Geometry, NAPX-G4-NC18
Question
Two triangles, AOB and DOC are drawn in a circle with centre O.
The two triangles are best described as:
Worked Solution
OD=OC=OB=OA (radii)
ΔAOB and ΔDOC are {{{correctAnswer}}}.
U2FsdGVkX18eCOnIyJlZmPuAelk1JF/tqfTxDr2wcuro3mWRcvvNi4e2VsFdt3wQJQNUev8OSW8TbhCQI5q57sHovnUqpzz4j5NqKSrX1QII+JeYSE88Vc5cE0VpEfv9Voe3XTk4OEtrg6QDWGsa0Cv2ZPU9MKp4A6qVu4o3dS069+oc+GeJLtI7pYOeqqX5T9kWQyUtpPAEkLbgzkI9L/5wP+i8MkSr520adF8Mw1JLwRTYErKBIXLmE2AN4dahdnqNOrw6wqmKhu4JO+hfV6ItJYlBCnqKvjL9IXDpOLcWTFp0eUJEIW+4U3+9Mk9cBtH0jCrU0N6vHHH9odlBmJ9iy9fJRRLtk0yhWLOLPuxbbOLT8yFIv0YTeXzynsijhgBehyyYm04D2JXcSxYVZKpuncDO/NTN4vGVy888HYiqt0wWrvrcr9X9VqoZYWlTAiryih7GBUzG9GoCM9mAo5mM9f1OXuIDpfUun4Z8oOrKn5ZXx95IYF2ArhqL2rnBXxyMYlgg5Od33gDsVOMSGVX0VdCmvCjkBiwZis2KH1QsjXx6LH2ueKARfLk6ddMvjg4/avrIbL0fPBF0cD6HZ44/qAuYZHBMMOvqdMIIFKeQVa4tNbh5VFD4rNfglFys8f3HMAd89RWe5DEd0pnCo+K5c2BbSRgMD9cdHj3MQKtC0lur+yQUSgWob0JbchJ4L773MaFaKEaFcxGBWTW1QgvQllL2OudL7Ak7uhgky+btD1l5j9VrEHD8K4ztixXtTZ2tsXU13wGtYesapPEAkgCAR3qM5TyKSk/p+Gc+gtt9oEwJZ8GJhGeKGJk+GLKJAfE61B71gCZNl+jZnX7JXx6yAJ++Ik+cgf806ZZz4l+m0hNuTvME+PUrn1TY7o7s3V+SNrmUR2TJEW9yW0Lw/d0OO2LIe48aoCNk5QuIYN4HKCunqDcet9qqLWtYCG0a+jQauApESMYAX5lAt1qfQyKerXd4GbMJw6ro99ppa2tvjiO0kdd+61HLMN7+P/TdgGmHbZK6oJ9oG2wMF0vNvQIFTJoRhLMgjPV0F+jT/q+77emnA/y355uUXeXDNiYMm4H2oz/yEBu8lpYGK5m5b5vxB/Mz8GO1ork7qIVBZCETfhuPnBMKTFKB4PqYS6oFk/2Ih3r3fNNWoppkhzF7/2qV4hY8G+J2fLfTjAGmg2d1jhlmX+UmYBzbS4snGMGpfWDfLzi9R/6VsRVowk7Xq03k4R1AfJKPWD5oa/Cg6O1sYwQH+oLCak9iSbRG2kMJ5hO9K3YVNeclQNeTYyz/3zYG8x+S1v2NwE+b+Jxtq+zJx6+FmgPxUVs8D8DQ0Cuy/cAS7NKrcU04JtyCak1tNv1b41p1OevMRT+SUcE7MPv015PDc4j9hwWAfZadiRc5Pg4t5Sxqb7tSX7wBnvHkbWQvf6p+M0ptvOOnjl+tyub0b5WLLXg7TJ/C3UlZnXE4VB8etWtNia+oUDdjgg9m4SNrPnyxc3AxSF+gzqKLaAQxXM7kr44dSHD61obn/7quFzZx/cIURrIfR9L/vH4UGxvNd1D+w3MWOWfddI5X41OSxYo6ov8e/YJXAqJ1pkdqJ8vrrGS3UOnXJwn8ioG1rA/+ACpgCpsv2H+7C17JFTBsJB8LuHEZJ84ALR+URJXDv529SmE8Ge9fMYBKxJJr75p5FT/EdwEmK0zRqfY31SvVwNCrdxVOVetiwF96J00RGJ/gHfdm6uA8jnGRB3bHmFt5wzrw0gU7g2SJBBH+EbPi1zpdsFfEVOHmTOMOGaZyWSq1KhU8JXoN8/EZ9ABNUFe/rlrcntNBT+Co4tryoS7MVjnwgfH7Xyyoj6LtNaM9r89cE7yUzaYSPZiTx3r7Q3zchp54bKdsO+dcueytr60qVYJ8l3SClbrNlXa3LymRhIsn/AwCE6qRgk23FRVQRENynmqeZWMwWotQ3k7R5jx1kYKDFttpWkNZykWfahvUXohkugz6VmkZ2DQMdzaWAs1iosqpou92HEtFz3y94OvUjZFnRP5aPgYvWgTyFseq3cKV8bK43OqdDD+e6Aaxrwd+Oj+XkbcdZ1lDxwkYwbXKKNOYUWqKu3WEBwUK9WJsSfaEyt5f2pU8+KJ3QKdGLmqLXTPbiHLdsfc8HAkGhdpOOyWRcJVAquj4aUa/ERc99uOd+K3IMO0joRiB3O6m4st1X2+Llw3MCyHwNTzs4jZB7rx8+CYosN+xuoVhAWVgRiuup1iOgJnZgLnV46SZ/L8UrkfuCbZke6iE0OX1hJpTXWmIkY+gX25dzpLqWAWR6xMMi0vwF8JRRstWninxof7tbpJ7zr8Wh7AOyIbkRQqdgD7vdiuRCCOHyjs4ZuHzMdzSCBJ8dJaUiCqolGC6PCJxDFhsv8LipRB/Cti5XXW8nzf77Ox1SFIpkITEEkOaml9tHuUa46ExfGQzC9POrj/yvoO7br740N0dkXUME+Zk/br3u5n7N2hrnVbILkg+CXz7rqJl8m+M0FlqcGaMqhKmYhp8HSukEUk7D4XXfWZ66vGB+nPXqTr+m2Qv/h7G3Fe7nImXuTO6uvole245a35IJxKHy25bGaO7flBrCp8F5FoeF26VW24vOxFqkR2CHclx32lrAcvlKuMhuyuplDSwcUEwVnjRU+gLc1/MmyaK4ni5B0NWc++wjWBsrKphUgDzK43GSWHmU26YCbbV4+OSrljgHAGH6JPVc5LQFOlRFh4QLkopYubtNX6hx+Rlxjh9kAtCPpXEjnfMxv9bgbN1PkuQcBnFrl919E659edlModn5tZC2eqYDi/eswgGHM9KQxUdopgPtVghKb2BEgz852mCl2i9YMC0YQTEAgdtaOTCJfkCzCtQhsdgJT7U7sd6/JIROA7qKsQQiZwqvWlbNGrIdIgs/Xv8uebgxO7GGDcB+SV8/Ogm3DibbgD78PMI4MzmCeIjA2oaviglHa40cLscoueoG8MBod1YGt8/oRoxLg3h9bqEBm9fN8EgG7NjEVrwzRRx6kbAIVFhH31OeYMMcbLi1pS+XuhCZnm6uhFND7D21YLrkcVL8bXCz4Z/wkemQKzxB67tJerTh88Ww8DyZ+aPHSkMJlMpkv6sR9oMy7X9VvKHhcRxvzjiTDSJGboV3yiyihFBY1WCd7fWZ7SPqbGiRcY2CKz7QhlcWJZk3bN934Fp8UU41oBrBr6B586bUcFDcLmvAuPq7Nmzje/tSM9p9uABHQl5zjSHq/jVQpyAL5JMLkuVKzd3gzy9yVN1wMcoxjkfNFR/6iP5UNVPpiHJfERw4Y6iyEI97HLKh0K6vmJee5tYZ4GsbLcgATwkA8fnTp4ulnNrkyU0qBfLOgi5kGMuC34PLbsLbrbhSidKPsSIYsjdsobNSpFiLrvzN2i+U6bt9ncaQ/Rne4cMSXeWA5hxvVa/V59c68Bajqn+a852zRg+khr5Tz+KWX4axd9WFEohybmtQyRhnqzD6R/C2+596SHEGuuoye+FwkO06HlfJpRO/BosjEzMcOql+s+mXOumog7DwaJQbOHEfD4YTCfNCYcgIsnPQYRz/zmBjeF1hJ8GTvHDqjN9S8HbeFvmnm8igPEbBbyIv3hwq+ag3mrp7qzlYiXrVHp9V2GLT9+DbphnZt3a5vy/Wp16+zp50aS0q6l6kCtkTI17dN+bVym36zMsjNdjznTqlswgf006e4dXDNkBMUTRJhsewKZ9galP+qpzja5aGP29ZQtiOCVVLUrOccyWb/nat6/Blmf4OFx3PfdP2tuI3AddSF3zu98kcVYOz1b7luJ/YmZHYJ8/qy8y9MVZqnY4XicK8kJuYP+vdToE6+soNjf+JkxePxVTpalfSZLbuMYWoGk9OAwNzw8sAKZVeihBnt3ELwOYp/mP7QI1UqKNPDQuyoMR0LCHYsFbYcksljKDwIsdMCWvvAn16txOsXrKITFMNzb2UuaM4OznZjVeyQCUUZKk7iEI20op1bueiqXotw1q3967/TebXw1X512Abgb1hfJkZjPTgOE3XnPFI3I1ON8eYeHgYq2DSxrN0cotRJautNlccbUc8RgCOR2hfx+s4ZP4PJZmvyVbtaWy/IpbZ/E+DUeH1WMlWLJQ0n5KGB1bTah85oz0ss4r8p1KKp+ZwVtQMLOminkNVz5mu23m6Av/ieq6PgXCHaqiCuprbKsYgeNO6yFGihSPSDMWnoipd/IeHE242j8w2XEfZBe3QgyQlXlNh/QAY3auYFfzDedxf+HCRwsoXU8GMwkyM/1N2pgKMVSHXSybfXNw9AJA5P9QHRG7lA5bYJUNXbhw8wEPvDrPiB/5fh97lssWDmK2cTGf3/Mpa/luMm0v8eC4gKBNSjYkW3krLTgj0mzlLbNHio718GxTINOLtHc+ByM+FuUnAPbullpCxU4QIWXQoAXD88vr693CfDT4V7STTk0FQnhUw7DscnyVH92HPxzlYdvEh+0p1LoFzv/NQB90MHEZ5YDJuOizKnCos5+kufPTWLas2aON7rZskeYXX10X5hS+BDHF4i7GyKg+zjFP0g8CHRCICCC5KnyGiuPtV8/FOXuzX5pZgM8P2JPfSUi3+igk2TCdACfKJZehhl9KY42/W5jBa1fMzRgCYEbI49G79aMPMXhJRsbG3DWOBeVVTV5Ny5WzqdJk6lFCP2XmCqtM+iWDNIBbyWj7X+Je7UQNjSO99hJQTEmuY/cEQeATkqMT6jZllIyc9kuCcV8IfD6cpjJjsvnDyP7GbvKM+dMS80lCXjgI1DUbiKg5nRpyFbJY5m6AbUmwq8whITs8yoQPO1zhXSVCitKxjW9KbjDN0bTpXLksfTDIrkWYwOI+keHsYW+OcRhg9S9Bzn0atU8akWQhFDXXgw1UFDoD2Jp1dyDrnoJJcmm9ivP6gmlSXpesGMNSNaYj1Ogf2iPh9JPzT/lLqO91YbG1alj7aRlRLSlAQ+d+p4sXEKUMmGs81p/xUk5Fj6RK1KSwwA0dSYLQywNNtwcy00vJY7NpHd7ZMMjbKjbniADpYHLoLOdrfnA+xj8c7JhrUpn0TVlj23qJI0MUCeqjFtNeOB2Tig9BiOQ31iDqe6/ZH503gfQ6STlqNb1HcxKt6nbbrz5Se/7SXN/KXJK3rUbsiR/IRX2wck1tADhXJ1iiJyt6XGK/ijVk7PDyCfNSDRwrgK+7P/38c7+f4WfplJF1nXFAPC1wdboVsvFVaOH5lvbB6d/TJUrFnFh7hS6LQHRaAnY8LJXYh08F2mw7r04k8N0eT4fhL4sVz41fkTE7ctZ94zgRENDTGI2XOtqay+eT9wp2LIrTVQ2mUa8PJxRE51dUxK4LtKGeeFsOhedVl1DKInnAvz1+tf6wY7Pmppm9f0E1atr/c4Je6M896WTvFX0+r0zfIj5AcAf7GqirDeZUXcC2Wbk5bSaAEEOFYRmBzRzut1UtkpNHTh54HDREiAF/k+oLukJjqEVGHWUussDZElSOuCE88QRdMGjjxIMdFyBr58zt+vTmnnDcX5xL/SUyht9rpkEARNomRsvJ3g4Uy8SqoMtQKm4qSvV3z1j6eADjMDrQOUNaiEGV9Z+zfFhGPVqzP4avKIcQOK77FdjWX1GKyac7cS0YyKw5wZapQmTm+kdYRTdPjwYc72SPSCf0d0f1BFv8Tx2iLxYcpcm4gHUZnjjmUFkjq3CeHyU1q1LYDISMFQG2tCdWiO4QEwMsr07Zq6zv22pNGX5QqC15C9EV5miUS1L6RYg+efc6OTVlRmpUPdceaaDUVbSg08txGxvHr1UUdy89rBFY48RpVVvhubCnovNaqoi+4vKD24H8KR/8IxcGW9t42uNCqa/OSH9gP6OzaOcsWtt9P4FDwBJy13rMiRGDeW0v9pD90NQ2GvtM7qo6fwZGQ38bToLmQJs3L3yLB6+vHzTJuGxx6Uy33HDLr6UH+9IjItmRavDHuF+2kxnEW6YpjiMAWIO5vYcZyxW/5oSFoPrlwCTBzrarYKQOuBK1D975AZlJQEBAFgPoN7oSWlHLuUbpKk+fg+jD+SLRs2dXrRF1ki6MdWpCFYF4bPP+Yj6zpJ87XVWjxkF1Y8v+6pD+Jaj3oo1PXXwnc3CmWJcmdkVKCMv8lJAk6v87gNw3MQYtUy+xH01JeYBssborvcopCc4Nas7ED8FHgF6V5j1pck/sObMrpGLqPyg0GOhXQB2zWE+IHNMhnQR8TPgyywUyhOomMxFYR0+gRxrLDu964CaZ12EJ5ecVlUrCKRaNaDDVpcIj/zx0FlGg+7rJydKjex6uHvxNNhiTxK3JvdcK78rWaMXnBiadue1UFUGeY1vsEiRBlqi6uztjBOa8Ug59Rfbgo0YH20LaDPS5dNYezZTjVsoSC1qRjsgHLqrNnDFyA/hEzkhQiliBCrGcVQ8T3CoTIElu3iAvUNjQVy0stmelkoqjt95JNBxCb5e24T67mPq/3v1OTBDbRt4TH6716rYt5aEYBsMLy+LY3xaIuUftWBArUJwFStyQCb2bl1CNQQzPmnlo/QK/5NtEfeOTS8/CD0QAFiy8YEUTZbapOuME2NNR/mGq/js9yutJqf1Yvd9QWVfhDWJ0pOeCzf9a8ZZlX3r4v9F6IAhuuUAjsnp4Mx1cUoDPtI9rpNgJ64XRKaoH7+1fmccO7XzH2FSVz6OUxcMnJENtevzDh3u+uPFj+dOOIY3BCa1sT0yMkSdgeeay4ayYkshN8tWy6/H6BGDgTQh3ViJy9qddR+OMDByzDLspxnASF7F4+vItoC4dKAsbNgtKmranqdPYhFRqykUwjYVypL6cjSF6wPhWELDb2cm5DnNyzGDUgDnH1DnFwusiRhpdZNPjZHJAr8H4tDUAK5Fc4M351a3runY17e10B87I9BizbeQRUyPydGhBGWZcHAEAwqIdg78/gaBHL2rVWHRcLyZ6mHqhmOWKf/s59xSi1P1TaddRaZ12axMMz0cs9OMuAxyGl/ph6TMdRiDkNezf6AVcp0nJtrAQ8cd0ylzr/5DENnX/wr1t6UdBIPr9QjQSlli+ucopuBKX4Wn1etWmT1qOopNG/ALoqwvUWht1FyQUiBduzOlhlbEMacaJfmqhEZO+Ynzorr/pnASPP4ddIeu6gLHE5ceOs+r8lKE4svRGzcgaHEot6+2AIG9O8qlEGGQV5BdDLcLFz4k4CNRbhGIFZbOaC+JAwHR1Ywqs3uxXNiNPKstINc94y2L4U+EJH8/sWD4YyATWzvzMT8iVHAwgWaOU4gEGBClzK+mBrYxSI/I9FPamp5++Gg9OH5YJgc+/A+mUrUBMHjIOWwBtNQeyEQjOf3j4x4K/Y4dpMW8YtcMm5jZ/T3OnycL8TDNNPVIDyJzZJSQzjG6fTk1PGVZ0e28SqO8bd3u2tGt21xZTQxT5mHFnwWIVQ1QEUwX7X9UUxI4wdJ/lUk23Tii3+27ems3vbBww/TwBzqqNQaPvLBPGJBIn+5I03MKfULfcbZFqyQlsgGYeyypV//Zuz07RrxQt8z3of7g+bcJdY5I50tsIUTNEd6y6awTUtyXzslW7LMPFpMhRB/zSVIi8ij6SLOg6hveSPFWNbTP4462Gywc91Bj2h253Ih7b/aCpvGqZ3+wxRwY9oRiCoB98CdZVhKm9g5QiwwCPB+nfPcLEplSGditmh8BS0PQKklhax93dDrhB+plMB+Hjizwb/HLwu9O9eb6Ew6A2zaXewZhcKQredNiUs9W+yZQERHqDskIBfCWa4VkeAaSZy0+ffDxiEZAaBwFR6DqO1/zR4rl7sC32FRvb8/Fy3ALyMai+XfjXZY1LORk4rDQcP2RTUrGt+ZO4rzNu6EwGQtj+qLdqnpi/T5G3ctgQ76lWmPlOHi5KzSfcA+B9d1fa3WaNDIlQF2JtPKpGQOf6z4fNtZM/HgVmhvVkRIA6xB5RjLZy+nVYeJAVOjmZqCf7OXCtiwWo04zLdY+mM/M1QeeLIWG9zsAijU+twIyLH3fMP4XlvWwAo3RTMyvG/gap1kEMBPyEm8Z9PzzGtjJWtYWVG7HdJKzV/Le/dN5eD6NcEAxiGq++uznapWguKXJvQs1dIEvc3B1gd1eIFoMR42DtaVFfdqGCG3OyT8MLl6S5uuefrRlNPHbubUlhhVElDWZT0+ecIPw9+5rQwQVrQFg70guFKIgJnjT/bXE5vDNj6sP4pvNvlUFID5lnjNrfP0ymk2y3ttlxFilRYroHZUUnWPg3gnCwcjL6avjAQjOWte+mamkGt41RFVGQwEVqAEQprrEaUUIIyZhvQW299vCBBexbWEEUO+dLSvAhXrFMEtBte+c5vGeUabUgFz2M3rQMGcFGPLswqhy0Q5g=
Variant 0
DifficultyLevel
628
Question
Two triangles, AOB and DOC are drawn in a circle with centre O.
The two triangles are best described as:
Worked Solution
OD=OC=OB=OA (radii)
ΔAOB and ΔDOC are isosceles.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers