Number, NAPX-G4-CA18
U2FsdGVkX1/8B9sO6RsnqhuvCwFe0duYXpNhKqgKEDYikCtjZa9Rjof0HMhCMQ8vA6tFoD3lsAH6Fque/YX+EdlwGEDXVdvdL+K3tdzjN2uCPpUkDkBBGb9QL9ECd6dEy4v0TtVPzFZwmhkXRijrAbbdW5SzH6w6v2iOyZqkSRHmUJ/gubzpqle4D7OBFqyaIIManaJRVncLup/bzvCWGwB0r+61j23U+CF1M7uZLp9huC0nDzWaYiMin+mZGEK/+H9pjHmmJKmDrnwnxi8zDy5brAPkR6DCMkP4E5Ad3wNEe0/qWuw+h1+bZnMWQNW/AHKqI/yNBYfVP6NFo9EvQvL8QzQnTfYsQWP6QVSa0Uaq2HxKFf58nbLHQHDiaGiX/tpd/FvrJOOYoefuuNNas1b7RAMu76+Q2iE/096U2ZK5WIgk8HR7JgUwBWO/pcCNZ+qHgQJh4UCeBSfWhcbSdlrRwf+CjL9bINnHAfymbJE9YXijK08V2rVx+92XG/Wp/nmyb+D5dNDdTup977HdCP3mKWAjIciU9wIr9CEd5gZTzwUpcBDxsolQxct1CulZnejs7ApUwfEj+WrTm2AJmhDCO5yy6LdXanry0CcK63XE6zptRlh0HGxK79Dv7spYD9H7ynOgdOOU6GnjCpwQ+P90w60kPYuehkNQSxIJ0AVgzLupdZCmWQnU/vhgR11w/4Z3/PJlDfmPFFZychv3QS+ZBKoJPmJSnap86+hm00WohLLkhxWfblZqGw8Ec5RdnjJGCIy9tRu1+bbFYS+M2pWYgkXtaVmot9w97PRdA3yuWGBPf2bNLrT4H1YZfnCUsUKC2TsW3MTjf8bJF6CdNm6bookfOqePifNO0nmaq7Ef+sa0i6oiFOx55IAcj39kJBOdDnIPwA/ZbnHjf+HefJ+79eWair/I57lzx734fYUxKUYqv+ZuZsYmIKzQWCz/hqRqd/jTEk4qUs6rZKLxtlN/jUFGr2EpGwqQ/yOME4wLvPH5YPBnN5YF6y9KWBoA+CeP0DwdhxYD1EZzdp75Zt6VBvqi/z+9C3ZHScWoaF6IQXdTyfChA4NkvnnWw1YyfxyTqAG08FomfOagAUvmZA3YBBvzHaWrtgFsoOOF+/0xszfZtzKeEZbY8X2+ZWQRwrMs06sX32D7CVYD53B337NzqIH2ylaAJb3NCGyK1BxitOWRKv4I6NusFbKtxL8rn8eaXy8P28PWkMjId5QsRPPqD6Si6BN7t++wzledXuF4HBxGOcvSQfzJGPb332lMzLIAbnfBtwG4f9fm8X4V95rTVT5d3DIhC1oZzGa9otDndQiPLG4GPgpkoxHVFelETNICC6p67upNwV0Rxdjcjfp+O54u9PCby4JGjF4/yzcs5WVyj0RKjc3238JVsDa6S3tw7y8XmlZvwbMiViAVK/swxP1rIjD94Jw+L9N5yeqxcXsG94y6MABToFFkQ1ukDQhSc3m37FJJaG6l6UvH8EM+OMO82fL1HrCE+N102gfq0XomkrIPxO0zolE1ZdzXbEzWxD+u1UCQA+dnpxn7UPI/WEjxwh1JFFzbsrGlQRpTGXVeVCl1jxwu4JNjS+vTsg6aXjObEvxQgRR+PxCtG+bfuGLpVmL9L38Y1ojCwhkXSmXSAE4o/c9EIMJgxh0/CqxM7Sh0EyQcHEqzrM41Zo8pc/2TIQ4qlp6OOxXbZSJs5bvQQDy+uNAcZEYHUZBAO6S+UeQp60Ms53HFtumDI3jTyJPKfUuiFALogy2uqxHtRJDbMdzVjbHGwMh5gU6MORVkz0ZWZB5nGsxq6lrEoLV2QzWl/OsI1Y2oHgebo8+kAkWZt26O7Cz2gQcJ6clQkOdD3nsHDHSKsc4bGATHQUw5aMdhqFQJdLYd5njsFOtarjocQEjFfGvKFYprHNx4EWX888Z4VyfZJcdQJF5V4hHSCE7cZ9sp9DQoedYV62T8Yp0WMiic/iPvkUpyz1UAEuc1UpJPzLoGHGF00XapwAfakK5wbD++TxCcn58NLLsr7o7nHRCLa8x64SJkjoFlCb3LnTdz/YDt471siu4ihQzrONoUIsHsNX42TEDSCFlF6g5/UQSFmlYCWYF/KBPJang4BEzz+jP3kRsa5s3nEEMOf/OvLGzXiFUx+xgECW6GR3DE0KQCb/+UkbAs77Cg7Shjy5kHMiXsXW8q1fbKinIp9JLQGCNHPdOMQKQc2ofrbrgDPl7eKbe/AHQUGISXw/wq5/r2EvY+yN/C9lZXEToNZF3hbuydr60nAbgOwQuY8EztXZcqRBoaelMymYjpI0Br1Yq9xYnnosmyMzVvTlb4hYicfCHHaRUadwcUVYoQjQ+OABozSSV+oxV/56fMl+MXw0Okw2AzhpmwGBh58VJZKMnN93gYuxOQPcsnkwy60zl21a5thHeVHLyK5SX8K/BYD/sLJ9jVS2LJShZ4msvBUX0QxkNaEkl+QpFUWSV3iDFwRwqHxrPCr9WZ3GnT3+HEgza3dqU6B8qR5oePZy39eHJdFgwXJGHRqnMSTtiupyw56RCNMVDOXwBAvvJsQ4ANZdKb2nEB8BgijLKBB/IYm8nXtrHUgrjtV46isy5QBzo1pQ5C0nV/uoTHnxu9YsrQzrDBEzG1c2cKGKs8nVcqJcXiLNj+7SBh5lHAnIIH728R5yummqOSXkZpj5mGdFQFcpu7oLReOwxyWrVIsfqqkJ5e1yRK0zk1Y4l7Ec+nbe5cwW4wQF3WcCvJwYfZv10QvoQdh3jIj9GBlJZo0YoUkJI3G7Fh00H92rzFFvOSbMSSnEYWKVLz5pFwYGn4ez92Q18YNJZOp5PE3urA/eG7icKpVpOtaT6kX1C3gEUKzmE13CD9PvcGHffOho0DorGv/cFa7pGbLUKKdzO+llJmU5ZRBcdZ3rtu8limXa12koWGcMPMLSR2gKCEEmrohmtaRBT1Iw+fqvlGnpC5qfwsa4zEMeTuiGyh3u8w90eDa3M5wvvqyzqfol86Kfb44YDa5wIWouTmxuqVRtNWVHauyG2kAp3w4CX9MwERkUFcCMXRmwMeypsHdgYl4O3xl/X8xmFiXWnVpnHO3DSTVmP2jtRBQitixPbjVWzdnz4SYKBiDbJTeireurMKx6arJ+dwhnsrbNI01EHdTWEnHALb5pi1P6gmmshcZ8x0Q+5vrSuYn5gtiPuS5kmOoI8Z+G5NFTYE6o9crDTlAw1intrtCEnMHf9WRjiQVt944Ipj+qbrpQB6JIw3aMSutfXqqKKPOcDgkwRLSsIUhgV95nQWe3Nbt4+duuIu0M0W8WMfAmsSOaqVMnq2FfuJXZqipK/6BsjQL4uH9bPpI6A4m+WhGnSe//IWdau1p9mmkS3LTUWeESbV2MU0Dgo9IXxiZwZncvvc39Nm7uozsGgjfresctjBhBTbULuUJesyPms+mIJgxKUGUq6nnKlSUlxSb5BOdEjNNcrSPHPvrCrH77/Sd2F7ulXDSWEZqC2rOoT2/1FZuv9YrskQ6DD+X/Yol/oT6DASWJlUp0iCGrwwO4LOH25h5qRRf16gDcc1I20rggFTFsY/KzIjhTecaJWH1+LtmJGqgh84j0AbU4F7xTqFEyfYyhhlJ4kF07GSyGR3LaJyCvduKJJMNrQfeFaklxh42IAu9+Dc4C/32506qRn0R8W9TkCfnwES/XCwufyNWvqfHGL3i6uttroSF2lJIvD25gEhmtu8bPtSfBMj1dDgLplgpMO3z/duyP88HcKPpmurGcqfxcZQnbzu334hrquWafKoqJurQgEJgeBtKa+aRWArJPyBpwwe9oTBk3XyieYWrwsEs5x7h3cIGyX3qa24jKZhE8EkLvKj4A21HJLWJqtPCz07XjVstlvG5uCRWvJfo0+9cEC2e4T537bkIvcZNU+SZgHW0YOOw8mhaU5I9KeVaG+QRFCk2a8Y1cSyWLL6jKiFOtXq0JHkQ/MuWTLJ4uUaFk+AMFLNC8VDgSrddnbcPm+4+9CQvVIRPyra9taXjQVPKJoGB7PLJcP+vlVV1Y/80PrGicfeUXgZ/W5T+pzfnoy4i2dLYtf8bpywX1iUwToZ2kYc8gqBhNmHkjvzSF6hiTfPp1H7mmFHpR8JE1g/fM5GiF0Fjz2jkxIdO+Ta3+FUds1AHrAMBdgotrdmJBZm6D28SIVGXkwmqL9L5NLMuoOabFVdAHQPZezRZtdU9xRLGlNHeP25+maj3YPR8ZBaUVDVsaKWKIy+ROICzkXInR4MPQxm+ttmE2wuwoA2IPSzU/V3Mx9M20ztdqAJodXsYF3t9ovG9tS0p84/ZgK1E/M7QC7UIWPT9iXMwUttCMpcitTYQx7BALUrmzc7KifmBXgAy4g2HrLiuKVplpQSzyeST1eu4txWkGRpVk9iwvkcDnWXCjJ7drR7WkJhTrGayZ7COVemOD70yMOBT7VdKewKre9A1ETyAX80RbMPjzT/JIvWRm65FSwr3m6/sl9z2n+HV5rKrKmEfRuvpOV51KDT4IFFWXzZ8AghXIewaJzMY4AIiD5GFvuK/xuQCfcwCRmGEx8optEbiUtk+q1r+n9mSgg/PrkCNb1bnh1vxqWaTAKYZpV21cXihj6/AlUDDCssDkkuQNAiWIBd6Alsnt49IJatSbhfCUfHNacxQHzwttBDinPnl8Vfne+HSnKK9sN28+3HHaEfmQTy7rECgOfihIJbmwOkGI3wfX9lKbOfGZCLKDt5JGvjXQJojZdK7187m8lUwyJb08H7a/wo/DkmvJt+xT+PUQgGbgIE6ZZx34PekXxcVXPqiq/hs6fhPlEOdcGaGxixuBADnALvJ9fnjOwVr0zW0NE/pvjBl4SpiD51KPaJja/O6WHz29Z0fGkSuAL2E+qsbXpkdcfwigh9OEAMWYhTYP0OW0o2fPobMjtge0xw1wdxLPmVNVg/0OWrBMVak/MI/7N03Z+IYela8XWlw0e1knENUro/mES+3aG2oGhmbd2qw/o3jo1kt83YPsoYB50QzsCazCbVE8e6b3KOZAEoW+ASkNXH3fD5gg/t7mIpyTiKxNdZq4L6pTQAo/halHWtX+IwtmrQ4VikXAQTPdV3Ib7OxXK9Vf5oqTTRSf58+DkQkrMHbJYYwUZ2yAFFpCtvLPu9py+JA9iWag2T5ZaIsXar2vD7S/7Nxk9RwCn4HKij
Variant 0
DifficultyLevel
626
Question
Kate studied 2 hours and 24 minutes for her History exam.
Brianna studied 15% longer than Kate for the same exam.
Approximately how long did Brianna study for the History exam?
Worked Solution
Kate's study time = 2 × 60 + 24 = 144 minutes
|
|
Brianna's study time |
= 144 + 10015 × 144 |
|
= 144 + 21.6 |
|
= 165.6 minutes |
|
≈ 2 hours 46 minutes |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Kate studied 2 hours and 24 minutes for her History exam.
Brianna studied 15% longer than Kate for the same exam.
Approximately how long did Brianna study for the History exam?
|
workedSolution | Kate's study time = 2 $\times$ 60 + 24 = 144 minutes
| | |
| --------------------- | -------------- |
| Brianna's study time | \= 144 + $\dfrac{15}{100}$ × 144 |
| | \= 144 + 21.6 |
| | \= 165.6 minutes|
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18H9kBgzF4FQRGlGbIDWWxHXP5qb0n43AcNsWvPXIJc7UPNk9nGVqAkDKGn44ABnpAygrPG/XXC9LBKAjKmTZhWnQJnja+AZ5T4bRrQ1EQsjEHJCi665qPQ+XuU9nrE1Aqf0Th49DFoUW5cHJBQCN/HVdgjXaEK7jNCJWuh0KyeSWX/6r5ivBKN1oPNX7yICqxtFEEgEvSQ+wGqG2GsW8OyrLdOgUIjVFEiWuwVHSZkOb++5WeMz7f0SJd5KcXbXntefn4b3rRqr2gY7TRu56Mg8ElWWK8Zv/HHxE2OkEgyV4OKiIrW0XKGsXmlgLCKwoaDwR9LrLqQr+MY5Edy/oQEfUm8mT6y58ihowVFo39ltrLC/RTmAnMdkZdupsleAnDj+Hj44T72jTRbchme+5f0DaMJA0/u1BiBhhJ6c1CpPSt1veD6xm63NErTVcRzuK5LPOxpbOninXm6rupMJZEzPd3FQD2FYyjze02IEbCzB2OWN5svdk7zBEB6mG9y9pN1DTsJrnVe+IDlFzhotmIgBl/iISPT1dfgT9I6sKsaLjH5Q9dJ0c1FTyir0ZSZwQL2JpgKfvsNbP/ibd0HOu36+riq73UxNDxF9A9KR4Hiydm2zUNUtnQ1DDDUp5sbYl9jCnNhaUj4W8sGsM+e36eQ4uFbw+c8vbmdWIKLkazDNS51587mnF22hfiOC/K1l3sXhT+JxborSZGNzINHVYUJRgcQz9+wO3x4SM5tNcxPzVzk+41j8lNuGDI9WUqH3ms0RmTLx7XUdRprYfTzkuCxL88lEBo1l4qEaqtarM6HmL70wSUWQtddS6qo35xjDpCiiv7w1tnUYFgXwKJ8WCbAkCiFZANF88rBsUke7TPepIlnPmUcjweKvZhFr7QSUWGV/RlNMHyj7iIf0fC5fDZdASb9Lgh5Pji87p4b/Ysy2koAjDxU6Ww3vIEp4hZO/OWhIGqEhqL4dH88JsSTgCeyxoIYspiETZfJ0QHpTeZdn0H3J4+3CyB369iR1cSuFZaN8q2Mqu1+ve9Fzzsenfazlvuf7angocJEx5a8Aih0BaYgg2m1n2BhcEvbmf+LKWbuuOaYNxnYzbo41GboggOc6IsXjvPX1Kh0xvPvNF9XkGIjLfCSl0EKdO1bxDkactN42UNNtUJl4jxdBm0obZkcciX/6cEBZz9GBXg7razWVqnZovLt/9qrzOgZYHJ47GLy7Prk4RfMgsO1lCcxH4tjYLU6U3JH68I0BCkWDM3uPfXWBZQWnhbp3IKuq5aTx1/tm/1Hi2m8KmSxrMV9lpNQe/kLAMc9sYuM/H4PTisurImdSGBO2lITb3rUQC4XmCh6YDVHEbj8YfrG8OXpMk1GkEwiT2YWDiueqelPfc1gvISiVwR4gwH1ORMMXV9vjtEUwXGoey+TogXzlKHFoGrQMO+tJgSd1s07w+fzWjfK09Xj8UrNXy+ZHxlvK2Yop1HWA4PVC3Iz6T2Wo5lL20JghExCVC0v+GkSiBzwQCRezAg0mFREPlRkkOhfZwfbzP7sATMVXCo8dnbPstXD97QX+P6dbuUJmyLH5QGnTlTwRc+O0vvOleqc34MKPa34MzQCYaX5y7vTtZPA4PwOq3/FNim6AfGu0HdPNEURzYnb+QfgxAG9pdFxhD1LSV1jYsDSVm0ecoJWdUG4QVy7jh+MUaSRKrwQXOtwWaJB5XO6psNERd4KlPw1zddqcJ8mzDgRbOp3KHKqR4haOXufOWJC+hZ+foz+W1M80MVAfFkZWvnheEBTKCUaMRUoN0QTYaEbaGwJxE/GNIAhmrwtuf42SSL9UYP4508qFuaWvtCnLb+7PC8vwvRrInJfQMHXrp1StH/4+BH6+kMbq7obs420Aop1wexWyE5EixQ6IV9NCMiTwXrLiUHXd0M9PICTJDLb/2yydhQwsatCTIRMJySZ17CMh0umJdAWSJDXThbOVsNknUUuNtEGZ6ONmMqLRRAW6oUW3PC9D0y41M+H9vl4DBGuPQP/OIWEA7kJ0FUakRnvaaNkHeZ5eo1w3SNKhULs/UH7yKcEHRLjie8RsQ+biZxpOVpuckb/y0nI8VsBcrRpSGTX/tH6J5/7P4YbCD9LZBeEjynjfjtJxuM0+zh2l9JllxZgXjZr75geYB56eAERXOY/ZDJc9rTcAOk/jSN3vtv/juaSAqPig0Gyp8EZa4PZLXRwoHqaUQ5o70ms/Y+kPx2YFKeTBsOXoYEsNbOEqqI5RdAh+olCrDftHenBLp7EXvmA6MFJG8QCTsFD4NHR01Lukws/iH+Vf90PeT3SLyUTJlTU8jtHNLbRIWmjUNU/D/B0ulJOkPUHhKBG+bnwU9azNqfUosaYR20QFXX8T1Y+VgeFJKaF8O1LdclOWOMNDho3RdGs0OB2j2xi/++gAb0S1oMculaY4NNXTwnojd5/DuPCKNQcvnPZOS2y5HQCRwdETzOISbQsthbz2S47gIouu/RiU5Ni+iCA4EG1s7cIEHF21mmpO37MdL1lAb7uXg3o8TBuJguEEfTbpPuRcvaAh6keItkkKPlFlW7MWsOA/zHIX0b+64i5mgiD8Sa/4mRdbhvFPtus5cwKzV7yi71N1Q+/DoHacCj7byR4Hg/14iDu3j90GBc1x9Eaifp0fA3gLQtQUGWGQZO/Za1a3LSEsXiowzSMaVZE7Nz945S56Ts5yRmPsrbEHXR0cus+ss4Jv8n3rUFahb7GlyChfxEH12WIKyG0JrMDhb1H2kEuLjR8nt+zi+8a+C68LbFpHeHut5O2YdS14xyNi43UDXsxoAe5sdgmX8tO39ZcEDr0bhs2PPTEsawcQzTy0tcuGPgIsxgU6bL0I3rI+jOvPCkglngrAamZVY07MNFETy5T5fL7tewXepO8EBJkqe4D4uoGLNVM1J88Rxmu/Ic62EvYZ0GfHD4jp27jS/zdbqha3ZEWZdDKegXxWOhkjbABa3I9x1WRGQJmqALMa25Z8bcUlom4ySAv47aBwPzZJg46c1W97E4REJMQqlmJG/czojqEW2SaK+ViEFvIyqe/2Kx5mZ92+kSjqUheHlS+gyP/L4abZ9WDh/cXOur/JQ0d8ST0V+YWPiUUi5FuFstMYKJEiRShjG9YaAO3daQJtEfznYyrYXpWzsMKYCxc5iVtaYFez6FWlQgiltQN8Q6VYwUQYjbvQjJYhs72itmPqlBc3r7STgPJfS3Cn6UvppjegoBV7H+DGOhLLWPslZzyOfhsnm0EPevISnabXzoHl7RykZY3ol1xvGHeI9GF0mdDT02k9WxwkdvL/goCTnHsSIQzIBEprSKYQU/IOyba4KFEi5adk1OkdS4f3e5QX7Ei1tDdfnvWup///g3cBeuLA0LnjF5TNfX/Rt1dcUxndOR