Geometry, NAPX-I4-NC31 SA
U2FsdGVkX18OQ12+90irwahtxAenaZQEzErV8waqoGLDIzyhv/r1Q/w3VXipnSSSgh3U3UIMuUdFH1pE2RwcDK0oZqzoKI60DU1xyrqvybReonovvLyH4/p/MySujZFdomwFhl171OETATJI9D/AfG6gEgduShX+qZYG3jSrNOECQ/8JVOt7FwULSePiImiTRrlxqeq6GdKmo3J5KknvauhgkazrKiMOhQJgNH/qHg/7fI88j5OWqXJCIh53N1ALcpORIx8rsWmMsNE+i7H3YbeVRHeFWhIQNSweBVjDhmrjpzN/2x3f4kKM/OE8iDMjC+ufpQN5PZSLt958Vog/onNS4RYRdI5UKfmVTpAtDBUNK+iPztMTwSeMElL2GqKY4ZFZOvINvDLJO1NeZz2dTqggc+V761ZGDxe+3tDWhtvvX3EtFyuOd24U5h/59lxyPkUcAX5wg7vwL3nAxdehZWpxC70p3cmhK24CVpvunE0PU/ORObOjNZfNmUJyJn3eVYqCTpaYvD4NcXTbR6JbN3V+ZOIsrofDZK7TwM9mUSlli8s4Plr3phwwWD7SfQEWYNj+4wadRKJIQqkDpeNFBpE34uPovEA9yZW2hr9zea4ZUR/1jV/PyXclfC31DgTLGPx8i497Ilit/JWzomjQzoGVFIFUizZWOM9+5608ysSSIVfc3MIZd5lzVhVmh31YaEjXcgpA0c0jdOu08tFDbDAUIi0girs6UYL8tgqSD44yH8UzuFEbPvWWytLyA0rY99c1GC1X6BRoSDGPrDO0S49IDx3KgggEHGWoHu1gPmLsiRnu8MNHuchwmJQ4bhdvU8/GCQlNAYff9ArUr9R/TVihpHsieTqPezxULD27wzY14syU6kxO3/GB1CGRFk4UKX5l5G2h3CZFWdYeev7o/p5jlCNfbiOXO0uTP9AOBl6pg7zSJIPuD9UaKd27BoKe71NpiRlCbV53mQgq4jIkL6cG6Y299ARsUm5SYmS2jJRyFbutmNl4TySmUnKXXg1eu74CDVmZMmLReVdEqaTORNU2/ZTeGSbuQHmPr5xx6xfwj6F52fmQ8OyuAgw6BWL22twqJ4ksf9dEhUuOgGv5puWyLdX4Y+KZSpNGCReP7oQEOtzkG7NwGKLGsxHoq9VSHVjbq+gQINbHWRPeKxJMMz9yJyKMa767IJI+1XKvDSyoiykm+aY4QEZlobb9lrJKqdKEwqDY/x8ykydatgaJHyvUBC1GdeaNVn/ke6L9AQss4CdEYBE5ubZujm/SrKbiHJ/e0IuL3gO7k0U9TxFSzfQVxadlgna3+c01Ao+rf/4UJGJAw2MVbTOon+Df+W7Htmm/hCUZb/mSHS0TiJ1q43kGNrd9qgqBWfcXEuo/JAslquBV6qRwY8JxIdtvV58PDwie5jMZcoWb7Zx7WmFUvTEase4e/iv9m1p9U7qZrFPZkCa4IKzYalyKZQwlxW1JgniSuF2a0OQ2ue+D10Ub1KIfP2DUtMODiiZ0b8vkDBOfJmpum70YJyBGmAH5Gslfn4Y6I1OexeMg9xUgLJKTFj8WleUuoed8Yah0VMoBunyZQ74H3qD5gxRx/vy4X2gJFfLNtN167+FByy5ndmyCwJecxDtK6krZ0SEMr3BPEgE03rYMCSLa1/oCa1NNqPNSpowDqzlUWhpHJJ6465oKvY7IXEPq+iv+r3lLxzHxj1YS3jhi2b75y+VrIzRoB17Ju0aJKFYpz0YAWk5+yokgtdB9KWZnXg5uHrH8P6uAlBAmxrOaOhH63AvwSW9tJk1hl3Tt/nrGk0Gy03Tyb/jIA3f3eT0ixLBTmZIiUUfRGaJkh+WOlSFT8oVwMYCKIfsrW18Ir/ctJYZZFRUHVJwgwyqVTF0jT53zuu//tYCt/GarBh87rcK7VBbsR+YDnixtgVHpnjAcDKhIJwLhX3LdYVYTEH8SKE9Fu8CN1dbwr3aeaOS0f6yK7TE0Gr6B2Vb7k3UMjZ9YcpOsXic+GkVSzkCy/icHlO0xQPUHOeB3WmWk+ioH2SDQBpvqznUKwiZbWn5gIS5J+W6JVyMFWEMcTSm8ZM89ekEfXclG2SfX9DqHp9q83RlfrZoxLqnV6gcmO8eoZqcewCWOq10aef4I21zuJpw4KznHUBBuKf8gWDtUU+/inVyivqObo4yJ/gmT98BN6fto7rVXf3Exto+9CGgqZfZABro+1tz4DLQTmnAkmpjgeyeANcByogSIU12P1ICKqkqgPeFWW+dfn/E5/9pdQdQ3oWdZdFGNactuxSwifq48POrLx9uix6wZ0rbeqrZpkhfakAxU58EwmaRjMg18omyosBNGKT5i4lD5Hs9P8UeCp7EZLfAPGJ+Ze/Au8JsOcRuEUNTufav0S1PnF/khY5PTBDxCOf+kAYMi4yMAOLML06DxBlYsuprWYtDQE9z1X89+4VNx9X4oDHaOU3ZT/I8OHbLvdfdrQZ0yuIXd5yAJc6xFe+tTTwN3+gGCOvXHWxeYh07qaiHPbDxNbzMSbgBOGzgpB+GTlDfvOaXHIUsNScyTgMDRfQa5zsy8sBCGDqETZd1ko+z3MFf8silCMcelrXOQ+g4Znl96ZkoBFxip1+ZPnf2PGVV7UU3VkGM5hqTv01IwSAWdEeaCuFRuwJmx1WMoKZNVWi+NGYpznFzK7SsdcBhMrh/EVBbDsgBKuustULObGxUk7VeI3ygqzYdacyYEm9IRWCR5dyS5l0fWF0imvrSguwCzAwZA+LIci1BGBX6l0SgJi/SNpFMBJqf4reTUFwJG266rxLqWkALfPW6GGYbCpATgcFYzjqFrb3CNcZ5vH4xbpq2KiY/L3m96Eul02MRDj4JXBZITsN7hNMyZK2si6cS95lex4rcDRZooz5NT2MdaRXW423exz4RNUILuANs9b9YZPoAx9PRJZx5vM+MMG/yG1m7ERJsrZowR6oUQIDm2/gd8JCoG+BTcq+MQ6roPdm1KlKhdjGFm1ofTZLH6fkejPNheQmsxdnPsyifliVGfYCVCJxoMF2T+n4Y3GKSk4SioFjWym0IKz/fFhwK4TDbc0LRFAAkD9dOpbhIKZezNUYRlJTsNkcxhZLyyYhRRG8Yyu84Jl8lqmgzKvaf1fR+TBc3umSqf9zuEAO80xgZPOc1Ns9uVOdGd8+D3S9MgUDeINeqfIwiHlGWSmhrxe9JTp+ilPCJkZRCtBybGDCS1hauwkWgMo8+DbDklg2OHEXLoMbnTliL1FF1qy1caHM+T9GPxzJuYxgB41zxK6nOfuPWAWLsgmnjcY3svPY6jBykAuUmX3OY5HA1UmjdCU7FDaQvR0xLT87uVB4xEsB5H23NvcyzN9H6QVGUDrUvX3QKaDLUrtPPIO4JUwNj/77KCxgZ+8GWRjREk0ckMG76mSLZb4rYO8xrFr6j7XCoYn8v9tRp30x7DekGuWHGnVJCDN4ITxQSXh+bCJMb2RETKGb9zCa6xRPOp6lm4w7GKXWGfOsIDKG8wUDK52zXg7b5r5o6KqbM+hq/2nIUr9tK6JI6yiisCJr+Jza6ddb9HzkV5KHboLwP/ihTGR0t0LHYfWLRSdgPR8pinU/lR1EiKQbMf5bMg7eJNd7jHl16zNEScWUntO72HGoqxb+3beUIMYPFj4PpQHmk539xyX/v2sTmty3zWchEQnanDjIfVF1u3GckBTDoEDrS8WfXI+Xb5ArVcUE1UZrry6FKCxbSTiLnhOwe0M2POyZVT8QINfMO3MMJC+VQosUFubQ+Rlnt3rVcC7Ln3HvQRwCfgzBfLt6JVsTmHSVLSnRl1M/qqoME/yyXS3Jvje5L9Fw+qPzZ3QpF4Fv2Z4iQih9ukBcX7tTgl/JhYpuISnO+pHXElq9WTMQ1+loWc59sCIIpUOK9cN1vt+OqBIJsyTH/WP+ihTtVciCeaV2bPBu9qc2nA/tWgOu9AlEiuG4w4cInoLMHQ3x88Jr/sXwCpeZKC1rSImk385SGrXKs4aDHN7LJLXqX/WvkMRTjozTJcapeCV4qu91qY2+xz7Xomb91eQLnoUtxHRE4yC8Nqw3/QBn67pjV352djyyVlZWa46SV4TY9jzeMk7rOmqx8WkXcdFqs365GpZy1OQtH4gVmC89UXRclqhedrFPgpFrehsKeF9oY+1CeRBDcG0dVp+khhRYcBhQ+PdCKiv4APNfj4YXWTOedw2n1DOan3ir4gg5XxkVJu8QaZeTT5Fu16g8wTMcfbBUdJXH+Rrflln6M72xKcbrFLsVC4PZhly2FHfRZWkuM5d+9n80Q0pywSQ0GIn/s8T5JjPjAoY6ezzqFKtvIjEpBHTw9D2uoSfRJkZQZJcZ7JrUXTRLfNdWBSFIsOJXeqcFFOOGu+SoiL+0V3bum/4iDjMHLdEN6MZ8JRgf/7E4kkofeQZbGQFlZv46UKIG9kKp1W2+n7s7uEJrUeOgDrzJw+hMzrCEa2nTepqk4mTtALV6iJZdHP1j0lTfJs2QRk5Mg7nECBSi0nGdsUgArGu8aK135T4PThLP2eFKQRYQPQ7C0J+qAKxBPbcZh6/47K1MB8/m4eiYy80DQf77X+Djy8EAqhWT6LROqKyRsQyHaorZGHLBDMrQIn5yK9aUT9dDggc+KyL48nYdxi25CC/RgU9ebmMoIbfOhYGbI/lod94UWWcNAZbpbvx2xYedWHa/TsyCQTTXUI/BbhqdJjOuwvyWCf+4vMKXrZ5XqxudhzK/NhH8JSZ+sv+19SLxUF9bxAfyoASL3bobbSld5NHgJp32SWFuY9vmhJlJ83djDrC4y4zzQ+TByr547kQTzEIuTho9BemWcwbeu2jferUpHBMTAu3m6hMbgJ7BQgy4GKwsp0o7RtE1K8pSI9hzS3O/yVJ/QC2KWjQtdtfSmlQ3Eiv3Az+2sgPBWUO7FDNy6Ebwv0R0W3MOhtNuDc3KPZ33ARkYKrYm25paLBmGr9STVWmHs2AQUedXKhSkz8qG+Z31aj5kunSxt2RIMwz+X17VtTKdoxKFkiQEGfvEEiFLSbnBQoYWUGGusr1ZLWeG84dixL+RESdggtul2A+QH9I98Zk/tYOBeN2rRnuffZEFW2TPkMAqKjBq7N7hxL0MAYocB2X9NjHaXKfq8auzrC+tgPu8/izKyl5HOCQx0HT7Ax0m74XrpzIARvvT1nC1qbqqX88FBNlOu5xODDDzO2D8s6TE98gAfHXakWK4LDE8RvVPz3FD16jc8t5PyAMuZ+MmU43nDehHKROFtz0a/Tc7jqEnmf/pdeYq0a2AToJgyF+Opmlsz6MVtmNnI+5d/j1FFVYuOqc2tvIwZ9yAbN47TKzUpXbFJH5uZhdBZfvF6mbFno5DyzEogwPvyx77w6CISng3sR8lNKMFqQPnaZaovvpHja3rE83EvBNiGJ4YCvELHeggXVa3iijRRWrzkKCDlEwM4ZTwyCxuebZfbVvQ98kOSpYy46YpYzYeSlaYaOBOMn6wTqiImrq4WmXo7lZm0rwlsK42GHCvtWGoT9dn8PT8nCvG760J/IAiLsLDIYSPc0XYVcLm27D79YFrfYxlegttGiYpqpGeDTA4Xbw2s1lfd8Sg4Gl19hskkRYXAM+sb90LL3sNQorXevkOX6+LYjMp1mgsZpdwD6qjKgUCXSiVdx4lXgZdKkMm29OAWYwyF1ONQgs5cQReTtPfUVPeQTukVuWK1t1G29cQFVycwLyVvdyxBOIRJ69jCDYQkGJxSMLcUXJ/ZMc2y9zWb1vzcCNXgV1SNNOLQyhjUmj1p1ka4Wc9R8Aw86cWXV9eDr5uSDdWEefaP0yK3TgLZrznzfCBX5XHobIps+g08pQLJwgypwuRwuOmRlYv9owUx0/zpZAfqYrflRVOfAA+QVy3Lk+qwu/dkGo0ZkOTa+KK7GtLa67NiRFa/1qKmzhDX/E5nraeBaW6TobURyJxWmyGctJjkU1LwzTX/IuOJn7faj004MifA83xhx4iGSpCpqTfnjSmGjDo+OSqUAR3UzFv9Mg/ip9Ofuuu2PWEzdQcCpvZA7by6s7moSsR0GG+G31LOVUEFWQEkTvQ/IReEeEskopHYThplwT5EodGB4gcWkwzXw2LiCMBHF0+3SgkWiQ8AqBBxi+ulxkcmSUKRv3zeFZPenlSZsUE/mgR9Hq7D9h9ay4WA5YPBARKmbhJSgHQ4W+xqPiJmY9atwXvxEHcBYEhWWRXN6nq6i2OnCNzz5hTstwIILA0E1oDRFMHx6188ribZvJQxSwk07/EVb4MbeMTjEwl4q7Y6SXmu1+lvdYLY93z6N349ZilZBNDYKEy4WKN52wNajXESVC2UeDDoCojEXZTS516UYFajhPl82Qtl5NrUMAWkqAuhgIxO6/b6p33QHsPkNFt6jL9YeTWTnaS+I+UNiQObzqcbzooTj6Bor5v8en61w8kHLDL9Gol8h5N8APs6hHP3xD6JafdQT0VX16HSXm41GduT6Ceqe1t7Jq8BBsaxnJ4O9Ce0t9G+oyZ8Lb7oMx6B0KUydMmPMRuPx+TzQIksAhqo40D1kCHptBGruqBSMl9qGCG5Gbl5gBJtdCkdYVhJoD7AD2vnt1eRiB0NfpcYg4Ryi0Sc6qfFRuHJwMpJiWW9/RPeHyX4p9tu2shrnLcRfDQSmVvlKC8Cji5qt/tvYDBk3AxhM/DD4w49NJ3c5kHhqFNCBHPZNkA+g65cNp2PyZjQhlLP6eWDMsVi6ohqJ/pNj40heZw6fsERGiazD0O1VVZzjXG9Ylod0pdg3gxFE5uLZOiu7aYzZDxs7YsZ0dnuj8lpKuKvNkndnt/0OQpSAgseRmSXuz/+Nc1KKYQBdh7ohOUkn1Z3i1ReQn3yYf+c9aFVx1ZkY+UNhfHgI39+40csFhQRVhp0xFCFBYAXNSZKBJAzRuBFx6RwuMSGXbAM7+/Ei+u7lFEgqcapCBlaNfCaEeMiiygStXDZk9afHgJSIPsNglRvjWhhbbICK9MLSsiHCMZeB+tjRrCHlbPyHW/EgeQsIhPKDB7JD6WLe8hRGYkCk0clFELwBsEgM4VrJdcvS6r0BW2NadLKF3G5kfoqduYNsNSdm3S2nJeJsLPVDZ+4kSCEFaDV5A+KCXqzp91uUiWJFxrxllwdkyMDplRD25dk/EGT7GF4H/FZVsuCFLSwxnwEiABVS3XA1k/Rnp3ZNd3cOJKsNF4/Mzf1rBm77hlQRfzs8/oaLWYMRZuonk7d6Y6ubBnh7r24ddy5EsH9hBNTKo43cMQMTpl29GW5wRQymlO/otxRXxy3onfhy5yluEILtKOs81TMc3v+65ioUB47W9u/8Z78af5FhWvPep5hHQIuLHGpqWJGHPNjwvpVQICtcLHymjNM2OWJFCqTofXhN10fvOZ5X0+OfP5FBDOUEK35GcZcU5uGRo3HNLHLavBkVQ2xWvtddcF/KxoWV6iiyYB/rwgJhyAuwUC5Y6k7cbhzD63HcLGfSxXNDoZ6vaDz/5m0RX6d/OCsPnjvJ9IhTT53yYEAkYehMXmdz6c2FP3Y2FW9zjSda8bKkm5XX49sOQDDzcbGyz3wat+KOPb+YDnBTjJht2IxkUq7Ko6qkNftkTbHS5AxOLAoL6Jm2KBUoWheF2T4LNd0XFBYC/BvGSkf/q5L+fojXxr+2fod0VcCfi6w7GcrLexbO0G+oeXazHrAdfetjuvgWkmKuHDT8T0lx1OFr9eehPr1sj41fxuYgTk4L5KYehpi9veC3dQ1T8jN4T70MHFVpyY0m9Qc3eDnBnYROzHIypwM2LnNjxKov2Ns2sncJC+sW5hVJpBqSU5YfqlyDURSq9GlyYYkQTC7UbBWVaw0IizhR13LJLM7OqrimTWF3gh1SSbZQvwkBvIzT3w/LrwW6BKVbizYcSHgXeCdwDXfaY3BPTnifDTeWOcCc5r8gyfbS24TkQNF6xgoQyG6/QHmb8BG8hyxe9joau+xjcZ0bH7xpGmcybXuaU440ETmWI0QpDSLaxe4oaBYUzxPBiG0xyrYeMcfS57sBRT6cMNfZZT2IN2WPLc/dBINEZSc20KXXqYevLdkS99e/bYZEdw7qrzTY5jGuhp47jyHhIXIAoPVzi9v9VYmfnAp0RgQ2fBH+frSXhrB/ipbKqiXSk/XYj9iSGkwNSsTwWUO8vn3M6RBYR/mLnGjJVl3k5zn5WLeWMulhLsDl/hYgUQ8ykYSErz97fif16VqMD2tK6xlmzerOVFBmh7mT9RYZdJO8l13HCaKaQgmXxbzs2Er+w3d6pOT+QrH+fb22rmawy4cYEnFrQG0RsGmaCzH0+hX4oz/k3An+/UR8VZ3KJ4oSmQ1ZmmlWZQ+B2D0qFbzfk8WCFtBYhv4fSpYZDFaoOmtiJ4k+hlnMczUibjlGFpvP0lENM7kewY+MAJP/C2ITmgiBtzx9HUK3mD2O5JtYLtpBjTN1BOLcK405iMYFeG6Kshv6HvcXylcMgaG76aAjnRaBouffkVuFNqmpNR7l3Apl3WpUV0fBElxkzAVZhftakATY6/2zkGB57jVYim+P0Paw+TFUCHRAW2MXfOrn6XaiU+BuxnhuSm2ukHaXOMIx1Ei1RK06LV7p0JtRzpESZl6iMmepgljidUX7jIrIMRwUT7/koAOmQlzZcqvGg9I2MvaiCplOpDei3vrHgcVpEZQP2F/rO3LrzSf5JlNHkqnrueKZwKK+698cMiyl8cOkENVXjxFHk9l/O6JMniKWBBOIzrnxCM/oMsKQDMAVFupEqhix53dbLxf/h37jKgg9kodFsYZyLLg1RKAAG7Lf2wTvvSM1Ui8xu0c3YKv04cClSYc65Wy4UWIWuEyA4WSLC106BUwRXmn6I8w1p78f/0nC2XgqpT6Uq7vdO9FSb7ZLszz9bsFrMOid1Zz8kR7t76ScC10Dg3UvtgtTF0Jr4zJRu36JCSy+fQd/U9pmFudtLmb9W2aCgULkPWDFutyoaLmduGzAe6nLDrHL/mdOeDmukO0WRYYm+PLuU6gZKtBmhMKb7t0ppI1kSk9uz7CGyHtzVn/ZXEi+Z0WmcshfV5pdnbhIjpEEce8uS8Qj92dUPUMb08g5cfaMtnCbeVble2+L8NMuqdZCB29L0nTsIq3nCQorpyvy8BY19n6yR7axTQtrVrv/oRysFJZxZl2W6S5bytGkgDX8a1cm+KDKmwultRocgGdNlidmmHmZP3IMjKiyOq/itKOzfc/PB+zeE1maFjCB91ua2V2W8qIi9/iS32LN82RVJrQAOLasuDHz6V9rQzgel+zCGqWWMpvSZtW9VPoVeu2kboTPVtbgfC/MnbVY0qelgFhAqnWa1j7dwrdFYcVbq6ll2xAul3e0093YLpGyOXk7wOldjca79PKgzyaGwryymvz0i5D+JASjS5Zp4fsGWtUJYAB19A5n59fCr4qSqg8DhXe59IW1x2usAX3oBxznQblkftdw9vBnonW7Qkh9oNtisxIBK9PwLWgZ2UZRKqrN1lBzKMDLiyev3C7vFFgS19GoRLnQE9nicFUrLy2U+WhHYuWEVeZfOTjSnkViBHJ/dFw18zSTiDv2y2HQfG1CGqEhkXWgfTPlQ1pbICl/kiyCgA88Mv+SUq9nRZS8+r6rHcCsxNeQaKwuS4MJ8guVcI97AurDiTlmaeRzA//Z3VH2f9aUS6IyMQCU9xlG2DDK6MruF9wj94+jIFawBxz35LrGTPMnzMr9oEMErtZS1oqNbOydNpnBHChJCVxpdbGtYQwsQwtxaWQc8xPkujPZeQ/rkfqU0rE9HJMWmgf6oBwVCrY5cmKaF+eGpyR4LePm/nm8ve9m6a0ZS9tl0OAhRkAQLVpx3KRvz3wWsnQRxOwyoI66BatGwCgcBceBnMQlsb99rdCpmz2T6X5KwA19exbVUfc2Qtb3I/hmP+FR7N5L5Cw5IMoEoYE2vw5RQytCRh+BHJqWHH4nLdS/QdStzEkuth25EntyLsdS5y4vDYDK0zCWpt65TZkAZ4xlZMfkh6LF4fAnbVFpbc967iO0awR8CpET1dnT00cMq7VGhV2d7Z/mvxfihcqHfGU8XOUWZgC8INXJu4lZdPcqiiHe1VBxsBfNbZ2+mRJ9gEtW810q0YUuHRXzgik1eu2xPAPoCBflFF3zjBDJmwy+sI20uJTvAPjkgyaYubOkn+RFTqnnVB3E6duqoDYO9aBuGrqH81sdDY3VHiuaAf3IM8m7VklcbHyHuDgPk1/3uvVMCbXhFXl2HwGBGnuKt7nit6iO5HXSMkV2J+NtX/Cu1Zn6GVx+1Xjlzee2foWG5IYjiKXr1OIGMBT5ooACzJodTMM/I0m4shvF7EN2nC9+ner10uzQj1UNgJkCyomDWDl422vPZjaICsDw2EQAp0+ahMdGHAYGsVG1kOpuYwCbCIP0DZuckBodSv/FdbuxeOEWjFP9pI2o9Cp0E60799ZddeLhvGdvV2TYtnZHW1LLJRyloQcu7BvgH5PXizLle8LFYeb1tpc/YyHv2dEsOqx2Et3d44sdv1GvBKLIdfTf/sw9IHpHYQRJcBAhAarsWpTTMHmGXtFe4E3SUegFs5uR3rQPQQDVokxgFzd9yojcxuv3r7LMxMgu2ZCGEACzgStFXEqUJnBGUkD0OpLkFHYc7rcG8cGhX0Edfs7i+waNfgT3bzJshkusQFiyoRTRLOQ6x5ZZWMqK92VasjDKxtXBB55cHQ4ffdvdFjjBpMAnNHCeYChPvGyDViiB+RwpweHFTACxo67rD52CbNHGgA2FpvDWDz5F5Tvizp7EAQpG4jdF+HA2vPUA47Ei1zbSE4iU8UwDGLz2dnKv+cl5ElvBbmXi9k0RMdK4YsgqEMWy7uLSfKq9jrtvurq0zKLWnDvI6+flmE4BP59IcxlUdWuqFeGeo4dHWohENSlCoiE3kIV7hBf76y1xodffqdGl4n8G4DobN1mfuNU18Xq2hE+bu+9hR74NQo7y1WyRn9TPZxBGKcC66YRVwCeDo2wzi3O/qDE8oBAw/bJxyhU7Zu+zs3o/GNzZ1PTLTM6F6NU9SHmOmsYn6kkCFjzatqvJX7txbRnks71a/ceoZPHomQxt3RVDamZQC1iZId365tg3eagcqHA8kLD/RIrOqDE0vkr3TlrTUdyf/GJOIIUdtodgCrDWd+waOUHy654uy3JryH77sRkad+bsrn2hGuYoGobuLrZcS3pY9HUMfB3TkrBYRgy1qlHYOBLVkeQMYTVvYPQne85PeFIkML4GCWAoBVvCre2AWWz/vf2ngrUxSCWlOSqNkI6NqDiqw39yvuRJ51Wz6UrE+vc8hT3ugnaHdJ2KsNSSTvgCmmIosf6hkw73ckmPnMN9XZdwK+9/oYLUjOd5PT5YEkzx42iBkpXj6jtdMkhVK+fhx0sGgXGfrWw5KkVe7dSPJnhbdBtmXb/9ELzvqdbbiYhkR6ECT/5sgJI8gs1nYh9ZgMLHphxbwZYZxxnXZxhixRpGP294f9fw+Fy+LfddNFPJHFGtPtTzk32oGRVUqhsmTrV6KVAAWhpDp0n9sVju3Rd6teJoYbltjsVSawz0w7zhd9DKimGZ7qiCUaWdAxaU+7V1sJSNf1MkiM/FvhfzaJXHcwBMAx7/1dA+XUmNngY/qZNWe1aTcz8paFMHk3Ub8wGAgSMu+3/dbooUjE/jydR/UwZEWCd7+r7/UvjTzC44kahTJZRLfJtlK7bAtiW1BkiLFdQspZm2nkGjAjqLx/DsarRerKe00yjqlScEaPGaYXcOFB3ZD20kMD0dEP5d4O4dvEyq4WoQkUzXeYsmQZkK7Spn/Xmm0NFqv7g4bkbxNvmKLcVtyTu8lX9QjRXDLibzcEkGfJLSZ36BihN+DhMZYMVsxlp1z3wNU0XO0oBoBRZ0vs7SlJHDmwg8a0DERVXOe50Nl80hFv1DEGmPK/TkrIDRBpJfIN2KMMEOadIf9mu3fI3iN8SElu/LozpEMBvhEGQpRccHVGia+vkCk9wMnMyyaorug6IPmUwby7noKzNnh1L2mruOV4AtIg/yVFHhuBSJ1qDT2Kn+qhr9RQfdVSp0w9gITw2+QUn9ql2WpaxBGQ82B3LPz2Vcd0ZKq/phascN2sffkCT5WhQdCf7BHuvq4xWKNWrxG3US0gY60mi3znS5MDsbGlOkwOzLSkZUvXaHwBMWeKddhhvLzIvzxE7ve3UUlvlFGyfWNpTthClfgAkBPI4ONC0S595g11pd0+i5M23mH2JRWHDOf+DjKeYZmF85tpKxnW8SvLEjrNlXiEgWyzeV63EmSUqpHqdb9ThsKyQK/TBkKBawNDQXu7ExF82Xusb6Yfthg8IDs6HhTVNVHLExKmDS4L98FctGxIrID4OVlv7c9G4CKuWCbPfGfUpsZvjceZq4r00jo3cGLS4Wo9bhW3nG4IMO2qSjeyBHx3/r1xN5gXv3kXx+PwbVZRw/3BlcrxO0LxGtS8dWyL8fOcjJWIeEQyrrSGJORjleGC8x0d4oHbUBsIQBGpjc3h1AryItOfJJ+cbF/bB+jdXaaIADeGJhD8/HVjUz4hb6AQckdVJenbb9CfMoCpg83Ilxiyk+pB9lGQIkhFnoHiSWhTkBTdeWcN2ePbYh8D0I1CPaqf8AtAkYc65LTLGqDH/dAErnbVS55veBuh99buMMG56ETbb1yM2OwwXhoC3VtjjCWHkqVjUyMFjsUvgo7Epl0PnxPx1hsJYJPVbG/6/NnZpg2f0DuDE10RcUbn1uIK4dX1rsrmi3FRspoGKv1I7YPYYqk00+TSeg8kciTuuuMIbP4Vs+q+ojJXT8z5lwzcYgHa+4aIkNzKlOFx1F6XWDeF/4dzWHDZSK0AtbL7CVnkN7Tm4EarabW2gdl+L1XmaVmUOQNFytBdVIt+FlDSCVSCLCKvWDJuLqVrgudmvjJbiNc9tRYj3Nt9nmmZucppGr+OlSObjHj8KrYaQMVw7QToDWKrjVoUtZoPyU33xgujMVXVm/iVZA4hT5Bc6rDLKq4jVFqFpFyFNZtiI9c68QbT9Lq04LejIxXAKDlQN0ItqcAKyumyAxFsYGnTl4Bbi03qcyw4fJ3uUu1S46OMA+qw4ncGxiCDzyOAFC576mOb/v6R4LObA9bPnhCZbdgfb1w2b8Ec315O/F+7W4qLaSLfv3/QPSfMrR9VssuZJu8xS1v+p5hhaT9RkshlOWdCqROrpsnHMcE/oqJH3TJpVeZi6rDBJMQcfX9BJTry2IBXTo0mVw8gR+LpAHvJ9kMhXqDYOTxj4tdSLbWhy6H902ZqP2grs3By9q52DEkfZynTw0336Vx9XwpvmG2ERxWBvM4U+ZwHEgnDom6W6PKKe+wKo39MwvQKu159Ohal98U1Or6FYRc0qR8v7vZc3vOTyo0AhPJapRcPhdoQtPHBaT0URhG6QDESaiwELPr+X1LYMdxSmLSj1lkVDp1ejkM95gNQaK4J4jY7PgQpx6dgga8goZ46SDvSvuqfBcM9+JZGkBCwrZm7NVNdhtaGtQtJPCjxTp0rR3rFPEOFpB8f8YfRtFx8wHAdew873rXHPzWiSuV5h2uvMr+7mhlhtalUjGXuSG44Gg0JNbYdAbYMf1mLzqRaOiHRfztN/Uu+aNBA33r11JeWcENqQ+3Fwcza01Zl8BMNqFJLdBk1um7zrOkWmcuDrDQ8A/qH30LyQKd2Zk3JQqb4qy7YQoQIFSjw1Vjb8MqAKxvofMX7jvcW8P9Ha8m6pmmTZYCVyU83Wwrav5mU9Lho32l84dU1RKbLBpKy6/MdsmaDFwjCUZ4HJtzyNAp03lAkpvtzuzj96tRQS7IPTUdPwKtbyAjQaU6HQ2H7sSgXSDpokUVMNAQusrlqsodcO/qqkrZNu3jn3UEg/DwDS+hEHCe/KZI8YXaDA3HaffBrIR9gZUf8nCDmKGGFJf2ui0XCX6IUPu7WE3ZUzLc7YQF69LHYir1LzCzy/ROteNScabbAy93Sx2mb9hu4Uy0acGLr4n0B+K81Xp1Qf+RUQb3cOvLjQHI6y+zAjcAwJAliEZpYmQiOrYcRZHct+heJebtZZfoEkWLX/aFPdbR8MEdSEFC/s3EXCe8esR5Da7ZBrONtJ0jaHi/zZryNHFh/ODphNNxqK9xVTw3EQZ0J8uNrigBOE02oxqmZjd9g==
Variant 0
DifficultyLevel
711
Question
Shanti travels directly from from P to R as shown in the diagram below.
If she takes the route P→Q→R, how far extra does she travel?
Worked Solution
|
|
PR2 |
= QR2+QP2 |
|
= 502+1202 |
|
= 1302 |
PR |
= 130 m |
∴ Extra distance travelled
= 120 + 50 − 130
= 40 m
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
Shanti travels directly from from $P$ to $R$ as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-I4-NC31.svg 290 indent vpad
If she takes the route $P → Q → R$, how far extra does she travel?
|
workedSolution | sm_nogap Using Pythagoras:
|||
|-:|-|
|$PR^2$|= $QR^2 + QP^2$|
||= $50^2 + 120^2$|
||= 130$^2$|
|$PR$|= 130 m|
sm_nogap $\therefore$ Extra distance travelled
>>= 120 + 50 $-$ 130
>>= {{{correctAnswer0}}} {{{suffix0}}}
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 40 | |
U2FsdGVkX1+JsOsSuD11KxUlmCoS5LtfciAWddAbCcAj4ZV2pJqrLXP+eJ9DjuekLk/nWuJyJ3HVZ6u/0bP2NnZydugs0mx5/G2UmU5qDjEnGv+FFhqppg4+EOJ6+qBqL8xWAOXXqkoBXU4M6BaJsFnT3LKkGLZdkv55FwyKULFpL0MKr/Dy0+dz0k+CaIsxI4xQt9MBvns1SDlwdaAlhI6RatLl583MiO44Xf+uUpuv8UFTsnS0YPCouCqm9w3h8vM+/qLfY/hlGD5XP5HslfGlUq+PIUpVG9KOZ+r8AgMc7SbGhILOJUJm+E/cb2cuwkjWmhBjakDOH+O/k92n0O2wfSQ/D3MUl6tN2B+tDr00FGxHm/KFQQwDfUnZAJsxWRULxBIW4kEGFNLnxjrODkWhO9Mq6Mxwj/xVvi3cPPJUEbirjC5j9uR+GCke/mBgQieYIMUvzXHBP0OOYlfRyl4AUSrk1TRNsNbPZiAXTBNHY29fFAaLxqw/Jn8XDH/TpnbxRda2AiNYhe2KR9yfaP0juuxicCG9OOSYTbvaAxEM4JXpycFi3FBF5DjHZRa/FVimH5MZ51GMjycoZRpWlP6bAxn0t65+YoRBkVuYLwZEn5M7IjArRtZkhXDhDKNHoFWpE5pFOMYsHdX2Gh8x24+naOJ/WtexBKyLe/4QoAochD9E88+3T83G8/TGkYLkgOT4BAv6PJ+aFF20iUIfos307uvDmDpEFHpu002tE3MxLC2E5tmpCb0rwKmAx8kwswhkajBQd+hDEZe0vntDcofzZ/Hi3MuxwFcSPZ+o1CWHSvkbjDKrVjGW94dmGxzawAlW/ee9z7EYML8x+LAHFRda357TdW18Uc8gwMsUhDBM6UKlK6Qg3Rv3WRz8Fsyl1oi37MW0NXoQMYcNbSJMiu3J73Pr0Zr2EbjbvehzAHgyM1vFbrBbmPLg0P6RVDduIMVjOvYDl3VNq/05BPGi2gFpNa3UM/oIX/6SfK5YSL7BwRYsi5XMlRium4imhlLL4VQrYxDxQwrYxzD2mnCa45eZeJ3+3nmmOyZ5LDXQClE4PGNkNW5pRYZ7olAk2ViXfxmB6bL9i9zGCtiU0mmYkP1Q8jYKAq9oWBuFkqi1RNQJ6lBR1mTYaj3oTRHC0lH9ovc7Jk4JeRK8nQvBUZfO+YX2leJfDna9gC3xdqprq+vKDyVcfHam9aKam367gSbb39vxw46eGVgfIyQu6XgailzeBFSb+jXsG4UspkTvU31EwLY4O/YiPocFzCk5l868n+f3Hzz4Xb4gCXFlg4eUj6WMotwXiC19fnYVA91144+s+GUPfgjhU/KWwmkUK/V62j5Vy8iE5eI8GhzmZCff4WHgXnbtnF31AbIECnuIFBfTNjVdbS89o3H75u3wNYzqu/ncO8ykyrMFiT9mO5Pb4kZ4fxVJ2MGHJhfPJhTZGrErwFBoA+X9udMpp1sp3jaEHQ2LQfFExh8WohXOxMjk/rpwuMDwefYF5fhIiQ0fbeDI2a2eguVkof5Hf91j9wGhGkQL+tAgh1UJCcecTMiCLMe269LEf7xJR4gjzDP0ZrZyQXmRgSTLvGvRj3zPoGpnpHquGSjGAoI+TTefvgUM+tztaBnwX00XZxb/QtSx5uQ6/QHnDe3mWPvDV5FYyPtKCzGUv8FTa9gjxnZNJ5pZiT67YbZqTOGi3xBJUY8oe8AddK/J7tXL9I0oV+rFIfyFXkJ/k3HJuedaPZu5GW+pnRACBSgDzCpUhi5Usd23Sz6zRi2uE8VePSHNyFduYfepo0mo9FkpOtJYkXWesoon1PmSgpcNt9GcFNB05yHmn2TAK5ps335On0wDJ63tzOlXbj2B+OD4FgckQ2ORfuSPXf5Ah/cBLI2TVtowjIyKcdK+bXT1bF9R4oK3z1ocfTIy7mhDweQpm9CKrmHunM4ucrmbhYjkG76WmrqRmICgnp33sKLnSho4ik+paZqYNlf7qFw43Xa/oZKbqrhkUDmKELJEmTUm7rQYynml0dK2eSFDmp2XX3rcAgFYyEVBxtaIAF0P+HgHVIx8rIZT/IJ2g9NKtCOuhdcRo09zwhWYDmYf3QsjNZUMGLX/vOC8lIiMPjwWQU0ltxlvMOhzW5hw4KRYjzz2FLATkmLZX5t/TW7UrMQ/0OINjfx4MPP4z3nK6MDyi4VcQ4EfJD8+zxUr/y6lKXEyM/e2yB8qpjgBdgDI57wwscFMT4lCuKI4JPAvRZ9lYyqOxJRfJC7qFxM7HeCQ1V+L8AvM3SrA+NOvn+AvBCwozBmeysXCfBbldhXpixcIRB/BQN/0dVmT/kn82uCdelmyS15/oWwRhsFhfDms71+zcJI/nBAlX3GvyOa+MB0HIW7XhqEGYcyw5jq1XHmBITG4LyKYT7t8OwdvMtcUnliys5ksEmSH141Z5YagwGLHMI7ZDwINPWL6KXMg3Qf2WiOTFeKfnu4vfG6zLci+HQLBbwcb5eGyV1FiKeBBeI27zmM4RcWuGojoI51bojoBMPLyxCewXPxKbIrWuvlAhv8uwV2O0BxfBaaI6aYXITY+yesmrlLZpLNOBRnHzIp6jBkJCehriaMqW2hvwaAWYtF1toRFO2YR2ftRrqQOTAYeYynE4F7WvIKBmTxhIOLIk8CbKgjjxRV1Y6CABOZfm6y6uwy0qqB/NUTbDQGyB9wwAOghLNJDDUI4rqasX+gZ4I6air7nYYwbOhpm0bOgDnftCvsM8tkCKE8LC8SUhOhbZ5+c8cm5gXeKepmu8xouNqmsOEaUCfnGVpEd9PSxZuqpzzqo1RjvgWjsARuznVB0f5icOV93DQS0Lkp+hezEYDazy62/1TwXq+vQ90GFkP58T7oY7qPvHdQo2OCJsxTYvFiSGcV3y3rSHI3xUtO7mvA/wNeXkZ/wlL8B9BbvbqN4irRNPcI3Bkl36dMMrcupJSo0cn89znXzf4poywX6t/BMOHDUCQJa8gW3CM2CzaVvpb/9Av91/4E51TAiplbl1IdyFLFQM+P2PxTT65aO/+h5YxRRZoe4hUgAuIK+qrauK5i6TXskgYKWhdcUGrGBFITtDQj4rBHJkp7TWmaKHjT3tbpTr8/ln/NXarp0aAZl7jLXvYASYHeRVFw6AIZvb065bAuwEGBUXZ11nvA2MEvQuq/GCAUSfyTEyNhKcrljIp1DeqpnbDt31DexXZGS8L6xpHuC8Wl3RB3x2wfzVJEbAfi0gYnZtX6f1zsJjxlHf65lePrOg8Vko9PNBfQY4DdFRdtLjiYCwH7DeuCrJqFkqV2jRqzxHAhrV+DjA4bE+I6OyTrwoTs7IduT68keJNb5J+reJ8BpatWVCpzKGC2Lz35IGcd7zxVEb214SNzsNKbp3k/jsOPPenhq4omJHyXl/6Pduhh1I9b6Yz1dqAgbr4THOBgUyfVeOG1D/pnq6yKXeNbdSnVoPY0uhxH6jxaBve30oYay5xqC9SVcumqpgvxuKIUL0ONaz89MDlGBOa4KbUQCTKC01HgL1ng5ZbqF9dnMadz24DKPEcbOmjOufMnC4B5havDlr03XfWC6tBcf/PF3wKCT6IRZi5ibwqRHhiVSLeYxjOCNyuSikJjXKiMoZSFkv63WZmJ0wC67A8c1lfwhfTq/aYTgFjtmSgbOt7vqkzDnHkMqiwbPp4g4l+QbSkBEQe9iaLZtNbo+7LoeOCqEwnJ738mq07zlwe4v9Vz2Lfv6jCET9Inb9CQ4/lpPUw+H3uwx7YMfog0nAxOHgk3Owza0UP6RdpHUREvrVr7uQld9dJKsmYYQvSdlZi/uHOWKZzgBTP1EvdI/WKKsiizB4vduq2nL+2udcgiwfjXc4sHOorJtpJoL0huqM9WVjATWw+gMWdVIfjq53BW5gduuMnGijpmfgU3T9mEWETebtIjwFp6teOQ4hjVjh/zLnbQ4tE9s6KJ0Kc2yEwaMQhe0Y92p4MkmbH/br+Zxx37VsGxRQCUPaBl8UBFLy3WLP8CY9KGpO45BRgPEYBOm18uk3bPUtfnP4xa22JhTEDJv3d05Ius0JNgLDSXPn6FH2zZHKnDe/w92FGsTlrJCdcJ1Rva+cgDQw4vDpii4IAAwrQ3s/thbDPaf7Dx/IcoqaPCVqqwPiZKa+v8bd2Od4Z68pQsS/c0aoSsBrBND0rkuxLOH9Wn9cFUwdwCfFgBTA5tqrck5DSHBT5SxTOmxojBJ5Ep/6LK9Dvgck+yHa4EdjAwkFAyW8UbGb3b5RqQSCEx9gipcM8ptNj+Ya7eXE/SMnxYrT8B5CZIagIt66UT5Hy8c6lla7/lYrYqkrzmKUU9KPP/MKIzTHk/zsZ2Cz/sHJuiWmM3A/VOpfoaAtL6eHx2DSf9CysEKGv9Kynvedr6mBFMmqqLZQEDzpNsnkdM4BGhsXxtKR0ezseDiLyvuQnqVk7s92NJ84ydEnrCHSX1Id+Z2awcP1FwICbnsE/v3qw3xpj90AjqO7XgzALC8CtpoXYjCWuRz2G9EmCVQTtvL4HAj7NcyVFjsFYsPR5wg/0jOg/ukr63yoUYicRcgaLj/tYwpG6lygp0c6kT6nWis3geiA5jXPLoBwYzSeJkccSflzec3eE4SIXLYNQlZMkyUkEoLCVaxs2GsGhNQx1L3v2jpp38Vu6mPUPIzUSyNTrhf8+KR5MlNY+7h9vRqOslwme8VT4JzrF4jE/KNRoXa+UDymGu6FKEGf0P7QcvNr2u3p6GRsz0D5askRHU9ItJqiKdgX5UO9esRyd0o9fSD3gXnCYP/jisD5Iup/L69e1JNvPWm61OVUWA3uBTJmbcngp+CNAazd2mcG9WeIP8hEiySbFIKwxlFhAmHYX1bJMQ8xQVVRG0cE6GM9MLT1jcgXkA6nWIs+KgtBaJwTU6ywxhVtxAW2W2DBtwKReO+jUx6I9TEzrOCU5br/joESsXyaF8KFU9rZcxBNB9HpFygNNG9ebVB35vDa5gl8mEEDjv8UqdC33PycaaeijEUM0v5Sp57TNypd6lWCkIIG6yY2YkWKE9gyZOc4+s0w0bInoXI04BnNserHhVFjf0J//tXFL5vSC2inTPu35Y3j8efLkRaef7BkY388BbAOb3/251rrvpG8QZ4gLUDlKiZdV3KelOB9ctazKleS1hTiK0x/DuhFiJHqLdeTrRTQ3Xutw33z4xBvHb0yUz1nTUnGCTHayNnRJxcVirQ54Ob9LGZgp2z5PiuI1oQJjQN7Zbl2rXD1pymP3LoUjTSGObcGfYBbKbNzADh1WV6ciw2PonencN987rVanUYXOtoIsQNhqVIlTJkhr2j1pzw7h25neGDZaKMrSa5J8XAtkYGuFQkfI2inrKpo7tOgUQZAaU3g3sdltz6X4HYfPhXSm6teCsvIICFQB9V/f2+kzp2oRBFZ14BgynbTCzD6MAUcPdNktGSuRYP3x6vimDWGqxAFsK2HQ9oMSpk5durN8JY0+cesTLUMh9pqHKNF5Fn7NAoY4hqkgxiTK28tZzJiH+0t3HN/X4RdNrJCvcxgiWjB0izfDpHyNkKyuekSaFF30i6bXttFFewOxj5HF3Qsf9qs6Qeb42WVszANsGaPTPv8FbVdpNci3JhG96rI6m5JX6PIJw9225XcrTv9IpycmrwsINk/oAPBpW0rZ9LvnBryxTnG3mrPr12Ra4/XWDodgJ25VQYyL9KD23CQPfLzwouixrCILoolHxnk06rk1pLQBz335dPWcHY3ur2fvfp2DHagg4cOHnfOY+w0rvXeKAZn3T9wc1KDEKbKd8KWtddZsZpkYbI8MTiOpoVVBEBDrLe7EozIB5yNWLT1tcGlEBDyQwQF12kx8H4xzwJhcFCkuE0RiVgrwGnEXnv0uT4xnz+YvA+YGj7l/I5PjTHt7Y1LkM3UHGoaKdD1fgkuj4YMJm1YD8ZUfD5SxUyjXWvuCfZvrLFXcCqOrYSovFOY4O2BfQ3Z2tGW9YDVy9si52QTtKZCkr/DjOTajhKyono0rfkavTftkD0hOaBovVFH+ifRygyQkhToAORbbiFbQmIFJ1larwI+n2arjmgz4hnVb0e62f9aCkdXlij5ASpIUzEqyiPAxZYbxnsZ1gNs+De2xMcEx3V8JpffzOv7/EEmSy3MM489KVbxZc6UnAEN8LPqlSF6tbmZDu7hsxPcspn42XxYpkzNVntXUtvogsWBD9ctLEmh+vaDw55EoImXPCkkODbr2a/vuO9XRnoh212mS36gWENNxK/g+zmLEuMPVmIBkUwSALZI7ChTmjzQYADri87A5egCP6XHATjHRfxTdfM3kzrbwA3WAmDCjLZELzAP7yzH41boYjofGcWsz0xNJNGr/K/xSqHCUVE+m/natf4yTC8nSKDySIUoriDJn3VwA/L8U0DaXVPaFw6vfzrQwAISzbTKCBvi2K5HhQL5wgRUC00p3n6VIides6deuscsRhcJX3hbFFtIjiBFN0HMF4E0ho9HzZTKHRJKUNypHqLtn2Ake4cADPlAc4YypxJIzmoIYayegDbw1nFrwozPHIXNM7FkjyiH0g5E/HRSKRJTkMEA/liwxbLyhV/5dFHJHE/Z50luy+FhGMGma9fEU5ClE1lVk6TxGumlE+VxGUJNvv5WK5d9N22I6wBhIpopWNVI41n6zIWu2M+MOebSH26e+8R71/clk2FYh6x9Zik9wSBYYNHvZ96iomf1LMMIZ+kAX+PWrroABYawz0GEOSAD8TSOXTY9MO+IS5XbliAS/caPovJZH6PC0bT3zdKL1qO5LzyP6dr2JlPpC4MuVA7lkPfRntrpNhBYtpbH1c3v5zkjl98fVJmkqRUQQyD/CkIhJkzdBmZmrVoNJ8hpCsIUwqhL5bkXF+Roasw3Sccp2wX7NpbxodsNZZxNsNfyd1Esx2ABJLUTvBFp0ZzMXvJ6+nbY64OPrJ7cj43fH3MGbQxXrWV2TnFgwyV256a9iS2OZOQRTABX6Ob7NEaxefmoY0cotAxSyocXbcM9TQbRLANxrILp6RI+91WmcJhUCxtdRpagpw54UNfum7k3oNgjxkR2VG0ELR3rAtG3yoWqlOydB+ql8ZuYdCRWs/NRf9LISj4qdaV2NKmvd7Sfi/2qy9BZVSYiOMjga/9dfLv9+wVTVEhtZGxv7Yqfua+7dhR6hDfsEU6xIeAXYM2PXraTPXm2j4xnSd0jc5vihGWJOJhNiTtRj//gVgc7nhl7r0APbyWwnt4iUXeNOgVaczjdm8omaouFyeEzTWl5oogKzZs4vhPKyzPhjwwgt4e/1oMCKexn0+gEDQ3jVcf8TtBk24/gce9D9QV3kHV58GJ0X7m0w4UuIRzh/qylsPq1yT/mFEVqg/Tl3kvFW2suvangT2jBknWi+EEvnmexJOLjbXnoBnwhZd3hnWMoxAwuZzDrvZoH9L8yxmBbogh6cOtKjSWZ0nOFl12H+Xv2PoM7awp0d7v7+1d+ePt60HFohBQ1