczbCGzd8pZ+4xd0GH8EGzepR+Be9VBq7qC9bTPhRN7usqufiqUoOzA3tmOMxhJggTEEiIevdbS5lI4flWQNGgDA9yFaEz7c89y62hFgYxbunpwO9frGJi5T2R2G+IbwRsxFR/ihb7KLQTFdIeUKz3P1uE9B21yOp4Qg8ogUeGI7Z5O0IsBZtU38YylM5b+47SEkEW8pJRwAwiFAJrK0kAPPBHItWiByziJ1EZ8YwtePSw4vcQZYkECS6uci5FXPya3Xbsbj6dhRLsNtCvy0zXMXFVawLi0Hrdhn2nxfpKaFQEB8SyBkzYDdEl7YIuL91TcfemrpvNIkiN4CS2oc9e2WYXxWLLCyKbbemHzLI8llpXtS2msqCIkgPZUykimIHQitW08cOqYIC68+fMVGcvuirn1AMLBP1TO+f/7CVzTHeUG6/8uXTSNzDJE/NbB/k2sI9LhRnpJm8mxt8be27ETJG7dflsCabKPsKQ81eOBIg1AsJ72k9yRhTXbxcgK0Cmxo/RLFoYJTsJyYXTP0D6Fw8+sl/UHJ70c4OFc+lhusLyKVG9A+uBalfLZCd3QA3jT88YURLvFTM4uOtq1t53NaMpdOaywSdHZa/nnYD5ew386XTAuampc1zDxIAUne4R77UAhS1xxRQ47jttV+fASDs9xCH3Y9Pjacf1hlURL042blneeL5giD8phReWv83E4TRF4YeSra9HrHNGAUqk27VJuWMqkgooxiWxDepafJ9+nbqOjMi/vdnUn/AyweypTG4O2pu9U+tnUSWOV2PkA93OI75+PzTMR0gOBKkG+h3rCrCt7RkB260GevM88cyM9X+zjnd8cPCJKCpaPt6rRV9CgY0OZlQCoikqhh8ZYwe3SfDN+KHS1OL9yaiZGaiHvx0pQDEHOMeGqLAHg5Hs4h88YBx6S8hTUBjhGLDvSd+8YhaY5KIQYQRVAFiUlLZ4Py4UduhNpqmZptPD28LSy7BtzxyKkm5LUXGH4IxkQIW5gVlYtNdhwgIxIvaLqomL4xDoMeVch5k0X58UtJq1YXInP+bA9sd4JY4NFdZso1b6fACQZXDtIr7PtvrhsqUERI+yzqeAPb+E6Ps5vjI33hv+fPaXd+vwjVz94WsAoXwMvfAwc3R4SlH+dPAD0Kva/usz6FEOFlxNdTNwGyY2WkQG+lKL7s0PgcRfduGU5WGYv/xoEkyQbLix+J+I0hVk3i93NnoAQO4Pt2HgvCTxkpV3Rf7ZftK62t90VwYdWc76VB7F3kbTmHRaZTVdOVBOwHGUtJdhVbHnhvk9KvJCOUnYyzKSWCmeHX2FZCmpff2kabtoc+KCDSJ7LeOTSIuQZnEttFqupXBrrHVLEqiIKClKXVkNuFVw3+Qi95YWbt7DL83V/TjAsK9rKCnEqRyjtH0x1XCXOaAHzo4ZsPIviRlT7YcokuY7uCyJtJtRNj31dsaixCSg2JmwCQaNwS2Ipc+SuU49nh73YOLZhxB8IrgJXIa7OyY/QFCU/2fwEx8X4DmlnzMXN0bR5A/v0zVtIXlmdDYq4eDijs4C6DISBVcTWCabgS/LOEFMfYNpXx4EMJTJfGN3FPsmLWIV8Tm5jcLzsc8MCX6p3LLQJU3Hn5w27UX8DloqwqJyhxXeze3kR4OtB19ePLxGxTvCHMGnkXoC/ar26lTijgwRaeRANh/N5SIMuMU0DBIyLVqjrzVSiMOpqUekvi9rQROcTXZE661eW06Bfkcz2KewVP43SVgZB1xc4Om44fA3AbvTH9pc9HAlnLUV83ICGMEGiKJ30WA6M2oMnpzgkFBZiqyTcSXfx2Vg4IwQhAZ1WIrQGMjvx5iJGykXGyYTDAMfxQSh8AXEUGJY/AsgmWPWd/mUbgADg0Oejl5xxO3720tsEy4TEPLlmgnnDEU2kKf7xpOSVCPwgS/gNCKK7olsaL1fcfT0NuZTqz8sClrvGWu6BIxydCOyVQVZ6JNlY4YNM1bSNHwwPf2oyVgXXqf2P5e8Eqp7/SPPow1uBRn5uj8lbAqPDGhPJe9vPYZV68X6I1TeQPoQ0gjKGRHuaD4Jz77kP2CL/bDfUvyOnY2SgTakcW04nk72ZFXEVyQS/B5xgg2pUZ7l/C3iy39/tIbzk/Vd7AODoNKxt3BBxvx4u2YBTTVC0XAgvPtvwhOu7oddDwsoWr3KNFA0BbVpKiWYklw+lju2ZmP655aBN4cXCwyu4Sa0Y4WCYtEBk0uHED+qt25LBXH+lyMW7Td2D99krmN2fY85OdqgQSp+W/bj1tog7EpZ+FF8TGjLwNVkUOoV8gz0KIAyRGOhIQvGwRhV0KHvPQEA4P8Y+osm9CIreYl1VpYY6AdAHAw32+LfteZi7Lhsijpzrk7uljMtv+xBgvF6wb97RjMT3P8weXtom3t7CTD0zwT1DAJ78yhxQ1XicdydU5UgW6BrDvZO14el/mQThih9LZgHGe9fC+7bGlk4qe3PxYsE1833LiilDtpEZjo7mxoKnC2lXkn1wPbb3TbuIZrqVOk3ZZxG0AddoT+7BQuZZX5SROVW4SdC0JN665oH3hE14cWu48xZIHiQtB0ytp0qq8Ms2oWaCFmWXTytG5CRmHzKmCiMHEVkD+6Sg3WtU8HfXBG22N05Qdu86M/PFLBSWFPhk8pqf2QnIm9TQqqhO7E8bwbm7Rj6+QKO9zJpU2ZNmgFhq2owMZ65X7GsOK0S/p+oT3BRbGzn9UqgydJzxi7Kl/Q9isgLm2k0sUShkqgJmfXkZlY5xfQ5byKRaznCXbbZU76tEGah9Vd/UKHk+Wy2fSbbZYQUt3lRuRaCc2qEspYC9s7Sl3ziLhZxu5iDFEIjbMufrYjrmKcLMQ8ijUCGU9/ZkeSl6iL/Zb2GFFB4LoBclWF4QWopCMMVWSNhXbsH3nQSo/aWULRkZO2DBFGjRjdaQswAdK1lNcbX5cL6OptK1hSfjADq+HeWXWLLjYeFJSYgyu7whWj48NvyiU62U1UrtnsIIWuuQW0TV4RiCcEu9Rs8NTdI+7iUBL8kwX3tYFhfsGoBNpnBiCecJwsNdVD+38n31QDUqPZ4pA3c/VNkLRBV81pECAST0ulbkm+Kg8MfxDAhcTiSc7sg2kiTIs38FZpIx6Eg9n7vI2BivfkgpZVFGHyowr/jYkn/id3kNvqVwOerXy6DitF1iiVN7IRQDFxC3lbCJD7jNkGbdQqiZ1f2yqQw9A82WWc5kOE2i+6CJvgz/ATLmC13yidIGMYj201wnbjsopSJAMASFySX4KFMc+bXrL58Co0D1ZaStoahq46uv8ayNlFG1E64Byuye76EwLKjlwJN7wr7AFwIVpN5a4qWwP+AEZujUPHayujATOmtHvnzwQcDwK6ArTxAwii2QKPoIGzvaISAqWp9CW8OmEJZs5GNUowQhkztMO+eirONbXdeRLnBNQkCgf6XDbHajgE8Br9cFBUpcyo80vHZEGSbCtG+Q2JdyEjkGj/Bn42LxQzzET9DDSdvsaUmmH7dtjrDZjd9JPnMeeB3dW2G5Vjff7Kenz83GgUDrwf9otIVZL3+cjCNEUV4yPK9lYeKtOhAEl8GwxLwFX4kKCbH/SOs+8GRFBpOmMHIR3RPZ2ORp40DYHvYTIVBgtz3+brSHwJzBd1sr0q93AslYNhXg3oPD8IVX+OmcPiJs90PQ22bpaQGJIdezZ08ejs6pb/X0y+2sOBWHhROZbN/6FzPWs095ewn/biCnuSpOB//HnquUHDbln+roIwkbDsb9eO//iqw0RTsblHXyZEO40SoSnFqz7R7YmXKnUQRNeNN7DV4KzcgkYKMgHveH+7qWGh3PDLcB1Hg+NGGAhTgalJ/MQn0U0KNfUyJdmoAes6SpIKUamdzxfqUhVldCWpiu5iQ7VDH06jAkHxgbsA8HFNTwWqIwRr7NqKaM6B4F2H2yRTfNIy/5HIZ1H/WovnpkWZ2n3Ut8mJUedmzhd1+Z6OPx78L5t+SmAjt4qFy99I151Pg/JHalcpk+4GyAA+DjU3E3YDa10kLemzhtoHw2hA/AiBQAZMY04VwEd6P69xyKmU++Km9wlR4y1uKlM7yM6bchKbEf/WWHUZ6MAW7AvgYmw4+ZERoSAnOsIT4mFHmO4epr5aOqZPQMChkrBWNmYAltEbfzxU7disyNdt3PpPjdeqnrjFWKL1JR5WytvZhfp2NnUmMFUhfoGDhqrN7TBbYXlRz4hTnbSOEYSnXYwVye6eyb9SDCXulNBGSY22qvPrLXubxJOyTCOBetKfLEeiJqrY55F5OP2FuvLdNt5t3BvYLFX5l0ZmI3/S112+2nsymynhY3jG+vih7Tv+EzapbUPRf6JxNoAfV4LQclxEwuXRJqkup8cnwiTIL5s05pOlKnqNRnbUhOkr19yDHniivgQneJ+T3SpSGCPhVGKEdo6Qh6zd2QDjKO4qVZEtQGhfd3qdiUjC6qkFQBXABhS1rv+RewY5kFD5JYMDsAIXAKqB3OhuvUbqJXmMonnOIws5YDiwxz2i9EM5wz2hp6Uayi5ddJadkvL2YmKJyvyzDywWugjX6lFKX1frTKXq3UOauM24pGXwTDDpSqEgZah1OV7LOfiqVLVmT0fstR+HCz52uGH2Z/jEB+9MSHsBhzrZWvOJfiQ0c+3q88SiqGGPWx2gxctbRr3HP/CZouR9cWCAUaS9OFWO28eo7Xrn2fj/Lhjuekuqi5AU7W41A2c8aMJBO9+uZh9AciG7eDmhVFdCKLXxizTcA0UBCRT8LyLrsRhEZ8iEHB72qmmBUTp+dHP1DrAbkrcDfS148OcAbad69bZpHZy2QopomgH3djoRvx+oGw0Pfe22xmGABxTdQDlp+ekNXTidBC8M9jK1T3k/ulESh56UTIiu64+cakkS921t9kClegKufAtBXgCbzoOSTg7viizSe1LQ8UQ1vpUZB43+PahIyckr9cwfU/Lu2OyF5BqWFZ3S5+SPLcA+oTi2P9reIw2C09I1ZReyjKM8i8g0AArykeFeKRhxo/3f2Niv2aT6jeVZQQGqf0DMN7gpC3KTZ6RZyPGImJoOeL4tuTE8XdmShhDhCNGogGFuopM+8DwgYnXWjARikNI1D0JwDBuVT52X0AlJueaN+AvGKzQdahemuHifsCgalDnsO5cLUOuOWje5oz/ex4hs17Hygb/cp9FFDk5ytxdzxNpvTIt9BYhSkRF8gJnk5KuOfBPd0bMDhi45PCgoAvoK4zdkfqNm1aAspfx+8NwnAQgCnQI0M5ClfMQ8VFDzz5rHYr4WeIpQ8jnJlA3LVM/D1ivL3iclJ79YT3beZ5hVv4PH8kQReaaV2NTKVdoLuFib6M5aOo2/bi50fB6WYW8N7OjDNekZ1XSmkGw4Im3BdDRBUeXD9gQiaTRDwfMmiA6/EFjXUxoY3TYaoqC6NLHJG7qjGaBczknx0GayRKbCf+4GoLhObR5PWyPA+XU10+aXY9dMW2EoQZd3PBBcN7oPjQhRP7t9I21yDwTkOgqDpJb7G+6CezBd5xD0wcWze/ADrv+QsY9yfkRrrr8YU66SGybeJ4xO0lmTdRjL3coH81CIZrOOUHi1MSWwRm7a2ERa65VGtNo4vguTEQBWZqqIv8Z+6KdYRwn5/LrcdWCheKPTOeb3JikFLjmboBbu+gfeDMQ70El6Q64Ng4SXxbHy65XCbO8x13ND2qyPQ9p3Fh0iCFwjGRcGVTAvEj1HABr+Jlub3CT0okouFJFsySKVHo/wx4/bTNQeyJj+dHiWhXGVqXV8/WdxJWW2bJDHVVRv7olT/YFU9YRZRZvM2fui72hSIMFzlT7ZvIFF7DdSqMe4+Q5fP16zUJPK0A86tlaM3HUfbrMFgp8yQhEWdFuiDXRTvlW2sNBGBRi6R4BKTjQMi5Q4t2oHZYdsqKGQlFyxLTkU0O2FNQVCA76PLUp1jABXn645R2q5C0uNEyJJj9RLe2OkWgIRt31MiEfKm+x5BCxaPY5in6vS8NqfMit9d0k5j/R+exxPLWjHZT8kAsxxHqBFPsOtzYnxvJ9QBURWnfstKSK3ivQRAGNTYNcR2FmGeQrN6YZZ9cUOeC7g53koejrTQPI3qkHI4RaF26n2+eUr52EKIKY7n9s5csNC7TgitSAfrvWwlLRLin/MLgcgn0Ib+47u/A01PlB+4PxmxIgw3Ro9hEzX3UcJwJV/9ET0glp+nB+iDS7M+JDRfWmTOscEEt1dMX58xBPeDpab/T49PZBIv3kSEOlLu7F1QPfxBwD6l8X+XoWA4YqQ4rHbslLzhg050QblKbcDd12HhjDAtO0iGX19PDEopVCbfXV3kOfnWs6qBWbSI+tPCFtejJIrvmqZJ6iZHAQbaHhN2xjqBUgJcelnKd+MfjxTD1/60qI9MqLFw9eGF7xmjvASGBq7kcWSifnJPY++9zNz6ZTDggxXxrNKwB9YZRkG7b05IfTNcPTVH5nCTlJCs05D/IRGdT28dgCShXojzg/NAF+x7zsnfniKyTqg+8O6suuMARLJvPeepMA9I2nyXgnWyQD8eeSiY+I4k5D7rOP+nM5c4fESoiDNjaJxJoWPxpvVFC0BLk/K+5wRuOVt2kMj0mgK74fpHOHHpSNHfiA7CBIDr9gHWW/le+XJbk8NIbTrCL7dgyVfqh8y5HLfbsVEdMhRDZ//e1LEVp7NpLLADxPzxASBwuzzZIEGYHCS03h3zfUH4zMDI8M1egWfUFHWigV3N9hlNiF38x/nhAcE8kfSgkij9oARNycDlqV/U0XRrfcTHGGkzyG7egH0iJWaiwBtYGp35kfd53ux+s1NsWBEt1Np5uimvO5q5RbOotdaMMiL6gZ8ukZeXizn8Ha9I24+ASXX4mn0e03M2KmWPLde93va1BKMPDHOh8piPrlL5ZrjwZk4miBElyVVJJnVdIwrwiTaATXqqdnoYq5EtRjT/dmz5j/AAE3M6G3VM7Zsk5Hnhij1K2c+zs83SI+h/VlXlI5Q83rL+o/rii40rqCY7H7H9QgalCUTiqr52clXb1TdTXnEwOEtKTaiCJ099k9/y6wNvXU5Z+5vSZMXQw1A3BN7H4U8h0AZc4MXaKsdGM1BzhSy6MDaamqeTSpsVZxnosz0jNhhHuzFGe2B+8FwhSdDcG63PHVBVS6LueTpE3CiLUPQhKuCUgD7sY1rl+GZrbMacTnCpL9tD5851DFANVZd2ohBWEgLNpMsALMweJ6zEDBdersa+7b6h2jk9TmZZ0ndF+aTNptgtBwxmvbouDU0JMF/xjL0APDarXdmLembRZNQ6I+OAX3n2VmBErhhncZ/aTzwjiQ+uBc8XW4zkjqvqQLD6aWrLqER+YMJHEUlhsIewxebH99D6Wx6NzX/cVk962Cf2txzWUVJstFDPzjPir5Mec2qrVwPuC83aniFKn1eFDgjwKlK54WHFipoa98DoA4N1IXEKGL88NEvDWaQYr1kb85ntbUaeVrodWUxgCP/wMKAID1h12QY6rnBRwmnHtDXnmxb0RpGETq9kmL1mCxzB6hCGDKHX5n3osSy9/aNEkldYyn41qzU9qCTLSyeEQooUUP5SkctcAgRfMfxWvRLmduTGF5+er6pAVRGJcnK5cMvs5t5OXamZOH77I+UYCElh+9eRMH3erKOConW49XMEAeLadK+EHAlxD1Re+i49KLl08kWtD2iW9IwN1IDgu3M9fIbFsEFdir1BYSmCCq4F8r4S4duqe7Q70JhTK/kMi418pkx9gwCdHEbXwpqxA8kdhePsvxCKjqtV0pTa/qJrgY2S9Qmu/h1JCQ52BgRDWMY7PTBWDFofYk3y2cwEU0blnn209veMnIy2jpRWISzbAHYolwNsSrOaD/4zCRGOwlstEpejIxDgM8DZGacmNqtoSKAJWKxMLPLqg/b2r7qC9ETdMKYcBHhx2jQhT9uDgbjCn6yNU0xoc5lO1JHLDKFKQHe6VmSnHyoNVtLD9hHMXEkNF5WNMtqVfRMU3vVOJ0FOCXvrdg/PC3PlRYO+WpsVDlRGEA7OC/HLMHFl5/oTkXygc2b7LUeI8sFqc36H6xIkWTIQzBEurNLY68qGlXxFn04dX9bj+IfxiQCc0YpUD04YeARKVJO+rYPloD0iiAV/LBmiAxv8JyH0UcKQQ1k8XqIrH/myVo+iZ1iXABZ62GFEmDrrtxTI4hhIS2oltKb2fp6dhuAfVnvcUy9Yiewed04kaimuQH63A+6fKkBqoXpeHgMXYqagjyX9G0qzbFU5iDQItpweQkmv96VtnfyhnMHX4ZrY+c7Vd7my8HxTJ+zvKDPBSWFwiyoMssrrrlpCc0zJv3BsjecYvmazj/wg1p4VAB3P8x7N1Zb34psWspXVSW2tcPEtK1ABEr8QhRQiQvVpVJrz6ZwD01Z+nOncFFiwrzKATgyBZRMrfx7TPlHg5zjePC8MIujr5ToZ+Dwy8nDhnlcxMpTzDlnl+4bi9f9XmsBpOSNDxFRLUPf/HLUVVs1lXSW1AlQZmszCmLMMpmR9wAHbZNiwVGU9YAMji9/WQHPtj89KIpwrKRAx4QCtYDwhPZbaPUKJ8hiVpSQSzljLvBfpp6NTeqcgWV04yqebDchB9oksq9F9rUnYIVSHdP3Sz+r4kUtcYEYlpFLKYAIQ1quuqezEgteZnpM7mdxkik7tqmOZWH1J3wgJdp9InvMQxti2gW8ph4eabjcP0FZwZwCoJ7mwjogmnjYDOPDz6ztfKkQ0W3KwpX3WmGO8RBzsCUJoWQU2Y4YW5e3SnRRVgKBRBr2vmxF/cBtlt2GpbBXlg23BxD64DTTe4yvAk9uk1ZAKW5jFoh7SfTuXrStkctOInZ3FaSBXFQTJOGDspvYbP7T00ZD21wbVs4Pp8I5nxqag7UoWUp/iMHv6VDg5jIt2bO6hQQubLoQ6fy6yRS4USKpIxc/buzct+OZe2ZzPKyHFLsx1y1xrYc1pa0HSl77sy0V1Qx7Q/9npZSAqyv+sfFd2VVxalSrb/uHFqU2qFvxwsGn6O38Cuoci0VCcDoRNO54214PD2EBLX7kNgFaUIoVuI5SkdvaCu2cQpknrnKPE68fbgaqXeloyACYXYu7C21V/DADB+xJiwGc6jvALFNgSOtQWkpxPHDMqECZligN57jxEHQugPpfMBCObBEACRK7PNE3dJPGQkd7lSy9GqqYyMZEzlPtIH79UjHADgmKXzNe4M2nOdh1pqbF2hKA2T6Cc8Y1WJEB69ksYMJGfl+ObvuRH578uqZJtvbZIpASS8wveEKK/+GWV5+kBWtGkzgJRy7UVDtaFui2uDv3chV3NXawlHwzD14GaCtxz33v5AE1cUEhtj7LBFqmwL/dsg0Cu6sWe8O5ObAQhLaTw5VHBy035PIp4t5jA6mQlBPmG7KBiNmcBhswiyhs8NEOV2SBn9uP0yG/B3aWsNbsUg56GrIJk9VSOEqQ+ance7QJYqwsjmeaODFmH4tRCWiTJC/CRP3qNhPDY5rd/91z6UyWQeOm+7Ragr3otLZ7ms60FEcPUo4F2oBkAx1ontxM8FVgypHof4r7AXMPPuxTVPA0V+AuaOAcivYoNndaVTJK51/0EDAG8ZlBuUMdeiKl/GGTU24RnbPRh2YN+zVEzsoAorZZylSvVtSi7yDgpju3kuiy1Kt01+VrTC1SD00a88+F7oPf1jmG0s3qqBENgWN/R88oKzwUXbeFBGzIwFuU/6cWTS+mf36jOctNSG4j2PXg0sj7VI5UplaoOTyN+I5X0CoGcf/hoIrYa+jcw6Pr+ywC/FEi9hj2mGTKjMF4cAdpsn+RpQIEYFLNjDA41UpQZ/RGTqgH58RpR/v1Tb8SlnVPE+jYMiPKfut5LGrWkxR/5QxWPXyObNafrQjXW/QTKGcdZAoaItbmJpTUEyCAqRc2Y9GPYUTlmGI3TQKYsdKHHcA2VCwLxbYVlpLisgS2p1BtBw6pPrE1QsDXbB8hD9kUHfnZaQtpK6EtZ2ev3jlOVgbNFkR+JCQCW6g7dmclxP8ont7RzaMWGdIXGUpVbstZwQ/3Uyj3/p8QjT+ZGfCikCDbAYWmhsvTaC4dDfWputiqZ0y3G8uBMWv1TTBE91lAJb21OZSZ7B1C2JJLZOkFRUbdU2u4OrqRUKwKUrzy1rgzhBtbtHQDT+952YkKbMLNfi7vpxXHEvrNlsWYavz9O/LFL6wqt92iO5Mu963n+6BMZbgrdHMtwDBnjspswe+dn3ywTvTUEXzV1GG472x27r3KVB0X9l8hkbiymzJTeduUpRaMRH0sxI9JoKsVoGoBF87l3TPEWTBKYTHT6IbIoDZJn9u4LUNghwJeFFvkAV7RJuWqn98FpIfittfXH5rhDRG2V4n7kYQg4dn0xyCAj2qjr76ozr/jYOHwPh9cg5LwMfqhfkltse35RH0w4B3tKxxLfVdDfAc/PIAbGyWuZgo6M50agYwK/bAmXq9GdD2ikvFapLqm9+Yp4JVesnYGPDp3+k9/BYv4LMw+YAhrLB4rewUkb8oZH1OnCTZaB7hSwtjaETiAR3rKbogDPJfNrQhMpsPALuevpwmuHONJ9PMM/JPJCglGUmjwxN/eK1FbmwxpCdOAOkSCC4QNDjUVK2G6nZhGFIaIjibfEOH+899oDnW232/b0NqcXWncuo3dR8JR73ZR23x+r8oyt606vAkqu7Gvm4hhuMe1ZO3caGC/4tORyWpchlgo5CYzctj2NNIQCaB+5tELv1f6HHQ2DT6zT2W1fwAmJi4Jc4QcxfN5tpPydZxap/abYIqiZP3vL0Iec2xLoBH99dz04cL5YwfU2MnDrGShfi3VZBaBtzvH2V2xbaOCc5KOpdgNINlc67J/99116mAiJAoGvbnOyfrwmImPt8YCcdqEK0Oh5ipHzNdRDxjrKzGxBWy9pr1/NmjfldUUlwNm/VzI+1u/QkEqwD+sKFB9tdsiQ5Al4GGiBwm4ZOu+WafB/N0plqqMfIJk0RbKxSeVhCnGXC9nq1EmOUggPnP2lIINX26PbVwFqfCDB2qA4tHnHp04owRzVdg9QS120Bxy8j+M6H4UiQYLZpGZzfF+Y4rBiIVCx/AZwFzrwM1t+K94FageICk5SQkuTVJaZ0YrmUBhO0yCiriJLMTSa/ZFxpsoMqcAMDxcOW9aXs2bcSatHIKqNrWn9k2CjaHAv7I/Wa5Mxr96/RdhgPfJ0Dqv63G6tVtGUId/gC1wVvnkO9Yn1wVHfaYxWqyhFHT3ng0HNdb9J6+BiNneFzOM4O1o/6VIMZ28vCA1FVuenidvbG47WX503QUOe+G1FrXlWWfiiYSVxefkn4dO40Cmw2DlRKPaiLmQewxztsQLtW7hIRr/J4qs4L5dV+6pJgmcrJBq+fLg1gBeXmr2Rxnoc/kO7n5uIPBcByMR5AKintQXT5AZcQ1Gj7mphH4jNQzNd2rNCXF0/WYgjhu2NewCnC9oWrAJv/AkiKVdFWuPh/njLjnLEz5w1f3wHFSxk6HiZaLn9g0F5sJJjPNNpII0ekpdkWVSOAttnZcKv4pNP+Fezb3Bi6v1xNZ07ETkTN9dPD7M7Vg3/5BzTikvKbML54x7IeEsOCuztOURorhN4/Bt9e2SSts0n7rBsVYNBhsy7we5dvZQsAYwq96hCCCVmYZEFcdxq2ycr3Sf+3iEletbIXqEvGCAfk7jaIovViIgeV8SUXisGZejtGuvgySjiFam38jyDM0B1P7OD+ukbsZTUzsrGA34+ZJQcqzFGci31pb0up7cDC/es/tbIvAZ4+MU1RZytKM2n+fBW7UqT0gxL0RObkmt7Y8tek1Vc82T7kYJcqli9EyerOzSGjBglX2+cak6gVe0O4Vm4B7RLn3z0q8ZUbNMcI3SIJNBqgrLluNkjQEk0JFT9mz3gADaAwYRhGZ+4j5H5+r0JsRTwRArdi6h5wxPdOaLkkEcA9s4EXufOD8eSynP6cAxYD2SaxTipxR3DQYOSELEFAiWNAYFdgS6wsouEzXwyYSj/B/VaPhllEhdjoxrgVdCYuDVT9n/SQwek2mdhMBDpdrIzo04UmPd46RurklSqBj/mfa+q4EY/VllkFehBsbuPcYw9NMg5gB2XGnAfUSqj9JKc+qKMrLzb3W5WR23l/acoAvVEztFW6uvBByStSTDT5JaCxEcfj2fi5dGM/w27kbTTuSVznUjnMD/fR6pDMnl62eWl1nI/1eXFGjajGBitMHvYonE4TqBgk28l1cFqGoBJnV0l/uDfn4iKv15AHu2gWTEiy23p8Q0zUMClFiZWKUUlKT5ebM7hrCv/SPgTKaBCb0OADc6N/Nbmrtu1+YnT7fRRaF9RtCfbhSkqxmDyFgK23XNCPnjsi8zpIoRS0nY34GJKRBbo7yWtG5I/KUSD+57oC+CoaMk4g6QkK2rPGw7G2suBZHelaq132DIdCgiPWMjLIv2QiNcHrfRABWRSDm000qGYagSqb7QrhRK7cTr3Me72pHGja2u5cddmPQuGxjARXgC6j0JUmVzpGCWcGxdxkj53ds7FUXZu1jXeN8L/ooQFAwYqMTxPmXCYqZBAtMrhcPNth3u7aH1h29oXwznsmNrnJt2DdLmcE+pFqKOSWb/NhVjoMyqZwCZGjPrsyDhuEJ3UN7VcdiYtzQPh9j/t21yvPty68cKzX8tfS1oGYGgyORmgOh8pFfpppAl/Axl+zM1WaUJF0eZy3+wZGFH2g5RLTTTZPJsFAEuJJqMN2HjUTNeQsvKxzktl3rcMWvuXiqp5nJ0iZfWQoADU6fOZ3xCXjk5avwoNj42eNEnjti+ihGvJTRc1wJLVQ0l9KNCq4K9EcvsXZo3Nc6PrCA1kbR3oR8QpWN8xNRFSGMWQIarQ2rAhgtcd58r4jgjXMr1G3hmBarz8mf5zYItbNePgx2Np39jT/o6RvBOmYWNcu70oyvxsCPqQegnwgI7qc5kbyNao5TxoN+WYWA9fWD5EdEKcAOxKbzVqE2IHLE868r2KclPjnud8XQ3OSjL7gnLtj0wQ958VdBYsep2ACkVwKyMEi2lgopb21XK6nEgEeE1u8yu4n9xwJi+OdL2C8iVmDpku6YtxQ3VD/1VBaaLxDp2N1PaukUQI9IEG1qSSATTmHyC2qM4I87LC7FTYv/kaK/sk3u/VymvxxFeXx9eTHToZFk3EJqziOF07uvZUke9AYSGoSI5eIcWZTr+HKOCt8QNWDLC6C/vpJ9A7gRqnfjytn/LnL1+abgmuFQLQrm+FfAlIl/OGmYAyffxLa/kUjFE6gzzs/eoQ5h1c0Lni9cICQcfeJuUXuWDu241RqmgoUKELjNgGQtqlLjLUiuoHhak8yzfefgz80h0ya9OL+nCbKMK6B80f3sZn+lEE4CgofwlcCFZ9V7RzmJuJV8rutCLqIkfkON0Uai8DoCchQXgRmzdBdmekZwS2IKYXKJbcU7gVLg41xXAK2KdWDRHX7A3uwjKraLg67EjSDVBbT7gPXC7x3Ie51Y1B60Et4iy6xQQ1I+k3Vl08cZmf8jyOfjWtXyQlOS2hsp7kne2FWroUJX4kXjMjyvk7y0adn/SKLQ27WmGVtfrXFGq3/mdzZ2e+L8GD8alom0HbtWfnhYHxQ8PbBPNeAhTNhFjiVJkyz+0BJ8+wNwYPYApFk0nWDv96kDXpe28DAZv0bJwqntlMdhAZnfSTjy9ruZc4srsDzVFiHNOm1t4MookLQJfeYZUGfvalm/WQxsey2fncB8PoAeJCNtlt9TCVt53sJsPUg8ohs+bN1z1vJc8FmuDvUpgq6W0qArq3VLJ/Qe2OWBCJOSGcsG/q9RWmRCiS8VIvFG7gEAkIlrxH/18QA+C9HRXr51OioE9WQ44g3nU9VfrNlsDmSbfK3L4QHnXGrHCrNGeJFDlYTwT3M0UTh+iNciJHhrWnECGdynmKBRVCr0GUf+dEMXEqkHHKfVorBDvJC8LZ+w5Ux44xBBle03YsXCMrfgYsLa1zkLXEgQdut/I3bNU4yQK6jNA59lNFof5P082+rcOoxsyqyByKfnXqHfK+aDn3i4mhnzfnaWyH6e4XcstTw4CMYVjLLUzEbwCEMOx1OmTtUYW4Y5Z7cCfpH8T/6JMGuspMyBOxV9hoASH4RMcfNI9Op4Hs43GYMZemVmv/F7AlbJcgJ8JVu1yRZjmhvGHKmcreTWE+5xROtzQElY4imEgPEmuyYejNsubuCwhOGpI5i5Bb9XCPhQgGj6gNazJfjPl1PGnXspDQK9X7MSY+6eeqoT9g0cZaPXxGOExus5xhaL70wk1kXYfPuQv+XTrvI29WLYTE72U48SuQBbfIIZ5JHaW9957thyhJpcUKKMZcnzOW4iDjakDJV9ASCPbWH3BrGBf4aFgeNGYIjSjNYAWD2lwn0+dmYbvzqBjrZRg6Pf9dPd4ocLXST/jAkKZssa7p3KDwxb17vx2LtwhauT1aFcvvSy2xABcObKSsVBAuub5e4Ivs4ejQjqgJ5KE1ZBKvdn3XeijTcnEnLiQ362+q+1+s/IElBFJfo0NrHX3utHVs53N6+kk7GjqvSOWtad/Mwcxc4BAjhVehnKZf/uqAWioIOTpxcaQz8jYlFTmd74eF0wiSmAUCQYxbOOEQMuas8MyvWHe8FBiTz85o7PERzghOKJRI/n4CPAp9Gh9WRlWgoYpvZh5+PkRZw2Gdlj41JXZfmKYlv/n4L5pONyiizPemUhNVKQeLvrdj2lPmKYtqiamzUK75qrVIWo0302Er+tKwC504WtS0zDABNerg741wsCtD2bZGd
Variant 3
DifficultyLevel
674
Question
Students either walk to school or travel by bus or car.
83 of the students catch a bus and 73 of the students walk.
What fraction of the students travel by car?
Worked Solution
|
|
Car |
= 1−(83+73) |
|
= 1−(5621+5624) |
|
= 5611 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Students either walk to school or travel by bus or car.
$\dfrac{3}{8}$ of the students catch a bus and $\dfrac{3}{7}$ of the students walk.
What fraction of the students travel by car?
|
workedSolution |
| | |
| ---------------------: | -------------------------------------------- |
| Car | \= $1 - \bigg( \dfrac{3}{8} + \dfrac{3}{7} \bigg)$ |
| | \= $1 - \bigg( \dfrac{21}{56} + \dfrac{24}{56} \bigg)$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers