Measurement, NAPX-J4-CA28, NAPX-J3-CA36
U2FsdGVkX1/xGchCncHpow48DmNuA20CboY+uvq9a1fdUwhXuG9zkyj+sS4Cu9LvUbS6jTe8i6X+O21dNxBqeQP0h39FVlerbgzKZ3JlVrZzBrVoVMjaaS8bd0hRVd99oiZWT3Q8JClrL+5wGyaKmn+ZvWTIFMhkMrfgO6KRnrJhE/mDvOuMCHRJ39xcwGPQCRh5nImrkpsfY2L4OCwkPrNzI0qzkQxwCQJolPGKHvdY0iWUX4STPIZ58X2kUvSuBq96yOsE9xbajCRw9bRzvsHT8Bg2zzi8KninJRE9sUImDB5aB0DLfdpwlL9yC2xIGTaF8PVKBsDAF7i/oOij4RUU8gqPjYkjqy0sMwo3g9dQXn9BKVDfX1aqj47VWbO9QjbVRggkcQQb0grorLIWlDhH5FU9S/eAviz+oKVX/eZElO0hr0rbPAcEBA7RNQzaQCA7HYztGpXU49Tfv6oQ7uzEWMQCXEaZqB+DhjQYO9NrVaNSRkyf8KJvhaTucf4HgCNLdJ5HWiYSD11EU92CQCw1/QaJwSmiVg9Xy29NNzB9MPtaNrJI4YXhZLWuHsBFtTf0yLBd+wlFERop6Px87nnptL0U7LaEfkR6YpbkL/2F/4yLqlrVJeySDB81JkKxUnL1cS2ncipuxriNn5wuEwy698LuGQhOoFfGhOICky7s4uJtiJkbTngLr7LaSabaq3MldRg7SgrZoAuybUmJc+fp3c9Fm67Rh+wEzCs6XwyvTGDmjvG7ifgcrvzASpU0Zl+DLL1dsbroexhsJgTO/7+uiZeFbCnpxz0eH1LdNywZ7yRw5UtRxFYkZWZSOaf5dnIreiGxIqoS6hOpkzf1LeM3JJFH+e9x/fPgCeIzjm1xs4N7QOio4As/EP0n5Ln58LBSX9mVmc4knXnQwqupQX23K9v4YvLFzzw2+/jEm5xjrhso52xuyHM75TkPIJvnSUdHYA77VitKC2ydK8DsguuRaXz42WAARjlrGKyP8IIczGr8j0CdkRGFs7EVicCqYia12LT2yuZtaV57N5wV5xMN4RSW1sbUIKFR1baJzhz4HJTHwysRO97XWX/mUw+q1qgVWgoQ9eU0tJut47RhjD7SYH6sAzrUaNjlnPGohD7rlXgZDSjOg3TPWOqlmkMPKZ3nP7PaMzkqeculY/DgpovSLkQaUyA5ZpDL844eToFCjel7IHpDP9A4/dB1i3aNs5xD+H8g4oILHNoLYqvN/36EzlnBS92KYsH6e6odrdcFzgOPhkqo6YIokkIY9B0qd0U8DNn7SR6SG+/afCGmcT9SQxg9NHWkjgg2LN//RsWP3wxi+ZMHvQUvnwRWPDxRfWgqbR2teXYK3YnORWBx3kovmWjihqOGulGIjk+7W7gf+51uYUpsMG+PJJeZmkKsKejAX0O51rRqVzuch4NaLnAN9RpE5NFmOEBhEh8gvpLwQba/ohLYCaFB3gCxZ4p0JMtx6SVeGrE7U91f9qHEvgHOyWbZYDRoAc7/ggROdVekc8x5Wm9Fr/FPDudoH+XFVG992Dy9LYA/XM2rT8PfHJ21kOgf9k1chCVZsI1G49Gc8aY09qcXmGLznCc7oQN0Zq3Ri+ZFmA/osWl5uXNaKIsCKeWdY0WuNsbLUj7YOGDVsJIhPihvCddu9hZAWa1GB2dlhUOswkUM5iNTg/+gvgFfeBhSSD2V20nN+pVsUz741QllSvBBH5KDUQZdyTmgPpmjVtlarXt+ZE2/8CfA5/Jsrxvz3BQNhPMxjyCaOAJZSLuJbyEa+7nf1OqaHt7Aiu6XkEXQuutM4Fv/kmoEzJF31+AylLMzU8l5md5+gFIHjfehdRaeiVAjKw2JLKfY5w9dhsgEuyB+UWwbdpOh36Yh6uk0QRgG6lzx7yLk84iMBMF+m21qCqg0bQjcktL7qer4vJBmFFkb1+SK/tTP3KKeqOiRTvKrP8OkFV62HR79jvi5yj79Hub+VyMqk1Oj0bqW1zMQw02oZe2IRBwWUOyn4XLiKAXkMAYo8JIy19aDMsiM0QdpOv2QrrHFvzWm/uyj2AkrkLzeU0xhFGdwevUws/AXxw+uVQeCG3h5p4z8XImdkpG1Y761V1AzXAd2KYgL9uiylpYtF6J0PWX2Bc6r8Bku43YCYp3qweegm23HV00iGzmRnh3/6p/AR0VhFNpkLqs5XyLCXNoGRxbRr+9Bgvx+66hvP7dcEvpDA6jXMc1Hli9YS/s/+yBpN4q0gWvzSOQ7y49IqD08b1gtEyZ2TOO3LhLAPA5CgHK7qZh7vFzDfhYt+ZnEskQSGByowzysnHiVC/hN7pdoEv4iJyJR8rlQW5tlWa20NY1ZkDQfPMeHaaN6KXvjB9yQ2ZifqUSm4ndeKOg0jV/IS1SNm2EF4gggDJKbRnSmgkr+qydnrMUMaA1KkyhikmDPIREuuXQNaFA9vv/0fuitYFxBwH9MbzCe1JF7neC3KYvrczMpFvkde5UVtnb8wyoSpYOH+1Nf9u1XZYjCy4XQ9tsqeHGchXDgpgGx8TdGTevtXpqUcFxT9JXLphRS2HpqTeAOPLAwTZvJfLjhWt51RvMozJtyV4HgncHjPcUStuz1jtsqF/ZIR2zJfAwQUe1Vd9s6MvKDHewtYnRUqfOz0z5+1MFSqOBQHUmz6pCzwjDTfgNF6x2XfEmgUHOnXLaBtAfbOVovilk1E5pq47hOu+vw/UGii7whcUvYY6bhiR4WC/2Kgahs24/QI3xaWShBk1Zg31E4Teg1Pc4PSanBr1vb/Y98lVBXtTwyYtpGnKpjZP8xkJIGVtZx8qpHJI1LTXSSYMccOwqSY7ZVk1NL3kWNi8b3I5d3Nc6HxVVcwiID2Xoe07gjpr8jr0mZHC2USrZwZlPB/2widRFy46GMhWSqqGYQFosxPOnJ5QE1YQmYOko6ndX3xQ+CdTSFReCLwcHCxGYPYcIkqEdvTXV/0CnDiXhNwGHcmwUQRzTqOmBQoIfv/hpheO08MPVBG6Si7wLRiUX9bCKDsF6lB+ZI8YFX6GqC1SC2rQw2MLsqlk8EKsK2yluItVbdw2xTTOwBZKVAPqZfCTxBMd2IbVQya5s0AxQjCLcorPZmYkT0LDKpd4nNGekovk1PhK9s1oq2ecAaahncKwd2QudtLaW+VyaXeqNWeBMYuCZmpNQLmKn1MtyfLBWiQQR9hHcVpXNJ0XHuwhG97BVFmejEG3wNVsg+xFd4mvyx7acz+US7f9eY1PYHjcOJDfyZe9vouLuAHoF4ioj0JKXG/4VYYAuqcIbjhKiCRACSVUE/Xi5e3ab8fGWpi/tY+teY2rQKixNpydV4GtM/ledNbz93O7/TxSkpQuB00J81weJf4/uOhwIWHTp/ME91gWOaac9vLDYd6uy7d7d5wKd5ykAhWwTLTi3ggmqBvrmdx11PlkpjHdJnxC4DrfzbTaG1S0C17hA3Xdi9mHGITQgJ9Nv1Cf/MnwFu4iLVj5+C0mfqmHEqHeeJ4gDsJT4hTGBrA6mnLcjzLOMiIDmsVp6gITFbnUHcSSiT6FXF5oVLfWjyfe3NeR9CcI7njW/W5S5ml+wxW0sY/mT1cR80W4r+Gly6mxLxUOHyEEyC4oBEqt8aX6Pq3sHZc8O7eh79fpEXMamX6YT1DHGFIjOkSlRFDOdSQQYYl1pmrIzp6ZxQHz9+/tqVjEZHgsyl1ofpXe4h2Ywc48o7BvidH/+A/bsbIkwaJ5DpgDHJKZvxd2fwCLRm5svYVzXIppT1rfk9v596Xt2GEJvs22SrCmkoA5ZEws76q67PHUSRFykoLzDh/hlEBBpae/zMR0t0lrNOdFgRlgci6iv4Y/+MjQ9+Por2nhz0MzbADI23tN/9kriDLO9PFSOlOI3NowmAJTWvEFV0D1IgCawf40udGWaCHt/IxTQRPthVvIkLRdOPMjm4wX0xUBgr0CohVhmKX+tIngRAlTDgq9r/w/LGpr68k7OQT6zRkQWis7OQkzStspoUbVy06W7Mf+JWdDStyTE/Ik1LIps4S/DVvtHSFozl7A/8HcF31JDPqpN7ofPUSPPUll3qQOHixxUpgiRbvpdtJNBC/lvM8wGdqhN2RNG1uXNoVFMhhuNBY0YWct7hcIuUv7urRT7vJJasxCED18M4QrxZMi8n/QJaj6GFv7MUgssyKVZ6/qpqRh9QyLEliM9WKmHBsnn7p5CCb6t/DEFWNa3uWHWoruZ6E5rsh5c6mp44BvgoJbIJlFpEEBDGFD9Y8B83RdMbT5dhs3iykuZEVH4Hq9601iZER7TbhGwORRMg6dfruFitR0spMateUUNBAaw1fsZPqgzRd2cB0NfSZkvNgYOb9xzlCoPnJXD6mteV7zSHuh73KYoekn/IsrFVCc/S35Pha7vdqzFJyjOLfhl6Hq64Cd5NfSdiOqnOCKjve+Jgekhm/vYeTXr7sj949CiyhoXH4BwgONFGU5r9XW99tTSp4g9w5icvPD5f3M9uYmGJ7TK/ISVHr+TPweKduPyAl/oef4rsAGBHbmQhoKBjvKf9JTWC54d76anb4oT4t2gfpxdJmKMeWqeNIm0DLPXcrrmmHKL6lyE0hSoemGUQ3FR2nsoY1Goo+ROJvQ/jlVNRvcxp5PluWcZmtkrVVyvpCxT5tEOq7oRUoZT993hmveqnaqEzw85a8Mv0mO03foNxPHlnYrd1XbjCpDeFUcD3l+3JGR2cBngBSlHuwREhhaAlL0CsmrcbPazpb+8QvyisZ1fo+VzSwIqW/MQhFR+s4/iHADznVMRaSYuo4lYhEVukbzGUpHInfvYagpJFCkIo3NXjyx099HgszfIRCPSYIlFNt/F5CgZyTmpcIlDnje88l8M2RyZDQls6IjAKZyO7wdETeb1+1ESAYr7stEF+LdiTKFHrlJoX8xmk+zXvMw7Ek5F669USJRDD1Nn5Kc1DPmpO2AmT3aIeJfM4bgpDkBJNx9Hgkc7EvZ1Ix86lxzpGaG7b0y6Q+yb0MroDeQCwFvZ049srqDrdXKLzy8oqRad09B4upr7XYzKeiDWMO/evRS1nXQAiX4wE2CzRBCCvHLRGUfh66iXgbRiq/NmkyP8YXwMXhGYnYOD81xR/55wqEZF8mrnffajIXBcth/e3zPQw3qrlRPDY5f2CmbY7DN5WlR29dFoM4fyA7gvEeU1asAYAMWRlNSAHNzR08ZvPvllIYCdxV9o7OIrosJqGBQsd6mZa1S5d0D2uGrkS9+5twrrcsfcjoAFO3X0SoO+jmx2NLH9ry6psHm2LACxdWJ6BpwCK89r6geuvIIjp7JQIVIWaUWWhx1jbIKCr60TrlPygMIg1NzbITExwrfPQ63PHihL4Faz1ZmfhyaFELL2kn9PdK1rZQzI/LHiNSFYesZcSumx38ougacFFIkMv1Ll5SbyvB7PpKXJhiT5eJum1+WJSyvY6mnyp2sEQNHKVSN7tj957rZwGzpiEuVtAtkyZC9gOOj6yZAX7wHbVTr2mqbX44n92Izghq+OVzxohSNpAzo4LRZIVCJu3WIrhUFWOCaC0oIkwCLVYKLwCLLjPrEehNbdrEMoRtKVaNfzqAGn+q/Vwhy2cFVC/ZFwabNTn5ZXs1s91ihCRWoyZjQgJGt0eLWAOUdMr3CUdCxQ1y8L7Z8159SpgWdY4j6Qg7EYubRNC6VzgQXOP/J5IuPu5AkzynA4hGcBDd+VGHMcWPQMj0JGENSsWetSnYdFJXMg75ciD+6dwxBtxWoO8bdSgHl19JzWkJPKG469N/5XdvU1NZJVa+F6WSkgInfBjj7puM3wnHhs53iTMr/OuaJ0FYkoLQJYbMAYW2/AWJb6mBqEU5t4bkC7Kwk39TI6SuUkDzJPSAZAiT/Q4HLhp+/cYLR69zIp0JIZ0zFK/jXh2bThR00qNSPCeTBBjnwzYsBuryohHY24UEY7gTn98Y2xSybKzh8RLYW6ASjhKkhT3VLPj2s/hz7iPLT2+E1J44u9SlXsmSas6CylaH71xDfCwGFk9LEssbN54y2ilcGKxxrwfoCbhHnx1CVD9Lkp14BgK3Zx1J4GV1W52EABgX/XpcgJ4AUM313cAQMIoKOG4G0vbqwgzguqG0zJVoibp0eIMMtiaUbFBWeztW9Lr8j+mFZHaNxagr95LA6G1QxUknYxDYodv1dDXSAfB/941ZaVo64hvFdYRv7HmghlW2mDQvUczMs09RrsHXqVRy1ST/qohkVSaS6S4BswOSPy7qvzqCWBPOVHvx/JQm4E+v5JBqYX+b2tkCKOh90GT4HPfbcHyP0G3JO9bJTgb/IkpxHnMaK5wGtNZSNuhRwrzMhIneO3BeObAc0dSzVydnDArqjp3I5dpCoC/6r2VjQnt0i6vhVbJ7KA6fh6UbK5nGRmWn26frgXxGcma2IeATvSvbX3zQZJ4U0U7RdVz4JTFfIN8Sp1cZWECIiGpdkCdbKL+QolawI/g+xtFh8Fg3oeXxbK/+kDvzDCmfC9J+Ly055xepsFGvJ8O4HA/8fDyWGqaZvc4zKWZ2c9aYfARfhp9AP0KzyIpi7Efo5rRUcDk67KNjfgy4O/vw2+IhHlWEQ790FJoHyhXRkVlOxTajCkimYzgSQhF6qMOJfmMdGPxILH2BQCypIXIjcaoz4lrGRE0d+5npV8uKIkXIp671Fz0xBcVo5uFyiDguNeJwjQYKzpEDzIhj+KDXv/e7E5G5JqkE2wCvmRt9kayXwxfpRJXWqK/hCwnKjAPcFDp0pUUrS/ZqycYtLxfDivNx2JaYzKXCWsn/kfmS7dPLnQGgS7GoyRE+6oXAZ0dCCyF0fvXSkrv4EvkZw2CGdltoUDqMK6TSu50iH1O42o7arOK7x5+xonqyZAqTE5gvIi1lH6cBL2b3VSsSFPaJABgRLo4D/CD3di/fGNOlrPXOGN6cnKMCym4YMuXnnpeSrBsnXteIv7l5aU1N+54zMS3EYOgyXj1XTzciT67nMlHXi1mzb0jg7zbgoAyW/sqxdCQ6jfr6nbHjvkg1jbmQWLoB72/h68B/VyWJUIRvi1EE+wfoHkfTZKG8dkp7w==
Variant 0
DifficultyLevel
740
Question
A square table top has an area of 9025 square centimetres.
What is the area of the table top in square millimetres?
Worked Solution
Method 1
Dimensions of square with area 9025 cm2 is:
95 cm × 95 cm
Converting to millimetres:
950 mm × 950 mm = 902 500 square millimetres
Method 2
Scale factor of converting cm to mm = 10
Scale factor of converting cm2 to mm2 = 10 × 10 = 100
∴ 9025 cm2 × 100 = 902 500 square millimetres
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A square table top has an area of 9025 square centimetres.
What is the area of the table top in square millimetres? |
workedSolution | Method 1
Dimensions of square with area 9025 cm$^2$ is:
95 cm × 95 cm
Converting to millimetres:
950 mm × 950 mm = {{{correctAnswer}}}
Method 2
Scale factor of converting cm to mm = 10
Scale factor of converting cm$^2$ to mm$^2$ = 10 × 10 = 100
$\therefore$ 9025 cm$^2$ × 100 = {{{correctAnswer}}} |
correctAnswer | 902 500 square millimetres |
Answers
Is Correct? | Answer |
x | |
x | |
x | 90 250 square millimetres |
✓ | 902 500 square millimetres |
U2FsdGVkX19BpVEX0LIqoaBH/RkV+EeP+wDnnE2uVvP8HzNDFh03Kow1IGDkY8br2rdbfKXJWzbJHwJlkn5i1E9odvfnBFEXJUk+c3TW94ZOAAyLiTCWeOE3jEAWb9Ki5LNO0OW/RZaUGnc2K7toeZW5+1YU4zPX28FLvAlS5oBsuRQ6RIq4MwADDFThhgo3ssv5cEeyNCkD46IuIUZrw5MPqjsFP04Q76iknjuHb7SidyZ3JrCt7mjJQXVGGEf3SMZL6XYNasYOYDd2CHbWaYvCkcgHDXo7fXUj0coRnGTt7vv7cahCG2bT4Vddfe2ppTF4FokMOuiM2yoxxCYJK3GIDT+PXH5fCBtMYcRW0T3cqGBMzU7Bu2zYJlmyMRI+qFiFTkP8QkW7FMnvuFa83VWvq/8Diz4jMt3/lNpPK5PR94k5TUlLsb4brNtbeDc+vaUyMAvJzRD09nGuS2jxUSIW1Tmegj/kFRUY/P9H0sw65lisdVtP7a8BMEpfKAHmh2TsB7IAdDWaUWpCnGhiQoGOCRLNBZlQZ/kMWuogzhq1DQhvrDqCeexjs9ueRRz9toeY+jub7xyj+H/k4yMDewsduITlPVIJzW30XQAHjkEv5zebpn8YCyigpOEchWTQBLHYq70EhPWiIq+3tBHzYAEVrAXo4/csiHICD1nQmUFfdLFxUZaa9gD+0R6tZm6HrSQQrI64Kb/6dgB/4MrIFA0Xsqg+HD5Jbnu9es58ybTfm7b0VeJzh5nJ0m+KsRhf5nAhfxx75Ppf2qVbXoSPaZVJE3HgrxY4dPKLEZ/a/0yWDVUlqKJ0O6FT3ah2CoGU+q+RlZgp7gLmKwJZFtxfwscaTV4saYv3ZaKgZ7XWp2v7OsN7Nsnn9D2MvbhQRSplFkTOarcHzfjey1/OK+0xaelzKE7Izws2uGq5y7usYR8uJSgDE9KjMxjEgmwFsw5U0DosA95qIxcor2LMd1qX9GZnCane5tgTrz5a4qotzF0NCU5X3SgYOH4ULE+NLNhgE1dm1RjuznxKAonDwJLvEz+SgINBn4yaXnYyz8w799w+2Hk3pUg0tVUSd9H6EqgVC0ktA3XO2riXxgCOqBkZbP7nVzLQaxIarE38I8qJFF2dzZYBpBF7O1ljbvAJCQOweyhY+cCHEGU7cYQO8qB6G9UdvDE5ouCvodKEaM1d83QMq6jQTOco11gHP2qXzYJv5DLOGtxmY8eUVxK2CyX9/xS16AvKU7bBdeu90vDq57E4XMw+UvFuBEr69aLwqeXKEDKU23g809AOPLYAjxW0rSJ9VTIVsodC2f/LQx6n0nlzKSpMSmsVQgHzsp1Omk0PYEhiYDFhpFblAF/huoWPH5VvcpIDSxL0mEKt4M41wnI9aSS5Rub4xZPvNB3c6Nzx06jkZeJxsJzalMLZat5J7S2PoWJossvT9WEFwpyqoi3QWLxNiOFzq4RDDREOIGpxx/bzpw1HMG2dOLApjWX5bUn8zSCKABXD1SdIS/3n7r+sYkMBuWz49X3yOlwt8CBAx1YjZuVm67OG2kJRJ8Fsp5THtJ1a9g5155T2282m9DK5cAtenfA2ShztrRGSVi8TkSxbhx9yt2NrCJMBfsMecCuGAQ+JOV8tbBDlm4/cGTWb9f3Q8aKSbIGttMIBm37iob79Pxny9ZxbbGuUXar0nrgDUz9UpLlxZyQuUxlhFomi9epfKwqEVg/fWke6ihS2h5KIuIhcsGVA/fQyKrVCAAqBL2HL7a4URZ5p0uLXQdZ+7uMY9dbk/rfAMfaqus9wdR1HuJobAe2gLXt8WUAbch4BS7uASxLW4hbjCgmYs9yz/sVsMZfhplFoXCaD6nyixFchT/8aUBvB5pOOBa+RNtyEaa+QOmeGLeX3iTcyB0JrtSlvB1PTM18YvqUmgXiOKpoUDYLqS3KfhAmL0J8Q8Iogypx2cSSsHuhAfy5dYZtsdbnIoXnaDxCOTpObrmd2XGDgc6NKzX3zChMjqhLBxBT7wdxKSWpMhUBEG0UE03CejsvGK+IC3vVG3ttf62k6gXoN/z7jmzbhjx1FtNE43vPrAbBcWOWb/95WoquKrzaHYSbRWHSwDqZV9jicQ1BgHPGsMSQk9RDAqRFkwCblBCt46ZeyUEAvIGyGAaV7shMuLIJM22raFM1O/0BLF6i2dQ2r8vg2bRJQpSku5XCdsP9798aG5vfN44DHPumWX7Y6nOAl4GXKKhPmMpreSMi3+0JMO6Lz3N6n1DwKM7S3OL3/H8LL6didzKZZqoDnP8lhwG4EB5M5VDb4TxxiZnzNSMFI6PYSGrC2a+LXJmrWkgb9Wbv0+66g1MVe2Bhk21iin0Bx/YOE89aU1IolyXmhQ9XNDkr8Jthd8pOPfJBouaRuJNdt5s/2UAP4BZUoqpBETGQxt5jXiHj4YmH2JHZ0OTGs/D2NWI/eD8x6qlC/dyGU3boM2hRrJQa85QYL6Ir3sq7me8hp6XXiNUcZqEqNMNi4YVKimugQ+LArHBi5mc+YR0oglB95yXYb9/kr2/TxwxUY8YYSwdNO54oqhg7JxPEFnHYgdWLVQGPqQ4vvvMibQxuJOzNti6Tg32ZrbOgNUHzmNFh2cJXSV6otW7z5u470blq/hkTkDMXF1HDwpjyAEydZlrDCLVwvOzPejzk15wN328NDWAPUW8F8qE/Q4HpTNxaBnu9jj9cL3gwtyULJFvTO8gLZbWU45r6D1ByKQWStkn0eepbTzo8C6NSSNwJT6gvm3SQ08i4+BQlK8d82mZQn7aNVnqk2MpnSywgw7qW1VnxfLb6Umv4hy87zHnf5n0ugJ+5vMVt9lDzIuzx2BYARUu+sxApM6QPl2qbyx1/vTUccP94wI+B9U7G/6RElR+mgsJZaRr0EyUsrZ5OoR7NcdYqRTWhIam5K6wGlia/5H78wF4/cX1dwutuOfQnDi+6CCbCc9blqyy8IUrUJGn85PoThaZo3HTAR0+dg2R4lh6zXPg4q++6IBgDSFHHEC6U/Ks7W15Yq6GSDI0wjByJBpA+ltBoD7GkFWAH/37A9Fm1cNRoCWVDVnnYGAQLfeOkE7D2FTOOXVFK0pvp+7f52pCVCKG/qMGyX2ha19GWcTE5p+kVfG59zh4w8Ppc0dvUik1yZIECHaDtf79F2ir4G/vGDd5JuTArGV3rCvSB2vbc+uWZcyivfZREvOGUb1gj9zpO9g+veK+F7fwvxiLEH13Uxk1pDg4/rdxZXbtNNRuLyEbqC+nwIUiNu3IZLFK5qZMOwiM15mox/2ImY1jha9FlG7mIZm9pvE5/NQJlaTRdsOjnDGG87X4O62eIf1EY8Hyqaikl0Ty9ny6CjhZ8lid8OwfHk5f95LaOP+U3SxGfTLpvJWMIU3aEWQgi44AQ8igyUNueyNQBc0TwynoIrtMbNUV4/DEFt4z/YQhc63cdx7Fhfor0dJjTzpj5ftanqrHvFtCzJaMhfsmSeuizOaicErwa97VyRynTDfePb0Thmwvh6XqvVNS1S2syZZNafheVT4OLWeot6x9/ETXMyTScG+m3Qzs4IfLFptGl0WBpl2Bx4ftf/eVv0ZFrViiNciQUVg09ASqmsvdBFYMu76fgG/qB4ePAONuJ3F+lZJp3VdtPuejtnxHf6+DmzAtIyfCtNujx+4hm93DMmx3fhD3toSTvQFSL66NS04vJVlBIRJOAE5yE1Ohct6K3PA+FekSDhJzKcpu4+E5uqWMAetIvOnT+MrXD1BCVNOUzG/zANRrNU2hkssF0LNBRTHXu48ZMATYWlKK3EzZdasQN3MwxDH3fzayR+u00u0yCSkTRc0MkWIsrpyKc9RhIADU9PcssSwwljXhMrFOAlVWHo+nskfT9t7J/4Owj7mO7wVsXgbXxT+ek1u+NWkX8yAo3WkhuDxjQqkC1ufAtFBmOi3Fhf9OvSt3XOdAcpkZjWrT33r7UqQXBpAY0vK9RZXH5ZTXvP7JstPTrJABjtnPqp5uA7E8DbeZYcZZePSpqH8uBsu/4Qsyfow3yF+qMfPX9GLsr/NusckrO2wvAu3NJcrrkZHECzG10HKIelBZtPUyaxHiPKAX0OojU3vKcgPg2bQDlE8MkSUUlSh0+8gwLOjQHWWAqX/IamwmLZdEyfH4vbN8wds1s77D0bHuEyCfvZ0V4yzUpZ6YHwhWBQawSl4VHMaNQrsfHZvoAMtq8CexTuCaagib4LmoONjir2RGrS6PkWQEihK5GUP4qlNnMU6B+owHmiFjvvYcxwgdnDtAaV++6vOkA56xg6iJklvmaFymYnsF1H5raoSdVu8EBMqA1gFt28curqix1VbBRifdGm9o3FclVyRXXkaReO+ncfMVwVAf1eaS4Z5oPoXlmFJ+FPD1gFxxKgJkTlCnTYdYSf6ODjAdLPa9wMMkLUNciZju8ycpXBAMrC3Nr6XT9b6SW3q/A++vU318YKSm9SOWUqt6u0iSnWZ4VkGG2KWItP1PdM6kaGoEu2bTg9ZKl306emUq/28XNVcseQIUxhUU6azfZEDoVjSsqAbQdRW2af2knCySrZ1cuDJ0uTjjZk2vOnD307dNVsuoWRXFApHyF11OA0gHANlRtnKodULgenju2cIo0WBbhU+aMXbrd4oKCbqX25cwnLNi5I+/Y2ij04lvFJT7xFWowGSd9Z6snYjqU3T4n3LX+EoAZnJ6CnS/6zekSiAqKbSAO6cyGDdlHhBJRrR1Mitehrx33fyK5qSHHoZYjk67jp6golnMcQw681rBT4cYSBImdJjb67FJWJ0NHjs3B9XtVd4ChLiSsPJMd0z+e8LOTpcJlrDVRVwM5HmV1QXqcxi96i0/9YqDSbPxfTEjJWB4MabkdOmeMTIG3fGxNBrBevwUCl/7uVS6k5bsIrjn0/fML7OursoFizZ/xO3is0NVCDX9bzLe4KYqaNtNA8GtkRYc+doShcCtFXsfVyWHtNdzy23O1VtttsfeRaaLNS6hZGr4/4GUZNnUkkI2D4qUIwQnLjsWsc67wcLB+ZkeH4ysRsM+3kJuudboofXXACiO1F7jdzs/QCx5Y2CovtIABhESrKIeHUr1JklA2jeiLgCfp7S1U29RO0d31tt+VD1w+IMKOB4S9V7X8lY0LCSt6ptLDRoGO/5javSoqq8fx8VTDwXD9tp3tuvRmYqqmICeRn1SxFydOjsxhZYpFMiOvtONWVH6M7cCZnAsrD+yiXv4L3NduUHTRclati/uQtpDNFfpN7P7gogrJyndFjwXTi7oxWolWkVgbpd6k1ucQhO14PtBBvUgWZ7OR0FHhcm0Z2mUsRVP+FD3kdMhhNZIQwDTOoWEn4L3BeyQbM4TXFE1HRfr1AB314bh2f13n7lbMze99rUo+OJe0mS5CGJ1WlOW3OtiBEgSlyd0QHY9WME5my0nSWKQVbwfxs7fN7c0TW2zhpAMk/49O5t0egpe+c8Y/+9fjOv4NyVr5d6/ZKYyk2BG84hRYbzOG5QCb4INNBIr4nOyS1XjMEPhSLs+eyqtDjTVXtysacb8HbZzsdfGrcA6sdlPGM+ry8KBzHhf+doGOI5VOR+MEQxakN932lInOPLJpfU4YBwyBvNGw9FF1TKYF+1yf/EWNP9Cu6TpJ0AjhHD7UtxsmbUv9NXdUk+ZHrP+Oc/0XQj+V//8bgZq+Qjh7GLvN20/oDFb3hTMLwB5JsWaYRWqq5sAooKnExujq8u5ihpXOw6+trLIE/ZSUCk3sTVCq9NkKbncMR5rcdjCD0YEnaMxJyjJuFQ4kW7YcoMFQly1UEu7270VXRfzcq6zsRtlCdVU39WYHl2M55MXufhR1r0e99UF9Kf/ZWPddO1QjMzUBFHqSaFYvCdM6E/ZpiTO8xamqMSX5JrBACXGH850o6a9q808wfF5Juzdk4m15Fu3KYhAQOk943jTpmgOM0IvkgDDM+WSpKLcXejufuj2P78yvk3EuztTzjIU5m22ZTtWNrmo5sc3mexNs4hXFfJ2UrfFIEra8du5R9+akmxs0jVIJ+OJlDQWixoKTvbpZo2VJBPheFR3wrsQdNsSg5wFJr9w4gydaNaGAfOneQSZDhiIX6MVHCdO5xzowaEQ5tOVHhd5XKFvkm3diAj/NQnkhvRkfdbyF3gLKh+hSWh/QZr1pU0fP4uzWRmoNCiv+XmGW0M01UEnQlmsOf2x4txjCFkxMR8ruJ7ZQpjAysASXdhSRUkebVMUYoXesxJiHkjcBN0vgEO9dpAO8YHmN1CVsqQdCWIpipqnzrS0B4y3hhxDc+5br3IWNFbDPMyGHhn2bsNjP0GsbKg+4PdQRhi013N5DUhJrBE0E44PSvsegthiMhHDfX2SEmKrjCIP4kiwYlqMTiehrqtptD+EFTGo+HVTC9ZNYGQTkAPH/lLBiwA5xt53WpULJDEveh96glvsfDvr8ruZNGvLtYd8d9uzu5wH157p0OCQliPN9pZKML3wTdTATmzOmPvG7lv4xlQe2JqR7rL7yrcPBErGq+YO48amKEuxLfJSvT1RpDHiU1xm4/8GiCEDPUDNRxOlFSWq2yv+9DkwU+wIQi4gmsdXCJ77o3GVMUulUjwBWs21n8W+AkEFwUU+IwVnmGEne+9Y+dmsd7/Z2hB3yKde6lR1zZh3w66vqArygQtEXqI3gdNXOxYc0/InO+yHDTssfy48zisqnuvxLQXZlB817PMmIvE1sCCoQi2ZxJQ5bm93Fd6dwgMMXoqZLr7KWYT9JS32NuKHeb57uS3nQPbkySmeKd1EbUYzKuY4oxS2o1VMLprRLsbuus+p00rhkyxt8ijudZ7e8jIbhmtKDqSgvAHtqKNFOgsaYOthdwRUuzggK/OlgnBBShQN+qJo0AZBJHk7No0gjAXVrcEPjNKujuHRD4GtoT4Ck+zzwJDgAVQSIG45LG/sVQiN+ZEK+9PkFLh9uT5S15PYLmQJmfxmn3zYUGKMJN0m5TSBdEimGZE1ErV2PJH/BxsI+/C6gVK1gAxiMURKe6CIDb8V8eNEIlnoPZNQ77rMBqnRtquWgQcFre91JgxOLPuD41TetCySzXa9DdJu44sdpo+RMeMUM0J/VMkkdz+1/8n5w9K1C1XbFKN13EWuLHLgfS2m6+ruoeQBoWk4BiWXlgTRTrKoTAgRpawNG/dsyKwvrjTZfZt6lEnsZgOD9LuW5SMVLqSLfOtPTqmm3CetuAyB+pQcJjgLXYzof3M/JelFRMv4tbLM1iqVwf6nbvaKVfb6M9PDkZaDaNxIxirMO2QEiu6qGhpXwape/Q14pS29xo/s7WqG4ffASJ/mM9yqwVrXGYQzUrWWswFopJ5o0SevIRhd7tc//ZwiGc0byw862lf4xmk3+CNQ+aqNERk8Pjaf9EJfJOKivBEHrtuGTIHumxSgk9+tE5IThgZ1NmbltnP+Mf0dOplMJlOqWMAdcv7xnG2/jczancEdLnsx0z/gqEq6c0vSudtokWfbeEXnZpG0249pWk5Zieei9iZE3LFO1gZlJyw08idpc3TLD9KBIdD8GQ2HpwRe+Ri39WYath7ZH0gamZXgSXtaPrNXi3cmXfyqY9LfdQ+uUXajaN6HLLyhWCkHkPZ7iQhwPoc7yv7TgI+qxYtdpPXfvExlyCSz5KTbPdvahwpvg+KbBr3/6ZOVS7WUF+DnlFAUt+ZzIDcd0XKeOiy+7XIyYmGW3GecGaLPxm50aeYG7Dwowi7O2BAhdha3sPLyVE3VpIxrV1slKpBsFLcMN4NOIpRWRAOvQK3Gg9Wtc/yuqGJ52SXIGbPIRf2P989BW22/2S5LEwCeLreYWP0pYaO3A06Ua5aVkjkzgwqLN39dHnj5ZNnXhP6NtNqhKhaaNwAn2vzhM37PqJvRpqY6AZ9ghEgRvgBrIq8wJ20ymtVr8HgnSzNdrMYqvaD8A6tUiE8Jq0oqO1qfPGw3w+eb0mHMdA/TeD8u1/ACn51SKBQd+bWzETBmtsimSjIYfJ443ySnEYWpNKJQwB0b4xXb+wlwEgOiFm0/xzITSfmfceh66H2LAQC3lP+rTGkOOPNVBJcMqYjjJAVcM5ALMxXGYqrJIkIHsCNXJxEiHBF/TrUw7FI/NTHO2t8Cw408zeEemxui1G3CSlB8Lj9P6Z00PZcPRskNuortRGynSPTbgBdEQjh8yDASG1irjGsP9hYgtWlu8xokmQqSlrkSC+KItWAdy2mtN4DcHQaUi/BXCFhndDF4YtOCoLpH6E29JYxdr25DmV2p5nnvK6EUYQxHDpXh6E9QzNxwLSNneWuglDP1Dp7tHgxv24uAgxx//fa+M6t/eykBSRqQuAZ2EqS6JAJ68cV+xmbobZQhoFDw6QV6d7s5t7nSnpweZRH6y8wkukDHySa0HSZxVEGnT/oeIp5KehtTE+U4bBmqal4dVTOpR27UcMDOzQNdfcViCsc9Cc17/YechkMEgKLXc/IH5mYATYE434gjxywDAsfGGgzn/w3RNEAsond2ra9ZE4nkmUD02z19rR8ad27S8pOt5ATAyQKYvtM0jSVHcbvsjCa9fuxIr0HfE3U49P2dDqbPPuYLzvL7uxf8NA1DjaDpfoaMUVGD2URiE8tFAIuAO3dJMVPbZnFFRk6igT4aoyfcYnh62FCunczybO+Yhl5ncUxtbmFJE2ZgeqXFDaYVAe/aJOey7/IaXgWsG4vbkpiLpXftEAO2x+EkgI3a7PSwOSV5ZJIJxTrf/6d5Bfi2cOIYfIiOiy7FBCyHaT4QSwG2vpmGo/lyeO3lo4TRrIdEQglhC1l8ubS+zi6XEL17oimsZygGziqYIoRFUR+uW5r26Tpgr4G1mb48l0I4eEbfh6qBnM8eljtEnvefUa+mfHu1A3MSXZ2zydDbtAvA7br/27ShAHf2mWqpPFvX8xw6Z4TansyU0y8pzDrbW5zOMWBl8vSBHLVQVZ5zAXZerNSfPfNslqnLWFjYSrAI5Ea8Su62bX/NY7WoIqWGu2ZKpFGvBvt222J4QIXlaugKedg/sN8u/5w2B4TCCUgB5i1QvlluSR0X/maAy6XWOHkIn1SK0gU7uvakRba4/GoLpUCD3e6AbkK7ZoZHqsKtvlxlMTt/Z7WsJIL4BXza33x/8hVPQbpdo9Ek40hoMJ+SquSWWXHlsjjRpagSq+z9FarkjoEOtIwaPAixhSzklpSKD1CH8aaNOGB6be/PwUu2z3eHVPukwhIwijQkPXhoB+8wDa9jjlv5X/xEBnw3ikPub9ZnVEHNg/Z5X2elhvZjOtUKG1Bb20zDYiHQA/OzEPVJs0tMISAbK3fGg0qPE0YuS1I8P9773pmQ/m9CSpsfOIQ+XCrzJ43YgrOCvzMmzukueSKMKB9cyVZFp9gCSLAJ09vlROYZpQP/N2CM7A5CBKlB93xQO4XJyyIBkX5/1D9hNXe5TE6DIMoLjRVuq9JvFAS0kmxl0FR04J7mOZX2PI5XfIR2lc5hFQk63qG6x6W88T443gwXGvQt+eerYzYi6Tejoen4T/dlZx8TQJ+EJNZzYBXhRM4QOZJbB2/ryV8nXE2KVV6bDcmIfZujSbE9FoddYEM7oEKHpK6scsfxRNFle/KZYE0jEd9+23uyEGh9MSdYiBD/MECn2u0udiTEeaya7ch8A3U5aVtB/fjddmywJNcgwfHAgTEEEE/seS+IPe0D8r7xmSXnVV1vGCNtF5ybqkX76IY1uHYY1+A+KnKcXMRJqVymF8531YWq/B8pNRZg5FcnvqivPTWjncYhBtFtmW/HYdL0QV5iwg16J2bVOn06e91vgo64+Lhh6igoPPJXXk6rz4puRbVPEvoiBzux9lSpXrIhsWF8HYlqlROqKpB5AVf9YKwaLacxpI2qj904t3p27gdGo622bBUPrl9wuwn6pO9v+05U1ue9pzcAGyNGMweIEnFVS9m9yT9r23brgRVWGrWv+EGcual4THinaAkbINxlLhbcotwxPZ2ypXx/fU0UpcTxZPcdCeKyhWezB4V3cZoOCKV7lTQL9lrNxB4LGAtfB4KvpbuGIGiYr1Jm9SwvUjp3IDunPnzgvCU4Awf+mJ6D2tjjFpbBMU/X4lEhgOi6MOYxB+xUxM01nNP7XiSob+PR+7VVFn1A8sTM6xLEuQYxYR4c/r0vExpvaQKs7N7FUF5K6f/YYkZDgeuLjsw8runW7axxMiXWhoPCFGCCym+Mcztgy9uKJ/yYtaonFFUzY2bXkfGV/6aE5Shrhlkxt3OLaguoyktKAwxLHZQ6TjEJtXjQ9vpFW+K93v+fzE24uzRU9Oe5wfiAfgCaZeayKEWvt3XBghHjcWM0CpMYh/CycVpbkNqUfgOIriizbHlJjnlBKsMF7K1hM3b5gttXQxor5JaKeaDXDvEQ+wbM2CjFKD22J6cGfcJyvwMGCRjd7mgO1W7jUvLNtRZiLbw93YOYKD/WPR9eT7hbNv/ZupzEqJjnFRSwLX6YqcmviKFU1br8f4gIfmTb3TzomJlKgPAupSGqy1gV7XdTlZevOKfTD+TASdUYQNivsDMDhys94WYtNSRMGoD+TQFXB82wz/KuP54Itjizq9/YZLVuRcOkBmEL949hqTXrpy/YguJnE9aP9/H5zCfaX7N+/lYKNsGX6d7zgfn/YwsWpMf5eFmC7D8/i4Ri7+hXyGPKfnvFC6ti18p7aK426DTv4Ko8gQqwRfFeIh71oLsqL+KL8oL1s8R+yZ4QGwhHGU4MG8X0EIH3b3rrJ22RPBvA0ygmR1teM5zIrM/uGao7kLjHOkDKuW7/JDUQvjU9Wj4miQrZLWx6SCmZIk6wXWN02hxd5bk0I8Xt5rnnHvLRoCV4HNCKcEzGMQ0X9BQNQLL26GSuuUK9M5MiR7sIN5S4+npwv0S21dmWyZ66c5LZrQAbWIqbMFihFGAzRfDdMu4z3d+CCdrLEnalZAgPSyczv79CGectDK2+JC9T18JuUQj7w9XGIQZmNsiyXWTF9mPEd/oUXOhVsVOOCGQE+qAOrQfv9FkUJLpvt1FOviY/AIgm0Q5TlcKnvOo1q/ARAooBw8KdDTHAEFoPOS3fymv9ePK78kaKBKUWXKCiBZwk6dWgBIbM24gp9ISU182zz4kmrQX6oF9tRcO32+2zVS0Kn7typQIW5aCvU+rZcTVsEIwCPkBeTipyK4JntdIIheOSo8BxJgm5WvHXMxqmGAJ2sjg9piXbKIDWxvW72XOfSXKNHndc3Qe4S+S3s6yfTzH0rauB8dUOgFYkpfpjKiBSmLO0ttxDyby2jeh7AznT3fYPrQLDQie6ta7v8zzM2a6csd6d5OAjZW8KjQYrsZEyFrk/ElPoRXvA4/kYYUg3CwFRLJjQWqJVmo1v2RYhr0DoyA85hFb1M0PxrSZkCKPLB7pmSYzmyu8gIhVIXW+rBgfCvHTxRmByVJTgTF4ERgwYplaYRCHbM1UHtHWWWaCm6dqhiRWKsVWAw6kDDPbWHl43ej/YaDg3KCPoz6TAQvaKIT2jL1lPfeYDQYQPuelPJhlRF4iC3LZ5hDcFlmvpiU/qeU6JIBGr/TE0foPvN8ICUe5sdSfFcjqdqoU7t0/+d+u/vG87d37FwMjaTN9e73dP2qzNuUhowruuIatiX9wVygHMdni569TbC2IoXLbWFgjDbCOcEdIlDhZM07yAAGTnch9r0/lP0DPSJ74nsS9IzN1mi2Tu9R2i6hs1XL6kElb923WF9Ap+Rx7qXmN9NeXHD/6zYkoLZOXVDjXIzEZkCCteuJKQ9lfwQOb6B3Dsmz6IRADqoUUhuQqSQ02dcCFzflXushi2qs4VAyrRUR8jc6jyxl14XzmbHopiNlVWoLF/X1nUMBNL/OEo53+yD6temgH+I8aos3fIFzawl0M/kgvjF3VRrhg7QYbj1vbz/FgaYOnHf0DgXSMbSfz2nUuRtNqpQZcuXcSDHmoXddu9MuMHBL2yAwSQ9ZBY3Mib1cDZY8vi6mNaNecjJhISCKuT2m/PKBl8pvLh7FM9fg1V/VInLIJ2Ec0k7VYKHnIOJVrYXzMbG88BoqmWYKqKhKq40Rra8fAsXVTYzjvUrVZe2BQk15y7DwBIKLrDXn7oPHOTu7mVpIBkKeR8Hga75hhcdJDeuVulJU8cAoZ4BzeNy4mAmHTjQLc+gd2dDphvoXUgni/EdLozQM1U5rwh6+uuQDKh3S5iKjFkzf49CI7RxAa8XoaFq73u4Rk0bHQUsff8u21C8zIiX2vpfBRYhQqkjJXiuFtAROmr4OUFbDum8COp2DA3wV2b6D4VWAKh8v3Be/FdDTARdnimoctTMknOsFkmv2mRnvVrv8WPu2HBE2l1onW9kCnYwYEDRX/w7Ruo1u3Qhm6h7iFhVr3nlBf9cp+ZzHhNfTnsFjRtW8IJUImvCSLukPoEgs+3Y24FE5buDeDoFEAjppebfWSKY+9JT8mW+X5Wc/wheBSOZTy8oWmOQ6RIbXVGzlfHIz7pvaxL6gRoO40NrKgtx3NayAiocdp4xkkPk5fY/wBYpV9olvSUTSx6WF2RpsddkCHbkBc3VpUP2n/kU52TFF/zNIV4D9eb/FpHpzwLrcZY8gcaNS25PrwMpLmSPoYvwykTkqF52h3Wc5uqCNjg6tJP30CBx4UW8E7E7B35kAakbC0b+klg3V5BZeGCr1S8EWuYe1HfmLfvj2aGJBQXGPcH7h053UAtg/HRvTd2cI/zePGyVKHu72z1xPQTVrqfI25rM0HXpsEIMVH17pENF81lUari5NdOJoqbjiZxB86wNKfSDXxbYI1AmezWgZcCxLjGoawoV4t1v0pKRWv8YAnDNXOAgKJb3NOeFAlzBksOPxjuysyCTeey/h9sWjG2E9NpQWwlCiwDlS0b48lLAApKb5kqY/pKuO1ww6v+uyFevaTv1RTANtzeyklYl3rKaPa9hC6uCNPvsalcYw/tKwDOaxyYUmuaAtRenlmQLqCBTDzmxeDgQWohGRJDjswaloblFumxE6s46zR4HhE7s+NFrCRrb1tgBvBZDmJPhvTSGvdm3Bo9wotTGxlv3G6kJiosjyI0oojyKjN8cdQKakMiBcDuv34xlB5cvsQ7VWVNmCcZRV3UytAFC7pswKKMvo9fK+4Aakuqww/ZgrOPgZFyxF8UypcauwR8DQeFs7ZaNEmk9IeMv288M7dWRx6YmWhX2XruGjHJyTOIW1LsM7V+tFlKhc3tCE1UYuzDC2XvvN9TUOCpdIlBQ/skni0bPSCH4RE9QKECIGN1D+DyeBYf+Zh7Rh96hXrQJO2ozNFTqWuFWD/UX6KsFkN6tjgrAP4XCUj41fClDKBjP/Eli4kCgRRHxf82Znz43EOCPeLTmOsOT0OJHojm/YPySn/CbP3GtXc4HSLsBRu3rrQBZpkqqMmW0ecPm8pjr2E+BhUe3T/OVOgC5nO4/NQqadvRQxOtaS4lF53qGkWVo4pzuBh0pMF5xRraZYYydt+L0Adwp3TOM8j8XIuV5YkVeU6m0+2QhzwFKpzExsue/oLGvHaxHiCfodCV0fQhrNHuNsOnWX122UkLs5fmh9nlwDOSuIP4LMbndayn7pAtmq2gd4FkfCaH6hVuo94cXb4NFaTHBVAeAvCYXY43eiGu2ms54/tUyBbsMoLKn0j9zNJwxHmL9N9M17r8ehyCvjqeOQpi1ST1T5GdCSGbt/F0dxh8dgsLaHr0iEAilJPAAn0SSyu/b0eaAJwpTPiBd2ymoynoinAQlwZMMwqlj3aXddxbhb+jjS2vrpqs5e6TuwMyAtOQ23279RCEohnaeNc7sG7xb5Z3OXDA/goiUQB2rajxuKAYCW5WzTkxzrOy9Pl/r3ws2bt/GO1IPoQQ2aI41Hp3h/yqXW9XBaURlrGlE+LWHWKYxf6RM9
Variant 1
DifficultyLevel
720
Question
A large square feature tile has an area of 15 625 square centimetres.
What is the area of the feature tile in square millimetres?
Worked Solution
Dimensions of square with area 15 625 cm2 is:
125 cm × 125 cm
Converting to millimetres:
1250 mm × 1250 mm = 1 562 500 mm2
Method 2
Scale factor of converting cm to mm = 10
Scale factor of converting cm2 to mm2 = 10 × 10 = 100
∴ 15 625 cm2 × 100 = 1 562 500 mm2
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A large square feature tile has an area of 15 625 square centimetres.
What is the area of the feature tile in square millimetres? |
workedSolution | Dimensions of square with area 15 625 cm$^2$ is:
125 cm × 125 cm
Converting to millimetres:
1250 mm × 1250 mm = {{{correctAnswer}}}
Method 2
Scale factor of converting cm to mm = 10
Scale factor of converting cm$^2$ to mm$^2$ = 10 × 10 = 100
$\therefore$ 15 625 cm$^2$ × 100 = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1+wWULVJMFileDbZLcPOdr73gtY6JwJwKye12t5ejX66W6qdKYsD77nbiPHaeM8axMVuoIffO60ymAIEy3rAy0oI17fzKvMXkLWtimWPTDcQapJdeZy4e3p5QRCb+77xTN1chyMCAhSLyGKqBEZyGC/h4GgbSASPotfDaH5dFcKll49+CfaeyPtDDUeFngwjU7gCsugK07E9EATZmw7y3osUka1UXUnvqawCwegG/wIxlxIdSB8UaOj/ff3CAE2zI6/XO1J2HGkztjFBPSKwgMpBgWZhLiO/DCjspXknAoSrNvruMJ6IQ76NUYwUe80fZqaxaCe8w/UKomtTTxumbBeWKyVn4z1i5VsFlq8096Xi8Ad5NsaeBhYjMv0xZWqOBzfqeBGJScds/MF7/O7BpFh8meIOVVUlGYJnMd5yuRw++1ephLQYlbH6gohWRKJURilPaNvC0dsGK30VlcX6YeascblNsNANcnRM7tZZNekMjZuhgRVunvKglg/jxvEo7MjJv/g1h8xhIGlp0Stk5RH1xA4q4PpCcW7M3OZIcTI6nRVZ+XxCLmCSzwyYBgsQv+S1LqETaw8PodB2vDWh/crhLGtwnAevOtWwzFm7to5TeJA1zUXUlPXC+rIPqz+kWWhm8gz7NT2bqjQQ3D21fPQIF2Q9TZcQnxvvCsf46x7ZJMJcvQzLsfvKe4UjmYRCuNCHe6QobBz9H/gxWidbqU1ZWpK6DlHj8SrQL2fcMe5/xTN3aqe/9PCeTBrAGdkEIkoOwBz3LMhCv221uDD1eahqbZXNqndGYnTLf/uLjVM7lFdwhSSpWqvXj/yH39U614VvURhRkxk4PohU1+SU7PZ1cNRPjzouhzJTPgeOCpyhjY5KAoHDeUjx0M/wsyG+FEBVLsS1LORGgHUZKAfGIkkYWOTOCqV/OpK/+eTKGuX4dhQxARZDRsXvmHuK6vKAVAwFkHO55/LhPil9D9mTTOHAtfWp3snOWUQ9/atZjPco1ZZfecV+CFh+2riCZVOr6uitIiPEL7UdSQTZGzd00T9d/Xk862bBbh2TVxrcbi01p6G45sGYVVU/OHf4YhhsCPxKgZHTV6qcKvxsw7+flVSEY/VoMWvxNQRysvAKwiwGglV1/x0BffXXIJ20jbcUh7C/OsT3bybcZoNsByR4ir5z9wQ6S4LFOq2XRJbHPpR6l0MHG9kWqjYCQMFj5ycxIdQK3q9McQ+i7G8JYQMlDbSFuK3xtppncK8r3OCecLONLpK/bGTv6qrnZ2XtfHrzQ8UFu63PeLG4wiLjxlL4xiJCWRoXU9IzQkSbK/VxyhQzxCMn29Lf6t89HeJ4dDCEJVveujxWcksQNwWp/h4PLmWjaQyv4wJE1jlOAXb7qJIRPVUociRlc7SulaQEoAGwHD4zuSQGrddzSiTaBg/WroJcVHJmj2mGx12zmfmL7cSKG3mLbalhYYa6hWwM2aU4g+zbJrT7TtDZVeMfOh4OWegIG1HaKPwtnabRfmhROO28L0F8yKUQocg9yNupygKMDRtKcQiqOrloM7+HSsenMfD5sr1wKXkNUdEKoH5XX+hdKulsP6vS68ECw78ICA3OtPnhT4wI1oBw7maYRJx7KnrYsqhvxLaoIlt9dJvF+rGSk16CV40nu4w99wFKU+xhSaf4dBMAiVjsPHJyLrevZe5RFz02mOv8YhoqOx6iDnTGoEOgmbl9M5xqqkPR0n3HGvPaa01z6zkQGXr8rzDOIbmar31YhhXtpxY/l69bq7C2rCmFOn5+50rdCzeYTSpoheNiC6Vt4b9aquZdZcQTJqd2nLspluhLWOXRAb9bVWqPxfrFRb01ObxErqOMCqGgmteODoIjgotn14W7teWAR9o2bDVXkWCpaywa9plO0Ka2Ur9dVzqHgFM54mM8rmjmIcGnK0hZnV8YYbPIB3ZpPw5rlAdYVXSVLBCmRCINmmkHAUtmul7TiioX2KWiDx7tFEZ4HSU+0c4MN9W7de1oEoTnTZLd2DulN4/jG0HUNNCzPEhPOSNwJ2wCisNQn38JT6NkK2M4ouadp8tZzo6gvgaLvEfEH+MB3qcZclRIHzFNlvGSUkZPdv/8u5PDvQ/fxTvUs7Vg7GEhnr0iEERKm/LOjEgAIgCk2WcH3cl3jEmOhQG/zotD4694XiubYUQJ+fD3+sBdbcf46q66t+XrcIefXYzTMPRHyw/g6bCZNb3Bh3dPYXuXqLr/76WRk+o/bpOinymqDOhFXttrH9rjVOwByyf1nzs0TK7StnSAuyziPQoIgJ1Ut24OJsGnUd+Km/NYn9RXsldAPrDXwkIjoMoOJ5yRnhMFb7ANYlV/bWAANYmrYAF7uj4LqvISZoDfeVWvgylhpEW522X+Qu4M3toh64VPtdksOcUiMLeZwvVcR401gCI45BXfHQ8Z4qMFt0pAEWktb+1B6cdoeL0g8BUv5XweDQKWkDTnnNOoMon3WJaqvS93zF92CGRiERojpe+jPmndaqniOfTko6vIHFda2EbraOxUYK80ddlcMEtOBD8YjK+vmGAd/rStR+Xn+Ule1K3ZY9J4qOcypvFfckMnV7THEVUybG128CVDjMhm0lzauUuP34RufOdSDV3sGn/3HAF/PhI46NwUsrgcJX0dSIvpOGRI4syagVZcqCSMJWnuYKKGiqqVOioa1Ljpcd4iaQyASWH/H5lF9ffpug789wYAONvfK4byOZm3nMmM5z57VBJACR0+icLRT2FuB0EFLc59tb74m34Qqg1PoAZkS9vkxpUZjPFi/gS9yfY+eMTSy1SVINoqL+ERUn6HQU5fvEPi8fY3IdsRqmr5pzSbG3CPQz78o7Wk6CevmAugw0tiYbOWNircEJMq6Q0PohH5iEpk/Int6wDEAcrYBiQt8eJYo/P4On0yXsi2wAOVCeSEhTsnudK6MgqV4ULN9TT1rbLJZjhM0laZycPm56YOxQfkIe02oUmAQt93DRBAr1EtU35Rvog1EzAWgy8J8XaYeNhESUmyRwY85RNiNnLPRIzQ59tHNbO8ZsIZiY3X3YC4jb7L1e9Xdfgdu/BFqbyRlPfc4syojPqMY3hs/J2sakDntSH00tbuqDC9MJraV9W/Af2UyDTNcKz6YtlYwbNmgdZhVrsGb6+aZ8uzxpAi2kzsgnBAROxFCSP/fzpjg1Pbv+W5XPCH3kDY6W9dPz+VBzIsiy0H2awQ/krTTcuz3trJKYbcqj+SyPP3h33R+AgSNqQPJTxuVdUq1aZsa+I0s6FgGZLD49gbzXVItTma+ulXmhf1wMQ2a7CPqqzetY/5UU37UQrEZ98khr0Py9+9cB0mJVOCqnAFDpX0blI5+D4NtWOcaiDxmv04AI0NXPcbgSdJ8mVGN2DfBpBHBOXadgNAFaaOJaTO0IybQvXG8P4ruGCGDyDxFO9PQHquGvXgX1w1LgOkraNYmLf8BMmb/SJX9zD+/P1dZ91CxGPy1g7cQ5XZ/gvZaV5hxV7uh0/qBENfkVaqtHUbk6CEwpeStwwAoHIsqLCsvFeQ5CWkICMAebbs8aQV8C/onSrucKO6tZvmFuXK2RfOiB9XMnqOm4ZLHloeb8deJOXUI1tPCZ0mnNliFqHMBhceZnNeH9ZWGYyycWuMABf8r7m+OY4oli3KGjV9ylOc+PPZwr7UBl2+FuCUDmQIr/0qvnVXO6zVv44aSo7k5AO33sIPSxStPD0tDpdXpu/IKJ1DUxPC64yerdOtnLw91/bpwT3DAIUsIJfFyhIVVGSk0i0TRsVz5cunleZ8nau0DFjjQxYLDUYDiy9X2HIa9NMxxbNcy5cqO8RcKv1syg+vg5T6YKvWPCI18pU34+V5RS5tIah5raJzh+vUY/+31ow287XgVaptUT4rVN4cW0NxuOb17p2C18O6oycHsDbeR6wrXoSN/Ef3DafsTICo3u9h+vSJ8/6kZKds4b5K+B1RVtKmjqRLUBbKCpz08621ke8XP0b2k+nE6zQyeiPwq9gwEzLd6TFtC0oBzZJ9D5n53UMnhebSdRmmXXwCQ8Quho998U11STduaY4opdSia3f5VN1hKuINzMJrbOowFyrbwZXksZQLbvut2VPwQSoV/O7DhRQFlGGSqfpmQXT4rWTuwBJtd7tVyYnNj+Q5ScFVjDPYhlsc58sGbxu3XQMXsToNSYibPns91Kk+vyIcIjTSPpMFSNonRmh0+McewuzOwwzvNxF2fByj8UnKo48Ln+oKg9iLhqbo+7LOBH/KymLNDV/OoIb8KD1VTrop9YrYCsD/3xpbn0TpGEeOhPPaWXbaxKMLJf7j+bB83CjhJVyswZKQC4+boW+8MMQhmCqxtyDsKN0Ip4uaHExBUhUAcNS74KhBK98/j2TnlgtC1ZGkuK7KfaNZ6QlQT1Z/Ahlt0Iw9MMIQ9J36YeC4rsxuapBvvqnwZrHjPjuM7ft2aG68AcMzQJIzsGmRdiFdUd5dwMd00ln39xybpVmrwcIfRb4OAP6HKc5fug46wuCyPEr+wccmI5TqHoNIf6rVR0/14Ri9Mx2jSfZDVqFYsaxJ/2yfDzqWfLBcRJJDkjKgIzqh4cqbPDD47/jy8P/Eu+s3Uw2x79Lg/e10L7kzRlU8gl42q1f0I4AJfl2FRmEnryLZqC6EDXWGsdxflygHlWB75hFbZu6mNxw19K7HE2R5iPMD6QUu18t+G8YJeAaB/Da5qM+r7li38ssfd6k0ycitBvbRwQrOulJE2qsQOp83AmubKx2XVCNMhQSyMv7B8srYwYM+URTpSVbl7HTCcrtPACiO4ZJHpfhyEy27lCw06um0DZ5gN2AlQ3ciXh7IXvybPs9cVxvd/LaqTswuuDBC5cuzGlzdEckuLP/hZwM1GothyuEWwtSdwp59Z5p2gKYV2jHkd5NA+wYRxdamT/fy7vy66w6s+CFXW/kWM8crQZfIr/XOX7ur8B010x4+91AWep2tnvK4ufJHYRXVmMvbQ19T2T+XJ70z5GMybuf+fr4UlYpZukEdLngnJBY1RBELaSIibvgCcnPIyetBC7ksWzpnEX4Y7VNs/4bni/V8n88OxNLpAHWT6sT2LYSMAAOCIv19JltakyqgncpT/u4t3nzq1IVL0i4hQFe+8c21XysrBiupwlPxhsYPCSTjpOt9G1wm5kBlSIr3hbGzEEJ7fmKUUyJqN35kdoDoso78gc5qePn8JRwfi71aScWuKXyjaKe66It9THbQWwTWj0TvH/WIl9mHHxLo2lGe3ZmCRRGrLuvCwFGHLuENFG5tTXAYrByQWYEWAdBRNPaaIodaxegY0ftXbzsaNEfLHhvMYlzF+WKEIHZPDdwbmkx7ErcAxsURNsWti3L863OlvDWil2RChA9Dh07j7+H+r7sHOU4GUAwncJoVFGVAgulxDlCSBsvQ3ySgRyzZILo2Qq2cEM+nk6/p2ThbRqg20UeUe+lSPPLEGJ33zuPG/Z+dhrY1aMSZL011SbJhhlOP99MbF+05XpKrj1JNvq1K52SDDmhQj2R5yCUivDVP7kirj4XakeeDRXjYyWxGErlMCwer0NMGcZIB5SE9NE/RizbV6kVc6CkRrVz64slnnC82iV4PRufQ5UAhGqbPRvhkyytYULaAentGoBZKqADcQ7GGSIJ923D9b8fgtFfj9uMuRXHVcRBPhZRmd8D9LzucnM8F0x+1M37HiaaL1RCmK7TXeY6W/8+FTaJaUf1cc8968kYpw1reGP9BEa+K5Pj1WuEBxA8vLXcpU8rM/NA+N8UAZYW2Awdl7mnlxQbC9MzJtm4+gKEjtcuWiJ0PQJwwWWom72cmpBjCrmnKbaNea0zJJg3ucQTZ8fFtA3vl54L+gKdSr7ohxYZCA0YuPFOJ9CJANKTw+eq8mmDHMTMDatvST8e6Ue1EW0stvS8qvHFu7ZD0oUYPtaSFycqw5walvIGop94Zor+kzOn/QJ+rSGWyNljkdc3h89HT7dVVJOhttDeeFmsbGgS4uTuFXvXgzU9UOYa59aFY3vlbjd3AnSgz85r2d3akqIYx+89T1mr88gwVSCCA/01JBC+kkKci9EnzvXSO/eRRw9LXUOTPVhmvOqfguZMdOh9je53dPdafjIRTVKDMy+6TJPlHf6v1ruUcSxf3nG5MBvGt6qiypbZH4WLimOE55fEqlc7FQ9eSfGxefZFxhCbRtSdaHvjPEvhozqTmffP56oVXdHVJDYaX8ogUAkun/0K1kmlcYxXVJpmfqePoy+lqL/HyHYNw1PabDjrxvcQ5qhpUNxi/22TmM1k/AZVwiRfRkfu9GCYD0NwemOueVGpkD2VzSSjUwGawL9LW5z0t4QCq0GinDBGRhuZT+wOcEBEPTNw47WAuPcoxJx7X0+PuLT/zmYxStpYPcPKRJKq5NTHukzEE6nqqYncOZ55GmuXtgp+8oXPVDE6MjDiE41nl1f7BRf4hU8wQQcNdjm52aOJ6HjkBRMDyEGyiCG2k1ljfzXyCC0uAo56UzY6HYjSOYX6LHi/Cvkzmdph26U+mMt/DtkF5rJWhkEkgIsCt+16WZUxFr1TgFhn53+FA0QNjlqb/TGq3OH+N4dmIgs6/F5DX3HnWbiGxFt+Urz4v0PVHXjnPFUVbVyDit57meXW6n3sMJwSuzxHHsWLIRKbC0T6EpLR5uLVnBjDQiew7p/9hjT96ab3iybEuht9t7dghyYfc8I5dNFbMCdRqmg1nLmm0awKye2zz+HkIwMx91kVXJOW7SZ0TURfKkO8jANwfNU0YoboIBimZERI8ABOEFYQRTTfrlrLFGdUjj3CV9LzXoG+/RuyVvYC1CATFUQoz/YVMD9nAv1DLnn8jV79trBxnXH0FcGmaNWj0f2dRNDML/D61L5RjoRumpDVenuQoHr2+S8xq1PKBadgbbnEcfUmvWJ94KpIi3It9uP1hOk/O5uAXM0XdX77CsqZlpOp/jmal+mrfz+X/b0AsXn4FmhbYFXMQ8w4CZfLWNYWKwjpF5ACW/tSTxfXMLRDyWJF4w6u7BEtMvwHPT+CV6kl7hxynY4qAgyi/zbXqoqaf9gnJP4C6s1VRJW94se6bGzRnryq/L9/tI0kOCQO51bsn2Y9vbnHJ9POGjAMD3OEJknBCbnFQHiQWTxFXCWUOi7VwscWGC1W1vTSSFA2h0vJitMF5UXWFobtKMa88WwBeVIP6a664qit7qRnlWOIaA4WMlYVwRwUs7ewtWJBkjZHhLkJZjk/f1LPP61j5h473ChUwoZ9HH290cN1YG+xBNAU7PLqL1Zv7KZK2OehAW16Z8UKGZve6+CI1LqBBd3zcwbSXU/g4fhlZCTyYb1EZKwxGAIhX2eCJk8rpoMHTwMC/qIy489DszYCEDjWlik5l4tk2cVKoSgJPr3zmCapaNpy5VWI2j/nlPl62KsCjmwsiB+xJT+m1EfgxQCRAqaI+hXnHL0nZY5uanhCW8diOKmO3WLs2TzS/gKC/5qqmWlpuOaqPY3gLy8Rsuo/sygSPpJ6Q5BGdlE/I2KKQog9gp2mMIzUzXzcplRJQ1Ok7dCJtBTqQgnH9VvjRLWyGoNO+PA370GY6WHDhETqtBUneNH550Yr64e51MkR9CxFKLzAnEm0yoLLTdi3ti947Yt9uYnXRlZqxHHR6rCYRCkcohAEW5h1LvH54tzbvNvdiG1WDjglvXSX/n2yCMIx+x/kRIvJhvZVR6SrzFaeAO2T44syruus9gNUxSDxuJyIt+iGCpQG9cE0Z9NQugggttRdYwcD32A353AaH4IM7mdCHpeTIsghYO0sZSzjIvJuiZEfOG9Bhg9/DnN1AOgIagRqqhu0Aw3eGopf7HGF2pItVX75Nym8IcBg97ksgPZXGLSOe1NVwplnuJD3ig1um4qjI5io9207gk3gjd4XR0DYyNL0UKMrUiBHBQS6P0hYv4ReGorTHXqFEmIuui76RXRGXo4itBFntf2eEkg2jFwwJIbDJ9HDmWgfHiIRPpxUk2qBTvslSlhATr8j4yONMBx2WKu5w2pxGPu5AF8xG4pttvkBkcZJ2LAmpYHd8HRzOE1LUyJCDk6RX/+Dwr1S29eZ5pv4R2+SRaALBOvRT2dsH7mq05SrgVBtNjYzLE348FaCWHCjaIrFZGmpK5LSmxIPZiAbnPC0LrH10Cb1NjmoacFQw6MJvLTdtAEpJpyGPL5GF1kstd2Ak2iHMleI87i9htqFaD3pZgqP+MdAK38yCJZWZM4rzVdlrLDYI/kuLpAhypjDw0GyW+XZzPabGVbwLxiUd+RChtVXIuaEXIUUB7cDeLMLfToekkcvqADErQ6fQiEWxsTEQhWnESKsectebbOOLb0q7auH/RZz/tfRbZjhbzPzg5aYyf8/XKMalRHDKzOQd4lLRrnonyhFqdhGAsS9zPTlBY8Y/tBzKPXL2gkEOQD0BFgJtav4e3Ri7QbDu+VGRfni+8hQvqXv8Tk73YhAdf2yPa/oz3XKjOxhWfl9YftToUQgj7xaT6gVr9aV/f2z7XYiDd0elFojukxy4bmZeEuQeYjgUCbkVxBlw7NEfgrqCS1vbNf8/q8P1YlkFskMVsvmbxrvhOjvELFJFI+RQ0te682YkTBsO0Nl0VzJ22Wsvgk9PuPa3CxnDLA8X2garL25zLqqc4+V2lzSZq8EWYEJoMIYYOmrkXHShQ/Rry4FGR1crbL126dz7BE5x4UknUYL+jUJaxqIIkb7XOXY2PFJ3vRgjiQIEjdz3C3Iy0uZQ22kSZqrT0OXr3XhCT8aD+z92a/o7cBpn86MM+cVNDQ4I9d31Bq9PcdIx9AyUJ63RWIkw291bGRCRGpUr1j10xEXTqVYxcL/bthevJOpmAt5MCmWn6NtgEPC5ZsSzM8sd3AS0hB2wSPBvDRB0cWliCssTYfT9VeWMp9apKd2IZoZzOwr5kUzdB3gcdJAXvwRhQPeJd++ZU/KOyABxS4ZQf1eaB2LP6fphu+IsFcB5CTWYt9DdeqycnLcKfWZgu+iUWkD7tFGbjBtuOkO5PM8FhXpUxjimIMPbsLuyDknZZ2FLpR1uJwteFxO7I55j3QXqtbZYsUR/MVW3rL4to18qzjZbAS0gl9Tp03MiVO/jeSxQ2RNbv1HWK5UxpVx0YczKwrD0i6FUgg+QbPPaGm42hG1b3jNboxko7F8iCUxSHK90V0R6FlcoYrXsFSxllzq8C3W6JsZj0hm+k0Lrrk5VNkZrRgdIJt44+pFSdDG3VkQkMmmZs/8gAkeZm00rzHZ84KWVxc7HYoqMJga6Qguei4Yh6p9LMdhO2nDVCOz4vzqYy05PiP1xpxMgjJoxjcjIY4TPfGQPKdzQ0IvSSnPcwJ5Y/nO2UT+W1gNvoJczbfa5y0lzCG55B0/VDNeyvvYDc/we2L714XJ6qhRLMkMgaLTGlslxCTx7MCrcIVDfhBYvNZIFeqhlyFZRletA7CCCF3GVr0X0GFeGFEk8CxetbSWN66NIgN3S292TWPI45tcEVyNePcOfCe22KiEDOxEXjJNw5xzOU38xr2+iVJkF2xAiK6v+0VUt/glewR1AgbnD1+lLEisvbtXzfRduRQI+D9Oh5j8S8ZUiMWB/UPGv4VE/iJVfFW+C3om3KWUWYdsCtyHn9aYOZ6MA3DyfpePAa+BZtYaY7jEvtHMCehTFWz5paFuvi/Irj+6Nt1wwvTIazkygBFQDg8r7lAsHMAMY47eQfq2yQocYGz9+DdT81fNAozvIrtj3Ruk37R8SZrnOdg61/p977peU3HVoWWFsJ6bRgUfUHteTs718ixTCNpcVzcjWsAGTxLdilVtLuAYs87LbotPAxgkbL3QHvWM/QJlLTlI5vovTR1qeznbmctM3UiZwuxU+ZEEyqJYKhpBmJqLTxyQzvbI8WPzsFQwKeZR9fecec6vn63ZqPl5BeUVFp4GOc5Uc8tQo+j1eWKbD5mz+khAA3SZSGDL3xmQc6Bn3ynpSlIpY6I0YvTjuMx3VVGWtp9W/pvGrTvHMMn2Aw3Z7FouwM/bTf0pA+lU/soXr7Hyw4yG1FBEClgo/4Y6B1E92sH0TV1h3motGzBj14H5dn0qVNyhA3kIDzyFyM0gagQCRc3vchny/NcTcjaqgpf/wy6ubtwgm9cBhOxZbqjphlywJJVFFmlSUnJ4IdqHqFeB4A4ByKTnA8ryOuX/rGZfbOUJ12InpbU+T1BurhvtzriqKpurCXAjN6RueRasbfQjlGi0Mo/wl819qH7YHIVbtJT/4Ya6MgAZrm/n3Wh/iv4/iWZ3m2uCRrdhGCpqUzBC5zGVfWM4pCsMrWUaxc/Twe2fNJfIeGHMEasg26w+qibhW4F4dllTvqmQVNs4wE2lrB9uQ/1jxAgz5cl9kXBn3VHkbQOULONNBrvzcN4QfVkqvJL11tAQuypwFnIT9oLf2WzOof+MYhCPsqdPM2mD4nRM4uHcxdrbWfr3BixF62cSNiAGwEMxb158h5X1k62Tzb+NY3sIf6BeBEihQEr+wn/NvxHhDbGS0xiS0pPddQjNaB/BF6BDWH+Ln8DXPVbaG/4hYB/+S6rIjCIMCoWcL2AY5qjBMsF/6AoRUYPz2ZwNOPepMsApX9uqHJRXpZOMusZrAwEz1W0PNcOnKuqzkI6+srOPpIIjcf/QL0pJlMSrq4MMISSushJSEV4/ApgWMcLjGI0qMqIWv56V2smLdQxt99l6h104X6RFrfu6Q8gflO6LtSsjCIHaoS2nDIECpwwVlMBLpDTI8qjJB1ERy99F2DTalhqFpVbS2oR8u3w3WnF7Sf6SMz/SIQ9C520e8DcnqgVnj6yFy+p8+fMuKk1TlKQ4m43T7km7qT6gVcl3ZsPuzkztM4JpJLyhhm+D1YYaqZZ3mj9/JZLuteKY0QFFL7jobFpgO5zde5jHnBTFm14CFel3D5sO+HrhPQCIUe95NzMvLS4udoY4Kr2+M3I2Xp2cVWwY8dl6LMTQqZh7RUFaDrIkKZDjQd712lNjuPp9+L0psKdFkmvebKhrTjesFRK53nA9EQhEXkgAFCfprySY2AFHKtiFR7Dr7DIpwgcgCHEbRhn2QhW7+IM0GZpDRY12vEXduSikAzrMYH4nq2lxGeZkbm8l3FvQArxqi7FCHSpidB6uYn83yfDWsNcoUKswwyuDxz3Tg5pSDZD+5Ll6bT8hCVWR3SwrlvoatIgjDQ7umLG56aBwIskniKMJHL6kZmudpP4M2WlGpBuANaIGoJzcjk3k44xhBy6YvBxSErArTPrBExZu+kHCDbCrFNVJ98NtZmUZRqkmVzWyOqpiA/N9aM2QRFtE1JX6HoX48dXZUBeLENE6Po5l1q5A1L2B2+blz8cXezlnsG48RMQhURcF9dgYkv977EMebq2+vpx+GioSkvayp0UGybD2F4xcuISWOs5+Crs8ae0h33pDOA6JCSXwgdh0qybXwztFXOsFsnn3fZq7W8o0RcFghcH/L8Mjr1OUKKxKUD0WUeKbAtqRxNiUk0Jihowuanaz61gSHCtUwQuWSwFIm3Q/CKlsBGJZHX0bDeaWE9QQZzvOrF3p30VUdZ9z+WbWVrkr9dpX+viY+FVBPv0xHYzhsC/7gEXA/ZCoiFaZqNXAE0uMWrWb//Rd9BA1k570SCVA+V+mnoObCwU+cFbX0NDfhh+EX6T0LYxO5hBFkUQh3PjRD0znHH2cmpPlFXVLYuVQputrGL+d5SOg1SRBv90cgYyXYZOaEqwDfW+KPCp8cqeMuuk8IsWpg5zoUrMX7J24jIpGh/7fvEAMeldf/0EHd1YOXt5B8HL+FjsWAH0AigcKx7gNHmvujtVKxOtz6HiiE9RPmpKI6jFWHUQBhBE/nt++a+b9ktDss7U+SuSuyM7/vUKWqWfhHgsDGQVS1MMgPGKm3eeyL50srufT6BHwXfVEFN8lakgLeqU82a+JGW9PjKMMe4GEuqfM6a8BOTzWzWVEmJrRjUqQUZpA1880v5saBJklz/bTjUDgEHEbITQWmrYS5kclJca7Rh6DqJMd5SxVFGSMlQWW9tHNmyxdJ8+5i89frWJ9N0AQeALq7DZ4HPomi7JcrYrV6yU4UuPXQYOce1XnKA9aOYZGdVdeQy7eHiZRvm22rv+sxriliFlk6flmxuc/JSIn/0R2sjmVEWdDt666fZagXRsU5izory4sDcAmSkEyYmEcM4ji4EXnmL6sQbj0wnq3KlZNkyYIo6M0yt/7YjonBgbBVJPJrScq4b4NtYlSdCPk3g8gROQKMscKf6Jdqa/sxq8WLnASoELHRo1FBLvyhgQYJWPxqWcSoVAmrkAWd7er7ey85cxz+y9o3KX1qcFpnv3tuFPvAz0AjPgjsf0shaYxeUxWdRlrQoo/E3X+aD6lab+8rSs0ZhDSGcix4ci0n86XplWtjYeWcoKxVK1nUU5iyDFo6Koa15YhKiUrvve5JmNuEZrHnaELBCuUGCz4t6CFLHj6BJYgbub5fCnS7Iq0DA+8R5rv+hUbePdhhjr5TMT8yqCtZ0/aKMAGAZb1AnvkHePZ4TX4qj7a0nrIr8JcIMd5rtU81Eoauxn61G/DejfcXbzzhjyWhj66b/kmmiXIMWY0DCM0jWET4mKLORzdC3MQrpec5Q8RJh4na144HqZqq7U68PUD8e/3NBT/PIT2Y+Bo6m0mIcry5jPVLw6pHdRP11GXwpwAwDMZUhiUsmJqGuGNncf+UWUyfxhYBPlOsYCxDHM/pQKHF/+uL2DNCoF8ECT+FstO+jY0UyNNXeEmNQg1eqEzuDn1QXsLZZbIxq9CyECg0gydHxUGNjUYltbyS06MTzk1W0oU7ij+V9swlWxsFU9ePgBB7uFuf7I9TYPBlk7PkMIcg4nP5MLCIJWsTwp0geLeT99fbJl0VfIqgv470tO4VLUa9g5ZSj+cyzzSyBXzsHU4dehL5A/gKtmHSSHe0iuiOmaUKgkNW3WObAC3HCSrDSw2Bynk+3lRjG5qjiVEeFvy/HyVG3HY4NibhtnkmHTxKkwiEfZ7KbJOGAjmtg7D4QTI4wMNOTTeVv8WEyNLmIVJxCoNn9e6ZMirV28nGGzo+PNyVTPO15v65CLAt1iEf4ECq78BlaZSHG77JMPZ39J/IK1H3cY+6Kff80w1dv8vCiMZPrNZa2VbXb59GZo7JXx2J9uSzlezVPkE0xS5QT2/EPL+r/gya2QE05321XFo14IX2l+PwUS5ZT87+p3PGDgBKT+WM7Y00lkcmg3gAZtBqJXa1NKrUUB3KYHPERsGw5q4j5Mt5eZ3MiBnxJiUHTLkm5tFgJsxFxvItmlxNAv+i0zwS0nYVDUSNa44LSJ71oxArPtXqAbcc7p2pVsCzlS9i3lAVU0YPIp1DkYFnBU9VdtLwFjhIaoM9vd8350ndKTu8NPkVAe5RoNfIHuxrbHQlgyjKtIplUAtPcNLCeu76sUvl/vYm20MnnCjIRpPc4Ap5DTeCCk0lw/44wadSD6vSaisONb09ScxgrU7j04yEfYrsGY7RKSAch+AWs2U4TlS9CaDs2p4ZkiJriARaXjLPgBPvlhk6RqSpUf4H4PTaBxWDuMTurqTtXkpYxItL7MsD0JoLzH8wS3TD3VOPuZDJ2B/Vig8BxFz/7Pyq1Sw24MFwQ12zqfC7iK538V2MJxDIFfxbT4qy0u7j2Dukh0Spq6OGEIhPmMFPwXG7vDqr/hXWDlyuuTo94T1DLTiGAL79HCy99bZduBqVrXU0H1wjjNpBG34rW8nQ0PsElBkE1toOaba/e3VqbZGxs58p/3AN5ANzpqDihchSYlB0WKyoc+sbxE/3Tys47TytF3FeDxwofumU7lxHi+tG0dArvYIOB6r0pvK/KtI8JeqmeH6xKuMdtkPLacVh+yoeQZJ/Uwf2BkgjdTHUAtkU8fJ6vqChOlu2Rht3hHgPT0xyMNbKtS2Aosy8Qyzim++OAkrj9AZcKda0qxKWFlF6QMObcgFhU3V5n12WE2rayIOfOpFi0GfpcGpUwhNeNFMTNQtIx25teEvO3wwVu/B54B1bwBJ7Va7x8G9F20gSxo5aCUed0ht3jP6oJieFhrT/r5brwJ2tEl6LDBE5r6ZYjS5qWN4/nTrp/LkyVIinVCnV6fszAGn3Uvu6bM0B+U7cbJtdRNRGdMPbTe3iJhI6hWBUN5HfQ3NSTVuE8Yt3ctQ7jj+w32kuduzAWbQA4n7lq9O3zgHIIIvezrpgAKFcAKrd9nMT/ubSLcSZFJaA8oPCMTl9rFKncVA/y1/djzJuyPFzcjd/ol3UUmcuby2TmiSSwTybqBM2dslmxGXeaCXSmpv91PHZyea85KwlVIcxaQBTU6PjCXbBSA9pQg7xxagJwbme2yPZTFtiq9zGS+asAOb8WzOUTWPBsR3lpuhP9nYYnwJrHE2zZJyi7kaJlCx1IKpU3H/nyF4vF4E2wAEJ2k4B5+WNrsA4fqJVRlGu9anNH0/huOReYI20/OMsDP5y77YYIgyN8yKfO6tPsiszBCE5sXNFhR9cdT58d0CLkyLVDQeMvqC2qtnJ1sbylfMzEa+9Z9nCY1nF34xzsAo03kCU6DJoxVeRj5kyhsYD/7LScT62N3Cy52pdFvx+Z20OG3cMxgW3P8VxWWbMlFsD62GMDFoDEWTjExwUzMTImLMIxLcqECmFtoIm3eONIqDOpJglMKlJWkc8UTa4L2wgoDHkxrMeH21QKk9B+ukhnuqtE062S4v4q+ZUVEcdsQbGS+g1s8kLe4BHYOZvEoaGxR+Lam+5M+OosGryybDmNtj/vjo84jooO0PwByd3X1NB7oSF7cwS/aCOsS/K6C72Wd/2m5WHONLmOAi9tRFISeLmAxHv3vyStHwqhyFUCAhSmrnIkS77aNXRB2M0WeHkA5wJHDlgL1kCUszp8PK+9/envMzk0+Ohp8ZUQSF7/mBOey/oHWeiRip8MdI+Dh44I4M8TpBGBUb5xo2Rslp01CnLr/xzGPBqw7kQNa/IFLfIUee/vAmjPJmzbDKNJpJBwe6SBGbVbLxzPHiP+M5FYlmWTjtXT1R6DRUWbPuhq6qTm9PJrWms62Fs+CGp0cfiVEXTg6xWjLGsvNHr1GQhLRfKu297uvOCxEUAlHuGkljkeadon23doQzbw8oz//qtkXzEuLCoBUNT53uTM+PiYBGJSrZVQkSNi6x++qV+GLP37OVDKnxfi/DcZOgzr92CxvhGEJiwXdREIH8ny4tfMUPGrEPz75ZcyyRT6io0FaO2VCELW6Gx9JCCz1hO+UD6sPL4vsYTJA7/yUQpT5yB6hszPfRU13HLa6x95b0U0wx6hbUJiKzbKGu5Vc9AZEXn/Lz9IQvMsj9ntYRaUnXu+gIIQV4Is9NW9I+iFGrJIk+d5bRJaNrTZOSaLSvIwk44gvnEbfI0vGT9u045j3yMZ0jKnwuBeFzi432jXRJMuP4b2196gtuqnbF+Mb70oTpCX0sDI2ar+aqlQR1IrT37CL3QtA952mQQWFK4m0CCGkWEBetLXW2A2MMyb+Nn7Y+rXuUgFsfRzM7pF5xksd+1LlWE3Cwhwstub5do7kSdWiSN8JjlnUWjbTJ+MzzRGZqSupg17D4mUb/HM0CmwtPnOIgbzqzJ+Lx7HUCyZ2Ek2j6QT5h8h/9enuiNt1hE9aQ9h9M/JxmpbzzQX0kU2EQ3/s5dNwfYtypw7Xi0bjlRa23QtWlTL89v2FBbDGZ/JQSGf5PyP7TuUQLx2Vu8KASpHR0b4xGvSP9qhp6VB7RmPJ2X0jUE14ROiF/yEJGipxdd2IRQSkqsozKqn6c0L5ip/knLiPa4n5sxlXfIZZFmDtrCos8aZw1wQJe+rrLzarQpqvJyEnsrr80iwKp04bEeGaUSNQTipGLtYe0rxqLLEWxAFwtVr+IG3xJuqCD1iVKXL9nhp+thh3z//MstGySUMZZvE8jp/v80rGUoc5AKgxCWZV9IAUqtjE/U6zLQ9fDAl/v51vzfo8pPPq7MI0PrZj3fleHrphoFP6VctiVQGrCqqgiqDxBIHPGjyNFUENmeICIwrHG0QRklImjwHqQ+p2lBQ55mRMT8I69sdBdiAxL/tdE107UUO1Y2p+4iHSTpFBZfc6EZQ8km+z2EiRLIBXt9JQVtyxsNnvY0b/DLun0GpCBPXtb0T9DNETzFhya6UJ9qFriVEigyPSuDfJh4iHvieTBkR8QVvEWRBh6kr1vpQL9LF3iJjoxypBIl6CG4oJwwMou3d07YdPgbgZNSJnOItAc1E3yMTEYOb5/VG+xl6eyl2uluRZx5pMg6IAKuSgjOOwwoHU96B9k0arjJS+xoY8oB6BgaAjaslCYF1e/kwY1Vwz4lUpm1+vwe1mb5XdxJUJ6Hknz1bUX8Bilh+CI/gTyXhcbI+GnRjq3izCZShcr3bbApSB1IQugJfXRvDMrF8VcKqOAAHffcc7zRpWJYJWfN+8ont1CSucFygKPa2FFrvwsz9BZdgullGvQOvkiHQ+5WQeC0zRowUW1giVwR0cbwIN43YGgmPbpfEf6QgiXhUY4kmk20ajBbc/z9VP3QSWO6GcCikpboCatHy4jkxwHTpOyCOxfOEtkERVhTzmvOy/iHOpJUyWiz1iAoNDf2mWocUhZ+f2eN5C4/jKPrCYZpo6V7mr8MUGNdDNGzaepGDGQIIEieCZxteM8GeWhtyNmZpT4fCu/vZCLH0NK92TzsitollX9jf2QZHPIVOzMF1/u13FPPoroC5iZjkwaVw1Wz4ZpkROdlDQNpJUNTz0RRZJsBkqlKJ6wmmiuvqqM9DMGSNKwTK1Zgm6Z48H6CIJsYYDINBf1oemeq8G5kY5PqXHOdLlAEf6mlzKkT4tsMyXpgLlnbNozzIqwbKgEtqnPtr8t3z18AGE1WJxKTOCTaaG8ZJvDkMP9+rNZbQiIRaPouPx0AK7TTMbEXQs0GHL7I1c/YblopRfYEVwxkZQr8QKkkbbMGMPMvlyzSI+dqKNqG3AUqg6ljJ3yY8dQyfP9uEMaNExWU3okGiUtODoMUmJSPIzjo+TvGCrstmpi1LO3w/tMIu5TDGtgp+54Yk7xNKp4x5ZWLnWlEsgAf5lkPXU0hFQU25S4GMrFhzFD22cDvpn00YcVSBDxzMsDBUFHXRVnU9lKuGsA6KOL56jmvD1AwlLN+vjqs5YCCnvQ+SU1fri+sl9zdYl7uDJNDNBvR+4lTdyU1+l4u/gpdUCdPyXYvX4RBkDYhMmmcypiVlVxv/eXmgyNUM1dvuxaxMZyZKLPbleGztRctFWFqPYt2rkPg7xP6Bdf7LuemGPOg5puzBZQt/1LTREkD/+Kai7GXEqMp8MLnhSXx+xYMPfsz1vQ3x4K/eTPQBduQjbhmHGobaK1trDCzNf2Yi9V1pBta+qrAbf13xMv3oz+XJxE12OgBO0aBWZggXhhQv01bO4+GO6Fe8fJx5ZfaNtDAuIjivrI2GMutOL5r7qx0iDiMM0wYP/+49pU6LFIHF/CNJSxdl60BWbtyiRZgdWXOm4cEqGlXrsg0k1tmtvqug8uJ8SRnQITgQPoHKuV9ZQq8guOATNvtL8/B1MfrTU//8OBb4fieAf+Wxt+UpIEEB7/aUB2LbR7w8CW9pqhSdfMQ2WLWya+Bgeu7TejyBBe6S+lBW0y597Nvm+sm5BmrzyvjegrNLfzSl9AMjOScSPV4l7ttuax4OPRXHytCGeIg14KP4Erbgik2Q/uYJ12QLCz4VgZT7+BwoUnfGkKUalsMe09aTWa2po9+99tBuQwSFohfLgUYLap7aJLdvJtGluF/rM/0jPHRjqZ4MS1fVGWNn2QllskDSGFPv30JodZ5YwvQocTlQj7t1oBmlhQG6g9/ym8Mp4TPnFQaICWtjOxY6ccqw4iAOti86k/MuRrXabttYb3DAGUfT6xxLVddXVMx+Rpij9pQNIIKtFXGrf634d9Vv0byDEbb0TOZghTVUC8tAFkYDZMx2m7liv2T3qF16L0qBB4M++hj1XPWJS1gd+AbRgHyYvMdbjYW6CBhnqpr4dSXoBrvSbFKNbHGqV1/rIjivQwsMSvqY4HDiViLTA0KSKHjWuOt1ZedXYao5NzUAbfGvly5yc9Ul1owxwlkPxTMD2Ymoow1nk+5wz9yZp5uB4uOxt+WsIAuo+2Wo68vhgZ4PzBuc/0ncrLpN+vCTolQJg4QsbEx5cvnfXEKOf9ayliOruCz6OUTCoTiiCxrcDEDiuL1a7EdK92IZ0lSu9nSJu+N2Itqp+8oYbJpnTcKTuphvP6NVVDWjR7FvzmKfAZ/Fv2sODcqjn2RLkjB900x3ZeMDF7PnMaDClBlctqZ9TMNxuwBQaEern3TQmECOHlMNrHeQT2OtUilyKl+wqHJEVC477iE405stiIU45AG4VqzmJGyQJ4OC+3qRZwn4W8WVIZDegaATkAb9owJymWKCQI3fHaZ8IKp2iHJSZYLyKeIbo0qNXXS4W4C7oxZSE6AV3tUQgiPI/+/bvLddalcYnxME19Iqe3BkfsqnvoGyXN3e9Pa471lpRgLhzooTNiesrLH5phfaGxCnKqpMtFo62v6SAwRuj27tRteQ0R21rcqAFNyYPPk22DGKn4nU7zchpseWxTQpnmpx6DYKvdQiDWk2t65xpESGNSevb7rmWzBsJIz5ub4bpGaMPr+/EX19jU3ECo+cb8hARIPCpwuVXThYYDrm/4cqbNRl+94QHAuKnPZjRI61HhOZcgkF6CDsrnux3g4ji+RCXCK56si75Rcb16+IG0n8sls0mu54jJvuZtdGyUhl/C8aL1Vyn0XPRsBeYEkBqEfdFaFgIxwplVjmmg3WGHCLJ4Ke1nBYOmmkAGqgpz9XkbAacY6LgxC2oUjAzYnUfzxNAfp/gYH038Gd2V6B9HrNn3qJfku/4RgmVZeMsOV+Ez+NTMJcOeLHRqkmC4VepupNu1XsUTm+wgyfhJPz+Qj6LB5lnNKSR+ToULRiDLTaEoTa6hBBzLlXy2GA1kV7k5/qmmTf8sBQw86yik9UxtVL1KUXNKzjF6LO9RLO2CKKJ+Go48nPo/jA46dOgzy7J4u0GHcMLhL/7+I8fTd9/LQAafA5mpgdnrh3PcKOQZTY3R/l6WitO0naBkpdNSOMz7H4uoo0zDIQvBTtX7OzQyZUJgyPDtfubo5Ixye6km93KVU/KZKBuq6RnETufDaX9jAuun+inQUy0GGJazf4TQKFgg7YWeOCMpFhZ7OnV206/UpBe/U/iq6oRHMfwxk60arcWVvOdrmmp7/nMEptgBsRKu4llT/2I5Ghfxw+iFrLTntGWwpPzkoAwgz92ncfr1IX0W9dPyijw1OiZBkvdlNvO1TXEgaNzTIngi82cxxZCFghTkQg8GjCFRX4TmECXeIItlHNag2Xhb4m3DoQH7aG9HrKNg1zDorwRkkJhcslAm6X0cPjSquA7ly3+ZJt3aW2BsAo2KnUyriOeWLl4w3QL1B70CB8kIyE+oAf1rVTsrIW4MT36XzSk9+TR9HXysEdhJPTkiI2k27pBxic8kw+m3PnlIFTH1sVCG5ZX/DSRt04efetPxSCUlBlZf20iQUkYrdcHF2n56HmamPl3qmD+Y4nt4byq+dviEGwhO2nCChswE+QgX4Ealw/kJJyHJa3xVapbeQ15aCGiHJdw9t5vqYxjhrdEPyDvv/57BpTnXG/ZJ3+l733W029TrQ4379olYcY/EZPIOJ9MdBWUS6ZvQ5YQuPZ273ua8Ym/5BKThmgkSCM52NVTVWfMUq8HxI5AoetxuM+rkKSMdSK1u2hiDcMrYqljnIEFj7iNakqNvCADbCh0RqAQCG5Z9Pp2FkvCppVt9J4NeLpQQIK0DZgnZVvliKukiz97/wTnMiOyO/mkbbHAidKt9mxT43dW3jUdoDN5W4M8u8PxA1Ug9K3w9FZlI58MUqo2KYzlmZcEJmsr4UgjMSeIa8L8/H/5OTun8zI8ImfLrVJF5CwtG+aIGfzQHw9MWrgTq0SoMNmqPY/zf9m0L2Afkci9YkTdB/IKWjy4pqfLsCgmcKVoAa+Kms4oPeD4qg0gX4JJ++pmyQ0Z3dcdg82NubbmkOgJNw8gzGrAUrqIIhrZo9XryGgq2F7JQjc8hh2+WqZEKLgwpgX8mO+o+G/+iuyCvEiNvi7XIPL+sDCls0LMtMljDwd6NstaGxlIuMLyWOozQfCu3JolaPvzYdg3drrcXF1XrN6KQDXnfuW8Bn8HhPd5bjmD2li6ZU8kOlw7TqPEXt1aA3Mn4+luRgx/kn4WeiqP7FQPwp5JMAXE8OfX6Vh0ku2oUyuivHc3+3uNj9RCYFuejFxM99WF90viJLRF2uwY1BFHWkggHT968RnTWclenqcDNxrF3qkPLiSEijbtvu5uAxynrW2Wr8oWFj1jz0TP2bgIbNLb7lXTe6LAIBTkbY+X7LeZtEsKONRCLBeljLV0033ArSY39/v5jbU0EKIP+fEk7M+oYh5N8pZNbkvvQObp1OepO1jsKKYzoqYIyNIdM/nsFRMEEBDl7bupSeLNuYLT7vbCfjJZWXVbVoiAfJwXthxr0aCicS8wAaRLPAqw4VPpm2l7n+wGezGPLw+z9/fcJu1+rCARvFc9h2AgQB4NiLgQb/ufzpCJ31fDZP1Ek8MMwX1ppQ341m9LjjTLoTvAZZi7+q3uNRpqX/80vd/nDRF79hTqp3K+oOifyEpD7wyk+5I5zFIcn+ukdtCQ+71r+JtBczrXpvT3vwIuvaMHurEqO0/WYWCe9mDsRfJTce7nq0mKQRGeD16kft75DHfr2GFNTJGFCUxF3h6JBTHELmMl1q7LNMrWsRf9jRTkqw1ELkFDPG4dnoJPcAdGPfkEns2+ShtkqgQwvBVnR68hHgf1/Sh8cQDUs86K49OiUn2JKpvQJQQWxSRCnLA1sNlip0yxbXgzgdm8Yx7lIcT8SxQpDA3DmBpilzXCQ+FFlg1ZgZt+E6niWF1w/BD26zao8k1FxXLu1OcgMPL33xx/mhbbFXst0Avoh0N/tFjItCvkAalbYQa5cS6mVEhxEI8Z30+Kr0npptXvlNPH10aN16CTO/kCWANa6y4pApx2u1xtW7lFzmZLRAJ3OVJHmhzVAT9e993Als7F8VHn4P5SneVgWeSbNB7FF4d2BcFHWfrjw64GLGQMLCg0XoUfQx6igsIePx/D4BUrpZnLj1nKtoTGLoJHJxjC2fPITM4Wi2yUaTGQhhS1FUt1KWVT2CnlFmt/hyPSqMOae4h2LlCllaKqWK4yELFYayQIrYfcLDvGaY/hFK8TBS9FGC863YejTJjNh4WBGGxW8ULTaSYanlX5kTnofXtjvtnkVG3dOF9M8BmDuzH2lxij8LAXro7GKnXw8QT9j+X9FyGXLmioR57meEdZBhEkoMn/B15TElNpXhS8iuUp4rV/8KoQ/0YLyc3emqlL9WB9g/wdJ4l2vIxqRCOnUnGdGpUTyrkF8fvfxmaV6Socp+0V8G9KvMsLAvcGv/RxmJkdu58J5hDfPGXuQz4lBP/n7GRoWyYwlJijkp4iSIF2NR+LT3hOHXm96+AZL++rgpqDaGVM0x33sXKWLUdb17vmmYa3aBlOPUzFvrn//fov14BRyX8e4VFwsfb8P9ftUTCFOWx6hrAVUrRmfICWr2c6zB77jiDCEq+eWE9QHbEV+5OdnrpDQJSZ5g/3CO6OAM5lyiZ4SMW153YpI9XDQ8iOSMVbqea9rhYRQe2wCmJ3AMMKKJ0qw7Wpf7xnAgzupVRJXiM/fi5mFglbafNBp7S3yvkw95X4tWn0TU91m1bf467NKJL9XA+3ov8BTWnTQ7wZd1GYbSVI38cG4xm69Lh02F4YkdS9I9wRNlEv9jZPOgS35BFkk83Eezdoru8V3GVAXIZSLHh9eGorpazdcujLw6cTorSJSuhlseMuXau4L+biZd/NfFTT9N+jgkQTyhZU1J++iYTB5vuriUrtDq0tqYhKoOk0TCaYEdXeVrVaSk5+S4iyjZqDsrh9ve1OwC1B2sY+o/H/Zgnj7Neh5UayroSTiMwfnzb4jfeO3NBjIKtGBiKioMFZ8q8P5mDD94/Mu3g8G0HlEtqhSpxdxwV9PTHQBQWduK031CDp29HbCdyZ28QwiX9a3xRdXfWkeWXUkhxz3I9JJ61cts1/pKqzrT0kqLtt0FcWTUZSI/ftpAktwoPLRpYMKBIocCZOWkXOJyPLxKltIis2/Q1xYH9yZPp4BVMRSgUo8as/2RaMkeLuKZKLmrRlwkAy4z+Pd3b7LeN3Ji7jG4JzVuzryZxrVRB9C1eA0/k2om9d1D9j5HzLt4PI8T3iY8qYOT7uFFP7a/5BZ8mXEMprhl82gs/1O7iYpi94I0WFS5yVLcGDDGpjLUOR+TfGH96d+HCD7yLfcvb5lHefpksioJrY9i6vclcxzO/2a2UB57L/Lecrm+pCue0XUbpLKu8V4vohi3iIsYjqxILnonAmfl9gSmV5aKQ4wuuO1n0JEmur/851FExa/fMUOe4zxPz8GU5GDtKKW5lezG553AQ4qwL+Rm/lphIcU68dh5TVO8QlEcT8Ifh+C+ZSaXWx3MCCTRe3VPfbpgxcyRS4pojszVkO+Gvfo0GDqRZbouJpRM66uhmbcH2vNrOM1ko6s6+jioLIi2mYLOxaLya7VWI5Q+bb5eJri2iii4EEW+FcnVlaQ9Jhq4/jPFOcLQO3ppKaM4Bb/gmVhsWJdshk838ITHeulx1T2WPFXgkLZPlX009C1PkBeOTkR63k1nSfkg22sQtrsu8m8vXJnOsFCmgD23CsISWSAK7WpZCp78EAcOBWMTm6g3/aMfP2FgqknoKmQhvwWsXN9ooJcJ4MsMTojiz1Wf3k0Awcsu1QtOznxLlTD0fVuw4FQMeNyJQiV/YWEWlwgmwHAqU8ob9ngpNyoDlN451Gqd4bl+Y7ZrrWG7pIEU6aOYh/hB+E6h4YLFgRpmUNIJ3RUkrW8f0+Td/LAVVkLw74L570Lcv6EvndU7aj3LITmR8wLJYvJRqedPEdbrznmY9FO/JoQr/HfmpndpU5mg9sgPqgsNQBR1GENzdNFjTKllydAM1Tc0HheTTuQt3K2PAEL5AJEoQuFbWddZ9GrQdQGVYW6U9/ZqWflwjOIECWRTO3BNlXL4hhz8DAkUmDNOKvcxIhwLElOxV8GP7j++IwpY9cxCorHgdY932OKEEyyyMBVsYVpMQ5SH/otZf/nZgBl7Vs6tIiotI7Czq2jmyg6VSwFNeC+m1I4JVCZYL33MGVmU0fA7FAqi0zrou+eSCuObVG4bbfxCBB1awY8wzx15+npQsPTvEKYzlD+DOuV24IW0v43Rhv+MYaWw1TdUCea2KbZ6MnOHZuscdeIFAk38EF0KUdKBpiA38lyKgXDKXaA6pfc5c0ZhyWASYSCtxmR41oro4HyaCe/J5Okwn5Ssd48Id7NgSNqV0VOnIINjDjJhDgEeAaayRx+7QOVVp0VeFWu4HRxFnIPRoEOKj5v7MPgVsJHC8f9dTe4uCv/t981fSoEizt7J7jpX+YIhXtfCG2RsvNWUqaqW7TRwlPaZ0rlwkANChKVQF0pVCwBadpk6z7CSRXHpEpfpNQEbiodUEulgPYutnMm4qjtxRHfdEOVu6VJdt6BRdgFZyDWG+oeL5Hk1D9w6eMe7O+mkbz/4wbLoKvf6p6XbWUQCj0JRO99zGxteLjeejz2mOXLyTmXs/gQ8lAbCsX9z+ysa0nQ2q8nc4w7xBPM5h10YqU/t+rb8X2psq2ZVuHPcknReLjGP2VmUN8Od2iu09WgM/WdM6W677Y3pODArlnEBYDpwM/E17ItZek/
Variant 2
DifficultyLevel
715
Question
A square table top has an area of 4225 square centimetres.
What is the area of the table top in square metres?
Worked Solution
Dimensions of square with area 4225 cm2 is:
65 cm × 65 cm
Converting to metres:
0.65 m × 0.65 m = 0.4225 m2
Method 2
Scale factor of converting cm to m = 1001
Scale factor of converting cm2 to mm2
= 1001 × 1001
= 10 0001
∴ 4225 cm2 × 10 0001 = 0.4225 m2
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A square table top has an area of 4225 square centimetres.
What is the area of the table top in square metres? |
workedSolution | Dimensions of square with area 4225 cm$^2$ is:
65 cm × 65 cm
Converting to metres:
0.65 m × 0.65 m = {{{correctAnswer}}}
Method 2
Scale factor of converting cm to m = $\dfrac{1}{100}$
Scale factor of converting cm$^2$ to mm$^2$
>= $\dfrac{1}{100}\ \times\ \dfrac{1}{100}$
>= $\dfrac{1}{10\ 000}$
$\therefore$ 4225 cm$^2$ × $\dfrac{1}{10\ 000}$ = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/eYArtEnT29VXX/t86Pavgu0Lkq82MgUKwb3RbYcnf1vITmTCuIDigCoFpJn2ZmIWmuihTDj6XJ8eRzP1reH+F9I1EaTKal786gL3bZ/WUH6VELe7YZkvMzg5fU80XDLto/0f7EOoNI+JLb8RvHaUZOqiU49sYf1ly2Y9BPFxLlWMrA4r63EE77vj2qM/pFM8B2gbPqMabZj6c4tqV8EyM0FK4dW98xI/ROLYNFh1u4vt3zlpLq9acTOplTEsVh4VGgh9meDdlvKIYCIxbkDmPduHnAf4vvHbNdNAkngl1nDsp51/6/02Hk1FGFGa9Fhpv7Z8cqpiNcqYHuschjocJ5ifdvN9ZdlR+Y6OryH8mDYu/bWWgSV9iGQXDxim+6ir92t6Gi/+ZHY7s4JaCnea67q7L3Hxm+dEm064TRRmo4Lr3vrEuiWnKVe/LyKQXcfmuNtsJgO5emSiJG1YCpix/omWt+VVETp7SNDb1lOjrR/9ygN29iOObz/Pw/SreQ8QJ/9G7rX/gM5+cysScdit7TNdpLIHqlSHfHd5rBUEs1nxw5ZbfU8l7lVQIb1MdGwIqHVGiD3L0z0OexsMvrlV4zhBriE+WIumgn3KrxylrLAW08GKH6FFA56d6MFJZIVDzXncqKIqcMnTWxHZ0e30KmSXS1h279d8FQVWLL4zAU/QbZWdLXlLlxq7tqDjRCxD08Ju3mKJooeaEVKRPt5gllhizngPH9tYRRxF6WSdxymUYA+XTjUpBa5376ST+qtMucWUoEkj1paJIKeTbVONhveuVCm/0iW0Kn7EpV+/FCkjQd2gpZVYNIa0hFTvc+dSSVU+bdorws8UJ4skc27JXl2r1noyTpAxclvO+sxYEnia33Qpb/OYmgmS/UQ99Ghc3VvTQp509Vkg6+5suxPhWZjfHtFVfkaJUFLTxLXYypF1woZ2qHdQ8a01FBN3UP9dI4NAPgUjNjNIV8BgQbTplPQI2yYHu13l3M4Jsq8pHDiJV9CDywMmg6RQHsN+s7kAfXlzrvtuUONTkG6jFhnli+sgKGmN7GbFIR8/SwDyCsB2mF0fNtz878SMsCpU1xfd0HPtvYpy/5/qlKyPUTCzvddGOI/ILif4XbRcHPwYN86zwGgHh3/W6/PMXyj1EXHY5YGjRKQkyVGOl3+EbAf+0bk2x3l9IThGMR396K2bNHhsPNiG9HV+ybzRiMgDSTGC+QQ6xhWZ+yRzlhH+oSqvlTMKw/0RJoDrhodslt9s+Xblgmmow/pr0p2sX4rlK1GH8MHc99usQum0W5yKTxkwn0QGFVNhQKV+R017s7ejfZOI756QoCymA11cR74K8L7/p1CDyM94lSf5AIuPGavF5fDGKuhtXqDOpSvtAw6mkEiISHzTBQqvRbj+CWXXOC38U8q/YVhaXr6MC6TOQxwT3X/KHqkP+hZ+7EwwcCdLgaHGZcFUPFJuXumMscqX2WU2jULrIXSlg4dINtgmukvCXjRs+hNjzPg9rvjtTr2gI/fxsxqAIK1dXgDcuGlVNPwhBqnm+R6vRODtMuvVCwarnku0Y1IbhXZ4y+bnxnYwXXg6J+fDqYJk1BZKTxBg8XEzfcLvPUhOFWL7+emXimztDvPjWWMLKgTqlfuLXbNnMgCeJXg0uqtmOKPSbiMhGpizSZWGKpg2xEksDkk+JzNTbv1Mcli1BNt19cH9FNEIJ4iMAdbbT8KKxIV20dOyyaO2e8ZDU2mdu+lwCrJwpL4ZYdUTOq872+4S+73RvzxdtwZAsfdV3TJRP5GClN1mfNoWRA82a8U5lp/1XsVbmMSzbq4GoMyrKoanDH3dr5u/C7Gy8bwmiXv+erVFIunHVte3nvFOqkWeVdmYFJEYuEXrQZsK14MW9tp6xrmoF8vId3dX2I5MnDLmTN8LKzTapdu9265sVdSPG+e8l4+zEx5/NV2n4yT6cJqLN0TReDlh67YbsMDnt21JGlffJDl8Z45oVOxQsBNEt2lVF5TbgfYz4nYIjFn9kl+TYWz57rUYbDqCCDACHuOUwS+PgxWGsc/U9arsvd7ouj7ZNA13F57zmoJzr1xKPZOLMh9EdvuFtFE7BH/rMd5Ezarpz5e9EG9vJeiEwrQOMWQv1rZZfGkg70NQX/bFDFcAJhqML5VGMURlOaYj69d5b7vP1L2eiYBpdiCDp2Go0iM/HztvjOej8R541UgzyS4u4v4bFhbjoaZcoNn3keGndtLjHnMJTXBae+tuySbknnFeEelyaOzy2OUomtcVSKnBVUTouc0xTpJArXz5xTV2uGEwaEOH0x/D+f8OGVxfATxeqv7lqucPffRnLF/heks4lkFwujZPWbSEaO38jPr3KFyakTu8gwXQDa/ecwTo50moeI60r+drzvL3vstMFmI+7I4cDBC0wuZvljoL+fTBJW3XyK3SdvqlYqRbJQk/Lw4fYIiWKVkgbpDHg4F0+b919F25bxPQfW5l584Op3jyYrcz1SvPxTizQo0E494mGzSA5Yyv3BOPYrR8PCEZCbd5mWsfcchiv78G90Wfxudi5xmB9Agrvr5Q4OChwzd0mihdrGr3Ne0dJP0Mkeh8WJkXSzyRPGo+lm+JtA8H/10Z9rw36cl+0dDMHb8VY34h42M/1tiBB0iAXM2lLevAxH7ALEn4m5zU7MiNHn9C/TJeljYVmmnBK9igQHWe54nhcdQ1qHiBLBVNz/9VdU45uzOjQ6WSVFUkHJZyVV2Ff/pJm8UBSXuNo9dGr+sDChqwNq9YN2T7RKnPbvxP7MdbaDGCDL++r588p6fKysdG0Oj0RJZJ0vYjwFWph3NUV1taRtM8F1XfxMC4tM0wrbCkxXaxUjJ+9l1NkwKljQxX8kwednfDdAQLvuVlNJGnUVhgBlnIO/S37pT3vYCJfZtKkdnjXdMzsLGB8WVW7T4N8Xd6pbtySg1h5mSWq4jZxpNsGZ3da7IYERGyT1GgIlUnQ1HruUPP3xHc42Kt1WzZFQ0JOLSoGHtBcfQbNPz+0xr2zGr9418gLWSyEZYGtCbjDV3M6MfgrRNHkjH84RpI+Ts/Xiz2e4LZ89uD2v/mzbYM8TDIeL6r9TuJFg0UkgZ1q/Nlu8fLEpXyWAcjbLeHe7uE5o/Sz87X09r/92bAtCBdFHVAYsJVd8ZWwG+Njew4xwYHo8V5iCdVQpeJGeishq32O/iUwYSf6DJ8q5jDjhA7okQZjZWL/F5fPvWoKd8gKTsqhv5q8K86rVdy44omTtNhZZviSdgmwjg6N1zDYgwOlpbiYNv4haohPxxnDmUANh+nb43hleyg/hHEWS3BpuCFKmJ5ec06jo5LqOhjWQZMANr1GqcOFUk7s15/SBpxf0lk24jO0ZyHDVb/PFhbIv6Y7HBcVzYJlblWXRtxPaZp6Il37PPtrndE/cKzXWlAs71/FCAXjzyRVOaOV/l6oxWbYD2Oo9FoYeW789dOHglnt3niv7P/4TVFOSIfckCFLz7PdemRTi3x24jFQ2/fz8/1lqs17smluu2PbbCEYrYWGHyA6OCJJFFYGRE9vTWPWED3cUij7RCYmhvHDLpWEn1qPk98SCM0QnCqhEuMxfTufgYWyM3s9XCshEde2UFljABPcvJ3y7/svtqVwph6Jcl30bkrlaLTfJoMjfnTvxTXrGOIWKard3+AUlK9NSu/BK6wHCCeTGVqflG9ImbmAHXTiJKYITdf4lxlEOSZ41+iTdU9Ntpj4IaaT9rRcbmrSJPjZebVgTgV7o6Ij9eaLJ3Zdl77N0rbAafDv7ruEVCyCsrRw+owts3sONK40ieTeNoF/gbC/TWiP3+iH7oUl8pNqfykMMFpd6T0A1ilxZqiSh05mcMwKkO/S116YPJvpgghZOYHJBiZiOCYB1V2OhypsKnYfItRuD86j/kbC18R2xKu5fgpauheMw1+Gkl74tFzzfDUvQNm1T7NSvBTGar/U3SjcWpHF5ZeUBCjx1ouhkMuLpFo0Vijx6QWqHYusSBC/IPwcwheE42aDcEDPVpEYGMMWUuHRS/tKQ7kRZAH81MhkAcpumsrcxz/rBSbR5tHdQ752Hj1jQU1eXum7QV7VExN3yiLQ51mQsUIlt+QKk9WsyC3rhgyBhP0Wjcv1OKMr4u5WpwuKG9hBoYDeVkhMnT5QTrhASQLgQwC8JYRmZzmx7+aH6d94gFiBJDpIWwZMsPja162aLjmE8ozBznRNi/zAADkUHmItc0M0K1sAFW59k6VKz4xG+3hzMtywAHQokzjt8ALATRWnDqpsZ9CTubNQgYDgxltSUC8Y88b+zXe7Tk3j6tN19ZRHrYA6EilTus2/Lis4ySSadaijmQsjOGy9ZBaCtsMSvyjwWLRy8bVgAekdWX4cjzgcnDWvT1rDgBbT1HC2YiGSxQ7KU9911BT11SWok0TIgjByEucVcVLJJulbvOMauYH438Via+qzGn9T478MLqfW/i15Id06xUy9O5EWRhV5ncQ/jOiKNAbDvtEamWhEFE4vweNFLRsRD5nNYeyg8IJkHKNmhP288/tCx9IrWNrIIP2UMTFJX4tkTmnq23hwRRaAQRE2hbix7dgWzEurdQZcNKO4k32KzrOdGNb0//Sr1nzuvajx9Qu4vNPJLgXjj4ghdsEFU8xX0pZtkowbG0jRlf40VIITd/8acFxnwdxuF4+KKEyf7topmKtlB/JpnYeXRUDNuoEwdAcQGXJQFC+lH/mU89XCoVZUx+nRcx0a5vPiRIH6mCioc/lKQZpludfaaAqSEpQFhdPP2Wiy6o9PySbqvuZcEiI/2GgmWpKD+pQTFUnzgoBp1sW/nFkTtMnGmbnyV1wVnoJo0Ouq6hQLalqTyhWEUA+XgNWs9XOf5yiuGy5xofR4nvRAHLV7wdccD7Al9LwdYqwNmC82cjDsF+lcmZQtccEOyeTwcqysvZ4kZNn/LR905zgbjIbkxwQb8Wm8glm8m3eVm0kNfaUTi4kPy+HSa6QHBhTyIftggDg8mhcvlxbfQH7o7GnUrq5mpQMizL8VxlukArI/L7RWau1f9qHrgsjV6nOFpXC3NNqu4TTrZtySJyBtFxkGArwjlGQcrHoB8PWx9eH6/e8SPkzl+M4rDas+olVnA/7Q5+Rv2awvMZH/kItF3BrJJmWpJ7lH4MQb9s9dyboWjQCcKacRHAqFrZzZMfX1MS/Ks/2eTrBMvcNjZinA6BclYWE+6w9lO4mv6JYTc/s+JjoKXfzA93f9Aos8sM4DIDOK5uZNHtXoYk0d22lAcfWcvT+wmZebgJGOveROWStA/C/flv6nClKlNUGFIlCteF4hlf4nUpRCKdLkxHnIq9k6EEdL0mFIq4d9bMLK/Jy1i2ZYziMLhxmcYzIPYalLYO1VWdMZupbzpczPYtY5PhM4JL6qZN9QWgjDB9QAOOgERlpKOS37o036jdilq9ciTR1+cJGGPo+10hXs8Ao9CQPZ+DF/vPi+AGrJbNXhxTFMHNC2CiAIwnrXHx4wCFPNUC5oG4NM6wXZ655AKuwaYDV06r00BQ869xHfJlrIVkmv6Wy88aF+K3uNvgRZoBn1bNh7jAyUwXEmijHZdtzMuUfzeDhHNFOQWw2ceolrhHi4q/Hvb5H5+OHorXX5/+SIqnuW9opLe9xhlcpNSPnjFVzyuCWzj1/ujl3lI7zVK+jfu3DMT47OnOCUah1jSe9sAY3Ql8GWxcFQGGcFCHoKDu7RyJUdE+0ODwzLV0soYpYc8F5fj5M048s4LYcZLixyN+bbDHWJDMolOXk1f+MyBAtz+PMipzqCciCkHj/BP4Z8mNlYsIx1ATxNNt/Ot4ra9ozSNceRJo1DrsfSA7Q+0GKhz5SYQ5OV4nlNM0ewR98DqQHT5YIGcDj7AcH5gNpEwHkQCwZYvhpOyJMU34MdMcmeRNSG0bh6UUUikyYtImOiWVxLzK+pbVO3lsmxTHID9bGVxXzcSw/x/h3ReBrogYT/TUgZSaaMKi9LuifBoMZrR4Pyw3wF2A4LxSVduZaLj4xt/3sHhaffQjARGdqiAa0HcQ2/9d5iqfjYFGqKKFUq6rC0I7dfxp6e4+EQhr96NLMhaBKj1WeCJo13hzVvWr4dysa6Y71TVQDDC26oJ2RFs2tPcGjhusHOjk9/okANyuUfd4E9QgR6ZS7Lm+BosgBZZKGRGXwm5+OS39/ucb/jnlNd49UjAyzBE13Uwx+FOUSLwoS7v3Bd34xlTWYunQeoTKAJ0ldy790zvcDhaf+TpMyLBFpExKucMDkOil33dLBdJg18HnGW6IgHOkD/WYq0GSt15I4JVTzXNUqGP3A8dLuZAPFF4weKnr8B8Gcx7wGMEcVCNndDs9e37HHSNE1+RYGERuMGquIXySXiU4f86BXNrm9XJCFsrr1Cy6vPJH3mg8Ypti+mv1gt2xqfaDqlEyJjwE8ASBl59a+peJ3nizcCoI+mYcAinn0TDrUUWZJlmtigLQxVcP1TL/QbEhQePp8B/ShUqAIOOo8e5+XGYfiWn4gRBrTgU8xjCYUDU+y2v9kPfofc3AZCLuHJ2rXus5K57ZbE0WvsO77xUtsf9RLFtA/97MmOJFQDCdyRn7CImrv34cEw4uhGiJ84BCyzF53djKmPiT5HxQnvjapozRUYnvKB77n7txLSztOfJNLhODIWkNctJUJw86/kbN6VuOQXeykIOPdC5UTPiEkeNlJQ1XwabtY09t4sJFDmU5jF/6+t9xyAi/WGEJTqnqui991bJeSblnqhkSpiRuPS0jKU1qJpytPFFNL/cdlOTapDejpgkL5Gt+BiCY4swocHqmGiP7C6JSlFD/oEAloFoCYEjr/ft1R/APmmqMDMm8ahWBCu24S2bWofqPy592qdszMz9n4RsJJcTYQk3u4nNhPpV4FLQUIeXTkyPah1hIfvIOZrpP2kILNrZAwo2GUo+xuY7P9odWNtIOwN/g6IhlHH5rhYqusNZpgQGGk+sEbMeOuYbsBYljOqYAC3YqZZpBV0vTtAicMfBhcwXbH+eTDd2GE0LC7dDPPBoZWBFxP3Kdqvtyp4kX0lCQhOcWKPIAdklgX8kIlGa9MN/mqeuA85gSjXDbWF7EOknbkRYzzEJ9Kiasc8ozfRjW5X8zyFDu3GygWKLjheTX/oXL+MofiQiygKGgultW6eqi9AAQQxGV7wIIoFDTRwE9fXRmiTzAnwDCnhqDws9YArNw0JQLxvw9ufSDOQ8C7BaOd+MZ8hZOclmpydxSsFmmY8fFtxAcDONImfCvYP3q2fO9kHkOSquOmquNoKBwoLUXk8J2DyOjvUB8rdEUS11UsECc0SG0JoVaXPTQZjPLvnVXl5omvO0sptpWfnNDMlDLuRT40oSREcOa3/OxoaVZUGjZ91F24b6TXuFQuvCi+xSxm/END+h9CG/+CPY8M8ruuWooAbgBMhIM2ilaDGflLTvh2shnveB/6X5/yEWJdn1U4gyCYWq7JGQqz5nGwaHi1iqGuVjit1/jdQ0s2o+GgQi5YVpshDZrDeZVwL50rZZHbbaftmpk+wHSf5KLT+oSoAKAnvMmsmTrWIN7i5Lk2iOH0skyf/9kgCd/ML//gq9tADbqzxNo5E9/UK/L43Mdr0ohsla8VCXjxJULTU7L4XEJsq3kRYQkKYLJ4fygUTFmPDZ0/sTxQGeyylfxNe5FQq8oDygfXJeZbYhLV7XnigREVr97qAjkKNQBgFyWE/atqhZ2CuDHrI/Iw3GRq8mQT3yMrZmeBrEcgPo37i2aSHnwh8ezTPNTtgxbDtE15b2G/Y0roIsOAymNEdrOixDRl+iXH2we9oZWQW6whMZO0v/bEJMbPZqbXz53yQDKj/mWOGq6hPmPydtJTKGXPvRz0/pahS0RFqxL+29pfF4g+2mrY4RiaNUeE3CqXU0R+CBoyHct496UAoW1q0mLyM2Je3tG3B45gHMtx++qHd5Lub+LyFTvmoiG3+VwZGe9auD/R/+BsZJk3/xuqU1kquTFsiCJZ3nH0WkFoyh6DxKWbWEIWaKd6sNxiWFmKhHOuSpEjnz70K2NZDRTqQbHgDI0InInsT3negBw9LRdgqYIH/9AyHWOLBQ7T1jT46/zmTJW2Og8A5yU9EAV21l8Xs6+Bo94afcmDK0TlaVTTvN3H9w7EfpX3EsCLiNCLRQ8tEbynl5btcOkm9bc3DgAQxjGHihiiufSEa48gpOxe4SHZTNYM4oBelDzg8MUurcyOV0eM/sM98cWB2A3FqV2/WjXQa0Eb6t93/p7zqM73BEXpfZjLrKkcVedpz90RHwD17Q7gdmk+7qZPCwloD8P49ltfxMKPFFEt6EwiJx5P4PHlm3swYOqG+rDYbTiRZCRgjw+igh2ohmERQXi+0NP9ZQ7IREBzH6zc2RyEb9NlMSmHQrhaPOM/wCfq2+o3HQ4zMNaqgWgdpmrns0NUWTlnh9k7G4LQ0m6cPEF3NUav246L/jyew15phEtepy1qb3CXZrNHH9vE+SiSmB0WXbqK7Hd73UubmJnTSmrP4otCNmd2ho8Z+7xxFnv8bauqLbRiizxdfa6ODGsfRpphjZX07FBVBlv/nPIT4Pve+Mccbewn7mZOFknothhrc1r0HtvLKzcyctBBCzG0xFT4Z2xrb799Gr9MiET0z6X/wmb5iL2KFcUSI6aJTeGDrcbojWcuOCIDMaGMFQQacbSP8Js9I7nl5/o6P3jG886RkEhu09tkkz3H8zrM7KJ9s4QExJFLU/fRZFYYiUBd+6TJ4tYBlg5TzpQU9ZpB5k7BCg5Dt18m2T1ymkkO0FAVTkLyTf1zGsPxf5vfuOMNPvW7O3jfEYFfiwMztneB6AvGGhWfKWA0vn6TYOIMvX/ResMm1f2yoB69R3JGRtWfI7AXYB5XkyBcXXJeecL/DXC9goVIew/k64eQsy/XmwAUFSIYhEFPSIrsAIE5jr7r3vF3BXZNS80l4fX6E7wWZIHc9J+nTrI/Aim9RcJTy1FC3pw9EdO7gJLsq96PxTRWooZptYBmOy07inP8GebUzvbubDrSdKd7rYkoci9ubW0K8FLxGPIIQwW56VLz3JreQOn1+ylsjJXECZjM6mQA2wr6T6eNffyQoavVLWo2hW7+rMP/7tGdbmRItWvaFqoZi+/Kp9onMzzn5ZGRXS6Z5T7xxShsSXwDRi/qarE8u0MHyQB81KE4eZApU1mwZJSo/8xsw0NajDYOEqO9FzdEU8AMQLOPUNnR7ZRGCTgy+Rz7eN0evH1MuRnHYqvD4Jn4B0hiFWk4CODb6/xT6hZQPUahSaKPvQc1Nm0MJKE+MVaaflVx/zou/wc/Nxyfuge/x9eKCyXAzwnIK8V9NDFPMfcnLEW5EU6LyKp7u0EewySL03Ov1/jeReDm4FVM1uFKhoM454MZIw+JcNzfJtTTinkHSCgmUF1QjKQH8vqB7yFVP+K2Z01TcM3+ElATB+sbxSxK38JFgJ37rkjLhPFuqALSe0cDCbI7iaNoQWSJdYtVp40u65VwJ7RxrnDqtdmhIK75zS/eiuUHjqnX3H6BkQUC9sJO7XUw5Zw3hV5UqEyMyLkpZ7pnZScKkh7/EHcq7Ofm9D/LSY28C/K91UNYi/mDf9fEm9eeCUyMv+8Jw5VSctbLcZXqPbM8oOG7Z2IKngWn/SnO8vLBBNKCMzm/TS5so3JcxnYUgcOYcxVCdoOFuEWAEFth0kaBjISNchyoMNJcrnwMIKPZ4BmANJVlIyS0vq6yD2M1EsvaZ8cHzOOVn3pKYagZ/BxEEfR69drQ2DPHOfj70hQVAlRh13XrMr0oaiKYc0HLstbxB2NyKVl6Rl69Z83KQMzsvD1MtsQUCEA4bq529VT1QR5hRSOJUfJKQN4Kt2qtkPa6Yc6rb52fLwEDxeof9J6dpiyFiN7RG1vEUV6Gd9EOHumypmMbfCZd/FhjPNEUm73Z4Gg6BVPKZirT7SH4yMxutVYimEXqBjK+loBBSeu23h6P5mdNWQ4H5oYjnExOWdzKnYE9hB2XDzpzZMCH+u3Vk6AzPgQQdekJvFhl83N8zFrWyB85osNOzcc/6SVM9iAN3cdFqmpiHWySaRoBM78yHZn9YU4kNE/g0A4K31MXhyvJzmZR3D02ymegshDb2DtQjjmh4X54U7DvfprnrtYOfU9twuJ3z/8H4em9J5CGesiLyn2NnZpC1LoAs0K1PeumwEnjhww18JSVtTsxcohaNdmp8Ip2eMVeAwvj7KXgP2NIzT6dPAYxlWW3/2RDJGqd/GJEx8A9Ss7q4WHGNIYSuGFtApBMSnmp1eGkKJCRgdROY0oTUhw80VnAUJII2NqRFxmzOfC46RmCN51ZCssG+iFJ0d2BbXJWUhKF7NBNo1Aqwq2VXmInLtBNgJj/jTk1GXpmQnQpM6VuyIxFzTFE3T47nvVeKNb45FpKcQ7Hh7Yu7pLcFCgNTNZPaZJcKP/2u2qzLerEfGsst/7af7OEa5M0U54PHpGVFZl1tXLcaplxmhqZ+rbECB6yDOpu1lGYrt/uco2Z7AX5ap8NjKbHz6m1Yaz/7mQWjwJh5i/L5503UOmyuf8tvL8mgN3zXL5uvr0whNdqACcy0uwq3++6BdjqSrqnit2a4tuDMQwIOuSv8ehztk0CFPgDP5cfomewvtKr/iUVpTHCVOixEislc3LISr+piLIQ3In4K4K/hivZV1jONLj7PLxrJ1HuqonjQ3EBFzZTHFgzMcR88LCQwmM9/hazSWOUyIPu0D2mMRAZ86AVmsC1U7kG/2xyx9HLbCZpHS0H3lGVwX08ZgWonTH/ODN1rWJJAss750IA8gIsn5b9eRzZWLqg8lZme3VsdSuSh/WeWksDB8AjR9Am6GR8lfG0S3G7IJiCz8X7gg2YmxnRwk316LaES2sBA5d/jianCbWg4U1rF/VNNjBAnikkNCjeHWA2x8fSf7he+INJe36rtkUUmTfJIrmQj8/y85uOXnTqfU7b31NjNrKV6L6wmYEmR6BG0wu4/BNHRCPNLCq0cJ9H8iCjuqWq3FR3QnLLjypclQQbMmo/yyNd4VqMpb6ZV5mBVONzDVb01pPSfscY57MuuP7wF7ihM4vWF82eUBsptD+YCQBR9lR/+HSYoKxCBkAcQuDmN4TocOAbNHv8lDAPGY+542smFoSzDv5bbskt6d6uuICaHHheE/8x++GGLnnH6F8NBBjebgJZWkSuu9iSD4Ut3etyHDPTbTOIR5yCAJs+9BG/QJzlgonanA6ic2AuadjBHSO5PPPCNSHO+ApfGIMK7BbkaVVniDrFut4NP//TXHGi6Up42vTGV4GKg5W+jky2RoeOrfZjDm3XulShdvAoZjXlpQnQL+68TFESOW1XgxDHpAXKPYweZXUeOmgh0PZk0MANe6rd36vvAOw8mayyhPVHiJoN/DL/h4sMjtxjZpcHVnbbGMMz1w0PnMnxFpvaqmStW2+YI9b2m2WlW7YgiymfklhAWzOITcGRbgN4Co/IcNeFvnBOQSZOGGWoE9AMQNz4VkV5iAsRTqKAHKk8D2l0tDz5VQfN1kZsD8EyMORI4x3c5HoDOahV52RqCGBzwe99cMA5tAYHHmtSbkymYEfGQpZxjYOnpyYxw7KgV0HoixicvbjALSFSPzyo/zpCzG/NXpofWY4ZkQPRfCN/y6NG78enXhBbpduo1GItjPZ3NqzZh7jwgezGaMECdrYL9zimd2vdf7o50HNTdkMAi/bUv+CAy/KzzsUSFznVQ641AM9QT0chQ9BRYhxM6lhszeHn8wh4zXGFtHcYrzWnglTvRZHyZ29+SsxDk5EkvcKBLugeLSV0Wo6a8owAuPOIErtTBvRoJTXOunb6+4wl7dB5+fMrXCZ32IMKc2lMNpVrPqXMQuG2GkzTO8jkqSC396KmvNwT/bG7NmcLpB+YZNyyUNVo1w24qriYNTGqdAEiFapsmtxXL2j2YoCmFdX4D/nUZAaYENwOkgySo83VR2YYozbZMTjtNQEvpDZeOWGcZLgMBrV9SMSHwQNH+GKYLAi9QaScTv5ZAcpKAkVgDhkdU3wEcHCDp2q4DJPKi0fvZ6KkvNzbcVvcU+tdGV0QNi2cXiMDO2G2ulsA0ygBvZyG5/QZEicsZfZ0S/EDSaPDH1LC12cie7YVtvPo+yts9K3vGWmI7OEBHtD8RBIbHaeaJw/1AudKYUKhHBN2mrgBdDtxJXUBdVrc7kXCqREfMWl33L9XqaB/x7IPkH8oR319pvq/6YbNvGdI5XeNJhm0PRPdf6yIlY2xfM6yxAGNteGayxTt4pAsMFirxJd8bjw2NoM1oyu+RpyldTHd6bJC/E6zI0dvG/CEkUmcqbbJGylb5v1K6zW0ZuSX/y1IECog7KZ1pxgh1E6VQnSENfBfSdLfllI59bQVyy4QK1iwT3J2dNPytj3OAwtnpr3cB0gB9WGhLsPtp94ClU3TpBc4P3jDYNNGnEC7Q8R3Tvtx8SLwwWTgG6gr1uyICoqLIfYju1NsTWg47s22JzUJAzj82rBC8gwwy+Nb6TWauBjK/qcM/bUWjJEia9Xwzs/Qk0NFpN+J1XbxkDTqE3SxqeaA/zI/VL1h+5OcwKAr/GRRHmpsyVFOCHV8FIYrZQTawD7KHHLHoToBMg4BbdY8ZH1ChybqCzlXqcZQCIC9P5j8mu4c6sgzHnTppoIc+u1Zepzd6ZWQ5ALhCU1U0vnM1CLlnRQ5A8BVu5/rdW+dJelKZ276+lw6+wkJScdgzFELjyahxXXDPCDxyrWky0qiJmsDXY1toaTH1Ry113b87Z5XpDeXJ1BL2fT5JsxSp/6tEFf54fQV9K6w9edJSGNi6HcHc3hPGxv5QRRD+2VNLu8r1fM26tmxSLBgLgOAvvZ60srZUV+v4bsUSTuNQZupcJPq5tx4DdL83J2XSoLCaoMTm2bZC4hv/pefSHoRlvIsIaGPG5MtiE95r+HmsRFwHZpWGTBJJhTUsI+ooQMBxRK16d3GwdcmgLr1Xkus0sMGMsILB/aCbbyJm74jczO8PqPoa7/CEBwLlJZAdvuyhtEGJoc9V1dcQBsMYCTRUqAr94g0CKmjWKP9KuCdNmYGHQSMggc4Ao8JxxfVrSw4BBqaYSc9vGcTkrg7O82etJRX0T+TLQ9LB2xVsBkDfjLZKaDfDW8/h7Za2ARuyk2vThB1WSU3tiH7rtHUIkTACWPR+wWWeKJI4jn9uT5BsExj7aVB4g268x2bZXgdIQyc6WqN7G2mUTxZltAHB0yaDEKPl9cQ3iRbJG9yqZdLvancTuIKsgiiZpPpmEyE0KaFKkaXdUru/cVodCMInQhYcbq1z5AHcysJYs0tMxTv4h0ctypTlkNCtZlg//inGG26anstp70cPwxqn4a04vG/6JHuajBAV7IfqEg5l3bQIYQFIuuquRUgUhQwUg1wHIBsUntzEgUMRb6HWOlsBOS3on8bEIstrcj5RxadntBF60FaWJM4Q+MA5lrENjZSr7FHPGdHQ3PpwF3POuH67z9CSvGThyKyFEC1u70q256eNltfoqgG2mCGYjjbmZrigbtPKA3lO2lgyckMhrJcTBeqI3WYzQEsR7yaC50TdWC3kTdHD3pprYTViwCc/T2nWXCddXpFO8qnWmkG17XG2RroHmCTreU6LEvFfXLMkRrKD7oMFYjYDz/RI7CZYT/n3siaJ6Ekw5ZjYSb26tJvM/PVL0e3X0gUMBszgnVL3gyTZ5TS2zlY/UND4IkvuGRcZ0NZ0aPNMRRPap5e/QYxHERaayOHPlvXemylLWIVDWOfkxjAbmjzCWmYQPSPKzQh97On1OHAulvz+idguCU694B5biZOLd+r6nGNecTRot7QpbUbdSB1eJ30IZuUk7OjMeMw46N4rqNrCR7RSsEUtB9Chq8pwjPZSZBkgskUARVo1JGtPAvH37K1pjd5sseTZ09zn+OFNsbawZf1aw+06vBjHsaMGy/WiWuWPCQzSZqsnj4qRUJlbxT7buM+dQ9VzPVAz8AHb4gypwu2e5q7lE4X/xFSSAOIUq3edgPYubc1f1e1hQF3teP3mljn7JKAHeoeAvkMPREvQ4aLjq+Tq8zl1NGYlpiUnk/1mFHcncke3rJhJ5iFhm5UmdGmOdmLEBNlGxbooGUOmIlTeEFdaSjNqlkomZr4cxWe+FC8/I3syT9Zhk2l80klMqYxuxoG+bHqyQg/rdSC8cVsCR4ythbMf1HEMgZkRfuTtpN9w/LyuBwjxJaNbepyCDWkdLfRo2xYKqoDeL/76OUAt0x8My1bJkI9dLacBqWTUKP/N76OuD1YgoNH+7pGvkzblloC9KlQYSISaG9/LnplGIHXgXmmhocXMIVV2rkUl8UX3d3qmQPJu46giqg4GUw+06LDmg/lePVZyp6xDxkIMyC+w6CkXnkjXXPZCvGdsWNZLsZ5EXe3cxqKqun/Py3JC8EBvivhI1G61a2N7bTjy3Flrze2hclRZrXLuZ0yzce0kgKmTik9+/YMyms82llZ/Si5jLnXoQKuh0I1kP92GSsKA6vAR5Y+TmVLjLsEz31muSvinJe/pMR6A/trfOZFqAtFZvFjqqinswDhF13CuzcvpzSqaMOd2qOyHr9Vf8qTrHfQlm7mVcsmznlS9brsCy7GoshfgzgZG6GgntUp+Y1h68pviFo5NW7YKJUjsRuqllpYqscAtybhYleJudeYhcGfcYqhQnSm3XC4jpfLfiE5/XgHl/5j4xiNdk5RI1Bi0X1DfXf62aKvojw0RmjfBxCjLOBtM3JsU+FyykAWZMUeytvetJdE4tG19LLwT5tauq2xjUuOhFdOZYtlNd2OXVfo1e0rr0ajkDtagW6ONnmBGdyPDCraeEyNC6bFmEaLzQv+panDd5JqGrrjSVRh147S8h0VJKQP87HKXEqq1sLeCiKjm7NkHNs0J3fJfBDdBphEQLIRCVqO45WU75qkKVrArQFeTX4rxJsGCCopfwesPWgPxQ7PgHr65u7F31vTJ0PbTa6EAfnnPJEm5luOnmG+k2jEi31Gve6aK6PinACkOROtpeg7Bor2v50h28q7jj31e795ibYcTyyBpE/Udij56lep+Y8HkKZEJjfD9dnkqasbWc8QuPK8yppS1WPc7UGMozXqkW8wX9X3i7jtD/gLXfUw8U0kYEmidZN9/r3+YLGj9mv8P+G5PR2kXEy6JMc0sz2tZQdWsREd+lqi9kI5xSGFQZcBf2CffXMdvlESdCKS5BNyzGjV/txIkbmK+4fYn3p+B6FUK0KPh/6jlfFKYnF/ZSlj3daqhLs9iyXwz5P9Hg3BDMBS5o+5zhY5HvtuaT0u6GE+HqAYeNk2rlgaQBrFZwgQUvbOp1bBQYK4g8KqxNNLfSjOCUjbhfMy6rxnDMFBbP1jnWBvdYQDlm1RKcr5ZhlR9x8ofyh903IuzRuRahmpFp4Xz2m+whIExHd/a7vb7ulikn9ZmH7FzSoT2n1JrhUADPs8A8XIU6vCBCjcJGPQmgNUA7iUoqMXAUUlg5He5p50XqYoDlyU7ApqxykHOo7EGu25hkLZ8mTdIIbbg5FtNggWuHC+xl5nH1cxIu4+HcvGlYxJlI90UwK3mupwo0IDSYCfJtktFeC3KeKeG6sviDwGsC1O9rXy1bIZXMGC5L/tWu1KSiXFKk6kBF0f8RBzSAvpmBNCOEDZoanVstywYG+nneWNyUU+gCv+r0Wbhvl/eSBgm59jJkFe8lD6CIXvRWF7jkh/dkajvCAJS2C7cDpLXOUqrydcGHLkRz8MKI+0mFhnf5XounKZQCgcAWJQLoNCDxfsYaGt/JroFvvVpnT1PRV4T/LJ4UFK7h3XlbBo/neuPyIBCoEwZxzRfoAP63os+nIasEej8BhKqA6h0Hw+lz1G03WcRFXO9rbvbOlTXFLrYeQn2wix2WNWtFpYUDIkwjpJEUnqG0/8Pht2K7snifRXNvwhsTnhopmCKStzoHYA1888mN0PLrQ25bNtYHhwlFfmRBq+wLVuy4nVWxSDbvpL/RR3l7jSIcnCNPKfxb5fNUhU9pbBCUMdZzXRAhz3TToKvoWSupopubDiLMQYKm775tLc/Gomx4UuK5NItQDUA2qrDHLf3GQglX6HdKaAR5n+9vhqzCm/ojQ94PjlOzPk7fFW2Lp3wm4WwTfsopNWED4rGucb+3BizBntH5Q3prvLhKefY2W7Itu5oU9QWcrxDwZt7VUaB4UWxAm8qt8hqSC1fff9DJwS4avZlOldO6bBpeFDQSb8m0LIuemIoKldf2MFp+8XFA9hDsW8s5vB7nPlLXrpDRS9C8N8QmhkHtISHPbbkrr1eojp7nwFn3jmZe566dM+q4Sbx9uaOZh0gNSHpjypl8GdC43JudSRInD+w491fXESBLOx+qnMsier657ZbU4JMcqjb4mGe1lLAsPFuj/zN9YNAucoXax2m4aNCJwamVI9IcrJezl/tLESY36Vx5/SEKG6eGlU/35VSGIz0bHi5lb3Eqz3A3+CsgxAZeCKObj0Kvu3Js92vrB3R5vCzbG/H2oJS/D9kjcqZIDiuFRGcpW25Nu8b8sTym4NjT7DHnYAOLTunyJur644EOx+GCg18uav16priWH0D0iWwQ033C8JB8jDJwHKPS8odanBjQNK+Vj3b2yY7dOWVfO2tOSfFDbh74lTmAnNWZBNqTykqLyk3+T1PgwtcgaLX7AJ9yfRE8wUvatLZesZrCrlczWF+CFI9yuMnriknYGD/JCHLNwX+T2+1birh91X08VOX4P2kDwMIt31I9ZWQ4zjyfHX7vmYwtQox90BS5xMEe4vStCh4GCQlU0/mCWgXN3oVST7WuLUJzBOkug9oj7X9+2R/wYG5n+aHR0DMKsKi2gZLX1SJpd/F1GQWkZRIi0pgCBgJBHQ7+txrcM7zYU2Heiru1ApGmk7935TO1vzcLzjGOlJaQy4sJLSKUaMkkFmfNHqU8N3L5WpfNBUQVg8GvN8p5vIKgiWz8n0WEMS07xT+yjGxUwH1KiNLOiY2H2VqiIrOMnRYJVAnV20ErKpiXjDMwcpJG6VOaLLNYbqmWhN7vWMTVzVRdAPDETJcZABOQ+sgQzuaWOrUrSDgzTCOsP7pTZlHz9wBMLXApa28MEsiWMZUIQeLzMV6VfaOlnmPH55a/KF3/KHM19XFs0YUMiy/k5amroDBZXnPeOlEQBLq8ObggBdtZz7jNoSP5gYkp7YvhtJgDNms5dbTn8G+DFuVra7ZrKvDLgm020zK8foETzS3ueNmDp2A4c6lXNEHlYdiXmZMgPX8c3jS2tPrTxru3TRS/h+eWkTJ1gJlKeujwQzoNDit1OxpmRpJNftQ5v2fGO8kWFUza6WgGOHnYRtBId3fqmfDv4mF+Q8Q9p+/C5kebvoyIicci5ZhWOpzKrjOp/vaVUX06Ua4gHR8uhHkhHzAFLiQCD5Mpl9Mben0z/uLEkrk6CGFYWsKbUGZC9VmLDNyqpTc5GIMSFfvWCFgsyFEUXq+D3FA46NsQwToEPxJQegf8B7U8nzJok++JpDinEyidszD9yeu8MjVM8CFnoW9Kbcol3KM6hKyfxXFn+xY73c7weal1y+mYSNcgsvH5nfNV4Iy7LWQuKfIZUGJWnd/q3llZUrm+Ai2E3gN8udvhrpLpVakS4UzXBim3MfmhJwlNJwiplxJuAgeIkJGUYvuRGeZQWLs4d77x9dywxvgLwSycE0V2p+IQzW8i34D7R1vJ7rMTloFSx4ERnHqPoaP3H0qFifDQILb3BvJ8uJHOm8gwpplUpGm5Og4CZcc36bYnMAIaCNEUqMGdhw0h59MbeqPADajcdo+idGBxuxznRtOIp34Ho05YdtCwhpvqae76cdMPG0s4eH0zoOFGwW3nh/cIvt7IekybjJEA6KPVUn/wUcpP5Wzgilco9krYv1/FAvrv+cOB/eQ0sLLM1r7jYlglKgdcrnXNhklOH+4WOzo36B/lz9DHNsAV5PRLEKBvIQmUM9dd86/Ah8VuXQIr2ENI/7GTWBglL0ePm9wu+lxFVYBNDSqLz2RwstpUrXINGGCOfJ+5XIiCv//eXlAaDZwaZLvEoZ6qmNI5lixgtvKljxnPuUez6n5FgBKAW4bYpBVEEwiXF2nuyV7W0DkJMtvWlN8R6+Bx4dupclpoFUQ1eYKGb69bqdR2izm6Ft2CRJgcBNUWqTYBmNBHXWweVUWTtJFeqiWl9PsJqidDzyef8TXUM38iEIMffoJtMNHzc1efGxaJtwUgHxNmm54YSJljmjiA1Fgt7mH/DeGk2qypnBcTiGDfYoNGXbMNLbE8hi8GVzcnfMtm41cO1wyNR+o+rHEs5sH32w/K4HNFk8I7kLuFoij9SS9D4ikoesP8SGBsqDbTPFB9T6O//Ggtf6W/E/bgSL0xoG4s2OkOG60o9yZVIga3UH1u+wtA790u5n85Eb4qsJiC3CLvLTc3sae3I3DeHR1/lnWvBt9wf6N2IP7jMtyXLKg6s+jusLTMzjMkh5IApGapCF/kaI35+kIv29PMrOn3fH+EgWjxAA2qAwuq/YZb1qxeXNwsIEkZnh+075CyWgn3fNKGId37dTrW6gblNoovNjKb1UP1n1QfBxdD7ZTXvOD95PsS67yvgU/8HleNQPbQljGM91GsvFTQy2Uq5aX5BQgN7Lhq+7l+qaHj05VhaVUcsYyXXDjqgvQuDgG+kbtzjAT+AKcTHuvXzRKEfH7K7th+jg2PxrdsjXbWflem596zAbi1F0Eplerz1FGKnsGNUoweRRt4PPAwJUZFflQGTLCvX6JG2arxxKEwiuIfGKV5Jf/I9dQl9j4m+SchSqnVXJPJM/PN1GJH4/PpVu2+bvNf7CJe1hjp1qHR1jEgio+Nq2qD7FdzDRBGq6bbRhFImj10TK43Ey8+JaTRS70UefQE65zeCqmkrr7cuxvmWYvMN4/quNS5OoYYWaKqUYw/vQV/iZTkPts9Vz1UhMUxUb56oyy52Wt7oy4NbyJaPbrvH+/RZVMs1hzSzxkdgUi6xgIyJ5PhCoTsLXJez3OzFNcoT9F+agMk+iTSKcvz926ELbztOdhTAagQqG8tzOeZc6sWSXBAj7yMnTT0Q3dY17FNG6cpr/3CgXvv+RiM+3YQ9+iUrt0Sa/BPVLrK7zBYirKcMOHlLgAEmK5fYzq66EnY+ytulkrbiDvvnyW3zei3uMpaoPrEPE+GjFvGX4rkuMDNq1t9NcAfj9LqfHGEj0UC63Dt1Y1T/wXHu+9NMccoJT6Hp0j32lnULvad9xmjeQzUEmmIc3543ZEmESk6hJIvusO3TXkf7/ZDZIMImwj8pVaI/fSchMlg87FxVB2Z+ajk7IftsaCB08lrD8NLQYb6uwj5BMGhRAs9iutJLs310j2oHfyaAlVuFPruah3fn/7DtywA/Ox8wDcsxqz9AcsrWexEOMCd7P3ckaDfWTwmKDZaW9/YemGKQzJ2jSjxde40YrSulQeLgf0vH9klP69HEuYOv6qLLl21WMehcFid9x0nmRijHLASZpsGoTpEi5UvGDequF2UhGdsjcKeB10RANgS7ypgKt/hdQV2rk5qivc6VbKiCyPfhR/aLlLMwabTzdPnxGanOgp1O3hgB8akE3eVF4iT+EVqi8SOvXBXZzrZbiab/sD30716us0yOV8eSQvjxJ5X5vviNXtYivVDQStaXgfOcWWWPay/C2Mo88kdMLk9cT4y/zvVcKJ/bvWqpDYP8Z93FmVbuf2RMmXHSUnUyPNsG+Lt6He6hCNmP6g34wyb+n1afZN+6aQrvGTMQzs9S/Oyxa22b+1kgGMMoNtlXVw11hImZgtPs3X8fvpc6zzXMHG2EBlW0FKdzuBJm6ramsn686Wmy3M3hspoe/4lb2rpZ3C38lIdAZpIQkymgjokNnbjmrM6+HagQAJxnikKDXiOh88Nq5jaAuUrw4ZabFepDNwxZoFnrlrSdjKX5JCyIF0wHs5Lr3K7Q9jHPWFIxoCppQUmWdmcRU8v7szo1PjajmDbm47GT5MjGyiPb7WUZyzYucQaVT9nlCDaLH6utflNTNqwv+1NM8SJuows1uINmIdXLbohDyy9wmUgLoy8eZamRmtu0jqXsRS6iPlF39xjJAhhYqISbY3obYFk8f4LV6pGQxKKr+Lf0Kiva9Pdzlv82boYdqvPk2iDg054pwIH0n97bNR6PIRmOrpCI/dpgGX8ud+olw3Yo1iK0bvfPoiavQEa68zIt+sZ9o+PtFZYWPbunAHC+HWFQaI6Iqw6ONvc6zCsdzm2hG+yz/CjVwmJdxTcdRusbqbiegmonAwODzTwFMgO8cnSmIZ5b862xDiPq1q8qU9nWodmEx9YmMf4j+EQRYE3QZgXBdOh14EpoY3E+a+cC+fE0a9bV45Q4l3LXRG3Fz9uPar2XJ9VeqtCCCZmvNri/KskeN8PpaEXZrjMbImwd8zBwfrCFbyNuJ0ebSiruUWyhg8674sd92v+4lGAktlSv0rJipUswoQF66MrBgQnHxlHJVtNuECFDr5nM19htMxgsN6Bx5EKbyMbiDSgf4kYdNaKTLACx6f/GNhauEZznaAEyWIBsIjYiNspv8AMgGS5JipnaIhHTZFmz1GMJZVJRLP66zn0zdNjch5nNaDLj7M67amyPXfy1thaMrI1CJH3nbYxDN/wOLBuN29khc8qMKIChNKiHHLaif3BSLSONil3hMgVZh8666fal4obG6qT8KnHqjNNql8vembEWJoP9WCfD91yBvLYpOSulKJo/VmOt5XfrrMDEjfgd/Qk/NjJsD0QX//J5/2aCkhivf8fqVImi4QCyfswJ9WiDh8n574z+z9MQ2ydlw3LLaCaNMP42VlYBeCeBeaA4drAsYuLbvpKWMZucvsExwtnDWuWwj1yvzxbQA8wpjiNYw1a1XeaRS98OMTLcYQrdfxn56mK3TzLHwA1x86bW8u5jXBRWy1+GXhir1LaFkBs/VQhS9qyr6S6p4+3ryxYJBGslY5dJHPmWG6ciInrztdav7RdJtssp3b6QsHx/GPTxsnVt11bL9rU3ynl0K0Fd5qkBXl162E7iEuiKG0sAwJaXgU6DKyxy5sYGUTf4yNbQn5XqwujckZZHPY1na3uJHUBCtAnK1lDsvJzBu6ctwXGtTz+vnmM38QQs1bXKXk+B8Hx3gDdFBIPUOA5wraGYMUd6+LRNCv+gCeSgzzem/SUAHPZLfs0Kc3Lx42y1LqpVOJRcRcFHii7LoPQXhrs/IaRMjSWzqmbZit7HaJfn6F/rXWC4ZmDLEDBw2aFI7Cu1DEFTwa0oMIgX7eOo9wgNk8ycOapTGHmjprHeTbqGLpMxbdKeyQ36RTmQZZIeaIeXpkCY8ItR1AWstTFZTYsqTrMPFzlYjLchfSgvcZV7ZNsWPAA1VivYxSFhbrR1ZcRGoN/RyVX8X5ES3ZHvB8NpBVjBHnGE9Sitka4Ton10MF6Teftzfya4L68fn3TZXGgEsqUEvXHsLHWMGFibyl/IuSgXLeud9jrEEc2bnDlEG+x7IAatdbWHsu5pTZeMwvKY+LGs9VrjpZujSfNIh5htlegM9U2kpbEnin36iprXpm0QRBTMRrG06hnTuw34CGCJnGfYyxWcsJyKgZH4goqeMp4TMxLvQVi1w1lQbqQJgQVavpn7AUHeCkV2rxHOqr8GIeP5S2zSEitRcDkuJexmYgkL/DJELuaKJbgKg91lH0gwMzn+1MuMpRS7WX3eLw+mZ/Vwn2l8ix1BW6F+FvaVZeyaX2HPujpnt2vUkn0NPgqh6NkSB9PZ55l/1x9zMYZg2dyP7LAEjgUPDYNHG6h4vAHel9zVxelyFTcSvTEycu28AZ+SCRLp4rJ8KV4RXCozi0UPsHnwi5pghGQAW1Kn9SbRnl+eG6QVRYJayYBavDkpiGCKY7Z1hDR0m0vMRbi77gQMxJ2ZwfvdJQiX87/oWTE2n5QmlYiMH/y/ehUTwnIWgozFUQ+lEIsyXynStIutkiXqkhFpi36jbOsliTs5xQ8J6gMlSXGqTbdkFvv70JF/oAED0OWEtFeK/hGvrHYwVHAy5vMQkQ/3UzELOiw28qoRtVoSz965U7XLDYEMyaUjoNwmK9BpI4D1ubgot4bI8/JP1SffIk1SVrjvsacbRfiRrCr7l5u3ugPXk2uTMRtLQ4chMLMvuB3X8y2FUzo+5+JimXrWbgF2btt//SW/vEoD/idY80n1jxM4YiT2UVPEGOSa8DePzdM6fZogTaYN59JNeMD/ub5/sq/4EGh5iImBmVP/hDzDFQhOLztKfjAd9othvrFvTnSnHxGqsMCXS1f0Y7WUzkZ4b9SqfJIF47bFMO8rkI3IgqXX/62eFnlWqQPC+xLBiy8MgmUcU3i0U47zLsvZODSEn/dSB2Pa3bRNaMOEB4xo8MS/LuJXJOjq15VDnUGEhEtXILoNRYT5mpAQdYggjLit2g3rACYN0q3Pg5uNjDk3zyJ93Jjai5xgPqHMQUBT54Dzp2lTHDuarInUFVhATSjO4MrpWLTy1RCvrYPcJSPRvySpNHdrIpOhyf6yIMkIZw68oJT6I4cASux9UqIlriknouAJ6+70C4hhwlvfgp2u9Pjrrl/xmvpB+EWp+2aj1kValQFzqkppSvgCIzyg+XYRRIbGlMOjCENIsdSkZHy24EUDKpjI8AtAGaBiESy7HIG/xfExPorSSr4llEKmlMP1cO/qqWaQh6LZvOVZ7dX6K8IQSgkfoxqcQlI10oM/PwwX286uNMwcDmjHvp6/M4JNB7RU5mTL2yjoYvJPPwVgsilkFOUSL37MUGRk1IGL19Ed2WJM0Vg44ij4iG/ZuQdfEp41bGaNHuanDlv3sVQgZvzAZYJDbCrRhnnzvt6DuyKHoJKHoVvc8kiaQuv+7C4KNFR2OfFrQQMR0wGYvuhh5AGZJNYcVHYUtKxNx6p9RNPHiXj8IwigIkFvbVPEhf57yM83PLMYZtiQlr1uIE9sLDZSWJPW7P7NVLmbOS7UgxYWJC7OQvIDQH22Ai30gRPQWILElqZYjNDLIke/1YEEgTyVMvPutIMU8+yRD1LrQRH+tmxDcgAqrOcy9QbISvGWRBMgkcTpNwYkXmnZi1Ubr4yTxSVUwyr1ux900lD1bj0+sc3pV4EDx7C/63wgycZ8A1p1UC0BRuqTR5D5rwe7c8PcPO6b/46rygMl3qEpjPK1d3ycJl7HRqCdZah22obOok4MStSfKrwpPeKWYVZe12hXMDD7yz9f7kNH8FN08J7NtcyqnR9I7cEmi3JIfO4ZxYEeAKIbJStz+Y91EDg295Bodw8EX+PMaUwoi3lV5dwXvFZq9HNiBdb8+bwR1NYQ==
Variant 3
DifficultyLevel
710
Question
A square fridge magnet has an area of 900 square millimetres.
What is the area of the fridge magnet in square centimetres?
Worked Solution
Dimensions of square with area 900 mm2 is:
30 mm × 30 mm
Converting to centimetres:
3 cm × 3 cm = 9 cm2
Method 2
Scale factor of converting mm to cm = 101
Scale factor of converting mm2 to cm2
= 101 × 101
= 1001
∴ 900 mm2 × 1001 = 9 cm2
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A square fridge magnet has an area of 900 square millimetres.
What is the area of the fridge magnet in square centimetres? |
workedSolution | Dimensions of square with area 900 mm$^2$ is:
30 mm × 30 mm
Converting to centimetres:
3 cm × 3 cm = {{{correctAnswer}}}
Method 2
Scale factor of converting mm to cm = $\dfrac{1}{10}$
Scale factor of converting mm$^2$ to cm$^2$
>= $\dfrac{1}{10}\ \times\ \dfrac{1}{10}$
>= $\dfrac{1}{100}$
$\therefore$ 900 mm$^2$ × $\dfrac{1}{100}$ = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/qJZZI5wmIYDR0b4x2DfHWvMrB9UXrfItKAxbVt8Wok3vJo0N0c3s3TEz7eJtPxKzsIKmYIsVhylbeOI52e+IBch5HImWHD9fwECwCweMowg8HtJuWORaF/g9jk/gecYQvCO+Hm7xz9svYib9JEbbc03SWzqAVZVKOMB2VGBHAJ0UReNdgCXu2Q3wQz/Ba9aRhi4xtvyCEDGDpvdkmErranv4kVMLFzMQOWJj6yfbY4RN5m5V6JDUwNgCvLqh59gVST2MevGemfRnm040nKBbQ5Jw1oN8BizSS4YdNrRtx/PgHATMqmG3ypiN++oeDRm0uxv35vD4OpSEVsfOhBWs9J3jXeftixKsM5Y8pPA1iSHVPEkxo/wIqgCZL9+l3ldS6MKhSpSKYepmekxr5vULzo6VQGDv3LsvY7/4MpSJVfFOI0cu1M4na1JFj4OKYLX6B1Gx2ZNJJF7yOTTbMvNQSv6yAfATP9OLEKKGlmN3RKVte0sMlzr1J4Yz2xZEvLKJyDH/sblclSmA7WccT4Sk1DmHeoX8OvDkOfUXeTevasihUsy2BLycxELkU0qLI5JpTLE+ae2VicbzQknxnsKEIjWILO4elnb5whPLSHYUzSBPbaOuswMld2uDRkQ8AKJe1Vf1mJgksillcwmo0OeBiU5EfzToQecUdVexWW9sdGFBtfCtQ03mjVVoq3E826uxejZk2K6tlgIeOW1uxFsdugJI2Oh+q0SbkzhP0Ggm7YsrPslbu/We1SUAGtnT80qwu+IC0aHuUvObt7g/fUol8S1UtvTosu2UV9VUznPVIJ0kU/cyUisvLERTHCzziuP/WM8J1xWQlIeRWbsbclfTaMYTuapw/fMIij8nopCXJAVG0O7cHmI3Ny7l/X26LX25Ajl7AZoLPCZsemXWLQRm7IV5GhaSrZDRHCyi4E0quE1PX2vmaUDmKtzXxlut8SueGfEzfzbOgecx0P8CilF63O21m9Ni0rzC5BYC9XDFxH0eiYdfXTsR6QLIqyydEsKPkmKzcDwdYvLkDcNoOod4OFHdfRqRdZ34IkNfFkKfMesl73bHrVhj9fAaGhG5x12XOjS93J/3UBKjDeRxWYDmELPokez0qlx9/5tUhdQ9E0K6qhdihZHi3+4/nu+4G7Da90hk/7+m+1gAWRjSuQiZQUTxCo+R4xTmoTf8ILH1LY93I9hvkf+KAbWTEPTDoN66Q+zsVFAqDOW6a7+J30yIlG2fnzniqB/KZqlRmLaFXFOgW1gBX+rO5MhQb06SH52J0c/KH/XjveSolqpTi33OEgvngSkhV4PN1l5snQPl8ps7TNtkPQ85qx5Q1yQp5UPoG/9ST71m8W7EnjLMNw/eNad4yRRuzLF1EpFKDDoOhg3gQpHu6HYt/+vnAbKBgeZW0tBnsnJA9J9Z94CdSlZyUMykFwZcwrSD9sWhEQVRtnpD99U6IRSxw/o/8yVSs0SEZojf7hQrsSbvY8r62uibM+wmdDqckiIrP7hJh1M90/fSYV0owZcw6v5qXrYJu71FsESZixXcezyPHB2FQZ/XtKeaFEqCrniNlO4wqNHrreD5wVw2RdWg9gb1qw4PtaWi1mwQkYsQjbNu5FFqD1yyWxv8LhUvfoibGteoTnLE9pTwNouJYwgGUW1xVTP6QWTlf1qFKpbOPxW9eBfXQp8zsKREbdbySQjlEK8bMKUCNE9oQ4Y1MWIulBpLYJa445L9sQUTReyPPbhXA15Miu2J3FFuClvskU4Gu3woB+WfatcZZXaLPYfAK0BbC31Oks3X8SIAxlnrIQIQDPXkT1jOl//jqCMWY9Kh5qrhIva2/lX9RzLyrX+oNW7PrACShEasejrHLTYDW6xuyGPmxQVnjxs46E+/T4w+ooNP+1jPzSioSQ8y+Yg8Yi8BYm2c1bB1xyl/DGR5J4hsbx5RL1behCjLxHNNwym5ewUNm/TM3Pfc6Gkdqk/XAHJmUjFmvHhts/+lGtdEmh3PC3+AQeFDW4PXv8FSO13Ws8lMa/LFAdDdrdchhuAUOJke6iQF9GdGiqC+K3n2OQtrAktkJh1vk8YrQozd/KPHFEha/FZ08jd3YgMNpgIsiMX1/kB6unQbZQT43PChtzlfZLUoQMLnIyCHuj2B+dWhlLK0VSWmOW8/lzxhp1nc2OvMuH91STNCYgIVq9eq/gqKOfq3mtENwqajWW0J1E9uD10MxFMrqIRVRNysDREcTMH05hnaGlsNRktaBJhCA8Sa7DhIWwrQ25EC9i6uqou2Lav0kG5Z9QgQD99C9mc7DJUA25vqct1vR9TeP4XD31GD/FQMlyNbBRkMDi713rvmrq96Y5bg2D8ti6NYWGwgxB/WaQuOzou3DsOneN1oZVC2sRnLBgPp3OffQ6AJ0ayWnXs0D+FKCiizVQH+N5Po0hCHgzr/fTfSUHWXfp4tR8JnoB5va+aNH93c75kxrmXbZ6lspfb06EvD1pZsQrw6uTGTBQz5VALDe9H8Ls7lc1vTSZw8APC6PKy821tK2GatfMISwUAeAKCvMOcO9FhEVZWmaDJEQstU/8vpAJupjXjS9Hj5i9bk4H/4NBvU54E97J3nsfs6BkADbho5z9H2OFZT0gIYHWs1Eh+UWe9NQwJMTprbIbvJiT2fitRFrzycWrND09N1AZ1WPmOuGa1+eg4n8yUsoBeV3ihARZdd4ei77pz280o2KUmvkxa9sNtMooM+7YrtrAoY8VaZJjqnD+E05NUtV3jByq+5LNvyjOqHbwn1C0/OohgQCNYSugZwrn3EzdYFj53iY5pGzHN9g9LnhSTCwYq6AqhSTI9c4C844psNeiqKvQCsDLrSwaPrWb1ub4mNjwXMY7OrfYZBTLSdiFiX9xdvMfa4Ygpb/3nzlwbYVE40pgnZAzCPNaI06jrnjNSxvADaT1TPZiPRh9CSxhbAb5LJKT3t3TUIlT97jzTN1IJ2yYDSyDjEnhgPdFy6/A7UNxEDMH5c2NSPNmLv0Noot494ZoBwHc1yUvA9roG4Fg+t2SGS3i8OSwk22UptFPILADqjBIM5se950BMeB9euqFe3IOX0+QRW7U3GJ4wPACI3rn4nG8D4de6roWCMD28s/sp0hH4+GrBLzm//Cvi2ULWfYP1TNPPj19IEQjZ4G2Rryolm5dZGtiJtup9KkWI+vY+f0FFG8PQbX/gjidFG8PSGhAnuXX4CDr8y8BQt7uuiib2VlIq7UhnYLh0MaAm9xAcDRnEWHZuon7f2h6yLwcTq7KaXMpmkC0nA/isyXUGKYHojp5Oug6/ws03IchBYJuIFQGz8PRqxtDrYcix8TscLtNB+uBtluPprGlpbAXQ8WCfs0/lXBUZk2WlG21mXvsseBMMEDuuBrNjQDBuaQBV3Q/Vt1ZxrVxGBOvGPTnxvflAMKvBQK5pKhL+usvFn7Iq6g0g+WZ1bJYb3gTAe9V2kkPGPFAWtXQ8BshZcVgMqFVeZZn+twB4snbBab9/KRd+JVas1QVhdOvXAW0XYGh6dvrOiVG5iIvAedcmw9JQPztCqI5oJ1tR4PdEQCsCwANxKrR2J7Rfm8CZ+To9trZwdpGXs0lP1Ml2GILnkbSwcn04K5XN9ZG85oPbNGHiEQN5LTFlpoWSY/uE6cRqqh66ccA/r8mX/Vv/UZ2cJ8Xni7a0+aPsQ5a5kBYBGPB6ZXwJvoLJFzn8UPsp1slYYNnth5+QyLtIREgOL4ny4Be+JXy7m+e4cHXdVCeoQnTy721K/iIANgFmWRuwhj729+93ZmGAHVMn/STnlyup7wE9Qkrbf9u77wyfnqiUa4svaI1k/YChLerb5kPCrPGkGISVE+qM4d4vHnZWR49aDVx8Q7f+/qjPbPy1BKRYTXTIfmwDdvyeCnfvA2M/w6XmlZJtNnHC0mTmq6ZAv8K4KrXGxURc9GOfQpwXBdsOivZBLvfko7GpiqdN21LpfhqkPdPz0WTMOfaz9wWZuATZ0w9hdo7Hf1c9MJCn5l1/AEIQJMD32MU0QcbhdH+i2YlS2xiZ2aJXgDY091iu/Xfn7mxCqs+3CzRV0bZf/cjRRBmELGsK7dvZQcfIgSCSbdLcdyL0a/gl22uGzb9/hGC5W+5+OQeQelyQH0v3CXrmcMnyT/CaB4NjoHHtOeLyMq3PnhnFFB53zjWRRCEYvhCbtNk9O3SbnPYFOX0KUjm90h352SGqN/R7KtzgKHEUT8AVPXw9q04yTKC3UFfmPchNQ1So1e453c6mTZg/B19yK4W2Mrvn6KsIVya2tufSpe6QHrJK8ziOegsWjpddu9Ogz4rk8iB077bliaZaUOeihEh97ocGTpwbR8q5otXe3br1Aqa5H00OY3bW+sbaKrfttaSBfKRIRzJ7r0qy43njys3a/CmswGbr6iiiFCbaAtZYEJH14P8/FjJdez3t6BuR2uS0JzkpXy452pFuXPquuXLBEz9NelSEjE5W332nBlrEUC2idqGGEjIc47T649nzkITp3M7BEKHw7O+/J7Ucu0bcDjfpWcTS78zGW8LHwpHUe1lwlJMnEHo0UjqWl9yW7OCRHZxJYVraS+nbYq2VBBSF6NjKp3p/gSgNE+vROLwSLjS4qll6nDNrGYZRkqesGOCju8DUVgoP7NlfLXBgMH/aSgAHUccXutJ224zcTW6IiIOkAFRdHFYCnwoHA4Gj4UCDdl9kDX0u6P2/GWtkrUnECBUmfPBK5zRS2x89eaW4tTABrWxDRY8qdELZnymvl/9sdyUqiPtb8x6K6IxNOf2ouhETgtn559LNuMKpFT9F9y5eNZ/VyR3fUPQ9f7gMwjM5nYG44HAsYcdfuNqx0Z1KIHpUnQNMBFEepmZ9VPzDGo5GmqFc7CZPRGwKK1a/BQ3fzT28N6uDl9P0/NMzHWtV7zD+qlU4jVIb95jcWHT6cWLxMiK7J3zM0SXVgmpvkISv8iruMZWVhiOrsPlcwvEbsBQlU8C3S9EEqSoo3813nYYEN1e+ULuM4+ipzl8FaiBynIadcYorBlgeS25KKw1bpmbKBnZV2Zb+cBAkTa5cF9w1f0QufcY22x2itUdxgpDViCHzZ9zkUbfNt7ilMhsb0xu9Y2hWxKR2hon342DaxhMmEHNnAuUAKc485hMO1hWJlvWZq9M/Z/zhj1VRG5vgfd7AAfIdk1EpccKV0+Dr9EMcqiTmxBhBMba9aOHIAOumdcX5o8f03qOjt+pNL3y9vnhmin10iAkEft+5fnVg2i9kcKj7VtegkJOV/TOGuJ7Ree74qwHRS2RA5NcgnoKF3igHD24wgnnCedJl+riyBgrSJtLHA5nPvnMjhtcGzvUGp+o/LxrQ0zA2/dKTllhGGfn5oatvWI16lJdKdKSdtgJVa/lHlipyvYRlCvtIwC7HRI/B6OvzS5x53UarqxUZYoSyNTskCheJLM7/lkzS06CpHkUl6Dg4wVPfDmEwE6fixfvFxbKG5eSNHOhyHPSrzVZ7YrWKZrOfKh9bP9/WQ/X7S/3Jy66oGGMxpDuQGaF5F3O5capbGTXeTRkB6Zw0iN7aSpZ1o+qKzBkw40ifPHHqnINkoXFEsHh++FM2RkqJOUV+Q3WAXzTUzSeCIsfrNiCM+PdciXWDBBu2kzzAfWpQB2qWQfMwRL3xlkE/E3mt4KpULaYJoYvQBlaj8Q+4qkl1dEy3EgI+ycs9NVjUuRSeTETsL0ca/oFayhgzQHh/OQBk9XjJ2iNWekj/CO09m0QKo2SEQK9tBYIpDpgtdh3bXRG5d5L7xU7l4RS+nXQjsHOqOvCkcsee9GZ/NhIa0uwpyBTX+RjZmaxpJtj8IQpjVMv46OviovjQujPdZ4GQEhd7v01dwln35zB86OZH6iQVaXGLcdsWeMiPSbnINpgfujhD5D2QS5G6SwsGdGYwUG0PGDLTaOyw5Imun7ah1/zW5yM7MkFfvYtL56fs3ymENEhI4nTAtvCoSqBh61PSoc8k4n+9AlQcsVH92h18c6SjLXlHWnl5PFFVsmTB2n2VazBbqmasEyWPTuyLgB/laBSOoavBTa0BADACTmvnxUcbnDDJI1IzfhZ0HtmrdbdRO8NHN1J4BkyFcHAmiYukeWDjtEQXMga0uH9jPT8hw92X1Lpc4/wmarIdhqdeeSMkviVuuInOCWIkYNdnrc6RnseKRBB/XwPC8z9u000mqhqcuIIYORx76Yhww+gkoCb2GjX9Enb1OQgzJBqUfEN/RvemNwu7lVqF2NiGwEogclRFUN8ibRqFXwIcZItSneJaLmYJpf0r2KbxM4deKfj7y17QTu5tZZjGApkNmuwKTnXx0ljdWMyZjodHFHyzudU//Gojgbx9Z+fgP0P6dX+rpk38kdVujtwgYwCnjARTJjHQglb1BJuHvt2oZnhLppNf1+cAmf9qzmysjAEEYUMhQKv0XFR4qsrRFENbbivPtD9EH5x1Ylx6eDc+OafJflYbL+ghlovcceVK3Zlf3QXu5NnqaHKj3+A+UOMjCbA/l5YQNlU9CvaYiExaxXEopJ8DH0g7hsJkn+U274Xz6xiqqfyDvEYELw6tUxIep/FD8LOE4VctaVIJ+p+dPK87etUNCst0UTsYTKhDRquokHokS80Np43QTemLPaQrtIaLemI5NT5YFuKRWsSx/NAJONj3lEEHcqdHOaUOGhPrqyRzSE7p8rXHdd9wAGv94a9zicybrTHC1K6E67Xjud4ZctKtJcI17oonZZ8K7osfjysuEjV1TFDwuPUDB9URaC4fcLFRnf9pDYxHeVlRkbey+x433tgZSzcEnmZhd315O+5xDwE6b1k3/Nyep7kgdGxRXLsemh7FnQIiKm4S9H+Kd6EafbUo1zMr+dPnLq97xo8rux6NI2tS8zoFRKMpiuNbhXCBCK/nYOykLrDC/Fe21v988rqqwAequo6NVcmRoMAYlt0SPPS3jJTSxm+/JczV/+qY9kq2LpT1Q4epIIRlP6+chA3pjq+yOtK8OQ9VAcyo49SKX/3Rmljj5pOrAy3SsYHcjNHuE15Mee2vLnHI1j/7R4znIP2sM0MywLu4oiEdAW1n3AoWy5/UtDWbFX50DxLTV82rQC/DtRmSQiYP4+fbuuVkHeI/jz43RceOc/eik54fEx/SKSy7p/aHZ3nabTplqoHXiKDG7Y4S2q/xoGqII+jl2QxdrpVxjf8USEavgdspESah+kEsMMvRtdBpYqslRpLy735haUMStQI0oWjI9oW0dcxOUuTG7PoeUlfJ/qX8z5c++p2dHl6KFlgseYw4rhy/vbZRM3ZswcdCUP0BUvo/lysZ8iYafuYGGNKbvDVPsMi5WBlpV7VC8M2aIbV20G/RU4NDPHQOGedIjq811/L9e7MRmvcTAPpXWoEorqzGbBihc66r4TUb8InUx5AiNquTjVE8cj9+PzmyjZnILE1+xpdWHu2MJgQcDVBelzD1+wJDl+kuqJiigxEVVfKLjlG7kuQZrbP8e0SQoWtxmSI7+rAcSPGFAwaDgG2kj0s+p73eY57QU6/ujpcmgcDp/W2XbkZbh1diQ2JhZHCC2SHtuERIIbwrZRFtql5w0LczbAZeTXSPh6IVV5IWK9f+VXLHHSXF5e0ciDfucusio7oPODq0ASLkmUJ9k18BcFjnYuB6D+Jc3OHP9VS6FwyQ3BU4BmaX5WdYcwNaRBatZlJ+oxmHDIIgjdkLLtuvwV31xhDzAwHcRuTTzqHAt8GN8IyziMg1aJ9Kcb+d160b1h9DUiyykCgPkRxD9dCzE23rQG4u1dmQJ2ST3SJCQlsTKfP298xprdpUXAdbmQKM58uG0nHHrpzYmjpa02M3TYSunJjxOlyofYz9ne6qxsEvQR3HWTxPabdtPusUM7uYcTohMKpyoMJ4c5SqJ7RXtM+Z0WKvKFSJbEfUMrUZSO7Mmo8vHF5FdkOUaVx4GKzui19LAt5Dcs7cfZNPsi4NcX9CvuDwWs9k2wwaEqRTpncBQgqu4FRqTa08TOuaKpRElYN+EUEL3CLtVhmyZf9OJnyvccy+3/N+jLJq9rebb2ohE3hlRM55f4dJr1H3LGAUXCJPKtNFXnbnNr/AJUHAvNMZ7/yN23ew24rZi86xHqx2H+aMZSkazWnFtlV3PubuXqqWErT/qxoCnyOx6uUl+lMyZutMI40JqnVJpItMjfeH4oeP3UYQom83lPVjHH5zMdrZbE1ZRRQ8ab74nbEhgOa6ijm6GT8939pQCJphF1PYXM3qEnoqQ1ntM13pC86npSX4wJXjHlprl55KERPQZkJ1nVksSJDsyZYwrymamyDLT5gg+gYbxziaPfqdkGN1q5nk09gu5Sf8RNxHO1PEm2VHmNyyBxV+0O5RCT58hzPXn61D7JPlBWasTxNP1DKfMnH8HjadfA4pKXRiACZy5o/cqNaeGsTFnI/xpPlUdQEiRs0Bqoyganevaae/jer0qnNWpgrdtuOurIwBK7Blgfyjo8x6HUGxQXcVPHl9+KO52CgL8+EntVn3N8VdKQfmblL0+kp6myXcbUk/uiCDMq7B6qCjK9Jgg3R/HOfMVCo0oVNRWjsWx6SMRwoV4LXRiw+qM/q0XP91cB+QHvt5GFsMLeloyhFr4AGft1S7z/d2OFQ52U4MQB/f6XcDSpKQJC9b2pQe7K4tUlb8wyvSExCddzv13ZboKYerBCxZ6w3WkvxjtIBm/EVsMFgiD1tp/Dpdhjmzn5tIF7QeeUmIkynJKo4LWvKd/VEqMtg39dZJNeux0sFMHLqxdJfAjzYDkW6au6qsrVbY/Z22cHmkIEWW9Gn15bw5ki8Oat/cdv/4FqCRCmRLjzYYYW/q5bfgK0Jf3nCXuUWzNsB5tYpYOcPbGAKh+/C251Clgo80ENc/bs+jet44EWTtfkRbsj1w7HK1Vi15OSuSN32FcW4z035Y63wZw5ezX/BA0rKKlQGJ8GZRDUBW5YF5qgLsgajvZPJoGJyw9Srle33H1wqXd0XziO6a8EqDpEcjOfoJgPxj6DgyrGbXwqiO8BScMNRkLZ7kNze0k8zdV20JNq6hfGIGCKeumQFpKONI7BL368JduT6AHmyMsWNfD5IsQQ7LhZziVhLefv+Wl7VtJF8Kh/STxE6hFo8FOYFJyZ26Y9TJusmspuvdMWT1CDPIMTLZdCzZEgdM1pAaFOvVSj8pNEEF9xSiNT3M1Ztez6vSnuxWf9KlXWlwLfinM+tHJD3n1r88G1dxykVCtHfLATK51gjL6iXghzV76VJqD+63EhzZASx33pfzFbOiyb722wiNcT7tCrpjK0ZK4xsNCWiq7NtXYQn1HrqaX83Gpu6CVxKwushz4uudR65sybVSc0fHsuRNRyiWggj4MApW0I7YInFDd2h3ALYpX8v5/2Rp9weXe83FSEoMtL1nuT3RVBFttORgHLOv5imhB2ltv6eOBwxUuRHRu3XuDCU1y/gix6LIxFGnWPalhSGNqlKK1Wta9FxQEWZJLE1sxaNLpalcb/ALjMvgp+QeqLqkoGXA8KVFdihY1dp/gyuDjRXij8aXR6joDC5niN6c+J6o9Qd0F6laL0R+WW20cUJgnSSbme9vw4cMRvdYdvxFBAsF6Cnw7i4lucp5mlGHbbgueiFTCfqWEdxGWn3YtmSpYEMnIxzqwXaouVtaCy+8eaj+N1MkuC4uhkQQ0U2y0KTTZt8x5HwQp9pBrPr+j1vrt6QVtTYwLJzhFqXZTQWgWkUplJXiIsN5JiJD9FuEUiI/pmxfTwNG5MC2qrgvTjq23l8ZEYHopO7oOY/fMbTbKjzpWeaaQptT8OtpQTYHjnqdFIllrWXfnCKxQTJpGJ40tsMcfp/cD1laT4Ue50MurUhklB2bKvLq6VrqyWB7y6C86R+3SMZxI9GFRKljuHEbSnSzPtTAN8flvvkbfyyqmKonclKA3FHTgcxDxQdUt8YGBTrKU7BbPUuocsnyxG5XWwMup76HQ1P+gMHmr9GnFQ6L3eW1QsBcNSZI0mFuQBwGsJPydsHooKHulahzjZXAEC+gVDzc8SIGSe574Fxe4YRaE+b7NHcZh8L6u2HxT4a6wcaziz8AzTCQobSut69wrD95X+2wYuc9wBts8H8LowurzFl3xIuXdKSu7/phRvSkotYAqLjmsUrDxVyR0p802Z/RHPDYtX4riy9EQ1Jb9FZOB+e+XypUIm85Y23a5GtIoNl4HafywHYaY8BLJRWNwuf6xRnvE8I0KPhEOrx0S584yI5wrWTYlVOTlilLtRJ9Y6Wm2k83A2XIIZFQTi+MqlKBSptVYBLyG9AC7Hr2UfRyut4BW2q1bb8ufSn6aryeU2QFfXgeWlIkDxwTcgE7Ba+uLomauqtOmYkdu0g2s5wK0loXrr46pi5KwARPlVhl6gPfsawpdjQ2q0Hu53+ESKlBjb0Jqk083MT5uZdq0OmJGcJ6BSbipkP6Jd4fpbi5XGLfx0ZZlotscwcQh3GqxxbnLdAsosC+kwBw5koRlQAnXz22ncrR1LGofkMQ1tvBLlct4wvy6rjKNkIBXtRqlcjPbroIffcXEDtzLjlGppWoWPENSrb4NlwopDTDx/jMOKR3ulKLZKuvZUB+MZOT+yj9Ba3OYxU8d5wgnPgS51ujXRC9e1W1CclDFSMB4w2Xi9waWJq/E4dYddBFGHBf5iNScPu1h/1gtKndSa4FQgUY+VjGKDSlp5r9Qj4CJYSaJeWmybVjtrOa7n2sq7EhvI8iwxJNanV87zY/jdDNAtfjO5FwG4xe2FG6xI3/Q2s3oNn85vE7XVOuvxa+nrEmeRgEorT1B77wxZKUJPAkxMV2N2KYWKRtwa+6trOvpLtM6CdAYRHPUp2lI+S+wgKHX/1WGr7GhgC7p5KX2/Vt6E6PbUECXvFs2xmds3bg71IydUoatQV81NEbZsC9d2cKUYbsR3aRuJHHjmEK4mQcrV8d9enymURp5Du03P14sQ6JxVgqc0qofyQM50M69ByzETnTB9ZIwwbWwaqeUdkFQYdBwmh2B8FiyWRSKzwo5MHDCE75V/pkE6dAZwZsfbNiBJFa8WYf5KRTU51s6qGbwjsPWBVHLhCw46idFvIZuku8TgkGVWsLiaUWGaWzjqRO/HjUxKSzBJwvMWsFEfenFSaMwqHu//J7zG6/BGdNlc74A8w4orjCUtbzHsdVE/0gzMYkUJw9yJrOfsiPgimarbzjZN+iZ/HdbexvRZqgwdyOmDVw0iiRaPll0DT0oQPvxeyp5rclMy3QHVLCwy6PGdDdydCPsIiM3RI3cYU0RWIdb5IHqDLfSMMPAtgQeQ9+jiXOuwhWGqMJ+ZLF2jL3xP8T7zJ6hhyjZGoSbM50yR0zetOTWO6VHVzomYqrYD612ih65jyEyex1dkXNVPJlysvv7njyWDQGu3t+JRemAfnM42y33QM5RqjKf0gu14+gj4PbxeeoSI42bh3XPoAoKQ4rGlI/aN9c9Kh998qbZxEvlILRtXCpd6eVHS1bj7vJBXMBifQI647YzvSfCdeSza3YzjUHJh2+FlwVrglsB/lF0SiAhznG0pmY8/Pe7Sjzs5dqxA7Zeer0+HpGVIQIXB8zNdTH+uMSOr9lG35gLX9XYxU4ZdwnXSH7swQDUui/6YUXLs1eky+3u7qenJ0ky4ikdSlqPYrrnGNiDPuAdRJvjhv/Fa84UnoNZUoJz6YbIiX2/xZ/8l6Ps2htFIcUptvETe3T/VoBzfAIurWx8gipOZZpdWlPAoGYfAoNGoUAzofNW+YiJBLudKYOZwxa0xYnftW/1w01h2R0mpp6HQOtsPWVX20m/4EJ8IimSCBlDmRkr08jZXQdUryUKnzwwquaCrDPlJmuVaA/hPszAAtNrqe42qmQxServLe+liPKhoTip8fr0aJt4XrNi7WezHOdVOzk/BD8fx5yWb9Lqd9ny6Q5QZueKwRg9Np2Cl4wIXJFh3UykxH5e9ynasmy/vyUIbpY+q3F7HlSLUTWYJ+WYzzRtYEw6MWh7UXs61a17vIbakM/us502EHlGUtr30TvXh8j6nN8DMRrXu7RoR3RpBrhRfcj02Jm6bXnnKXW4OZ7ddgJxvXOugpPTRLd68kn2sWluYq7m7K3zY7tQI8HY9MI7/mqmpI47pha1qrLAxMaYfYJhC8bLVFofn9gRrYKdKOslgTktGzJef4DuJouCEnnpbAFvhvG3CXqZqCVfi+hUfG3xc4mCQQT2G08hhKg2zo+BeQMFwXTb//uHF668l0STzrLJpMJlBlx8WtGT2d0Yee+nx2VShourfvuBEN9aLX19cK1xF6IUim3mrU7z9YYNMlxY1Y/8+jXu8dha8tkYbtUQklpECMS4QJgWI3zlL6QAkYUVsld957/0FFxWWDCB5WxUOlSYWJ+lZXpFX44zMmFMrcxqo9qB5PRJmyBWQq3lTim4eCVH1uHC6fxkPgtWAL/AL4qOQetW7M4ZjofIgWnIaN0f6x37I8OhtG0q4bzz9w/jruy7g1Etw+RmB8ErYX7Fcf0SdS5pI3p8GrHPwTdLj5G/gsavdcY/dfo8t4ZJFXjY21XF4NQ62WNCB6dmt0+7YA48qI/yumvxd3LYG+GCk2f6JSa70oTuz9Se9LCtqU/ax7h/DFkKk1dnf9oTzXdlL92nYyY+OdGyWJ22f+S6VpSBMoedmMlh3QkTlm8TFvOReJb88Q/eXRnpvh65p7igP1MyV3WHzu9cgiqjmBE71w9aw8gWkFP6Y++95VaxX8Zya7jEXPUL37VJwhsdyE+y7u1Rwm6FMeEQ0Uvufc5v+UyCmyvSxq/wHzXg/KUJ0vjXKb4H2Xh1ioNYb9Z2NgtfhZ/DTfKJgFyQkHrspjq23NG0yPAeDCeROwaraOX12cdUxVxu2tisap3ttkvPk8Sne3cFQkRuZxt2BHr4SfobUJhaZO8wLx45GFXBx9JcnXjDTK7Yv8gcOlip9DbUOrqMW6/BZn6fioQk0l6JEl4y2uxtI7eVg48HwT+8R/FO0kIOMk37FRCIsJLhMW8PbSHGdx/ql1KyCcIHo+64fqOl7a/QDidpgFv0WstgcHRvn3La+r7XEr+yNeCFa4K/G150nc5IXYyHsRnkzODkb0puJqnfYIYtATY64q6jrfm7w+BeMD7rZa1A84xg/+HOisNjSHcxhhmljtT+TFEuicWInSgtu3xfjyZpyWjNOh4eFIjDZ3Af6K+LID0UbBOTkRQs/jOkacB4UofADqkqdNvNJBLn0qxKVEsLSi+5TiezlmKlVfF/XmF+CUrfOn6VeG6tBVm2ch90NchhCHMYNSNIaXbr9cM4UzmpAE1+1MFmXQvkGj5huZtnVOLP1ExbNYsGSSpzZOIgtheuCXQw6cP0k5UDLdBEoGBqbIVEKK5cdb6ezGeEsbdXB+e6LrQ3B9O5cRXTKcAX0PeGHbwvR+PtAUh1GgSkm13jltLSGuV8c/VRX+NFnMiaFVpXL5hHKAwcz0Qh86mAgPa0K5r8l/4GzPAfyVvtnDXRs9gxzjliIpPZqj94csik7e5Fa46ltVXhM/K6yOgKLoP0Q97d/SH0vIa77/VLBzOTLioMR9b5h4ldCwkCNPNcBl9O8qLvbToxjpUuA2Pn99du1KBXLwZUq4mPJ+M8+ADlXY62s248Ou8iMCN7+M+wJr5ysGlzSUNaKDH/D0ZN/wpd5wyk/q8q+z+mhOTD17I15YZ18F5q6L2ZEp/b3So1KWOSRCcnbHyMNYOkXtNB+VLaUn3r9aK38svKiY9UyeiZWJ5EiyYHkvFf8v5pUgQAss4umN/oRrMTSnbkHG4VtQeQp2OI0o9SxtJvxclE7efPIXVwGtN8hOppyt1P6e1WInvyO3WnRWbZSY82wP98=
Variant 4
DifficultyLevel
705
Question
Jeremy's back deck is square in shape and has an area of 16 square metres.
What is the area of the deck in square centimetres?
Worked Solution
Method 1
Dimensions of square with area 16 m2 is:
4 m × 4 m
Converting to centimetres:
400 cm × 400 cm = 160 000 cm2
Method 2
Scale factor of converting m to cm = 100
Scale factor of converting m2 to cm2 = 100 × 100 = 10 000
∴ 16 m2 × 10 000 = 160 000 cm2
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jeremy's back deck is square in shape and has an area of 16 square metres.
What is the area of the deck in square centimetres? |
workedSolution | Method 1
Dimensions of square with area 16 m$^2$ is:
4 m × 4 m
Converting to centimetres:
400 cm × 400 cm = {{{correctAnswer}}}
Method 2
Scale factor of converting m to cm = 100
Scale factor of converting m$^2$ to cm$^2$ = 100 × 100 = 10 000
$\therefore$ 16 m$^2$ × 10 000 = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1+XN5VZBlBQWJOqHGxGEA0rwx2Vupe+y/9Gp1rRgHcaR0OloR6M1b5c2OIU7IIwizwecGrBCNj7q3Y+xlBiqjhQKgRArsdOkfs3kW302cPXJS6QNNqeaVY/fhfA1/8hj/Gk/FZULgHuthFBWbP4qXioNAddlCN6ZlqUHYDCXtrSV7Si1L54OUt9/JYmbqk1j6Y5/v5ugt/qbhIKue96oes6/Im17ZEh7AaTUiZ9ecI1si7lJ/U97O5SLPjgGp0yOsBtEQqKUhiPb0XrX3LmJfeWsRaAt58t3ExudBIbE3WZ0rKU/bGkMPKCoyoP28Zu1rV4NnjNPUoT4rzaSHiLJD827NjOcdYeTQzMCGK5dSFREVyC02ik7mjVzjRNnHkCjhFyXyarKV5DVS4XO0piHKeb3nG400iQF5I0r1NNrh2NWEfKaX81dzEGz/ddIRN1JrKJd+1lse7y/o2agCQke/lFuWzPudlJNco7q/hpIcxKt0mIy2TcWxATkBaRC0hLnBm2wvfnzyd7488NbA0bCbo0530JPWs6YlIUP4Wv26413j2un9wCVtF/OLg4dyAGq6XuLI1RKNskvMlcymozr8hyWLdGHSO8i0lzhDmia60qkHFa5vyhXUT2cq/Xgsu4HHAaOO4VnmLdkQ7VEeHSdvPuIx/gJQXcAqwThgszv+SRqzJxg/v/qU3ggeniC8F+P4GyPn3AtANgJuCbjA3AnepxLsw3It+THxwC44mBvJF7yii70oMqt62W9/pp7s+ROz7xLd3aDalm9oQF4N9/XTFoRnKcWpIM4yYqtenemPrqRbW3FpPeWzSejTdApxPtzyeH11Lxkc8NwaVlUVlUdePeBt7rot3Ye0evynslTE04jrVgXKwhKJzoUstlbSTeBIk04+jdgCLTbbKlaAR+8LNpp1kmBbaf7LS0IZm24ugCsv1Tx0WGwrmNuezlTcpYYenCCHrRywKdtbr8roLGZ66fdw3/JhCaPysawOwcFRAMmuB++6mD26whhCBdD1ut/DCryeWHQTjknC2/Qu7J35Nhiq1YzIlkPUdi9MzDPMdgBGFDpReAOMC4zycjaHXMWSZVocAtATp95XKJPJAy7YDbRSvjbg/m2KRDRVyZKJ2qC+vkTvP6gy+g3U5ZcBoKhXmrbTROk/s5yZIdgBG2oxCgZvYfdKQIZdo6f8+ZOvOzMXWSMawSuxPe0ddWlIeq1qbiblZoMdnnkjhKBqfOxMIpUUEkqByei0HPjFejOoDEeT4oBusIXgg10LMl8r0JIlsnq4V8GL9kRHyrBWPVZRC++KxpbLJk4Lc891KaqPQGZvMx/r63lKrX3ss9vxdBQI1elawnMDzMH2Z1V3oK/oOysGEItqmasyrnAdQq+gZ4cCVV0mjaW3KnCGOqLJLLyMh2zRpGqFYJxN9TvfFPYua2t0FSBJm/jUbhcdIeSCvv9RAW0u1B19U9HSEh2zNkrUhbdHfTbZWvQzFvk/6h5US71vbzuYVOZnxN/iRWC/J3xgnGWliwGDTEZyfmdLGvGqevmGt9AszC+LZpzBd5QVlwm9RCzSOD0HJ84oS4MT8xNcaNqHUv3k2aoRab1YM9xL048Wz6AMibPFDvNfCeryXPgwIv1tZzqM0KKlzaTCbLALbXybTtNIzBMavvJy9xgpQplVOTU0Z8oCuxUFjbCjjB/l03no5Rsmc+OOIQVZkeYE2xDOYnPFxsCPQ5OA3Z4odvGQqCDY9plFIINV0hC/+279HlPXqQKIslXQ0pFs6sI34HSRdE6eOlSK0oLRV0Fj2KkR8ZwfQqAHYOtKtf+V6P8O5n4bmUEWaFjggWp9UCUa4SXMNWqEBb9TogvnL1q5gCLpU6f997KBmucft/ZKP3HlDs2QpozJ2R02HEqn6Y38A98O5me09AeL/cx7mmTd7VAygidxUQulG852C8EdRiXi0u679EFETpy4GCCCGtaAQJR6c4Xbrf2CCc1/NZn2FvB1xRqxlPdc/gacesPGVHiX53Ha625K1i3zSDCXwwupuMo+gJGIbt8aNOGOAFRfsQK4rcFMpsCCQrJHrcmE/YJJkzFSlOBNx/rK8VrdAIq/skCLc62XXgAJUzmdyBCH3s3nGmFxoOMNqBNPc1CABXyLg+e9nBCZdu6Mp6odwb+ZSZvIxJbzQg5DO3Nr6hMkgQDzaorROkZfcVAdVKmZRk2BAw+XCQ6RJaUK2OYlJ7kJo5e9YQ2HWsGA5FNbY3yL7bzcozbuiC0SVW5pTv5bQPiuDzyRqAqEEOVpL1A6QRcUAciRoNm7K252JV6zEyT6oAgRxjEtGgP367LZ8C/OhbA53fB50chc/PJiFyFs8Wy3G84zqgE5akZoy5lvvjsWZMrF7ZnAI4GxfFS4c6gluc+gM8j0Jhy1ETHFSdK1TtGfJRQikTuLusIAaolDDfvIQqi+eB9dezDbdDLYKnH5+oYOFl+8LCFzxlHcz7rlSxGfHJdlN9FSrSlWTiWcluAdLwT0Erhwujo28kS4E4YvTl2pszmKZQt9oWghBQo8HutgAqxOS+K11ZSNYQ7/+V7rspbeY7MGQAQwXD6ATHRxi+dMlDuDo9XncX6gk2iYAfwT5ZJoZb2WI9F7vLTme0vlWg83uxRpzfL5igBonokhbL8pRNS2KHkdQzzfPi0wcQpjOrtWJ4yUHT4z88fbbvfc5mqJVS6WlS7eWd97EJ58p/N5Z8az8ECruC/sxkEzG5jWVIowGFrD4YJMkQKRWk0TaWmOoaKuKgLlL1i/HfFuxE4bBQuei4e6KcQTehj+pe9COs/uMuN+h9DlFlkxvHPLZ3oiVc5N+rimpRvKFtNB08je1plJeLq0uVwwjm/0DvFj/czCYdsO8p+VBd8tPFb+gIhKLMugkv1WnlSqR1SCzU4PhNcXMma8B0ZtBXRUtTH9R00hO1Gut2vi+wxrL3FOY/DCSzeBTMizpigXAQvhaJstOBM9x5hx4KphZgd4bzAvEuadSZnXHhqxn9XKsbUXHX5TCiDupN19V/rpS5X4h2bE76pxJye46fuioDv040uULS8yumNbHZpJWct0/dxiYTEntODhb+coRscy1yagfNQOGMnEgzaOJZFcGfATJLPLM+8cIiIK0sMnkQnM6Lf8FqQDGRxpPoIJM2uVb0FF3oY3yiOv6lyc+drygvhCg424Iy+EX0T34exor1PzRCwXulBOZF+RW/uU2nFwYIf5ZHyyW6n8fdzuJtiX5J3USO7cPim8JaASmuhZpffgiQeQZpLgltJegoyEVmBods5RHGnVivVMxb/lg6Hv82oUP9u9zVqok4jSey420pqK13+s6Vle3ArAY8fvnutS+omHt8VIOyQnw2VgLc6pITxZEWFs4z79lIvWgJDNYpObNFkFG8pyac5DZXFDL2vPhrM6OXPI1GwUqUnsm51DyAfHu+ns0jvpJLJdJGXY3ej5ad1sDli2ve/fEAm3szUYPILUM3jCmcs7w1UQkIp1HPYtWX4PKIf0AGqtWsJWeFRWf+/nKdQ5UX4E4jTkvb47wAmtHpV9aKCzU/SXk2qgE5+F1byQ+OnVEyalSAASAxfwG85TNBEa/P/Ex+aOFS8yCH+DcUHjSZINKFrpy4SC2oOjE5KymA+Vo/3RtOPXHZOUggTNCjPDwNsWKkDrBZVCwKfwXvXyEGr21CNoxVul5RHaF5UcUhXLo3HxRagbYpO2b8H3E34FXT5IMMRn+CM++ISl3q9E0gWdLOMH/M0vjeiHlvgMKDnBXZ4YW1G+Vh1+kOOGU2vayGdJhz+XK2LTuBW271liduzJn115KiOmM6Jk5KYhE7jV8SM2V2rac1ZLlaaE8JaanIlcF+P8FpuS2ELK3MX3ioIMW+6P2cu2HHS69K9WcoTPeETNH8Z+b1EJW0tJyP0XdFem9yB5wTHMdHezeQxm5s+9Mve0ZW3l5utVoNlDwU4DYTtXe3T1QWSAMMXzKy0YkNQNlbQofcWnkRAokxf5oQ98C1+ck1SLVEpsr5dBi1jpqPzfG7i7xdKRLO29QZDoJUmq11EpmmUEbWjkdPCqw1WOrfkkKXpFAUKeQsv9OHBjjRYFIZW1EQnRlLPtThbKQ5JSVEUuWinGsdx1ZBVfgTu/U+Iaa0uX68DRSPhlJf0CcSwsjcazq7yE3HmuNEVNDNnLnZDbo3Z4O92ga+DgPBwEU9V0pON8ZOW2cX1UbSRYnS+IIXb7biVNMBycelLzAA5onxf0rjjCInGPRWZ58pGCMAA4Rb2J/2TB4bCumUFrMblu9VeQ8srDGSg0O5eu6AqKH8Tt2f5ZZodX79fKexOjoA3EdUZPGYZae+SlBab8ZPs+7/qETZLmRGT0I7Lkiir/tOGtYR5RkRUzPfJqdVqUYUwwBedRPp+kd8he8zLuybL8e1GpQ3WKtmZEPrbzb7aKuDPagqObCu1CMPeKDJAYalYuvf/yJxyJHVXgLj2DkFLQcDpsPkMnbyFrweaNf99Ts3btZwS9o8mzk0Ohejb0U668TN5612Qjntg3jOlnQw0TUSscYlEW+jw09PejyNIQx8MrfWvr8KTbFKa5Msrh4ivUrdWleuKPq8pEoMFP0SEAfn4SiC9B9YEPFHHzGuedmto95sPzt22eeKRr5NISGziWdPHfpMd5dXhOzwwIJMs4fk27hKuoo51ZmSRk6imz+e6IQVoyDrl9xedrkUaEBt2ygTqLLmjyAjuV4GTrEnzgK0uW2xv8E+4jE6pdl3XzjAAqVfa/MzzgXenVdtfeKnaEyomfHvWLzKz6gvWgF18q9YmHU0lpvI/biiU2LGGiiuZvUr8UPAoD6WWQWpUYmawFBQQeDDKf60Wxg/UiRO5fdXDsDo/WzQVv9hwLq0GeX15lj9UIjPrej+s+PVObyA/qKzyxLSxiq/6bfuXEZ1nIPM9Qn4aWSet0w+Aho0Jh0MgpF4s/FRm9mixs2RmVeYFWVoUPSpzP2Q5KKKpPSUfWPBflv5nb6e7QgWZz+q5WXFbXh7Ags7dv8DkeezpVS5utmR9AdfAMx4VQUpmjQEMWUIBa7AoGXIgkaxCXEzixrrxXrjgaOTDbeKBq08UyiA2qoWFkEM6c7EMMEh+HJPJLIRKYYpVjY/2fCpjqq+V9pk/MVk1if+V7AERZ4Qz/kE6noyFA4IelBm6+dBNzS79bDoAhS2rFSp0UDC7Q8UPQNPRviCWQ1S8lqOsQGib6YI3O9DeKx9AzrHen62gtFqD7VuXY5fzH3Xs1PNxEGLl/AsUPFD1phypkTpcPopotGfq41eXRwGdRGiOOBo1dXd3LN7qbgVvEVti5v4YgdRu8SRWyz8klF2KzulBzEwUIEebCj2QCqcFrAawFrCe4r2jSF/IoUxBGL2ibaDdL5Uwg1ZQKV2KQIDyF+H5mHrhuZpxA0NYaqzwhGA9kxLNnGDezlfrHjcXxZXKyvA+zI/UkYHMtQLpXh7kBjPitkzkpLAqeJ3S5JB7xcfWBTqisWuYoO6hm0treF7WNvna11jnViZ2a+xL+U6PG9PrGNPa3ik9NYLS8w8qQclMKmU+EMImJwOoikx7xtQvpj60ziHaRYKuE3h79GeMaPEBgiE09rkktSGBD9XE+ZGJhsn0vBlP5nNuHp5xf55xyOj/xkvX7xw8D3PvAAwiSVBiLnWfClyJWbx+YxkjlHf9IfJppVcKyqEqALPwgNYOqhRk7FPj+IJCz36auOZhR0p9vYA+LCzHFZa0s7kM0GfDqvl3/gvc1UBwroUuKYGlV/xZRVKxoYVCc9vUXS1mfcRwk5A6vwGm/0gY3lRhzmRaFhqUGp47avErXpBM80TmQSLindeDs4UnDQXG4WGs3SZO7RONcJbDm9nF6pitPCKLMSaiOeLO4RIGdzZ8O5VXOBmnB7laXe610b/V/H5xcVTVXFrfBLiwVgtlHp2tkygSp3PiX8mGcJNw/ykPcDI5eV/Y1g6l/cx/w/wJELo0j7miiYWUhq9K/Hn2LmDjDMfLZOE3HluADmSoX8zpXaiwbN++j2IPTzkWIWJZV3JAh1885fUksgA1NzDFTi/dcljdqMtWQkJOWC3EPrMV5ncj+IdqkJg3gzVmt9o4Istn0sHNmAj5xDbsck7T4/Bn+O/b0Bm461BAooiMnYlBIsuRIAggNn5DxwWeLmA23RItuFrgmmvPxG3CRX9/Zz/jBob4ApBPuVPxbs35L5OaT4QAbepuxC8vQ5UZXlsLfI6R+TV4VM20YIftmHB+iVh+Aoj+pSjPwH/zbwYvEP3knmqxbk4+rNu/9abI3SPF9QI05367TJY9SAz+8MRq+Fjzy0JSDD8qsUgJg+nZTXCv/FFdTsnUAiG8jEXvd34bltOAkIcYMeJbzevFNyzbH5I904jleVYeAdhB8LOY7l+ZSc96sUbJOUSNV5L8KiSww1FSaeJmORD/T26VAj6kAx9V1c2DomB+13MreUPKv8O68V4qWWUw5+9qUvTX3pnRVyLUJX/jxV7a0csZfZhQykoeqtO1O0nS/OBQ5/vQPFD000DjrLD8Xcr5zev/EG75TlSlxuCHI/+0U7rl85wjfScIaWGXls+yXohuVLsS4Dgeo0wK0EmofwzgowwpFB9xmWH65HAmxs52C2cY03o8Xwvom/+2cGxi86RTOprqsZk7g3YJ8DXILiFGgUZuG26yda6ieYmGgQ62jXtpxMh3sraIfRMMDAi8UC4T2dVsViLvIMg0nZX0C0vdUkSre5/7DOuet3kHO/i5VLKdu8hxMYasJ72wQm+kdaDX3KF5AL5w1QEPscfcRx6fra+TapePTic3a/NEuUjIooQHp58xejaRZssRcZAblGF3n4CQN12df4YE9upWRWYYGKfwdq9v7kkcD11qQYbNl7FUuBhlI+P3FR0dAKwBqqTr/fwENSIfkvEXjkPW17ZpwhBiVdD0rKAME4r79JBZbSMPFjqCf+eHM+X6Jgzrvx2MUsyveDS3b9rukNodkKTfGreaVJbwiNGxOEz3wqzzuq5pCKEZSFFQIFPyW+GlJLXM/bNBH9npsNutxdWlf7+D7yftEzzcMgcrx/mzZLml5BrlfnNjeFJCDlrH0sIPdl3XSY/25Ek0C+YxYEElx11OggHM1is+SIksJvOm8jsujLfHFtIZ3ObeD3AFtWa9V8Y92Wv6/RmITPBIwC035in79PXkQ1Xvm42kfxgmOT7cc99aLWFRGhCoQhJcWTymjO2slbgi91jAR8Ntd39GofWfZ9j95BXv4VnFaDEO/AVkkqCRvnVAGxqKyhOBpc11pwiysFgU1D5esPlL6hBAAlQHNBN2AkqYgnNEcn6c1EPdqjWQeEAyrDbw3wz6o+iiIXVgeW0Gfwnz8eD1lYarm0MbmxAPTci6HXQf7nUZNl29jf2NufOubS8hCFtxJXEjF8iC+gvMQomBVds8I5omzk1RUD5IUcbdSpW+iAj/n3NvGSckLbwvzqxuNLfYYiVP9M+SRgtwaJBTrDQnKiDET7cT720HlnEnJCLla2vcVuXRs+VHrtT9Ba74OH/PELWyocg2gIXeWsgc8IrxUlLRNGqoHnjXbYgmTCFy6/IHSlMXrorepY1QMMfhIAQn7CBv/bTs92Hq/JmelpEGqxQv1ND2ARogtyqPaf7VRj1Th889AV5hlzf7nelO3koac84ES08jEuhZBf10tzYAm5upLKdnLD35YUWjCcfaOI1oWTGZ242JIe9ZlrELZtLx8BEij2i85ypVLMFsDxScwUi4okI1iDKQHVOB9sspk9qfPBNxebGV1jXZ5drWiymJJaiSyIhzYldd7tZOV5a0P1QX+iF0v49DaqWGHWK/iAdG3BmTe+UEkW8oVA/H4xedkmW7w4v/YWCBh+Q9WJBDp5cyJBrlAWkprI3xNfKo0Tc1xJ2WlwJulh4koXlqEgN0uAlTF4utU/ApA3sRUSC23pRDsOYJPXbeYpPpRCJIzqOaURZ5JBN5oAsWt5es7uGPF8wfD9YKeE1Dz0iGVlNiV7SxUkiHd6Jh9O47FZmh/h291CpUIBCkvgH+QvMiglTTGvjTODB4pFf8mZqZAst+6r/1Vx9DG878cAC5dkGgcA3IwccXll5TPxqUKk30Z8LwKj7audHdPwsvuLnRjK2f1Pp1xpEg+m2LsKpISfv4hx+8mH8pG0bbigjrduARJ+jPYs0tIDpf1fiDCG1+V1nzaTcz3cQih38VA/wWIihowW1RJnKRXyN6Oko1WvH9AN0MYR+VZsBuWN1ximJ0HcwWrT7yZrx0X4sHHpxnaFs+En2e8h3owBY0CbOK5kjVZ116Cdd9tNu3Az80IcoirOT4QUrYap0SqFUM9f0LS4c6FRmaYNskuCSs826oEiON3QOQxuwBHf0RXK1OGZY52dMRf9Oo3s3Sa7O/1pIEb46jVQ+02Etim+y1qAqaWeY0YnSZZbT8vvGjo415+14hwTI0apQeZE/Woc5T+Ypc+PT/BvivG78K+Qyom706hef0KqETM91ql8ohHyki1uLEU2DKAo4yWuTGNkmkHgGNdMFfBg2P7DMUcM20QpcveYhaeKEPTkNTVNxJOCoOIyF5SMdMzWtwVrF9pKIe+B29SQ86Fu0B5DR54Jx1Enygg6ZxbiN5ZyH/LlorHsVPfMBgmTK9q75fpwTKkhJ9bZ2mBWfY/xfAikzvQyG57t83tixJ3qourFaN96nX7QWE0kBEwCANV4vhAbwUfoGEVh5fXBZMPoqCUlnHwJOAfKOO2vpE6CaT9MTcd4Lz9pLLI87ZDxtXiJfOGHDKDWM6VXrsMScuEs3fPwP/uI2PUymsGcRuuA7X3iCQuOIybNwl5kmKukLZsXxr4NhDZCLZ+TfAmEPy1V3ys5OWR/7mYW1FGfozkir9CWKD6I82zhjsFOn8cU3Z6PJ1QzNwYKskO+HV/f7+UtjpnOhzCqOVAea+vp+jVOyG5C82B+n2tS9MJly3/hEH9SE34VEl0P4vcBuTNEEeO30qJ1QsdzjHdPNHQafbcRK6GHd6YXnoAbF3zYU+TWrnjAAjUInzIFu3NV2+iFpPm1mlEaQTXAJkuMqJMgTjBrsB+uckrPnVOeWE7Mh+9yxhe4YLmD5DETZQrIqaZeDa7tvXm0DdKMBK5GZKnVxrqW42cPyi2H9as/+/GJSS3Ff9bqZdfGKdrfuXiT9C8sgA8QRJJHCBXxEXsdJxQ0mKnmXrbd4mTAIW/spi4t4IVw/ZgTN/3/mjsWzBf2ef0TVt5KRa7AEZG35FaLlGqvg5XTRFHxiyWryE5W5KSujBOuPhY3wLtGNo5ZGvy+WM0kOkdjIxdBMmbqJU0YuZ6NOacBMWN2RKd+L8oGYg3pc656ZwLC0TyAXZQWKa4WRr7/7a7ytN66lhw6DMdAJf8vAEjkv013If1PO2t1SwFas4LGvhNCxFCrNUdPWKC3dad9ymdJQmVouvZYGfP4lzW9AD1rVlaxamNH6fXH6Pf1n0aS8f0Zt9JLNcM7smd29+lZ0hERABswheDo8N/r1tkRxHmyhusRdz2UDWuqHGfz37BvLeEPij4H8nVvhK0gTICH4zZwIqQlrxQ6AR/xIm2ZczF5lSEmVU8iaU+3qRkJkvtzRNEDMz5LlrAJub1pW7ELU9AriON6kU7Rt+Chjid7u762kdBepA71q9KHoqgtmVIp0PSeVF5ydSsrJgymeuQlasTFWscAQqBsIoXtI8L5cj+Y/YP8LCwRBSVWBA/q3NyYbt2J93HEHHHuTg2R661/wnZ5UvESVtYkHvtpbd2helQhYB7kEwEQrEDkN17mg9Bfhq6l1DxwtZ9t4gtE5mMpvQHIhIbCRHpN0OWv7wZ4l2fD/vmrJDLCxDE0rCdXyxL7MKn2HCZEECxBezJiCuWEPRcI5dEZItrBm2dwuCA+iyUMeasQgWcbeV22N1NFKCK1ShDU94eQeKBK+KaMp73eKfXCLXISedRkG3/m9Yf4RgSrRogJY+6koTT5EtRHMutZt5FSHkOW513NjfYO/99rTAi8ARvXIQpSLH34kjjIm4qnhFvqdD0BLzd0wPeI3IRmFDt7gd1ZBz00KWgEH6LskKIINwtKZAi5ZE4qIRG7ydoijn4iUtaDlWdWdY4moJBLIjY9YpNG+X2r9gi6zDDbOi/u0q6LSRmAmnxgz882biTSUw2c5hN3hsyZIHdivkmxHizKkR+L61EWMhL/bFE+wJs3xDDIyqkfqZYLYIXgX1IELK0CKiIYwKDTBLL/pB+J78pxwJ31ef8B3IX124MkRlA/MSqzQHcRBgpyjrOykPAAplvPVsAl6elEftBmgJ7w8tKw+s1M+89X8SKn0QsqdkBbANn5c2h4k8x/MNeS7ntramP+OzPgB8Wu8AefD1vzTwX7o8TL2OeNB2iP0aOdjOFpIsvEwS91z+m9MpObMKa/o//iRo9IJOMmrTAL7QeIRjKnCUxIYSFtKK/LLydYVI3CYfLyMLkf1yhDYpR8LdBhYo7yRJqQu60RLjgodPMvcmY+orlcVUSeNURT3Ev5heQpDb107wvGWcxpkhmbouZVEJsyvEP/2pCekix7s7NsHXXK56TgrsYLcAZCOTeJTTCdhqk+OK9BL3yrFhmwdusLJT0Z1smRdS0hYMlWaDQcisShoDVxCnrg3p4+pQutenzaL5jqvw1Q5pRGmJ0jxMxeoveUMO03iDmm0HuhcT512OcHnTxRdW7no/+zBOKduMSOKYj0I8AppezwrQerFwaqhjp4MW8Wjmnoh2ko5c2dqFN9tXqdMUfnXbsxm3P0jUJNerJABpquegN2lEIL0yGjBlvY8I57BfZ4tMKgBEgz/ZRVm/qvidq5rDO+oIlfmk8afO5vXxbWna8VSNaI335VivmsH8tThvwF87QUfY6oXT09w+9eSC+mDaytTDjir0jWn1+5/421+DirFO15myM3rU5jC6+0En7Hwrp7A8Kr9Gjmomfk8ujUtkgaU2JPRS/KjHIRXSlDVBCz0QE2NU4RGNviAOnXyE2NbfWmXp1mkoDkzqpDcgr82eiYAsGYpLDw2d9AIkjGhmthOivDNM4ya8b1Gg9ICkgCGVgIJNvkjpJhrm8xWZgEXlueb3GidHTmJfcE4o+CVmo1Yln39JBEEWUzgy/YXdVPW1AVsQjf+hmLWoGdnCH9oOj14e5DxonSlCksZ4U90jTTsjs/b2RhmR/DAXbITLHBm/skQTL2WPjKVBry1gx0ofbi9NhHYpXBFmXi4JGsrBotBYklbH6QN9AMTGGeL9azUJH3/jSyKsk8s9bZbNIX9RHFnGrgAYNoQ6fOJiNpAYSdT/HJNSSYFT7joUSJV8ESMQseY7Rt6dqX51EmhyndMva1bFjVMSEcGUi39xnIKh5NeaMU1YhyBVY1gZkh6MetYKRI+taeA6KVjaaTRnsvMNhpRyypjxnSpvFsV4vIJRTC57Os3SOiroDGEXp3j/qHHjR1TLtEZ6vGMfZC+3bX5x20Ok/3u7upBL2RzwIn2GWjjjJqJsUFc1jJCIvmFeckzsVMGvfZHkj2h52yfFShFAdQwsQxbf2A19i0mIOmmd+pHRJfBHLjDmvSsMpu8Mdgkx0AbMK1p3X5D+F4Tk3nGxFAGW1VmU5by8ptK6N9zw2tAi3ZpMBrJXduHmD+yFMmcvYMxlCggm4bbWMOn124xBKHx3LgRVptsfYUMeeqYzF0gdqP+KPMEhGGZIQlXUWUNHSWeR8hgIDJPvXOVGQ5oHAm9FpABhmlVhE1wbTu3lStAfv9r7xLM371aY8XwTFnSfnGxEiYH4cAVO5B/yjuEyTuGK9A6oILSc7KhjakxKAa1lHbyfW4M20NH3aBL9ceBBmYxZlJEvcJfzIrDltQdN9cbbH+NaLM5b6Fm0vqapoTI+IIDAOdmvqoxHl2V40tSODXYWiDQZQ6uWMLco0xENbqRU3we01cCwMPjgRVJtqiP2+LxSnjkeNcv6MKZJoZaVyn7fm2NhDH6hrRNMQcsnb0GIYq0M8QfGC1gqhu2aEVduBR3LNlCtsyyTH/q7LKDT1iwuHXxiqAXERhThWW/zui10KhHJyLhwnUhRf4AMX5VKqcIUPTVxWanm4igTgYtISzvKY4FjFLXkvzkJTmv+nC6RsuLG7OfvTxKDcLlqSyBCrxJW+Oor2+dYaM5TdChdwHhItqOL+6hkdN8c7BFlYzITMhBMpM/eQcpvztZeiNGbeyWzvnLSQN3JSJKrm+p3Pd41NzLg7Iu9gksDqZB4g81rFpaka5DqzgmFEEOMH96VCCdICWmluNcgkFaLC6bjlI/MNzVeNO1R1Cgg8zB3KIHTPMsv0ni0+jU2M9YSG+ILZn+U/l/rQwr+o8HaLBG6n24ZnxIuTJ0ApIuqcGj3S/tSVyVzFfWNZ5ecQ+uEhuRdUXRPLG8oEJxgo40KQQiOEba/vpkHo9ooXW/XtsM68PAK73T7MCtIdP6sPQTGeJZrpw/3Kq2rqPIQ/rtK9Yjkdh6xxxsof9l6ypMevIAsE2EHJFdUr4ao58iiKYSCnMgFPD9CWLS6znrGRykKVxo2ZAA1U+93hqEs26YVWwFGV/ymQTIoWymLPpae104X2HU/QDiiCMeJq6yXmfTO3OtZDEMrlusvVxCGTv6ZqfHZZ0fjNnuTQYbMFQk66vaiEgbH/2mPbhgGR8zJ3FVIsnTWz2AomGyYNgj+Jpm3Dk9/Jg0dXLojsKQ2rH5qyK8S0gxXMI16UhxjtldLmE3r5+T5MSfVT7t1PBO0r4XfWTYBHrQ+0ZSYt8/FRarvEIFeCPjLmYGrjiZF4BfJqLooOpW2WVjNY75UQuyHJp+8rQ8USCbSShvlS7EATP+DopO3YVhGdslgrp/y0wUlSpGj0/uH0NuQLhdg5ie9BKYj34F4Etl241h5OW53biI1ohfmeptvnj39iG6lMjVdpopOZp5hcPY5b+qaCKsK94cUPmOUskgRzoFNyNeZhvcKT5+FApr1W6SSY63tIoq6cDXTJmQc0hQCuOCc1xW//48R563oIPcX07PWV/Y2eS5gcefeHGqCGGQJLvUwsreZcNh6J9nYc5nIHAJvbfJgxy+QsaE3ist01oN14KklXtfRteoGegzrDcX4ZvUgX9RzjfrAu6AQq1MqAZTRcXTGRgMhqscaMV+rcq5kPAKr/ipAW/Pf2ZQFIzIHrKhBoRQcRN/3LAprfeJuOTjAHTqvXr9ty0u9eGQb1qVlQoLJHNZRJzpwgMbcvmkIyvRZ5E53HlTc4/Ejibo42NiOvPnXKzT5WZATFZDEZbnXuRCzEUZw5MiIknSb/vx9pZOBTBh2fexOElY0SD/DBc2T0v8uYkXNPNpglC642DdHZ8PGGiu/X15i+aacuA+tahaNs2mjoxO3tleF7ndmSJ1G8EZn/+7PE62YH6fjzYv5K5ODogsSpKszrYY0/Y2NBrtS6Uv/wQHSO3+pR8aJp8+MhKkeXUChyOz2sq3dUJccOFtPDENmV/neocYV0JjFLO4kwPN/DT4rqO2u360arGUpDHjuYK+10cqWDmFXbmDYQvTW9CSADlzVKfv3zyQOu1drtoZj64ygrATrr2jcJA3fUqff9vkaxIis2egBu5nBR9vdKnuke2S/kxUJLs8VdDiFAfVLuOnlIAr42EIOZBKqfQndwbUdaRI9nHNoYsfbCJ5TMyWxqi+iOs7Dequ846c6uO/ISUnW0/8Rq7TIpPqHGUlkIkTuEVjFc31sjsvPLecSY8Na/iBIbsHT8IK3BKcQYjCjx5amb9mz1jTywgS1uiUiVLJgmjK1Ovgc0mFMfAOVfpSxos43yvhIR/mgYz3i6zyYvMFYkX/GwpCBmoe5yzT/wV6AHCpyfmrVo4LCBcwrnpMXSYKqaFvfuWNqGL36eUTBPrqK0ygrg1DM9rpC2LxyHLadX1DRohXWni/CgiWkHfNDV2GJHnPv7tkaQsV2M+zCkFGLkTS6HDgFeQQ5haMoNq/qsimHlSCOlvS/XGz3S4JnwpoVjHRjBgW+LCJt2HW8M1d5RDhc4gc/k+SVyjRZEpNyYOhwmF5EEG17+uTOQUYmH4YxSY/AS2vkHc/y0UabcmflpovoDtYFi0UZ+uXIfH7nR58z3uqsRiJKF5mOoHB3wbWQamDXrYoWqls9NVGyPJTpe0jvBj6jhohbdQEgjlhu8nbSeeiD5GgISRYLB4nvHkgQvhtZm7KPWvbBnLbSUap098Oa8jR4twqrgQo7Zf+gtUW8Y/RLG1aBHZC5e1rc1GY67Od4JJw0/lm5CsX5+lHvschvKP3EycIiJ39e75hBhjkcTCJtxwW/KwTsdO5UF/ZasegREfaxdRY8u5obAHHVLBUzD3gAiwylmkk/A1gGba71Ei1/8JZe1W2AW4r0Vun7U1qcfvoh5Ajvdf2uyvjroFcnQPb1DLRRw7r+oj+ly92Jhus2en4DtmU9NE1lpNFT4ehrAwA/jw7YxPNBh5WNj/v9cSk89QMUP/H9JULgNKZBcIKOdYPrifPe3NJMbpVqMAgf3K4RkPNHH7WsGTP9FXPwpLMljDLCPyfPsiwslMPfd0VgBya0TuWEN7hkoNwjCmjcwPQYLeJO6MjgZ5mGIs+DqxVHClNsC+mTxm0PYTQxOjovKOJEJ3+q3khjfn0Q8JFgTgxcek/TBQaQm75vtr/uhiW/frYx19zb7rLMWVCmoLzyfomWSTuVIsarjOEhGrh2oej83/hQAqAttMVHb2ORGwp1MDYobbV8JqbNFMNngV2eumbPGK/7je4lEfyguHKxySKJSYkMV+vLz9banltj7mBTx6Fo9Py+6N6NoAGPEPC+uIGYiyGOcVry8uSJfGYLfnuO8Fs56uDQQwhFGkGgTl7Y/myktKv5lZCaHgnMPnlhBCmEJ6Q94IMfBeLS85DrHzJl2hwU6AEtE+YeoFXntbOLNkmImU95q4A/y65oe1Qfqvq0fGSp7ZBa2sQhFVVKoz3iRZaRkfN9EZQI+QMdhUavX8kiPjs1ZJ13ahk+A==
Variant 5
DifficultyLevel
702
Question
Vlad has a giant square chess board that has an area of 4 m2.
What is the area of the chess board in square centimetres?
Worked Solution
Method 1
Dimensions of square with area 4 m2 is:
2 m × 2 m
Converting to centiimetres:
200 cm × 200 cm = 40 000 cm2
Method 2
Scale factor of converting cm to m = 100
Scale factor of converting cm2 to m2 = 100 × 100 = 10 000
∴ 4 m2 × 10 000 = 40 000 cm2
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Vlad has a giant square chess board that has an area of 4 m$^2$.
What is the area of the chess board in square centimetres? |
workedSolution | Method 1
Dimensions of square with area 4 m$^2$ is:
2 m × 2 m
Converting to centiimetres:
200 cm × 200 cm = {{{correctAnswer}}}
Method 2
Scale factor of converting cm to m = 100
Scale factor of converting cm$^2$ to m$^2$ = 100 × 100 = 10 000
$\therefore$ 4 m$^2$ × 10 000 = {{{correctAnswer}}} |
correctAnswer | |
Answers