N5J4sZBsyuBCu4rYbkBfpM2e9uQLCEmCSFhvyC/IWAuOl4PWZRa0bbkfARBmEbjfezosBJdTvoaBCExGXVXJK9VNvetsFf4dfdQwgej+98hF6didh3K/6ro6xFglw6yYEk4VkweP+v4ocD95FxD3vKlyqumdCGLiXZKmSejDEKJO0XIRvZ1FSRUXZf3U9T+86tPyNOaFgz3lEYyeOgx2cgeS9yBRAb1y+XGMdtfbk7lB5v4aV94gLIzB3MlpcPXUNdeicvMzfl9vlZK7CcF+ISV130MriADHXIm34FyR0zpyi/rxe6YHrVoWlVKig7EEOW94+PannXCo55KdtQLlUupplsb9e7sGV5lsUY75IqAhMbgatCGf2QlXffPGz0rKvRzan2v921Z3UO9wUldjX5iyFjeS7K6nA73cNqtEThy8aJRK5Adsgtd4/HsDLjmsNyP3ZMaU/Xq/Qo736rvsN3wizPKfBB4pfnT+ZKsmnmAY32qZxtqJDTV/3OKTmpxb6scIkCQIuWgxVhj1KPVTzGJEQA3D3XAC4z5uXFWj6sFGwrjcC6lcVWtHdK1tEoBt3SjRaFH2zmxRmlFg4XdQMIqb2fRv1IOxBj8rm1Jrw+oXf2/0DCSqb00KcWnQpAHWbQRRbUsi8dutDeF5ChiZaGvxsbP99KpW2lhN6/0dTZmlXrrGuA+qdwEbvb7MG99L8vPZv4QHmpth/+a3GSYA9UlUzLzcmghTerMCnWsktOSfDVjPM08/h+XiaENXV6iTlKbfHLH0bgg8IjRGhgOqfNrHl1vi/7wnqtvkm/v4GhDEPNLZOSci5UJh4EnPqcglW9k2nvdXH1j9cVO2UyBdF9nBRrfoqZl/WmMWKf2hZNQH8QrD3MdAI2UbC619nZT0tHFLG0E0rMcXX9PAvjLfvlphLhnkEOz4vKvvrzd+xHuyw5NIafAtmu2xUU4M1oohsbaMzAsdZfVX/tsLiV7sAfOmu7wH064x5ZgM57b6gtfopXMWfzbizMybc3hAszS5HAJYSgb6fTo848yJGHVC0t6OP3FiqjgqmxwhQm7qf/ur5h2+la2sWRPdCRHU1Ij7b0g5+pM8tzXMGfLCsBwpj1ENBTKc8Itb6pjVE6B4LuSyzdFDmw4TigexEavBT5mNT3x/8BX4sntICAXDpx4an6XvuUqXZucbx2WAR9xnBwYJ689u5UxqYAsyHfnKfcfpkUurZOW8NXR0K7x04d4rom8GHtXU1E7YHOgnmVld1iXaTIk8dLFqS47WPSi9rhyQ6FkLht7zRd3KyprEUNtFHZz6GDZ+s6H+WSQNx+J8mB838VbOy1zhv4AJvJSt2N1NieKfoiTy/5kpEzHZD6wjUmyT99O8+mNoebDjuoqKDYm/CcKBMftk31n+NBtic6x33Ze4XNByqa3WURGVd46osL6OrZAhBs1o1FqNlpGZftakCmwdSX69bVETtfjRpB9xxs8xcoj6o1RJMnVjfQxI/l8I+Na/nB7FJQD+MN2oIIfY5MbnPiRnAtA1OLLrvfKzU0zIyN7UZByaPDGVNBjsAopAlgsmQHYoAxGyqoRqulseGhZ0mwaepqyh7emWcftc7xVZbiUQi5UxzZG4Aax8ptMjGzAByAGYA2esRRAKzAuZHBnNfaCgL3aFd61N0AZ+6RmQhwztBdy/bG9VKzUOzRbfryi3P2193XtecXU5/faD7mXaHOEcGXJAhNpEXePktVq6pjoG+8pNLEmtodNzn5OpetEqOhEG0xCR5nhoybhvc8Wg8FO/wehhMHTPUFD+j69aEALQQkkYgTiktVUHHnZr4XtW8Ljw7sBfe1AoXro4qh/SJy+fAW/lLcEmix7CeFshvN0MSSioMkTIcdKVJpU/69W2E6jNlOUziudJz2P72Q6VodzTgdnLbXMFYBv4cfAkXeQAzzLvoiSL3owPVOH2+UdKoKMQnQLoAvUURGtuBnRkksRg+Q0gVywTW8ouwixIeAJdtq4zy2osVz9Rz+HvcLiy0OngJ5v8NFXQr2hTeO97+PATB9HynNoezobRl0teN/23pZFSIeGPBgVrB/OrLvvXhykhqMcQf5sYyO7cqzgFiKKfXrFRD9iO8Z0jqPSihPdQP9UDJ46marI2JjiV41BYRzVIA5Y3mf/RDIqcJSrPGROJmzEwOsK4upeSqMSohzCqTzmDJqOjDE6H6Nfvj8DrWlmXMVrBvMzEANCyBpPYjBlASWyjJEmZilTMdzGW+wddY4mVx3Hr/YgmFvwpDGbpmp4B2LpyRI6t24N7sY3ATa9LaYIoyCWXocvJJD8WYowA8ZLt+R2leDTkgQd9yfY5V/idR7uhs4ys6mP/2i5H2jFPtz87FU+42Y7v15b/21Npu+HjjVUWGDZ/RpKzwsvKDbnWYIljJd6K/+y22JsuuHr8iWoqvwNPxT0DVbYAFQWZ+cwXjxqX/adOJzB1zNBM5L3N8yxQksbzzuAOtqZcUBOokiG0ApcJzOcPsYxn7e5OZee1EOSHo9LEqJAqFzXYKKgP5p7bAVX1QxiFKwlmAep8+SW+6+eVdI4K3Kr3Mp11nGJYMnhII1VxIV2iAMrCDrS9xMs9lUbtFIeLlvX8EhvICfatGUoXTX0FsT4jR1lt/clY3JwbScQHYVu8ug3/W+SKblOGX6aKObJH/VA6s4/aKMLtszj2yUZM3mWQeAuc9hEpeEXT7bOQBH+7KzKtIu+W2wpqmPKvFqvWINnV1MZEN6Zsh+sXRHYUK1tJbHOLxwBe5jJ+f2fTW9fIGleiap4h+wUNMyUsRVAj5Y5y/vv4kZNDA+ZPyEB4A0FxoQAh8ByBzQpn0RQRsLdq0a8EgQy9QugczH3R3TiQSE4ZqRmaln7i4yRUx8gMmvK4oLTxukIdhm4+oBQtIQNCuhWdy1GOXo8YspxdNmCPVBGo9HvYT1sHMBu2jUILUNkBv0iILCOdNsvC/aK/1L4fgLfXkwQZa/Yek2Z5YJ7f0s9hu7uqaXlwy6WISBvJifJ7Znmgw2tSPnegKOfO/TyPhHzo9Wpsfd35XWxxguaQjoPIEHRoCAPIzwpNpspKphUNVxoO84Dtk2dX07luquZNysdpAsM8tO/PwGqqVLGySXY6J/CfNFwYYB22B9mzqzxK80gX183xxxvw3RIh5Br0P/hAUovRJVk6tcd5yfWv1wGp5H1KgAtViSatniYaY+TWbazh3p71p9Z6EFPIew2x9UlEnOegIRVFfIVuJHu3IoF664vq5WL48UAVnKNGQWuOHJBmuBSC6btAuoLPzLt67RGZcMFnXUymPGx5ZMfEZEfqu+Ug0yfsIPrzUdCdcTYwXJ1N7HgPmZdJKZHp01pI1GJLaiNRtKgzGPqEVOwKrNmziiwvzISDP7OjnC+qz4ijJQ5ZK1UqdBomPXljaTpq7nF5ljCG4R7gQZIPVX8J0RtZpR3wNlLtTLWOty7fToIMSk1IslSOfOGnpLgQPci5wYCyv+ssb8ZJA7xTJhkxfSdAYwzz2FBI3uGNgZfbxG05kdbRBK4CloDLOLOwyudrvPWjPSQN9VdQ02GliFB2fPtN3+3JMXGXVo/tBCyCZdCTMNyFNQKzzOxMM1RkUzmQzsTYS/Dn3/VTYRyd/PrK70uy3ZBlOKaxeDsHz7aDqQk91clhjOmwiOZpZjPPOOuxhgXepcl1LEGLQ12JXFFxflhDLUs8DSO5yVDW1WDHhNwuE8YxQh6j1ON4mlF+nGDchTSEGcEz9Uk6mckmVqUR9ADKYDm82W/5fZVindCd3jnZUHOxB7YesfC8U5MAikynvqWjcUothZXZXBid24uJJZovL9X0C19ip/OIRME4TsnmtSgCYwkBx43CIJKCrPeiujCZtVLyL2XAa+S6b69dmVMEQmrx0lNpQxEP7avVzx5Je7DNno12SrBVIGOWVlKzJRJ7iRJVASWbgsEgbWXfUt60kPFFaS07lu2d85QMJviQCQA9vudnBXkxSjLUt5Ltl0PSI9gWwp53PyeC3MvSXXVekUxfCoIT/lpfgmdiFjDs2kj0BDZDzlBiAQ4+i3kk1iumaVxriPwg00q/FK03Zv9NX+02tu+QLoGLMh4Rcy3H9oHZrVGudCx/WU4uw6yKSRPrFM0zyXvmBMUx/5xQxblobVKxkkGemtE93g94fuuG4DlBXJwF+Ycpm/N1OcHNBq+6t/yLjwNaUjPEnAD3LVV/ZzYjF+MJQSrSHNqUkt+1FGvqxREBkDvw0NN1ney8DkKadbxx9y5eLNCiGggYL216c9+RqhLRCyPZIz/uTEpZ7tCyeMG/9lfET8yH6ndSAeR1y8lQKw3g+s3dvMOqkl94l6s5DAg1FC8X4hWabIznAC8yVw7lS8xyQCM3xAbYBEFReR840sYQqp3dy+bnAN1bJbpAekgwdNDQV7uw5j5xJgalaZKknmGqouPx0S066tChcInpdCMA1EtBLW7OMVzGhvi1dkxwe+GoauKUvGbKIJwWQMGqMRyroBx7n0RTarIqv1ucvsR3/STrZpMYfbgJdmjS2yx659yiZE6OsIh1KilK1XUgAgxdK3UZQ+rB5DAQHAN2mWMrexZ0Q+ugiqEIYc+W3RTIeovXqQTW01vMSFRToIxRXNcjMDqvJGrKzzbvvAEjMyEPgiq0Zk5Olvl37mh/vx0rNh9zWLYKnVpxKdlS4e9Xr58gCDM9bUEFHJFRYlolcD9Hg3J7aHRKemhT814hy6R8IAQ8rULtjOAQXYiZUW76bY+SYHGSSiNxBz7W2sYHvk1auukL/Ue5m4+Bz8Rfxqfr1l7MOSwxG92DmvgypG8lyov/avO4B0N997OfmPYlKNcWDuscLoE8yoMr5zUhHnSMzHVQC6emhWaL4+i2h46I+d5bB6EXnEGUxuiicBWAfMHcOe4pPz785h71E1sH0ZY8bHBOXM0IOYSk1GpQRQs09TLDQAz6kEc2ZVJUz5c9WbfQDM8926fmlanxuYVpSjBb1U2emAf8XiCwqwrwGBHFoUKObS35CsXA/Ks91aBmN8EmB0TctARz5KpxgCldCJOC7J7GTGbSUAAAzMh5M9WNxQqIvRps/zuexrQgeOB+rGuRryol8kZpkJY814zqen0gi/+NvnmnKRkS1B9sUqLBAt8osKSo6p8KEWwXX2JL+76Z0p24m/Umxgd8LI2xCECcqazWyT641O2XtpxnkaXLsj+byjpSHLGIRuTrhhd9AlCATAa2/9QKIChqFLHNDQfILpC9SyzN+X7NVUuI4jST8DQnXzsNyKeh5w0Nafhzh+jaCmprHEG6X4GghP6c7YTRwV9hK2ezAb1uhB6ThaKfcQmnsI4V5wsNbI0yQSiwt14UOfmC4qWJysWyPwgWHenrGDqiSsrn6jt8zj4SLVgKaiTNtAIkybU6lSav/UipvGwLX9PuxAZbsGFWs8EI1+oGvY/LLYjKUXtPn13Q22NkhStbp51sC0e7Q9o7GLGSN0Mn/pJZH6f3hn6NtyQx+M+5d+1cd6KEJdHOOB4eIfWCqOXzJF9XUkYGXse5MSXlMMRNogLU+2LvBnKFWWaE4IWq6CAOe29Yuc7/dBvsbhdnoAtNw+tHTVshz9XZ+FYp0ogxc5UIq7vbsCLPpBYeypurqarOjbNwxwBO6oPsELeYBTHw26JsjinFw+3F2wtv7Rnj83h07tZSN7YraexTVvtceErhTf6AOAAsvXV5kXrbQkE0mVODu1HqYbs0Ow3+caDKY0TlPT2F30qj7MbccLNSCC2VztlBVFvp+F2I09XaU3GL4FucP2Fmvmx4p2rCUtZR3gHqSrpynYe7e/noSRJEPIQGYcraCHD0p763BKe59NHr/0XDxxWBZfTOJyq0KNr2CiPmM4Ce6LT14zKYb09qua7Ag5Yw85ujMFcJfI7tn8u4KoawR44UBqNvT7LAzoIbP68/d733hrx4B1NOhqY0cJUvOpWG397lU33aCies6vaIgP9CeFnOzTpoRmMJLZ2fM99qyOboXCkcUc4qDGTQs4MnzZHebgzfTMuiXcwQnL8iu0U6NPmxyg3ZCl+nCn6ytyt9YH2NuUbJbetNTQMgTKzGxBurcYzSV5VusaHwEpgYpQfDFN316MNxvIUaCpjDOo8z9eVrUn/Bp96W+1q/wiFknr/K8w/W6qHOl5m+uVoZD71YyHd5dN3UGcQvAsG6K6egnTUfJ9BT3XWNdHnAdimDTjDjwsOAI/H2+cYulsL3wmg2xkZjS8IqeT18AQbosRJnzB6dTMy+PAgHPFWVam92kic71EAHhoO7lbokqjLKQPeszHLMgJsuAooYHxv4R27Y7zxgVESfkrhwX6iYPZIECNTjUvQth24pExyDl7aT3DszRzO2dkUdNgUnZxDukvDF1nQKwF6wkHTqlVo/VQORr7A7SNVAtcNftjDwyEQ5q9J558sEvpNgEQdbBT3dP9JRXgmtd15ZeMICrJT2w6zfZ0rv99E3DybzxeOZhCg29Aw0zKlmeR5j7K1ntaLdLcBTtPPl3Xx7rPZX2M4P8XLDVWvCutWYJb/pgk5QQOIQteQGh9EAfqCkyiOm7njW/Ad6wbcevdt19f89VbiUj41qAGRqiqy5ECshoZD4hNFX9GO1WNWoyRGwmDCwRc+4/wkiV3kxeVMSabcZt794JYOYcqNA211Ep7ngmxU0bitZ9BmuzVMrjOj3xrqHC2Rjv3/Rjo9euZwm/ZkMjs3qGewkEv5nAhD862xi6RCUqPVdpFKZFEpBzvsyGFD6BTwdwzSlnd0PoLacPFihWMDSlgyAjGZJZnkAPZttAEAqlVxbpbNUSBnC+W3wh4dXlK/Geowvrs09djhwnfXI1TX77kbjt+FMy1QusWUBuScgxZEbLxxPk69tpquvFRGrrT0ti6JbLrw8GOTWb2qX900PDjUMZE9adKxgfO3Jfn+Q8z5Vl/mp0+fWxfrUDR8ridRPEbuJT1AF8NxmNTtcGUKqv2Bsvc3vxkMvfHBZD6V9mdGLonXXyguJfciLxjVEBGpqXHKo4otNeQnK+h12OgPt/abMZby0YHUvtm0ur1d9+pbeJWyAx1wDsTmaXINn6ea1V708rGtjRWsNK7xZdYItWjAJ4mNuLiRbEOPe/VIJbnQp4Rw/jdjtYVgAtdaAvpScQs/csseVNuIScwstQFh05704LToFeHVi9VXJnU2GSrDzayXfijM+Ci9W6yHAAt+93YBGkUW0qs+3oSp+6IlDYGl9V1iwLitbs8dR/NgFEo3PQqi4QzI6FaBosVWD5485aBlmnDkDca7AgTsiz23BaNSlA/BbXMKRHlrPjKanz42hmIIkaJNH3FLRjw//HjzXNK1eQqvaCc2BZDgE1/eblz0HLyFBxr+arrRfh/flCTedQPqka5Pn3ERzrRs+0WVPWUyymLHytkMK4vtfl66Tp/myKrpW6KRPWfMOSS0sVLja8q0l9m4Xd4gm8onar5AFmYVCiaN+Y0jCfnXZ5LNhEsteQ3WXDVLn8yOH5IY8XORh7f1/wajjfyC5lD0D1wFyd+jpwQQcJR3Ti5HzFHfV4p/0diqb/w49+iBY3ep2svbi9pZ1Eswyj1gLPtOrjKI+s8KsMf1UpWtfKtj+LB7eQFZWpsQ44zCLKHDtYksphjbvA2USlOONg==
Variant 1
DifficultyLevel
712
Question
Portia travels directly from from X to Z as shown in the diagram below.
If she takes the route X→Y→Z, how far extra does she travel?
Worked Solution
|
|
XZ2 |
= XY2+YZ2 |
|
= 72+242 |
|
= 625 |
XZ |
= 252 |
XZ |
= 25 km |
∴ Extra distance travelled
= 7 + 24 − 25
= 6 km
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
Portia travels directly from from $X$ to $Z$ as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/11/Geom_NAPX-I4-NC31-SA_v5b.svg 330 indent vpad
If she takes the route $X → Y → Z$, how far extra does she travel?
|
workedSolution | sm_nogap Using Pythagoras:
|||
|-:|-|
|$XZ^2$|= $XY^2 + YZ^2$|
||= $7^2 + 24^2$|
||= 625|
|$XZ$|= $25^2$|
|$XZ$|= 25 km|
sm_nogap $\therefore$ Extra distance travelled
>>= 7 + 24 $-$ 25
>>= {{{correctAnswer0}}} {{{suffix0}}}
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 6 | |
U2FsdGVkX1+KNH0K0hg8ta4TCitDBxEbsAPCAYbMd8x5egWA0u1TtAxETY3zn0UPc9Uc6D/RP9irE8LGi3prawkd4gvwkDZowKjYD2MZq5qzwuy12pv924fcu4d1ep5pqy4Ux+JHk9lzo3DYgs3Vd8ovNhq7rogk5SHUad0v0uAwIfnPdDza++kg+BQppJvEz8y6ROPvfoMckuiBsFSo8oe66VQiC+d6uKw+WECA+tZPmQL7/LADt1M1SWJaaq1ECXPDn1afMNrbSF7JcMs3rEeb3SH7YeBSngh6R0LAldxKjp9XV7BNwi+2GrSL66SMmzOJz/66m113wseOnLoS4RrLo01YehlfkX8T3Eom+AgiJ8IEAVG7C25M2kgTTnx7Em9z8r95M39On7azT/lp250Z9XklO2nMUvnYED0ieIZISa2/fGkELfDAgpqdYhPhByIDx6StrUx0zI6P9JNYkpW/llMJJ4UrV3tVgTqQDP3kx6QTsuODJBvMhdH60rPM66mbELRRvL7+sWvW3rcEU13nW6GVAQZWAdfEY+/Wp9izqDL2r5Vyz470XCWdTU0l3a9tOHlHYE49bTrTHrWS2yRUtHRlGlTqBRMO1l5R4nii5BLMLFSXy9JZxwMdtnh0y6XcmEpyBaCRXHSoiTCFfq+u9W2qaoZy30bLOmRRnVOo6S+ac+ByOJsZqSMjnN2ixxpwBPCJtSXqJ3lPD/eAplyavto4lK5WNMiVnQgcDnkdneIEMP5SeHG2YS7xs42097B4fkN1n1V/HkfMmrdgnmyw39cIRVbLkrb8s+KZ9AkKsKLI47NbuOeRTz+xYk7HLstJeuotCIA1cfvbfbQ2x+D5iLXjm1wxs0tQsLHyH9domgZUFOep/BNnCbL4a7+YA1BUPlHDcIF0nXI3pNrhmrFWvUZjt5H4pl2D6JXggD8RXIx4hagdwxAz8dqXkRFd0e+tgLhU61sjAu5WF0p4FIvkZpFcLyRaj3xGrr5fXtv15bxoTQqT0wfeqPoqdwMCdhB0p28Bo+Lslm5F/WbIsCTGVB0zoWUzghRPiBi3RfqCYEIabN4dEaNlWruNMGdmRTjhv9nFzJScm2AlcFRPv5VJK5iAx9dHzJl5DUtB/+XfLvNScUI6HcWkq0dgfUqDoBx+g55lN7d+tG2SfHJ3JKIL9Nr2MiPVYxg18c3VFm010+yL4LSD6FfA+QNPE6zpN7azK9t//vdelqov/e55QUfyZQww9lTUzkHcHEpR/W1TCCZO9iNAskyNfuETDsqTNryXqUBSwzUz0RSuh13G1juEnFjuxgfQX/wD8JP3nMwgacZPQsDdXtz7SQf6XtR1ZfyOYkWIKkkbWEYo5s5XYtIZmgJitlEEZ9GqadVXskjbKkgPPLtnQpvpHNGgoXvq9sGAt8rBNKh7+4xJp8D8qrSnYrgq/QyMIrMzhfskR2iPel/w7CH18khOJ/lxlg3YduwPoyd10qbq2Qw7iylXE/ar31yzF96p5MuedkA4r4kb9u9NDeJA4GL5j/AFEuWd9g37F1j9J5VOT88FdfGUffdtA9GYb0CWEBjWHBhWaufGjHeZlO/yW+j1j3Py/xmrbKZfT476wdj0qRj8bVJE740VEpPRCV7aexfoXxvGZ2WS8lPM31yKMEfbVMGzITVfxobl7zpmf1B17xqVLaCQ2v9MNmlFF/jgM0ADjeUS8iysSz1gzi/I/k61CrWtfltZewZRLpKZz84LR6IdoQaqcZmOQcXDz2wcdQc0NY3jtaT3qEbV9ss8EXAb/Mk96MyINBx8aYFa30Q1/sfqjVnqqe6InPHmGDEZZhuj/DMl2LsHxuFOihdLONTnLf0Rp9G2BHo1Ts/14moG0R21EGOkumgqv8QHNeaDHUc+bnirzS+C9lfYgxxo6NX8HlsnrgaAHfv+6JQt6TUGZbgV/XhcH9ehCT48MwerM0HKXyv6vqJP16xCuiDjMQaBPSpilJnoXEp/+37oXul/f/TigUtwvxeLI01DkpLjHR7LDwAf/sf4tvft9snKewJ6GK298ZHW55B/p3UCJv6YbkZ0cRuYUU2K1byAcBLfqx6Nzon9gAgrFgvgo+rWMNevDtcrDocjotDbYbcGqTNaROkiyd951Q0ZGFeuzKVArbYQq9S6zeFU1wDy9bOybhl7k5kUhWbPZ8RzwYLr0gSSMbnSe9UGaQu4v59q9xmG9AxZEQVAYXprVe6gaYkVzFQHhMOWrnGhi/aPaCdyw/VcxcNQswvaZw1OUhxUUKNa9jcNqIAcIZWxmnWB69SupSgWi1Glp4ak9SP2W1GfQt52RsJPwOfz3cQJabJ/Ik01UqO7JsMKrpbuPTBsPHNdHZkTEzc9GxYjvNRSgt1ewuayjOBg+LTTYr6d/8sLsGiXNuAprRIX0UHw9cduh5lGHpEZCVmMJG3Z8HHlb5UkRhsuM7zIUcESaAxZkGs5Q8WBYQ7/952unohvl2OpSUzDKh7A5edMStYiL0j/q5Cd9bqUCVxmoSwbcON4nXT4PNE3V6Ns0G7o5n4m6dbiGt796pVdVpuwy+kMEjWxKcbYbdxPZLadX43qxWsclreKYbhlwWWenqQRaHLwZMn09qNlkmKSfHOt7HTKT4OgPR5xBb/NYpJEEDTPSPkMcFSXdl+7Ua6JlPMtc8VMMbOHJw2CBXRTYWY6l5Uf1NvK2TBoovJEs5gROYwignjZUTZYsv/m1QA77wmTjHAqAkuus4BxpDGy9Th6I4FRtTAEdXBT4d1PUw84KZOSqrxaRESyLoFX/3/lomw10cE8QzSERy6n+frkPZTYrPhkMxl4QQ1oMo3z/jPNZh97AuNgAvu01djGDVdLrPdjzthkNNiTi7MAihGZjuqTVXikhPYX+2xxkyb45ihNphtrK+Ze5nhbigMJs5+/meukiUcZ3MkyzBTHsQOWK4AFTi5z1mCC6zjW5AQ+r5QBzjB57u16ptiewfXPi4DP9y2LOa4IHwuGNlkuKxCZOYCMMy+at5d7yHNU7EoYNAOXGK1DVJ7KiehDKYYRiukWtqwbp/fym8w7pRrMm+KvAyX5YKN1Akxlg+tNv/8HlKNWO78pd5OlIit1RrhsJcaGLvrOPYPksxRa85yTYzpfjlpv7IA3Lov2uko51M+Z4i4cgws+gRVR003dAHcVXKKf2GWNEK1XtivvoHp7ZjxgvwkQ52woCiCJ2nGS8KOOC+Ei3c5boIjLdcMB0FOSxiomiG1RlRaF1W6wynYvP6IB6jvogGYwlR+uzDK69pF9gSaTkT1URx9qp/q5zfWtgSGLedLiZL1E8ll6GP/2YA53V9W2HSUWWDmSZSE6CVn0gCKfneZjKTYk5qhiQMbvepELURIzcwYweoyiiZeF6ZX/kgmQS/vNbd4fy+uV2HQ4na3QiuFAynHxb6YtGEh19KpJmMxNHWywAKXW+UKsGDbRmo3c+cQAp8au9NCnLFHY2lCdoo7WVd/yPbtEsbuDXXXMNii2Kyi1czObQtcCjjrv1SIW0kFMYJ+ckc2NZZmjFFKcey/5LM8D/Rc0C85UhZ7Y4iaPzECEDqD8kiKDMnNhQxrYwnrLUMTudPvPSMXZb4y6TrONBckH0g5tlyhA3kfwT9FcVhrV7HxCeMQwdMPwfxvLJVwezUqODJttRSKmie03Vi8RrglT0bG3YeLJpVBuqS6AOi228RdSTy+34Y7e0cWGNwUjFWn62NuzbZHqYCi14WoTmJZao5ega/rCSlisbXRAthNH3d6WwWJWsW3uIBjE8XPQs2gzk8dB8y+fqAXfAdiFarP/2BBcRhUQ+/HdguZCrTmlzVPztVqKP3mZBtZHchmCI2dHwpviauMq80M115Pol/ad+hQNX5wP5JoF/gNFt+HZXjvqNeenNuv2arwbLiyyRRn7Bzni0k9Azo11JFC1PuTFEdnPeYFWWq7n+II7p1iH6tzsGbWi90CYgWTQ9XVX/qlY9Ear34v2/ebd/xDJRyy6ORi5cPA9ZZ7yUS3MmnyegxJ5OIo1ST6ZKzT6PBwOaEoB2aYIHq0FqdEuE7gzs7oB0ZW0tlIrI5NPwPgHY/fLp/xHJyPCBiD1wbSREF4EgTMqPM56JKn1NLy2v5jHuG7JFaw8PGrcuJJmdcNlRdh/3VqD8drWjs77Oql1q9Ssq03vwKhUHQhkCRajVw09vaZUxttXFjR7Nj/IXt/BGEtBZ56O79nHOQdChqMzWFgmwM1XQUY2Npky+SM/RiOBtS3xrWfJjxIKuTSCQXdCjDZe0dUSOCa12RJHovEUa1Tv0/rso7aj1Boh8DqtJO8eIVFAJRrJNo9Vg+xKdjtkbDN3uN2tOunPhOAbPdLQcRKO5mTPVswKiB7pe2ua8Ds0+ZEiI2umazjaKi93EOukLaEOcVxhT1ry2NYY41MSdicFPn2xAzbKg3BkYYDI2zZ7lpQWvBoY7zIbn9++oL/Ll35NE2BTd/QAXqD+eCMFTWT+J79/ZrEmd8ikYHwqIwXe9NjedS/AWS0ShzEd/yxVNjj2TNpSbiMhMU3WkDPvivtOgIGHdKg8dmJo9EIxvvMb/ez3u9SuqM9bdGgZJNgKz0DoB8D0YeylSCVNIRVXIzN9DsdW1mwWBJPtqWhuDlYjhhUHjHzsSd8ZCdQyl4Kpbh69MrgU9X2BtuzQXZh64Vy2VXDm8bPl+HdwNNMDeNmZJ1QBLycpnx3+5xHHaTtHoPYbeBSp8hGGU9q5Y+fHQkUxjW5uvTU1sxn5LlEvfx9hPphOLvIu6N5Y89kvzT42NaViDOvrXonkYCvV6hhgL/YA5K0sPW1sjWqCOwZgUEk+wzI56llDitDJgSPYcOAmNVld9U6TqJ4YzxTHbB01i/WGG6QoqtLH2qouN7wNT0T2Y9BLMUaMqoYp+pRgfG9GeSW6aqxQ5psIgaUGgnWtJfBWTOmgoAZigUWHrACvkktm9gL311SmgpFz/a5HauizD02obO7dgn+NM4NGiMsvR8gqc1LQzdH/CjJvXKtf3mQDbOAXWVuQtRtUl0CtOChjrn++PlttJXX98NsPLlxnCF0DcZUYucxTcmod3bsBqEEaJk8CrgVHYFryOQYZVVxjPaVSk8spF5PtTuY4qx0sDO/yycF8Ll1UCPxJpTLOLMzmM3pyN/KcJqkkFAWklMEGGMG/iHr9/rg6BesShME4OfbN39Slc0lvj6wTSm0C/Tpfhp9WMehoNN8DGCOy94Lbx5izSHs1p4YYf6vcvjzaRGUBgfaDnSWlDSC+fxl/m1yniO7bY8bjcKEYLpcnyGhsiTNYA8YFT+0wiqWZ9wGC92aZnsR+HszeNv0gj4f4cLvwzDRIK1ktYfK7I9adUcBdpLguC7mJtSnuv91KSKIJTa529TCvHnOKvLiKg5apI2hHCgpoQ0Foy6eJ6DhB/HlYh5xcJep7eNWZZ8BMUx8PbglD9PjGG1p05HzEh80SHUgm+SC9f2zfM/hUeMtZkJn7HQqUoqWN/NEpD1Fv1hCnp0dZSMBIXpc0qCY+u7WJb7bmaq30H7mj/vi6v9CEzb44umGPcMbVz1WQghATHbxOGQ94YUizfThUx0riYygh55v3LhCFnZ4mweS/TgCi8dFDjBcYrNUcKEs60lTu9pckFzmzolzMB8Rbti0qkXMW3418ChZsY29NawegRnZanmW7QgBsU+UI7XWao3HJHYZXXwzkt8CECdVZ2DzIt8irSUcykihlT9iWAmvHzSh8wS7IqUC+gr+R012dkAalctL5rbx5ZkmXjYkZjZZpVSqdcm53HKIjVWs65G2vT07JL1jcCe03JCuGonG4tgsAP5M/BfAYGWN4jRz6uDwhUQ3DwazftI8Ml5Ry5/U4jcUOZ+IEMcgF9lqj6Jz6DERRB3W+PyEQabM8/mBlSS94nsNK4uMOooZD5JgavrxIq5MgntiBChuhOq8AcCUdhKX3eMaKgXZZiaroT7Wgsc2e6vNEeGfIFBAjyAvOsSc1GZRquh85U8jlTlL25CKh5jbUAB/MbI/509uZHEZ/7ezg97H4YHmIPOyMxjg5R5ipb8hPRjreiO4DjEpaJA+ztpVhlLOAWsOq2aFjeEsgZCsBUvRbAmhj9LVY2Duis+NkMIQCuCehpLsSgbCkfqbE/yYnZ+lGWU+Htmtk0J4IAJN/WO3aSUkO/o9MgBj/oUsAm63zGbXumgKW22cfqShxa7CcKIWcQlk63KRJWgBu81k3j9W1RP8VBf2rqJrLk2hLZ+jr3VdUEWJhPlj3l0uo7bnVav6V5yobsL02cY2vfjv7hJgkztLnGVgYa4NTR8hXBrBIjMzx4tg2Z/+j94Z+fuB++wvJDPReP8aOnPVd0NfhlrTWXJw8LLqzp77jozz0yDhfbu/HCgRrhrkWynVek3EoqM0dzk1oQZHL/AGBbyYNgnWwYio3ivFjDETvmFRd6PG4A5akoS9EMvQAwjYgNDGENXd5lr+71gVyQJQ7wwR6zkttmOL+Y4gnZj1FtIL9Wx50YIXrq0skVCic2oZljek4G1XJqfYZC34RKXlNGF0ZlBmSRyl8hdZD/FWGpkUwTIKt9DvjaMH9RO7dz5HuBKdbcQkotPUEqAkuQjN3GqKIbKn4d/kvxGDjJzZbs1jjFO3abCrIQ/dPHhgqcP/yl/PK2IGHEFbjwm7XAH2iTP2YFAzgxAfR4tgX5YoujY0aiswfO3e5IIu4348IaSpoEh2uAeXQXy0QffuGu710kMFzM5K9lTpmjPkKvBGuq4MS1Wcd4IvYN3t1fV3Jl15DFqgSowicGnf7jeaVBAsNPajD4aVfWtqccV6H5OrnjdCV31w46OgHdDVxDLqaE2c/a7HaofRYSL6hgb2kT/jJ7+Nw3oOpC/YwW18y6ZVPmX29FkGlkRStf+6lQU1ib8KNO+nHArUkPqXeuk19vapok70KtqQTj7snBb1AVipIy12O0N07v+j5vdcMkK6vHxs9z2A/MCXAuak+vhSWovebotCp1uEaW4C1aoXUOcOSeuOO5Q57TlFX4rB5lh+95GN55M01UFaVkpYcK4us5lFr5/hBVeeBWoJ+mH6R3/Ucic6erQdrCmcoK7mEj7xHp+Y432sf0yDQSz1ki19RfJD691shDckRlLcY8AKQsdn9FS/Kf3484tEjL+UX2oQnaC6Zz2sv+1xiiM4tbSI+c6fPuBdhbnU26V51/8US2rogUJy20QhtBv15FhaD9ovNyJSeX9S56H0D+KWtv+dgp4hPexmSWphjthdInS+5anpNmrpv8Y20VgQ+sxjfUlDQNmGxt5S86fbSNfQ64BcW3WNf9l9p1yWnItFJiSATJF0FflzykOjmPY/StvGsKHKF4uPhqpUi7kOPfJZkoUImpniY05m3QWd5J2G5dDxX75XzZY7tJLXUu7BbjdsnarccWo594H8zJpILq9c7L6gRjvaLGSurFiNLF/Ve2Jfxi9hZUnrVAq3CV/lNQbrEK8OiiTv2TECkS1IRuCzA1nSdayJedwR2h13jEmtC34WAwhcChPO8xhp90a1dPqS+Kar8Cd/ZBQw1eky6unNVTHZYtqWx2VfdIuX3pmH6OA/aNpr9EG8c4HRgU5mN6jYZ3iFzlJB1epbetmO/sX6YIBOA8+FnGSYpHlQb2B4MiwqF8QPWbP1Fo7u90iLcK4EzcgUgVW2vDCSn79Q7heFYUYC6KykvTsvlDsx2wx8XeeibO/5GPrOXSjWGTeNGsxZcbb0XfGnu9MwFDhvaNRLv04eD77nVwA8h4zRrrxwmLymLNoXTL+nE38orwqFyWyNxKnOl/c0T6M4UHHv9s/cCX+17x79rf8WouNaKBaBCjEAtFa7LC5Jny9TK1YPDloaR7o4D5tY2Jp9YtxsdgrR1yhDt7QdoGxf3HEE7SDbbtdJoYJaMpiYHjbW9A1aOCuILgCLEzZst/WO5MOmhIZCyk0Dl+oTHe9gsoMS4ZkO1W0CbUX86sDvoIGiqbv6NLSSmIjE5qCTXBZljqlyhm9KW+G9Vv4sWV+cd4gqQVNprcwgU94/TbH4d4LS21jMAwfrFlcyylsI9WV97KbNew/S8zto9Y1cQAXGh7LiJqS9HAPLKXeoeYzb7FXD13gsNZLnjwFWncCcMVdjRNt4ozNiioAwHcNVSX+Umfa9VdqkusfBSMphxbNosT2TP2htamPh4K3gbXjEFe8KSSblwu5jXJShu+gmedz1nakx4Ix6TViL7wKoEE8c9mO7QT6t0k8K2+Y6hwvOX7yiGXTIpZeTe+EjKjHl33ysTmMr4+fxL4OUoe290Xw2iVSSRcETuJE2AL1uQHsB5ArL6kqtScC/cbGYREc1Tf3tw7FOoyz80UseG7U06lNmIC1XZ+LSt6zgAquUHNzbXDXAUXkzIq9pZOgw7BuFtMceXDPj9CiyEzchgouXICPe9uWvbQlANvjb85DVYU0z/YUw3PNmM2QFf3vCWlhD+XqGG9px2UK2JbJk9I0RRNVh58DSREAvWfnbKqu4Kn79Rqx861h2pQ5/WZ0D2AXD9+w181CyCI1F+HluElRld8L3qZx1aEpkGyJVPT79PTvMfTjHS778HbTwHxcPtuZ8+alRvxppP728ekdBIlpDA5u0VsWa/M6+NGEycxXnBq0RhMYigjMaCrIoRHs0MZoCjV7hvE/CAg8LW2ec3WG1RxIRK2UgI47Ryv9npoOKAZwmk1tEdraHMMp9zo5F6YvSbHSjJ4PhIIVL5rYJlH3WbJyZObC9WgRuvD/9PB4GsRoHYSdnvV28YBzHWBa1rLpxyHCEl/d1slqPlvj4oFXXN6K7RMqE8UU4sDmaihVI7zJIdwn/o5Rk3R5Omh3izL+i9Cij0z4XV52D/LxqckqpU7dGvDIhFLkVuQhEaTD54+6mpcMFRWBIDBK6oob1x6A4Ymiq4EfB33ogn75ItGnppVGzYRXzHOdWRsxh15kv0FwdQSIudFVjNuhnz1/7qMvF6dw7II+6BsCgWvwE6llSszDqBuTklQ1mP32Pdrz9La58ndLGdKpSPa5BVvI7ehhdGN+6tKZv9knBxC7VoLg4jVHXpV7TAt54RzNUXfv1iHwGLJj5JG/PH8j3Bw+QHjkMieYPG3XJoQhfMyIVJCHyzW21Bor+r+py8gCcsa8dvrp/krZ8usdptq2tKTnhQqLJP8EiK1caRgOJyFP4dthSl5xWdJE3OcsSbQyIiMGsEgSvixhfVcGhySzlFq7GHQMOELM0P6uiN5d7vA7le6T3kwrpilKowNNH5QMo1o2/HzWezCRS4iHc2DQ35w84IVEuR+uet2AiV6SeCk1Bp4b2sGamSr2IjQcUCZKT/448TS7b5Xumzq5LtZ907Q7UYs9Fqwr+IOCbS0kSGmFecrTMYPG2dGk795RcfuJe7tUAUlWzc8VWakOvd2JfTxKpDU/3CHplZlltM4JNckzJUbmFLW/+N3gytKEDEKsnsx9Hy6nCvwoNBfQ6tseyw75I2fQnzkswl74JBxgCALMh254yu87ieVCihaB2n/lXwPK2Ur1AcKItKe296pFlOtLeiKort2mlhqYA7kVovKDRuy1KKLBD64Wz7yJqRiRbfn0K52lO79LLxwC4yNhrD7BRqve4zFEYOQwf69FewNaysxLzGjNbi4W8dgOJSqxuawqIt+8b+Z5PQ5j62ziUkHS1dJYpShGxmZEdvHuWeK7r7RAQ3ERyiWzvPumUqV431uEyJ2At9eXKX+TGA5B4qCypHkByLxiUlt44UXCEWbCjgSLDHzM1zGqYCUpFBkeQSCQAE1ajZ6gbwOKfH264w5rsV3BEl837ZnphQ+jhr7da17CoORYP9+I4u3UJghDzwdGDhAiIOe3FVC6a8pmTIfa+KN+X4q/ptNkGPMl7tGdHEhNkp3HNTmwAbxGgMlgH32oubrF25a7U+8RJUUAlyU4qy8Cjl/iT9CfhGE8kXxhWZNaUOMR9Scn3PPPt/IWaWPeiBiqp2pG8m4rqM9L0rwMUqPy0Fyw3c/AdUJyxqpWKRoeR6i7zWO5Gg2YnAmpjluoWPO5olqCpIQ3T/rcxldDsx8Bq2zf6Sqy7AaGUZv/JcPsBI6il0cJ1wvmcBIKnVjeCRg1XSNT1kMepygBb9nLGJNCAY5MpRGubEQuS3J0MFQS0aHhiKtejRm34cqKgPzN6KpV1I2vtyreypmQF66Vs5abtXfQGQur20laIQu18VIlxBT4hjnSrW5g7J5MHJspe0t68o+5g9YwNWNn5TewSY7BJgjFSj65AXogcO8wkwsi6vdg8d66agbjDKe0GDA5gBHhZC28DhFk0PglKK1JZiM7EWBH7uhbtJsgcvR6TwwL2VlHTs81q4PLF24X32ri6eFy1HGPeiWB/pp6I4ed0ZXO8xQHZY9Czla+tsSxuUHBn4YDdstfUe7TmT1PxLVsfYRX0WVPbz9B9EsFC/Y3Nccde8jvzultcZYeI6GZE4c0sj63XRGFn4NPc8lXKSchfN36zqZnUmE08eoc5UZdG4+uFbR3MlyXcPYAKedclOSpmbPAES9wnPe1SRmVx2ZJ2zt0/LwNqwWbgqQUTH6P8Co7xZ0b4p7h3KTpgbJwcS7H5J2OzchYeL1Pg0UfXZSxZL048VU2hSKW+tWDFmmpjavyXdrDU9p1fxuWt1DrYAoiCIT5K3Y1gGHxqVf2Y2qOwC9kQ43fVStPq2g64ZyoPlHnZNRL/l/0SE8RcqLXysfn3Bv5OXkEjahG2vf1ydaN6gvFHym8EREKKP0pdNXU0wGZvESFf9DiF/GMSLmTgaabStAmeZnKH7SvciT8Ehl/exfCrR80MCt3PmGZC4EZq+txC22lnrnHv569dBmt4RzYpxJ4cdeXWor6w2cvSfN5+qWLpsBITNxOcr235TJ/cAYu1GuubhE2vws2FOkto/L0MYBCHgC62D2sx9B0Dbsk9Gnu8EnIw3zQuHqyHvD5M3x+eAACAAz1UK4BIGcXtd+JZyvfW6QXXTPPsj9mXkZPIzdbvt0Jq8RzA/hz5ZHLirOCiGN2T2Q2dvVX7TJvQFVS7S42/d76eLbz94/3zhjePmcZNbMis/Bk3k2AaSVvNhsolh6YIxa2Qzb5r2Wu/IkRMJJjnHLVRXn6qEtO3OSU6dDU/KYHig9jPnDMUa9M607vFYSymvJcdZkdVQN9utZzuG15TzuFUuBMIriliObu06PdC6Fe7eeudJNv48V1OKf9PDzJ+rp609QxkZUVeoSOxmvVSZ1QbgkrkVBUEjI5N8YMQAbQ38vvPKiGfzkqH1aqNF09EukQvQWgHaXXRETL58x2GrPSXnoIWfLwAjNJcJXTLCWKhR4qNoCRM4pdimWgWW2y/38yA1RVF6SI99dyza3a2B7tErkqQ537mL6dcvupwN6sG9EMvFRCHjtdd8HQDjkU+tGPf3zlzEuoei2v7rfSi6Em6XWFWMUz6Thm1i8ME3PsYwrS6lFcaMxnHAJ0L2eV19LKM7pQ5Vg6PgnSFF5+NKP8QFRBtUdwk6N64B30jl0ldRE02AgMnCJeGqAqmz5m/C939+I00OsexTVnnD1ycPqwaaiDz5sEWHLNTgGNgNkLvwECYjJt0ZU3BppZzfzulDqJACv23gu5fOlIO7KL3EWF5bpys5TSBK2123+leV4IYsuORiP4R4zWAdrGiWu4e+/Y5BJrnE+NKlGXq7U2W6vmMqhazmTDoJrm69kuk6LrxMXW1D159Dk9JnUpzoQdkq+tYngF3dFMninV6lxUg6/htih//+715d2bilRACKNGGgdQpnhzsQmctvWvIDQsFnDEs7gHsb/hpPw5ztH3PR8RdJExH8hk756hOlYHopBzD85Kg2CI9Tvm6HwKAOgPHeMr6wy5N8Cwd3Tj3JFTZ+dA8xIWChpQ+RZ1OW3dYhhA5ZyeBJCG9ROBNyXzihd4w6pET3Rab73MSQRDD6TrLJvB6A3YbIgUtAO0fzMb+Ae490S8IIO8FRr5HUCCnCFjjbDyFSwlQSVIqqowEldIQ8NROEU6bTbssMRJw9SoFJlgLPgQbXIcWfphD4T9oVkmsPv7MGGW0z03JoDMCbKS5RdmW4Fidw1r0OvAZGRy+8jzywofCOE2Xc2LC6JjJASUd+ifJeRFpjBoVF7W6dDCAHGHUwCJ/68otLJXevJBaD84q4ho5ZxGlr+Wk/S+Ccn3oWZO1j2tBbYmJzbeJzRIZOSD/byTCOeCxZ5PLieUSoOTrGJ0Ylu+QNC8E8LOEz1REMEToBxjkH+h6J8MLF9G/O86tVd5dXDzEQLOdNtIPI3KOBUw991XLzgCH6QKuA4AY9BMQYkwQAwpt+ITyLBckwMYwvomy7IbMDOBdLqvnEfzYG6ANqMsRKM9VybZpOc2s8OnIRwa/vL8BsOZ+sVac97m/fgJ6ZDky6U4a6n6ad09H8YEV1QKBR3DJSOEnaMeuXlMiyjUOdWp8JgtBhSYK6LFqzIwkcScfDUB+iFaWGztG6jUxQ59ragrHb8e4BUI0rgpqmwlIc+tZDgGDl+nI+z4SmNz7e+/Cj/UhJUhh/DuQtrHBFCXAC8/UG1eBk8gekj4lquF2UCpHQJJ25RwbdMF3y6W8u9jb/5CfhuBG+jqXa3det+KwGblruRREMBdlUHdJECeVQTaFCCZt84n+myeJJwieFVbhtsF4BRrgYIlsDtdWzjgaP5smb5yY9u1tAFwzPyeb9h21F/IREgGr/AWfCvegU2hDsxcHrqwuFP/T9qrtArkTEXnhTztWRxR2QgeWLcoLslQJb1BzCi93Itdu/CFH/77TgVNF4PjicawCcbWeTNGhZMPe8yMb+onQfa2uILiwZaxmfTi/khzkinuUecvHyUMzokR7Ls8e15UBJaHKSyuDKB1EWoiP4RfZ/xAm2NPqsNoFWy7fv0l3y7ith6UAu+s4kUbeXH7OLfJM5sZeAd0VGnwlWPWWXKzzVHKHf7A4iTNJA1wpPa+MFB4p0JQyxMgGzeSfbT5B13dtsWNc0tEM7RwHog9m0SPCsaG+vGJzu+aaI1LaaML5raMFWUB5rDQ+kQf5aCbT7ZpgNbNKwAESh0wNBEpJdR4yJmI7BsBv1+02WCMjyulqYrR3ttPrSyD5peI2Dv/GV5HvN84NiMJ4EZwGIwezK/tNoUzdddMef2cZ5/CGUkQAoOVVuIZUAM0lBFFv9OJMrA58OBE8HfgkFlg8BghMK3BB3wEnHW7G3ytaAtOtaYRdH2Jj8vYo/NwQZlrluYvjvSuoC3SEDhFhIs1lithuOdYQfOVOK01Y5T88xRNqSOU0iAI9izriT7R81b3af2zK4gBne9wUyDtfQBbXxNg07cDP6FFdbtGCMo/lxae5ShGwoR5iIhKV86dsbR3kcB8AxTBh/LXwq1VY5V46CsJ26MOOPYYwjmBAViX61qbWY7rkRoj1noqL0tWnjKw/j7Y6syonK2o3g/TChaBK0QmdZjc66Vwuapfa1PCGXEBo+u06jQV2mGMcdSYak2fQ6LqB1UB1c+ZfGpurC7PCPc64tr/Iz8x3lAfsHqs2MtAsIWWRI9f7VZY55mSaKxpT7pPWk/l7iGcuQMxyDlapfausIQZp9XUDHb4jWbMEUMim2TCA5oGZmPLs5sKTmtPvmdmm21NjRkkfxKppltbNxXTVo8DzphNP9GWmzZkkDvZzgZCC6YRb6mPN/vUEfd1sDVirwCDwjeKyC6Gan/9lG3DI62XsGhEBeSGYh13eg19PYF2qOSHx9g4w8HoBv/Ok8iVcIL/TH9JHVylqJec6xadpMFtZ938ix7D5fXXrto2/iVph6wWR0Kj1bYNvYvJi3vF2a3YELe8idWdd+EWvLFp8WtBE36tVKVBPNMuiJvpZF3LtnNpMXnG8qBYJEHcSMo7bqDVusfS1A0KbL01PVp1cZjB6fyMhRgjGUmy/oMyMORY8ZCD/8/+E9SXZNRgF1S2e+PRbmlL0WeupySEhrSN7PO1lnNZydeBDYAlmoAOxtfOIusaji5OlX3Ky9wUubAgBxFhmaqlXB+6Emsie2Uac4n2cpslYc7myixA==
Variant 2
DifficultyLevel
714
Question
Chev travels directly from from M to L as shown in the diagram below.
If he takes the route M→N→L, how far extra does he travel?
Worked Solution
|
|
ML2 |
= MN2+NL2 |
|
= 802+602 |
|
= 1002 |
ML |
= 100 m |
∴ Extra distance travelled
= 60 + 80 − 100
= 40 m
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
Chev travels directly from from $M$ to $L$ as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/11/Geom_NAPX-I4-NC31-SA_v3a.svg 230 indent vpad
If he takes the route $M → N → L$, how far extra does he travel?
|
workedSolution | sm_nogap Using Pythagoras:
|||
|-:|-|
|$ML^2$|= $MN^2 + NL^2$|
||= $80^2 + 60^2$
||= 100$^2$|
|$ML$|= 100 m
sm_nogap $\therefore$ Extra distance travelled
>>= 60 + 80 $-$ 100
>>= {{{correctAnswer0}}} {{{suffix0}}}
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 40 | |
U2FsdGVkX19ls5y3lz4ufkd3clvbbvzs/LiZGXhHCOa4beOyJbShAB3RSDtH6eV7lvDKFNTD00Mrcc7nOckAWmA36V5m2vKXCB9RRqCzJVkDFT5kZtmqmMd7826vPxv26g6B0M+CBuucCR2Ow0yyksXcXdiFWp9Makqm73iCVwkG9d4Tos4NAl7pfGH4nHUuVCGvOitVgvGPHQXdioIYrw5dyCxZNfszfDFb4S79PPnYP65UcnyjnzEsvQq2kGQrRVlIkBOmI5A7vtR7Cfd5YfJ8PEr7u6K7cSQK9hx+o6FGbbcPWEK7Jf0nxeBPZ+J5Ren9SLxPNAJwSq0bmbZu1PbuSvwP26SVjJy/C2697/0a/YgdqwVzzsG0M4+gFJzrfOEO4E+apbfU7Ax10qVyOYF2QwhKHKzs3amIqAI4J0QnBXg/U25Sosrh3nbFylpF4IB7pgD2cCzJ66iF4FdmK12OIUKXE9Jd1ZHvIpGSlk1UKf+cM9cAfD7JvQ+weH/I/vbRK3vrYjGEf+RIdlkQxjGzBO13HMl58LVP+AL3CNwm0mT23aVblxdmt73OerDi1AvUgFNYWwkdUMAVDGJoowKQ71RLRfllEhKiJUvL2daOWnEVoRbjIkBo0fvr1+55L51Vx1LunDiA3+A9Wb0CwylF02ADmgjLjVV3hAN2Yf9H1/oBWDMCndEh1hIz4XQzxdAmdpHAk3r1H3eJp5Trb8NYmcS7Os/mrQf0xcdH8FqnxAqoX++z8OdrmTzJ1TPewqUtYbV/cL68peFkv/hiTwy+nOA+NbfqmspfXkuqjjxzrYp7CvpYiLLTAKSNxMfCKb47//l/3TTBs9hnWCmkaWt/ofJL9th8ZzJhlw4B1gTSk2g5pKP+3e04eViVK5DqyaQuxCd4duBocSaXxg3Q5vEDRnDYqyikldjIOH8kt0iTbnjsLtZVXywiFGYrfEjW4jqy9WQo+Dr4wnuJ1pK9bUHOHhKjBo/jZxkgOGTGToPmCSU9b1JHYuDNdqfXoc3d4A3n/+aPVlQ4BR/bnUG60LFBU3uFWmXp9EilDZMJMiBhNrRyb8lF/GGcyoWBKhtKc8Avt9T/DBJOistQRfmXcBuyeDbHcCZb+vKLDYYbCdWoTNjkY7Ar7cYDuBTSgJZha3juJYcb5rKHWYJjuveLj6gOaeS0ahAfSqL5M8AZstDi4xSDbWN8qRbXwfNMPdrTeky66nIDWU1HIa1cTdIkkaXQ4q4DCJmcMVvg2o5KmQWm4/1tupQVerUslKluK/zDD0+BFuUcZ+YeXna53hy6Ftkm2LfJ/9kGol1TblW6CquOcU9578ZmsWGmvsVPvA1YN8NOKPbwMe58CM8og4JEqhbzQq6klbA4bhr/PtksSDIo9B2R23dFOAt53zW5OW/hbvuIkAKrPp7lH2rCo+XiwXFh5aq/m4Ff+AnjoNCpnOknYbtg/M2y6YZV2UT61SDaoUGDFq4uZjUULRm5TSzEvSl0fXg9D1t78e7ITgdLMXtLvIH+R+HOmWp6I4W71V6dJAlbCcEium6LJcqu48JV+R0KKeczfD+MWBWZlJrPk7z+uqeMaYS0oCfuV3LJAgZPJV6BX4/u7vQ8mdx+0F+srCCgnKvQHSnqMgRwXBU9b20J7a6+3EOE44N/ZwhCvSXZ7hxItp06HgBO+pwO0S56IAkSKfW1N7Fx6+FCJerA0AbI893a0h0itDK6w1dVmDoxQjGHD6FBXqs419EWqzTtG1KiNOlkclGPjkuxupzMxR4uies3eF+5dz4+KsXg6WhotaAvYbVcSvIoYx/x9aTLU1OQjrS1T+qsLEcUZQlgtzHVP+a84uehM5K3QYVbZLEyumd4JiJ6MT7FkCrxMLBQBNQE9Osd/xwX3hk4Ofgv3IMBfSLjL0RwFrDFQLnnyQX6+g4HuVl6qSvil26xHFyahEcg2emCoNPucgKMnQkTvHnjlLdhZAbyxktsRU/2RACMM0BacyWJNEyIEZPLrSps4wvBQ2ru/tyqN8s1aSfMEtGBWhc3LwUEYFWK7XCNHOiwOaGWN027bxhd1PRys0vQs3cxjk8H8TcESdBpl9W9aTVEKyFMs5mMiR7rAqv98icJcFel7AgmFVy3XDjB62+JPvWt6bZqCR0PelBtMsby3/yvssmpUBpmWEpali+WN/EAJt3VqCcUh0lYjI8s5CE8IFRaVuuAHES8KOMf/1bMjjc05wyr667eh0zRCezC454UF9UtaDKlzAhfyB4b2eA9qwRd4wUVKOX/e34CarD9+UWWVC3oO1m4WAvQ5L3zHpAqtzl+du9qdlfRva3Qf/oTwKXJNnzADXXfSKvQzG7emRWDzgWMgdxZU9WnGhuqmPDTNg8F9Ak9b/VFd2CbFjUScbUzwJcgVfXV04UWr5GVNANZiT0U0y5kwSBWwnDkRXr//km5LueaHiWYu2tV/LHFXlrqSJzackNIJrTeVU9NKZ3/K6OxUCUGb4II1dBBzhH98T+RhnnSkDNlwkKoDZiwR8srzepd2yMzo/jnQA/lqRoAomHts30T1kK6PJX/1p94L3uB7v01NbenLaCJEmy/rlDb1DQUuYb+adgLLejkTWBu20ffZtRvJNlgOSZH5SgLkm97pwzCjkN7roKDfuMEumEy0cFJdyucK6YRr/eYHsdABcBnjig4U228D86oG2gHkpf4tLpYW/71VlNz2eIH49mIWt2nQ+uRrXzOtZp6k/vIR9QvpjRnTds6sF73IqaN3tsD8AvZyb9SmdEzTjPN70yI4VOihRFzxdHUnn+6hRB5+fmQ4YpAvryttys4CINvrtdrbjsKtLS2/jgHO5fcmkaws+vnb+5yqZFF4390AYziEEH+uZZlNHoEBd7XcVFvqShutb7I0SPJm8f6KH74v/n10agkZWr8JuUg+Izx1dC9e7G9+X2KoCTEgcydefDqgcGSqXhfokAfdWuFPRxhdwgcUW4P5vW1D2CXiC8naioHeTzUezb3Io/irZgiD7w2oqNtJbvDe3sfk+Rk4TXV6ATgs+9rR1/76gPFzx3ENNlQ6/3uBH8uWJifYhp50MQFhFL0G77nSrvyn332cHYZykfKWtw6exC0CN23hakxJVV5LxsGChTv6ea4qV0HMMfzU/RCQSW9nigWa7RTQVaS4cZE8PE/Ab1Bvb24SL+B+8Idr1lcsOuytfYbTffjWeQd0iWqZu1Wklw4V7GifAyO1YxqpKG2W/VCGjxM7UiKnFCqVytE1KvOKhJJtSuIzWK01bWiaSg/uLEFWmWDm/Le6eJBtMgi6k6JXIl1ZJyzvCvzPmEnLQzn/dAfr8qP7eKpotLnKtOKyBV+lGf6qe05gWe+DOAR2vm+dmRnKEA4nG+lPq33UkURllBJhZ8zeQ6w5zNp0wBpLJSfTPuK0HjegVCAP0cgWGj1ZyEHAalJUxgMLE83jzThuyY0PPPjQyJBy7PaCtYt1os9yKAaZcPYL+AQaJn8sCoxDkd4gU7ABLTwGVl2SMA9nETS6l/jX7Ap1EjJAywkapTIvWRsta99ZdAAMjEX8rEkXDeyarWI+mThQgM52ks7OsGR5PgJOSl4N+bXNkSoegvERp6qUhfYWog0xb6feaYcBGolUdzlCY2w23OVUKkTLjtT4gSGsSgaLI17X5TD/qypDej8va0amTNW62Mi1pE8jqf1TaQN57ZYycuYg4kxPiB/ny5vxt8SJEi0vNegSqvUEp6UXopAnpN2GrxSWrqmr1w94ezbXCslno4nSXGtkAczGqbZK2fKppjPxhfqqOIQ+IOXJio76Q5bMRCHZVa+6ln8qlM1hFFfRgfsVM69IGbeYi30eoYH0DZMAFFLHCCAypfqLMB2lBog41m2/g8D7CLeLgO2XFiYC9E0RlVbElslZAZGgi3+QsU9l1+JxhUShSM4ar5grDNJ95sLzzh7ZLKSHGSnx6CTzuDzVDZaHO364VRuEgvHIftF/pgIYNgdIy3LNkLaq9CRMlUP2CsxZV6EeP25UufaMx4mlrj/7gfpsEe0+rj9dlttFxGJeuEEbEOSK/9oyOWdNLYyGeESuKJyHlsIQ932PXXm+vuNTgLuvJoAceUla5kupoNE9blRoX2NO74dyPPg68BeeHv85D5Gc7iMlUDgVNYw1I5Nh05ezw/HMuy5I0lDhgJbnteTOBoWhOrTvljeP6C15HKsprEWS7bN3UnrFpC7oCXyDp5toV8q1GLyV32764h87WHbJu7USlcegFdD0qTPyzM2QJMfogX8WE+GjMuOUCw5e+4f2WAbBQeSe8YVI05uJO1mmb1ByffiKRzcHM5jHNK4DvlW6NnBJpfmC61zxt/8Is+Y8lX0SkQVX06LIfQ0Bd7AgKzrUtbQPJfIIp5xSY3TUEHHD4dUZcPXU5Ce4QiDJaePEWkzWMIY6g890FqRbRPVn6OCa1iCyhDbFVWSA2wT/rGK7WaRvzQ3qu9oVy0271/HvqJbE74zWzcTLA2D9+wBsKxlDLs5BCmj3ISsK3LchCLdl/AGlaLNC8STLtCc3fq6ob4sjcYDnQMhHltVbRSagqIhBOib/RTA1Z+YIRXKhZ9dG2KMNvdYD29d0ehblcC24aBUQEhG6xlo4MdzNoCqkE313Xfn2L5/mNH0NNjUiQ7ylbz5r99uaKQ953K1IXLmqzxjQ4t3Ibclk0QrFZFFoU76YQa5wvzmyg+UiqMECFYfLFnAC88oWdS607f4YDvgD3n9nNyYI6o5/QdajnsM6ypJoCa9OyfQCSutlE1MEBJyI23TMBrdbfpe78nNLET/j8dakuZD0klq0LI24AnuH0LBrjsZg/4SAL0frfEVh3EOsbqtW2rTrTkCDpgRsnWGSri1OgOhG8M6rS4arkJz8Bs0JSBoJmugWQ/Y7JdlOlZY+sMtzKxqI5pAvF87JKOoFJSMz+Nh2wrRa58Q+kx7HK3yK1ol+Ng0UELY6voWmxeJsCZ28t/mkcKQcHbVYjoaLhC+3ujZyBeyErf5QBOJ9EeEXbZfH9zQEreCnKunPRu7AX0VH0cTDrwugnDuS+1a69j+KHWNxKvF8fPZcJT2DgcGqQgk6A+HLDkKVkcsB42C6m08RWu4TrUaOsVVfFF3VgPFFfWQS/OrUDqhtgJH/KjN83gEN6jq58V8l59pcLbguES5Th7W/G2+4K0DXNrQBT09xBO5LFr6ABwig4t/5ts73ftC61SPv06pDQ7/81GqRASYT1omKH6yvQch7Qhz6/VVvCUTvHW2N/ua1ENSXMfXJqdWoeLNe64KXvuevWm5cRjPw8RObYFhuROnHeIMwCxqU9mPhgooqKFXgdE7mi3I5wYONaD2palTZLEFcuv70Ppv6Mpn5+GkBHaPI0j4AfWcQCL4I1gZqCNhoW62q7sjv8ON2JQb5/GnwUhrPlFoTl6qPKLWrj1OMd8RtloQR/ItjyaAVlFWl+J5Stt6+Q5tAZlugVGYXTEtWKlWNGp/YQY2WiwTi9Lw20CoU3rsLfu44rOH+UU62OeUILWbmKLjg2fQxzf8Y+EeE2alRDmljGvhGE5Ao0BnD0NnZBr1iqDa5JZdZBnnqVrDQYVEzZIUeAFq7Ph9SWrn+efsBl1RBr9RJlm5Z6CuK9AJ4njfOYm+/dLyyHx7BRJ4PTKBY2Y1EnSdoz1RXebKbqPFioH77pfnqGS65cEVzbumpfP8NrcAKBRfkcaPoPFDWuwoikxHqMQJGj6Cxj8K0pku0d9qdEQe8hJTCzkXexR5qQTliAoFfZKQJmJGlhH5j/87sMf32v9cCMXDdUZ8hzDeOlCIntAC2oTH9O/xR+eDWgquA3K7aTdiMvNz6gOFAeIs/K6uLA6zcGdYq8Mg33ct0xnKMiXv21fb715NaO+1MdBe0wUXldysEu/MWBsiHDUgJdgwTLyd1PyNp23fYFX2hr2mj2d4BwvGhZvWjm+uJDvoeKsYgkBlAxUGVZSVGzZuuKeTKva4zTmGuXsoQ46rjYQq0tOfNyTtJQikfzzxttfOWWqk8xVV8G9bGuskkqzC4uUCFBQ8uhDWrGNjFr5460m7BWenAt7tdckx4SCJh78EG4Gyp4iutDOZZXUF0x0/luKMnFXlpcpd9i7n1Ojb4bcm2NlQovRsZaW3M1TzXITc479/c4mb7ZzvBwyxU3RJMGjLvZ46zzWkmJJ6lctP14Agd7aQdHI2hJVAnzPeneDdnydumvqnuTb24+sDIW6T2hZOyqAV4u4yDTsQKOgMtmu4E57mwvSbj7LRNL7wH9oQi1/W7VCyHvw0ItE6PJQ6BUoW/1G5wa8dvjwIgQMzj7ZQfLM3B/ftzF/yfg0lCakE4hbBnKI8g3UwujqFoZwQx0pvZiGATvJ+87mPBW+1Meo6XjNFSXniDXfwkMEHRd6Vjyvx+FSt5pDmY8hgKkU0kusBwLg/bUx0nua6KV851W80X+wbmcqQcdIKYC1ruNFm/lIh3DQv8yg7po8WapGYsDKiX/OnJCPDuVTaMbxEmNWXX1c+pz9C18JEOJyLfXMwuDzfZHrp3Ye4imOaA9ddmiPPTZL27qiTbuBSy6Ytu1uzwSIQ9b+VhkKkQP7SvKmrHgK7fSNm3QhictMV6VpF6C270K3Dkgnc0MDSlzBWkeibP9lwi2HnSiUMPoIVTdIGFByEfTHX5K7GS3GPqMsgpOUTmlOe/Wl11zTzk2GqeeuEDpB9i9pMnRfwB4Das4760J26ACcW/hFIbOu41W0wWdsBtH9ZIO5mbWgYzW5SB6E6BIqbEyZ4A4x5WZG62cuWou4t3pbs/ULxj5TOmaBL5KhAXr6PY98SSDmYb9eCZAjmwxPVGdyhmCKkO2C05PCn1ILa9KOQTi7x+zERcTC9V4R+/RixFPCqGwZu7rmoby00QZ7QC/UPfrq91UsjFaJowHBc++OSerW5A55d9GmbCNcGEzYhU9mfc2Qqy+hdyX0T0LPaObpKGQoHORBne4GhQUifvjrA6Azu8no0f2tokvnN7FlAoeyOsddC6yyxs+Bb6knq38gsaGpjXDYwF5CU/zXzdkf5dTlbU8o0aQ3oCS4nFQbuUp/boIyna+VXJaLI/XUCx3Q+eEuIspSLD0LsSchWqr5Avlc3iC4GPldmn6JJMBdO3YflZGlooXqb5cy4VJ4BXIc3Ch02tJwv2UBNhOq63wjhuy8hvUZH8JgBOkYVIqxVcmOgH5RkrGFVL632sz0MZWVNsNLHpytGXEjaYGc0GWiLhFVePWjMlBBfatr8jLTpT/U+Du2d0TXK51aML3Vun3QpVn2GRn6vkMhBX5mbM7e75YnPaHnYFFpJiiagdZXBVhGhIjyQI2gnOHqHyysaMtpIPBlxvXU1MMq4Mz7xbkjrfzzg0Z+lq2gpXosQXiLwCrsOEdcEyYjkEoANq2rivDW//QAaT2Ld5ADtuYzo07/yyhyGiMK4Mez0Tug7jwe0dmbnVt0tpG5uqvTUn1v/fEEd3XcrcXUk2TJM0zsJ+5gvkiYCQDwdrQJ2jIQJfDsnTbq3USUH393V6BdLUZnc/VR0r38dUYF6ccP3ypjf3pNvFvOZGJMr+wo/ZHyT7gLcN8YkPauL8+sqNHMvhrHW/wZv46e1OGJvszFfCyphDXuIeLdzbDyJAkVDONcHo/YzHjI+is/qaY3ETNVTwIzbtiuJ8Ubl3Se/jHOFpIyEXLk+Q2+UDK1vDB5h4pqtkM1R2NyX6qkkq/SI3hZtWIMPpJ/aLvWQPES/VccNqcEceeFa9NP5WqW7xZXVeLT+iRl28RXd1Ug4SXo3ipLjDl7UfH+DuJIt+jlQbeAHMPBkzt2BtBuhpa7M8N6pKXx2cDXtM72oHRUjYSqxSpiuOUCuznD7qa6SLIaE3NPVrrQF/OwPYcmEodDguzRldvYoZuLZxx8Ybi1Cf2pLlhLTARkUYFmslTVDnAGxlr48hPUCpgRv3JqhWRvtnRMyGF21AZz5bmov5g5HpO19qMTd2nUAD4MxaIU5G+N+Z1zX46F6ajzIkRN0mrLmhLFSbd0CV9rC6FNaIUF/dfwKQmk0BAkgEkp6TGucU3IeqIoF2h0SkhYr7nD3wvzTGPb0Yh4Qhs/qM+lkBjiVYYRWpr27USsLqqmMnKLenuA93OYUXPyP1bfStlZp65DofeJFl0ejTPDbizKW0h5IUt+sG0zdgNFCpRuSUrHrtqAR3xUvBDVdbXjJujDlu8e9Y2JpMkrSVt2ipRI8u6FZrItezRH/n6edBHAzjO/y5Uot3x5mcBHJ9kVCROJZkC3J8DoQU3nsen2e8e0uI1788g+si9PYVlt5zpW0WWzHLiJSHJLWwpveGNssW8dFqsO/E++gm54N3Bb7pbSdAuODwXyIMiBQ4Je4JN7jjUbZlf4rDGchK8ubrFoAWFpm85MAqQ8tMzqGFsFYR6ko4ELl4y2PSoX3chjo5/KDivOQvV7VJwnUan/l1Z6DJ5CZuR1vGBIXH1+yoqKBl7vubdMZ25ITkWX9mHIWpuQQkc+b31O4biE3v0gkfw/e8I8N1asK0oE71kBHL4Sz8ehh3g3Xabzw5JrB5gWvEUaIo/DsEzTJhFwx97bCFe0ORnvCV+EKx7SxE18OMQdoZ6eGaOLqTc2DTWSM+zgPGc0hOj7JKcAnrxp5NSekrMnO2ZHosAQoZ+OjTuSgZP0rG+MjyDJkdk7tIOQitOMdKpTdQ3F90vUlcqTcxhc3iG1+NX8QLmogGYFMOndyc8ySqx4uSGPHwpLIMV5zuqAg/e11JL3ZW0meES8O0IocnfIqLXdMAxGgWMBizMKAlCgAYjJv+fD1SYbNRcSR1DmMKy6XLknC/EgaFuC9RMtwMoP28TwdPhuRxe+grkG/idJDmM0QYlndS07KJnsPKwXynMs4oJyalrKUrxqq1EMw9+ppib29TIUflmeO0opS3nieqcHakk51wP+MxDzwt9612/3Erdb/7vbdyUk0tyYeXbkLiNu1v+2XUTcd+VSpSZ+ADKvn6Fsj8KIlCzV61wJN0Sm9EAUqKfS8vEaFZkzWDHT3jAQfQYSvd//vV+JvO40l+wGcvVJJK+i9YTSGE+rTknVCKtheOPdqnJEyugxAoleJic/6HcI+23ErHhZqbaF+MtBhO4+la1GmpcO8m5Z3caA7Cf36rICn9MSPqNFAPqw/fMc/sAWtLmtEPoVnciQ1EaZAhceOPHiYRLTXERvKhIO8/qvnPKEPvmZDtxY9yaQwKqX+tEl5ah+hflYB3r65zmg8mzvajonA9nZQNacsw3y3x+EDe/alLKxp+AUEQ8iprY7Gq8VHqgCb7wlB6hzx2IKszHV7EM9mLKqeHBFhVlvGvf9+cD/LFl31JD3X/xLpJtaThjbcAqxD+dl/UdgT+6Cw7gf/XBshgiXgFuCm0PwPvjdxb6eMLz6g/E+7wJnp0N94U4h2KdAccZlQ5lGyVqqi4X/q2bisVMf5+v90Ehm+y/iktVgVlKigjvGBHg6ARiVIosFYrX4KsaV4AKpO1IUUnh1v9VKsrkPkaYPST0lFl8jtCABBLA1Azpxo3nIW4b2A+h/wUmEOX7BIppcJBydSbehhDiX/Lrn0Y5hOAj4J1suy8+7V7Ma5bxkM0kAADlSIIkS8BKN1Fq349gohFme6AJKWMCn4bpHF4H3GBoosf3GkSfngJFP6J8BpluIxRkJ1pJCHlmgT5ARDJQq4ZMHw6e2kfxZld10sQj7j8irAzTPncAdmxLC2CpsPAB2558VzARIYrZ9s/+iDKvGSUVqhg7EZnoVkS0zzxnWFxIjkUzfkuIhxfoXqFpQKvkii4BF07bxyeieKepVhSR5GANPkWy7WZpv/1uaz55x+BKGYSSSeMX5zJ8nxg2iuE/09KCd2h+EMzLplOWeT9JbL9Zw2SbMsIHlbfUDbFJ6qgHYtrNJJbBeR1jOrEV27cBZESGzz068LC/8UPUmsb9Ld1lOnFaA2l6U+KsmRljnkNPnBfkF4wJ0745abaKqQscc9NxekrxiTdfwZm83o2KNbYsVoaUB9ym5LO7T7MQWQyqg/EcQn9Xo7RFt6inuvfhVmwQy/IfzpICUW/zbhkUmaEZFoKqjJP0cj/voI1hvOzB2etvgNt5FFnQyNXDUA7w4gLmIpaWsr+a7OpMAOwTgVZ/JgayVaiHrFs5Uyng1RfbX614p/J3MWVEQdBx5FzDuemu4AMt5A3zGf5lBLWJeXuTGA+4ZyQGZ++jw0Hhp2owGjbQ9BkdBgwD9Ci6Hb0uYVNmxk1WasW7lEBgZEQaONK3+h9NYntDhbvN7d1/aWz7NkK1PTKYNoy++5F2c9gJMnpICoWwmeqD666oG8Y33gYhli0rardPCy0+dRlejyyk2NZvFPGIlDyl4VE9D4kugbA0VGeaXHCMV9yymP14Ac2YhOwK7vLSxUhpgYUjNTGEquDBOqz+ABs7kjA+VwHkZMsgmKr67kd/8f7rDY5aDTzFwqCynOX1ReFSg5LlcBW9M4/cqX0waFP2qEGEeMeaudzjufOCul+3GsMfFlHuICtlK2msRD4x+P2sL9n6IsXyIZBVMTQyJL3KyRLfrPpBPOdS8BhpyJ5zWDZ11oahllX1a+y6ioM0D1hiHFlAq5cRE4dPTJcn0s6bZrTkcLCCys9+xIiTLHVaTbLWPUMMc+Lm8m9sQky8gMJGxUf5UN3c/fzmdhRMMqQJi7VXJCOegjascu32L8sZQcTgV4t9Dp+jwDiFGh0nt5CFJU0ufK7CAhcl2yP8sGnUnIPMJtOc4tu5jdiH8t9CM6n9TjwXT+UOn+TR4EYzFUHikzaa9pcWDVTdlC0Y+yEQAHxVNWYRz27LpHTdAu2d295b9uqh430eYefFS981ROJQ5dEW9L9VRD5lpWPfnncJHBqQNPQQPgS7QG7hz8ztyIqQ1XmYE2MGqijJVw6S1QMuqh3bRzomZmKHadV2ti3IOb7FmvdF2obw3BjC9J13RqadWfOBZvdSsSllPK+3kKTFwuo/70EJ6pzyb2Dzp0CFvJZ17nqJ9XUbWpI7B1k9V3ieaJBARC2dmvrDJmQjyPfr9tuCECGgSuDd8okcOoh/GZajjzfAUsJX6y6aoTQtiK47LQwfq6Mp/cbMeBs7YPU1n6fY8Ez7F6eRa//d0cryinlI7QFZ4CJWugVDcffJlLSRPCDd4nJNltCI3xANqrdLdYtdfGWdmMCWUUlX0+apsX6hjsmtdjsMWkYliQ4AfG2ycIAksxTEwYdFKz6GHI3EDYWQQnxtAC+bWfz6NGc4Ku8tLzDCZkfNm0QQ2UlcgeTWtSRTWyaUXTKb8C3JZ2OEHkT72qkzPggvCsrXSRMF+rQiCf29+/O8uN1CDV6/XscXRMRA/H/+boPf+U2hldPX3EvR7z7sdJEoWwhqOAVR1iEMV0lVa2mizdxEoTraZYJt26BkK0fl8nuCjDoW5maunhSy6N20Kne63DV7AMKqHXjLxMjYe39ef81l7APuE+zN8zxipW/wDqsPvwo8NZPUlqNXjawapmzihMXwSerkMLTh46X23cIzPjm9zoat2QxUv4rH8Xo2ICWBAWq/cLOJ9H0kMjeDtkOi18phmIlmPlm5HVWQG8uS+lZ+YBdG2BvCTy8V+mA5YJrvaK4JNj6jg4ElrgIsXIa2bwDpjV1BxPGxQgtEHTZf8MuFMvaeaJnlSJ6xAFzOx650IkuvaDl8DpW8r08mMTlNu/A8Vnu4Kf0teKn754/z65z8Bm68nKBTyU2Y57em2mLLBcVPANr/G6sg3JtJondbjU3dF5JFp2m+HT9xdte/ajFm3W8neSEnGAEKbuFogv+QT94vW2xML5oEDFu1prM0bleDRd4djo2JAeXSE0qjpusuP2DSt39c8/Sx1zJJDoYsCRrnk9vaYWmKPRC9NIuXK2FO4sKw5G3K1R96nuc8dnU/+yFhpnqB25mcHZe5gOY5i64o9VW2EKmsv0YeyQOHzywyK1vkXGsumtOqQVboAF3Cks2JboekLMmUEGcBc4Lnda4QJMbaVfe0D9edlSwqBhudcbcvDy8e6u+ZnFO9cDm1JFj4mlrQ/qDgdkQXlgNnBSA+/c7FxHkLC2bFKBnQA58iQ+Mm+0sNJcYHskCyZ2PCmY86TkXZSB+DN+6ctVhH5qxDBbwEdW6cGSMc2rn7s5sIC34Nc9HoftF6HjXWnfRxJMrhyI5yEkzzfTkm+JInmgzlZSKdQlDcuUoNA9kanBw557j21NM5YVNofIugP9V8EhUtgoYqgS3uaQGXu7Z2Q4zJexgfBVWYNOEzdY1hu1T5ha6FyY81n1g5gdKTozTivhyH2qIIOVc2SythvoY5tpRgUOIVAz1JnnG/55rGoF0D/x1PdviXNdFVsEhCV7dWbxa53aaI2JwNCCkvj+bu1g0KGdBUOygPv6UQyIvg4gBgotB95UdwnqHY0hLhghWHjI+GkSZcaW4kcASVQEkitADhELlos6ezzRLB24eyBCjE/vZdlAoS23Jb06WHEE5fmgQE3qniOvpqgcbUvKIn4hSwwP0nGLQgOIXSsTX7Dgbyr0KZ0YH97DuNcZhlQ2sg70+QVGrFTd+2CAMsLEPmIpOMePko1/x1PqwiehgsVCFFEFiCr90SqNrQ+p1HsOe4VZPe89ajm3EbsY2vCE9rG1x6my9QfSTkDLRvwG7LTm6DYjg7If+ULpYETuzM5elnfY7bKH2edfTYDsDddysIX0aatNW2NeARHR9aYA9wkHFp5xug/2NrBf8/qCKMDK4i4RAJT1HlyrYB53MTdQJ4JupJsIRMZo9HhstOr+9N4NNFUEnNZTtyfdLIm12RPulac6N4aIzU4vvuLBjA+EmPDEgRtAaVlzlujg4AEl/Uz/ZnfH4RPZJAfVAbx8Un4kxQvcqF/j7Fvupwyz/OeM+kYHzpbK5DunWYMVaRjCGL6yiG6ze9lpJrQs7yZiYeNz8naedxReO6IrgVz+IH8aLyxnkZB1cnilP5WXGp49b/8dnbqUx54QNajT9xj9BHhIqzMlyKpHD6f+NPLhYSfsH3Gi1IuHMIAjxRukoxZOgYLM/VkpIjucXdSxRIKp4MuEmfVLf2PmFvtWYQ8nyRrQwokwGE1nvx3uaTzFN2nRtctvCyAgelC1V6AgVJxvrIkUdz15cu/oxnMMTTy8Oa4ydTJm8rsQJZIdxeuPnv+hGGhKc7kWRFgRmVHz64UlHMY+bGw7NDWIzOo2wRQuSmLsVb2nrKTplMRr+doSN8CGTT/+8xS9E+cwpOGxpmwkuMHYWFWPV/XDuR6Gt5D1iYPwpKEA80Cpm/aaIGGKthTmOnspXHxMa1DMx0fKbCtmNM9Lu2jk/S2rUGe9tnwdBPiNt8beRi2PXQOsq1QyLAfqdfARTBov1qHWHoRFgTsla0zdiEJjqRIIsCN7RvCK8D9cStlnK4ZIb7TiS78Eh69nF+5BhB++aOXa/J7Ex4I+PIgWV38k+Xuzrpicb0tlNi38f3iyxZPxDDe+fXE+2oP1yN/IvKs/UZw37ttb1G8uo76kumZJcggj0S4APPtn36a9XFH5M5mnAM8R7KhwCZIN8XWmfSNXaW7G1vxkwtRW29l6pmQfRuOCB+Pew7mBQUrs5Zxx9M5kC/l+39mBj2XaB4b36McXvNZjcKh/HhuPNxxnS8wvpwFIzN3kvbcyeUgnrsjRJgH9aJjnO2pigo9Y3cr9CfTER2LefFAxZqjNpAYXgjw3suX3NhhAC9NIjEpNPpiejZ698BC3GnakMVuekMAG5ZYQphqLqcCcXD5mBv7olNDB7S4ean6JWyqwC/dSVSOnibaX428vpT4HpIzHi+xanaLzrHYj0NylGaMZ/19D9gv8ML7MPZnOVMk71H3I6XBX3AtUE/BCAZQZMYYvJbRrTVI+Vri7XebV0mX7cysNItV8KDZUn1p3MiY0yeB67d3gBvTkfZIC/RVlEYBrgByyAb07+uYk2wBOY0p8Cm+PN5ufrMYZ2zO77fH1Qi/Elw0r7sBTB8oPyZ7VTlsaHdaO1hOG+wmb8dWcjEwplf/efaE4ZUPITmE28aYq+KTVSBYAe6iE4sCiK2BSKk6uLiZI2SbQfGXKbGB2Qn8pi9IsiRhlNxwmbBaYMcrbUjsQp8Drn9a/A3GgHabXvN5R03z2g9QNE5bUwdU2UwFOsqwJl2Pj89fh0wcP2BDFrOfZwcaaVFfAx1TQ/naYfdBvXM1TOuwKdFeJdS5jdXGA
Variant 3
DifficultyLevel
716
Question
Sean travels directly from from X to Y as shown in the diagram below.
If he takes the route X→Z→Y, how far extra does he travel?
Worked Solution
|
|
XY2 |
= YZ2+ZX2 |
|
= 122+52 |
|
= 132 |
XY |
= 13 km |
∴ Extra distance travelled
= 12 + 5 − 13
= 4 km
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
Sean travels directly from from $X$ to $Y$ as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/11/Geom_NAPX-I4-NC31-SA_v1b.svg 270 indent vpad
If he takes the route $X → Z → Y$, how far extra does he travel?
|
workedSolution | sm_nogap Using Pythagoras:
|||
|-:|-|
|$XY^2$|= $YZ^2 + ZX^2$|
||= $12^2 + 5^2$
||= 13$^2$|
|$XY$|= 13 km|
sm_nogap $\therefore$ Extra distance travelled
>>= 12 + 5 $-$ 13
>>= {{{correctAnswer0}}} {{{suffix0}}}
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 4 | |
U2FsdGVkX1+jJ4aUw6ZJv9RJb7859URf55/yygsvjlDsiu8z0lM5fyjZF2u9tqcUGKjRBL06zA5/u443dkzptgUjIoK/68vnHwKra3Rjp7ouKH9cw+GLO6NIS9wR8FwX5SWoMai35d2KxoD/k3yzsZ5lmpE8JFmcny8o3SdxaoDKz6to+7+wZJQcJgyvHVcA/tT1ZNg1pp3WcM8Yvgi9wLhX6nX5dwewZHb9gNw6bTdrijkZLZGNzTlIHmdRcJfdrh5Es6/IAXY/7wJ2ecEU0vex0TV01+go3pzohQk36VYvAlkCmsZrahQAKJZcTNDTlplPfx8nTlhpO/9b2o2c4psSj9oUS9RxuW8B5ZoT7tIP4ui5rodiWQeDSd7PxotEVk4YnbX64jXa5Y+zKxTCneNby0WH36sj0JqSGm+mtIjy6XTaOiIpV/uJbC4uKE1Ebd5EnfiJbWE1AcJQamN3HJcKvjhrHb+s9fgMMfvuXM/AnYn25QK4Ox7O4jPbOz5sHpsm5NaeYF+khIdAd48WzSJZdfox6ryaEUGmRkpO0kqCQwpj0enxBi1NesESv9teqO89wzpgcvHHSHnTr5cG2lTvXqIsH512BnQcegnV+TxiJq0EIL8V9VZA93ICu438xLCysqfR6pNzAZQB6TDCRB1DW+BHYENApogor2rOvhO1oSg5C7Ncw5UJqO1lJ0OKbIAw3Fz7bniG/0NNjBStu8oa9KPqIHeokPnXxrXgwOmglWiR6abeQe8ii1zCOgRVDwkQlf9j2ViGUbsyw/U6K1mbPjtJIN8yMIVc2C8N4KPrHyKQlhAZaIVwCpPL+t9lyZuxwjPb6gHxhN1tr1qE7GKR56lnpxfP10bBDSG4sYkTJVjYC260QEKyj8MAyPQiqKzqXNO1ebjhrXG237kJMhfH++CZvSOnz62h3th1la7eWbRnDJozXh5zZ/1sPCj39F1RwrxPl9GhHGRhKru+TEsgcuu8vyw0wNEyaTMyavSKtnd5f4oYNGbOeWQOYeiiNJHsleL+/FQK0mutyvyW4OiBTjF1mArnJap9+ljvdHfpHubCGjnRala93abbD6FBad9IbcqIPacBWOW3ZKnUqrr2qSVWRzrX7HZCjA+HIah5RDaW+FezGli0i3k58QEArMqst8u8uodjonPEFSJIJgLjxmjnEvei6mBNifG7p644WtiiCLa635Wfbywi++Ott3Sq5+N9UIkCSFe2W1zBhl47qjBwbnOq6FG93UJmHdG8jGxmcAsQbK9En3iWmwc5q1UbwZ2mxbsl29H5vHATuj6YYSHZitQ6ZFe4R8/SyA6exDtq9ESx8qcz5n90ZfVHgkxMyovVNHWZAuTTjdT2ePpEr+6SfCeAeHJOOseYMzM+k3rF2PY6coAwb3v1TTSi8AY1M5HfdVLR0Bb3yGhdRCBC6/UGaccFem/Z4EJT9SXuQKQ0Ej5BMJEHvqHTeIeHgwmSlWPsNyEv/N/YtPPnvpAxq5Xov5b7TvinvJfsn90rrYY0kdro3ERPTdKqub9QkyIt14ZMryVLvblVrrnJvm80Z2fOSVXEnxh9dBCu+frKCQ7VaanfbvsdDTxSouTKxI6dnQ1oLBoRpNbBE3IyplZqDvQvRfN8i28BcEg+EUroxN58B71HU412ELchcX/Yua0GBe+bVwKwyNFruCAhsNxSgxbzV7RgbhoD98K51Wv8ko/RjkwvEPX8nKrn6PXTkvs6ktDnRmL2LiA5fbY94DADS4WDMIK0B0Py7QsFz+8oTzvhtUyfkYKUgvXWAiXXz84Nv0mqjOxKiG2CMa2nJ5gZm+dFfO9VRMGvP2cNXLPBNyHzixwYcxY5HrgBJ/GPk7KmPpo2vStEXQ3qUKruhPjtWsVuQuxG1sh8zxn18bKeH8tmu5hh88hYBOcZrMAazX05gYyQJwPCgNU2vpubjMWDBlss11+TOs2qztjshIQFrssagTMAIHxjCzTvW19fu2lRDhRmUKGtL98/COfZVLc9AY331dNhYcViE1BnKod6z9PbhSD6nPT3msy3t4Z3yBs25a+dvjpunHjdNfD3k+9RBGxYo6VMSHCmmTU7AJXE1n0qg2rRfS5wOTFtvr2jrhYcggwn3ES5WZHnUYZqF531k+wJ8/GRD/jxJLVyXFJz1kN5Lof9NMtJ2+s16Q0C9au/HQaAaYBsEYgVI/IKHPUSFFBdvRhZRsTdax+X6EEvSWnqMHkXEuVq1osaXbZTHjy2Idu6ci6e4LAjXu72kh4YkfgsTKHzDzbnT5cj9Dna5KNfRnlpi4X8qCwPbRGVn2BSwGV15pNlY59qNezlQwnRmO0yALYCxA5wJzj9cITOo+1HgZe6B922ktJVSvmPXk5YBndYB3UsQ/rCVMMlidsnNdOcJ+qYjkpubmu8c4n6j0DNSFGeSIJyu9lfWMdQLeD60zH5IEPy8a2KvfP716w11x2rs3Sb5D+S5TbLAc9LcW8ARQkD6deW/T4xVV43PJjInT/JYC+D5qRcVB4QdWz6NpT7xopGWXyvRMbz/W5aDAfKjqbW/kgQCygZzaMYYp9ym0jsk5ctKFbOp0JRHsd1Y2+iKNJmqaXu+0qPF98r5MvGiiADYdqdsYf+5P06DC7pFqbHobCeGIeF+Dih6d+aewjV28yPMylZTOtxP3oJlIEuyps1kKha0kQK9VFLunAz+rIsq5YdS5mq30VXdPwuLAFSJKYGuXkO7eRqJ7+6+Ly9lwyYEfJEtgbn+GTfG4lWgCxgagz5xVPThRE1VO6Y7V9CtFja91uSlHOfX+NctlyO5Grmvskp9r3HKZpVNV6FnOUwToiLo7myU5MPjV4KfT4is4f5vHQQh+VaZ0CvCeTloG4T0yh16MEGeXVNdFU3k7omXiV300EWAmyeNhVaIb9duBABmKqfKLqgLR03+uKkQNAzkqX9Nr+JLATWc2nZfO5vi+dfWcK5d/BVkEfvqbk6nIQJOZyFxbiGjh9ersPpWcaIzhX2tvKJamIU/MFlpVP7noI+U01YzSFMck+ubPXCFOoQWUKcotTjh9aGG4V8EjXFF8aD/kJRs0QhqrRgQy/jb45jUTZzDWT6qbapJkOqMhB/iwef4WsRxn2GoQGxa0s4/bhKCUO4k4wQ6QWXD/Gj7jky+WpwPEXOo4SAKTf25LFbhSHvjn+wyCk+ROzvA8p6DSeQgePeqyXJj81IrHeVVaYsYFE+I9n41NudFy3o0ZD7JXhNzpHwbnwR6UaJ/1qwqCGoJiuJEAjw3yQNvjU8Kd5P+Opu53Vq3VGaTVOD6tQYbZbklgPPICjqEpcQQ/xCIvHErmS2SV8UQOf1zjviF0XBVhcLk63mV4IVHs3QdyM+4iyn3NyIBkbal75+xFkX1JvUBSGFtuo1Kxal8JwAIix9VOnL4Kk+cZaAC/sSLnIQy5BloGdq5wb2KZ1WN+KUt8t/uo4A/4WNGicTkCeQf2LxsPNTlnacWk1GA8rXY67YN3oUB4z6ItDNCHhPCtQ6mcMwjPTQhfzgTueP4iGhMOZe2XMZoAMy5r2XIMpA+eADHjHcunkXAdpXNIFz0V6+vCFs2tsUcMmQovPeyMUHG5mrK6kWqH2p3OS0zF4hiCCvO2ssNXMhYgyQrVl9oX2waeOT9at902X8eMlHltugVdizk57cPfvXlMkYOBWpLy3l5PjHDy5EW+m0V2R4kPUDkXF2aTJy9p2IlfFT8+TrVxBvK6Ert5j+OXKkv+PzE5Cb7ZYyn2tUuXl5QuUwA0nnT0TnNgpn00orPjZtFj9geTPohjKHjnEMnV/xQkCvbe0GzuV1JXn9EbY3B+syxVQL6/Tpv+mxdeUQrT7/Gz7b+UjwqExrIDV0OzbW4NaQIZmvXJIUtzKMclkCrfc0zzGBLw2EUuIp96dLPBpsLuaTrJv6GOdcQdRYdO7EWSgFy2x05uRGRMdr2Ti9HICzFSYy7KdzuXbPnswgvDJHfHVIrFYIYB5k+nozUS95qulQFVfr2eYL1bRMOyDBTLOkwjnt/4/nbffgvCjWfZNQMNrreJM/DLBBXwY1yxvwO7fD6YtaKW4SgCi+/F4xakTG9JJIMHrr6W/1xxxrlF5/zhIT5spVAxZ3m8f6cayGUiYK3tTqWE2/jGA+yGtQHlsHBnbLUL8+Qpb3UnSvfMrZ51W2iMi4Ua/CjLxNL2jmJ7+B6mVpYoN7dlRKhS0nKMgzUfqdTxoh8oxDDXaOEFOB1ppMEWAlvZ026Cnu6S81IOLm5p2oT9NRYD4gOqsNYUKDFOAB5I89RaWqhuDV7oTPEuG/K3X/3SqNVE0ZI8AkafxJaf74NLMD/W8/JqE3tlha7qV7ElgTxIza63vF/6u/FmSLWb/2fD0yQLtWMJfWqtuxJ/sfyJTLfEmZ1DdjgLnvXkDl3EYTDF9QwZ6woBfiU3pv3MxgEwMHgbhMBDeZRCPiwr8RTNBQSy7sZiEF5l7H+6nwPPdwD5Ebj2Lihi76bN6jqnyGXW8cNXFsFfXbEkPO+7u+S9EMO2QcKiiQjtXPU8aLUY7OWIlUq04ICUWJNWVRrEZ30Dsy3UI+nqcrYdDZM3nc3iv6+diNE2ojVNe6V4ptIqPXtrrSLPHfhUQesXbpbaRP/lWCiRUhVUE+CufVwS7iYy0IFi3d8Ya4JaoAIpcLYVhl6ax5O7QlPAn66pri3tnFSsq++339UX0ljReMTzrB0S7uDonVfValS37zfM5KgeieLnvCMW2ul/ZOHLFoABCeyPJmrNlVnGyuCzhk5Mn2me1KYxya5qiB0IroGH9XXkpe6p2mgY/oHtQQbgEP1+fP7KLkii8SYs/vQtSi+caDdmLJPCiO+4odpeCjNXOdYuUw+DQv0mf3HUNxfpSX2J5zTdflEcJGBOq/A7YrHL6CFoCuJo+OA3dULCQcd8YtYZMEfoMADoPFK+vS0tgHI3hS6me7nyuWZn6NwWiyhrl1WIHd0GLSHk+CVyrDVWeVF6rJQcqOPyWSUGQ3i7TlXgkhYxVnTWBbudSCLwlcdaOPa9kobNx99Wh9LC8k6SydbUkYczWaMct3caL2TezNPX933A0xPS+ho8nYHEU0ip8K9YWxrgcFm1RU8u+0MWGKTaNUcnU2VtqqdzadbC7DzZwnYGFe0FW8rX2q3tSG+ESUpyRpwrRlTCrALKzqad39BOxcDjSZ8ZAzwpK3fPs3RjxbeR0dNMQpCcXqkD2W48Nyr6dTXJV1bbBRk+7gjCab0E3goZY7OQl8MhhZzYlHPdV1iF8TynSoEiD7xjU8b6QwCPp1IoWbg4NzMlC/hjmoalL4ZJgHhihDAb2NpO8yCxcOOy/SxjNY+bop8djU69//icPTOO/a1b+fCAZjKiTtu2JqcxOktR/5v5VGB/nusIvz5QjsukuUouFsTaA9x4El/y6AhnvgGdaWTFN//52MUEeYRQM1HuJ91nq5RJx63Uba2+b6wUhlOitDJdv933Fbu5ArZ7lxhuf0KQ+1z7cgE5pd7IBudc/yTqkMWSW++RxHRKkf2nLhc0D9GjYnlLpYMfuzjiRB2TOQP6tF0KoDnV3u75Ra65sx1qQ0UBt2IkTtSs5m/G7jCCWz+HAS/+2khvhGwIu6pBMx5EZL9wvjkoutxaEImhs1/KRFwhuftLdYX3FeCqZur8EBQZs/7XqusQjPcpol3wrdMnBwK/2H4eIbjHEsw5SPvGly9+SFoJbvmg+/Nr4LL85Wu9kYiaP3fOkfC4mEyyb6Ohby3GpBRcJPWCLWWnDfrY8pters2F6SjZnXE6lpqpfZf6moXSAwFz5viI/1fI/meSWXJ5XaMNqG1jzIGaKS9sqywK/10iLmez+fnyVfFTk7gqVGXLNqHeO7Xh9X+mGsrtVeRpIysNhqjppch3V8+qxNUipxx69gXmbeNJEIHpdSc1cROtOxWYHf1FDUDefafRkvt5Ssu0+f9JSpb6DTsoXoQ9AaKzHAV3Erafpqtbz/Q0bh4xiIC44f6fBynklEG4URC9Db3Hsjq/Ct97osuHhnJK0DlwQ1r1sUSFO7mvHjlLyYLeyUc6U2ZZEpx1NJouXWWvRbilhESwMGFCZOtbYTSLmoCxFWYnR55An+pQ12cjLQqBTObZ02ua3oqfa6/rOrxlGAcdTGLs6mo5gPAgLLisggrw3oYxwVDDVtQDIJv4+JzQLD6xfzOw3UGiX/qZ8UWjLynAANSEzvEccwAuLpmz68BAdluwbrEhvsUSCbzv/4z/h5Ty16LSGQ+lSMNwewSTmJAcRiFGNEFAHDI7IJ7Plm2BKVVeHNhT9LxLs31l73UNqucv+tT/JSZYta/Y53gdHo5mTX3pqhDS/Pnwh5wm/qrxTF8q1T+epbAJfUPBJDHmdcfZo9S/3PjgbNRFyn8Ed4JUfFuXW/slO8pTdMq//9mD8zk249sP6FFQq8CRjJoB0Z0jGCfu+Sd0pU6fN5mrQH0n9zDf+skU92UhT9tpa77rDSC2jjZg5cWGNciKUaUZLK6lSpvUONs4ngHwtcr+XCA8L8zbzE7LPGpr7X8IiTYmeuiFtJGU01X1DC3T95AqDsdMxYUI66gNuj9wK71YbsqD2UvWJL7TR9tIRlIqcGY3rKcMKMSKXVp99sm1717cVZl5YdD03rPfabFNmrpvYGMkAZitIhqfSWX/gfpthspbzd4V5pGq3zoKRnR3qX2l+5K7gOsaTAmcm4LHCkC7/u55lN8ORtbE6BPjKuN2vHpYil2iG3un8pZUZTyVDr7Aq8zFaVDzz4K9BpABvIXhdd0MFut0fPtGtJRFUCTziWzaMrEZ8Vc87WButFxf/pJ5yQQ+OsipIxcjj9cDI9Bxdyv2M493jWrA/zMVsZ0I5VY/rNHWZafrY9kE/QSredHnIa0EcdgiBYYxLFkQW3X7qiv3bd0/PCYX561J7ET3xEuVwWsu4V4YSWpIDYjoyXyZ/TNskBTvDVy2i3Qr8NArMUBRJ4VjjWCqzPcfyK10LLuLZPLO64hwD4BqpMNSbbOz2C9KNROFaokpBjovbJcc7eIbXgGPx9WDIUU1HfLbyjY/84D3YDpbtnVHcokklQhQATTH8p6ccoKXWIxOD3CTJ05mhbDRxp+CN3FyhV0A1EKO0h4mqV7zKIpEIuEvX9S+iaItQd0d4YStxOlQVyJhFrb2BFHAwze63LKeJrTTxrhxOHhbSHmqRFF2MS6ta5bvkqj1qBQ6VQKCwBDz2T0GGD3rLVEHD2XYz9s110/hBXsc+TEaflTIK7OQBGfoeAUCb0uDvHfxw36dbzVM7mxd2Wnm0ZNd/7fUwULqWIDnjJ1KdksDzzkWNagii4tm6fjhvi0qIXiXhFHlWaUiIYiygwOI3Ts5IdiMD/Aq4p8kY7u3Em6Q4UFeciYt5RvA5/dbn2YRfuSlp5ApkV365EbAHY555x/y3FXaho9Ekj6ZC2JECQ1ScI6gAfbOA8v0Vct7hnooF+dU1TjPWzT0x7WLSpPjHcxZeQge3Bg/hGf3tbJGtfwHd+BEO+wnPJYjFXV/wvSKgW6FBwf6HrJlxhuniyU3DEL1HR+SE2vdSITx4FAwMMByxLBXUn3McER36zeDqfs+UiGEe9k/Qntytn8DM6XrV/FQ/qic6y7GFVmjXvkl9QHU+45rZ0MCBV0ESkS5NEdvXTB527yWBJNTbBRUwp0vBWK4wUG6S5aLF65OxizchQcV9Q6Gi2nprYyYLHlWw4WnLfwuzs63w5tyf9OncTnhoW9Qmu4avvwI+h63jWkdtBjSsb/8EBwg+3p3l/7skPNDSdkLELOVG1KWcbPdRMeXLMmGdgwdHIfV9FaCuRj20tsxfJm9l3sJb/nXhNdjI3U+1f5gpMm9tFGDRCa+E5eVIxWJboMUEhe5U4DzuhguJM4gNLKcQJgP6uulsAIitqEzxnFDEJtj4CqeXCvsyMwZesOTVGOUzWYatZQCZEbFsqMRU2bRukZHg+QTvLuHjM4TMFe3khFr20EPAhAa9WIWCOlp2oAWJlmKqoVkgP27mkNQfIjk6sfePl7izN2gWaCG38GW0Vipb6Xiw9v3O7+5ZJNdT/5MLfiBC8A3ygoPZvixRu6V4chts5j5Mf5OSmPm3CjBGwrspYKhwv/ekxElSLtAC1bQkYMEN/IBSNvw9EcF4D1W1LOBM9MmDLkuMoJgd3WG1EjyW1Oz9jinSVAB1BMjqPyTEoIo5d2fQhqNtXsmGTLrMc2RQQjXa1GOPpE8Y3jdGatuotFTNHIHBZnplGvEllYtJshhBg6sRL50Qrya6H2JdOyaByJuiEyOKiOSIZCD3QW8hzB3ry+NF36YrwHW/GWezp/3UvwSJXPf6SRxnm68d/lGDiR/N6zz1W8dosuukvEWeElpSINqfbKUgJrutSmuIm7QFyEJ0a3n/iG8y82aU2vrcbkOPgeWkuws/vMebdE9nUE2doZtxY9lVxsD3bUo17GGPUGMos96E22OmZl0greMdboxqj8U9K1j+EOdeU5I7S6ZDWxummw7Z0JKXukECPExSDlFqoPK8YRpI/K9M8N0Q9BDhXtDSdq6Sy8irItdN812NG8bOQ3umy0P3u+F7uaMiUCnkwx23S7zKO3n+VVD3a9CPguzYrlqp1t7/muXTFdeWPN8QfHgK/JE7bypLGuCaNcas6LMcva8MEWIMQ/kOlVX53i9i7iYsZYySZBh4l8CYpIWbaFYtDTnFCLfBB98VzxVK+unJspdRTv/gdoehm/gV1oIDy2/KNc1oNpEZH7LwG+Dz102YJOOeSDu3LOvUKlx8U3Og3k9IjtIQBVfiuATe/x2G/POg9LUXrZe8j5fQsq1kspAjACKpwT6UO72EFNpBL+VVYQjfht6RfJ5eNm3xDntFnWyWpGV12eHdhHveUrJOJ/f+8QlKfsKiXHyHS7dAqPYZhncu5/9Pnucc5ZOShqXf71jp2n4uTSEZa7Vpe4FK3KWy4yZhLvZon9m53lpnSsiQ/MNpch9/0gO/qatjPlO4HnSvEbhC6pswAx0jsZ7A7uYDNDpcQLoH7tFH0CZeJk+4Xit8/U9EW2yPCnijR2Uo73JsQsYMj1YDQxBGWDOKWlGwusg0+1kc9GCCMtcNWjz1XLF5jjdZA7QeS5wnzlSugvMHK8LzyXe5C4EAorITa4gfgy2d0bUJUKqxSW2g1tyZ0qja/FoHxqtyjP3AVT5WVIJw9PgynvrH0KPxR7DcsIJ8okbPGFGKfk5y+BW3r7DNAjbr21NLFZs23CAz5nphSgKtEEw9Z7vOoqZRGwiQnd8yV2FhWWL/YdN2izKqIRt3jNOXyxYhkMWQUXzALnh5X+oSNru08k9T/a3cxnAyLh7BSnmTQhXgqVTbPVLUdpqHLvlBHndZQyI7aHoJjP3oUvaVx+vkkzDYGsk1RIhK8xE1LvG55T+4DOLtxp/DrVeQ20tMHr7SZEJ3R2yva5fCePffC+MGcE96NjkL5gRvi3klSWz0r8B69rezMTXEO9M9iJkEyLeXOSm0LRqL1gfdEP0YVygeXLcAhnTqVgYZUbo8rPFPbiHbA6gXv6tA2kuVuNo0wWDFL6p2+J0P24U1I4orZYEhIaH8uHb+WZL/tmofuCTOw0eo9ZBOWpGgq69lyXf5jm/TtCKRtoJxuFBqfbjBq3qv+Qw6+WpMTrds19RSw/6tP2p7LFwUMEVhRkCyFQgPuyDxhipjYG6o1j685+eBaX8W+LSmSyxaNG9fS8qo7RBJM+4v5GwHhNI6ufRaLuh6EDUjpIPQ/+P+BEnUm4JaewbS2/FHzPvxsZbiJMJG5Vm6aZopFK5rStYwDivmrJeAzcSWu4j5VS7EI1ECM47OQDWBM0VJgRRDYW/qyIFM52LJAs3Pwf3jn8x5AT/hvkktZFQu7shkRfLtHKsGfj2EDrx+JdMCpied184bot1oM549kq24U+WQ4/+uuKO1b8pD7lr2bviG/EC6zawQaMfCUFbyrLRyPgZZCgi/2mHBoWRb7RNlR6kmAB57bqFy6I3HFGoC+/VdTDbU0ukK/bTAU37UAUSoG2eLhQ+fahRkwUIzRfgdNC9RKitObkaLZ6o2+pJ3flW4chKpZFQ/9v08OnlzZFaMASDFsiPdoELszuNXa7S85BfGkffRs2Woyj2b5v/WwVEve7CdyETq153pquRw08TWq1dgh4U+K+XcA5KRzzMdQ3MVz54jE8UqykbDM4WJgTOEkTUA3q8/Nnd9JUTYUGRmdZwJX5faTJCQrDXiP9Rri8E0zjtW1v183viqsC2+S+xJzlhREtoc8mStbZukGKwxy8JVGJH5P7MvUh6sj6ff0nI4NYOBtiouGFBByiC02arIVmofUOOhwhPtlOYKnr3b7xOOCbVbZf7Slscsi21raT1VBuOmZYk2IomD78cMzGdY0/CiRzY8Ut8gELdK6xHcNyufroXbnfuUCp9RaLCyzr8LoWm8ej9mNQI4MDLkcJZU+cjEQc4cB9Xl3aWBHauB23i7vVow//uBJY5J0k10bMJQIyFKr6BVxkG2tbP03vHCUOR8LnL4iOUnCucOse0VJApgSrZYo8eYDIo8ix/9UnDebKFuDEQGXBGXYEBWOl/RzsgW5I0EMx0WYScoVxtqa6A9TaWNem4vP3ilmiKRjWpij94xAK/cZ7avb0IhonJT02ZeGDdF72Dp39LUn/BbBdBcxIuE8IBhsMrYvliDScEYtyzGNDNefJVNdb3Ng5/y/GBO83aYhgLnzvzpbStbxrMjul4nn+XG7t+K9vw6kFz5sj6u6emffGZlybx1BTQcJzcZ79z5/ul61jcyPto2FMLXCSlc+SfLRBOG3wcf9H2YIJJf7otZp/syn0Z6IG5ZppuIitQybNBUkiMKlfN3JsKfqOAKMxAMFedr0HucjRQHWMlOfx622tFARKb6E83+orDovjb0OtSVoyJ+yRGIzK7dBXfgBCd1C8ImtqzeADT1/34w1j6btGHLIksX2PgFpRVUOaYzhjH9EjzTTwkjpsQHycxwo8X1KYgXHgLQuWH0rscVPZdjSCw6PYJk00Sr3Kgnykx6ckjA5B0ILA4kOh17V4RsV1mRtTIyHAxuE94uIrODj2fSrlsFNgiRLbdn1zib5gRdTLWKdJ3Bd7vG9Ri+CsPd89epRtvgEngaoKen6vtqc1/LIYW6iH11KQngO4WwcQ+IdBsQt1qzBVvaZW3mPtrj3A2Wu+mwJxL59mPV9BnwBZDG/Ai0AQn5B3+/7bgt2cuzvO5Ung4nJ8FvfD4NUo7+yIcgJOYQ87cm8RsSJi0dFp7sr/y/83bljEl/yN1aiAEmORYlKtjix9pebehEPsdH3qd1ExNF/nzwpAXfRzwTxlfArkiGzjok5JG7WPUTVx/BOaXquIAGQIhIFWofQu3mzl8HY26YirZ0Amd7Za2aIgKU64OrQImpebTiTGCo96kyufwECi62rChswNWSqDl1YK5NBrsum8r1EZ0lzG+IaXC0sIymKeFNi4dV+aXhiRlaIk1fhfqnIHsM5POlfujyVmAbWzXtTqTdIzjoIvccjrcxT0VVnx+VoFWqwybOoqR1PmTvXAeM4SMjz6+TjoireIK5pJapDKT/AY3yOZNDv+UYZT1rzL7CxjTAGW7sTkOK3Fi7BxnJ+FzSDRBDHtfJAg1rZqNtQooprA8MPC4Uv8IG6z4+AcOvn34Tejo2Yrh4vn0u2zhiJ1QToNs/PDtZKP5GraMnILd1/Qy8zUH5GSuqebxZyVnXbgWFUemlwZ8b+xCnGnT4jXp4LQEpsMSC0u4fcDjvyZRm1xFcPwG23GfMFjneTKrZRdb0hIu1l3tLuRPxMDPXnHtZHNNerX2qQGXIZrz5BauPPQ+rc7aw6sqnER4gLMgdL10imp1zUR3BOij2UzqFyLtbsh1YeZLQt/oAHL50ZcgwzyLtMxfax7sCW3SXT07oEwVJ7ngZZHH2Vji1DN/f1IkC4xMJ/BAcxctygfKx1UoAWu7nfxmUdzwehu2AlLPxWSjs+u+KE5ORkidx2P7zTx0AlnNWFas7/AggVnxLVor46NA/aM9hwIFGv2jQaUsCU9QhtP49lD0ijUK2sdvtv0jJ0o8IiRYTNYj+Z8hx+z4ddPeyTYXNFGEhXd2oT6a6vFQIljEkILXdjV1Zsw0Z7IeXSJLDax5RbldfG2d7MkIkNZ0QG9QnsVIrkQEk3zJih2Ebaa8HrARsUEW6kWP6Cm/yLdETSG9TB4icIS88dXp5H+yTFyfTLoAztPDgwS4BZNobqD/TeTOnqtYrIlnaz6Nd8IAj58fI5r5TQ1NcAlFAyUcBFERFZhK0isOfJ/mRD8bqDkRD4OY2aKM0zWcApRLfSGToX7Q9ovTJRk1nkEoBQaiPaGxy6AkOFqobqLMCKfs5Tb81qH+X9SijmAE6xdBkxDtJ/SS+RLk+c/4YkuHz5+xIJg9G3pEfxMRD8wjstEfdukavHqj/oJurym1nkeJaOU7LoGDcROPXEL6GWlJOD/FLLUPzEcHJXq8rFQqCbZ1GYLAFDBnaXBw+MEyr/dbDNgl4nR+hIwORGf/jX5m92Ftw1Akl3RN38uDnvKK9TSXG64iEBMNL8wXUFEfFis2IoYGbPNAs+fW5Rq/8+zQ6jBb2yZkA8ysZvQGSdkfgJQmqlHBK+Edv/RqR1ut0zlS7Xv89He+WSgOftesRGD3LJXAUn+m9jKHLlzqe2QlA1/MghnZSJ12dqt5EX1OC8oTfr+oHA78vH/twVUgsL3TcYKeH+Z3htZqv/WRf5F5Mk2Ujf2351BrOb4oEwdR4dIXte2vSVMB2KHlU41EIT91VgJKLvUSlK/Q4UGzmWVj5yp92VfwA9sRdKEJ2l4/slqQISGzAjB7OBqMzRYvoVQuHOR5BUMUxPHSKv18O+73CeUSDuGZcT2I1tcZVbBHkohxUtdoQlGI7Q/feBcrH+pF7ywagdBOSyLcI5bKbDIc0puCagz/hm81rkgicR8986MEoY9M5HzJSV0HqotVY1DB9yCqhL+BhXZ2vKTgGcqVEw/lxYpUdolAAv8wWGC7vXpkhnqZkOBB7vdclRaQp4f0WjJAhlSadgiMFesX3QzUu3sMKfvAXyxcgx5REtUW4yVRJtEbojYHpjVSSnjn6VJ4VmCQKzybpGbFyC4omg++d14rZFPxXA2w+r+iSwgrGs+q8VGTYA+jBfzjKx2Rr4H1QRdenMD2fxW07RBW9m5/z3hP3dPwRvQp/9uK6UUWlieIqRHXHlMu/O3Bp/vbxsqbr8WdvgdIIiOmFj807C/SFmmFtvkjJTuVnmy18WTtCiGoOIpEWE1e3ACR+zV24lGPEDJbNfXfxATiiQSdJv70A3XQxCrkcZOedfPSgJmF+Zqow9Fc6vBas2G24DCZaQeEyRFLjtznoHu7F7jqzwyaRqpIc2HjffiDe6mJizw3LaWw/15fRmVCOu6R6A5SdtZKFJnw85pl0kvddM3vtPODFN6nEJw4k6KdjSKD5lncq7+N0QcEvnck0vX2grxBIS9l6yCXFqamT0pczsNqxL//icd6KJMky5tPbeBOGExivSsMzauWw4xjKagthmuAeZd9iiWWaHT0+jBdIgZ0jR0+YTizkTKtuHW6PWUn5H6SVPiRsq60AFrtoc7F4hmS+8BQpe8KKsxqUy++MYBeolduCerc24KgDMLCNOhsNNG+ya0ePDKQtI4SY+kD1UXbeIv73ATzTyeRbBlnXPozgtxkpDCtEAtjcd+KuoOEZim9e5+FGZQZQRDQUccVZoLYfDX7DCRiragV8fz49AnydvAJRl1luf1pViqDvWpVAvg5YeLwzcA4ooOWtZs+RaZfql6yhAjIHPxnOQsLriRfrlNfkHXhjguPuuxdMHADbjKFIMRfsOvRoiB3/HGf69zIpTUSOO9ovdEw5IRvgH1Pqxw0889zddZQ6oVzQiJzmMa5ba/Ow=
Variant 4
DifficultyLevel
718
Question
Penny travels directly from from A to C as shown in the diagram below.
If she takes the route A→B→C, how far extra does she travel?
Worked Solution
|
|
AC2 |
= AB2+BC2 |
|
= 62+82 |
|
= 102 |
AC |
= 10 km |
∴ Extra distance travelled
= 6 + 8 − 10
= 4 km
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
Penny travels directly from from $A$ to $C$ as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/11/Geom_NAPX-I4-NC31-SA_v4a.svg 240 indent vpad
If she takes the route $A → B → C$, how far extra does she travel?
|
workedSolution | sm_nogap Using Pythagoras:
|||
|-:|-|
|$AC^2$|= $AB^2 + BC^2$|
||= $6^2 + 8^2$|
||= 10$^2$|
|$AC$|= 10 km|
sm_nogap $\therefore$ Extra distance travelled
>>= 6 + 8 $-$ 10
>>= {{{correctAnswer0}}} {{{suffix0}}}
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 4 | |
U2FsdGVkX18UyNPooftsB2E1NWjc6d6GBR8Iu/n6Pxi3cnfbppMPnsX1IBzI5N6p/sU7X9MctOJCgzhxx0NjOrwzoaAS0CxBIQSzHKCgRcCjcRUCc74KvqoydcEZq3/YiXf0xpmyYU1SgYcyQ2I+4xD3aMyCk/FUiv4FCYN/JBRrMA+zBrLf7KKYRE5HX4793mWj6NdAiQUEA6kQRVsNLa5GwyxbIzJ4WfU+037NyrtJZ4gwDVBEgfclToRvkkpx3BQLC0tMDdAung5VMoR4IXokn6P7oYWTIGqdokD7+rXwqF26ubTAy+n/qhNNJAmCz1fdrOBPdw9ZezdoiRT+fk0tCXyihTnqQlbMkHxAxAYaOj1kHMo9iK84ed6JW/pel5LlPXmTeIw6ortKhX2O1lRo0IORROV117sGCJScQUJZFdYyoLE8y24vLtm0j83lkMxRU8hR09JZ1AEaKa34/ooZqS6qA0xYCPehDC1Gp+cqU+qkEewY/FywLcv6SCuey9LhEW2tCdhWi5wKX1bakUxtGycbcCthSlgYNxbEeKH2zzNgEY1Av3Gq63bv75DH0yJ+Hw+P77g8rre4yq7N1rppQKEBPcUNyIKN08oqSWX8LePT06Z7zTvMnwm2Vlj5F/LmWx31xlrFK58tfKXzhHr137HFS/NNjcVZCykOERDuvLr/KN1I6KkyjA4bdssOmy9adM8prSw7BiDZl2B2sc7z3Cl0KtFCVFfPlOFLXgXMf9h81jd7t0qzvvBzr6SgziSGDTOaXcUVjbg6v+qC/iVvK29xIlawnmScL7/SC69xJ9JTe20/FCHjqMRo0kxBT6TjNPH9SPkQ31mzcQ9MbNVzuqnlIQDyTN8kBoictr1Jfcq9ncOQymHcATcBwGLJ18HJgukCo50JXc/OglN9KxcLbVicyqzKWMht9r/mzZKds2a2CIZNko88jIczdl75AHwRy6nlavfD4HUdAJgdOwdQPK25pfqxJ4kbQA3co78qA6GKvAw6yhwIZ45LuJ+7FUAt3hCzAMSWZ6tixBdAEV6Nop7KDcoYlgGUjTEg6hP2o6q5ZcMSlQAk4szXAlnggqEkwO6tew+J0Onyh2BEYF4FO/yB9Y9fvuj554QbiKWXzLtj1zrzTld27N+P8z6lQKYrN0wHASvJpCjOROXbEWy5PpyrnYZncr6qSL12s3q8/vyGWkjirLV07mv8LIsoYzNzY+SLCGq6VNt0yuF8+BqZfJX0B2gXfj/sSAoI1fR+5L6sA1NBkPyV9Od87optzwFqPiv3rhyZid3TY6UKPMOPvvN61JpUtrxWGu3i0DN37i+BzqoZNIao2+IWyS8V6aBTwQ7+uFJRflmdWVpJcJEE+7Gf1GzwDfvygBk8p9oHLKxxLPttNa5bk2Mc7WjpQmQrlgrsq7TRzoBXU1c4T5AO2luQNyJG5/3GIm8L5ivFqrvbcsIEfQllhcDbCJCzCBoNtpFDYsUSbKYkJTOhIb5MBOEhhhVxnQcrEFJqdw6cc9g7oJ2D0bgTH7YhdZHB+l+cS5/XTe5SMS627LGh0FGqEsiThE9UE8EHFz2eidsdqCsh6m6kaAxOI478uSCorgztM2HGyh4dD5JkwpFDKeVd8HhzTjvex+sM9ToeT+g5K1sMCyVfq/n9P0Ghc1CZbO4XuahlQat1k8dxa418ODsG5nRpw+OdZOkJPP9uItq7rT8kAEgitDqIBsGNxbmL1Qjz1dh5c1lL26pxwnZwVs866BCskrAMPt8k13UUvtdQr7bVkO7+2KKv6esA7yphkZO2goKzKu8iXamzqAMhLwxtWeG2nZ2ZVgdZz1ll0PamIOVxaoQx1u2MdVaZytdRSuF3mGL2QAoor2DmHgWmE5mlAazJCU4ZUr3v+ES5Pw+bneJ4mqc4FWCqUCo8XVTUUEqQ+yDKfATpXSh+Ye4ELmFxeT8qYbPAoggFVg7v33sjcVmcmLlGLFcFqw5OqyUk7vjwVlS4Mg/BBg1ZsGr95YFKAGGA6JfY1vy4v24Md53RJYZVPg2zue1HVQ/Ztam19sHE8kjiCCuW4g0cuD+l/WoCw7pPTOGzJPlP/AAXyxLEJVY6v1W45EsG5asYVhbTklIYfypd1o6qOOUdkjnWZ2ycmurP5mCeaRbpudEMAnD3EBWZYe6ELNl6DOSbYSGlc5DQxfRsniiVA6PJ2x7hK8SurrhX0iNM9/IleHQcBfAnA12ciyoUaQ8pXwgj0qrffBBwYybwNhlYLt1rSRsVddcPfHid0B+ReGMzA52FU6VzKd2u04BVnrtEiflq3Qub801uwxBiZaLCojAHfZsSSae9jOiogEbIA4OMO6S6ML4iC0ve+vvskhIl+dpTTekYFd3cubEmdVV96NEtQkIRBNba0CHmfzQhcNYapPuGB+s9D3VLCkwBLsMe7tLad7EKen0thVNKHKZWLbOc8lIA5gwSVCVLWlFBKLzOTvzo6vqRcgbA4D4PNOzFqeMw8p4KDCU6yvPWU2ilHC+TCrC0mLBdqWP/ThLa7/EUPPt6cDG56uzi/DOgrQ5sGuLaJ2gAl1+4kvUi/8cjx0ax1xOg2rT7RKcwevZ4liq6QEbNZluYOYccTOm1tuqs+r4rURan3GMOXV+T8el+uR5u9qy1IW+yOoLXiktSfaw2f3tCGsf4vkPYNV6LKJDZ0JSdw3ecYG0uprYOXWhN8R1Ph9ys7g1R73jj9ZQWwHwmWePv5OBi4iWEbcT4DkAMLRf05Z+1bwAR2Cn6CMvNt4C0LEVjMhPGwA2WhVEY2d+lCF20dMmKK0L8UdUFzpqEwkmyzag7FIEa37Edg52/Z+yWGGvC5wLNmhhztmtj4uAdcySTw/5i9W1BnnPfq07/Iyt6BFulhBK0XC+xp9seyaTP0Gq2dhZd4Cb9jJJvuAI7gUUvoAsKP9xIHDKkXwvzmsxMWqwesX4//6zjxK5aC4nhKBDO5NLYjjmYCXB45qBV02Qkbc2On5mwa6twY2CLOLr56I8/VFXbr5rYXcYXz+R5v1EegTX2mchULyuoiLb6V5AjRkgRDRAd8GBMcA9xCHsR3Btlc7VkOyI5Y7NahXgQ/Gge/aJRfqaXyVqbx5yjY0XTZyUj31AG9byWvRKWT0hS+Kikm6kbzR6rdZgrInig3qSu50n9VR1mHlvZ0vc20tZN72TySmPgBX3kfBj0Oz0lxRgw5htorM23tEXKLSIFnLztyWa5AgCeaoYoX78w2ZREIV9kB2EQkSzJgItarBvo4gUXtxvV7tbdxtQ5+qCBV88FR8py+3mOeqTUmq5o7qlhXblzoNtHkvH1ZZXc3iDWKTaQtmyL0tk3Y8kyoZ+2zVyUsBPmO21UoLpmWOxLWdIm/6kFK6DhC2OWoaGCzVjLWiPnM6xHAbVVOlVE4zd5WtEv0wjTtRdYrTy8RJjuc+Wv12YZB6uCBys9wCSa0OQSKj84bDpZbsEiQqTDGcgmMu2Keggp5S6k7Yrb1aY0vgONZCj5w650fgn52kCyPv0jWzqsLu7tABbpI4WQXszPvQ6mCO6FLdxGmKKVm9LF7YEys4h62LBb4Ew5vlxWqEHODzfN6B1uoOdzPHTEv/nsdZbWISxTV1Sm4tf34P4ImhLYEvov+9MxM/XILDQNg1/Xn76ZHUgPA1oqG2x6R2K1h7au0kAtIloMHljzgh0QefwjQdpPoKBg3awIG41i79maHfoXHo79QsivRpPmOw5M2zfjqSjYrKETaNpkzFBn+5h2vB+eMkd/PGwqjMvlYJ91Lk9paVYNvR43oBmYtDysaVW8oLAEH4GbWiZYJQbK7AgI5LJsgtzqrS4pEY2n2PrU0wFMcaumwzT76pFPP4560QJXfDbqjJfV9qEu+6mn2go328bS9i7mA6Dw3KkwQsjy35vEY7xV1WaYUCi2w8F7RK007OzOuLhALPyNh9Npb2gEo2nqJsJ+o26+KSht5j//KOjOjl4XdVDke82sG9juSdOFNEWgmRMMndOn59kozZ7pPAkdQrRmG1SYI10iLvzHhwXKVFguWy8DZfKUcfWe70qg839xBI0dIAFGMWZqHnqovuNctF212cLF6zEjNF0pDh5a4T3KqL6iDuqiiz7yYYQX4YDzzDPRxW1zN13seeIAgJc1u72IIXOYDybmjKMifL7IxHeIvOEYGOElAPt4GRlgTv1nERvmmJM/soK037gvHswUmmvfNNEFV20bJfLEqacIn9upcIfEn3gIMgc0tcylBfDCGhPaxZP5aN5Fd3szHLsNcI0SwkhCswLivLsvK7yWfI25JtTZCb/hO67bqupIqhp+M5q9mwUtHC9WrLBzYXrTq+M/18t+B6rukHenMVKqQx49JsfvJWv2pjO1WRjk3pQQhuOuhJTSS2RN1l5PWTqspJYuF3v0JPTUvgI/2K0XfyIoBpOyZ38svDjLUzHyMCd7oH3uEohpO0YXszRaoIrD5pnK2G+xIibV0wzfAMYLia0rUbcG3JzICFeeD0UeCT/Yh3kErkY9+7L+LcxExawp/L1MQUeSuZglOGTevm5O0vnu7AsukneOLngvCncVQH/o8UO+EWIfE8VXSdPKquhPrZDkA4zxrcYx1HKsC3mOSRoAyj++toperoYMtTxdtgHQjn6UhtjFWzziujCIKLMewJo/BN9cCaTvPdV6z3HuZ/PSER/TZIaVgpbZlLmt8uTIykz7gxjLUW0TA2rJiHsFdEdRXeR4KgZJM0frPClFJI4+Uw+O2/p92I1riw0YDZ2500j5JRDIev8y5ynMyeHqdsVO/7nYyv78yzGsJY597VjYWB9l1NjIsYUCt6q6ZNoDq4MUlHrRVD+kAOGfH9oYsW+dj53i3k8S1o8APwGdeRpEG2pNtPFe4huK4nC/qX328064GtBWqnTEw5NMZOWM7BohPoDVVv2vtutFIwWldE6RtiVjI2USNCQ8TRWKidYJ641JPf2Z7CAHYkXYPdrGN3/d9ccQluLh5QMwYjkVcg5M/cH3OPkL4AizRScLtSrfc3oEFadfqm8atZR3Gh5QYS+9v/YIgmOHIw9NHbYL+vJe6sMjDEb+5siyXjY1I3TAVAe2ZXi7eAuXl+G3VBs+8LJmqJA1Qx2pvWnTB3dGYxeDff+IkUXG448ESghkRC4M0Cd0fVasYgRx+LYIXehWPaiCMj350/m+LPCsj5NIW9sHHfTnLTgjjie3gwM21MgMwT4qHeyUtmPHVmza9MIAyHLu+lwUiZcJoqeATE0mGxno3Aa8maWubP3NQCFlz+vn7R5VrGdhtgfFdJp+lW9EnNw/TwLLxYXMnrPx2c7Dwbsz0mAqU+tnG3pZCyMup2MU0O9xvoWmCUNVQDf73YUYWfdpV1kSvBffPbLlO4g+Kipoxw9JPLl0Kiy5Y7WqtbLn+JwN/ydKmddc7naMj5AaeWdG6IQyJ1O1oyaIrfzL8kjuUG0LrFqxcmPrCcB9jVt/YRyiZhKp9nHrYk+NM+ktOCZEZOLPzuiHtHb+AL04XidZjQFg5TS5woOQy/j3YjtsJaPMOTxt4iOS89J9VOADrqStM9lSfhgwS0KBauzqVOqIpdTrhZefz8aITXMBtcPXVgbT7AXemrq+4Z4Mn9aCC0VbaHh9Vi9SZhAKXpiMx96MzzEhdZhsVHSujRKEkYkzb+2+CDlLxPh8k/fFPkISvDv3Y/DeO0old5ZQHThF1bO0hELXhzqIDifdkFoEv7oOr/61TxO+e+ibT/f5GqLcCSVBy7wYyk9dxdaJaT8ZMYxpD1MMhnI5KsAQ3qZcIAOL/9x2Tl8i1ZfmWHZgFRwNW9El65PQunVech3cLDJ6PnUyXqgpMq/h0GezqwNTb6taV3oSSUDqm8bWiHQuO9JqoiNgc3jQpEVTuRLNMGJ4FUjRnEP6j45HIpOrbHu2eEm+mBgBRU3GdTBXJYl4HtWfVrpD2xwn5stcu8ane0B4dHcby4kFBsGhdWg13gdu5sBs29ukP8cSbDtT+fI0wEpY9SQ9AA7VocKDSZ5ge//slcWSI+rSdYC9393cKpluSKGsGx6T4lAVSARDaufGlnm9drdT9HTV+scAab+wst8IM7aJVVNi63KWD5I2fS+SUbbXHRAqCFal4JijrijgAfUjCFQaAjdpQ+rkSkK/tKCKdKylO/sXWAIECmEnqY5zIkAPCcw3U7VmXcfMBNIXlighEw4DWognfIg4BUVYSMC62bKciJGWa9b9Qt4TAQUEfbb4z7uGsc+gCRtXTmHcj4TGvpf0plfgsayPjob8/ZC2y24y5dXiUMTkdlj4KTGSY1hJafJE01XWno8I/OmJGK9Vk612y/Z/DEj2z6WnH/U9RMGssatU76svAoAtb1PDLiRsUqDZGSc3VaSCHoS+GbSE4n2JZP2SCJ0i1l4TG3FuZEhPXxJmluBxMODa0mDZSbwzHeVA3ywLQxz+h4GI28f4055nYIBEgjs12JTMcszDe/dpjxeoqQFMmW72RttvlU+jqXHECnoSgAtWqOS3UxnBnb/vLOWMrKn4nGa45G5o9nFoeb4Q34VRPlSRRVDUKY+ktmi+hVkSp1MI+9sV4sOW11f7AeZljeZgx5S3ZoGTtyTVvxKTxzpeywinvZdr5kPSmmRQRFdBS7b7nyYELJ40ocAbIDx4sAASSwn/RcXa++CNoN/HVbRpajuohZPRaOdtx1D87WHTfQWxwOOWlIWOP/uVuy0jHYjFABkgULp0NYPsekmQfBGaFEZzvMMX5gtnIypcvaBflfAe7VfOIlknt/5r9ym+a0u3s0AlRqhd+KHgXt1fG2dC9UxrlHYeSd2cRzcPFQwsQAvfcAXjUK+gfmLqNg/LHCwVxwYFVd8s9aoxBukONZCoXffKU73n18n11PqtjO9/bAG/q/6rDmE4HTeFTZNq//kIoVcU9Qkk4ZSG0hHlmQ50s08kP2AwgJu3tggDLGexoxZ2pVUuT6PO+fiFUp30ED1yO7k+R/v382LeE4EN/738PaxTlVgbSTqSReWpBlsKvCockq3408DbIXtBQHbRK4KRySdCX1qfbkwJwcqxD9z3pQcSTuQ4vafpQRYmZerDCMwZLUhLNVmNxbmZEwyR548A/GwRBuCj/H0spTA+x/SFJneGG7DfOLr/b6eBKGZtEHFEX9oKzNmSxFw943WilGy1eiOH62M47fHU/S+36DRvhPipmUmotN2il8WThImwPXLF+vrVAvHMi0eP2unWkVFLaU23XnKC/QEH61pP1WjxeBqHAzdpVZVXeZKP2LFnHxcoMPuQ47QxDZXcl4wEvZGGbyI7+tP8lT5IZXX9bzLZVGDwwK7lQSV0d3MhqX6QEQ352sr72e/n+kd8R81y3w5TvbLvTX0wNZnaHGLZmknlAN8MsLyoPOGpVBT/pc4BIeNcP1N7CsVvnPEOk4CF3pFYD1i4rG3hXFpV3VrTRspjnO/JuP6Sqa8HfxBqJCoeEOMUR3paUV/o8Yzo0m8fDFX0xaKhrjxap5AVi9GmPNkIMgEcbF8Gym7U3ouenE2vDA9mbzf9fiKlVxU+4jajk5rBxfqfkgmU3m0hgYk9oWJauJh6wzRMJEXz0e7e+uhBApTN5b7LfAhT1JDWG+wMUOKou7xwteuZ6vrIh0o+yH87GBI2jiEbRbs5SEe5NpXo4PM/njNMnKiinqQ6BgtqFGM63h/s22ClDUKdw2/7ZV5i7j5of462yzMpbiQlR9ncPrsftffFQhX9VK4vhRoqNMj8I59yQpU4BVY3cNm+6rD8jlF9ENQK0G5/X5WJDCCCipGCXL0zpzlAXB4niU6H0HJx8Q8qU+CGdxEMe7NggTH1rIBGi8eLFc/i/M2SONr8etkvxc2DtuYPaiUmdJt1K4UF1oiR4KtuDYX09vseIp4+126rVQIoQ3LMYDRD98IoQ4WlifmB83AJqeE8nV9RKbu2aA2V2CMTG6X8+GwHdnqyvld+jv24RwypvmoGA2MRDFFgfYeaxPSR1RMgo7hCjLAY5BgUx1Q6kH+7qiKkUo34pBtkEsPQp74hfCQ7APs4ymfvBCmZpkxiBaVKxHc7Yscfk4lgEAGHLJjRR/jGTxnwptR9wbpPkTCPQs0IZXk2+dS4wuChRXA5h14PuAijfaQQFzM/4t1A1aunAIrGgPjl6sdIM6t6ncfMe9hvzqRvHuRoopDMYJ1PprzFubqyF8dTwDof7zpdd9Rz9d5tTSbTcdR20KuLOYqul9rpPxxFGW6W4gJy31ulZeD6g7p01yVgW9qBwxsBNK6kePaSBK8pO8mXesoB4GW4k84ubisMjnnArom8ki0FjfoiT9GuUyUE0Aro6jbGroOOZpin3cgobwmPpQEOWSng634klKNshQi6fXh351oGC/lUHb50cZi+oJwfEOnOY8MWAu6OaHMjm+53aDw8mNajEgsuEx+MCwjUX7ZwVoW2TXzqol/wiWgjVNrTbnoGx02Jv0Qwhgz9/yq5YAvcVcA4HkoPTZD/nt55uo8UOjzRxmN2eCgDnyAUgkTJFuCPPDqrOyltwhN/wSep1C6SUIWtu+lBHV7QlLNg1JGESAQ5c10aqbAyWcaCrv0vmDjhp1Htg0ZKYgqU42irL1V65HLIM81qQaXSrK1jQqlMEbsO1I+ygtWGnn4kJQj+XEvxTZ0KGInO3b041/I3M/PHtftbzueDlBt7M6foT8pDT44S8VOHHPj61qP1tk6ku0Sx8g2damDPb5P4/OhNvxLSAc4jKHdncqPheD566LR5XunXFY+/vTUGOIBnH3Inwnp08+yyKYp/VuUjqZHeIo41m4yj42J6o63se/khIspxJw8UUGzlyHvkVVYwlg5I5sb22rHZxvTY1uAfToRPRQIVeXAwRxnk9i7zsmVdyA6x5rU2BzdeHXN+WrLUb9KeifwDbIl9MROpsVJuO7kEMzuxSUKa2bAWaI5RPDGqWiIEurxjZp2SNMXcu1EL3xsyjAhbtgt64Cd2vJKsmwJDos+dGbUpjl6Y0xowCbBb6Vw6yDVmdH/QIqgjBpwQRudFJA5kh0S5EU4zJX7t9RrMUhptL69ZjMZxi1hznGUvyJT5Kd8m/lg5FW4yYmsJ+/dA0AFAEJRWC3elit4ioTB6QSbcNn9sEgVlKbL+JTLiZOLPNYjrc8zmjLdC7eQZvQVU2hIy46JoC7TJPRsoW9ijJphPpsCvqPZzmH9OJcaT1wkBaGrrmMqs7kZqiPVwa6t8Yjgv8CyrpB9pMp78OE6Qk5P1x/Vo/0Jd65UreqOeA18sXomuAQlEJEC2U4DzbzD9AsBu2sAplNnhot92J2u/90DQSM+cdVVQsVkhVwvX6uSu8lsTZvo0BAcG2gXDn/7n7JLCeF2o5BV7Z4A5cw3ma2DiZuR42d/4pG0Yh31asbudu42IJfjgq1rqyLK8li6KZ55RbksKbxwocNvbmc81TZFbwF0PwIjzXAfoNqDRh9T68/Z5nYg9pUSytuM9Yp4qxsy1VGkrHKzAILyFCbVF6h4cGceKkKshML4n93TQ2Auda1NlZk8pJND7gr8L+RIJtjuWobuMzE6O7L3j/OxBizwHToTES0fI2qiJhpqnbT0JXXPLkjkcOu4czKM/Cpf8b+krXdwZVCk1jdyDTeZO1t5t/ylQgGHRGT+85eEEJmqfBj2Hu3sGa3Ykr6ADSp20WJPvMNjy+OYF6r/lTRsSd3D8WlAug8O781d7Eu/elhNWXck5X96RV2OvtiWIFyPaCe3WftMrGlipopXzAo1nNh54EA8VNG9+xtCVz8YdGNHwvjUr7uJa5UZjBUuM+OKKk8fZjrPXxO1/5XT0RYc9cbpERlZJ/O13Qg44Xz2H1Fo7ijhhUROyAx9mWcC4UaNH3aTWGOOulqUgKtmaTCsApzfof/n7j2gTbEyyR50cSb2oUmFBp7B/vUIyaxzgI8h1DIRQYkaVdPjR1u1iZZgXq+RdYGAuk4e/mwsjEibdaW7tj9WpBjEhm6COeVRVQWdo4mUWPtLY5FwpsryeW/OcY3+2RGr4A4iFTTcPfi3O6aU+5yHAZUcDj4+pk1SG0PPvn2bleQEIV4Zymhv8yg70R/TPzMI20+wuFlrT43muib2dTJTxlgE8TIcda0k8+Ol/9/ae6EbAcv9o4XWv1wIuUsmfjQ0k1Te5IQR6zvXQH9JBpBbNSJMtwYHtPNOaEoHVnP8BMrIwhQMbQtXzVZ2LiYt2I2fnTEjZlxdfLVZZfAMR1TFfZeIf7+ZSVwfCDrgIF3FJMNXjO60yQ5UOP0Jf4nF8B8psrSCFU237/2mIxPZTF40FnexVGMYZ0Apx5qwb3oxyKdVReFPIIJJVX78GBCDi8PqmCZzjVrduLpXLORMtPghJQSczZoRp5yKCCUuKc1hp6sBn41KbgIA3njxmi2H2bFu3NW6ld88ixgoYyYpHol4stxsITs6YdOnSorz85rcaN3IB23QFDudkiKh09AqIZZoBrRdpD7g43LwSmmsE+YePZ3C/Eb6KY7mbQKAG5dDOnzH4mmdkEJVnV4s0kfIY6tQKPQmUd2Up74bYZo5VtLxgYcwEx5O4UZrYi6Z8IlZp3t4CqO45kRH2QsX17Z0PY//uXcu83gtw2J91PzZfxQkD0sUyTN2+fQ25T5GrfEKx+ipSk+Mw7LuCu9jpJx/aY9VotWip92nsQ1BdhmtopJ5jF5LvKyUST+VTsW8zCKkdDadN1GaZD7JzSTXz1JdnEdB6tx+4NiBh/hE05U76xD3Y7GOe3GZbQnr7ydT0Nr8s7adMZZQYjP0pEIVfgOftyKrzVpV/JJFEr49z2UwQXl1OUkKBMfcLmXXzvo6ZFA1V8bYNfUR0dunHdRTk35vpDx1Mj2tIcW15WT51aHJ3C6MpLZ1vmK+daBeu4U2MswsHqeJV9y/eTCmezoKhit8r4hcNAbbik8CTOTJAa7oN8feP5UguHJvFw+8zsiy3q+UyFqTLrGHPemCxmiX6MjwDakbg0kg7uv79+6rRtSMuf6P66Ri1Bgs6ngiZxoxrMAylKlXn2Ix5XlmfHvRXApexlgXliLBNL1SwL0lEmircKjZ3G2KTM3NrYdN0gURyzjm/ZZMJ999bpNoJHHuoDmly5MR9ymGIGpFK98G0F6o9ImIj+gfND+/y6ZnNA8ciwnM1zTNMM/bSytTc9L8aHVmspF3qwzWB0pTM/oQTTZrp0wxKlUGgPHanU6SFSpQuary+xgTzPNV7QSQ8SPP/ighRAS+UDOJnxKq95NwdlKyMzsAJTFHaB6+Gcgv1gCfmLJs9axfvGX3M6X+iI4nb8K37Hjk2Mtzy345RQ+8cROFqKVspHPx6LZfe/v4X4fq5NIbBbXN19mxSVRnvTWxyXxI3wtw42TlyOPN92Tcz5WUP6UnNf3NbKx+oKeH1Oj4It6DytHXyi8sfsWljLK2uOvfh3ynbS2anyEP5FeB10Eo0xepshLXyvVHtT3ly9b+Evxl+7d6L/hwgJgttnDd3LxKKeMAYvie2OHxBTzwjbzI+YN/5buTpMSBkHCjDfyLQhVOETXBO7mfbJ0Gle06Fv3wtx/OVKd/XtoQVcPPMzQCUWvYRs49q/EJsCkMvj1fQxjgcPGa5QksyA/npgHzCF+MGcPEQqiV0vq8qAdRLWQT3qFGkQCgGe2euXXXJyAE9lo/V70x6XggIXdGIZVf8xOBVgblGcYdwoxH9lgQG6z6Av1HVYc3/xtz4wxgxnP9NZOuedyOEGHJ0WhnaGgbhcxxf0lVjLaTLMQQslOBe1iE1HlxPuBRZtBwyzDXQfvbo2LEPbsFvE7EpY/V5ZD30LG5FwIld0SIX4fsUt9KVLBA8MU9zsCGf4470qnx4LU6iK1z6xhRNpn4S7vNhvHn26PqRsog0myz+zqfEN0f5llAfa5JbRgXCO619a0sL23oci/z9TdD/tVJHv4Wq/evaazIfNtcOav3TxuVVSGaRgXiqVKhgTrppx5urOQH1M5mhlPFV12lBlp5gAPXuNXatCHtuxvp8sjsfaJBJ9I9bOnSMmJ8hmQjYZPBcDd5FDJIMzLHdjcEMVvFF9V7oIvq+Us1dCE3bLuUfaXIX7EkDfEfPJlJMy9ZKGTAZ3+JNemnq9/jfcRs9M8iw5v53rhihLL3rgM+AznmTJeknxUGwtFDHjJox2Z7A1+y/MO2sNXtVQFJY3owMjtnj7Pz2yeIBB4kjjykIs1Y6DAyYFupL40XZYljmQhmX6w9CangwkGfiU75srfEtRFGRwKT4upr3s6NjM68SbnRytVgWRcIDwJQbmmqC3nIqEjt/ZGjsJP4MLdpukiXupLdak7SfRhRTk1C7CatoFxbRWA7wY22htFDkil9szbxpECTXnqQfib8yzscslb02a7UVft2xsU+O9yD2aXQhOpNj/ZxbsRGF2/JRz52kdzH1R9XkQNq0fxYCKVsGyEkrWTyniv464Q9ufG0BrE0doY/HkFjqAVv+YUyiCRBtQMpr5dxQyxWEvXbVKq6f7T22DxGufBfJlZYWfbY0pY1IqNid22xFeRj6H1IahWxfwX9JjJMN0av3voeruToH8yClRZMqICIJlcZ3V15lirAK7P2WIBt76wuQFhAbXWDvfY6fOgS/j8VGHhAmZyhCm83EKkEEVq3ZvO5mwp9vnOxqHHrDHqLoM/4W8KdS3DihYjHNOld32snKDHJit0LMBqObeiVXX4Pc9sTe2cjzrxdoCAM9wrCfGOaVKSFIOwYyWV0fsoLDNvjNOk+W4WoZA5kfbvoZ15GxprjGuYmMOMnqoTphAxBfRmkp93aeLMrJ9NkQDNWtfOY0OU4XqqwX98SraeHjf2cLWBZPjKbs1iwVWKEZVr+HUfmBAjBzuIgDiMzj4YK0QpozhbHJXq4y8xd4jyd62y1MzzG5l5nXU1ibft026knBpFsSR6/xzTTWaGqF0I0vyDawyEb4APM081rok0l92BC4jfM0c3B6xiYyIyMPZVe6pfRmK2d4cBfqJ2VaFHIIsHnl2eAzu+HI6mPjVpKNaBcwSNN/wT7hi5xOPtYietHbQv1uYydcGT+ldNaSUBpqZs4QGm7uuwXv2teo7kuJpOfiW2c/lD+ZSLKhbZGCMsQcw8vzRSpxI/usvFPscKxPRQfA4TTHGtFlhfCiMlHSyiTMdqKxA0U9KQPB9s4VCQLeKRHcLqHNldI455X2T0xNy8OzDRRNE1NpUJ5Eowohm1FAB1Whw1k0FM/Hfd1+W47S217rgKzDn8sZU+XOnBkxuffmeD4Wx/3+rLVgL6c4Pc39LkVlRLSVlT/FRJtquOuC8zfOK6ujLYrWav9bjhg//Tv8VXQVGH098BuTk90IeOXKFDRoXwFucDOv2fZ6qcKmfDLhUKaZyQG8W45+rZev0Y+iv+pn1nBiak7lIzmrY1bRFJcLKVxX1Ga2gdkAjvjbRylUqyjZWAEEbYcDUHQtxiOK/WPyiKEg1JDjw4rJjRu5oL1ravLy9O5jjwSYABASO2K2FXemzYEKA4HRq4oNq32P/DOPCnPuFr8ZwcAXh9pKJrzBCWq2hNJHyo3Q+xamodxLyywnU/O+oHM0EE1Ugw6J4WcZjaDw1W3Qvffd7gTosVw49LmNtfYzFSc6xGLtfRKCHylsuE4w0osyOMDFhfvAXvXqoqntJQ0FQV0wBNmfBAMn4mlfRAZ2HJ6iYz9IwHM2x5YfYhxB5GtAphWI8Gu6p4yxXi9xEFX1vqaL3K9v20L/i7Qigk/OdLzyPyJkEKif0e2JKQ6HWWhcZQtrshHQ0THIUg1cBBASDatnZlI9WCdAAErjG2fRKxuHIbbxT7T+GFIQyPfI+utI++573Y0Tgglbl0q/yqhHTGBXnQDgS23tuqAwpCjQQ5+53vyIJB6lQ64QrKS9q6ZBiFIv9E4iuKlfD7IbqkRICxJr5J7Dw2DgdXQgl6fBMCtw7WKdyRTa8uPEMR8hAX+IMdS66ohUjGJFEPC8YblzCUe48/t/cPNeHBtvUqbwFu2Qx+zT3ZCPOHdN+r4HtkRLQ0zjOCOGXoTcqW783ZvEaVpocOO6M0Hg7pPKQm/JlgobkFQdbpOdZT4uUA2x2OjQvZ4Fqs/sycd9AUQxOLOiA9bWWznhanhpqoHJle8cXOqvJIXyGv1NQd+ZhOk=
Variant 5
DifficultyLevel
720
Question
Bjorn travels directly from from B to C as shown in the diagram below.
If he takes the route C→A→B, how far extra does he travel?
Worked Solution
|
|
BC2 |
= AC2+AB2 |
|
= 302+402 |
|
= 502 |
BC |
= 50 m |
∴ Extra distance travelled
= 30 + 40 − 50
= 20 m
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
Bjorn travels directly from from $B$ to $C$ as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/11/Geom_NAPX-I4-NC31-SA_v2a.svg 290 indent vpad
If he takes the route $C → A → B$, how far extra does he travel?
|
workedSolution | sm_nogap Using Pythagoras:
|||
|-:|-|
|$BC^2$|= $AC^2 + AB^2$|
||= $30^2 + 40^2$|
||= 50$^2$|
|$BC$|= 50 m|
sm_nogap $\therefore$ Extra distance travelled
>>= 30 + 40 $-$ 50
>>= {{{correctAnswer0}}} {{{suffix0}}}
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 20 | |