6Dgt797fOI/WPdYLPscI4nb9+k1ugqboX84kpt7SguNd8GB/92MPYULJn6Bev/wlKOyC2ojsZc89oZ17vAJyomGdeaW/geGjqZm3NwSac7xzRqrVnYoTnAN8lysyVyRVPcPOQm5cm0OfrHp1ruxOwMzbzlclbnWUJmSwTRuOmYraAnFKIs34yOI3GA5oK82ko1ksKRwkaWhi2RStiRDd2VwcV8vako3PF7X72/OfVyYa3cU1FZSjvlR7/iRcnjSm5i9hflGnaB9PeFZ+AF0BkphXCiQhGs+RfQz7Nt2xeK/SKGLzbF0R5hm5lB6YEGD+CZKNM/ZxvCQFxUiCowwikmycqNyvz8KwoN65JMK8QHLIkctEJNln27f6LURTIvavIXU3jv3Mzlt4R6y62P1N+EE8CUSob4aLJT4kpLMSZlTqearg7Qr12mI8MM4JYJtTgvZpl5ulJOqPLKSLXQViIVMRn0/Aw1p+pUKmbGqswt18mT2iBHfoqNaoW6gq+4JqqMFzetE0bdeSrOm85ZN8g+2N6qXFtWFKZdqJSuu0U1Hloo9vtDw+0RQqlWlWQIr3pLSaY8wZWEawzJ57TWD5WAN/5Hpr2l2/2enyYcWkMZokrkyLpdY8eVVfF+XhqDmf2aQHXrNVPRSbUiHo8GHKH6UzQi4y2GlIRsOyj3J6lDdxjPlCQ+3jbTjzbbQG3pxvfXRLk0btzHYiVpUcl0t4Tf//XWsuiGffT5BV5kOZ1FGSeVV9VA6ubiEOJrO3MwNs0EGKnnjHksmIrCtZKlJkrOWGKl1UsW+SBrz2tqFXCtkhKJS8obIid5d/P2+AVYHXs8BBTmvJMH4dqRSAxAm2+Q06R+i6zHqYIV3AVcCZ4B92ppj42rkJ8PsmWMrAMfbgJlQFst2bN1b53KyVGEiS5gbn1T0JZWgVDgoBW8bk7uUbPQJVMqprBn3PlrrlYXyRMN3eJZzPjz4wocj7rmFlIRIr8u8xb9OxjKjVTzlUwiyeb5Tkv55HaxEWlj8E1nuCKh0UWp0I9YK53N0OXbXasdPaPom6MHNyavNMjn8w8dThkJeFGWF/4/mfaGq1pnj5iyFOAV8hYFh/5G9QTu0k5YQS+VahIPRX5eVDVz8JmZo7TmXWnQ7SEECBnU0mO7hICvLZljWluolzdb8VgU/Py+35IQQ4cWLksmoctivJDea34/kXQ9z3fgIukxVuAsn/svRM7fhilXfEhwsUCdYjqixwoUJ0PUzla9210luZvQLclhqwP7CvtTetqb7rnjZ77cBhtN3F1K6LndOYMKeR++X/FTfkV/5nEPYxS6u/M8RaOrY7R7vQ/esin3sJbk9yorG3lU7vM4KL5pLR7L/qKz2YCpc8uzilACS4b62wfGKjIcO8YHPt1JfCebrSdTHfrtWIi0uQqWRp2mhoJKhmFqpafkWjxo2OfD1dKTlZsxj04HQzn/ATeQSLUvRxi2ABSJmFD+WRgC9fNFOu0P5NbQXlV5Q8WLZpLzMK80dqPethXVHmKjXJtx9MZmt3bS+AxRg9KvsLBKS0j9oI4qbLHObLzqFAaIACKLQfethJEf5Og1FMKWau+MjB2XDz7DOzaX29ZCIDIRmgxLqi2vGxBDssWnXZ/GdURRb+fev2Tsvw/xQFdicSKaMgCbUs2lJPy79c8AguykP+ht2xvSGvYXUDR7knhj/11sjMvZY+JFD8W+62dsLcyMAr6Sk8skLFzqIPKy37j+GSJsN2SuyVtTTWnJXzZmgbUfu0bLTfPlP2HHACq
Variant 1
DifficultyLevel
626
Question
Elsie studied 2 hours and 24 minutes for her Hospitality exam.
Isla studied 20% longer than Elsie for the same exam.
Approximately how long did Isla study for the Hospitality exam?
Worked Solution
Elsie's study time = 2 × 60 + 24 = 144 minutes
|
|
Isla's study time |
= 144 + 10020 × 144 |
|
= 144 + 28.8 |
|
= 172.8 minutes |
|
≈ 2 hours 53 minutes |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Elsie studied 2 hours and 24 minutes for her Hospitality exam.
Isla studied 20% longer than Elsie for the same exam.
Approximately how long did Isla study for the Hospitality exam?
|
workedSolution | Elsie's study time = 2 $\times$ 60 + 24 = 144 minutes
| | |
| --------------------- | -------------- |
| Isla's study time | \= 144 + $\dfrac{20}{100}$ × 144 |
| | \= 144 + 28.8 |
| | \= 172.8 minutes|
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/naFLbIlppzzzNTBfxrteSr8TebukBbUZxt4pWXiMDr7g7YozI+Rj06jCnRDClSmqklXlMmJ3BQQF0yYe0NCDS5lXVYXS40OA6i7xACBvy5qrsbl/sjHb1VYnIx5RSkXkZcA7WJkqOGYDGxvfoG3uTR4Nl4DaGONa0/UEmtmIjRZJlcWjl4nysy9QbuT7nby+r7+CVxkU7XismliqdK6BJ1ao21z1zojiO3k7vxzB48+C1lyUqFc32m0JeLZa4qufZverA+hPQ/NlHsJUiN+1vJQWod+0bOkXGfHOy55bE/2WEzuzwMHEvDvEIBXPP1SG3fBo43cqDkPRKSpKfy7Vm+7XqCLZNfLklxIj/qp8yIofNm84DgXifmC7gi8TT93VRsQoCdd0mON6N7INAckLefchh40PxMBes38lPV6rSmyMI5alYxdc7dSUmorE85wShCdeoMtgXtNVAu2kJshKZm3bm2+vER7jloPPtBAqgSByqbRd5Ui5yJ277TijaxOqnBZGNMuszXp+/psBSVSUHhelMK9y2nSDDQI6RaSgHaa7CTwY4WbmbsFps/ADlB+W3UstlWf2XZ1IeT6p26WQ6JxbWeSdDCltijAGAT/tQeq4yOda1mNK/NWlaQdq1GverN/eqUGtjwDuvABvMPqK/XrkQgfCzr6xxROJ3fN3Z0b94VvdJX9mWzadmLMjMsKqQQsal8Pm1xtf+4X2PJm4OvcJHGTrNtbLTrsCjMruqRC53G/rh0M1wrJrdlS+v7R4uNiykDw+VJ8VPak4SoHOWlxiHky9HYhF14mQjPlyobF+LrwNocrBVK7v83vqdZbB7E/Pd611kv2i7zeWv8Bm/HeiuPD9rAks+aFckWjm0LGuk5sOlAg7hu0Brjla0GN2lx3Yjk29pgHck70LAgkTnKJ4tIcas7gzqQe6DIAw7sahNl5JfXd5rkcrY7r9KKWKnAJWDgDvtnW6C2+NhShzJOaoCv4QGxrUINabU95iWMuajpwn390q+PAsUAYNM5nvH4SXaiwbNkKTo+uMCpyAgTeX8BDb4oNGsfH8iCCSnGAIUBWjCVmvv25jRHZda1lWiCqVMKA57ratK8ZNzQfGSAt3vVHV0y4apueXK5FxvXImH8kGMVNDaBQUQk8nwmY6sXRzW187p67P6xfTqiqc9PC+VX+YGbkxg/nirTQ7x3dtMcjscvHBSgXdnako0m/XDH3lVe11oEKvKGQd8heR3iJTK0RzBdUc+Nx8gnFIaNEP1anV/x7/fdj1s0oeFp7022OHsoEEzqs+ofByC7UDyAH4Hdw2MQPCq0rdN6gVuwW+oAreTWmMh60COuKhb3spkTUlPDduDDUuJUPuiyIpx06BYVkrRic/AsOKe1BpfAm0EMS+ABOVOLf7rbNekQLloM0q2eNH6oI/3RVtcNNVMQjlyZ2YOIFOQOCJCC4qm1QYbx287vwFu8PGm5P2RUcDw5/C2XTXX0HL9AQjJQ5gjtmJF4IqdjIh9BSzIi8zH30sOuWCbu8mPNkExF6F4+/WJjFJZhQqbYPYEkdYOgVvtsm/d7RHjT+mHWBPV/l2JeOcUhWXMVM9NQzC13mcZrZG9r7iXcXxOdqnfviuocbtolbTzMEM+nXZVK55EaiLEgv0XjcR6XEGhGYXqqqcXwtGLVUESvvRDZrT1yn5477Y0H+DQj3Yl03AEGKz7j1LJmVp8mMUO3qRs1bxVktg3KHDmuFAmU2Hi7UHm9TrtiAQmWvwOkRoUBwY3Ie4bHOj5cTw4SkHucOI3c77As97KNGbHn4hDjXE2/EFBrukROKx7L2ZNCqW+PwiG3nmlEIrjJ+BxaP2wpln51yYa+O4gx5lwMoVHBxxXJUhLhH4lymW1yTLYFxX47lRjSHxUAT2M8fc7xi8eazVMDGDpxQI/ymenJjuAeao2q5aNqG1gJrNDMHq5wj4StsUNagrf65uKeBIm+fK9gYL3WzWMmtZ5ekm6df9EA8jPGUMJ/5N8lcUdtjhw2d0n0aO/k7Ab9i+VHjbMrMbIIi9XZLMm2Js0r5U0yNku7s1sbpo/0IESbGxe7crODqcoA4j9/KYue9ousgykJNqYoYiZDgDfHYh9W1G9S70Lyb5P69iIqReV5J9VPxBbxPqdMnE625+6z9tMoXzvLkdrwo6Bg5FgO0IrQxvaCQ75mP5SetmwuoQIRiEQdqUzh3fSfSsYZ70mMBuk3TeYAckfPlIb/QZLTbMZLATdvMkNmOxfqnyM0HK1VtfoNf2K5Xz9b9OWzz+RuXNJAyb+CoQMNznkRcs6mZtSBNvPhDUPLbeIqF/R3Ms9EkAPb7+Q0Mflt88FadImm6dzCmWCx3oKv5CeeOwIQDu5FZAakIz+Lnzs2HFJ8Jfqtvo/ikK1RzLm/kuxfLpW9figBZLeAwAdMgaJ4AX4xrwnuz/y2CNjAZQwTBNfqA8LehJlScpkrN6M4bsXNLY3OMrTHgxfYcw+n1sz3Xw4zUyo9vLlupboWI5A0lwzIDge3SBDusNjyH+O8atHW1dhRehGXxBeiJSoH62dCzpdSdvdd8w22ut/yBQobsdErWkLqJ0g1n1L0lpVqSnau4JB7NDi3Vpq0EgsG+SJRKZfcoGvjZWbyui8vZotEYsgnxxwQk5FArbLlF1bKc3J5aDKvgSWWj552UXcIcYC/pMgqKqRo0xvcawOapsoc7/JNYwYBY/qwy8e80kGJGeTQDPvlu1+WsmVkFQYWZ6nuuqcEvc3jKvDbU7PCmbayRos34/xpiKYizeb72i/LC4T44TrEQfEl2aw8wo+TlOvC9GKksLfpQ0PKVM3b8gNb8392foT5WGdQBBPMP8L/+9zLj8guOAUYPCuFTqDaeHw2OaDKxS5a9AM2ilUk0tEq58tM6L+dA450Hcvi8PTVXw7E21Zfo3Vtpg4wQSHpEa1zHdxVG1NmrwyApv5gwrEwFJaK7BGxQLYpTnXylFuNLOelBS4uTxGJyzbs1RJPLnGnvnc/G78bgYaULnzGEvOJ08zPCsMYxPAbNyCkBiXF7wdWY1DGQ/lFEfBzg8UkTwhXFZlUvb7A/zmmxJrxa3GFK64iDg3kNNKD7J7uptcxKDTwAPvAr0Bb42n3JvfPtTxPMFZikHyQH/e3fty2ddFaGEvVrRdDT463d/lmtN+mT4TJh96LyuCNTgu57Ikn7XyE4elLzl5pz8zt08ou/N11pGHZA0xMbSdrOvZsV3sqzDIoofgjRG5oo4WpaGJoXJNRgPBUmrAYnejrOo2xLqqaXp682fHvavfdiBXcxp3yBGInCDyS3lNWJ9YVDkIwRhLtWKrqJJukMIeHYDUF3pLS4T0JUmdBKtVTqdw+KVTRXC1FElgOiPcoUdAmZr2D1slYhBtQX+GZhhS11i52oyfeKePOJv91QfwqQx9gbwmcknGzTVHOa2QTAyzUzg/v8HiExDNG1N6BPOfTwA9M6dGAcHLar0hzEA5iHoKaZnReajQb/0biD727HuYWhtjn1y1sFi/ECfyoZTmkaMz0kOIRYj0Vrs7ttM9lxUDpizZ8YUrg5oxQme+CIpWdIdDFcIGRFQIa63hW1flZm40DYD/XSo9d/ziR5HP37/T+vLVdHJYGslgxpOSaWGUhtlyMnDjLnJi0BKIctl6Fv8hi0G3m8WRQOC7IIkd9r5SG420UIyye7cfmJVzwOjwZkK9fDVEWwR6s6e8VOIGZWFCFa4d7Yd5eUsyqQkX2h/rRBN9/hA1AiUQriL+z+CD0QPBxsryQvOOHotd4qjVvGWqEoySivVCsS90s6uiVU35fwcDBhxHw+/wIJxBBzL8VoPFrteqFl3t1r6vnG/Yh0xgK7y5buusfqgrssrddopstrKrCNoCNiS5PbjH00oUrdJIzEC0VFadvL9Y/GqRE2Yqh0Xpo+NsXsvIY80++yWUXJKu4y0dB4ZQIHphuc28TuLowsgpM6y5yJMAP65IW8ELlcjZOLrOMdNtvPvNfKR1grP+pOsdQ0ZNRnwpi02Y6dOlsJ46rgCAvSvCYrrP6tTH3gQUIr6+oBYo5SABiHAwI+ypIr0SpLufab7dfWz4T/G3O3WqeyqgMj557ViHP2bgjgVF1WaUGAqusTQe0dsEQbL76N40gzTuwnU5gwfDgH3iQZoBs4iU5057ixAK1JUmwurQahaGkVQaDhpgZ1bOpWSq2pAdc25tde7ccEZTVGMqEP3Mllii/r0N807Srym4nWnWqZRoEA3Pa+8eRE7Iba8rPsuUPprxBCi3BShUIYyKdHjgcFKSEmOeG41a3eb46yeO7KN1WJtHzesPqor657uNk9SKhcJisvG1zGAW7ij5v7YV/rQ8Atrx4zazPWtRfpvly0an3M7+Sg6UWv8O5WCI+lY0X1Enh6hgu0sVv5faMF9GqkVrPrWpnhImYqS35+oFlRLBAw8L3n6yD4oY3wtL4kT3Lmz8ZV9VTsB0Ix8tvTQnExqD084MYEGmOJodgWXL8MHBnVwm4OSSP2FTz4WNmat3nga68921AnIjwgiCc1qFQadTtpyg4dfztapWywLs+jo1S2uYYT4EB14lICemn51Bk3wOxbLWF4/2NMfe6ByPphOoPiVMuSpR2yq60P+s2OoWl8lCb6JFk5Ni3TPd1CaDagM2sPVUnK2Gyh9Aces1LheWWk+4pN5nnEc7VhAmF+7Dh69SYKuJkq+c3+hHaoeTDXSEb4Idt34bK6cNq2HOjo7UgRVQKhhYSsc6YcgpuxMv6Ob+4cpj5a5jOPghpDK2wZV1EYbHBPbEkzRWpHWGOHivteKQKhK0d6IkRo54Wh6iVdjwetlHvlRDkFlV6M5KGMNLREvrbCHP1AAJ+xsp6yMV8QRNk5FJG76Tt4abwwHzN1lbaNjlGbzQikC7Eu446eeT1YHE4smSq2OnTv+a0M1YaTVQoV2NtlxSO9Y5olenIb/fPHKkL34PDk29O6DbkyxqXQCEggkDHb4nrrI8X9Zq0Ik5FpIkHQYUo4hDxEP8dx3Skr7nMPPj+/7CV0CLXDRJjZAHhA9iUrYPa88sqNA6GMnbR1zfQCYkgDKlOSWZE2+tSa12TEWuTQiQwXu1Qw6dgXseuzYtPLosbsm9
Variant 2
DifficultyLevel
626
Question
Judd studied 3 hours and 10 minutes for his Physics exam.
Jerry studied 5% longer than Judd for the same exam.
Approximately how long did Jerry study for the Physics exam?
Worked Solution
Judd's study time = 3 × 60 + 10 = 190 minutes
|
|
Jerry's study time |
= 190 + 1005 × 190 |
|
= 190 + 9.5 |
|
= 199.5 minutes |
|
≈ 3 hours 20 minutes |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Judd studied 3 hours and 10 minutes for his Physics exam.
Jerry studied 5% longer than Judd for the same exam.
Approximately how long did Jerry study for the Physics exam?
|
workedSolution | Judd's study time = 3 $\times$ 60 + 10 = 190 minutes
| | |
| --------------------- | -------------- |
| Jerry's study time | \= 190 + $\dfrac{5}{100}$ × 190 |
| | \= 190 + 9.5 |
| | \= 199.5 minutes|
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+GE+nI+vSypoyprdLcX9wzuMRehQ5kuDdsnJzx15zuVB0li0HFF5snwdE5GV6OLtqPXHFo3Jq/zjVBZcQjm9s3FE+qTF7nYf/5A9FUsClBZOyKOHhfz9pDniMcJ1dZEJUYFim22HR44JDWYiE0kzMrbQSUypAkbb1+CGVOCiyeN/HSJVlcFSf/H2o6XweW1Q/SE6IyREZTdeAx6UIUqT4sW2UX785MhtmysCQdnEtfr2eswT4TOf5A37NkE/ctKjYiG8itpAWOIazKGiqSbbGkPqXPw4pH3+FmJ8EOxr9cyMckuJ+7INOLYyg3OLP2l57+pBP4BQ/gDJV4bgB/EisGIImKANbBsArnUMrQNjDbnCRGroHo3NAjQHS9nXwF7UbmLlDMzaDKQW7rJVZbzezDbXf4OoxukJAWKl2dY1OZxzKxazxhYzXw32UPX7yqV63smVfbEKSBp3G5K9F8Snnl6vxTh2aBp+QZeGm49i2c9r5x7kjtJYnTA/DNxYfv7eHDsE8C8YHKxzwoJIIDUh7KlhFsaaqmTfabZ/LAyjI4zN6UkR2xjDNpE2qoR8ml6CVHMqbsDuRSOZnZRsoolD61b53GPhbvpRC0W6QaDCERBhJsPREvnTA/3YIzjlPspzQpb/S/VxU+Bp2Ftbd5Yp1d8F4UsvsN3l2dwU/KuEh0cMV2bVY+IU0Of5+UwfMpTxiHeyngyOSYwVK4aybXqJx7PoZEpPmGjxzJwVtIQU7l03k0APjW6LhToKcwmJr3u8DUtYHqN1DU9OYXsNp6VtquV9vZWIs12O5ODtbAkoVO89qn9dBWxRoXv4qlv3HqlmZSg+GlLZwEFRPoFalwniAyB4qSUkEzdgvCo8m239FogoKcMt5m/qEGILN4JnvMqxnl0NVRm0/FnhRv/5hIC9WmljfENxRju9IbP2jyoSzkAKyPdP/QqQljqHEylIl6UneF4nrLz3LcC92YX+4ZzoFb/K4GGXdOyP8WglYszHg+6RVNMwAEjcreupGrIOAUNvVLghcULAKbhjxasqoQqY1D9Z1xLeiYJBDtCgaTVR4lDTLbZZ/Sd5w+n/EpQgK0mgrDW/O6Kf/t+SuUFUIRtXBv/+vnbaiPOJ+XnvB5GZP8O4m3S3lyK8upw8zt62iAABMDSfu6kLdo8zVN71dF58HFRI8hrZ+L8ZQUiP8no/Eeb2yFCrRTQl2pm2ScCdw7SPgtPkUVdLpbhzKmZpuzk0a0yBLCXKhuyJFfRD02tkIx2utjzjG80FtYhfAG4DktRKnppx9Fwj7HV5+jm1oUHHDL4ZaCTm1Wy21X6Lpq1DasQBUxEp9RsgGfwfZGqd2VSu992UzWgKzvj/ytHopBKY5fRNNyg8v/waVbOout+62i0jiq2yDbD+Enjuv8eVE+cKmuJlx7eOL4iYTv9s+by4j7ZSlyX//M1Bg1W4TZwDVa2EUYHB8j5uxPauIkzKTyu4V59/Iz1b6tNRTkvszJvmYtQYvO/6WdP11SoklMAn/g6d2+KLZjqPbs5cpRItd99ofK3wRZwEtHLNWvzzTmUpcoiWM4r/iO3qopX1/ecOTITUfpbd3M9QJ2TEvq1bHvFALBcihzbd0edBW1XnG5fa4SP3W68CTj+NAfHvZV83hvVwJ4MdYoLbszgu3fpc4jRZY3HmtZg4aoLGKmdm10yBXMI3eO/UQ4WrMmE2klMqDmixdDjbqUignjRQOpb6jsBqdiW1cBAMF/6Rj7eb3rgI+M86JVpkIMnleVENlfot4MVXlOSdIl3Pm1w7+m24DSSnuiPuokcFUhEgNjAOQXqR6jGXW5X0h48Z24F05L7c6DxS3s3ZOBnSba0mROTkdC59bQcHwP25onPgkX4dIRMjkuAP5vN08FyPiAhidh7UzuKc9OKkQpt6H/stFWXIkRuluzIPovWN+Uy0/4ZqnBcW3zK6ocrdKgxpj+N3M+XHEkJjEHWOQH7cifJSVDVXn67AtfI3sHcxRS1TfrBJ16118eJJ2vQIkFQc0yEgT4O6dCruTfYt5FW55g52rgqWeg1RQzluEIwrSyfrmBOa5J9Cwiv5ulSObtJnkkY5ZNjfndiDiyEsU5ZBVhetGw+phvR+/1EMaJvDgm8tAdLu05X8VAhKQoHuw0fjJefLk1YMBP3KKFprJ0IgCSzTUuRW+mQ5AP89i7o0lQaXU+tI/TG2lS6Cs3GAiGzUb5XaJE5VdziR+vI8zh50M+2POoOPxvJfl1TlBMLnELJ7zi69UCFbJfS5oxJOOcPHmVOtrTCeTQ1YPi0kleaibPJAIPUYD23aSVdB7xkaur7I0yD4GNiySOAcv9l/xy1eg6irVmzhiWXtK50N9MrOChFVA58Eu+2ArvbV/jWRjYBUiBwIZh5lPobaHCOD9a6cuqb1ENs+Q9m/C3CukQORuafn79wQicY0imKcjVEhICgKGXa3jo6icth8/xxuEu/PUqIe05BYQZZ9Li5pFkwqs5Kg1N0OaqVtaLJtiVQvWnMRO5qLjR9rWyc2MzRE+1VR1prLYQPcy8WT3RHqqFQqcJsGhi9MLTTpohSZTDJ0AqKpAhQ9QB3clfBusD4tNMMUstkmL2hjM65sliQqqoym7EHi4SSnazVwdIDE1QwTPoj9xtTNwooNuX+0mfrg3JlkjRfJ15tYTlkVNZZh4JubxYOc8CWl75OXGMkNbM19L6kLVBEyfzCBCSu91rOPCS0pmSFbBdw3s0+J0oPm3oe7/nzeVnECX6WrdJ/OO2yWgphII1zXQ8hfd/nnqxy/CO358zA0fjp53foY9pWdpajhVwqJzf/lpl+xKDfUJVZPk0j7fyfNNUGdJbQZpi6jwIB4naYUN6C1tnZHiydfP1Bwn8wiuPgcBSzpUeCNtAARMODs+7ZLUnHscKtsdk6ldZUXwf1Kcv58Tv77m7IqldyNtQ6eA0zfIQRx/TF+mIkH9IrqtBq7ZLI8vTB9A6vfxjkNQ3iQVuhLCPfy/ZnyuKE+rCd1t/bIn05Ordrf1WI1nI5o9fSeguebMcCfN5r0+VrFWa+ObREI1C/dMtMS4Fvdrvz3H/E4nKetOMBopgpNG28cQyeAVyKpMgxt3gCCHrX0d26clo4m1Hx8dNcX/tTzKbE3gSjKkE7aky6Z59KRgoXk5y5enn0zbWVhwhEncfVs/dUY8oaDNeBKvwH6xMXSE+fTUN6Mrh1DiClg8/69Iy37DguoOdl0NqeKzPl/fPIOSgwCiB6QplWnYqcYGaaCshHSHlUVIoQXJ97Mdl1EgLoKo2KPd5L0RTOhU/cVkUsRegRAI+Bs7qb+1GWNWRGxWZzaZUBK48AzzKPV2Jy+Kyrzkr+TInY/u8PHycyylAuIdupJaOkAVCB73gRsgJ3VfZNVIqj/iFTvThFw5K91GBOoQN8XT7GUZPIsd+DuLwGgQ/+i/8Xs2EYkvslGA19UcrgS4xO+rXPuI1ke43jaDIEpk9+FAbrI8O82A59XVR7YU+ZNawdY3y9DvhqLleGkQ6bjj9aq8D/CELe4REMEkacWhCRzulv3dAGuMbFfL/J84Tmd62TD/k1YrS7sfdct3QSgR4KwLo9S2nZPB4Faz7e4Y/caqLkCpgEc7wk/8nmwvGbauuUpx+QDTiZTfnA5Smt8tDAU1jzjeMPto82cweK7atntc2cZ2/3U0IqyFuicC+9M9kuz7J3Sa+rTzkqeXvruhJvP/Lv+VDUpXTZ45fDHiIB4zWeHVxTlyml5W1B7A1m/ET+0JhGJdFkD2edaQsP3V2EXcgN4i3KqS3Uzu+WZBOmzeZDQZe8rbl3CQEvGpdvhw3Il1tlp5i/sByw8CC6465jXhN4qaGb0xDdrb2gA+kxw53eFmiZSrz9wRq+7EuS6nRItEpiBK1JN/nAUQR/alXyykpmTXuF2m1e4UvaT/nmqbmwFy5uCxCHu5bDRgVKU5Nl6QARg5QgPQJ96GSfvbQofjLNKPm+EQWv90QqPeX7pxXaJ3fBla6WL13GNfnXeWxnvYq3XABSXkAcpj+/a6yHagnESxRmGxwhQtuFZDQVB8AQGZLrcmP5FRBq+McHSS9+7qlDbkhNapaeAXoT1bSQ3LCcjxzlVKoUuQtT6dqd0qm86lv+W34biKkXfqhXHJ0KaMf6uNs/YfRFlcQDAbh1q7sfY8V0UpA4rfbgm6rorjHLv4TVOOoUc1VbTm9zBZyULbtNipHdv8+vf2mbNS7nWeiWZo1WbXBo8wNGwQLKcmLe8hk/Z7fCA28P67oRETBinwfwizrooYQV1ibs7DrU8L9DpWgY75mdSYirEs73CQXeBc+chtzkEqHzZEvoWgWJjliokHKQf2LDa3U+VzqNv9AFSiE293SjKvpN5DtnKkYKtu6T4Mg05iowpd1tBj67lm7NBImfEySA1NNLqAh7EVZyHTTcuGmrUHYEIBhH/J8ZKBsWvZMwGiiwX5xqKvlYBrcmYtm1YHed00n+blKaTy8YYLN8BE5rkxnh1EGsTYFzFpGZV8Cdoe/LGqwIXw8EwF5VvP5JGT5UoP5LvOrYSb0CZyVDbhx0m4AjKlk4/dGuaBVmjNpTMt/EYbsHpnL7MLsDCIMztuUIAw/lp4iZDyos+ZMCkMp3BoEW8HkX2xPnF9axGWUdorrZadIStGz5Wl669/b0OWeTyKJivR9nQMZ9VXRMVrJhsnfG45/Ru/15JrMEAfaY0qzHKaUmaPKH+MGKQnltz2hzpCiYyAjceY2IFnaF832XBn6doOn2OdbkF5SoBtJKYUVtQKmdSPqwAiHeSMete+FeyY1UrTfjQSYcpUxQS7I8wVTv3PSUfVAtfOx1o4iYFnxCouGtb88bMG5GlDeBd+Y6wmqkYmu1DeemhDhC/0dVhijVycn1GPUmAoaGmqQ4IXmWi97aDrRXcZPkaFVa2Mc1XI2B/SUalGdqq5zwSyV7Ab7G9ZTPIrLNV8QHvJydAElagFYXaaai2+YUTQLtdX8WqLdvlyn8/xlwSrG1Pzd2RFcfqwPvEcAf89nUM4CLp8Ir2IXWzkEkwwfElFTxSCmkBTn47z9Xh/n5daXYsmTQdh2AMYBrpd70eyr3E9g2XGq2HoMptRpRNslqz1QdfCyT4OSi3awIkfSCKY3GL/Iy38NUB9CsFPYJ9UHmUIeeFisrbywXygiisiwcytOp4AUl0E6
Variant 3
DifficultyLevel
626
Question
Curtis studied 1 hour and 56 minutes for his Japanese exam.
Carol studied 30% longer than Curtis for the same exam.
Approximately how long did Carol study for the Japanese exam?
Worked Solution
Curtis's study time = 1 × 60 + 56 = 116 minutes
|
|
Carol's study time |
= 116 + 10030 × 116 |
|
= 116 + 34.8 |
|
= 150.8 minutes |
|
≈ 2 hours 31 minutes |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Curtis studied 1 hour and 56 minutes for his Japanese exam.
Carol studied 30% longer than Curtis for the same exam.
Approximately how long did Carol study for the Japanese exam?
|
workedSolution | Curtis's study time = 1 $\times$ 60 + 56 = 116 minutes
| | |
| --------------------- | -------------- |
| Carol's study time | \= 116 + $\dfrac{30}{100}$ × 116 |
| | \= 116 + 34.8|
| | \= 150.8 minutes|
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19h6eZSoxC+SSkfdE0JLZW7Urcn7NDvxa1dUA5gX5TdergYGTYm+cVd8b+UA7hx7mmBoxNBsVnqj3KjG+TK6/FV6GWWLKhzJcwq+zgTfx2PebLRgznhvczRNra4EMTQ6O05aELXZxbrlCqYs6cKoc0nm0+HswL3zHDxdUlt7npaKx5C9OghGeCF6AZVkzXQha1AASqxUGQdxYl/zzODeSK6kXAQF7PxJ0DlPkes49ICR0/XJx5Bj2tHC2Jwhbyv1d7hrSgJK002e+Lo/Nr0UuVUgGp75JqTUf5nnKN0W3jnysCZW/QybS/ZjBBeOkPUD6/vUI8CDFnrTPREZ0T+SIXCoWpVUXASrNJ5WQ9kqYu+kxeHMCZ5sGF8nBjDikdC9K4ZLWdEtECxoqjOtyDEvXSsBOuvIfz/Fca2wZsoWzUP8F9OzjWHSHfRKBCMlrsIVYFr/qtj7J8O+ZuvQtN1DQTNvUIyFFAfadlbwsmkEcMni8TfVgf3033ZgGHgKoN4UxGuXdg1kk07wvajTsu9MOC1ReHxKXQnxGAsOBlYgVoqoMJ5JJrMeuHVJ9enVUlqdUe6l9IAdUS0vSCOt/VH2rgiqj7p2pPmBB00Vhacrsj5Gsv90Tu73iHg4w3h32L+amL0A4XgoskirHmJ5Py2uHBKJp8nfXKZd5SFMzk5gnI0KLBoui0QpmE5zEXEqoBgLfOX3PrcIPkN9/nJr0AvceGlFlCfRDgd9OgHFtveZqDdctqETZ2IknN+0YJrlcWS95qdopsoyAv97HekizkO/gWhktTNH3cxN5CR1urpTtKIeaJo3mYSN++ft7srrRVWk/peE7/5URcmHC55BGMWmtbDSk42IoJU9HXEJ9sVAF5vdUQOs1+A0LcMwmFqZSWM7Mc0TeM6Sh/r7iumEvqcQ9ouELH+fD8oLITIN6u3BmN0c7U9xZEVyBERuBleqaK5XlUN0/u+0WRoJxQS18/E3uuWjz29iEhUIer0rSwBmQ4uvB0mcG0sQB4WXNXMG8BRSh0U9qx/57RBrlfZelQ0OApTdV79nt/gtb4S38JKFug8bLej2YKEaG5hsv5/5U50ok2yhTNzMv+A+vDGFs2lL9qFvPnd5byD0gMtCi41ilSrVrBda6BfB/0BrqK79/uEHiUbGuJokdnzwE4KO0xNggvgaHmMdCza11/r3ZFs9WoX8YrPIao1BAThDRa1AKcwoqDNBJyOwg5O+MHoOYPaNqFjrTgTTz99a9K4IxUq4m9p2gqYaotsZSLm3RWbY3uIbPe8tC2uZ68QC9hp9QRbXfmmRqBeeHTYj2HhnQPh5UgbUrnTtI4ofGTrHoJUOmDqcl3fcEl2RQVYxjm2aK3MoX7f4fuLVA2w6Ha8cOKjuorounRRErC2bk9ksFBOdFvyoHBw5k+O7gX9H4qjD4d62YcPdJOBw7w6MSI57EqWaERz+MzD3JqdWYBBpbZPA5GsTW0ib6gGUS9t6A0cNyA53znRNuTmIMS7Rq24xNrdnaOOSii4UjpEYBDYrrKwgtHNoVFrarck7gRLkQQCOaRgRjG3+Ajzz6gb8nssNfWT9+RpLTW+MLIEfA7g7ZXitbytyWPVJJh1PQwr50kF92wOBL8pYIzQQ3M9WD3gKlqBqKON2tqNbrBJl/g/NRNVws97d5E5wsi7WPtVRpBdoqQsEKBEw/P8iRP7U6whbgZojfNvS2JPhRSYBsVJPBVnjScTwedbEvC5o6hL7vgGABNOrd1b/nR7P792/VMDZTPkAdFlpmJIr3ScUdbWlGkpnGN1u4azbznW1Z8ECm+CiCL5wAGMHw4Oxba5IifHlCshgmiFR6e+E1j1Icsi4qD1L76fs5EtRPPtvTHXscFuTq5x44IeWPOsRGL5UKmZP+AvK6qZvOnhisPVBJnJac/632h6Hh4vzRapXhkqpevIYMVExq6ibzLwxsyJAncGJIdUoeS/64oTFNMpr3tbyA/TtBiYShZmebOqwMA0xymp7vqwOmyKYZIVHsnKtSljM7eVhP8ZrpnfrjqUQEa4PmBaAb8mYfb+RXrWCin3rxANgjcFlWxPOADt1YMbfwgTe+12L52fgBHCN7/iBLfszqdBFKpPgrPMFM0/6ePipzxm18Olq9zRZ3D8aXcbM+NVazw/BtwRTBBLOgEV2NV9UMZNg0DZWiEsefHmRFWb1ToK5f4xXHFY+7+yYPuuUCeTRXm95nnUK2SUEzPVV7O5UEOd7/oPDNGIbrx205ZHcV12imeF703mpcbozGPHaK8FCp+Z+6Y0GG/yqL2To8KSl0wsBUSiMIrqUp1UMS2nsIUz5RHUh3RPa0OtFGRqdYT/HNQTn8OuAwli+Ukcrvin/JlTR51P4UHcg6g7ymA/cbXQNfohtHWKRXv832jiaqd+L4IC8mHo8I7vHmR0k9vI4qUC+rqrZ+j98NoyZD3yM02oZr0QwokOdQzkuoocFv+7PzpEf84GQodgW3ZOZvbz/sXDHvds8ZuyJo7MSkyviBfqxH3hQxOTf3272x/tZ5YkPestJomEpeQvZP9kpu82S60FrC6QlGMAcBiINKTkiq+htI5A1rmZmmnDJ5UsNXlrjkMiVZzTQEJO3A43SA4ODLTC2e0dFzBmOh5pRbr46+tXKiLZbSLhNO7SLRDTkgHOBRa72guq0shiuXw+zijYIEAspsHaALJc/22HJ7UF5Hmvq+5dLOMB7FDH+A4cdGoxlxOeITJVvgUWT8Mzdx+HQh8IN8RnbkSXMXhQ+KZTvCiE+QdSFuYVAYZKkSUAZp35O0lwjAf/nYDl3bwn4tyFcOlyuPF/sns8YCjmmy+5hHEJwJZgeIHoUffRd7obMI5zwTsAdGk1ppED9mOwjdUkyc3t/GPLkSCEnsSUyPiHNFxZe5dl+vZvsG5F7ktveg+fwKXaI6+nt0kfIpsi3EpfYYw2m9hUyQpiVXIvHGe8ytXE1bygJvrWwXtF396OCD8DWXsBuZDNWzyM68nMG2HkRZZ1zz/Vg7lPlwpS6hqT5yztXWbr0WZvHYtuGznZGxwJTD0mU0iImlxEP6s3wo9Mcy6cisB8Hug04Mqb78i/DUJq4uMuTdJ6VNAxfUktdYC9OgpW8wkezFqxaIJbHjuY156o7acg+L29bMrqvpNS/ZwQI3aMI6TzQz8998vztMJXeeP9os0ZxabvXhAszQYSQYyJuKjfhmR4aKSVh+2eTJlcL9c0NQtMPb2gw64rAnWDsE69VMxA8b6X9anoIyyZy3sO9kwJWzwWXTIffIIxZcRp1X+0BXCc9cnPlDHrkBO17s8xKbn/lUxleEixq/HHCvgZFq8gsJQCfO+xU1lPcml/6lPP4hotmKn0SxFUIUiIvH/0dxri2bODHXzqAI0UZWKtDm0KqkkqXSFbT9NWkntmzqJJlS5Oo4OXBbEZusN4AS1q3bZ+KkIChuYq8z7DXMjU8jNbJitd5s1j+TDsuH6+c8zSA4fHoDpX9S9LK3ya9c10VPFyDlr4UN7fR10N/lA7IU6vkdP9XG0S5vWEMwsuf/QecDkM3k9p6VPIA7yhyjXIUA3UgphYae2JDnmY32t6AWhhhs68MWYnRJl0SxCMJnT1UFA3iT/5Jhy5onMwwj5zs8i3JAMZ91A/S08a3cyChFFEEE4cF5ztgOnqWJWLLInE6itZwsthmUQ1tzD9Y7fX5PT3TIfi/M2mMP60FfH/RfSmJQRobSI/s6h8NKbZ+nPhrtyqjrE2HIFiRKl1LtJxGLsw9zTllN1/ggC5JhQwddspHIanu43FrzavtIv2R8mJQGol2Ax/1D9sbnsrTmSTKQm1s3W3dYNcadFmCg4MUycaVvFFhyR99nqBcDmF4ONwdmGH1MxAngrnbn6gC+NyjuWxIaW8iZ+4VGaBqAMH8nBT6nlPCLX3YESyL3QCMqA9ElmBpzVgzUE/vY5hkWIBV5mX7EPBOS3hzevHGQmaz8gLbjMdEY/mgP15zo/HAx2o1zp8UchfMR1AKbQBCFj+vSdcczvd3F0+ywKgSAOWA476PuyRf+PKkt0bhpxn1VYldOeSwVjatmaifW+3Tk+bw+uWKbC30UMqRCwAAwNDMdzyjRZa6y49R+zYQ8+kr1eZqvyLbOgAE8HsJvzf+QxwbnSJX2ZpkMHaIRg/OkqXyuK5pbaUccIfrvO6KwZHjPjSyKjc2Zcn20cTVB9OsF7IjxqRk+EInrIqWrmZ+UpWUUCfh1b/3rjckq05z/Cs1q5Kqnxt6ZCO/9as/ktscgTXqNDDene3k0xIOWSqApZ6Xm9kurMH4OHndNmyARKPm5M/Ix56bK0epuCM4ZGPYaEsvCu3BMTvvyBt2zRYoHfI7s9QrKqSeXdgIcZXOPCW1z5zXoPyqLnWAIxU1UO4AyicuReTIhsQroCfMP9be1AEB6+Sj2aaz4c0jMG4cA+sckjFBdrBUJA79YT24+4qooSDFxEIeYfhU9JeLaOU7pP31i+uwW/V4B41XXiWssS9Hyl+o8UF2oHnQQVINZWlnXFxLuJdSdjKeYJcGKbZp99GkzxvPtXlTEr/7mk/m2PsBE4YoXwRa5QaPC4fqOhiy6f0KfTo7HigHawLauRpW3SSfEktA1zKck9ZwE6PYgBWCJRC0Xs+pvLbLm2JDAo9+A0qw15lcQ6nV1HhRa5pzITIrVAbxHV9p3X0U7cLfEFWeXb518J5ZH2gAkQamgWPQ4sWA2YOhrsMLnVmZVgA/cUD4S2idcD5BGwpwZaZVW2ZCi3GyFNgyryieqhZwEr++VPn3tf8sQyWz3oUoRIRR9TqXdbaOKMMebGmMLgp3JW3ekhINuMgNGMI0GW1lI9ltl/gFfufErOTjv7ddbOW6kRXwrkb4/O0xrsHKlv08blh98nDQDZYO59AZyvXj6vzTl57dhiILNhN7ovNux9qSLlMh/taTGLKvjh2xvyY7y1S1G71kUPSAVr2SrbbnRNL0ihuCS3D4KtD9f6/Ci2cAVVJ7YkNCNJ1R722AK0+mtl4Z/RXdXbSfwccXaI4Gst3WUjzk/xwh4qBkcHPmYBnWlrTHRkABlBGsd/eoCOaHxbxxJCHlnhgOVksqBb6MpfSHaeNv/eCCFVx36vC7Hvu6ctXf1kyVuat9kwW5ZupdfbRU4m+XkkkHpx3MXAucMD9aXDALYj2HITcFXVpnLmz
Variant 4
DifficultyLevel
626
Question
Lewis studied 2 hour and 48 minutes for his Biology exam.
Leanne studied 18% longer than Lewis for the same exam.
Approximately how long did Leanne study for the Biology exam?
Worked Solution
Lewis's study time = 2 × 60 + 48 = 168 minutes
|
|
Leanne's study time |
= 168 + 10018 × 168 |
|
= 168 + 30.24 |
|
= 198.24 minutes |
|
≈ 3 hours 18 minutes |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lewis studied 2 hour and 48 minutes for his Biology exam.
Leanne studied 18% longer than Lewis for the same exam.
Approximately how long did Leanne study for the Biology exam?
|
workedSolution | Lewis's study time = 2 $\times$ 60 + 48 = 168 minutes
| | |
| --------------------- | -------------- |
| Leanne's study time | \= 168 + $\dfrac{18}{100}$ × 168 |
| | \= 168 + 30.24|
| | \= 198.24 minutes|
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19chrspM8NivgitjSh13QDXx07g2iHLQkC2OhFYJ9RxBcDxgOqEYZagZfJGAaxaZkMO68wFRS9hya5DWcup43rE6UvDjB5hvta/5Yj8mhuOwWIfNuAq5+/RAdC2jsJdGOJzAMy48NmXm3DcAV91rNhr7kBem3Gv5O4SpSC5+qRvbI3PyyuiKxBnKE0K3OsJcnvm+gJofKHxl41OJXkik+5O0KreS37CQbOepZAVOcChShV3U49J/i46O7JPPHvxDfjwlCBShq/YEoyW4Ij+X3t+i96GhFEJj1/qRZoi0ggstvIg1Ri2dsEu3zvQb7KawPH55z3j3sMh9C+xRKiTN5T5EflDvLvGR+M/I8IKDFktP+Nnmb1uP0A2OrsQu0wfau1tgaZyj0UtG1TaBYLk0z03VjbQQg4SqxBG8imgT/t6MN0XbzilsQvsK8sJjoP5K6W24OXmj/YzvconWT8A4cwVmjhq2kHLY7R3PRvodoWIXWDL/32LxJ91A+QOQMI7krD5iaA8mFneFRE5BpjQxt8iIrzqfJ3bPfbBqysOWLgzXe+Ke8+W8veD+E7XYo39p2Ya+868KlDbuTJ08rO/aA/O+XeV47eORzYBWmGmJTXhdYKssCAsLqAfob73CxFO6ekY+TSonHiCiw2+amX5o7rcbBd2w+rUJBr32nviWaAKcx6fGq1UtyMFaPjC/9OvXIkKjYwFYIzrG9sV4D9hMDEDyTLDz6OSl/ImiJkTCoEvSmhUAq+HcTxa2JGDGBmbr1S2EYRcGjhutU2n2KlaDK/XEUbtxoP7agqSBTSBpGyPh+20ZP6jlA069HM7mhZ0ZUk6ZA24zGXFUsW/CGEB0cuJlAgP+N6ZXCQ0RvJhDSjT3aM0IjuojkBp5uwiNLk739etVlwjFUtKMeFpUe+6CMkOx0ku0L0bDxzFhSnQ3/xYJGtQY9wAx/1edKR5um1C38V8rpX0jKtuVYsvep1ulDgCr8QUVsVYlmjR+tlFdeY2BbnLecQ9v0NpIWTUrv+k537G/UA5m1fUDQqVnLQn+sWEuLzJxy0/PXC3M3eX6ppGd4Ruq9zUh1QdZ/nHGCBW5e1ddhlQm3hmyT3V6r1lDQ62dkTSrftj4z1gmCaWB8v3/yegBdlTd1ufq1+J+2mupwBAMQyBaXrpPA79a5ec7CxsEyRaE7yuGR6SETdDX1/TFLFr+sCrsC/mmZZ7vPmEc4SfsszNj/kw2JtndqpqtjTQOvY5Vr3tDRPvKCbKwBdPcfPQSMJeNJUF7hNcatDSrjH93USUIheQfbBHLh78vLvvZAT1stw53fI4cdrt85NqMegaeDgC9Dm0XiMhcYOarMV9020rwdpqXP6/jfK/IjGcCyREReebk+TVvwMmWwh0XhXvGU0KuYZg+DfiXuDc2gqXw6jH5dA+YAMENzVuWlDOjZ+n4ugJywThXFFhTc0FnqcRyZzxuY7RgeHGG6CNek6JnWnpJN4UJIYFM13fN11i87S0CQ0Zgrr+UPe/Hsabui5gKil4b84IyWs8aBGrvNEGzjdMre8jc+9+6BYBws7dXKSDN8XjD0VJu+FS9QuYHBotZOiUcBtWzw3eQ+3y3iSA55pFUWDpu2S3YgNopCb5/9vjT5kQyZjsL03L4ji8ZD7p3Ts3+68MhXYdy8RahaTqmNGuB4tgS2iGg8nGV1ljcL83lf8NKTasYaOjfjhjGTGH6Q0YxgbOhvnhQ+fB4EypyP5pP3FDkAzp+UABdJ46y6xaS18NBcBcxfoD93ga/+s1FRlLAG3DCauUtuTDwt3IqFf5fkdnnpsSi0+2XJf3hljm5vo5DTUFvePwhGAJn6sx3ZbGfj+SapyrD4m/Qvvog6GLO/VpHap/7kOuvTFgbujrZV5dE7f+RBa0c3VYETGWc1IWcCCm1DlIGcjc/C12Y8gr1r35HjUxCjztCqsgQ5R3K7asW4CGwL236CeN2auA/z35Gz7OWSKVrpcI5eDSfwY6bBqIOtoKVqrHde9eSYSR5tkeSomGEN9YjVUupGFKj6yib8+Jb4dlu9JJPam0ZJuIMpaThogb9TbrBQJ+Pf5Ri8saz2EQaGaxjgH7jhzGXQkg3ndCRsfAQjBLRgXIDXSlIQRrKTo4gDTZDFgZv1LuoKWt2JKWNiIAB3DrKhfgy7s/IKRgI7jOzExxXan5XGGMl5eJH5Ab/UTHg+4UKSkyLJKssvbCbfd5bQtRHLNHKwz5ZiUKRFdC2yEDT2v6ZtHYCGHg1JwPu820t6O2b37+v/UscSbUVdvZ049CD/3j7zi2GSvyISxQCP9UIY+tiSzqD4ChD1kipGytLqqBsPE26mrH4KtZGDGiLdrPklIJZ7K3+feLyOcE2nPojBlGkpOK+gmFVpdcbylNi9WSBlpdTt66aY0t6eJDZ2wPcStmreEGpTDO+H1D9vBlHXBsSclRtgMWpH5ZeZitxNu/esEvRJ5OLBu8X5Suxnu0gQnHP7PSXcCqjo1ipZgAgJ0601o+8+p+Jl1W0HNktSS4/7ipL/VEuUdg5xkFxpX5+Crn+pWTjbZM6MNCY10Y0x9gF8CYs4Jr6sdkvzBbN5zuQ7VV+YxQH1uXLdmwpeciacJ7e0K1CXBStqECiLHiRBRmNBGMBGiAUOPFdGc92EpNZPyN0RVMF5hxv/7MI7fghUuxKkFpsS17iVogNu1S9FUCxo1U7000F183D8BeO+uu2/JZcIzPs4UaeL6cFT1T3W00/7D/bX2sU0GA9wCUbT+4QJM1w1dI0UAXJgDR+2a/eLXL+XHn1QNDoLX00s7C+BiXj8pRQm7wKNskJH/8yv9iwQ6NkyJf+8i5ad9ivWF+zg7oeOy3zf2fnU5jU2K0dfdqb7qUdjiMAZVZRYBcdHixW4cw6SEFhWiXnI7NcdX+ZORXMcqHUtMpFO1a4RWXGdJNegEg4ftQ4DdzlsWF618gjaBrVORVk4JAOFtb1xKe8asBngw5Rfm0LFkSkOafZ6oKn3oEBKXx41Oy6vDZXLoS1XeBu1GMmgNK4jatpyg7CgOa3JbY1w7pX0JrZEsCPmik3q18ZJaeoBQ9A0OR4yygUMFzbzdwdhhXvh4Xe2QYiBlHPrHrBoh3+qblCWRutSW8TyaVyi8cpImrfxSMI0dS3QN8QwyKlRpFAixFv4D9U/jo08MkWBzORth5JeG4qvaARcqX+vMLfBDdsr1cGWg/Z1QTwxxqVxjloJZCXa7uhdWeUwg/f2U2lbhlLkB8dfSU4rykQvFl+IJdJzeUCQuEwv1FiEEohDm59L5Z9Phf2NKvn/dyDdxMjJ76YZ2P16dx6zZ5owSPZddHCGH7x0uSMotLV4oUuFiN3BXNWho9zn0Tt80z0yf27XXncgMJOPkguW6J5r0RJlvkowH0ekgIFpFMqWe3ILyg87E2cGRRdUx044brpzPcd2j5rTbSo2RCN3hJ11FnkXh48jY+cHSupAt6LD9T3OV4HOyPIXX2gZSFWiX6yjOPQIzIrksiCLGPzJmPsEFQ8Q0lJMAoSROWA0N7kFMlWViiE0GgStDJWyemZOqs0V9g2zb3uUGcdI2micIOoDjcdDX7xA8W0gfmbA9PGVjauC/z9jxov32iELNcyxSidO80xBZSq3U+sC9ATuI2oYDzv8j62ikMEHK1muTkAE1aSuxX9e5I8avys/N9ArwMgr3agP2VOUNhWCsL0woN3pR25zb8l25rwqECunoUkD7wk9aHUwXVZl51VGB+K4UIWDSj98JcO53IIm6CiaVjM1GvUxy7JNhBqAOfYzZPCjsUlNNSGoCOAquOsSmsOBvtqdZF3PSCXhYi+GxdCs/fGDWNC7+SY4QCmHQDfOHJesfGm3JkgaiWRPJRHyBhc0VZU7hdC0f+2nA3TSPZCjjw96pl/oSsNITtyH2ofTx2UCVqDV2Tr3J6Tals7hYS4kLfQDz1sUmwChOQ4jUmA3r6MWeuGs6Dk0744qM1+9DEJb7f3a+7BHouM56zB0rmGFcv0CvMryGGCpzAI3Ud6YzcME1iPkdOLF0QqApUhFOHtNx8iDQlnqsnZImuj1pMH4/0JkAJMzmXvHKl39qZwdHnA2al+ZGK8Xu9RbWxxfKgUsX0RyKVaRMaeRdVQKoCicOyTJ4RWUdjGgE/TPVDsjv52JHb+XjZGkYrXETJ5h72sej+GVZv1DC8w7xtPAZ+J8vjqdamxfJOulzhX4KgCaaNCFIajko4ilitLBpnkQ0LxWIU3tSW4p2/7Jlxlqs3c0z39etGVBxUdePvD7EU3TDk14e/MtDfeNYLU5I/pUBeJ5SyLXyuGDHA1onIlTVVDUuHaX8Al0SXJz5ftSYMQp02fjbTAa5kO6BCJNmrWp0tpv1ORnoMpoz5EDKeBKhd9I0KmBWMaAagBAqvlBT/dPK4vAcgYRD7OCvl6yxBbByxp16r/UH4pRHobsKTq3fwZY807X3YRN2AEGezpoVI0cQi93OLkN5UCx/iRrIq55g4fLJqlUc1JdtkhK900EuFMmib6X+zT1I7VxIufiaI3DWq2QS2l81MsW+xvS0vMBDHpoR1bcoMZx6MackfkICrGvMvgJmNnDQS3JHYVtLbZ2cQb2MMRSLrh07MsOTS8sKOi97Utyiht7+6Esi4DjFFAakeaoJi+YTMHJG2yIC5YwJ+J6vEf1zOXfBdmtWgzUcm0GjOEtKNG0W9sU5NGGYsFqE4cjI1YS100vAO9Itx4hoS+lPS4/TZwCspPPxR1TkgadVoBk3onr/s4jPXqeNgbsHfu9FBacHFYGVW+WLjqLlqH1s5B2oITnkBnvLk0xAWXCkYdQk0Ulv7bNrTuY8xxQyQIQheDDGIiSfBJ5b5ZqdGbWe5Xh/7zGgjPFxIDNouacgaZDzsTCQcmx7VnvikdSLdbabVUwbN3MyALG1cu3UVwO/dRzVCHNNvt4igeLirwwiZSO2VAEQ6P092XZzUOEYAAIHQ7JLdjkY3cs7SBUu4+ZcWJoq+O4p8ds4S+3HFP6do277J2Pjn2EH0KoXf4MU0YzSG++r4KG6gkqUMELnb67ixNFZgeif4CcmfV5XDOQ+Lta6fpfZcrNA6WZ7hTylmI2LqfdcYHTDieFY1qLoPNrrB0xrQxVtWW9cD5maYLWrWSgBTD6CkFjViZVYZGalCNnPqOX8VlIaDthH/4Ff10nptdWpFBMwvzfhNK/10fl5elkpeLNS8g93yAbJE8iaLGp+6TxZEPW/0g4hkI+KvHIDFzlL7U+jw6aCBYAeSbxdE7MFx/0IDKdQlbUzUaojpI8gzsIXgR61IvqyXAijy1PoCJOFcxGm3FR1ooWJ66sepznivfFVvKuLktyLJ4PdDEKwjOCzTUzuj9M9NdwDf5TLYnGYtwlih7uAHwk+3YdOa5757rDUzDUH6Tdg4TZBxwoC/PbW9ZOPmiVjUF3y732JH04inK0V4qOJgIcCeJgY/bbcEEgP6+0t/lp0sA+XfzVOxXWXeQLQE18POPZ36d+vaa1dD3D2ibmSxt2K+sbCWlXQjYOsTcqR4O90J+05/dgF3frEbsTrtdjgqB7edPvyj6Y560han4MkELA1vBwMVlrkmgGG146r55ndR5dsCgx9IGUVG/tz63A5zarz4K9Xpi4fWlzQZxZDtZBwF2j+Dy4YQlMTXW4xgoKa3hGYwmtCNzBJlikx22/xgsddygNIL1QBtc7jCs8aV8AIYgJKCI/InCk0Fyvx6j0d/pjzjXTjwJIrQSFSIeiX3OyeYSAMe9wp0G+iiR8CJzTLoQd0TBY9r293U4ecG1SFZn9EIyAeUNuIHCKYOLDhQLsdKsGrx34YJ7X0at59maPq0Ann9b76cZTGoAAg5LaU1U3KEVixC8HlyPCA4Gq5RKmzAXNNbAe8gBHWwgUoawj3kemAITBIiSDjqqaqKBsu6PjbCi4oSvgBGeUkkqRCHogmnbA2IpCf1/NI7QlbAxD2VzhlFwKlFCQJPn/gp6G3GB/8nV0dlwbUguWYTkb9me/hZrVSihmUmUszwKqMUKyN9Lw4T4g3r0TvgFsd128IcDVGmRZKCd18kGHyYftXQdugDmwgqD0eShRdKlNM6hUVs8H3zV1lOwmrGzWZze64wrA6SEW8hphABQTub5C/ikaITrqyYc+UL75KnDJnm35WdQdGGgPKQ1LBez1nWMKhoaT1ZwQP8mO9CwWNLurXK8U32XQPbOeYN03O83p4UU6OAwM9WcpQViyQqO5XkBRhVrXSG0x4Z54zglxDQMy2gZMqJiW+OGiekyrRLvZiaEsBzOV8YkCoFPZvXDVcqsQTkKnpIexHqT53RIsNyRg45MwH9wfH2wdeWyHsFGn821RM4TEjgrsLiY9WnTUIaZ4Q+5I242a7FTsHc59EdGqVGjBFIYcnfNI2uMJCZrkmr8Y09Z7uOag==
Variant 5
DifficultyLevel
636
Question
Ken studied 4 hour and 5 minutes for his Mathematics exam.
Kylie studied for 10% less time than Ken for the same exam.
Approximately how long did Kylie study for the Mathematics exam?
Worked Solution
Kens's study time = 4 × 60 + 5 = 245 minutes
|
|
Kylie's study time |
= 245 − 10010 × 245 |
|
= 245 − 24.5 |
|
= 220.5 minutes |
|
≈ 3 hours 41 minutes |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ken studied 4 hour and 5 minutes for his Mathematics exam.
Kylie studied for 10% less time than Ken for the same exam.
Approximately how long did Kylie study for the Mathematics exam?
|
workedSolution | Kens's study time = 4 $\times$ 60 + 5 = 245 minutes
| | |
| --------------------- | -------------- |
| Kylie's study time | \= 245 $-$ $\dfrac{10}{100}$ × 245 |
| | \= 245 $-$ 24.5|
| | \= 220.5 minutes|
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers